| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136 | 
							- /*
 
-   stepper.c - stepper motor driver: executes motion plans using stepper motors
 
-   Part of Grbl
 
-   Copyright (c) 2009-2011 Simen Svale Skogsrud
 
-   Grbl is free software: you can redistribute it and/or modify
 
-   it under the terms of the GNU General Public License as published by
 
-   the Free Software Foundation, either version 3 of the License, or
 
-   (at your option) any later version.
 
-   Grbl is distributed in the hope that it will be useful,
 
-   but WITHOUT ANY WARRANTY; without even the implied warranty of
 
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
-   GNU General Public License for more details.
 
-   You should have received a copy of the GNU General Public License
 
-   along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
 
- */
 
- /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
 
-    and Philipp Tiefenbacher. */
 
- #include "Marlin.h"
 
- #include "stepper.h"
 
- #include "planner.h"
 
- #include "temperature.h"
 
- #include "ultralcd.h"
 
- #include "language.h"
 
- #include "cardreader.h"
 
- #include "speed_lookuptable.h"
 
- #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
 
- #include <SPI.h>
 
- #endif
 
- //===========================================================================
 
- //=============================public variables  ============================
 
- //===========================================================================
 
- block_t *current_block;  // A pointer to the block currently being traced
 
- //===========================================================================
 
- //=============================private variables ============================
 
- //===========================================================================
 
- //static makes it inpossible to be called from outside of this file by extern.!
 
- // Variables used by The Stepper Driver Interrupt
 
- static unsigned char out_bits;        // The next stepping-bits to be output
 
- static int32_t counter_x,       // Counter variables for the bresenham line tracer
 
-                counter_y,
 
-                counter_z,
 
-                counter_e;
 
- volatile static uint32_t step_events_completed; // The number of step events executed in the current block
 
- static int32_t  acceleration_time, deceleration_time;
 
- //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
 
- static uint16_t acc_step_rate; // needed for deccelaration start point
 
- static uint8_t  step_loops;
 
- static uint16_t OCR1A_nominal;
 
- static uint8_t  step_loops_nominal;
 
- volatile long endstops_trigsteps[3]={0,0,0};
 
- volatile long endstops_stepsTotal,endstops_stepsDone;
 
- static volatile bool endstop_x_hit=false;
 
- static volatile bool endstop_y_hit=false;
 
- static volatile bool endstop_z_hit=false;
 
- #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
 
- bool abort_on_endstop_hit = false;
 
- #endif
 
- #ifdef MOTOR_CURRENT_PWM_XY_PIN
 
-   int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
 
-   int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
 
-   int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
 
- #endif
 
- static bool old_x_min_endstop=false;
 
- static bool old_x_max_endstop=false;
 
- static bool old_y_min_endstop=false;
 
- static bool old_y_max_endstop=false;
 
- static bool old_z_min_endstop=false;
 
- static bool old_z_max_endstop=false;
 
- static bool check_endstops = true;
 
- static bool check_z_endstop = false;
 
- int8_t SilentMode;
 
- volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
 
- volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
 
- //===========================================================================
 
- //=============================functions         ============================
 
- //===========================================================================
 
- #define CHECK_ENDSTOPS  if(check_endstops)
 
- // intRes = intIn1 * intIn2 >> 16
 
- // uses:
 
- // r26 to store 0
 
- // r27 to store the byte 1 of the 24 bit result
 
- #define MultiU16X8toH16(intRes, charIn1, intIn2) \
 
- asm volatile ( \
 
- "clr r26 \n\t" \
 
- "mul %A1, %B2 \n\t" \
 
- "movw %A0, r0 \n\t" \
 
- "mul %A1, %A2 \n\t" \
 
- "add %A0, r1 \n\t" \
 
- "adc %B0, r26 \n\t" \
 
- "lsr r0 \n\t" \
 
- "adc %A0, r26 \n\t" \
 
- "adc %B0, r26 \n\t" \
 
- "clr r1 \n\t" \
 
- : \
 
- "=&r" (intRes) \
 
- : \
 
- "d" (charIn1), \
 
- "d" (intIn2) \
 
- : \
 
- "r26" \
 
- )
 
- // intRes = longIn1 * longIn2 >> 24
 
- // uses:
 
