Marlin_main.cpp 183 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. unsigned long TimeSent = millis();
  194. unsigned long TimeNow = millis();
  195. union Data
  196. {
  197. byte b[2];
  198. int value;
  199. };
  200. float homing_feedrate[] = HOMING_FEEDRATE;
  201. // Currently only the extruder axis may be switched to a relative mode.
  202. // Other axes are always absolute or relative based on the common relative_mode flag.
  203. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  204. int feedmultiply=100; //100->1 200->2
  205. int saved_feedmultiply;
  206. int extrudemultiply=100; //100->1 200->2
  207. int extruder_multiply[EXTRUDERS] = {100
  208. #if EXTRUDERS > 1
  209. , 100
  210. #if EXTRUDERS > 2
  211. , 100
  212. #endif
  213. #endif
  214. };
  215. bool is_usb_printing = false;
  216. unsigned int usb_printing_counter;
  217. int lcd_change_fil_state = 0;
  218. int feedmultiplyBckp = 100;
  219. unsigned char lang_selected = 0;
  220. bool prusa_sd_card_upload = false;
  221. unsigned long total_filament_used;
  222. unsigned int heating_status;
  223. unsigned int heating_status_counter;
  224. bool custom_message;
  225. unsigned int custom_message_type;
  226. unsigned int custom_message_state;
  227. bool volumetric_enabled = false;
  228. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  229. #if EXTRUDERS > 1
  230. , DEFAULT_NOMINAL_FILAMENT_DIA
  231. #if EXTRUDERS > 2
  232. , DEFAULT_NOMINAL_FILAMENT_DIA
  233. #endif
  234. #endif
  235. };
  236. float volumetric_multiplier[EXTRUDERS] = {1.0
  237. #if EXTRUDERS > 1
  238. , 1.0
  239. #if EXTRUDERS > 2
  240. , 1.0
  241. #endif
  242. #endif
  243. };
  244. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  245. float add_homing[3]={0,0,0};
  246. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  247. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  248. bool axis_known_position[3] = {false, false, false};
  249. float zprobe_zoffset;
  250. // Extruder offset
  251. #if EXTRUDERS > 1
  252. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  253. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  254. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  255. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  256. #endif
  257. };
  258. #endif
  259. uint8_t active_extruder = 0;
  260. int fanSpeed=0;
  261. #ifdef FWRETRACT
  262. bool autoretract_enabled=false;
  263. bool retracted[EXTRUDERS]={false
  264. #if EXTRUDERS > 1
  265. , false
  266. #if EXTRUDERS > 2
  267. , false
  268. #endif
  269. #endif
  270. };
  271. bool retracted_swap[EXTRUDERS]={false
  272. #if EXTRUDERS > 1
  273. , false
  274. #if EXTRUDERS > 2
  275. , false
  276. #endif
  277. #endif
  278. };
  279. float retract_length = RETRACT_LENGTH;
  280. float retract_length_swap = RETRACT_LENGTH_SWAP;
  281. float retract_feedrate = RETRACT_FEEDRATE;
  282. float retract_zlift = RETRACT_ZLIFT;
  283. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  284. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  285. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  286. #endif
  287. #ifdef ULTIPANEL
  288. #ifdef PS_DEFAULT_OFF
  289. bool powersupply = false;
  290. #else
  291. bool powersupply = true;
  292. #endif
  293. #endif
  294. bool cancel_heatup = false ;
  295. #ifdef FILAMENT_SENSOR
  296. //Variables for Filament Sensor input
  297. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  298. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  299. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  300. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  301. int delay_index1=0; //index into ring buffer
  302. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  303. float delay_dist=0; //delay distance counter
  304. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  305. #endif
  306. const char errormagic[] PROGMEM = "Error:";
  307. const char echomagic[] PROGMEM = "echo:";
  308. //===========================================================================
  309. //=============================Private Variables=============================
  310. //===========================================================================
  311. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  312. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  313. static float delta[3] = {0.0, 0.0, 0.0};
  314. // For tracing an arc
  315. static float offset[3] = {0.0, 0.0, 0.0};
  316. static bool home_all_axis = true;
  317. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  318. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  319. // Determines Absolute or Relative Coordinates.
  320. // Also there is bool axis_relative_modes[] per axis flag.
  321. static bool relative_mode = false;
  322. // String circular buffer. Commands may be pushed to the buffer from both sides:
  323. // Chained commands will be pushed to the front, interactive (from LCD menu)
  324. // and printing commands (from serial line or from SD card) are pushed to the tail.
  325. // First character of each entry indicates the type of the entry:
  326. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  327. // Command in cmdbuffer was sent over USB.
  328. #define CMDBUFFER_CURRENT_TYPE_USB 1
  329. // Command in cmdbuffer was read from SDCARD.
  330. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  331. // Command in cmdbuffer was generated by the UI.
  332. #define CMDBUFFER_CURRENT_TYPE_UI 3
  333. // Command in cmdbuffer was generated by another G-code.
  334. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  335. // How much space to reserve for the chained commands
  336. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  337. // which are pushed to the front of the queue?
  338. // Maximum 5 commands of max length 20 + null terminator.
  339. #define CMDBUFFER_RESERVE_FRONT (5*21)
  340. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  341. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  342. // Head of the circular buffer, where to read.
  343. static int bufindr = 0;
  344. // Tail of the buffer, where to write.
  345. static int bufindw = 0;
  346. // Number of lines in cmdbuffer.
  347. static int buflen = 0;
  348. // Flag for processing the current command inside the main Arduino loop().
  349. // If a new command was pushed to the front of a command buffer while
  350. // processing another command, this replaces the command on the top.
  351. // Therefore don't remove the command from the queue in the loop() function.
  352. static bool cmdbuffer_front_already_processed = false;
  353. // Type of a command, which is to be executed right now.
  354. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  355. // String of a command, which is to be executed right now.
  356. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  357. // Enable debugging of the command buffer.
  358. // Debugging information will be sent to serial line.
  359. // #define CMDBUFFER_DEBUG
  360. static int serial_count = 0;
  361. static boolean comment_mode = false;
  362. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  363. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  364. //static float tt = 0;
  365. //static float bt = 0;
  366. //Inactivity shutdown variables
  367. static unsigned long previous_millis_cmd = 0;
  368. unsigned long max_inactive_time = 0;
  369. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  370. unsigned long starttime=0;
  371. unsigned long stoptime=0;
  372. unsigned long _usb_timer = 0;
  373. static uint8_t tmp_extruder;
  374. bool Stopped=false;
  375. #if NUM_SERVOS > 0
  376. Servo servos[NUM_SERVOS];
  377. #endif
  378. bool CooldownNoWait = true;
  379. bool target_direction;
  380. //Insert variables if CHDK is defined
  381. #ifdef CHDK
  382. unsigned long chdkHigh = 0;
  383. boolean chdkActive = false;
  384. #endif
  385. //===========================================================================
  386. //=============================Routines======================================
  387. //===========================================================================
  388. void get_arc_coordinates();
  389. bool setTargetedHotend(int code);
  390. void serial_echopair_P(const char *s_P, float v)
  391. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  392. void serial_echopair_P(const char *s_P, double v)
  393. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  394. void serial_echopair_P(const char *s_P, unsigned long v)
  395. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  396. #ifdef SDSUPPORT
  397. #include "SdFatUtil.h"
  398. int freeMemory() { return SdFatUtil::FreeRam(); }
  399. #else
  400. extern "C" {
  401. extern unsigned int __bss_end;
  402. extern unsigned int __heap_start;
  403. extern void *__brkval;
  404. int freeMemory() {
  405. int free_memory;
  406. if ((int)__brkval == 0)
  407. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  408. else
  409. free_memory = ((int)&free_memory) - ((int)__brkval);
  410. return free_memory;
  411. }
  412. }
  413. #endif //!SDSUPPORT
  414. // Pop the currently processed command from the queue.
  415. // It is expected, that there is at least one command in the queue.
  416. bool cmdqueue_pop_front()
  417. {
  418. if (buflen > 0) {
  419. #ifdef CMDBUFFER_DEBUG
  420. SERIAL_ECHOPGM("Dequeing ");
  421. SERIAL_ECHO(cmdbuffer+bufindr+1);
  422. SERIAL_ECHOLNPGM("");
  423. SERIAL_ECHOPGM("Old indices: buflen ");
  424. SERIAL_ECHO(buflen);
  425. SERIAL_ECHOPGM(", bufindr ");
  426. SERIAL_ECHO(bufindr);
  427. SERIAL_ECHOPGM(", bufindw ");
  428. SERIAL_ECHO(bufindw);
  429. SERIAL_ECHOPGM(", serial_count ");
  430. SERIAL_ECHO(serial_count);
  431. SERIAL_ECHOPGM(", bufsize ");
  432. SERIAL_ECHO(sizeof(cmdbuffer));
  433. SERIAL_ECHOLNPGM("");
  434. #endif /* CMDBUFFER_DEBUG */
  435. if (-- buflen == 0) {
  436. // Empty buffer.
  437. if (serial_count == 0)
  438. // No serial communication is pending. Reset both pointers to zero.
  439. bufindw = 0;
  440. bufindr = bufindw;
  441. } else {
  442. // There is at least one ready line in the buffer.
  443. // First skip the current command ID and iterate up to the end of the string.
  444. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  445. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  446. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  447. // If the end of the buffer was empty,
  448. if (bufindr == sizeof(cmdbuffer)) {
  449. // skip to the start and find the nonzero command.
  450. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  451. }
  452. #ifdef CMDBUFFER_DEBUG
  453. SERIAL_ECHOPGM("New indices: buflen ");
  454. SERIAL_ECHO(buflen);
  455. SERIAL_ECHOPGM(", bufindr ");
  456. SERIAL_ECHO(bufindr);
  457. SERIAL_ECHOPGM(", bufindw ");
  458. SERIAL_ECHO(bufindw);
  459. SERIAL_ECHOPGM(", serial_count ");
  460. SERIAL_ECHO(serial_count);
  461. SERIAL_ECHOPGM(" new command on the top: ");
  462. SERIAL_ECHO(cmdbuffer+bufindr+1);
  463. SERIAL_ECHOLNPGM("");
  464. #endif /* CMDBUFFER_DEBUG */
  465. }
  466. return true;
  467. }
  468. return false;
  469. }
  470. void cmdqueue_reset()
  471. {
  472. while (cmdqueue_pop_front()) ;
  473. }
  474. // How long a string could be pushed to the front of the command queue?
  475. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  476. // len_asked does not contain the zero terminator size.
  477. bool cmdqueue_could_enqueue_front(int len_asked)
  478. {
  479. // MAX_CMD_SIZE has to accommodate the zero terminator.
  480. if (len_asked >= MAX_CMD_SIZE)
  481. return false;
  482. // Remove the currently processed command from the queue.
  483. if (! cmdbuffer_front_already_processed) {
  484. cmdqueue_pop_front();
  485. cmdbuffer_front_already_processed = true;
  486. }
  487. if (bufindr == bufindw && buflen > 0)
  488. // Full buffer.
  489. return false;
  490. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  491. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  492. if (bufindw < bufindr) {
  493. int bufindr_new = bufindr - len_asked - 2;
  494. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  495. if (endw <= bufindr_new) {
  496. bufindr = bufindr_new;
  497. return true;
  498. }
  499. } else {
  500. // Otherwise the free space is split between the start and end.
  501. if (len_asked + 2 <= bufindr) {
  502. // Could fit at the start.
  503. bufindr -= len_asked + 2;
  504. return true;
  505. }
  506. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  507. if (endw <= bufindr_new) {
  508. memset(cmdbuffer, 0, bufindr);
  509. bufindr = bufindr_new;
  510. return true;
  511. }
  512. }
  513. return false;
  514. }
  515. // Could one enqueue a command of lenthg len_asked into the buffer,
  516. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  517. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  518. // len_asked does not contain the zero terminator size.
  519. bool cmdqueue_could_enqueue_back(int len_asked)
  520. {
  521. // MAX_CMD_SIZE has to accommodate the zero terminator.
  522. if (len_asked >= MAX_CMD_SIZE)
  523. return false;
  524. if (bufindr == bufindw && buflen > 0)
  525. // Full buffer.
  526. return false;
  527. if (serial_count > 0) {
  528. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  529. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  530. // serial data.
  531. // How much memory to reserve for the commands pushed to the front?
  532. // End of the queue, when pushing to the end.
  533. int endw = bufindw + len_asked + 2;
  534. if (bufindw < bufindr)
  535. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  536. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  537. // Otherwise the free space is split between the start and end.
  538. if (// Could one fit to the end, including the reserve?
  539. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  540. // Could one fit to the end, and the reserve to the start?
  541. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  542. return true;
  543. // Could one fit both to the start?
  544. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  545. // Mark the rest of the buffer as used.
  546. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  547. // and point to the start.
  548. bufindw = 0;
  549. return true;
  550. }
  551. } else {
  552. // How much memory to reserve for the commands pushed to the front?
  553. // End of the queue, when pushing to the end.
  554. int endw = bufindw + len_asked + 2;
  555. if (bufindw < bufindr)
  556. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  557. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  558. // Otherwise the free space is split between the start and end.
  559. if (// Could one fit to the end, including the reserve?
  560. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  561. // Could one fit to the end, and the reserve to the start?
  562. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  563. return true;
  564. // Could one fit both to the start?
  565. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  566. // Mark the rest of the buffer as used.
  567. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  568. // and point to the start.
  569. bufindw = 0;
  570. return true;
  571. }
  572. }
  573. return false;
  574. }
  575. #ifdef CMDBUFFER_DEBUG
  576. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  577. {
  578. SERIAL_ECHOPGM("Entry nr: ");
  579. SERIAL_ECHO(nr);
  580. SERIAL_ECHOPGM(", type: ");
  581. SERIAL_ECHO(int(*p));
  582. SERIAL_ECHOPGM(", cmd: ");
  583. SERIAL_ECHO(p+1);
  584. SERIAL_ECHOLNPGM("");
  585. }
  586. static void cmdqueue_dump_to_serial()
  587. {
  588. if (buflen == 0) {
  589. SERIAL_ECHOLNPGM("The command buffer is empty.");
  590. } else {
  591. SERIAL_ECHOPGM("Content of the buffer: entries ");
  592. SERIAL_ECHO(buflen);
  593. SERIAL_ECHOPGM(", indr ");
  594. SERIAL_ECHO(bufindr);
  595. SERIAL_ECHOPGM(", indw ");
  596. SERIAL_ECHO(bufindw);
  597. SERIAL_ECHOLNPGM("");
  598. int nr = 0;
  599. if (bufindr < bufindw) {
  600. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  601. cmdqueue_dump_to_serial_single_line(nr, p);
  602. // Skip the command.
  603. for (++p; *p != 0; ++ p);
  604. // Skip the gaps.
  605. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  606. }
  607. } else {
  608. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  609. cmdqueue_dump_to_serial_single_line(nr, p);
  610. // Skip the command.
  611. for (++p; *p != 0; ++ p);
  612. // Skip the gaps.
  613. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  614. }
  615. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  616. cmdqueue_dump_to_serial_single_line(nr, p);
  617. // Skip the command.
  618. for (++p; *p != 0; ++ p);
  619. // Skip the gaps.
  620. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  621. }
  622. }
  623. SERIAL_ECHOLNPGM("End of the buffer.");
  624. }
  625. }
  626. #endif /* CMDBUFFER_DEBUG */
  627. //adds an command to the main command buffer
  628. //thats really done in a non-safe way.
  629. //needs overworking someday
  630. // Currently the maximum length of a command piped through this function is around 20 characters
  631. void enquecommand(const char *cmd, bool from_progmem)
  632. {
  633. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  634. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  635. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  636. if (cmdqueue_could_enqueue_back(len)) {
  637. // This is dangerous if a mixing of serial and this happens
  638. // This may easily be tested: If serial_count > 0, we have a problem.
  639. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  640. if (from_progmem)
  641. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  642. else
  643. strcpy(cmdbuffer + bufindw + 1, cmd);
  644. SERIAL_ECHO_START;
  645. SERIAL_ECHORPGM(MSG_Enqueing);
  646. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  647. SERIAL_ECHOLNPGM("\"");
  648. bufindw += len + 2;
  649. if (bufindw == sizeof(cmdbuffer))
  650. bufindw = 0;
  651. ++ buflen;
  652. #ifdef CMDBUFFER_DEBUG
  653. cmdqueue_dump_to_serial();
  654. #endif /* CMDBUFFER_DEBUG */
  655. } else {
  656. SERIAL_ERROR_START;
  657. SERIAL_ECHORPGM(MSG_Enqueing);
  658. if (from_progmem)
  659. SERIAL_PROTOCOLRPGM(cmd);
  660. else
  661. SERIAL_ECHO(cmd);
  662. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  663. #ifdef CMDBUFFER_DEBUG
  664. cmdqueue_dump_to_serial();
  665. #endif /* CMDBUFFER_DEBUG */
  666. }
  667. }
  668. void enquecommand_front(const char *cmd, bool from_progmem)
  669. {
  670. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  671. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  672. if (cmdqueue_could_enqueue_front(len)) {
  673. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  674. if (from_progmem)
  675. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  676. else
  677. strcpy(cmdbuffer + bufindr + 1, cmd);
  678. ++ buflen;
  679. SERIAL_ECHO_START;
  680. SERIAL_ECHOPGM("Enqueing to the front: \"");
  681. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  682. SERIAL_ECHOLNPGM("\"");
  683. #ifdef CMDBUFFER_DEBUG
  684. cmdqueue_dump_to_serial();
  685. #endif /* CMDBUFFER_DEBUG */
  686. } else {
  687. SERIAL_ERROR_START;
  688. SERIAL_ECHOPGM("Enqueing to the front: \"");
  689. if (from_progmem)
  690. SERIAL_PROTOCOLRPGM(cmd);
  691. else
  692. SERIAL_ECHO(cmd);
  693. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  694. #ifdef CMDBUFFER_DEBUG
  695. cmdqueue_dump_to_serial();
  696. #endif /* CMDBUFFER_DEBUG */
  697. }
  698. }
  699. // Mark the command at the top of the command queue as new.
