Marlin_main.cpp 260 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. // M114 - Output current position to serial port
  148. // M115 - Capabilities string
  149. // M117 - display message
  150. // M119 - Output Endstop status to serial port
  151. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  152. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  153. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M140 - Set bed target temp
  156. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  160. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  164. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. // M206 - set additional homing offset
  166. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  168. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. // M220 S<factor in percent>- set speed factor override percentage
  171. // M221 S<factor in percent>- set extrude factor override percentage
  172. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  173. // M240 - Trigger a camera to take a photograph
  174. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  176. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. // M301 - Set PID parameters P I and D
  178. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. // M304 - Set bed PID parameters P I and D
  181. // M400 - Finish all moves
  182. // M401 - Lower z-probe if present
  183. // M402 - Raise z-probe if present
  184. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  185. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  186. // M406 - Turn off Filament Sensor extrusion control
  187. // M407 - Displays measured filament diameter
  188. // M500 - stores parameters in EEPROM
  189. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  190. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  191. // M503 - print the current settings (from memory not from EEPROM)
  192. // M509 - force language selection on next restart
  193. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  196. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  197. // M907 - Set digital trimpot motor current using axis codes.
  198. // M908 - Control digital trimpot directly.
  199. // M350 - Set microstepping mode.
  200. // M351 - Toggle MS1 MS2 pins directly.
  201. // M928 - Start SD logging (M928 filename.g) - ended by M29
  202. // M999 - Restart after being stopped by error
  203. //Stepper Movement Variables
  204. //===========================================================================
  205. //=============================imported variables============================
  206. //===========================================================================
  207. //===========================================================================
  208. //=============================public variables=============================
  209. //===========================================================================
  210. #ifdef SDSUPPORT
  211. CardReader card;
  212. #endif
  213. unsigned long PingTime = millis();
  214. union Data
  215. {
  216. byte b[2];
  217. int value;
  218. };
  219. float homing_feedrate[] = HOMING_FEEDRATE;
  220. // Currently only the extruder axis may be switched to a relative mode.
  221. // Other axes are always absolute or relative based on the common relative_mode flag.
  222. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  223. int feedmultiply=100; //100->1 200->2
  224. int saved_feedmultiply;
  225. int extrudemultiply=100; //100->1 200->2
  226. int extruder_multiply[EXTRUDERS] = {100
  227. #if EXTRUDERS > 1
  228. , 100
  229. #if EXTRUDERS > 2
  230. , 100
  231. #endif
  232. #endif
  233. };
  234. int bowden_length[4] = {385, 385, 385, 385};
  235. bool is_usb_printing = false;
  236. bool homing_flag = false;
  237. bool temp_cal_active = false;
  238. unsigned long kicktime = millis()+100000;
  239. unsigned int usb_printing_counter;
  240. int lcd_change_fil_state = 0;
  241. int feedmultiplyBckp = 100;
  242. float HotendTempBckp = 0;
  243. int fanSpeedBckp = 0;
  244. float pause_lastpos[4];
  245. unsigned long pause_time = 0;
  246. unsigned long start_pause_print = millis();
  247. unsigned long t_fan_rising_edge = millis();
  248. //unsigned long load_filament_time;
  249. bool mesh_bed_leveling_flag = false;
  250. bool mesh_bed_run_from_menu = false;
  251. unsigned char lang_selected = 0;
  252. int8_t FarmMode = 0;
  253. bool prusa_sd_card_upload = false;
  254. unsigned int status_number = 0;
  255. unsigned long total_filament_used;
  256. unsigned int heating_status;
  257. unsigned int heating_status_counter;
  258. bool custom_message;
  259. bool loading_flag = false;
  260. unsigned int custom_message_type;
  261. unsigned int custom_message_state;
  262. char snmm_filaments_used = 0;
  263. float distance_from_min[2];
  264. bool fan_state[2];
  265. int fan_edge_counter[2];
  266. int fan_speed[2];
  267. char dir_names[3][9];
  268. bool sortAlpha = false;
  269. bool volumetric_enabled = false;
  270. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  271. #if EXTRUDERS > 1
  272. , DEFAULT_NOMINAL_FILAMENT_DIA
  273. #if EXTRUDERS > 2
  274. , DEFAULT_NOMINAL_FILAMENT_DIA
  275. #endif
  276. #endif
  277. };
  278. float volumetric_multiplier[EXTRUDERS] = {1.0
  279. #if EXTRUDERS > 1
  280. , 1.0
  281. #if EXTRUDERS > 2
  282. , 1.0
  283. #endif
  284. #endif
  285. };
  286. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  287. float add_homing[3]={0,0,0};
  288. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  289. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  290. bool axis_known_position[3] = {false, false, false};
  291. float zprobe_zoffset;
  292. // Extruder offset
  293. #if EXTRUDERS > 1
  294. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  295. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  296. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  297. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  298. #endif
  299. };
  300. #endif
  301. uint8_t active_extruder = 0;
  302. int fanSpeed=0;
  303. #ifdef FWRETRACT
  304. bool autoretract_enabled=false;
  305. bool retracted[EXTRUDERS]={false
  306. #if EXTRUDERS > 1
  307. , false
  308. #if EXTRUDERS > 2
  309. , false
  310. #endif
  311. #endif
  312. };
  313. bool retracted_swap[EXTRUDERS]={false
  314. #if EXTRUDERS > 1
  315. , false
  316. #if EXTRUDERS > 2
  317. , false
  318. #endif
  319. #endif
  320. };
  321. float retract_length = RETRACT_LENGTH;
  322. float retract_length_swap = RETRACT_LENGTH_SWAP;
  323. float retract_feedrate = RETRACT_FEEDRATE;
  324. float retract_zlift = RETRACT_ZLIFT;
  325. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  326. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  327. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  328. #endif
  329. #ifdef ULTIPANEL
  330. #ifdef PS_DEFAULT_OFF
  331. bool powersupply = false;
  332. #else
  333. bool powersupply = true;
  334. #endif
  335. #endif
  336. bool cancel_heatup = false ;
  337. #ifdef HOST_KEEPALIVE_FEATURE
  338. int busy_state = NOT_BUSY;
  339. static long prev_busy_signal_ms = -1;
  340. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  341. #else
  342. #define host_keepalive();
  343. #define KEEPALIVE_STATE(n);
  344. #endif
  345. #ifdef FILAMENT_SENSOR
  346. //Variables for Filament Sensor input
  347. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  348. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  349. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  350. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  351. int delay_index1=0; //index into ring buffer
  352. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  353. float delay_dist=0; //delay distance counter
  354. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  355. #endif
  356. const char errormagic[] PROGMEM = "Error:";
  357. const char echomagic[] PROGMEM = "echo:";
  358. //===========================================================================
  359. //=============================Private Variables=============================
  360. //===========================================================================
  361. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  362. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  363. static float delta[3] = {0.0, 0.0, 0.0};
  364. // For tracing an arc
  365. static float offset[3] = {0.0, 0.0, 0.0};
  366. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  367. // Determines Absolute or Relative Coordinates.