- // r26 to store 0
 
- // r27 to store the byte 1 of the 48bit result
 
- #define MultiU24X24toH16(intRes, longIn1, longIn2) \
 
- asm volatile ( \
 
- "clr r26 \n\t" \
 
- "mul %A1, %B2 \n\t" \
 
- "mov r27, r1 \n\t" \
 
- "mul %B1, %C2 \n\t" \
 
- "movw %A0, r0 \n\t" \
 
- "mul %C1, %C2 \n\t" \
 
- "add %B0, r0 \n\t" \
 
- "mul %C1, %B2 \n\t" \
 
- "add %A0, r0 \n\t" \
 
- "adc %B0, r1 \n\t" \
 
- "mul %A1, %C2 \n\t" \
 
- "add r27, r0 \n\t" \
 
- "adc %A0, r1 \n\t" \
 
- "adc %B0, r26 \n\t" \
 
- "mul %B1, %B2 \n\t" \
 
- "add r27, r0 \n\t" \
 
- "adc %A0, r1 \n\t" \
 
- "adc %B0, r26 \n\t" \
 
- "mul %C1, %A2 \n\t" \
 
- "add r27, r0 \n\t" \
 
- "adc %A0, r1 \n\t" \
 
- "adc %B0, r26 \n\t" \
 
- "mul %B1, %A2 \n\t" \
 
- "add r27, r1 \n\t" \
 
- "adc %A0, r26 \n\t" \
 
- "adc %B0, r26 \n\t" \
 
- "lsr r27 \n\t" \
 
- "adc %A0, r26 \n\t" \
 
- "adc %B0, r26 \n\t" \
 
- "clr r1 \n\t" \
 
- : \
 
- "=&r" (intRes) \
 
- : \
 
- "d" (longIn1), \
 
- "d" (longIn2) \
 
- : \
 
- "r26" , "r27" \
 
- )
 
- // Some useful constants
 
- #define ENABLE_STEPPER_DRIVER_INTERRUPT()  TIMSK1 |= (1<<OCIE1A)
 
- #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
 
- void checkHitEndstops()
 
- {
 
-  if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
 
-    SERIAL_ECHO_START;
 
-    SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT);
 
-    if(endstop_x_hit) {
 
-      SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
 
-      LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("X")));
 
-    }
 
-    if(endstop_y_hit) {
 
-      SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
 
-      LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("Y")));
 
-    }
 
-    if(endstop_z_hit) {
 
-      SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
 
-      LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT,PSTR("Z")));
 
-    }
 
-    SERIAL_ECHOLN("");
 
-    endstop_x_hit=false;
 
-    endstop_y_hit=false;
 
-    endstop_z_hit=false;
 
- #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
 
-    if (abort_on_endstop_hit)
 
-    {
 
-      card.sdprinting = false;
 
-      card.closefile();
 
-      quickStop();
 
-      setTargetHotend0(0);
 
-      setTargetHotend1(0);
 
-      setTargetHotend2(0);
 
-    }
 
- #endif
 
-  }
 
- }
 
- bool endstops_hit_on_purpose()
 
- {
 
-   bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit;
 
-   endstop_x_hit=false;
 
-   endstop_y_hit=false;
 
-   endstop_z_hit=false;
 
-   return hit;
 
- }
 
- bool endstop_z_hit_on_purpose()
 
- {
 
-   bool hit = endstop_z_hit;
 
-   endstop_z_hit=false;
 
-   return hit;
 
- }
 
- bool enable_endstops(bool check)
 
- {
 
-   bool old = check_endstops;
 
-   check_endstops = check;
 
-   return old;
 
- }
 
- bool enable_z_endstop(bool check)
 
- {
 
-   bool old = check_z_endstop;
 
-   check_z_endstop = check;
 
-   endstop_z_hit=false;
 
-   return old;
 
- }
 
- //         __________________________
 
- //        /|                        |\     _________________         ^
 
- //       / |                        | \   /|               |\        |
 
- //      /  |                        |  \ / |               | \       s
 
- //     /   |                        |   |  |               |  \      p
 
- //    /    |                        |   |  |               |   \     e
 
- //   +-----+------------------------+---+--+---------------+----+    e
 
- //   |               BLOCK 1            |      BLOCK 2          |    d
 
- //
 
- //                           time ----->
 
- //
 
- //  The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
 
- //  first block->accelerate_until step_events_completed, then keeps going at constant speed until
 
- //  step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
 
- //  The slope of acceleration is calculated with the leib ramp alghorithm.
 
- void st_wake_up() {
 
-   //  TCNT1 = 0;
 
-   ENABLE_STEPPER_DRIVER_INTERRUPT();
 
- }
 
- void step_wait(){
 
-     for(int8_t i=0; i < 6; i++){
 
-     }
 
- }
 
- FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
 
-   unsigned short timer;
 
-   if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
 
-   if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
 
-     step_rate = (step_rate >> 2)&0x3fff;
 
-     step_loops = 4;
 
-   }
 
-   else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
 
-     step_rate = (step_rate >> 1)&0x7fff;
 
-     step_loops = 2;
 
-   }
 
-   else {
 
-     step_loops = 1;
 
-   }
 
-   if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
 
-   step_rate -= (F_CPU/500000); // Correct for minimal speed
 
-   if(step_rate >= (8*256)){ // higher step rate
 
-     unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
 
-     unsigned char tmp_step_rate = (step_rate & 0x00ff);
 
-     unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
 
-     MultiU16X8toH16(timer, tmp_step_rate, gain);
 
-     timer = (unsigned short)pgm_read_word_near(table_address) - timer;
 
-   }
 
-   else { // lower step rates
 
-     unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
 
-     table_address += ((step_rate)>>1) & 0xfffc;
 
-     timer = (unsigned short)pgm_read_word_near(table_address);
 
-     timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
 
-   }
 
-   if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
 
-   return timer;
 
- }
 
- // Initializes the trapezoid generator from the current block. Called whenever a new
 
- // block begins.
 