  700. // Therefore it will not be removed from the queue.
  701. void repeatcommand_front()
  702. {
  703. cmdbuffer_front_already_processed = true;
  704. }
  705. void setup_killpin()
  706. {
  707. #if defined(KILL_PIN) && KILL_PIN > -1
  708. SET_INPUT(KILL_PIN);
  709. WRITE(KILL_PIN,HIGH);
  710. #endif
  711. }
  712. // Set home pin
  713. void setup_homepin(void)
  714. {
  715. #if defined(HOME_PIN) && HOME_PIN > -1
  716. SET_INPUT(HOME_PIN);
  717. WRITE(HOME_PIN,HIGH);
  718. #endif
  719. }
  720. void setup_photpin()
  721. {
  722. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  723. SET_OUTPUT(PHOTOGRAPH_PIN);
  724. WRITE(PHOTOGRAPH_PIN, LOW);
  725. #endif
  726. }
  727. void setup_powerhold()
  728. {
  729. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  730. SET_OUTPUT(SUICIDE_PIN);
  731. WRITE(SUICIDE_PIN, HIGH);
  732. #endif
  733. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  734. SET_OUTPUT(PS_ON_PIN);
  735. #if defined(PS_DEFAULT_OFF)
  736. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  737. #else
  738. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  739. #endif
  740. #endif
  741. }
  742. void suicide()
  743. {
  744. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  745. SET_OUTPUT(SUICIDE_PIN);
  746. WRITE(SUICIDE_PIN, LOW);
  747. #endif
  748. }
  749. void servo_init()
  750. {
  751. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  752. servos[0].attach(SERVO0_PIN);
  753. #endif
  754. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  755. servos[1].attach(SERVO1_PIN);
  756. #endif
  757. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  758. servos[2].attach(SERVO2_PIN);
  759. #endif
  760. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  761. servos[3].attach(SERVO3_PIN);
  762. #endif
  763. #if (NUM_SERVOS >= 5)
  764. #error "TODO: enter initalisation code for more servos"
  765. #endif
  766. }
  767. static void lcd_language_menu();
  768. #ifdef MESH_BED_LEVELING
  769. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  770. #endif
  771. // "Setup" function is called by the Arduino framework on startup.
  772. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  773. // are initialized by the main() routine provided by the Arduino framework.
  774. void setup()
  775. {
  776. setup_killpin();
  777. setup_powerhold();
  778. MYSERIAL.begin(BAUDRATE);
  779. SERIAL_PROTOCOLLNPGM("start");
  780. SERIAL_ECHO_START;
  781. #if 0
  782. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  783. for (int i = 0; i < 4096; ++ i) {
  784. int b = eeprom_read_byte((unsigned char*)i);
  785. if (b != 255) {
  786. SERIAL_ECHO(i);
  787. SERIAL_ECHO(":");
  788. SERIAL_ECHO(b);
  789. SERIAL_ECHOLN("");
  790. }
  791. }
  792. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  793. #endif
  794. // Check startup - does nothing if bootloader sets MCUSR to 0
  795. byte mcu = MCUSR;
  796. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  797. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  798. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  799. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  800. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  801. MCUSR=0;
  802. //SERIAL_ECHORPGM(MSG_MARLIN);
  803. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  804. #ifdef STRING_VERSION_CONFIG_H
  805. #ifdef STRING_CONFIG_H_AUTHOR
  806. SERIAL_ECHO_START;
  807. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  808. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  809. SERIAL_ECHORPGM(MSG_AUTHOR);
  810. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  811. SERIAL_ECHOPGM("Compiled: ");
  812. SERIAL_ECHOLNPGM(__DATE__);
  813. #endif
  814. #endif
  815. SERIAL_ECHO_START;
  816. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  817. SERIAL_ECHO(freeMemory());
  818. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  819. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  820. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  821. Config_RetrieveSettings();
  822. tp_init(); // Initialize temperature loop
  823. plan_init(); // Initialize planner;
  824. watchdog_init();
  825. st_init(); // Initialize stepper, this enables interrupts!
  826. setup_photpin();
  827. servo_init();
  828. // Reset the machine correction matrix.
  829. // It does not make sense to load the correction matrix until the machine is homed.
  830. world2machine_reset();
  831. lcd_init();
  832. if (!READ(BTN_ENC))
  833. {
  834. _delay_ms(1000);
  835. if (!READ(BTN_ENC))
  836. {
  837. SET_OUTPUT(BEEPER);
  838. WRITE(BEEPER, HIGH);
  839. // Force language selection at the next boot up.
  840. lcd_force_language_selection();
  841. // Force the "Follow calibration flow" message at the next boot up.
  842. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  843. farm_no = 0;
  844. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  845. farm_mode = false;
  846. while (!READ(BTN_ENC));
  847. WRITE(BEEPER, LOW);
  848. #ifdef MESH_BED_LEVELING
  849. _delay_ms(2000);
  850. if (!READ(BTN_ENC))
  851. {
  852. WRITE(BEEPER, HIGH);
  853. _delay_ms(100);
  854. WRITE(BEEPER, LOW);
  855. _delay_ms(200);
  856. WRITE(BEEPER, HIGH);
  857. _delay_ms(100);
  858. WRITE(BEEPER, LOW);
  859. int _z = 0;
  860. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  861. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  862. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  863. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  864. }
  865. else
  866. {
  867. WRITE(BEEPER, HIGH);
  868. _delay_ms(100);
  869. WRITE(BEEPER, LOW);
  870. }
  871. #endif // mesh
  872. }
  873. }
  874. else
  875. {
  876. _delay_ms(1000); // wait 1sec to display the splash screen
  877. }
  878. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  879. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  880. #endif
  881. #ifdef DIGIPOT_I2C
  882. digipot_i2c_init();
  883. #endif
  884. setup_homepin();
  885. #if defined(Z_AXIS_ALWAYS_ON)
  886. enable_z();
  887. #endif
  888. EEPROM_read_B(EEPROM_FARM_MODE, &farm_no);
  889. if (farm_no > 0)
  890. {
  891. farm_mode = true;
  892. farm_no = farm_no;
  893. prusa_statistics(8);
  894. }
  895. else
  896. {
  897. farm_mode = false;
  898. farm_no = 0;
  899. }
  900. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  901. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  902. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  903. // but this times out if a blocking dialog is shown in setup().
  904. card.initsd();
  905. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff &&
  906. eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff &&
  907. eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) {
  908. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  909. // where all the EEPROM entries are set to 0x0ff.
  910. // Once a firmware boots up, it forces at least a language selection, which changes
  911. // EEPROM_LANG to number lower than 0x0ff.
  912. // 1) Set a high power mode.
  913. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  914. }
  915. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  916. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  917. // is being written into the EEPROM, so the update procedure will be triggered only once.
  918. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  919. if (lang_selected >= LANG_NUM){
  920. lcd_mylang();
  921. }
  922. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  923. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  924. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  925. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  926. // Show the message.
  927. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  928. lcd_update_enable(true);
  929. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  930. // Show the message.
  931. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  932. lcd_update_enable(true);
  933. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  934. // Show the message.
  935. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  936. lcd_update_enable(true);
  937. }
  938. // Store the currently running firmware into an eeprom,
  939. // so the next time the firmware gets updated, it will know from which version it has been updated.
  940. update_current_firmware_version_to_eeprom();
  941. }
  942. void trace();
  943. #define CHUNK_SIZE 64 // bytes
  944. #define SAFETY_MARGIN 1
  945. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  946. int chunkHead = 0;
  947. int serial_read_stream() {
  948. setTargetHotend(0, 0);
  949. setTargetBed(0);
  950. lcd_implementation_clear();
  951. lcd_printPGM(PSTR(" Upload in progress"));
  952. // first wait for how many bytes we will receive
  953. uint32_t bytesToReceive;
  954. // receive the four bytes
  955. char bytesToReceiveBuffer[4];
  956. for (int i=0; i<4; i++) {
  957. int data;
  958. while ((data = MYSERIAL.read()) == -1) {};
  959. bytesToReceiveBuffer[i] = data;
  960. }
  961. // make it a uint32
  962. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  963. // we're ready, notify the sender
  964. MYSERIAL.write('+');
  965. // lock in the routine
  966. uint32_t receivedBytes = 0;
  967. while (prusa_sd_card_upload) {
  968. int i;
  969. for (i=0; i<CHUNK_SIZE; i++) {
  970. int data;
  971. // check if we're not done
  972. if (receivedBytes == bytesToReceive) {
  973. break;
  974. }
  975. // read the next byte
  976. while ((data = MYSERIAL.read()) == -1) {};
  977. receivedBytes++;
  978. // save it to the chunk
  979. chunk[i] = data;
  980. }
  981. // write the chunk to SD
  982. card.write_command_no_newline(&chunk[0]);
  983. // notify the sender we're ready for more data
  984. MYSERIAL.write('+');
  985. // for safety
  986. manage_heater();
  987. // check if we're done
  988. if(receivedBytes == bytesToReceive) {
  989. trace(); // beep
  990. card.closefile();
  991. prusa_sd_card_upload = false;
  992. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  993. return 0;
  994. }
  995. }
  996. }
  997. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  998. // Before loop(), the setup() function is called by the main() routine.
  999. void loop()
  1000. {
  1001. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1002. {
  1003. is_usb_printing = true;
  1004. usb_printing_counter--;
  1005. _usb_timer = millis();
  1006. }
  1007. if (usb_printing_counter == 0)
  1008. {
  1009. is_usb_printing = false;
  1010. }
  1011. if (prusa_sd_card_upload)
  1012. {
  1013. //we read byte-by byte
  1014. serial_read_stream();
  1015. } else
  1016. {
  1017. get_command();
  1018. #ifdef SDSUPPORT
  1019. card.checkautostart(false);
  1020. #endif
  1021. if(buflen)
  1022. {
  1023. #ifdef SDSUPPORT
  1024. if(card.saving)
  1025. {
  1026. // Saving a G-code file onto an SD-card is in progress.
  1027. // Saving starts with M28, saving until M29 is seen.
  1028. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1029. card.write_command(CMDBUFFER_CURRENT_STRING);
  1030. if(card.logging)
  1031. process_commands();
  1032. else
  1033. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1034. } else {
  1035. card.closefile();
  1036. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1037. }
  1038. } else {
  1039. process_commands();
  1040. }
  1041. #else
  1042. process_commands();
  1043. #endif //SDSUPPORT
  1044. if (! cmdbuffer_front_already_processed)
  1045. cmdqueue_pop_front();
  1046. cmdbuffer_front_already_processed = false;
  1047. }
  1048. //check heater every n milliseconds
  1049. manage_heater();
  1050. manage_inactivity();
  1051. checkHitEndstops();
  1052. lcd_update();
  1053. }
  1054. void get_command()
  1055. {
  1056. // Test and reserve space for the new command string.
  1057. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1058. return;
  1059. while (MYSERIAL.available() > 0) {
  1060. char serial_char = MYSERIAL.read();
  1061. TimeSent = millis();
  1062. TimeNow = millis();
  1063. if (serial_char < 0)
  1064. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1065. // and Marlin does not support such file names anyway.
  1066. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1067. // to a hang-up of the print process from an SD card.
  1068. continue;
  1069. if(serial_char == '\n' ||
  1070. serial_char == '\r' ||
  1071. (serial_char == ':' && comment_mode == false) ||
  1072. serial_count >= (MAX_CMD_SIZE - 1) )
  1073. {
  1074. if(!serial_count) { //if empty line
  1075. comment_mode = false; //for new command
  1076. return;
  1077. }
  1078. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1079. if(!comment_mode){
  1080. comment_mode = false; //for new command
  1081. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1082. {
  1083. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1084. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1085. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1086. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1087. // M110 - set current line number.
  1088. // Line numbers not sent in succession.
  1089. SERIAL_ERROR_START;
  1090. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1091. SERIAL_ERRORLN(gcode_LastN);
  1092. //Serial.println(gcode_N);
  1093. FlushSerialRequestResend();
  1094. serial_count = 0;
  1095. return;
  1096. }
  1097. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1098. {
  1099. byte checksum = 0;
  1100. char *p = cmdbuffer+bufindw+1;
  1101. while (p != strchr_pointer)
  1102. checksum = checksum^(*p++);
  1103. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1104. SERIAL_ERROR_START;
  1105. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1106. SERIAL_ERRORLN(gcode_LastN);
  1107. FlushSerialRequestResend();
  1108. serial_count = 0;
  1109. return;
  1110. }
  1111. // If no errors, remove the checksum and continue parsing.
  1112. *strchr_pointer = 0;
  1113. }
  1114. else
  1115. {
  1116. SERIAL_ERROR_START;
  1117. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1118. SERIAL_ERRORLN(gcode_LastN);
  1119. FlushSerialRequestResend();
  1120. serial_count = 0;
  1121. return;
  1122. }
  1123. gcode_LastN = gcode_N;
  1124. //if no errors, continue parsing
  1125. } // end of 'N' command
  1126. else // if we don't receive 'N' but still see '*'
  1127. {
  1128. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1129. {
  1130. SERIAL_ERROR_START;
  1131. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1132. SERIAL_ERRORLN(gcode_LastN);
  1133. serial_count = 0;
  1134. return;
  1135. }
  1136. } // end of '*' command
  1137. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1138. if (! IS_SD_PRINTING) {
  1139. usb_printing_counter = 10;
  1140. is_usb_printing = true;
  1141. }
  1142. if (Stopped == true) {
  1143. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1144. if (gcode >= 0 && gcode <= 3) {
  1145. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1146. LCD_MESSAGERPGM(MSG_STOPPED);
  1147. }
  1148. }
  1149. } // end of 'G' command
  1150. //If command was e-stop process now
  1151. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1152. kill();
  1153. // Store the current line into buffer, move to the next line.
  1154. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1155. #ifdef CMDBUFFER_DEBUG
  1156. SERIAL_ECHO_START;
  1157. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1158. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1159. SERIAL_ECHOLNPGM("");
  1160. #endif /* CMDBUFFER_DEBUG */
  1161. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1162. if (bufindw == sizeof(cmdbuffer))
  1163. bufindw = 0;
  1164. ++ buflen;
  1165. #ifdef CMDBUFFER_DEBUG
  1166. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1167. SERIAL_ECHO(buflen);
  1168. SERIAL_ECHOLNPGM("");
  1169. #endif /* CMDBUFFER_DEBUG */
  1170. } // end of 'not comment mode'
  1171. serial_count = 0; //clear buffer
  1172. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1173. // in the queue, as this function will reserve the memory.
  1174. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1175. return;
  1176. } // end of "end of line" processing
  1177. else {
  1178. // Not an "end of line" symbol. Store the new character into a buffer.
  1179. if(serial_char == ';') comment_mode = true;
  1180. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1181. }
  1182. } // end of serial line processing loop
  1183. if(farm_mode){
  1184. TimeNow = millis();
  1185. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1186. cmdbuffer[bufindw+serial_count+1] = 0;
  1187. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1188. if (bufindw == sizeof(cmdbuffer))
  1189. bufindw = 0;
  1190. ++ buflen;
  1191. serial_count = 0;
  1192. SERIAL_ECHOPGM("TIMEOUT:");
  1193. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1194. return;
  1195. }
  1196. }
  1197. #ifdef SDSUPPORT
  1198. if(!card.sdprinting || serial_count!=0){
  1199. // If there is a half filled buffer from serial line, wait until return before
  1200. // continuing with the serial line.
  1201. return;
  1202. }
  1203. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1204. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1205. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1206. static bool stop_buffering=false;
  1207. if(buflen==0) stop_buffering=false;
  1208. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1209. while( !card.eof() && !stop_buffering) {
  1210. int16_t n=card.get();
  1211. char serial_char = (char)n;
  1212. if(serial_char == '\n' ||
  1213. serial_char == '\r' ||
  1214. (serial_char == '#' && comment_mode == false) ||
  1215. (serial_char == ':' && comment_mode == false) ||
  1216. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1217. {
  1218. if(card.eof()){
  1219. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1220. stoptime=millis();
  1221. char time[30];
  1222. unsigned long t=(stoptime-starttime)/1000;
  1223. int hours, minutes;
  1224. minutes=(t/60)%60;
  1225. hours=t/60/60;
  1226. save_statistics(total_filament_used, t);
  1227. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1228. SERIAL_ECHO_START;
  1229. SERIAL_ECHOLN(time);
  1230. lcd_setstatus(time);
  1231. card.printingHasFinished();
  1232. card.checkautostart(true);
  1233. if (farm_mode)
  1234. {
  1235. prusa_statistics(6);
  1236. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1237. }
  1238. }
  1239. if(serial_char=='#')
  1240. stop_buffering=true;
  1241. if(!serial_count)
  1242. {
  1243. comment_mode = false; //for new command
  1244. return; //if empty line
  1245. }
  1246. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1247. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1248. ++ buflen;
  1249. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1250. if (bufindw == sizeof(cmdbuffer))
  1251. bufindw = 0;
  1252. comment_mode = false; //for new command
  1253. serial_count = 0; //clear buffer
  1254. // The following line will reserve buffer space if available.