  368. // Also there is bool axis_relative_modes[] per axis flag.
  369. static bool relative_mode = false;
  370. #ifndef _DISABLE_M42_M226
  371. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  372. #endif //_DISABLE_M42_M226
  373. //static float tt = 0;
  374. //static float bt = 0;
  375. //Inactivity shutdown variables
  376. static unsigned long previous_millis_cmd = 0;
  377. unsigned long max_inactive_time = 0;
  378. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  379. unsigned long starttime=0;
  380. unsigned long stoptime=0;
  381. unsigned long _usb_timer = 0;
  382. static uint8_t tmp_extruder;
  383. bool extruder_under_pressure = true;
  384. bool Stopped=false;
  385. #if NUM_SERVOS > 0
  386. Servo servos[NUM_SERVOS];
  387. #endif
  388. bool CooldownNoWait = true;
  389. bool target_direction;
  390. //Insert variables if CHDK is defined
  391. #ifdef CHDK
  392. unsigned long chdkHigh = 0;
  393. boolean chdkActive = false;
  394. #endif
  395. //===========================================================================
  396. //=============================Routines======================================
  397. //===========================================================================
  398. void get_arc_coordinates();
  399. bool setTargetedHotend(int code);
  400. void serial_echopair_P(const char *s_P, float v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. void serial_echopair_P(const char *s_P, double v)
  403. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  404. void serial_echopair_P(const char *s_P, unsigned long v)
  405. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  406. #ifdef SDSUPPORT
  407. #include "SdFatUtil.h"
  408. int freeMemory() { return SdFatUtil::FreeRam(); }
  409. #else
  410. extern "C" {
  411. extern unsigned int __bss_end;
  412. extern unsigned int __heap_start;
  413. extern void *__brkval;
  414. int freeMemory() {
  415. int free_memory;
  416. if ((int)__brkval == 0)
  417. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  418. else
  419. free_memory = ((int)&free_memory) - ((int)__brkval);
  420. return free_memory;
  421. }
  422. }
  423. #endif //!SDSUPPORT
  424. void setup_killpin()
  425. {
  426. #if defined(KILL_PIN) && KILL_PIN > -1
  427. SET_INPUT(KILL_PIN);
  428. WRITE(KILL_PIN,HIGH);
  429. #endif
  430. }
  431. // Set home pin
  432. void setup_homepin(void)
  433. {
  434. #if defined(HOME_PIN) && HOME_PIN > -1
  435. SET_INPUT(HOME_PIN);
  436. WRITE(HOME_PIN,HIGH);
  437. #endif
  438. }
  439. void setup_photpin()
  440. {
  441. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  442. SET_OUTPUT(PHOTOGRAPH_PIN);
  443. WRITE(PHOTOGRAPH_PIN, LOW);
  444. #endif
  445. }
  446. void setup_powerhold()
  447. {
  448. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  449. SET_OUTPUT(SUICIDE_PIN);
  450. WRITE(SUICIDE_PIN, HIGH);
  451. #endif
  452. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  453. SET_OUTPUT(PS_ON_PIN);
  454. #if defined(PS_DEFAULT_OFF)
  455. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  456. #else
  457. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  458. #endif
  459. #endif
  460. }
  461. void suicide()
  462. {
  463. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  464. SET_OUTPUT(SUICIDE_PIN);
  465. WRITE(SUICIDE_PIN, LOW);
  466. #endif
  467. }
  468. void servo_init()
  469. {
  470. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  471. servos[0].attach(SERVO0_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  474. servos[1].attach(SERVO1_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  477. servos[2].attach(SERVO2_PIN);
  478. #endif
  479. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  480. servos[3].attach(SERVO3_PIN);
  481. #endif
  482. #if (NUM_SERVOS >= 5)
  483. #error "TODO: enter initalisation code for more servos"
  484. #endif
  485. }
  486. static void lcd_language_menu();
  487. void stop_and_save_print_to_ram(float z_move, float e_move);
  488. void restore_print_from_ram_and_continue(float e_move);
  489. extern int8_t CrashDetectMenu;
  490. void crashdet_enable()
  491. {
  492. MYSERIAL.println("crashdet_enable");
  493. tmc2130_sg_stop_on_crash = true;
  494. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  495. CrashDetectMenu = 1;
  496. }
  497. void crashdet_disable()
  498. {
  499. MYSERIAL.println("crashdet_disable");
  500. tmc2130_sg_stop_on_crash = false;
  501. tmc2130_sg_crash = false;
  502. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  503. CrashDetectMenu = 0;
  504. }
  505. void crashdet_stop_and_save_print()
  506. {
  507. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  508. }
  509. void crashdet_restore_print_and_continue()
  510. {
  511. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  512. // babystep_apply();
  513. }
  514. void crashdet_stop_and_save_print2()
  515. {
  516. cli();
  517. planner_abort_hard(); //abort printing
  518. cmdqueue_reset(); //empty cmdqueue
  519. card.sdprinting = false;
  520. card.closefile();
  521. sei();
  522. }
  523. void crashdet_detected()
  524. {
  525. // printf("CRASH_DETECTED");
  526. /* while (!is_buffer_empty())
  527. {
  528. process_commands();
  529. cmdqueue_pop_front();
  530. }*/
  531. st_synchronize();
  532. lcd_update_enable(true);
  533. lcd_implementation_clear();
  534. lcd_update(2);
  535. // Increment crash counter
  536. uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
  537. crash_count++;
  538. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
  539. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  540. bool yesno = true;
  541. #else
  542. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  543. #endif
  544. lcd_update_enable(true);
  545. lcd_update(2);
  546. lcd_setstatuspgm(WELCOME_MSG);
  547. if (yesno)
  548. {
  549. enquecommand_P(PSTR("G28 X"));
  550. enquecommand_P(PSTR("G28 Y"));
  551. enquecommand_P(PSTR("CRASH_RECOVER"));
  552. }
  553. else
  554. {
  555. enquecommand_P(PSTR("CRASH_CANCEL"));
  556. }
  557. }
  558. void crashdet_recover()
  559. {
  560. crashdet_restore_print_and_continue();
  561. tmc2130_sg_stop_on_crash = true;
  562. }
  563. void crashdet_cancel()
  564. {
  565. card.sdprinting = false;
  566. card.closefile();
  567. tmc2130_sg_stop_on_crash = true;
  568. }
  569. #ifdef MESH_BED_LEVELING
  570. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  571. #endif
  572. // Factory reset function
  573. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  574. // Level input parameter sets depth of reset
  575. // Quiet parameter masks all waitings for user interact.