- FORCE_INLINE void trapezoid_generator_reset() {
 
-   deceleration_time = 0;
 
-   // step_rate to timer interval
 
-   OCR1A_nominal = calc_timer(current_block->nominal_rate);
 
-   // make a note of the number of step loops required at nominal speed
 
-   step_loops_nominal = step_loops;
 
-   acc_step_rate = current_block->initial_rate;
 
-   acceleration_time = calc_timer(acc_step_rate);
 
-   OCR1A = acceleration_time;
 
- //    SERIAL_ECHO_START;
 
- //    SERIAL_ECHOPGM("advance :");
 
- //    SERIAL_ECHO(current_block->advance/256.0);
 
- //    SERIAL_ECHOPGM("advance rate :");
 
- //    SERIAL_ECHO(current_block->advance_rate/256.0);
 
- //    SERIAL_ECHOPGM("initial advance :");
 
- //  SERIAL_ECHO(current_block->initial_advance/256.0);
 
- //    SERIAL_ECHOPGM("final advance :");
 
- //    SERIAL_ECHOLN(current_block->final_advance/256.0);
 
- }
 
- // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
 
- // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
 
- ISR(TIMER1_COMPA_vect)
 
- {
 
-   // If there is no current block, attempt to pop one from the buffer
 
-   if (current_block == NULL) {
 
-     // Anything in the buffer?
 
-     current_block = plan_get_current_block();
 
-     if (current_block != NULL) {
 
-       // The busy flag is set by the plan_get_current_block() call.
 
-       // current_block->busy = true;
 
-       trapezoid_generator_reset();
 
-       counter_x = -(current_block->step_event_count >> 1);
 
-       counter_y = counter_x;
 
-       counter_z = counter_x;
 
-       counter_e = counter_x;
 
-       step_events_completed = 0;
 
-       #ifdef Z_LATE_ENABLE
 
-         if(current_block->steps_z > 0) {
 
-           enable_z();
 
-           OCR1A = 2000; //1ms wait
 
-           return;
 
-         }
 
-       #endif
 
-     }
 
-     else {
 
-         OCR1A=2000; // 1kHz.
 
-     }
 
-   }
 
-   if (current_block != NULL) {
 
-     // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
 
-     out_bits = current_block->direction_bits;
 
-     // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
 
-     if((out_bits & (1<<X_AXIS))!=0){
 
-         WRITE(X_DIR_PIN, INVERT_X_DIR);
 
-       count_direction[X_AXIS]=-1;
 
-     }
 
-     else{
 
-         WRITE(X_DIR_PIN, !INVERT_X_DIR);
 
-       count_direction[X_AXIS]=1;
 
-     }
 
-     if((out_bits & (1<<Y_AXIS))!=0){
 
-       WRITE(Y_DIR_PIN, INVERT_Y_DIR);
 
- 	  
 
- 	  #ifdef Y_DUAL_STEPPER_DRIVERS
 
- 	    WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
 
- 	  #endif
 
- 	  
 
-       count_direction[Y_AXIS]=-1;
 
-     }
 
-     else{
 
-       WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
 
- 	  
 
- 	  #ifdef Y_DUAL_STEPPER_DRIVERS
 
- 	    WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
 
- 	  #endif
 
- 	  
 
-       count_direction[Y_AXIS]=1;
 
-     }
 
-     // Set direction en check limit switches
 
-     #ifndef COREXY
 
-     if ((out_bits & (1<<X_AXIS)) != 0) {   // stepping along -X axis
 
-     #else
 
-     if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) {   //-X occurs for -A and -B
 
-     #endif
 
-       CHECK_ENDSTOPS
 
-       {
 
-         {
 
-           #if defined(X_MIN_PIN) && X_MIN_PIN > -1
 
-             bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
 
-             if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
 
-               endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
 
-               endstop_x_hit=true;
 
-               step_events_completed = current_block->step_event_count;
 
-             }
 
-             old_x_min_endstop = x_min_endstop;
 
-           #endif
 
-         }
 
-       }
 
-     }
 
-     else { // +direction
 
-       CHECK_ENDSTOPS
 
-       {
 
-         {
 
-           #if defined(X_MAX_PIN) && X_MAX_PIN > -1
 
-             bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
 
-             if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
 
-               endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
 
-               endstop_x_hit=true;
 