  1255. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1256. return;
  1257. }
  1258. else
  1259. {
  1260. if(serial_char == ';') comment_mode = true;
  1261. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1262. }
  1263. }
  1264. #endif //SDSUPPORT
  1265. }
  1266. // Return True if a character was found
  1267. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1268. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1269. static inline float code_value() { return strtod(strchr_pointer+1, NULL); }
  1270. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1271. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1272. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1273. #define DEFINE_PGM_READ_ANY(type, reader) \
  1274. static inline type pgm_read_any(const type *p) \
  1275. { return pgm_read_##reader##_near(p); }
  1276. DEFINE_PGM_READ_ANY(float, float);
  1277. DEFINE_PGM_READ_ANY(signed char, byte);
  1278. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1279. static const PROGMEM type array##_P[3] = \
  1280. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1281. static inline type array(int axis) \
  1282. { return pgm_read_any(&array##_P[axis]); } \
  1283. type array##_ext(int axis) \
  1284. { return pgm_read_any(&array##_P[axis]); }
  1285. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1286. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1287. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1288. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1289. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1290. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1291. static void axis_is_at_home(int axis) {
  1292. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1293. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1294. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1295. }
  1296. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1297. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1298. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1299. saved_feedrate = feedrate;
  1300. saved_feedmultiply = feedmultiply;
  1301. feedmultiply = 100;
  1302. previous_millis_cmd = millis();
  1303. enable_endstops(enable_endstops_now);
  1304. }
  1305. static void clean_up_after_endstop_move() {
  1306. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1307. enable_endstops(false);
  1308. #endif
  1309. feedrate = saved_feedrate;
  1310. feedmultiply = saved_feedmultiply;
  1311. previous_millis_cmd = millis();
  1312. }
  1313. #ifdef ENABLE_AUTO_BED_LEVELING
  1314. #ifdef AUTO_BED_LEVELING_GRID
  1315. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1316. {
  1317. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1318. planeNormal.debug("planeNormal");
  1319. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1320. //bedLevel.debug("bedLevel");
  1321. //plan_bed_level_matrix.debug("bed level before");
  1322. //vector_3 uncorrected_position = plan_get_position_mm();
  1323. //uncorrected_position.debug("position before");
  1324. vector_3 corrected_position = plan_get_position();
  1325. // corrected_position.debug("position after");
  1326. current_position[X_AXIS] = corrected_position.x;
  1327. current_position[Y_AXIS] = corrected_position.y;
  1328. current_position[Z_AXIS] = corrected_position.z;
  1329. // put the bed at 0 so we don't go below it.
  1330. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1331. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1332. }
  1333. #else // not AUTO_BED_LEVELING_GRID
  1334. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1335. plan_bed_level_matrix.set_to_identity();
  1336. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1337. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1338. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1339. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1340. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1341. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1342. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1343. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1344. vector_3 corrected_position = plan_get_position();
  1345. current_position[X_AXIS] = corrected_position.x;
  1346. current_position[Y_AXIS] = corrected_position.y;
  1347. current_position[Z_AXIS] = corrected_position.z;
  1348. // put the bed at 0 so we don't go below it.
  1349. current_position[Z_AXIS] = zprobe_zoffset;
  1350. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1351. }
  1352. #endif // AUTO_BED_LEVELING_GRID
  1353. static void run_z_probe() {
  1354. plan_bed_level_matrix.set_to_identity();
  1355. feedrate = homing_feedrate[Z_AXIS];
  1356. // move down until you find the bed
  1357. float zPosition = -10;
  1358. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1359. st_synchronize();
  1360. // we have to let the planner know where we are right now as it is not where we said to go.
  1361. zPosition = st_get_position_mm(Z_AXIS);
  1362. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1363. // move up the retract distance
  1364. zPosition += home_retract_mm(Z_AXIS);
  1365. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1366. st_synchronize();
  1367. // move back down slowly to find bed
  1368. feedrate = homing_feedrate[Z_AXIS]/4;
  1369. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1370. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1371. st_synchronize();
  1372. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1373. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1374. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1375. }
  1376. static void do_blocking_move_to(float x, float y, float z) {
  1377. float oldFeedRate = feedrate;
  1378. feedrate = homing_feedrate[Z_AXIS];
  1379. current_position[Z_AXIS] = z;
  1380. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1381. st_synchronize();
  1382. feedrate = XY_TRAVEL_SPEED;
  1383. current_position[X_AXIS] = x;
  1384. current_position[Y_AXIS] = y;
  1385. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1386. st_synchronize();
  1387. feedrate = oldFeedRate;
  1388. }
  1389. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1390. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1391. }
  1392. /// Probe bed height at position (x,y), returns the measured z value
  1393. static float probe_pt(float x, float y, float z_before) {
  1394. // move to right place
  1395. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1396. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1397. run_z_probe();
  1398. float measured_z = current_position[Z_AXIS];
  1399. SERIAL_PROTOCOLRPGM(MSG_BED);
  1400. SERIAL_PROTOCOLPGM(" x: ");
  1401. SERIAL_PROTOCOL(x);
  1402. SERIAL_PROTOCOLPGM(" y: ");
  1403. SERIAL_PROTOCOL(y);
  1404. SERIAL_PROTOCOLPGM(" z: ");
  1405. SERIAL_PROTOCOL(measured_z);
  1406. SERIAL_PROTOCOLPGM("\n");
  1407. return measured_z;
  1408. }
  1409. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1410. void homeaxis(int axis) {
  1411. #define HOMEAXIS_DO(LETTER) \
  1412. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1413. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1414. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1415. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1416. 0) {
  1417. int axis_home_dir = home_dir(axis);
  1418. current_position[axis] = 0;
  1419. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1420. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1421. feedrate = homing_feedrate[axis];
  1422. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1423. st_synchronize();
  1424. current_position[axis] = 0;
  1425. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1426. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1427. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1428. st_synchronize();
  1429. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1430. feedrate = homing_feedrate[axis]/2 ;
  1431. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1432. st_synchronize();
  1433. axis_is_at_home(axis);
  1434. destination[axis] = current_position[axis];
  1435. feedrate = 0.0;
  1436. endstops_hit_on_purpose();
  1437. axis_known_position[axis] = true;
  1438. }
  1439. }
  1440. void home_xy()
  1441. {
  1442. set_destination_to_current();
  1443. homeaxis(X_AXIS);
  1444. homeaxis(Y_AXIS);
  1445. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1446. endstops_hit_on_purpose();
  1447. }
  1448. void refresh_cmd_timeout(void)
  1449. {
  1450. previous_millis_cmd = millis();
  1451. }
  1452. #ifdef FWRETRACT
  1453. void retract(bool retracting, bool swapretract = false) {
  1454. if(retracting && !retracted[active_extruder]) {
  1455. destination[X_AXIS]=current_position[X_AXIS];
  1456. destination[Y_AXIS]=current_position[Y_AXIS];
  1457. destination[Z_AXIS]=current_position[Z_AXIS];
  1458. destination[E_AXIS]=current_position[E_AXIS];
  1459. if (swapretract) {
  1460. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1461. } else {
  1462. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1463. }
  1464. plan_set_e_position(current_position[E_AXIS]);
  1465. float oldFeedrate = feedrate;
  1466. feedrate=retract_feedrate*60;
  1467. retracted[active_extruder]=true;
  1468. prepare_move();
  1469. current_position[Z_AXIS]-=retract_zlift;
  1470. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1471. prepare_move();
  1472. feedrate = oldFeedrate;
  1473. } else if(!retracting && retracted[active_extruder]) {
  1474. destination[X_AXIS]=current_position[X_AXIS];
  1475. destination[Y_AXIS]=current_position[Y_AXIS];
  1476. destination[Z_AXIS]=current_position[Z_AXIS];
  1477. destination[E_AXIS]=current_position[E_AXIS];
  1478. current_position[Z_AXIS]+=retract_zlift;
  1479. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1480. //prepare_move();
  1481. if (swapretract) {
  1482. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1483. } else {
  1484. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1485. }
  1486. plan_set_e_position(current_position[E_AXIS]);
  1487. float oldFeedrate = feedrate;
  1488. feedrate=retract_recover_feedrate*60;
  1489. retracted[active_extruder]=false;
  1490. prepare_move();
  1491. feedrate = oldFeedrate;
  1492. }
  1493. } //retract
  1494. #endif //FWRETRACT
  1495. void trace() {
  1496. tone(BEEPER, 440);
  1497. delay(25);
  1498. noTone(BEEPER);
  1499. delay(20);
  1500. }
  1501. void process_commands()
  1502. {
  1503. #ifdef FILAMENT_RUNOUT_SUPPORT
  1504. SET_INPUT(FR_SENS);
  1505. #endif
  1506. #ifdef CMDBUFFER_DEBUG
  1507. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1508. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1509. SERIAL_ECHOLNPGM("");
  1510. SERIAL_ECHOPGM("In cmdqueue: ");
  1511. SERIAL_ECHO(buflen);
  1512. SERIAL_ECHOLNPGM("");
  1513. #endif /* CMDBUFFER_DEBUG */
  1514. unsigned long codenum; //throw away variable
  1515. char *starpos = NULL;
  1516. #ifdef ENABLE_AUTO_BED_LEVELING
  1517. float x_tmp, y_tmp, z_tmp, real_z;
  1518. #endif
  1519. // PRUSA GCODES
  1520. if(code_seen("PRUSA")){
  1521. if (code_seen("fv")) {
  1522. // get file version
  1523. #ifdef SDSUPPORT
  1524. card.openFile(strchr_pointer + 3,true);
  1525. while (true) {
  1526. uint16_t readByte = card.get();
  1527. MYSERIAL.write(readByte);
  1528. if (readByte=='\n') {
  1529. break;
  1530. }
  1531. }
  1532. card.closefile();
  1533. #endif // SDSUPPORT
  1534. } else if(code_seen("fd")) {
  1535. char description[30];
  1536. memset(description, ' ', 30);
  1537. getFileDescription(strchr_pointer + 3, description);
  1538. MYSERIAL.print(">");
  1539. MYSERIAL.println(description);
  1540. MYSERIAL.print("<");
  1541. } else if (code_seen("M28")) {
  1542. trace();
  1543. prusa_sd_card_upload = true;
  1544. card.openFile(strchr_pointer+4,false);
  1545. } else if (code_seen("mkdir")) {
  1546. card.mkdir(strchr_pointer+6);
  1547. } else if(code_seen("Fir")){
  1548. SERIAL_PROTOCOLLN(FW_version);
  1549. } else if(code_seen("Rev")){
  1550. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1551. } else if(code_seen("Lang")) {
  1552. lcd_force_language_selection();
  1553. } else if(code_seen("Lz")) {
  1554. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1555. } else if (code_seen("SERIAL LOW")) {
  1556. MYSERIAL.println("SERIAL LOW");
  1557. MYSERIAL.begin(BAUDRATE);
  1558. return;
  1559. } else if (code_seen("SERIAL HIGH")) {
  1560. MYSERIAL.println("SERIAL HIGH");
  1561. MYSERIAL.begin(1152000);
  1562. return;
  1563. }
  1564. //else if (code_seen('Cal')) {
  1565. // lcd_calibration();
  1566. // }
  1567. }
  1568. else if (code_seen('^')) {
  1569. // nothing, this is a version line
  1570. } else if(code_seen('G'))
  1571. {
  1572. switch((int)code_value())
  1573. {
  1574. case 0: // G0 -> G1
  1575. case 1: // G1
  1576. if(Stopped == false) {
  1577. #ifdef FILAMENT_RUNOUT_SUPPORT
  1578. if(READ(FR_SENS)){
  1579. feedmultiplyBckp=feedmultiply;
  1580. float target[4];
  1581. float lastpos[4];
  1582. target[X_AXIS]=current_position[X_AXIS];
  1583. target[Y_AXIS]=current_position[Y_AXIS];
  1584. target[Z_AXIS]=current_position[Z_AXIS];
  1585. target[E_AXIS]=current_position[E_AXIS];
  1586. lastpos[X_AXIS]=current_position[X_AXIS];
  1587. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1588. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1589. lastpos[E_AXIS]=current_position[E_AXIS];
  1590. //retract by E
  1591. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1592. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1593. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1594. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1595. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1596. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1597. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1598. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1599. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1600. //finish moves
  1601. st_synchronize();
  1602. //disable extruder steppers so filament can be removed
  1603. disable_e0();
  1604. disable_e1();
  1605. disable_e2();
  1606. delay(100);
  1607. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1608. uint8_t cnt=0;
  1609. int counterBeep = 0;
  1610. lcd_wait_interact();
  1611. while(!lcd_clicked()){
  1612. cnt++;
  1613. manage_heater();
  1614. manage_inactivity(true);
  1615. //lcd_update();
  1616. if(cnt==0)
  1617. {
  1618. #if BEEPER > 0
  1619. if (counterBeep== 500){
  1620. counterBeep = 0;
  1621. }
  1622. SET_OUTPUT(BEEPER);
  1623. if (counterBeep== 0){
  1624. WRITE(BEEPER,HIGH);
  1625. }
  1626. if (counterBeep== 20){
  1627. WRITE(BEEPER,LOW);
  1628. }
  1629. counterBeep++;
  1630. #else
  1631. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1632. lcd_buzz(1000/6,100);
  1633. #else
  1634. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1635. #endif
  1636. #endif
  1637. }
  1638. }
  1639. WRITE(BEEPER,LOW);
  1640. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1641. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1642. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1643. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1644. lcd_change_fil_state = 0;
  1645. lcd_loading_filament();
  1646. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1647. lcd_change_fil_state = 0;
  1648. lcd_alright();
  1649. switch(lcd_change_fil_state){
  1650. case 2:
  1651. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1652. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1653. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1654. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1655. lcd_loading_filament();
  1656. break;
  1657. case 3:
  1658. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1659. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1660. lcd_loading_color();
  1661. break;
  1662. default:
  1663. lcd_change_success();
  1664. break;
  1665. }
  1666. }
  1667. target[E_AXIS]+= 5;
  1668. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1669. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1670. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1671. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1672. //plan_set_e_position(current_position[E_AXIS]);
  1673. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1674. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1675. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1676. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1677. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1678. plan_set_e_position(lastpos[E_AXIS]);
  1679. feedmultiply=feedmultiplyBckp;
  1680. char cmd[9];
  1681. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1682. enquecommand(cmd);
  1683. }
  1684. #endif
  1685. get_coordinates(); // For X Y Z E F
  1686. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS])*100);
  1687. #ifdef FWRETRACT
  1688. if(autoretract_enabled)
  1689. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1690. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1691. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1692. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1693. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1694. retract(!retracted);
  1695. return;
  1696. }
  1697. }
  1698. #endif //FWRETRACT
  1699. prepare_move();
  1700. //ClearToSend();
  1701. }
  1702. break;
  1703. case 2: // G2 - CW ARC
  1704. if(Stopped == false) {
  1705. get_arc_coordinates();
  1706. prepare_arc_move(true);
  1707. }
  1708. break;
  1709. case 3: // G3 - CCW ARC
  1710. if(Stopped == false) {
  1711. get_arc_coordinates();
  1712. prepare_arc_move(false);
  1713. }
  1714. break;
  1715. case 4: // G4 dwell
  1716. LCD_MESSAGERPGM(MSG_DWELL);
  1717. codenum = 0;
  1718. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1719. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1720. st_synchronize();
  1721. codenum += millis(); // keep track of when we started waiting
  1722. previous_millis_cmd = millis();
  1723. while(millis() < codenum) {
  1724. manage_heater();
  1725. manage_inactivity();
  1726. lcd_update();
  1727. }
  1728. break;
  1729. #ifdef FWRETRACT
  1730. case 10: // G10 retract
  1731. #if EXTRUDERS > 1
  1732. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1733. retract(true,retracted_swap[active_extruder]);
  1734. #else
  1735. retract(true);
  1736. #endif
  1737. break;
  1738. case 11: // G11 retract_recover
  1739. #if EXTRUDERS > 1
  1740. retract(false,retracted_swap[active_extruder]);
  1741. #else
  1742. retract(false);
  1743. #endif
  1744. break;
  1745. #endif //FWRETRACT
  1746. case 28: //G28 Home all Axis one at a time
  1747. #ifdef ENABLE_AUTO_BED_LEVELING
  1748. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1749. #endif //ENABLE_AUTO_BED_LEVELING
  1750. // For mesh bed leveling deactivate the matrix temporarily
  1751. #ifdef MESH_BED_LEVELING
  1752. mbl.active = 0;
  1753. #endif
  1754. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1755. // the planner will not perform any adjustments in the XY plane.
  1756. // Wait for the motors to stop and update the current position with the absolute values.
  1757. world2machine_revert_to_uncorrected();
  1758. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1759. // consumed during the first movements following this statement.
  1760. babystep_undo();
  1761. saved_feedrate = feedrate;
  1762. saved_feedmultiply = feedmultiply;
  1763. feedmultiply = 100;
  1764. previous_millis_cmd = millis();
  1765. enable_endstops(true);
  1766. for(int8_t i=0; i < NUM_AXIS; i++)
  1767. destination[i] = current_position[i];
  1768. feedrate = 0.0;
  1769. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1770. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1771. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1772. homeaxis(Z_AXIS);
  1773. }
  1774. #endif
  1775. #ifdef QUICK_HOME
  1776. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1777. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1778. {
  1779. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1780. int x_axis_home_dir = home_dir(X_AXIS);
  1781. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1782. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1783. feedrate = homing_feedrate[X_AXIS];
  1784. if(homing_feedrate[Y_AXIS]<feedrate)
  1785. feedrate = homing_feedrate[Y_AXIS];
  1786. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1787. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1788. } else {
  1789. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1790. }
  1791. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1792. st_synchronize();
  1793. axis_is_at_home(X_AXIS);
  1794. axis_is_at_home(Y_AXIS);
  1795. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1796. destination[X_AXIS] = current_position[X_AXIS];
  1797. destination[Y_AXIS] = current_position[Y_AXIS];
  1798. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1799. feedrate = 0.0;
  1800. st_synchronize();
  1801. endstops_hit_on_purpose();
  1802. current_position[X_AXIS] = destination[X_AXIS];
  1803. current_position[Y_AXIS] = destination[Y_AXIS];
  1804. current_position[Z_AXIS] = destination[Z_AXIS];
  1805. }
  1806. #endif /* QUICK_HOME */
  1807. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1808. homeaxis(X_AXIS);
  1809. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  1810. homeaxis(Y_AXIS);
  1811. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  1812. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1813. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  1814. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1815. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1816. #ifndef Z_SAFE_HOMING
  1817. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1818. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1819. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1820. feedrate = max_feedrate[Z_AXIS];
  1821. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1822. st_synchronize();
  1823. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1824. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  1825. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1826. {
  1827. homeaxis(X_AXIS);
  1828. homeaxis(Y_AXIS);
  1829. }
  1830. // 1st mesh bed leveling measurement point, corrected.