  576. int er_progress = 0;
  577. void factory_reset(char level, bool quiet)
  578. {
  579. lcd_implementation_clear();
  580. int cursor_pos = 0;
  581. switch (level) {
  582. // Level 0: Language reset
  583. case 0:
  584. WRITE(BEEPER, HIGH);
  585. _delay_ms(100);
  586. WRITE(BEEPER, LOW);
  587. lcd_force_language_selection();
  588. break;
  589. //Level 1: Reset statistics
  590. case 1:
  591. WRITE(BEEPER, HIGH);
  592. _delay_ms(100);
  593. WRITE(BEEPER, LOW);
  594. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  595. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  596. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  597. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT, 0);
  598. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  599. lcd_menu_statistics();
  600. break;
  601. // Level 2: Prepare for shipping
  602. case 2:
  603. //lcd_printPGM(PSTR("Factory RESET"));
  604. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  605. // Force language selection at the next boot up.
  606. lcd_force_language_selection();
  607. // Force the "Follow calibration flow" message at the next boot up.
  608. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  609. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  610. farm_no = 0;
  611. farm_mode == false;
  612. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  613. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  614. WRITE(BEEPER, HIGH);
  615. _delay_ms(100);
  616. WRITE(BEEPER, LOW);
  617. //_delay_ms(2000);
  618. break;
  619. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  620. case 3:
  621. lcd_printPGM(PSTR("Factory RESET"));
  622. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  623. WRITE(BEEPER, HIGH);
  624. _delay_ms(100);
  625. WRITE(BEEPER, LOW);
  626. er_progress = 0;
  627. lcd_print_at_PGM(3, 3, PSTR(" "));
  628. lcd_implementation_print_at(3, 3, er_progress);
  629. // Erase EEPROM
  630. for (int i = 0; i < 4096; i++) {
  631. eeprom_write_byte((uint8_t*)i, 0xFF);
  632. if (i % 41 == 0) {
  633. er_progress++;
  634. lcd_print_at_PGM(3, 3, PSTR(" "));
  635. lcd_implementation_print_at(3, 3, er_progress);
  636. lcd_printPGM(PSTR("%"));
  637. }
  638. }
  639. break;
  640. case 4:
  641. bowden_menu();
  642. break;
  643. default:
  644. break;
  645. }
  646. }
  647. #include "LiquidCrystal.h"
  648. extern LiquidCrystal lcd;
  649. FILE _lcdout = {0};
  650. int lcd_putchar(char c, FILE *stream)
  651. {
  652. lcd.write(c);
  653. return 0;
  654. }
  655. FILE _uartout = {0};
  656. int uart_putchar(char c, FILE *stream)
  657. {
  658. MYSERIAL.write(c);
  659. return 0;
  660. }
  661. void lcd_splash()
  662. {
  663. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  664. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  665. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  666. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  667. }
  668. // "Setup" function is called by the Arduino framework on startup.
  669. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  670. // are initialized by the main() routine provided by the Arduino framework.
  671. void setup()
  672. {
  673. lcd_init();
  674. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  675. lcd_splash();
  676. setup_killpin();
  677. setup_powerhold();
  678. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  679. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  680. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  681. if (farm_no == 0xFFFF) farm_no = 0;
  682. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  683. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  684. if (farm_mode)
  685. {
  686. prusa_statistics(8);
  687. selectedSerialPort = 1;
  688. }
  689. MYSERIAL.begin(BAUDRATE);
  690. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  691. stdout = uartout;
  692. SERIAL_PROTOCOLLNPGM("start");
  693. SERIAL_ECHO_START;
  694. #if 0
  695. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  696. for (int i = 0; i < 4096; ++i) {
  697. int b = eeprom_read_byte((unsigned char*)i);
  698. if (b != 255) {
  699. SERIAL_ECHO(i);
  700. SERIAL_ECHO(":");
  701. SERIAL_ECHO(b);
  702. SERIAL_ECHOLN("");
  703. }
  704. }
  705. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  706. #endif
  707. // Check startup - does nothing if bootloader sets MCUSR to 0
  708. byte mcu = MCUSR;
  709. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  710. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  711. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  712. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  713. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  714. if (mcu & 1) puts_P(MSG_POWERUP);
  715. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  716. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  717. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  718. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  719. MCUSR = 0;
  720. //SERIAL_ECHORPGM(MSG_MARLIN);
  721. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  722. #ifdef STRING_VERSION_CONFIG_H
  723. #ifdef STRING_CONFIG_H_AUTHOR
  724. SERIAL_ECHO_START;
  725. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  726. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  727. SERIAL_ECHORPGM(MSG_AUTHOR);
  728. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  729. SERIAL_ECHOPGM("Compiled: ");
  730. SERIAL_ECHOLNPGM(__DATE__);
  731. #endif
  732. #endif
  733. SERIAL_ECHO_START;
  734. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  735. SERIAL_ECHO(freeMemory());
  736. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  737. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  738. //lcd_update_enable(false); // why do we need this?? - andre
  739. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  740. Config_RetrieveSettings(EEPROM_OFFSET);
  741. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  742. tp_init(); // Initialize temperature loop
  743. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  744. plan_init(); // Initialize planner;
  745. watchdog_init();
  746. #ifdef TMC2130
  747. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  748. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  749. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  750. if (crashdet)
  751. {
  752. crashdet_enable();
  753. MYSERIAL.println("CrashDetect ENABLED!");
  754. }
  755. else
  756. {
  757. crashdet_disable();
  758. MYSERIAL.println("CrashDetect DISABLED");
  759. }
  760. #endif //TMC2130
  761. #ifdef PAT9125
  762. int pat9125 = pat9125_init(PAT9125_XRES, PAT9125_YRES);
  763. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  764. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  765. if (!pat9125)
  766. {
  767. fsensor = 0; //disable sensor
  768. fsensor_not_responding = true;
  769. }
  770. puts_P(PSTR("FSensor "));
  771. if (fsensor)
  772. {
  773. puts_P(PSTR("ENABLED\n"));
  774. fsensor_enable();
  775. }
  776. else
  777. {
  778. puts_P(PSTR("DISABLED\n"));
  779. fsensor_disable();
  780. }
  781. #endif //PAT9125
  782. st_init(); // Initialize stepper, this enables interrupts!