-               step_events_completed = current_block->step_event_count;
 
-             }
 
-             old_x_max_endstop = x_max_endstop;
 
-           #endif
 
-         }
 
-       }
 
-     }
 
-     #ifndef COREXY
 
-     if ((out_bits & (1<<Y_AXIS)) != 0) {   // -direction
 
-     #else
 
-     if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) {   // -Y occurs for -A and +B
 
-     #endif
 
-       CHECK_ENDSTOPS
 
-       {
 
-         #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
 
-           bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
 
-           if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
 
-             endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
 
-             endstop_y_hit=true;
 
-             step_events_completed = current_block->step_event_count;
 
-           }
 
-           old_y_min_endstop = y_min_endstop;
 
-         #endif
 
-       }
 
-     }
 
-     else { // +direction
 
-       CHECK_ENDSTOPS
 
-       {
 
-         #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
 
-           bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
 
-           if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
 
-             endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
 
-             endstop_y_hit=true;
 
-             step_events_completed = current_block->step_event_count;
 
-           }
 
-           old_y_max_endstop = y_max_endstop;
 
-         #endif
 
-       }
 
-     }
 
-     if ((out_bits & (1<<Z_AXIS)) != 0) {   // -direction
 
-       WRITE(Z_DIR_PIN,INVERT_Z_DIR);
 
-       
 
-       #ifdef Z_DUAL_STEPPER_DRIVERS
 
-         WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
 
-       #endif
 
-       count_direction[Z_AXIS]=-1;
 
-       if(check_endstops && ! check_z_endstop)
 
-       {
 
-         #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
 
-           bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
 
-           if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
 
-             endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
 
-             endstop_z_hit=true;
 
-             step_events_completed = current_block->step_event_count;
 
-           }
 
-           old_z_min_endstop = z_min_endstop;
 
-         #endif
 
-       }
 
-     }
 
-     else { // +direction
 
-       WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
 
-       #ifdef Z_DUAL_STEPPER_DRIVERS
 
-         WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
 
-       #endif
 
-       count_direction[Z_AXIS]=1;
 
-       CHECK_ENDSTOPS
 
-       {
 
-         #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
 
-           bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
 
-           if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
 
-             endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
 
-             endstop_z_hit=true;
 
-             step_events_completed = current_block->step_event_count;
 
-           }
 
-           old_z_max_endstop = z_max_endstop;
 
-         #endif
 
-       }
 
-     }
 
-     // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
 
-     #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
 
-     if(check_z_endstop) {
 
-         // Check the Z min end-stop no matter what.
 
-         // Good for searching for the center of an induction target.
 
-         bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
 
-         if(z_min_endstop && old_z_min_endstop) {
 
-           endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
 
-           endstop_z_hit=true;
 
-           step_events_completed = current_block->step_event_count;
 
-         }
 
-         old_z_min_endstop = z_min_endstop;
 
-     }
 
-     #endif
 
-     if ((out_bits & (1<<E_AXIS)) != 0) {  // -direction
 
-       REV_E_DIR();
 
-       count_direction[E_AXIS]=-1;
 
-     }
 
-     else { // +direction
 
-       NORM_E_DIR();
 
-       count_direction[E_AXIS]=1;
 
-     }
 
-     for(uint8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
 
-       #ifndef AT90USB
 
-       MSerial.checkRx(); // Check for serial chars.
 
-       #endif
 
-         counter_x += current_block->steps_x;
 
-         if (counter_x > 0) {
 
-           WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
 
-           counter_x -= current_block->step_event_count;
 
-           count_position[X_AXIS]+=count_direction[X_AXIS];   
 
-           WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
 
-         }
 
-         counter_y += current_block->steps_y;
 
-         if (counter_y > 0) {
 
-           WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
 
- 		  
 
- 		  #ifdef Y_DUAL_STEPPER_DRIVERS
 
- 			WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
 
- 		  #endif
 
- 		  
 
-           counter_y -= current_block->step_event_count;
 
-           count_position[Y_AXIS]+=count_direction[Y_AXIS];
 
-           WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
 
- 		  
 
- 		  #ifdef Y_DUAL_STEPPER_DRIVERS
 
- 			WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
 
- 		  #endif
 
-         }
 
-       counter_z += current_block->steps_z;
 
-       if (counter_z > 0) {
 
-         WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
 
-         
 
-         #ifdef Z_DUAL_STEPPER_DRIVERS
 
-           WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
 
-         #endif
 
-         counter_z -= current_block->step_event_count;
 
-         count_position[Z_AXIS]+=count_direction[Z_AXIS];
 