  1831. world2machine_initialize();
  1832. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1833. world2machine_reset();
  1834. if (destination[Y_AXIS] < Y_MIN_POS)
  1835. destination[Y_AXIS] = Y_MIN_POS;
  1836. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1837. feedrate = homing_feedrate[Z_AXIS]/10;
  1838. current_position[Z_AXIS] = 0;
  1839. enable_endstops(false);
  1840. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1841. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1842. st_synchronize();
  1843. current_position[X_AXIS] = destination[X_AXIS];
  1844. current_position[Y_AXIS] = destination[Y_AXIS];
  1845. enable_endstops(true);
  1846. endstops_hit_on_purpose();
  1847. homeaxis(Z_AXIS);
  1848. #else // MESH_BED_LEVELING
  1849. homeaxis(Z_AXIS);
  1850. #endif // MESH_BED_LEVELING
  1851. }
  1852. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1853. if(home_all_axis) {
  1854. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1855. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1856. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1857. feedrate = XY_TRAVEL_SPEED/60;
  1858. current_position[Z_AXIS] = 0;
  1859. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1860. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1861. st_synchronize();
  1862. current_position[X_AXIS] = destination[X_AXIS];
  1863. current_position[Y_AXIS] = destination[Y_AXIS];
  1864. homeaxis(Z_AXIS);
  1865. }
  1866. // Let's see if X and Y are homed and probe is inside bed area.
  1867. if(code_seen(axis_codes[Z_AXIS])) {
  1868. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1869. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1870. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1871. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1872. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1873. current_position[Z_AXIS] = 0;
  1874. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1875. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1876. feedrate = max_feedrate[Z_AXIS];
  1877. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1878. st_synchronize();
  1879. homeaxis(Z_AXIS);
  1880. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1881. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1882. SERIAL_ECHO_START;
  1883. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1884. } else {
  1885. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1886. SERIAL_ECHO_START;
  1887. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1888. }
  1889. }
  1890. #endif // Z_SAFE_HOMING
  1891. #endif // Z_HOME_DIR < 0
  1892. if(code_seen(axis_codes[Z_AXIS])) {
  1893. if(code_value_long() != 0) {
  1894. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1895. }
  1896. }
  1897. #ifdef ENABLE_AUTO_BED_LEVELING
  1898. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1899. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1900. }
  1901. #endif
  1902. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1903. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1904. enable_endstops(false);
  1905. #endif
  1906. feedrate = saved_feedrate;
  1907. feedmultiply = saved_feedmultiply;
  1908. previous_millis_cmd = millis();
  1909. endstops_hit_on_purpose();
  1910. #ifndef MESH_BED_LEVELING
  1911. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  1912. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  1913. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  1914. lcd_adjust_z();
  1915. #endif
  1916. // Load the machine correction matrix
  1917. world2machine_initialize();
  1918. // and correct the current_position to match the transformed coordinate system.
  1919. world2machine_update_current();
  1920. #ifdef MESH_BED_LEVELING
  1921. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  1922. {
  1923. }
  1924. else
  1925. {
  1926. st_synchronize();
  1927. // Push the commands to the front of the message queue in the reverse order!
  1928. // There shall be always enough space reserved for these commands.
  1929. // enquecommand_front_P((PSTR("G80")));
  1930. goto case_G80;
  1931. }
  1932. #endif
  1933. if (farm_mode) { prusa_statistics(20); };
  1934. break;
  1935. #ifdef ENABLE_AUTO_BED_LEVELING
  1936. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1937. {
  1938. #if Z_MIN_PIN == -1
  1939. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  1940. #endif
  1941. // Prevent user from running a G29 without first homing in X and Y
  1942. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1943. {
  1944. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1945. SERIAL_ECHO_START;
  1946. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1947. break; // abort G29, since we don't know where we are
  1948. }
  1949. st_synchronize();
  1950. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1951. //vector_3 corrected_position = plan_get_position_mm();
  1952. //corrected_position.debug("position before G29");
  1953. plan_bed_level_matrix.set_to_identity();
  1954. vector_3 uncorrected_position = plan_get_position();
  1955. //uncorrected_position.debug("position durring G29");
  1956. current_position[X_AXIS] = uncorrected_position.x;
  1957. current_position[Y_AXIS] = uncorrected_position.y;
  1958. current_position[Z_AXIS] = uncorrected_position.z;
  1959. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1960. setup_for_endstop_move();
  1961. feedrate = homing_feedrate[Z_AXIS];
  1962. #ifdef AUTO_BED_LEVELING_GRID
  1963. // probe at the points of a lattice grid
  1964. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1965. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1966. // solve the plane equation ax + by + d = z
  1967. // A is the matrix with rows [x y 1] for all the probed points
  1968. // B is the vector of the Z positions
  1969. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1970. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1971. // "A" matrix of the linear system of equations
  1972. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1973. // "B" vector of Z points
  1974. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1975. int probePointCounter = 0;
  1976. bool zig = true;
  1977. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1978. {
  1979. int xProbe, xInc;
  1980. if (zig)
  1981. {
  1982. xProbe = LEFT_PROBE_BED_POSITION;
  1983. //xEnd = RIGHT_PROBE_BED_POSITION;
  1984. xInc = xGridSpacing;
  1985. zig = false;
  1986. } else // zag
  1987. {
  1988. xProbe = RIGHT_PROBE_BED_POSITION;
  1989. //xEnd = LEFT_PROBE_BED_POSITION;
  1990. xInc = -xGridSpacing;
  1991. zig = true;
  1992. }
  1993. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1994. {
  1995. float z_before;
  1996. if (probePointCounter == 0)
  1997. {
  1998. // raise before probing
  1999. z_before = Z_RAISE_BEFORE_PROBING;
  2000. } else
  2001. {
  2002. // raise extruder
  2003. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2004. }
  2005. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2006. eqnBVector[probePointCounter] = measured_z;
  2007. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2008. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2009. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2010. probePointCounter++;
  2011. xProbe += xInc;
  2012. }
  2013. }
  2014. clean_up_after_endstop_move();
  2015. // solve lsq problem
  2016. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2017. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2018. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2019. SERIAL_PROTOCOLPGM(" b: ");
  2020. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2021. SERIAL_PROTOCOLPGM(" d: ");
  2022. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2023. set_bed_level_equation_lsq(plane_equation_coefficients);
  2024. free(plane_equation_coefficients);
  2025. #else // AUTO_BED_LEVELING_GRID not defined
  2026. // Probe at 3 arbitrary points
  2027. // probe 1
  2028. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2029. // probe 2
  2030. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2031. // probe 3
  2032. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2033. clean_up_after_endstop_move();
  2034. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2035. #endif // AUTO_BED_LEVELING_GRID
  2036. st_synchronize();
  2037. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2038. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2039. // When the bed is uneven, this height must be corrected.
  2040. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2041. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2042. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2043. z_tmp = current_position[Z_AXIS];
  2044. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2045. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2046. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2047. }
  2048. break;
  2049. #ifndef Z_PROBE_SLED
  2050. case 30: // G30 Single Z Probe
  2051. {
  2052. st_synchronize();
  2053. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2054. setup_for_endstop_move();
  2055. feedrate = homing_feedrate[Z_AXIS];
  2056. run_z_probe();
  2057. SERIAL_PROTOCOLPGM(MSG_BED);
  2058. SERIAL_PROTOCOLPGM(" X: ");
  2059. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2060. SERIAL_PROTOCOLPGM(" Y: ");
  2061. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2062. SERIAL_PROTOCOLPGM(" Z: ");
  2063. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2064. SERIAL_PROTOCOLPGM("\n");
  2065. clean_up_after_endstop_move();
  2066. }
  2067. break;
  2068. #else
  2069. case 31: // dock the sled
  2070. dock_sled(true);
  2071. break;
  2072. case 32: // undock the sled
  2073. dock_sled(false);
  2074. break;
  2075. #endif // Z_PROBE_SLED
  2076. #endif // ENABLE_AUTO_BED_LEVELING
  2077. #ifdef MESH_BED_LEVELING
  2078. case 30: // G30 Single Z Probe
  2079. {
  2080. st_synchronize();
  2081. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2082. setup_for_endstop_move();
  2083. feedrate = homing_feedrate[Z_AXIS];
  2084. find_bed_induction_sensor_point_z(-10.f, 3);
  2085. SERIAL_PROTOCOLRPGM(MSG_BED);
  2086. SERIAL_PROTOCOLPGM(" X: ");
  2087. MYSERIAL.print(current_position[X_AXIS], 5);
  2088. SERIAL_PROTOCOLPGM(" Y: ");
  2089. MYSERIAL.print(current_position[Y_AXIS], 5);
  2090. SERIAL_PROTOCOLPGM(" Z: ");
  2091. MYSERIAL.print(current_position[Z_AXIS], 5);
  2092. SERIAL_PROTOCOLPGM("\n");
  2093. clean_up_after_endstop_move();
  2094. }
  2095. break;
  2096. /**
  2097. * G80: Mesh-based Z probe, probes a grid and produces a
  2098. * mesh to compensate for variable bed height
  2099. *
  2100. * The S0 report the points as below
  2101. *
  2102. * +----> X-axis
  2103. * |
  2104. * |
  2105. * v Y-axis
  2106. *
  2107. */
  2108. case 80:
  2109. case_G80:
  2110. {
  2111. // Firstly check if we know where we are
  2112. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  2113. // We don't know where we are! HOME!
  2114. // Push the commands to the front of the message queue in the reverse order!
  2115. // There shall be always enough space reserved for these commands.
  2116. repeatcommand_front(); // repeat G80 with all its parameters
  2117. enquecommand_front_P((PSTR("G28 W0")));
  2118. break;
  2119. }
  2120. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2121. bool custom_message_old = custom_message;
  2122. unsigned int custom_message_type_old = custom_message_type;
  2123. unsigned int custom_message_state_old = custom_message_state;
  2124. custom_message = true;
  2125. custom_message_type = 1;
  2126. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2127. lcd_update(1);
  2128. mbl.reset();
  2129. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2130. // consumed during the first movements following this statement.
  2131. babystep_undo();
  2132. // Cycle through all points and probe them
  2133. // First move up. During this first movement, the babystepping will be reverted.
  2134. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2135. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2136. // The move to the first calibration point.
  2137. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2138. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  2139. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2140. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2141. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  2142. // Wait until the move is finished.
  2143. st_synchronize();
  2144. int mesh_point = 0;
  2145. int ix = 0;
  2146. int iy = 0;
  2147. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  2148. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  2149. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  2150. bool has_z = is_bed_z_jitter_data_valid();
  2151. setup_for_endstop_move(false);
  2152. const char *kill_message = NULL;
  2153. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2154. // Get coords of a measuring point.
  2155. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  2156. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2157. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2158. float z0 = 0.f;
  2159. if (has_z && mesh_point > 0) {
  2160. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2161. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2162. #if 0
  2163. SERIAL_ECHOPGM("Bed leveling, point: ");
  2164. MYSERIAL.print(mesh_point);
  2165. SERIAL_ECHOPGM(", calibration z: ");
  2166. MYSERIAL.print(z0, 5);
  2167. SERIAL_ECHOLNPGM("");
  2168. #endif
  2169. }
  2170. // Move Z up to MESH_HOME_Z_SEARCH.
  2171. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2172. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2173. st_synchronize();
  2174. // Move to XY position of the sensor point.
  2175. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  2176. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  2177. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2178. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2179. st_synchronize();
  2180. // Go down until endstop is hit
  2181. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2182. if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
  2183. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2184. break;
  2185. }
  2186. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2187. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2188. break;
  2189. }
  2190. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
  2191. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2192. break;
  2193. }
  2194. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2195. custom_message_state--;
  2196. mesh_point++;
  2197. lcd_update(1);
  2198. }
  2199. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2200. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2201. st_synchronize();
  2202. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2203. kill(kill_message);
  2204. }
  2205. clean_up_after_endstop_move();
  2206. // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2207. babystep_apply();
  2208. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2209. for (uint8_t i = 0; i < 4; ++ i) {
  2210. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2211. long correction = 0;
  2212. if (code_seen(codes[i]))
  2213. correction = code_value_long();
  2214. else if (eeprom_bed_correction_valid) {
  2215. unsigned char *addr = (i < 2) ?
  2216. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2217. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2218. correction = eeprom_read_int8(addr);
  2219. }
  2220. if (correction == 0)
  2221. continue;
  2222. float offset = float(correction) * 0.001f;
  2223. if (fabs(offset) > 0.101f) {
  2224. SERIAL_ERROR_START;
  2225. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2226. SERIAL_ECHO(offset);
  2227. SERIAL_ECHOLNPGM(" microns");
  2228. } else {
  2229. switch (i) {
  2230. case 0:
  2231. for (uint8_t row = 0; row < 3; ++ row) {
  2232. mbl.z_values[row][1] += 0.5f * offset;
  2233. mbl.z_values[row][0] += offset;
  2234. }
  2235. break;
  2236. case 1:
  2237. for (uint8_t row = 0; row < 3; ++ row) {
  2238. mbl.z_values[row][1] += 0.5f * offset;
  2239. mbl.z_values[row][2] += offset;
  2240. }
  2241. break;
  2242. case 2:
  2243. for (uint8_t col = 0; col < 3; ++ col) {
  2244. mbl.z_values[1][col] += 0.5f * offset;
  2245. mbl.z_values[0][col] += offset;
  2246. }
  2247. break;
  2248. case 3:
  2249. for (uint8_t col = 0; col < 3; ++ col) {
  2250. mbl.z_values[1][col] += 0.5f * offset;
  2251. mbl.z_values[2][col] += offset;
  2252. }
  2253. break;
  2254. }
  2255. }
  2256. }
  2257. mbl.upsample_3x3();
  2258. mbl.active = 1;
  2259. go_home_with_z_lift();
  2260. // Restore custom message state
  2261. custom_message = custom_message_old;
  2262. custom_message_type = custom_message_type_old;
  2263. custom_message_state = custom_message_state_old;
  2264. lcd_update(1);
  2265. }
  2266. break;
  2267. /**
  2268. * G81: Print mesh bed leveling status and bed profile if activated
  2269. */
  2270. case 81:
  2271. if (mbl.active) {
  2272. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2273. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2274. SERIAL_PROTOCOLPGM(",");
  2275. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2276. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2277. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2278. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2279. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2280. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2281. SERIAL_PROTOCOLPGM(" ");
  2282. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2283. }
  2284. SERIAL_PROTOCOLPGM("\n");
  2285. }
  2286. }
  2287. else
  2288. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2289. break;
  2290. #if 0
  2291. /**
  2292. * G82: Single Z probe at current location
  2293. *
  2294. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2295. *
  2296. */
  2297. case 82:
  2298. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2299. setup_for_endstop_move();
  2300. find_bed_induction_sensor_point_z();
  2301. clean_up_after_endstop_move();
  2302. SERIAL_PROTOCOLPGM("Bed found at: ");
  2303. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2304. SERIAL_PROTOCOLPGM("\n");
  2305. break;
  2306. /**
  2307. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2308. */
  2309. case 83:
  2310. {
  2311. int babystepz = code_seen('S') ? code_value() : 0;
  2312. int BabyPosition = code_seen('P') ? code_value() : 0;
  2313. if (babystepz != 0) {
  2314. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2315. // Is the axis indexed starting with zero or one?
  2316. if (BabyPosition > 4) {
  2317. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2318. }else{
  2319. // Save it to the eeprom
  2320. babystepLoadZ = babystepz;
  2321. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2322. // adjust the Z
  2323. babystepsTodoZadd(babystepLoadZ);
  2324. }
  2325. }
  2326. }
  2327. break;
  2328. /**
  2329. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2330. */
  2331. case 84:
  2332. babystepsTodoZsubtract(babystepLoadZ);
  2333. // babystepLoadZ = 0;
  2334. break;
  2335. /**
  2336. * G85: Prusa3D specific: Pick best babystep
  2337. */
  2338. case 85:
  2339. lcd_pick_babystep();
  2340. break;
  2341. #endif
  2342. /**
  2343. * G86: Prusa3D specific: Disable babystep correction after home.
  2344. * This G-code will be performed at the start of a calibration script.
  2345. */
  2346. case 86:
  2347. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2348. break;
  2349. /**
  2350. * G87: Prusa3D specific: Enable babystep correction after home
  2351. * This G-code will be performed at the end of a calibration script.