  783. setup_photpin();
  784. servo_init();
  785. // Reset the machine correction matrix.
  786. // It does not make sense to load the correction matrix until the machine is homed.
  787. world2machine_reset();
  788. KEEPALIVE_STATE(PAUSED_FOR_USER);
  789. if (!READ(BTN_ENC))
  790. {
  791. _delay_ms(1000);
  792. if (!READ(BTN_ENC))
  793. {
  794. lcd_implementation_clear();
  795. lcd_printPGM(PSTR("Factory RESET"));
  796. SET_OUTPUT(BEEPER);
  797. WRITE(BEEPER, HIGH);
  798. while (!READ(BTN_ENC));
  799. WRITE(BEEPER, LOW);
  800. _delay_ms(2000);
  801. char level = reset_menu();
  802. factory_reset(level, false);
  803. switch (level) {
  804. case 0: _delay_ms(0); break;
  805. case 1: _delay_ms(0); break;
  806. case 2: _delay_ms(0); break;
  807. case 3: _delay_ms(0); break;
  808. }
  809. // _delay_ms(100);
  810. /*
  811. #ifdef MESH_BED_LEVELING
  812. _delay_ms(2000);
  813. if (!READ(BTN_ENC))
  814. {
  815. WRITE(BEEPER, HIGH);
  816. _delay_ms(100);
  817. WRITE(BEEPER, LOW);
  818. _delay_ms(200);
  819. WRITE(BEEPER, HIGH);
  820. _delay_ms(100);
  821. WRITE(BEEPER, LOW);
  822. int _z = 0;
  823. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  824. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  825. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  826. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  827. }
  828. else
  829. {
  830. WRITE(BEEPER, HIGH);
  831. _delay_ms(100);
  832. WRITE(BEEPER, LOW);
  833. }
  834. #endif // mesh */
  835. }
  836. }
  837. else
  838. {
  839. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  840. }
  841. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  842. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  843. #endif
  844. #if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
  845. SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
  846. #endif
  847. #ifdef DIGIPOT_I2C
  848. digipot_i2c_init();
  849. #endif
  850. setup_homepin();
  851. if (1) {
  852. SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  853. // try to run to zero phase before powering the Z motor.
  854. // Move in negative direction
  855. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  856. // Round the current micro-micro steps to micro steps.
  857. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  858. // Until the phase counter is reset to zero.
  859. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  860. delay(2);
  861. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  862. delay(2);
  863. }
  864. SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  865. }
  866. #if defined(Z_AXIS_ALWAYS_ON)
  867. enable_z();
  868. #endif
  869. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  870. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  871. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  872. if (farm_no == 0xFFFF) farm_no = 0;
  873. if (farm_mode)
  874. {
  875. prusa_statistics(8);
  876. }
  877. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  878. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  879. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  880. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  881. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  882. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  883. // where all the EEPROM entries are set to 0x0ff.
  884. // Once a firmware boots up, it forces at least a language selection, which changes
  885. // EEPROM_LANG to number lower than 0x0ff.
  886. // 1) Set a high power mode.
  887. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  888. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  889. }
  890. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  891. // but this times out if a blocking dialog is shown in setup().
  892. card.initsd();
  893. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff)
  894. eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  895. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT) == 0xff)
  896. eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT, 0);
  897. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff)
  898. eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  899. #ifdef SNMM
  900. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  901. int _z = BOWDEN_LENGTH;
  902. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  903. }
  904. #endif
  905. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  906. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  907. // is being written into the EEPROM, so the update procedure will be triggered only once.
  908. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  909. if (lang_selected >= LANG_NUM){
  910. lcd_mylang();
  911. }
  912. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  913. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  914. temp_cal_active = false;
  915. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  916. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  917. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  918. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  919. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  920. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  921. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  922. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  923. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  924. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  925. temp_cal_active = true;
  926. }
  927. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  928. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  929. }
  930. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  931. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  932. }
  933. check_babystep(); //checking if Z babystep is in allowed range
  934. setup_uvlo_interrupt();
  935. setup_fan_interrupt();
  936. fsensor_setup_interrupt();
  937. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  938. #ifndef DEBUG_DISABLE_STARTMSGS
  939. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  940. lcd_wizard(0);
  941. }
  942. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  943. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  944. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  945. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  946. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  947. // Show the message.
  948. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  949. }
  950. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  951. // Show the message.
  952. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  953. lcd_update_enable(true);
  954. }
  955. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  956. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  957. lcd_update_enable(true);
  958. }
  959. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  960. // Show the message.