-         WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
 
-         
 
-         #ifdef Z_DUAL_STEPPER_DRIVERS
 
-           WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
 
-         #endif
 
-       }
 
-         counter_e += current_block->steps_e;
 
-         if (counter_e > 0) {
 
-           WRITE_E_STEP(!INVERT_E_STEP_PIN);
 
-           counter_e -= current_block->step_event_count;
 
-           count_position[E_AXIS]+=count_direction[E_AXIS];
 
-           WRITE_E_STEP(INVERT_E_STEP_PIN);
 
-         }
 
-       step_events_completed += 1;
 
-       if(step_events_completed >= current_block->step_event_count) break;
 
-     }
 
-     // Calculare new timer value
 
-     unsigned short timer;
 
-     unsigned short step_rate;
 
-     if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
 
-       // v = t * a   ->   acc_step_rate = acceleration_time * current_block->acceleration_rate
 
-       MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
 
-       acc_step_rate += current_block->initial_rate;
 
-       // upper limit
 
-       if(acc_step_rate > current_block->nominal_rate)
 
-         acc_step_rate = current_block->nominal_rate;
 
-       // step_rate to timer interval
 
-       timer = calc_timer(acc_step_rate);
 
-       OCR1A = timer;
 
-       acceleration_time += timer;
 
-     }
 
-     else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
 
-       MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
 
-       if(step_rate > acc_step_rate) { // Check step_rate stays positive
 
-         step_rate = current_block->final_rate;
 
-       }
 
-       else {
 
-         step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
 
-       }
 
-       // lower limit
 
-       if(step_rate < current_block->final_rate)
 
-         step_rate = current_block->final_rate;
 
-       // step_rate to timer interval
 
-       timer = calc_timer(step_rate);
 
-       OCR1A = timer;
 
-       deceleration_time += timer;
 
-     }
 
-     else {
 
-       OCR1A = OCR1A_nominal;
 
-       // ensure we're running at the correct step rate, even if we just came off an acceleration
 
-       step_loops = step_loops_nominal;
 
-     }
 
-     // If current block is finished, reset pointer
 
-     if (step_events_completed >= current_block->step_event_count) {
 
-       current_block = NULL;
 
-       plan_discard_current_block();
 
-     }
 
-   }
 
- }
 
- void st_init()
 
- {
 
-   digipot_init(); //Initialize Digipot Motor Current
 
-   microstep_init(); //Initialize Microstepping Pins
 
-   //Initialize Dir Pins
 
-   #if defined(X_DIR_PIN) && X_DIR_PIN > -1
 
-     SET_OUTPUT(X_DIR_PIN);
 
-   #endif
 
-   #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
 
-     SET_OUTPUT(X2_DIR_PIN);
 
-   #endif
 
-   #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
 
-     SET_OUTPUT(Y_DIR_PIN);
 
- 		
 
- 	#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
 
- 	  SET_OUTPUT(Y2_DIR_PIN);
 
- 	#endif
 
-   #endif
 
-   #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
 
-     SET_OUTPUT(Z_DIR_PIN);
 
-     #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
 
-       SET_OUTPUT(Z2_DIR_PIN);
 
-     #endif
 
-   #endif
 
-   #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
 
-     SET_OUTPUT(E0_DIR_PIN);
 
-   #endif
 
-   #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
 
-     SET_OUTPUT(E1_DIR_PIN);
 
-   #endif
 
-   #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
 
-     SET_OUTPUT(E2_DIR_PIN);
 
-   #endif
 
-   //Initialize Enable Pins - steppers default to disabled.
 
-   #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
 
-     SET_OUTPUT(X_ENABLE_PIN);
 
-     if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
 
-   #endif
 
-   #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
 
-     SET_OUTPUT(X2_ENABLE_PIN);
 
-     if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
 
-   #endif
 
-   #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
 
-     SET_OUTPUT(Y_ENABLE_PIN);
 
-     if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
 
- 	
 
- 	#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
 
- 	  SET_OUTPUT(Y2_ENABLE_PIN);
 
- 	  if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
 
- 	#endif
 
-   #endif
 
-   #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
 
-     SET_OUTPUT(Z_ENABLE_PIN);
 
-     if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
 
-     #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
 
-       SET_OUTPUT(Z2_ENABLE_PIN);
 
-       if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
 
-     #endif
 
-   #endif
 
-   #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
 
-     SET_OUTPUT(E0_ENABLE_PIN);
 
-     if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
 
-   #endif
 
-   #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
 
-     SET_OUTPUT(E1_ENABLE_PIN);
 
-     if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
 
-   #endif
 
-   #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
 
-     SET_OUTPUT(E2_ENABLE_PIN);
 
-     if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
 
-   #endif
 
-   //endstops and pullups
 
-   #if defined(X_MIN_PIN) && X_MIN_PIN > -1
 
-     SET_INPUT(X_MIN_PIN);
 