  2352. */
  2353. case 87:
  2354. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2355. break;
  2356. /**
  2357. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2358. */
  2359. case 88:
  2360. break;
  2361. #endif // ENABLE_MESH_BED_LEVELING
  2362. case 90: // G90
  2363. relative_mode = false;
  2364. break;
  2365. case 91: // G91
  2366. relative_mode = true;
  2367. break;
  2368. case 92: // G92
  2369. if(!code_seen(axis_codes[E_AXIS]))
  2370. st_synchronize();
  2371. for(int8_t i=0; i < NUM_AXIS; i++) {
  2372. if(code_seen(axis_codes[i])) {
  2373. if(i == E_AXIS) {
  2374. current_position[i] = code_value();
  2375. plan_set_e_position(current_position[E_AXIS]);
  2376. }
  2377. else {
  2378. current_position[i] = code_value()+add_homing[i];
  2379. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2380. }
  2381. }
  2382. }
  2383. break;
  2384. case 98:
  2385. farm_no = 21;
  2386. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2387. farm_mode = true;
  2388. break;
  2389. case 99:
  2390. farm_no = 0;
  2391. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2392. farm_mode = false;
  2393. break;
  2394. }
  2395. } // end if(code_seen('G'))
  2396. else if(code_seen('M'))
  2397. {
  2398. switch( (int)code_value() )
  2399. {
  2400. #ifdef ULTIPANEL
  2401. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2402. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2403. {
  2404. char *src = strchr_pointer + 2;
  2405. codenum = 0;
  2406. bool hasP = false, hasS = false;
  2407. if (code_seen('P')) {
  2408. codenum = code_value(); // milliseconds to wait
  2409. hasP = codenum > 0;
  2410. }
  2411. if (code_seen('S')) {
  2412. codenum = code_value() * 1000; // seconds to wait
  2413. hasS = codenum > 0;
  2414. }
  2415. starpos = strchr(src, '*');
  2416. if (starpos != NULL) *(starpos) = '\0';
  2417. while (*src == ' ') ++src;
  2418. if (!hasP && !hasS && *src != '\0') {
  2419. lcd_setstatus(src);
  2420. } else {
  2421. LCD_MESSAGERPGM(MSG_USERWAIT);
  2422. }
  2423. lcd_ignore_click();
  2424. st_synchronize();
  2425. previous_millis_cmd = millis();
  2426. if (codenum > 0){
  2427. codenum += millis(); // keep track of when we started waiting
  2428. while(millis() < codenum && !lcd_clicked()){
  2429. manage_heater();
  2430. manage_inactivity();
  2431. lcd_update();
  2432. }
  2433. lcd_ignore_click(false);
  2434. }else{
  2435. if (!lcd_detected())
  2436. break;
  2437. while(!lcd_clicked()){
  2438. manage_heater();
  2439. manage_inactivity();
  2440. lcd_update();
  2441. }
  2442. }
  2443. if (IS_SD_PRINTING)
  2444. LCD_MESSAGERPGM(MSG_RESUMING);
  2445. else
  2446. LCD_MESSAGERPGM(WELCOME_MSG);
  2447. }
  2448. break;
  2449. #endif
  2450. case 17:
  2451. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2452. enable_x();
  2453. enable_y();
  2454. enable_z();
  2455. enable_e0();
  2456. enable_e1();
  2457. enable_e2();
  2458. break;
  2459. #ifdef SDSUPPORT
  2460. case 20: // M20 - list SD card
  2461. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2462. card.ls();
  2463. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2464. break;
  2465. case 21: // M21 - init SD card
  2466. card.initsd();
  2467. break;
  2468. case 22: //M22 - release SD card
  2469. card.release();
  2470. break;
  2471. case 23: //M23 - Select file
  2472. starpos = (strchr(strchr_pointer + 4,'*'));
  2473. if(starpos!=NULL)
  2474. *(starpos)='\0';
  2475. card.openFile(strchr_pointer + 4,true);
  2476. break;
  2477. case 24: //M24 - Start SD print
  2478. card.startFileprint();
  2479. starttime=millis();
  2480. break;
  2481. case 25: //M25 - Pause SD print
  2482. card.pauseSDPrint();
  2483. break;
  2484. case 26: //M26 - Set SD index
  2485. if(card.cardOK && code_seen('S')) {
  2486. card.setIndex(code_value_long());
  2487. }
  2488. break;
  2489. case 27: //M27 - Get SD status
  2490. card.getStatus();
  2491. break;
  2492. case 28: //M28 - Start SD write
  2493. starpos = (strchr(strchr_pointer + 4,'*'));
  2494. if(starpos != NULL){
  2495. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2496. strchr_pointer = strchr(npos,' ') + 1;
  2497. *(starpos) = '\0';
  2498. }
  2499. card.openFile(strchr_pointer+4,false);
  2500. break;
  2501. case 29: //M29 - Stop SD write
  2502. //processed in write to file routine above
  2503. //card,saving = false;
  2504. break;
  2505. case 30: //M30 <filename> Delete File
  2506. if (card.cardOK){
  2507. card.closefile();
  2508. starpos = (strchr(strchr_pointer + 4,'*'));
  2509. if(starpos != NULL){
  2510. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2511. strchr_pointer = strchr(npos,' ') + 1;
  2512. *(starpos) = '\0';
  2513. }
  2514. card.removeFile(strchr_pointer + 4);
  2515. }
  2516. break;
  2517. case 32: //M32 - Select file and start SD print
  2518. {
  2519. if(card.sdprinting) {
  2520. st_synchronize();
  2521. }
  2522. starpos = (strchr(strchr_pointer + 4,'*'));
  2523. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2524. if(namestartpos==NULL)
  2525. {
  2526. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2527. }
  2528. else
  2529. namestartpos++; //to skip the '!'
  2530. if(starpos!=NULL)
  2531. *(starpos)='\0';
  2532. bool call_procedure=(code_seen('P'));
  2533. if(strchr_pointer>namestartpos)
  2534. call_procedure=false; //false alert, 'P' found within filename
  2535. if( card.cardOK )
  2536. {
  2537. card.openFile(namestartpos,true,!call_procedure);
  2538. if(code_seen('S'))
  2539. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2540. card.setIndex(code_value_long());
  2541. card.startFileprint();
  2542. if(!call_procedure)
  2543. starttime=millis(); //procedure calls count as normal print time.
  2544. }
  2545. } break;
  2546. case 928: //M928 - Start SD write
  2547. starpos = (strchr(strchr_pointer + 5,'*'));
  2548. if(starpos != NULL){
  2549. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2550. strchr_pointer = strchr(npos,' ') + 1;
  2551. *(starpos) = '\0';
  2552. }
  2553. card.openLogFile(strchr_pointer+5);
  2554. break;
  2555. #endif //SDSUPPORT
  2556. case 31: //M31 take time since the start of the SD print or an M109 command
  2557. {
  2558. stoptime=millis();
  2559. char time[30];
  2560. unsigned long t=(stoptime-starttime)/1000;
  2561. int sec,min;
  2562. min=t/60;
  2563. sec=t%60;
  2564. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2565. SERIAL_ECHO_START;
  2566. SERIAL_ECHOLN(time);
  2567. lcd_setstatus(time);
  2568. autotempShutdown();
  2569. }
  2570. break;
  2571. case 42: //M42 -Change pin status via gcode
  2572. if (code_seen('S'))
  2573. {
  2574. int pin_status = code_value();
  2575. int pin_number = LED_PIN;
  2576. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2577. pin_number = code_value();
  2578. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2579. {
  2580. if (sensitive_pins[i] == pin_number)
  2581. {
  2582. pin_number = -1;
  2583. break;
  2584. }
  2585. }
  2586. #if defined(FAN_PIN) && FAN_PIN > -1
  2587. if (pin_number == FAN_PIN)
  2588. fanSpeed = pin_status;
  2589. #endif
  2590. if (pin_number > -1)
  2591. {
  2592. pinMode(pin_number, OUTPUT);
  2593. digitalWrite(pin_number, pin_status);
  2594. analogWrite(pin_number, pin_status);
  2595. }
  2596. }
  2597. break;
  2598. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2599. // Reset the skew and offset in both RAM and EEPROM.
  2600. reset_bed_offset_and_skew();
  2601. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2602. // the planner will not perform any adjustments in the XY plane.
  2603. // Wait for the motors to stop and update the current position with the absolute values.
  2604. world2machine_revert_to_uncorrected();
  2605. break;
  2606. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2607. {
  2608. // Disable the default update procedure of the display. We will do a modal dialog.
  2609. lcd_update_enable(false);
  2610. // Let the planner use the uncorrected coordinates.
  2611. mbl.reset();
  2612. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2613. // the planner will not perform any adjustments in the XY plane.
  2614. // Wait for the motors to stop and update the current position with the absolute values.
  2615. world2machine_revert_to_uncorrected();
  2616. // Reset the baby step value applied without moving the axes.
  2617. babystep_reset();
  2618. // Mark all axes as in a need for homing.
  2619. memset(axis_known_position, 0, sizeof(axis_known_position));
  2620. // Only Z calibration?
  2621. bool onlyZ = code_seen('Z');
  2622. // Let the user move the Z axes up to the end stoppers.
  2623. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  2624. refresh_cmd_timeout();
  2625. // Move the print head close to the bed.
  2626. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2627. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2628. st_synchronize();
  2629. // Home in the XY plane.
  2630. set_destination_to_current();
  2631. setup_for_endstop_move();
  2632. home_xy();
  2633. int8_t verbosity_level = 0;
  2634. if (code_seen('V')) {
  2635. // Just 'V' without a number counts as V1.
  2636. char c = strchr_pointer[1];
  2637. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2638. }
  2639. if (onlyZ) {
  2640. clean_up_after_endstop_move();
  2641. // Z only calibration.
  2642. // Load the machine correction matrix
  2643. world2machine_initialize();
  2644. // and correct the current_position to match the transformed coordinate system.
  2645. world2machine_update_current();
  2646. //FIXME
  2647. bool result = sample_mesh_and_store_reference();
  2648. if (result) {
  2649. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2650. // Shipped, the nozzle height has been set already. The user can start printing now.
  2651. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2652. // babystep_apply();
  2653. }
  2654. } else {
  2655. // Reset the baby step value and the baby step applied flag.
  2656. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  2657. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2658. // Complete XYZ calibration.
  2659. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  2660. uint8_t point_too_far_mask = 0;
  2661. clean_up_after_endstop_move();
  2662. // Print head up.
  2663. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2664. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2665. st_synchronize();
  2666. if (result >= 0) {
  2667. // Second half: The fine adjustment.
  2668. // Let the planner use the uncorrected coordinates.
  2669. mbl.reset();
  2670. world2machine_reset();
  2671. // Home in the XY plane.
  2672. setup_for_endstop_move();
  2673. home_xy();
  2674. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2675. clean_up_after_endstop_move();
  2676. // Print head up.
  2677. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2678. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2679. st_synchronize();
  2680. // if (result >= 0) babystep_apply();
  2681. }
  2682. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2683. if (result >= 0) {
  2684. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2685. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2686. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  2687. }
  2688. }
  2689. } else {
  2690. // Timeouted.
  2691. }
  2692. lcd_update_enable(true);
  2693. break;
  2694. }
  2695. /*
  2696. case 46:
  2697. {
  2698. // M46: Prusa3D: Show the assigned IP address.
  2699. uint8_t ip[4];
  2700. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  2701. if (hasIP) {
  2702. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  2703. SERIAL_ECHO(int(ip[0]));
  2704. SERIAL_ECHOPGM(".");
  2705. SERIAL_ECHO(int(ip[1]));
  2706. SERIAL_ECHOPGM(".");
  2707. SERIAL_ECHO(int(ip[2]));
  2708. SERIAL_ECHOPGM(".");
  2709. SERIAL_ECHO(int(ip[3]));
  2710. SERIAL_ECHOLNPGM("");
  2711. } else {
  2712. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  2713. }
  2714. break;
  2715. }
  2716. */
  2717. case 47:
  2718. // M47: Prusa3D: Show end stops dialog on the display.
  2719. lcd_diag_show_end_stops();
  2720. break;
  2721. #if 0
  2722. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  2723. {
  2724. // Disable the default update procedure of the display. We will do a modal dialog.
  2725. lcd_update_enable(false);
  2726. // Let the planner use the uncorrected coordinates.
  2727. mbl.reset();
  2728. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2729. // the planner will not perform any adjustments in the XY plane.
  2730. // Wait for the motors to stop and update the current position with the absolute values.
  2731. world2machine_revert_to_uncorrected();
  2732. // Move the print head close to the bed.
  2733. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2734. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2735. st_synchronize();
  2736. // Home in the XY plane.
  2737. set_destination_to_current();
  2738. setup_for_endstop_move();
  2739. home_xy();
  2740. int8_t verbosity_level = 0;
  2741. if (code_seen('V')) {
  2742. // Just 'V' without a number counts as V1.
  2743. char c = strchr_pointer[1];
  2744. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2745. }
  2746. bool success = scan_bed_induction_points(verbosity_level);
  2747. clean_up_after_endstop_move();
  2748. // Print head up.
  2749. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2751. st_synchronize();
  2752. lcd_update_enable(true);
  2753. break;
  2754. }
  2755. #endif
  2756. // M48 Z-Probe repeatability measurement function.
  2757. //
  2758. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  2759. //
  2760. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2761. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2762. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2763. // regenerated.
  2764. //
  2765. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2766. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2767. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2768. //
  2769. #ifdef ENABLE_AUTO_BED_LEVELING
  2770. #ifdef Z_PROBE_REPEATABILITY_TEST
  2771. case 48: // M48 Z-Probe repeatability
  2772. {
  2773. #if Z_MIN_PIN == -1
  2774. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2775. #endif
  2776. double sum=0.0;
  2777. double mean=0.0;
  2778. double sigma=0.0;
  2779. double sample_set[50];
  2780. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  2781. double X_current, Y_current, Z_current;
  2782. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2783. if (code_seen('V') || code_seen('v')) {
  2784. verbose_level = code_value();
  2785. if (verbose_level<0 || verbose_level>4 ) {
  2786. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2787. goto Sigma_Exit;
  2788. }
  2789. }
  2790. if (verbose_level > 0) {
  2791. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2792. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2793. }
  2794. if (code_seen('n')) {
  2795. n_samples = code_value();
  2796. if (n_samples<4 || n_samples>50 ) {
  2797. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2798. goto Sigma_Exit;
  2799. }
  2800. }
  2801. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2802. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2803. Z_current = st_get_position_mm(Z_AXIS);
  2804. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2805. ext_position = st_get_position_mm(E_AXIS);
  2806. if (code_seen('X') || code_seen('x') ) {
  2807. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2808. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2809. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2810. goto Sigma_Exit;
  2811. }
  2812. }
  2813. if (code_seen('Y') || code_seen('y') ) {
  2814. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2815. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2816. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2817. goto Sigma_Exit;
  2818. }
  2819. }
  2820. if (code_seen('L') || code_seen('l') ) {
  2821. n_legs = code_value();
  2822. if ( n_legs==1 )
  2823. n_legs = 2;
  2824. if ( n_legs<0 || n_legs>15 ) {
  2825. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2826. goto Sigma_Exit;
  2827. }
  2828. }
  2829. //
  2830. // Do all the preliminary setup work. First raise the probe.
  2831. //
  2832. st_synchronize();
  2833. plan_bed_level_matrix.set_to_identity();
  2834. plan_buffer_line( X_current, Y_current, Z_start_location,
  2835. ext_position,
  2836. homing_feedrate[Z_AXIS]/60,
  2837. active_extruder);
  2838. st_synchronize();
  2839. //
  2840. // Now get everything to the specified probe point So we can safely do a probe to
  2841. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2842. // use that as a starting point for each probe.
  2843. //
  2844. if (verbose_level > 2)
  2845. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2846. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2847. ext_position,
  2848. homing_feedrate[X_AXIS]/60,
  2849. active_extruder);
  2850. st_synchronize();
  2851. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2852. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2853. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2854. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2855. //
  2856. // OK, do the inital probe to get us close to the bed.