  961. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  962. }
  963. }
  964. KEEPALIVE_STATE(IN_PROCESS);
  965. #endif //DEBUG_DISABLE_STARTMSGS
  966. lcd_update_enable(true);
  967. lcd_implementation_clear();
  968. lcd_update(2);
  969. // Store the currently running firmware into an eeprom,
  970. // so the next time the firmware gets updated, it will know from which version it has been updated.
  971. update_current_firmware_version_to_eeprom();
  972. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  973. /*
  974. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  975. else {
  976. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  977. lcd_update_enable(true);
  978. lcd_update(2);
  979. lcd_setstatuspgm(WELCOME_MSG);
  980. }
  981. */
  982. manage_heater(); // Update temperatures
  983. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  984. MYSERIAL.println("Power panic detected!");
  985. MYSERIAL.print("Current bed temp:");
  986. MYSERIAL.println(degBed());
  987. MYSERIAL.print("Saved bed temp:");
  988. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  989. #endif
  990. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  991. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  992. MYSERIAL.println("Automatic recovery!");
  993. #endif
  994. recover_print(1);
  995. }
  996. else{
  997. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  998. MYSERIAL.println("Normal recovery!");
  999. #endif
  1000. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1001. else {
  1002. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1003. lcd_update_enable(true);
  1004. lcd_update(2);
  1005. lcd_setstatuspgm(WELCOME_MSG);
  1006. }
  1007. }
  1008. }
  1009. KEEPALIVE_STATE(NOT_BUSY);
  1010. wdt_enable(WDTO_4S);
  1011. }
  1012. void trace();
  1013. #define CHUNK_SIZE 64 // bytes
  1014. #define SAFETY_MARGIN 1
  1015. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1016. int chunkHead = 0;
  1017. int serial_read_stream() {
  1018. setTargetHotend(0, 0);
  1019. setTargetBed(0);
  1020. lcd_implementation_clear();
  1021. lcd_printPGM(PSTR(" Upload in progress"));
  1022. // first wait for how many bytes we will receive
  1023. uint32_t bytesToReceive;
  1024. // receive the four bytes
  1025. char bytesToReceiveBuffer[4];
  1026. for (int i=0; i<4; i++) {
  1027. int data;
  1028. while ((data = MYSERIAL.read()) == -1) {};
  1029. bytesToReceiveBuffer[i] = data;
  1030. }
  1031. // make it a uint32
  1032. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1033. // we're ready, notify the sender
  1034. MYSERIAL.write('+');
  1035. // lock in the routine
  1036. uint32_t receivedBytes = 0;
  1037. while (prusa_sd_card_upload) {
  1038. int i;
  1039. for (i=0; i<CHUNK_SIZE; i++) {
  1040. int data;
  1041. // check if we're not done
  1042. if (receivedBytes == bytesToReceive) {
  1043. break;
  1044. }
  1045. // read the next byte
  1046. while ((data = MYSERIAL.read()) == -1) {};
  1047. receivedBytes++;
  1048. // save it to the chunk
  1049. chunk[i] = data;
  1050. }
  1051. // write the chunk to SD
  1052. card.write_command_no_newline(&chunk[0]);
  1053. // notify the sender we're ready for more data
  1054. MYSERIAL.write('+');
  1055. // for safety
  1056. manage_heater();
  1057. // check if we're done
  1058. if(receivedBytes == bytesToReceive) {
  1059. trace(); // beep
  1060. card.closefile();
  1061. prusa_sd_card_upload = false;
  1062. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1063. return 0;
  1064. }
  1065. }
  1066. }
  1067. #ifdef HOST_KEEPALIVE_FEATURE
  1068. /**
  1069. * Output a "busy" message at regular intervals
  1070. * while the machine is not accepting commands.
  1071. */
  1072. void host_keepalive() {
  1073. if (farm_mode) return;
  1074. long ms = millis();
  1075. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1076. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1077. switch (busy_state) {
  1078. case IN_HANDLER:
  1079. case IN_PROCESS:
  1080. SERIAL_ECHO_START;
  1081. SERIAL_ECHOLNPGM("busy: processing");
  1082. break;
  1083. case PAUSED_FOR_USER:
  1084. SERIAL_ECHO_START;
  1085. SERIAL_ECHOLNPGM("busy: paused for user");
  1086. break;
  1087. case PAUSED_FOR_INPUT:
  1088. SERIAL_ECHO_START;
  1089. SERIAL_ECHOLNPGM("busy: paused for input");
  1090. break;
  1091. default:
  1092. break;
  1093. }
  1094. }
  1095. prev_busy_signal_ms = ms;
  1096. }
  1097. #endif
  1098. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1099. // Before loop(), the setup() function is called by the main() routine.
  1100. void loop()
  1101. {
  1102. KEEPALIVE_STATE(NOT_BUSY);
  1103. bool stack_integrity = true;
  1104. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1105. {
  1106. is_usb_printing = true;
  1107. usb_printing_counter--;
  1108. _usb_timer = millis();
  1109. }
  1110. if (usb_printing_counter == 0)
  1111. {
  1112. is_usb_printing = false;
  1113. }
  1114. if (prusa_sd_card_upload)
  1115. {
  1116. //we read byte-by byte
  1117. serial_read_stream();
  1118. } else
  1119. {
  1120. get_command();
  1121. #ifdef SDSUPPORT
  1122. card.checkautostart(false);
  1123. #endif
  1124. if(buflen)
  1125. {
  1126. cmdbuffer_front_already_processed = false;
  1127. #ifdef SDSUPPORT
  1128. if(card.saving)
  1129. {
  1130. // Saving a G-code file onto an SD-card is in progress.
  1131. // Saving starts with M28, saving until M29 is seen.