-     #ifdef ENDSTOPPULLUP_XMIN
 
-       WRITE(X_MIN_PIN,HIGH);
 
-     #endif
 
-   #endif
 
-   #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
 
-     SET_INPUT(Y_MIN_PIN);
 
-     #ifdef ENDSTOPPULLUP_YMIN
 
-       WRITE(Y_MIN_PIN,HIGH);
 
-     #endif
 
-   #endif
 
-   #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
 
-     SET_INPUT(Z_MIN_PIN);
 
-     #ifdef ENDSTOPPULLUP_ZMIN
 
-       WRITE(Z_MIN_PIN,HIGH);
 
-     #endif
 
-   #endif
 
-   #if defined(X_MAX_PIN) && X_MAX_PIN > -1
 
-     SET_INPUT(X_MAX_PIN);
 
-     #ifdef ENDSTOPPULLUP_XMAX
 
-       WRITE(X_MAX_PIN,HIGH);
 
-     #endif
 
-   #endif
 
-   #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
 
-     SET_INPUT(Y_MAX_PIN);
 
-     #ifdef ENDSTOPPULLUP_YMAX
 
-       WRITE(Y_MAX_PIN,HIGH);
 
-     #endif
 
-   #endif
 
-   #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
 
-     SET_INPUT(Z_MAX_PIN);
 
-     #ifdef ENDSTOPPULLUP_ZMAX
 
-       WRITE(Z_MAX_PIN,HIGH);
 
-     #endif
 
-   #endif
 
-   //Initialize Step Pins
 
-   #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
 
-     SET_OUTPUT(X_STEP_PIN);
 
-     WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
 
-     disable_x();
 
-   #endif
 
-   #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
 
-     SET_OUTPUT(X2_STEP_PIN);
 
-     WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
 
-     disable_x();
 
-   #endif
 
-   #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
 
-     SET_OUTPUT(Y_STEP_PIN);
 
-     WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
 
-     #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
 
-       SET_OUTPUT(Y2_STEP_PIN);
 
-       WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
 
-     #endif
 
-     disable_y();
 
-   #endif
 
-   #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
 
-     SET_OUTPUT(Z_STEP_PIN);
 
-     WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
 
-     #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
 
-       SET_OUTPUT(Z2_STEP_PIN);
 
-       WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
 
-     #endif
 
-     disable_z();
 
-   #endif
 
-   #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
 
-     SET_OUTPUT(E0_STEP_PIN);
 
-     WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
 
-     disable_e0();
 
-   #endif
 
-   #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
 
-     SET_OUTPUT(E1_STEP_PIN);
 
-     WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
 
-     disable_e1();
 
-   #endif
 
-   #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
 
-     SET_OUTPUT(E2_STEP_PIN);
 
-     WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
 
-     disable_e2();
 
-   #endif
 
-   // waveform generation = 0100 = CTC
 
-   TCCR1B &= ~(1<<WGM13);
 
-   TCCR1B |=  (1<<WGM12);
 
-   TCCR1A &= ~(1<<WGM11);
 
-   TCCR1A &= ~(1<<WGM10);
 
-   // output mode = 00 (disconnected)
 
-   TCCR1A &= ~(3<<COM1A0);
 
-   TCCR1A &= ~(3<<COM1B0);
 
-   // Set the timer pre-scaler
 
-   // Generally we use a divider of 8, resulting in a 2MHz timer
 
-   // frequency on a 16MHz MCU. If you are going to change this, be
 
-   // sure to regenerate speed_lookuptable.h with
 
-   // create_speed_lookuptable.py
 
-   TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
 
-   OCR1A = 0x4000;
 
-   TCNT1 = 0;
 
-   ENABLE_STEPPER_DRIVER_INTERRUPT();
 
-   enable_endstops(true); // Start with endstops active. After homing they can be disabled
 
-   sei();
 
- }
 
- // Block until all buffered steps are executed
 
- void st_synchronize()
 
- {
 
-     while( blocks_queued()) {
 
-     manage_heater();
 
-     // Vojtech: Don't disable motors inside the planner!
 