  2857. // Then retrace the right amount and use that in subsequent probes
  2858. //
  2859. setup_for_endstop_move();
  2860. run_z_probe();
  2861. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2862. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2863. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2864. ext_position,
  2865. homing_feedrate[X_AXIS]/60,
  2866. active_extruder);
  2867. st_synchronize();
  2868. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2869. for( n=0; n<n_samples; n++) {
  2870. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2871. if ( n_legs) {
  2872. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2873. int rotational_direction, l;
  2874. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2875. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2876. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2877. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2878. //SERIAL_ECHOPAIR(" theta: ",theta);
  2879. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2880. //SERIAL_PROTOCOLLNPGM("");
  2881. for( l=0; l<n_legs-1; l++) {
  2882. if (rotational_direction==1)
  2883. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2884. else
  2885. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2886. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2887. if ( radius<0.0 )
  2888. radius = -radius;
  2889. X_current = X_probe_location + cos(theta) * radius;
  2890. Y_current = Y_probe_location + sin(theta) * radius;
  2891. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2892. X_current = X_MIN_POS;
  2893. if ( X_current>X_MAX_POS)
  2894. X_current = X_MAX_POS;
  2895. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2896. Y_current = Y_MIN_POS;
  2897. if ( Y_current>Y_MAX_POS)
  2898. Y_current = Y_MAX_POS;
  2899. if (verbose_level>3 ) {
  2900. SERIAL_ECHOPAIR("x: ", X_current);
  2901. SERIAL_ECHOPAIR("y: ", Y_current);
  2902. SERIAL_PROTOCOLLNPGM("");
  2903. }
  2904. do_blocking_move_to( X_current, Y_current, Z_current );
  2905. }
  2906. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2907. }
  2908. setup_for_endstop_move();
  2909. run_z_probe();
  2910. sample_set[n] = current_position[Z_AXIS];
  2911. //
  2912. // Get the current mean for the data points we have so far
  2913. //
  2914. sum=0.0;
  2915. for( j=0; j<=n; j++) {
  2916. sum = sum + sample_set[j];
  2917. }
  2918. mean = sum / (double (n+1));
  2919. //
  2920. // Now, use that mean to calculate the standard deviation for the
  2921. // data points we have so far
  2922. //
  2923. sum=0.0;
  2924. for( j=0; j<=n; j++) {
  2925. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2926. }
  2927. sigma = sqrt( sum / (double (n+1)) );
  2928. if (verbose_level > 1) {
  2929. SERIAL_PROTOCOL(n+1);
  2930. SERIAL_PROTOCOL(" of ");
  2931. SERIAL_PROTOCOL(n_samples);
  2932. SERIAL_PROTOCOLPGM(" z: ");
  2933. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2934. }
  2935. if (verbose_level > 2) {
  2936. SERIAL_PROTOCOL(" mean: ");
  2937. SERIAL_PROTOCOL_F(mean,6);
  2938. SERIAL_PROTOCOL(" sigma: ");
  2939. SERIAL_PROTOCOL_F(sigma,6);
  2940. }
  2941. if (verbose_level > 0)
  2942. SERIAL_PROTOCOLPGM("\n");
  2943. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2944. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2945. st_synchronize();
  2946. }
  2947. delay(1000);
  2948. clean_up_after_endstop_move();
  2949. // enable_endstops(true);
  2950. if (verbose_level > 0) {
  2951. SERIAL_PROTOCOLPGM("Mean: ");
  2952. SERIAL_PROTOCOL_F(mean, 6);
  2953. SERIAL_PROTOCOLPGM("\n");
  2954. }
  2955. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2956. SERIAL_PROTOCOL_F(sigma, 6);
  2957. SERIAL_PROTOCOLPGM("\n\n");
  2958. Sigma_Exit:
  2959. break;
  2960. }
  2961. #endif // Z_PROBE_REPEATABILITY_TEST
  2962. #endif // ENABLE_AUTO_BED_LEVELING
  2963. case 104: // M104
  2964. if(setTargetedHotend(104)){
  2965. break;
  2966. }
  2967. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2968. setWatch();
  2969. break;
  2970. case 112: // M112 -Emergency Stop
  2971. kill();
  2972. break;
  2973. case 140: // M140 set bed temp
  2974. if (code_seen('S')) setTargetBed(code_value());
  2975. break;
  2976. case 105 : // M105
  2977. if(setTargetedHotend(105)){
  2978. break;
  2979. }
  2980. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2981. SERIAL_PROTOCOLPGM("ok T:");
  2982. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2983. SERIAL_PROTOCOLPGM(" /");
  2984. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2985. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2986. SERIAL_PROTOCOLPGM(" B:");
  2987. SERIAL_PROTOCOL_F(degBed(),1);
  2988. SERIAL_PROTOCOLPGM(" /");
  2989. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2990. #endif //TEMP_BED_PIN
  2991. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2992. SERIAL_PROTOCOLPGM(" T");
  2993. SERIAL_PROTOCOL(cur_extruder);
  2994. SERIAL_PROTOCOLPGM(":");
  2995. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2996. SERIAL_PROTOCOLPGM(" /");
  2997. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2998. }
  2999. #else
  3000. SERIAL_ERROR_START;
  3001. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3002. #endif
  3003. SERIAL_PROTOCOLPGM(" @:");
  3004. #ifdef EXTRUDER_WATTS
  3005. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3006. SERIAL_PROTOCOLPGM("W");
  3007. #else
  3008. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3009. #endif
  3010. SERIAL_PROTOCOLPGM(" B@:");
  3011. #ifdef BED_WATTS
  3012. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3013. SERIAL_PROTOCOLPGM("W");
  3014. #else
  3015. SERIAL_PROTOCOL(getHeaterPower(-1));
  3016. #endif
  3017. #ifdef SHOW_TEMP_ADC_VALUES
  3018. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3019. SERIAL_PROTOCOLPGM(" ADC B:");
  3020. SERIAL_PROTOCOL_F(degBed(),1);
  3021. SERIAL_PROTOCOLPGM("C->");
  3022. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  3023. #endif
  3024. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3025. SERIAL_PROTOCOLPGM(" T");
  3026. SERIAL_PROTOCOL(cur_extruder);
  3027. SERIAL_PROTOCOLPGM(":");
  3028. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3029. SERIAL_PROTOCOLPGM("C->");
  3030. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  3031. }
  3032. #endif
  3033. SERIAL_PROTOCOLLN("");
  3034. return;
  3035. break;
  3036. case 109:
  3037. {// M109 - Wait for extruder heater to reach target.
  3038. if(setTargetedHotend(109)){
  3039. break;
  3040. }
  3041. LCD_MESSAGERPGM(MSG_HEATING);
  3042. heating_status = 1;
  3043. if (farm_mode) { prusa_statistics(1); };
  3044. #ifdef AUTOTEMP
  3045. autotemp_enabled=false;
  3046. #endif
  3047. if (code_seen('S')) {
  3048. setTargetHotend(code_value(), tmp_extruder);
  3049. CooldownNoWait = true;
  3050. } else if (code_seen('R')) {
  3051. setTargetHotend(code_value(), tmp_extruder);
  3052. CooldownNoWait = false;
  3053. }
  3054. #ifdef AUTOTEMP
  3055. if (code_seen('S')) autotemp_min=code_value();
  3056. if (code_seen('B')) autotemp_max=code_value();
  3057. if (code_seen('F'))
  3058. {
  3059. autotemp_factor=code_value();
  3060. autotemp_enabled=true;
  3061. }
  3062. #endif
  3063. setWatch();
  3064. codenum = millis();
  3065. /* See if we are heating up or cooling down */
  3066. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3067. cancel_heatup = false;
  3068. #ifdef TEMP_RESIDENCY_TIME
  3069. long residencyStart;
  3070. residencyStart = -1;
  3071. /* continue to loop until we have reached the target temp
  3072. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  3073. while((!cancel_heatup)&&((residencyStart == -1) ||
  3074. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  3075. #else
  3076. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  3077. #endif //TEMP_RESIDENCY_TIME
  3078. if( (millis() - codenum) > 1000UL )
  3079. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  3080. SERIAL_PROTOCOLPGM("T:");
  3081. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3082. SERIAL_PROTOCOLPGM(" E:");
  3083. SERIAL_PROTOCOL((int)tmp_extruder);
  3084. #ifdef TEMP_RESIDENCY_TIME
  3085. SERIAL_PROTOCOLPGM(" W:");
  3086. if(residencyStart > -1)
  3087. {
  3088. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  3089. SERIAL_PROTOCOLLN( codenum );
  3090. }
  3091. else
  3092. {
  3093. SERIAL_PROTOCOLLN( "?" );
  3094. }
  3095. #else
  3096. SERIAL_PROTOCOLLN("");
  3097. #endif
  3098. codenum = millis();
  3099. }
  3100. manage_heater();
  3101. manage_inactivity();
  3102. lcd_update();
  3103. #ifdef TEMP_RESIDENCY_TIME
  3104. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  3105. or when current temp falls outside the hysteresis after target temp was reached */
  3106. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  3107. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  3108. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  3109. {
  3110. residencyStart = millis();
  3111. }
  3112. #endif //TEMP_RESIDENCY_TIME
  3113. }
  3114. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3115. heating_status = 2;
  3116. if (farm_mode) { prusa_statistics(2); };
  3117. starttime=millis();
  3118. previous_millis_cmd = millis();
  3119. }
  3120. break;
  3121. case 190: // M190 - Wait for bed heater to reach target.
  3122. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3123. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3124. heating_status = 3;
  3125. if (farm_mode) { prusa_statistics(1); };
  3126. if (code_seen('S'))
  3127. {
  3128. setTargetBed(code_value());
  3129. CooldownNoWait = true;
  3130. }
  3131. else if (code_seen('R'))
  3132. {
  3133. setTargetBed(code_value());
  3134. CooldownNoWait = false;
  3135. }
  3136. codenum = millis();
  3137. cancel_heatup = false;
  3138. target_direction = isHeatingBed(); // true if heating, false if cooling
  3139. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3140. {
  3141. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3142. {
  3143. float tt=degHotend(active_extruder);
  3144. SERIAL_PROTOCOLPGM("T:");
  3145. SERIAL_PROTOCOL(tt);
  3146. SERIAL_PROTOCOLPGM(" E:");
  3147. SERIAL_PROTOCOL((int)active_extruder);
  3148. SERIAL_PROTOCOLPGM(" B:");
  3149. SERIAL_PROTOCOL_F(degBed(),1);
  3150. SERIAL_PROTOCOLLN("");
  3151. codenum = millis();
  3152. }
  3153. manage_heater();
  3154. manage_inactivity();
  3155. lcd_update();
  3156. }
  3157. LCD_MESSAGERPGM(MSG_BED_DONE);
  3158. heating_status = 4;
  3159. previous_millis_cmd = millis();
  3160. #endif
  3161. break;
  3162. #if defined(FAN_PIN) && FAN_PIN > -1
  3163. case 106: //M106 Fan On
  3164. if (code_seen('S')){
  3165. fanSpeed=constrain(code_value(),0,255);
  3166. }
  3167. else {
  3168. fanSpeed=255;
  3169. }
  3170. break;
  3171. case 107: //M107 Fan Off
  3172. fanSpeed = 0;
  3173. break;
  3174. #endif //FAN_PIN
  3175. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3176. case 80: // M80 - Turn on Power Supply
  3177. SET_OUTPUT(PS_ON_PIN); //GND
  3178. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3179. // If you have a switch on suicide pin, this is useful
  3180. // if you want to start another print with suicide feature after
  3181. // a print without suicide...
  3182. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3183. SET_OUTPUT(SUICIDE_PIN);
  3184. WRITE(SUICIDE_PIN, HIGH);
  3185. #endif
  3186. #ifdef ULTIPANEL
  3187. powersupply = true;
  3188. LCD_MESSAGERPGM(WELCOME_MSG);
  3189. lcd_update();
  3190. #endif
  3191. break;
  3192. #endif
  3193. case 81: // M81 - Turn off Power Supply
  3194. disable_heater();
  3195. st_synchronize();
  3196. disable_e0();
  3197. disable_e1();
  3198. disable_e2();
  3199. finishAndDisableSteppers();
  3200. fanSpeed = 0;
  3201. delay(1000); // Wait a little before to switch off
  3202. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3203. st_synchronize();
  3204. suicide();
  3205. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3206. SET_OUTPUT(PS_ON_PIN);
  3207. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3208. #endif
  3209. #ifdef ULTIPANEL
  3210. powersupply = false;
  3211. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3212. /*
  3213. MACHNAME = "Prusa i3"
  3214. MSGOFF = "Vypnuto"
  3215. "Prusai3"" ""vypnuto""."
  3216. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3217. */
  3218. lcd_update();
  3219. #endif
  3220. break;
  3221. case 82:
  3222. axis_relative_modes[3] = false;
  3223. break;
  3224. case 83:
  3225. axis_relative_modes[3] = true;
  3226. break;
  3227. case 18: //compatibility
  3228. case 84: // M84
  3229. if(code_seen('S')){
  3230. stepper_inactive_time = code_value() * 1000;
  3231. }
  3232. else
  3233. {
  3234. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3235. if(all_axis)
  3236. {
  3237. st_synchronize();
  3238. disable_e0();
  3239. disable_e1();
  3240. disable_e2();
  3241. finishAndDisableSteppers();
  3242. }
  3243. else
  3244. {
  3245. st_synchronize();
  3246. if(code_seen('X')) disable_x();
  3247. if(code_seen('Y')) disable_y();
  3248. if(code_seen('Z')) disable_z();
  3249. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3250. if(code_seen('E')) {
  3251. disable_e0();
  3252. disable_e1();
  3253. disable_e2();
  3254. }
  3255. #endif
  3256. }
  3257. }
  3258. break;
  3259. case 85: // M85
  3260. if(code_seen('S')) {
  3261. max_inactive_time = code_value() * 1000;
  3262. }
  3263. break;
  3264. case 92: // M92
  3265. for(int8_t i=0; i < NUM_AXIS; i++)
  3266. {
  3267. if(code_seen(axis_codes[i]))
  3268. {
  3269. if(i == 3) { // E
  3270. float value = code_value();
  3271. if(value < 20.0) {
  3272. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3273. max_jerk[E_AXIS] *= factor;
  3274. max_feedrate[i] *= factor;
  3275. axis_steps_per_sqr_second[i] *= factor;
  3276. }
  3277. axis_steps_per_unit[i] = value;
  3278. }
  3279. else {
  3280. axis_steps_per_unit[i] = code_value();
  3281. }
  3282. }
  3283. }
  3284. break;
  3285. case 115: // M115
  3286. if (code_seen('V')) {
  3287. // Report the Prusa version number.
  3288. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3289. } else if (code_seen('U')) {
  3290. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3291. // pause the print and ask the user to upgrade the firmware.
  3292. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3293. } else {
  3294. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3295. }
  3296. break;
  3297. case 117: // M117 display message
  3298. starpos = (strchr(strchr_pointer + 5,'*'));
  3299. if(starpos!=NULL)
  3300. *(starpos)='\0';
  3301. lcd_setstatus(strchr_pointer + 5);
  3302. break;
  3303. case 114: // M114
  3304. SERIAL_PROTOCOLPGM("X:");
  3305. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3306. SERIAL_PROTOCOLPGM(" Y:");
  3307. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3308. SERIAL_PROTOCOLPGM(" Z:");
  3309. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3310. SERIAL_PROTOCOLPGM(" E:");
  3311. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3312. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3313. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3314. SERIAL_PROTOCOLPGM(" Y:");
  3315. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3316. SERIAL_PROTOCOLPGM(" Z:");
  3317. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3318. SERIAL_PROTOCOLLN("");
  3319. break;
  3320. case 120: // M120
  3321. enable_endstops(false) ;
  3322. break;
  3323. case 121: // M121
  3324. enable_endstops(true) ;
  3325. break;
  3326. case 119: // M119
  3327. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3328. SERIAL_PROTOCOLLN("");
  3329. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3330. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3331. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3332. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3333. }else{
  3334. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3335. }
  3336. SERIAL_PROTOCOLLN("");
  3337. #endif
  3338. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3339. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3340. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3341. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3342. }else{
  3343. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3344. }
  3345. SERIAL_PROTOCOLLN("");
  3346. #endif
  3347. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3348. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3349. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3350. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3351. }else{
  3352. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3353. }
  3354. SERIAL_PROTOCOLLN("");
  3355. #endif
  3356. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3357. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3358. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3359. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3360. }else{
  3361. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3362. }
  3363. SERIAL_PROTOCOLLN("");
  3364. #endif
  3365. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3366. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3367. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3368. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3369. }else{
  3370. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3371. }
  3372. SERIAL_PROTOCOLLN("");
  3373. #endif
  3374. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3375. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3376. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3377. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3378. }else{
  3379. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3380. }
  3381. SERIAL_PROTOCOLLN("");
  3382. #endif
  3383. break;
  3384. //TODO: update for all axis, use for loop
  3385. #ifdef BLINKM
  3386. case 150: // M150
  3387. {
  3388. byte red;
  3389. byte grn;
  3390. byte blu;
  3391. if(code_seen('R')) red = code_value();
  3392. if(code_seen('U')) grn = code_value();
  3393. if(code_seen('B')) blu = code_value();
  3394. SendColors(red,grn,blu);
  3395. }
  3396. break;
  3397. #endif //BLINKM
  3398. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3399. {
  3400. tmp_extruder = active_extruder;
  3401. if(code_seen('T')) {
  3402. tmp_extruder = code_value();
  3403. if(tmp_extruder >= EXTRUDERS) {
  3404. SERIAL_ECHO_START;
  3405. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3406. break;
  3407. }
  3408. }
  3409. float area = .0;
  3410. if(code_seen('D')) {
  3411. float diameter = (float)code_value();
  3412. if (diameter == 0.0) {
  3413. // setting any extruder filament size disables volumetric on the assumption that
  3414. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3415. // for all extruders
  3416. volumetric_enabled = false;
  3417. } else {
  3418. filament_size[tmp_extruder] = (float)code_value();
  3419. // make sure all extruders have some sane value for the filament size
  3420. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3421. #if EXTRUDERS > 1
  3422. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3423. #if EXTRUDERS > 2
  3424. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3425. #endif
  3426. #endif
  3427. volumetric_enabled = true;
  3428. }
  3429. } else {
  3430. //reserved for setting filament diameter via UFID or filament measuring device
  3431. break;
  3432. }
  3433. calculate_volumetric_multipliers();
  3434. }
  3435. break;
  3436. case 201: // M201
  3437. for(int8_t i=0; i < NUM_AXIS; i++)
  3438. {
  3439. if(code_seen(axis_codes[i]))
  3440. {