  1132. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1133. card.write_command(CMDBUFFER_CURRENT_STRING);
  1134. if(card.logging)
  1135. process_commands();
  1136. else
  1137. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1138. } else {
  1139. card.closefile();
  1140. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1141. }
  1142. } else {
  1143. process_commands();
  1144. }
  1145. #else
  1146. process_commands();
  1147. #endif //SDSUPPORT
  1148. if (! cmdbuffer_front_already_processed && buflen)
  1149. {
  1150. cli();
  1151. union {
  1152. struct {
  1153. char lo;
  1154. char hi;
  1155. } lohi;
  1156. uint16_t value;
  1157. } sdlen;
  1158. sdlen.value = 0;
  1159. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1160. sdlen.lohi.lo = cmdbuffer[bufindr + 1];
  1161. sdlen.lohi.hi = cmdbuffer[bufindr + 2];
  1162. }
  1163. cmdqueue_pop_front();
  1164. planner_add_sd_length(sdlen.value);
  1165. sei();
  1166. }
  1167. host_keepalive();
  1168. }
  1169. }
  1170. //check heater every n milliseconds
  1171. manage_heater();
  1172. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1173. checkHitEndstops();
  1174. lcd_update();
  1175. #ifdef PAT9125
  1176. fsensor_update();
  1177. #endif //PAT9125
  1178. #ifdef TMC2130
  1179. tmc2130_check_overtemp();
  1180. if (tmc2130_sg_crash)
  1181. {
  1182. tmc2130_sg_crash = false;
  1183. // crashdet_stop_and_save_print();
  1184. enquecommand_P((PSTR("CRASH_DETECTED")));
  1185. }
  1186. #endif //TMC2130
  1187. }
  1188. #define DEFINE_PGM_READ_ANY(type, reader) \
  1189. static inline type pgm_read_any(const type *p) \
  1190. { return pgm_read_##reader##_near(p); }
  1191. DEFINE_PGM_READ_ANY(float, float);
  1192. DEFINE_PGM_READ_ANY(signed char, byte);
  1193. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1194. static const PROGMEM type array##_P[3] = \
  1195. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1196. static inline type array(int axis) \
  1197. { return pgm_read_any(&array##_P[axis]); } \
  1198. type array##_ext(int axis) \
  1199. { return pgm_read_any(&array##_P[axis]); }
  1200. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1201. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1202. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1203. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1204. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1205. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1206. static void axis_is_at_home(int axis) {
  1207. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1208. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1209. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1210. }
  1211. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1212. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1213. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1214. saved_feedrate = feedrate;
  1215. saved_feedmultiply = feedmultiply;
  1216. feedmultiply = 100;
  1217. previous_millis_cmd = millis();
  1218. enable_endstops(enable_endstops_now);
  1219. }
  1220. static void clean_up_after_endstop_move() {
  1221. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1222. enable_endstops(false);
  1223. #endif
  1224. feedrate = saved_feedrate;
  1225. feedmultiply = saved_feedmultiply;
  1226. previous_millis_cmd = millis();
  1227. }
  1228. #ifdef ENABLE_AUTO_BED_LEVELING
  1229. #ifdef AUTO_BED_LEVELING_GRID
  1230. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1231. {
  1232. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1233. planeNormal.debug("planeNormal");
  1234. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1235. //bedLevel.debug("bedLevel");
  1236. //plan_bed_level_matrix.debug("bed level before");
  1237. //vector_3 uncorrected_position = plan_get_position_mm();
  1238. //uncorrected_position.debug("position before");
  1239. vector_3 corrected_position = plan_get_position();
  1240. // corrected_position.debug("position after");
  1241. current_position[X_AXIS] = corrected_position.x;
  1242. current_position[Y_AXIS] = corrected_position.y;
  1243. current_position[Z_AXIS] = corrected_position.z;
  1244. // put the bed at 0 so we don't go below it.
  1245. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1246. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1247. }
  1248. #else // not AUTO_BED_LEVELING_GRID
  1249. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1250. plan_bed_level_matrix.set_to_identity();
  1251. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1252. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1253. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1254. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1255. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1256. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1257. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1258. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1259. vector_3 corrected_position = plan_get_position();
  1260. current_position[X_AXIS] = corrected_position.x;
  1261. current_position[Y_AXIS] = corrected_position.y;
  1262. current_position[Z_AXIS] = corrected_position.z;
  1263. // put the bed at 0 so we don't go below it.
  1264. current_position[Z_AXIS] = zprobe_zoffset;
  1265. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1266. }
  1267. #endif // AUTO_BED_LEVELING_GRID
  1268. static void run_z_probe() {
  1269. plan_bed_level_matrix.set_to_identity();
  1270. feedrate = homing_feedrate[Z_AXIS];
  1271. // move down until you find the bed
  1272. float zPosition = -10;
  1273. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1274. st_synchronize();
  1275. // we have to let the planner know where we are right now as it is not where we said to go.
  1276. zPosition = st_get_position_mm(Z_AXIS);
  1277. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1278. // move up the retract distance
  1279. zPosition += home_retract_mm(Z_AXIS);
  1280. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1281. st_synchronize();
  1282. // move back down slowly to find bed
  1283. feedrate = homing_feedrate[Z_AXIS]/4;
  1284. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1285. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1286. st_synchronize();
  1287. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1288. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1289. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1290. }
  1291. static void do_blocking_move_to(float x, float y, float z) {
  1292. float oldFeedRate = feedrate;
  1293. feedrate = homing_feedrate[Z_AXIS];