-     manage_inactivity(true);
 
-     lcd_update();
 
-   }
 
- }
 
- void st_set_position(const long &x, const long &y, const long &z, const long &e)
 
- {
 
-   CRITICAL_SECTION_START;
 
-   count_position[X_AXIS] = x;
 
-   count_position[Y_AXIS] = y;
 
-   count_position[Z_AXIS] = z;
 
-   count_position[E_AXIS] = e;
 
-   CRITICAL_SECTION_END;
 
- }
 
- void st_set_e_position(const long &e)
 
- {
 
-   CRITICAL_SECTION_START;
 
-   count_position[E_AXIS] = e;
 
-   CRITICAL_SECTION_END;
 
- }
 
- long st_get_position(uint8_t axis)
 
- {
 
-   long count_pos;
 
-   CRITICAL_SECTION_START;
 
-   count_pos = count_position[axis];
 
-   CRITICAL_SECTION_END;
 
-   return count_pos;
 
- }
 
- float st_get_position_mm(uint8_t axis)
 
- {
 
-   float steper_position_in_steps = st_get_position(axis);
 
-   return steper_position_in_steps / axis_steps_per_unit[axis];
 
- }
 
- void finishAndDisableSteppers()
 
- {
 
-   st_synchronize();
 
-   disable_x();
 
-   disable_y();
 
-   disable_z();
 
-   disable_e0();
 
-   disable_e1();
 
-   disable_e2();
 
- }
 
- void quickStop()
 
- {
 
-   DISABLE_STEPPER_DRIVER_INTERRUPT();
 
-   while (blocks_queued()) plan_discard_current_block(); 
 
-   current_block = NULL;
 
-   ENABLE_STEPPER_DRIVER_INTERRUPT();
 
- }
 
- #ifdef BABYSTEPPING
 
- void babystep(const uint8_t axis,const bool direction)
 
- {
 
-   //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
 
-     //store initial pin states
 
-   switch(axis)
 
-   {
 
-   case X_AXIS:
 
-   {
 
-     enable_x();   
 
-     uint8_t old_x_dir_pin= READ(X_DIR_PIN);  //if dualzstepper, both point to same direction.
 
-    
 
-     //setup new step
 
-     WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
 
-     
 
-     //perform step 
 
-     WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); 
 
-     {
 
-     volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
 
-     }
 
-     WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
 
-     //get old pin state back.
 
-     WRITE(X_DIR_PIN,old_x_dir_pin);
 
-   }
 
-   break;
 
-   case Y_AXIS:
 
-   {
 
-     enable_y();   
 
-     uint8_t old_y_dir_pin= READ(Y_DIR_PIN);  //if dualzstepper, both point to same direction.
 
-    
 
-     //setup new step
 
-     WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
 
-     
 
-     //perform step 
 
-     WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); 
 
-     {
 
-     volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
 
-     }
 
-     WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
 
-     //get old pin state back.
 
-     WRITE(Y_DIR_PIN,old_y_dir_pin);
 
-   }
 
-   break;
 
-  
 
-   case Z_AXIS:
 
-   {
 
-     enable_z();
 
-     uint8_t old_z_dir_pin= READ(Z_DIR_PIN);  //if dualzstepper, both point to same direction.
 
-     //setup new step
 
-     WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
 
-     #ifdef Z_DUAL_STEPPER_DRIVERS
 
-       WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
 
-     #endif
 
-     //perform step 
 
-     WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); 
 
-     #ifdef Z_DUAL_STEPPER_DRIVERS
 
-       WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
 
-     #endif
 
-     //wait a tiny bit
 
-     {
 
-     volatile float x=1./float(axis+1); //absolutely useless
 
-     }
 
-     WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
 
-     #ifdef Z_DUAL_STEPPER_DRIVERS
 
-       WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
 
-     #endif
 
-     //get old pin state back.
 
-     WRITE(Z_DIR_PIN,old_z_dir_pin);
 
-     #ifdef Z_DUAL_STEPPER_DRIVERS
 
-       WRITE(Z2_DIR_PIN,old_z_dir_pin);
 
-     #endif
 
-   }
 
-   break;
 
-  
 
-   default:    break;
 
-   }
 
- }
 
- #endif //BABYSTEPPING
 
- void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
 
- {
 
-   #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
 
-     digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
 
-     SPI.transfer(address); //  send in the address and value via SPI:
 
-     SPI.transfer(value);
 
-     digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
 
-     //delay(10);
 
-   #endif
 
- }
 
- void EEPROM_read_st(int pos, uint8_t* value, uint8_t size)
 
- {
 
-     do
 
-     {
 
-         *value = eeprom_read_byte((unsigned char*)pos);
 
-         pos++;
 
-         value++;
 
-     }while(--size);
 
- }
 
- void digipot_init() //Initialize Digipot Motor Current
 
- {
 
-   EEPROM_read_st(EEPROM_SILENT,(uint8_t*)&SilentMode,sizeof(SilentMode));
 
-   #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
 
-     if(SilentMode == 0){
 
-     const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT_LOUD;
 
-     }else{
 
-       const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
 
-     }
 
-     SPI.begin();
 
-     pinMode(DIGIPOTSS_PIN, OUTPUT);
 
-     for(int i=0;i<=4;i++)
 
-       //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
 
-       digipot_current(i,digipot_motor_current[i]);
 
-   #endif
 
-   #ifdef MOTOR_CURRENT_PWM_XY_PIN
 
-     pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
 
-     pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
 
-     pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
 
-     if((SilentMode == 0) || (farm_mode) ){
 
-      motor_current_setting[0] = motor_current_setting_loud[0];
 