  3441. max_acceleration_units_per_sq_second[i] = code_value();
  3442. }
  3443. }
  3444. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3445. reset_acceleration_rates();
  3446. break;
  3447. #if 0 // Not used for Sprinter/grbl gen6
  3448. case 202: // M202
  3449. for(int8_t i=0; i < NUM_AXIS; i++) {
  3450. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3451. }
  3452. break;
  3453. #endif
  3454. case 203: // M203 max feedrate mm/sec
  3455. for(int8_t i=0; i < NUM_AXIS; i++) {
  3456. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3457. }
  3458. break;
  3459. case 204: // M204 acclereration S normal moves T filmanent only moves
  3460. {
  3461. if(code_seen('S')) acceleration = code_value() ;
  3462. if(code_seen('T')) retract_acceleration = code_value() ;
  3463. }
  3464. break;
  3465. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3466. {
  3467. if(code_seen('S')) minimumfeedrate = code_value();
  3468. if(code_seen('T')) mintravelfeedrate = code_value();
  3469. if(code_seen('B')) minsegmenttime = code_value() ;
  3470. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3471. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3472. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3473. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3474. }
  3475. break;
  3476. case 206: // M206 additional homing offset
  3477. for(int8_t i=0; i < 3; i++)
  3478. {
  3479. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3480. }
  3481. break;
  3482. #ifdef FWRETRACT
  3483. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3484. {
  3485. if(code_seen('S'))
  3486. {
  3487. retract_length = code_value() ;
  3488. }
  3489. if(code_seen('F'))
  3490. {
  3491. retract_feedrate = code_value()/60 ;
  3492. }
  3493. if(code_seen('Z'))
  3494. {
  3495. retract_zlift = code_value() ;
  3496. }
  3497. }break;
  3498. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3499. {
  3500. if(code_seen('S'))
  3501. {
  3502. retract_recover_length = code_value() ;
  3503. }
  3504. if(code_seen('F'))
  3505. {
  3506. retract_recover_feedrate = code_value()/60 ;
  3507. }
  3508. }break;
  3509. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3510. {
  3511. if(code_seen('S'))
  3512. {
  3513. int t= code_value() ;
  3514. switch(t)
  3515. {
  3516. case 0:
  3517. {
  3518. autoretract_enabled=false;
  3519. retracted[0]=false;
  3520. #if EXTRUDERS > 1
  3521. retracted[1]=false;
  3522. #endif
  3523. #if EXTRUDERS > 2
  3524. retracted[2]=false;
  3525. #endif
  3526. }break;
  3527. case 1:
  3528. {
  3529. autoretract_enabled=true;
  3530. retracted[0]=false;
  3531. #if EXTRUDERS > 1
  3532. retracted[1]=false;
  3533. #endif
  3534. #if EXTRUDERS > 2
  3535. retracted[2]=false;
  3536. #endif
  3537. }break;
  3538. default:
  3539. SERIAL_ECHO_START;
  3540. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3541. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3542. SERIAL_ECHOLNPGM("\"");
  3543. }
  3544. }
  3545. }break;
  3546. #endif // FWRETRACT
  3547. #if EXTRUDERS > 1
  3548. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3549. {
  3550. if(setTargetedHotend(218)){
  3551. break;
  3552. }
  3553. if(code_seen('X'))
  3554. {
  3555. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3556. }
  3557. if(code_seen('Y'))
  3558. {
  3559. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3560. }
  3561. SERIAL_ECHO_START;
  3562. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3563. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3564. {
  3565. SERIAL_ECHO(" ");
  3566. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3567. SERIAL_ECHO(",");
  3568. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3569. }
  3570. SERIAL_ECHOLN("");
  3571. }break;
  3572. #endif
  3573. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3574. {
  3575. if(code_seen('S'))
  3576. {
  3577. feedmultiply = code_value() ;
  3578. }
  3579. }
  3580. break;
  3581. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3582. {
  3583. if(code_seen('S'))
  3584. {
  3585. int tmp_code = code_value();
  3586. if (code_seen('T'))
  3587. {
  3588. if(setTargetedHotend(221)){
  3589. break;
  3590. }
  3591. extruder_multiply[tmp_extruder] = tmp_code;
  3592. }
  3593. else
  3594. {
  3595. extrudemultiply = tmp_code ;
  3596. }
  3597. }
  3598. }
  3599. break;
  3600. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3601. {
  3602. if(code_seen('P')){
  3603. int pin_number = code_value(); // pin number
  3604. int pin_state = -1; // required pin state - default is inverted
  3605. if(code_seen('S')) pin_state = code_value(); // required pin state
  3606. if(pin_state >= -1 && pin_state <= 1){
  3607. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3608. {
  3609. if (sensitive_pins[i] == pin_number)
  3610. {
  3611. pin_number = -1;
  3612. break;
  3613. }
  3614. }
  3615. if (pin_number > -1)
  3616. {
  3617. int target = LOW;
  3618. st_synchronize();
  3619. pinMode(pin_number, INPUT);
  3620. switch(pin_state){
  3621. case 1:
  3622. target = HIGH;
  3623. break;
  3624. case 0:
  3625. target = LOW;
  3626. break;
  3627. case -1:
  3628. target = !digitalRead(pin_number);
  3629. break;
  3630. }
  3631. while(digitalRead(pin_number) != target){
  3632. manage_heater();
  3633. manage_inactivity();
  3634. lcd_update();
  3635. }
  3636. }
  3637. }
  3638. }
  3639. }
  3640. break;
  3641. #if NUM_SERVOS > 0
  3642. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3643. {
  3644. int servo_index = -1;
  3645. int servo_position = 0;
  3646. if (code_seen('P'))
  3647. servo_index = code_value();
  3648. if (code_seen('S')) {
  3649. servo_position = code_value();
  3650. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3651. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3652. servos[servo_index].attach(0);
  3653. #endif
  3654. servos[servo_index].write(servo_position);
  3655. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3656. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3657. servos[servo_index].detach();
  3658. #endif
  3659. }
  3660. else {
  3661. SERIAL_ECHO_START;
  3662. SERIAL_ECHO("Servo ");
  3663. SERIAL_ECHO(servo_index);
  3664. SERIAL_ECHOLN(" out of range");
  3665. }
  3666. }
  3667. else if (servo_index >= 0) {
  3668. SERIAL_PROTOCOL(MSG_OK);
  3669. SERIAL_PROTOCOL(" Servo ");
  3670. SERIAL_PROTOCOL(servo_index);
  3671. SERIAL_PROTOCOL(": ");
  3672. SERIAL_PROTOCOL(servos[servo_index].read());
  3673. SERIAL_PROTOCOLLN("");
  3674. }
  3675. }
  3676. break;
  3677. #endif // NUM_SERVOS > 0
  3678. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3679. case 300: // M300
  3680. {
  3681. int beepS = code_seen('S') ? code_value() : 110;
  3682. int beepP = code_seen('P') ? code_value() : 1000;
  3683. if (beepS > 0)
  3684. {
  3685. #if BEEPER > 0
  3686. tone(BEEPER, beepS);
  3687. delay(beepP);
  3688. noTone(BEEPER);
  3689. #elif defined(ULTRALCD)
  3690. lcd_buzz(beepS, beepP);
  3691. #elif defined(LCD_USE_I2C_BUZZER)
  3692. lcd_buzz(beepP, beepS);
  3693. #endif
  3694. }
  3695. else
  3696. {
  3697. delay(beepP);
  3698. }
  3699. }
  3700. break;
  3701. #endif // M300
  3702. #ifdef PIDTEMP
  3703. case 301: // M301
  3704. {
  3705. if(code_seen('P')) Kp = code_value();
  3706. if(code_seen('I')) Ki = scalePID_i(code_value());
  3707. if(code_seen('D')) Kd = scalePID_d(code_value());
  3708. #ifdef PID_ADD_EXTRUSION_RATE
  3709. if(code_seen('C')) Kc = code_value();
  3710. #endif
  3711. updatePID();
  3712. SERIAL_PROTOCOL(MSG_OK);
  3713. SERIAL_PROTOCOL(" p:");
  3714. SERIAL_PROTOCOL(Kp);
  3715. SERIAL_PROTOCOL(" i:");
  3716. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3717. SERIAL_PROTOCOL(" d:");
  3718. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3719. #ifdef PID_ADD_EXTRUSION_RATE
  3720. SERIAL_PROTOCOL(" c:");
  3721. //Kc does not have scaling applied above, or in resetting defaults
  3722. SERIAL_PROTOCOL(Kc);
  3723. #endif
  3724. SERIAL_PROTOCOLLN("");
  3725. }
  3726. break;
  3727. #endif //PIDTEMP
  3728. #ifdef PIDTEMPBED
  3729. case 304: // M304
  3730. {
  3731. if(code_seen('P')) bedKp = code_value();
  3732. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3733. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3734. updatePID();
  3735. SERIAL_PROTOCOL(MSG_OK);
  3736. SERIAL_PROTOCOL(" p:");
  3737. SERIAL_PROTOCOL(bedKp);
  3738. SERIAL_PROTOCOL(" i:");
  3739. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3740. SERIAL_PROTOCOL(" d:");
  3741. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3742. SERIAL_PROTOCOLLN("");
  3743. }
  3744. break;
  3745. #endif //PIDTEMP
  3746. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3747. {
  3748. #ifdef CHDK
  3749. SET_OUTPUT(CHDK);
  3750. WRITE(CHDK, HIGH);
  3751. chdkHigh = millis();
  3752. chdkActive = true;
  3753. #else
  3754. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3755. const uint8_t NUM_PULSES=16;
  3756. const float PULSE_LENGTH=0.01524;
  3757. for(int i=0; i < NUM_PULSES; i++) {
  3758. WRITE(PHOTOGRAPH_PIN, HIGH);
  3759. _delay_ms(PULSE_LENGTH);
  3760. WRITE(PHOTOGRAPH_PIN, LOW);
  3761. _delay_ms(PULSE_LENGTH);
  3762. }
  3763. delay(7.33);
  3764. for(int i=0; i < NUM_PULSES; i++) {
  3765. WRITE(PHOTOGRAPH_PIN, HIGH);
  3766. _delay_ms(PULSE_LENGTH);
  3767. WRITE(PHOTOGRAPH_PIN, LOW);
  3768. _delay_ms(PULSE_LENGTH);
  3769. }
  3770. #endif
  3771. #endif //chdk end if
  3772. }
  3773. break;
  3774. #ifdef DOGLCD
  3775. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3776. {
  3777. if (code_seen('C')) {
  3778. lcd_setcontrast( ((int)code_value())&63 );
  3779. }
  3780. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3781. SERIAL_PROTOCOL(lcd_contrast);
  3782. SERIAL_PROTOCOLLN("");
  3783. }
  3784. break;
  3785. #endif
  3786. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3787. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3788. {
  3789. float temp = .0;
  3790. if (code_seen('S')) temp=code_value();
  3791. set_extrude_min_temp(temp);
  3792. }
  3793. break;
  3794. #endif
  3795. case 303: // M303 PID autotune
  3796. {
  3797. float temp = 150.0;
  3798. int e=0;
  3799. int c=5;
  3800. if (code_seen('E')) e=code_value();
  3801. if (e<0)
  3802. temp=70;
  3803. if (code_seen('S')) temp=code_value();
  3804. if (code_seen('C')) c=code_value();
  3805. PID_autotune(temp, e, c);
  3806. }
  3807. break;
  3808. case 400: // M400 finish all moves
  3809. {
  3810. st_synchronize();
  3811. }
  3812. break;
  3813. #ifdef FILAMENT_SENSOR
  3814. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3815. {
  3816. #if (FILWIDTH_PIN > -1)
  3817. if(code_seen('N')) filament_width_nominal=code_value();
  3818. else{
  3819. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3820. SERIAL_PROTOCOLLN(filament_width_nominal);
  3821. }
  3822. #endif
  3823. }
  3824. break;
  3825. case 405: //M405 Turn on filament sensor for control
  3826. {
  3827. if(code_seen('D')) meas_delay_cm=code_value();
  3828. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3829. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3830. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3831. {
  3832. int temp_ratio = widthFil_to_size_ratio();
  3833. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3834. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3835. }
  3836. delay_index1=0;
  3837. delay_index2=0;
  3838. }
  3839. filament_sensor = true ;
  3840. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3841. //SERIAL_PROTOCOL(filament_width_meas);
  3842. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3843. //SERIAL_PROTOCOL(extrudemultiply);
  3844. }
  3845. break;
  3846. case 406: //M406 Turn off filament sensor for control
  3847. {
  3848. filament_sensor = false ;
  3849. }
  3850. break;
  3851. case 407: //M407 Display measured filament diameter
  3852. {
  3853. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3854. SERIAL_PROTOCOLLN(filament_width_meas);
  3855. }
  3856. break;
  3857. #endif
  3858. case 500: // M500 Store settings in EEPROM
  3859. {
  3860. Config_StoreSettings();
  3861. }
  3862. break;
  3863. case 501: // M501 Read settings from EEPROM
  3864. {
  3865. Config_RetrieveSettings();
  3866. }
  3867. break;
  3868. case 502: // M502 Revert to default settings
  3869. {
  3870. Config_ResetDefault();
  3871. }
  3872. break;
  3873. case 503: // M503 print settings currently in memory
  3874. {
  3875. Config_PrintSettings();
  3876. }
  3877. break;
  3878. case 509: //M509 Force language selection
  3879. {
  3880. lcd_force_language_selection();
  3881. SERIAL_ECHO_START;
  3882. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  3883. }
  3884. break;
  3885. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3886. case 540:
  3887. {
  3888. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3889. }
  3890. break;
  3891. #endif
  3892. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3893. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3894. {
  3895. float value;
  3896. if (code_seen('Z'))
  3897. {
  3898. value = code_value();
  3899. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3900. {
  3901. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3902. SERIAL_ECHO_START;
  3903. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  3904. SERIAL_PROTOCOLLN("");
  3905. }
  3906. else
  3907. {
  3908. SERIAL_ECHO_START;
  3909. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  3910. SERIAL_ECHORPGM(MSG_Z_MIN);
  3911. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3912. SERIAL_ECHORPGM(MSG_Z_MAX);
  3913. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3914. SERIAL_PROTOCOLLN("");
  3915. }
  3916. }
  3917. else
  3918. {
  3919. SERIAL_ECHO_START;
  3920. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  3921. SERIAL_ECHO(-zprobe_zoffset);
  3922. SERIAL_PROTOCOLLN("");
  3923. }
  3924. break;
  3925. }
  3926. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3927. #ifdef FILAMENTCHANGEENABLE
  3928. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3929. {
  3930. st_synchronize();
  3931. if (farm_mode)
  3932. {
  3933. prusa_statistics(22);
  3934. }
  3935. feedmultiplyBckp=feedmultiply;
  3936. int8_t TooLowZ = 0;
  3937. float target[4];
  3938. float lastpos[4];
  3939. target[X_AXIS]=current_position[X_AXIS];
  3940. target[Y_AXIS]=current_position[Y_AXIS];
  3941. target[Z_AXIS]=current_position[Z_AXIS];
  3942. target[E_AXIS]=current_position[E_AXIS];
  3943. lastpos[X_AXIS]=current_position[X_AXIS];
  3944. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3945. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3946. lastpos[E_AXIS]=current_position[E_AXIS];
  3947. //Restract extruder
  3948. if(code_seen('E'))
  3949. {
  3950. target[E_AXIS]+= code_value();
  3951. }
  3952. else
  3953. {
  3954. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3955. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3956. #endif
  3957. }
  3958. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3959. //Lift Z
  3960. if(code_seen('Z'))
  3961. {
  3962. target[Z_AXIS]+= code_value();
  3963. }
  3964. else
  3965. {
  3966. #ifdef FILAMENTCHANGE_ZADD
  3967. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3968. if(target[Z_AXIS] < 10){
  3969. target[Z_AXIS]+= 10 ;
  3970. TooLowZ = 1;
  3971. }else{
  3972. TooLowZ = 0;
  3973. }
  3974. #endif
  3975. }
  3976. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3977. //Move XY to side
  3978. if(code_seen('X'))
  3979. {
  3980. target[X_AXIS]+= code_value();
  3981. }
  3982. else
  3983. {
  3984. #ifdef FILAMENTCHANGE_XPOS
  3985. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3986. #endif
  3987. }
  3988. if(code_seen('Y'))
  3989. {
  3990. target[Y_AXIS]= code_value();
  3991. }
  3992. else
  3993. {
  3994. #ifdef FILAMENTCHANGE_YPOS
  3995. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3996. #endif
  3997. }
  3998. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3999. // Unload filament
  4000. if(code_seen('L'))
  4001. {
  4002. target[E_AXIS]+= code_value();
  4003. }
  4004. else
  4005. {
  4006. #ifdef FILAMENTCHANGE_FINALRETRACT
  4007. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  4008. #endif
  4009. }
  4010. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4011. //finish moves
  4012. st_synchronize();
  4013. //disable extruder steppers so filament can be removed
  4014. disable_e0();
  4015. disable_e1();
  4016. disable_e2();
  4017. delay(100);
  4018. //Wait for user to insert filament
  4019. uint8_t cnt=0;
  4020. int counterBeep = 0;
  4021. lcd_wait_interact();
  4022. while(!lcd_clicked()){
  4023. cnt++;
  4024. manage_heater();
  4025. manage_inactivity(true);
  4026. if(cnt==0)
  4027. {
  4028. #if BEEPER > 0
  4029. if (counterBeep== 500){
  4030. counterBeep = 0;
  4031. }
  4032. SET_OUTPUT(BEEPER);
  4033. if (counterBeep== 0){
  4034. WRITE(BEEPER,HIGH);
  4035. }
  4036. if (counterBeep== 20){
  4037. WRITE(BEEPER,LOW);
  4038. }
  4039. counterBeep++;
  4040. #else
  4041. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4042. lcd_buzz(1000/6,100);
  4043. #else
  4044. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4045. #endif
  4046. #endif
  4047. }
  4048. }
  4049. //Filament inserted
  4050. WRITE(BEEPER,LOW);
  4051. //Feed the filament to the end of nozzle quickly
  4052. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4053. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4054. //Extrude some filament
  4055. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4056. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4057. //Wait for user to check the state
  4058. lcd_change_fil_state = 0;
  4059. lcd_loading_filament();
  4060. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4061. lcd_change_fil_state = 0;
  4062. lcd_alright();
  4063. switch(lcd_change_fil_state){
  4064. // Filament failed to load so load it again
  4065. case 2:
  4066. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4067. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4068. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4069. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4070. lcd_loading_filament();
  4071. break;
  4072. // Filament loaded properly but color is not clear
  4073. case 3:
  4074. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4075. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4076. lcd_loading_color();
  4077. break;
  4078. // Everything good
  4079. default:
  4080. lcd_change_success();
  4081. break;
  4082. }
  4083. }
  4084. //Not let's go back to print
  4085. //Feed a little of filament to stabilize pressure
  4086. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4087. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4088. //Retract
  4089. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4090. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4091. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4092. //Move XY back
  4093. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4094. //Move Z back
  4095. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4096. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4097. //Unretract
  4098. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4099. //Set E position to original
  4100. plan_set_e_position(lastpos[E_AXIS]);
  4101. //Recover feed rate
  4102. feedmultiply=feedmultiplyBckp;
  4103. char cmd[9];
  4104. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4105. enquecommand(cmd);
  4106. }
  4107. break;
  4108. #endif //FILAMENTCHANGEENABLE
  4109. case 907: // M907 Set digital trimpot motor current using axis codes.