  1294. current_position[Z_AXIS] = z;
  1295. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1296. st_synchronize();
  1297. feedrate = XY_TRAVEL_SPEED;
  1298. current_position[X_AXIS] = x;
  1299. current_position[Y_AXIS] = y;
  1300. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1301. st_synchronize();
  1302. feedrate = oldFeedRate;
  1303. }
  1304. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1305. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1306. }
  1307. /// Probe bed height at position (x,y), returns the measured z value
  1308. static float probe_pt(float x, float y, float z_before) {
  1309. // move to right place
  1310. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1311. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1312. run_z_probe();
  1313. float measured_z = current_position[Z_AXIS];
  1314. SERIAL_PROTOCOLRPGM(MSG_BED);
  1315. SERIAL_PROTOCOLPGM(" x: ");
  1316. SERIAL_PROTOCOL(x);
  1317. SERIAL_PROTOCOLPGM(" y: ");
  1318. SERIAL_PROTOCOL(y);
  1319. SERIAL_PROTOCOLPGM(" z: ");
  1320. SERIAL_PROTOCOL(measured_z);
  1321. SERIAL_PROTOCOLPGM("\n");
  1322. return measured_z;
  1323. }
  1324. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1325. #ifdef LIN_ADVANCE
  1326. /**
  1327. * M900: Set and/or Get advance K factor and WH/D ratio
  1328. *
  1329. * K<factor> Set advance K factor
  1330. * R<ratio> Set ratio directly (overrides WH/D)
  1331. * W<width> H<height> D<diam> Set ratio from WH/D
  1332. */
  1333. inline void gcode_M900() {
  1334. st_synchronize();
  1335. const float newK = code_seen('K') ? code_value_float() : -1;
  1336. if (newK >= 0) extruder_advance_k = newK;
  1337. float newR = code_seen('R') ? code_value_float() : -1;
  1338. if (newR < 0) {
  1339. const float newD = code_seen('D') ? code_value_float() : -1,
  1340. newW = code_seen('W') ? code_value_float() : -1,
  1341. newH = code_seen('H') ? code_value_float() : -1;
  1342. if (newD >= 0 && newW >= 0 && newH >= 0)
  1343. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1344. }
  1345. if (newR >= 0) advance_ed_ratio = newR;
  1346. SERIAL_ECHO_START;
  1347. SERIAL_ECHOPGM("Advance K=");
  1348. SERIAL_ECHOLN(extruder_advance_k);
  1349. SERIAL_ECHOPGM(" E/D=");
  1350. const float ratio = advance_ed_ratio;
  1351. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1352. }
  1353. #endif // LIN_ADVANCE
  1354. bool check_commands() {
  1355. bool end_command_found = false;
  1356. while (buflen)
  1357. {
  1358. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1359. if (!cmdbuffer_front_already_processed)
  1360. cmdqueue_pop_front();
  1361. cmdbuffer_front_already_processed = false;
  1362. }
  1363. return end_command_found;
  1364. }
  1365. #ifdef TMC2130
  1366. bool calibrate_z_auto()
  1367. {
  1368. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1369. lcd_implementation_clear();
  1370. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1371. bool endstops_enabled = enable_endstops(true);
  1372. int axis_up_dir = -home_dir(Z_AXIS);
  1373. tmc2130_home_enter(Z_AXIS_MASK);
  1374. current_position[Z_AXIS] = 0;
  1375. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1376. set_destination_to_current();
  1377. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1378. feedrate = homing_feedrate[Z_AXIS];
  1379. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1380. st_synchronize();
  1381. // current_position[axis] = 0;
  1382. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1383. tmc2130_home_exit();
  1384. enable_endstops(false);
  1385. current_position[Z_AXIS] = 0;
  1386. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1387. set_destination_to_current();
  1388. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1389. feedrate = homing_feedrate[Z_AXIS] / 2;
  1390. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1391. st_synchronize();
  1392. enable_endstops(endstops_enabled);
  1393. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1394. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1395. return true;
  1396. }
  1397. #endif //TMC2130
  1398. void homeaxis(int axis)
  1399. {
  1400. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1401. #define HOMEAXIS_DO(LETTER) \
  1402. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1403. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1404. {
  1405. int axis_home_dir = home_dir(axis);
  1406. feedrate = homing_feedrate[axis];
  1407. #ifdef TMC2130
  1408. tmc2130_home_enter(X_AXIS_MASK << axis);
  1409. #endif
  1410. // Move right a bit, so that the print head does not touch the left end position,
  1411. // and the following left movement has a chance to achieve the required velocity
  1412. // for the stall guard to work.
  1413. current_position[axis] = 0;
  1414. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1415. // destination[axis] = 11.f;
  1416. destination[axis] = 3.f;
  1417. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1418. st_synchronize();
  1419. // Move left away from the possible collision with the collision detection disabled.
  1420. endstops_hit_on_purpose();
  1421. enable_endstops(false);
  1422. current_position[axis] = 0;
  1423. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1424. destination[axis] = - 1.;
  1425. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1426. st_synchronize();
  1427. // Now continue to move up to the left end stop with the collision detection enabled.
  1428. enable_endstops(true);
  1429. destination[axis] = - 1.1 * max_length(axis);
  1430. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1431. st_synchronize();
  1432. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1433. endstops_hit_on_purpose();
  1434. enable_endstops(false);
  1435. current_position[axis] = 0;
  1436. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1437. destination[axis] = 10.f;
  1438. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1439. st_synchronize();
  1440. endstops_hit_on_purpose();
  1441. // Now move left up to the collision, this time with a repeatable velocity.
  1442. enable_endstops(true);
  1443. destination[axis] = - 15.f;
  1444. feedrate = homing_feedrate[axis]/2;
  1445. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1446. st_synchronize();
  1447. axis_is_at_home(axis);
  1448. axis_known_position[axis] = true;
  1449. #ifdef TMC2130
  1450. tmc2130_home_exit();
  1451. #endif
  1452. // Move the X carriage away from the collision.
  1453. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1454. endstops_hit_on_purpose();
  1455. enable_endstops(false);
  1456. {
  1457. // Two full periods (4 full steps).