-      motor_current_setting[1] = motor_current_setting_loud[1];
 
-      motor_current_setting[2] = motor_current_setting_loud[2];
 
-     }else{
 
-      motor_current_setting[0] = motor_current_setting_silent[0];
 
-      motor_current_setting[1] = motor_current_setting_silent[1];
 
-      motor_current_setting[2] = motor_current_setting_silent[2];
 
-     }
 
-     digipot_current(0, motor_current_setting[0]);
 
-     digipot_current(1, motor_current_setting[1]);
 
-     digipot_current(2, motor_current_setting[2]);
 
-     //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
 
-     TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
 
-   #endif
 
- }
 
- void digipot_current(uint8_t driver, int current)
 
- {
 
-   #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
 
-     const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
 
-     digitalPotWrite(digipot_ch[driver], current);
 
-   #endif
 
-   #ifdef MOTOR_CURRENT_PWM_XY_PIN
 
-   if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
 
-   if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
 
-   if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
 
-   #endif
 
- }
 
- void microstep_init()
 
- {
 
-   const uint8_t microstep_modes[] = MICROSTEP_MODES;
 
-   #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
 
-   pinMode(E1_MS1_PIN,OUTPUT);
 
-   pinMode(E1_MS2_PIN,OUTPUT); 
 
-   #endif
 
-   #if defined(X_MS1_PIN) && X_MS1_PIN > -1
 
-   pinMode(X_MS1_PIN,OUTPUT);
 
-   pinMode(X_MS2_PIN,OUTPUT);  
 
-   pinMode(Y_MS1_PIN,OUTPUT);
 
-   pinMode(Y_MS2_PIN,OUTPUT);
 
-   pinMode(Z_MS1_PIN,OUTPUT);
 
-   pinMode(Z_MS2_PIN,OUTPUT);
 
-   pinMode(E0_MS1_PIN,OUTPUT);
 
-   pinMode(E0_MS2_PIN,OUTPUT);
 
-   for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
 
-   #endif
 
- }
 
- void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
 
- {
 
-   if(ms1 > -1) switch(driver)
 
-   {
 
-     case 0: digitalWrite( X_MS1_PIN,ms1); break;
 
-     case 1: digitalWrite( Y_MS1_PIN,ms1); break;
 
-     case 2: digitalWrite( Z_MS1_PIN,ms1); break;
 
-     case 3: digitalWrite(E0_MS1_PIN,ms1); break;
 
-     #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
 
-     case 4: digitalWrite(E1_MS1_PIN,ms1); break;
 
-     #endif
 
-   }
 
-   if(ms2 > -1) switch(driver)
 
-   {
 
-     case 0: digitalWrite( X_MS2_PIN,ms2); break;
 
-     case 1: digitalWrite( Y_MS2_PIN,ms2); break;
 
-     case 2: digitalWrite( Z_MS2_PIN,ms2); break;
 
-     case 3: digitalWrite(E0_MS2_PIN,ms2); break;
 
-     #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
 
-     case 4: digitalWrite(E1_MS2_PIN,ms2); break;
 
-     #endif
 
-   }
 
- }
 
- void microstep_mode(uint8_t driver, uint8_t stepping_mode)
 
- {
 
-   switch(stepping_mode)
 
-   {
 
-     case 1: microstep_ms(driver,MICROSTEP1); break;
 
-     case 2: microstep_ms(driver,MICROSTEP2); break;
 
-     case 4: microstep_ms(driver,MICROSTEP4); break;
 
-     case 8: microstep_ms(driver,MICROSTEP8); break;
 
-     case 16: microstep_ms(driver,MICROSTEP16); break;
 
-   }
 
- }
 
- void microstep_readings()
 
- {
 
-       SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
 
-       SERIAL_PROTOCOLPGM("X: ");
 
-       SERIAL_PROTOCOL(   digitalRead(X_MS1_PIN));
 
-       SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
 
-       SERIAL_PROTOCOLPGM("Y: ");
 
-       SERIAL_PROTOCOL(   digitalRead(Y_MS1_PIN));
 
-       SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
 
-       SERIAL_PROTOCOLPGM("Z: ");
 
-       SERIAL_PROTOCOL(   digitalRead(Z_MS1_PIN));
 
-       SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
 
-       SERIAL_PROTOCOLPGM("E0: ");
 
-       SERIAL_PROTOCOL(   digitalRead(E0_MS1_PIN));
 
-       SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
 
-       #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
 
-       SERIAL_PROTOCOLPGM("E1: ");
 
-       SERIAL_PROTOCOL(   digitalRead(E1_MS1_PIN));
 
-       SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
 
-       #endif
 
- }
 
 
  |