  4110. {
  4111. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4112. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4113. if(code_seen('B')) digipot_current(4,code_value());
  4114. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4115. #endif
  4116. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4117. if(code_seen('X')) digipot_current(0, code_value());
  4118. #endif
  4119. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4120. if(code_seen('Z')) digipot_current(1, code_value());
  4121. #endif
  4122. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4123. if(code_seen('E')) digipot_current(2, code_value());
  4124. #endif
  4125. #ifdef DIGIPOT_I2C
  4126. // this one uses actual amps in floating point
  4127. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4128. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4129. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4130. #endif
  4131. }
  4132. break;
  4133. case 908: // M908 Control digital trimpot directly.
  4134. {
  4135. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4136. uint8_t channel,current;
  4137. if(code_seen('P')) channel=code_value();
  4138. if(code_seen('S')) current=code_value();
  4139. digitalPotWrite(channel, current);
  4140. #endif
  4141. }
  4142. break;
  4143. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4144. {
  4145. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4146. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4147. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4148. if(code_seen('B')) microstep_mode(4,code_value());
  4149. microstep_readings();
  4150. #endif
  4151. }
  4152. break;
  4153. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4154. {
  4155. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4156. if(code_seen('S')) switch((int)code_value())
  4157. {
  4158. case 1:
  4159. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4160. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4161. break;
  4162. case 2:
  4163. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4164. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4165. break;
  4166. }
  4167. microstep_readings();
  4168. #endif
  4169. }
  4170. break;
  4171. case 999: // M999: Restart after being stopped
  4172. Stopped = false;
  4173. lcd_reset_alert_level();
  4174. gcode_LastN = Stopped_gcode_LastN;
  4175. FlushSerialRequestResend();
  4176. break;
  4177. }
  4178. } // end if(code_seen('M')) (end of M codes)
  4179. else if(code_seen('T'))
  4180. {
  4181. tmp_extruder = code_value();
  4182. if(tmp_extruder >= EXTRUDERS) {
  4183. SERIAL_ECHO_START;
  4184. SERIAL_ECHO("T");
  4185. SERIAL_ECHO(tmp_extruder);
  4186. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4187. }
  4188. else {
  4189. boolean make_move = false;
  4190. if(code_seen('F')) {
  4191. make_move = true;
  4192. next_feedrate = code_value();
  4193. if(next_feedrate > 0.0) {
  4194. feedrate = next_feedrate;
  4195. }
  4196. }
  4197. #if EXTRUDERS > 1
  4198. if(tmp_extruder != active_extruder) {
  4199. // Save current position to return to after applying extruder offset
  4200. memcpy(destination, current_position, sizeof(destination));
  4201. // Offset extruder (only by XY)
  4202. int i;
  4203. for(i = 0; i < 2; i++) {
  4204. current_position[i] = current_position[i] -
  4205. extruder_offset[i][active_extruder] +
  4206. extruder_offset[i][tmp_extruder];
  4207. }
  4208. // Set the new active extruder and position
  4209. active_extruder = tmp_extruder;
  4210. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4211. // Move to the old position if 'F' was in the parameters
  4212. if(make_move && Stopped == false) {
  4213. prepare_move();
  4214. }
  4215. }
  4216. #endif
  4217. SERIAL_ECHO_START;
  4218. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4219. SERIAL_PROTOCOLLN((int)active_extruder);
  4220. }
  4221. } // end if(code_seen('T')) (end of T codes)
  4222. else
  4223. {
  4224. SERIAL_ECHO_START;
  4225. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4226. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4227. SERIAL_ECHOLNPGM("\"");
  4228. }
  4229. ClearToSend();
  4230. }
  4231. void FlushSerialRequestResend()
  4232. {
  4233. //char cmdbuffer[bufindr][100]="Resend:";
  4234. MYSERIAL.flush();
  4235. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4236. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4237. ClearToSend();
  4238. }
  4239. // Confirm the execution of a command, if sent from a serial line.
  4240. // Execution of a command from a SD card will not be confirmed.
  4241. void ClearToSend()
  4242. {
  4243. previous_millis_cmd = millis();
  4244. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4245. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4246. }
  4247. void get_coordinates()
  4248. {
  4249. bool seen[4]={false,false,false,false};
  4250. for(int8_t i=0; i < NUM_AXIS; i++) {
  4251. if(code_seen(axis_codes[i]))
  4252. {
  4253. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4254. seen[i]=true;
  4255. }
  4256. else destination[i] = current_position[i]; //Are these else lines really needed?
  4257. }
  4258. if(code_seen('F')) {
  4259. next_feedrate = code_value();
  4260. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4261. }
  4262. }
  4263. void get_arc_coordinates()
  4264. {
  4265. #ifdef SF_ARC_FIX
  4266. bool relative_mode_backup = relative_mode;
  4267. relative_mode = true;
  4268. #endif
  4269. get_coordinates();
  4270. #ifdef SF_ARC_FIX
  4271. relative_mode=relative_mode_backup;
  4272. #endif
  4273. if(code_seen('I')) {
  4274. offset[0] = code_value();
  4275. }
  4276. else {
  4277. offset[0] = 0.0;
  4278. }
  4279. if(code_seen('J')) {
  4280. offset[1] = code_value();
  4281. }
  4282. else {
  4283. offset[1] = 0.0;
  4284. }
  4285. }
  4286. void clamp_to_software_endstops(float target[3])
  4287. {
  4288. world2machine_clamp(target[0], target[1]);
  4289. // Clamp the Z coordinate.
  4290. if (min_software_endstops) {
  4291. float negative_z_offset = 0;
  4292. #ifdef ENABLE_AUTO_BED_LEVELING
  4293. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4294. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4295. #endif
  4296. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4297. }
  4298. if (max_software_endstops) {
  4299. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4300. }
  4301. }
  4302. #ifdef MESH_BED_LEVELING
  4303. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4304. float dx = x - current_position[X_AXIS];
  4305. float dy = y - current_position[Y_AXIS];
  4306. float dz = z - current_position[Z_AXIS];
  4307. int n_segments = 0;
  4308. if (mbl.active) {
  4309. float len = abs(dx) + abs(dy);
  4310. if (len > 0)
  4311. // Split to 3cm segments or shorter.
  4312. n_segments = int(ceil(len / 30.f));
  4313. }
  4314. if (n_segments > 1) {
  4315. float de = e - current_position[E_AXIS];
  4316. for (int i = 1; i < n_segments; ++ i) {
  4317. float t = float(i) / float(n_segments);
  4318. plan_buffer_line(
  4319. current_position[X_AXIS] + t * dx,
  4320. current_position[Y_AXIS] + t * dy,
  4321. current_position[Z_AXIS] + t * dz,
  4322. current_position[E_AXIS] + t * de,
  4323. feed_rate, extruder);
  4324. }
  4325. }
  4326. // The rest of the path.
  4327. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4328. current_position[X_AXIS] = x;
  4329. current_position[Y_AXIS] = y;
  4330. current_position[Z_AXIS] = z;
  4331. current_position[E_AXIS] = e;
  4332. }
  4333. #endif // MESH_BED_LEVELING
  4334. void prepare_move()
  4335. {
  4336. clamp_to_software_endstops(destination);
  4337. previous_millis_cmd = millis();
  4338. // Do not use feedmultiply for E or Z only moves
  4339. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4340. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4341. }
  4342. else {
  4343. #ifdef MESH_BED_LEVELING
  4344. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4345. #else
  4346. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4347. #endif
  4348. }
  4349. for(int8_t i=0; i < NUM_AXIS; i++) {
  4350. current_position[i] = destination[i];
  4351. }
  4352. }
  4353. void prepare_arc_move(char isclockwise) {
  4354. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4355. // Trace the arc
  4356. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4357. // As far as the parser is concerned, the position is now == target. In reality the
  4358. // motion control system might still be processing the action and the real tool position
  4359. // in any intermediate location.
  4360. for(int8_t i=0; i < NUM_AXIS; i++) {
  4361. current_position[i] = destination[i];
  4362. }
  4363. previous_millis_cmd = millis();
  4364. }
  4365. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4366. #if defined(FAN_PIN)
  4367. #if CONTROLLERFAN_PIN == FAN_PIN
  4368. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4369. #endif
  4370. #endif
  4371. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4372. unsigned long lastMotorCheck = 0;
  4373. void controllerFan()
  4374. {
  4375. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4376. {
  4377. lastMotorCheck = millis();
  4378. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4379. #if EXTRUDERS > 2
  4380. || !READ(E2_ENABLE_PIN)
  4381. #endif
  4382. #if EXTRUDER > 1
  4383. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4384. || !READ(X2_ENABLE_PIN)
  4385. #endif
  4386. || !READ(E1_ENABLE_PIN)
  4387. #endif
  4388. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4389. {
  4390. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4391. }
  4392. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4393. {
  4394. digitalWrite(CONTROLLERFAN_PIN, 0);
  4395. analogWrite(CONTROLLERFAN_PIN, 0);
  4396. }
  4397. else
  4398. {
  4399. // allows digital or PWM fan output to be used (see M42 handling)
  4400. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4401. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4402. }
  4403. }
  4404. }
  4405. #endif
  4406. #ifdef TEMP_STAT_LEDS
  4407. static bool blue_led = false;
  4408. static bool red_led = false;
  4409. static uint32_t stat_update = 0;
  4410. void handle_status_leds(void) {
  4411. float max_temp = 0.0;
  4412. if(millis() > stat_update) {
  4413. stat_update += 500; // Update every 0.5s
  4414. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4415. max_temp = max(max_temp, degHotend(cur_extruder));
  4416. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4417. }
  4418. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4419. max_temp = max(max_temp, degTargetBed());
  4420. max_temp = max(max_temp, degBed());
  4421. #endif
  4422. if((max_temp > 55.0) && (red_led == false)) {
  4423. digitalWrite(STAT_LED_RED, 1);
  4424. digitalWrite(STAT_LED_BLUE, 0);
  4425. red_led = true;
  4426. blue_led = false;
  4427. }
  4428. if((max_temp < 54.0) && (blue_led == false)) {
  4429. digitalWrite(STAT_LED_RED, 0);
  4430. digitalWrite(STAT_LED_BLUE, 1);
  4431. red_led = false;
  4432. blue_led = true;
  4433. }
  4434. }
  4435. }
  4436. #endif
  4437. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4438. {
  4439. #if defined(KILL_PIN) && KILL_PIN > -1
  4440. static int killCount = 0; // make the inactivity button a bit less responsive
  4441. const int KILL_DELAY = 10000;
  4442. #endif
  4443. if(buflen < (BUFSIZE-1)){
  4444. get_command();
  4445. }
  4446. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4447. if(max_inactive_time)
  4448. kill();
  4449. if(stepper_inactive_time) {
  4450. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4451. {
  4452. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4453. disable_x();
  4454. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4455. disable_y();
  4456. disable_z();
  4457. disable_e0();
  4458. disable_e1();
  4459. disable_e2();
  4460. }
  4461. }
  4462. }
  4463. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4464. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4465. {
  4466. chdkActive = false;
  4467. WRITE(CHDK, LOW);
  4468. }
  4469. #endif
  4470. #if defined(KILL_PIN) && KILL_PIN > -1
  4471. // Check if the kill button was pressed and wait just in case it was an accidental
  4472. // key kill key press
  4473. // -------------------------------------------------------------------------------
  4474. if( 0 == READ(KILL_PIN) )
  4475. {
  4476. killCount++;
  4477. }
  4478. else if (killCount > 0)
  4479. {
  4480. killCount--;
  4481. }
  4482. // Exceeded threshold and we can confirm that it was not accidental
  4483. // KILL the machine
  4484. // ----------------------------------------------------------------
  4485. if ( killCount >= KILL_DELAY)
  4486. {
  4487. kill();
  4488. }
  4489. #endif
  4490. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4491. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4492. #endif
  4493. #ifdef EXTRUDER_RUNOUT_PREVENT
  4494. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4495. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4496. {
  4497. bool oldstatus=READ(E0_ENABLE_PIN);
  4498. enable_e0();
  4499. float oldepos=current_position[E_AXIS];
  4500. float oldedes=destination[E_AXIS];
  4501. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4502. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4503. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4504. current_position[E_AXIS]=oldepos;
  4505. destination[E_AXIS]=oldedes;
  4506. plan_set_e_position(oldepos);
  4507. previous_millis_cmd=millis();
  4508. st_synchronize();
  4509. WRITE(E0_ENABLE_PIN,oldstatus);
  4510. }
  4511. #endif
  4512. #ifdef TEMP_STAT_LEDS
  4513. handle_status_leds();
  4514. #endif
  4515. check_axes_activity();
  4516. }
  4517. void kill(const char *full_screen_message)
  4518. {
  4519. cli(); // Stop interrupts
  4520. disable_heater();
  4521. disable_x();
  4522. // SERIAL_ECHOLNPGM("kill - disable Y");
  4523. disable_y();
  4524. disable_z();
  4525. disable_e0();
  4526. disable_e1();
  4527. disable_e2();
  4528. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4529. pinMode(PS_ON_PIN,INPUT);
  4530. #endif
  4531. SERIAL_ERROR_START;
  4532. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4533. if (full_screen_message != NULL) {
  4534. SERIAL_ERRORLNRPGM(full_screen_message);
  4535. lcd_display_message_fullscreen_P(full_screen_message);
  4536. } else {
  4537. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4538. }
  4539. // FMC small patch to update the LCD before ending
  4540. sei(); // enable interrupts
  4541. for ( int i=5; i--; lcd_update())
  4542. {
  4543. delay(200);
  4544. }
  4545. cli(); // disable interrupts
  4546. suicide();
  4547. while(1) { /* Intentionally left empty */ } // Wait for reset
  4548. }
  4549. void Stop()
  4550. {
  4551. disable_heater();
  4552. if(Stopped == false) {
  4553. Stopped = true;
  4554. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4555. SERIAL_ERROR_START;
  4556. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4557. LCD_MESSAGERPGM(MSG_STOPPED);
  4558. }
  4559. }
  4560. bool IsStopped() { return Stopped; };
  4561. #ifdef FAST_PWM_FAN
  4562. void setPwmFrequency(uint8_t pin, int val)
  4563. {
  4564. val &= 0x07;
  4565. switch(digitalPinToTimer(pin))
  4566. {
  4567. #if defined(TCCR0A)
  4568. case TIMER0A:
  4569. case TIMER0B:
  4570. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4571. // TCCR0B |= val;
  4572. break;
  4573. #endif
  4574. #if defined(TCCR1A)
  4575. case TIMER1A:
  4576. case TIMER1B:
  4577. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4578. // TCCR1B |= val;
  4579. break;
  4580. #endif
  4581. #if defined(TCCR2)
  4582. case TIMER2:
  4583. case TIMER2:
  4584. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4585. TCCR2 |= val;
  4586. break;
  4587. #endif
  4588. #if defined(TCCR2A)
  4589. case TIMER2A:
  4590. case TIMER2B:
  4591. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4592. TCCR2B |= val;
  4593. break;
  4594. #endif
  4595. #if defined(TCCR3A)
  4596. case TIMER3A:
  4597. case TIMER3B:
  4598. case TIMER3C:
  4599. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4600. TCCR3B |= val;
  4601. break;
  4602. #endif
  4603. #if defined(TCCR4A)
  4604. case TIMER4A:
  4605. case TIMER4B:
  4606. case TIMER4C:
  4607. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4608. TCCR4B |= val;
  4609. break;
  4610. #endif
  4611. #if defined(TCCR5A)
  4612. case TIMER5A:
  4613. case TIMER5B:
  4614. case TIMER5C:
  4615. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4616. TCCR5B |= val;
  4617. break;
  4618. #endif
  4619. }
  4620. }
  4621. #endif //FAST_PWM_FAN
  4622. bool setTargetedHotend(int code){
  4623. tmp_extruder = active_extruder;
  4624. if(code_seen('T')) {
  4625. tmp_extruder = code_value();
  4626. if(tmp_extruder >= EXTRUDERS) {
  4627. SERIAL_ECHO_START;
  4628. switch(code){
  4629. case 104:
  4630. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4631. break;
  4632. case 105:
  4633. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4634. break;
  4635. case 109:
  4636. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4637. break;
  4638. case 218:
  4639. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4640. break;
  4641. case 221:
  4642. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4643. break;
  4644. }
  4645. SERIAL_ECHOLN(tmp_extruder);
  4646. return true;
  4647. }
  4648. }
  4649. return false;
  4650. }
  4651. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time)
  4652. {
  4653. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  4654. {
  4655. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  4656. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  4657. }
  4658. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED);
  4659. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME);
  4660. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60));
  4661. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  4662. total_filament_used = 0;
  4663. }
  4664. float calculate_volumetric_multiplier(float diameter) {
  4665. float area = .0;
  4666. float radius = .0;
  4667. radius = diameter * .5;
  4668. if (! volumetric_enabled || radius == 0) {
  4669. area = 1;
  4670. }
  4671. else {
  4672. area = M_PI * pow(radius, 2);
  4673. }
  4674. return 1.0 / area;
  4675. }
  4676. void calculate_volumetric_multipliers() {
  4677. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4678. #if EXTRUDERS > 1
  4679. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4680. #if EXTRUDERS > 2
  4681. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4682. #endif
  4683. #endif
  4684. }
  4685. void delay_keep_alive(int ms)
  4686. {
  4687. for (;;) {
  4688. manage_heater();
  4689. // Manage inactivity, but don't disable steppers on timeout.
  4690. manage_inactivity(true);
  4691. lcd_update();
  4692. if (ms == 0)
  4693. break;
  4694. else if (ms >= 50) {
  4695. delay(50);
  4696. ms -= 50;
  4697. } else {
  4698. delay(ms);
  4699. ms = 0;
  4700. }
  4701. }
  4702. }