  1458. float gap = 0.32f * 2.f;
  1459. current_position[axis] -= gap;
  1460. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1461. current_position[axis] += gap;
  1462. }
  1463. destination[axis] = current_position[axis];
  1464. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1465. st_synchronize();
  1466. feedrate = 0.0;
  1467. }
  1468. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1469. {
  1470. int axis_home_dir = home_dir(axis);
  1471. current_position[axis] = 0;
  1472. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1473. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1474. feedrate = homing_feedrate[axis];
  1475. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1476. st_synchronize();
  1477. current_position[axis] = 0;
  1478. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1479. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1480. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1481. st_synchronize();
  1482. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1483. feedrate = homing_feedrate[axis]/2 ;
  1484. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1485. st_synchronize();
  1486. axis_is_at_home(axis);
  1487. destination[axis] = current_position[axis];
  1488. feedrate = 0.0;
  1489. endstops_hit_on_purpose();
  1490. axis_known_position[axis] = true;
  1491. }
  1492. enable_endstops(endstops_enabled);
  1493. }
  1494. /**/
  1495. void home_xy()
  1496. {
  1497. set_destination_to_current();
  1498. homeaxis(X_AXIS);
  1499. homeaxis(Y_AXIS);
  1500. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1501. endstops_hit_on_purpose();
  1502. }
  1503. void refresh_cmd_timeout(void)
  1504. {
  1505. previous_millis_cmd = millis();
  1506. }
  1507. #ifdef FWRETRACT
  1508. void retract(bool retracting, bool swapretract = false) {
  1509. if(retracting && !retracted[active_extruder]) {
  1510. destination[X_AXIS]=current_position[X_AXIS];
  1511. destination[Y_AXIS]=current_position[Y_AXIS];
  1512. destination[Z_AXIS]=current_position[Z_AXIS];
  1513. destination[E_AXIS]=current_position[E_AXIS];
  1514. if (swapretract) {
  1515. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1516. } else {
  1517. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1518. }
  1519. plan_set_e_position(current_position[E_AXIS]);
  1520. float oldFeedrate = feedrate;
  1521. feedrate=retract_feedrate*60;
  1522. retracted[active_extruder]=true;
  1523. prepare_move();
  1524. current_position[Z_AXIS]-=retract_zlift;
  1525. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1526. prepare_move();
  1527. feedrate = oldFeedrate;
  1528. } else if(!retracting && retracted[active_extruder]) {
  1529. destination[X_AXIS]=current_position[X_AXIS];
  1530. destination[Y_AXIS]=current_position[Y_AXIS];
  1531. destination[Z_AXIS]=current_position[Z_AXIS];
  1532. destination[E_AXIS]=current_position[E_AXIS];
  1533. current_position[Z_AXIS]+=retract_zlift;
  1534. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1535. //prepare_move();
  1536. if (swapretract) {
  1537. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1538. } else {
  1539. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1540. }
  1541. plan_set_e_position(current_position[E_AXIS]);
  1542. float oldFeedrate = feedrate;
  1543. feedrate=retract_recover_feedrate*60;
  1544. retracted[active_extruder]=false;
  1545. prepare_move();
  1546. feedrate = oldFeedrate;
  1547. }
  1548. } //retract
  1549. #endif //FWRETRACT
  1550. void trace() {
  1551. tone(BEEPER, 440);
  1552. delay(25);
  1553. noTone(BEEPER);
  1554. delay(20);
  1555. }
  1556. /*
  1557. void ramming() {
  1558. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1559. if (current_temperature[0] < 230) {
  1560. //PLA
  1561. max_feedrate[E_AXIS] = 50;
  1562. //current_position[E_AXIS] -= 8;
  1563. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1564. //current_position[E_AXIS] += 8;
  1565. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1566. current_position[E_AXIS] += 5.4;
  1567. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1568. current_position[E_AXIS] += 3.2;
  1569. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1570. current_position[E_AXIS] += 3;
  1571. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1572. st_synchronize();
  1573. max_feedrate[E_AXIS] = 80;
  1574. current_position[E_AXIS] -= 82;
  1575. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1576. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1577. current_position[E_AXIS] -= 20;
  1578. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1579. current_position[E_AXIS] += 5;
  1580. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1581. current_position[E_AXIS] += 5;
  1582. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1583. current_position[E_AXIS] -= 10;
  1584. st_synchronize();
  1585. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1586. current_position[E_AXIS] += 10;
  1587. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1588. current_position[E_AXIS] -= 10;
  1589. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1590. current_position[E_AXIS] += 10;
  1591. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1592. current_position[E_AXIS] -= 10;
  1593. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1594. st_synchronize();
  1595. }
  1596. else {
  1597. //ABS
  1598. max_feedrate[E_AXIS] = 50;
  1599. //current_position[E_AXIS] -= 8;
  1600. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1601. //current_position[E_AXIS] += 8;
  1602. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1603. current_position[E_AXIS] += 3.1;
  1604. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1605. current_position[E_AXIS] += 3.1;
  1606. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1607. current_position[E_AXIS] += 4;
  1608. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1609. st_synchronize();
  1610. //current_position[X_AXIS] += 23; //delay
  1611. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1612. //current_position[X_AXIS] -= 23; //delay
  1613. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1614. delay(4700);
  1615. max_feedrate[E_AXIS] = 80;
  1616. current_position[E_AXIS] -= 92;
  1617. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1618. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1619. current_position[E_AXIS] -= 5;
  1620. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1621. current_position[E_AXIS] += 5;
  1622. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1623. current_position[E_AXIS] -= 5;
  1624. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1625. st_synchronize();
  1626. current_position[E_AXIS] += 5;
  1627. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1628. current_position[E_AXIS] -= 5;
  1629. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1630. current_position[E_AXIS] += 5;
  1631. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1632. current_position[E_AXIS] -= 5;
  1633. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1634. st_synchronize();
  1635. }
  1636. }
  1637. */
  1638. #ifdef TMC2130
  1639. void force_high_power_mode(bool start_high_power_section) {
  1640. uint8_t silent;
  1641. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1642. if (silent == 1) {
  1643. //we are in silent mode, set to normal mode to enable crash detection
  1644. st_synchronize();
  1645. cli();
  1646. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1647. tmc2130_init();
  1648. sei();
  1649. digipot_init();
  1650. }
  1651. }
  1652. #endif //TMC2130
  1653. bool gcode_M45(bool onlyZ)
  1654. {
  1655. bool final_result = false;
  1656. #ifdef TMC2130
  1657. FORCE_HIGH_POWER_START;
  1658. #endif // TMC2130
  1659. // Only Z calibration?
  1660. if (!onlyZ)
  1661. {
  1662. setTargetBed(0);
  1663. setTargetHotend(0, 0);
  1664. setTargetHotend(0, 1);
  1665. setTargetHotend(0, 2);
  1666. adjust_bed_reset(); //reset bed level correction
  1667. }
  1668. // Disable the default update procedure of the display. We will do a modal dialog.
  1669. lcd_update_enable(false);
  1670. // Let the planner use the uncorrected coordinates.
  1671. mbl.reset();
  1672. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1673. // the planner will not perform any adjustments in the XY plane.
  1674. // Wait for the motors to stop and update the current position with the absolute values.
  1675. world2machine_revert_to_uncorrected();
  1676. // Reset the baby step value applied without moving the axes.
  1677. babystep_reset();
  1678. // Mark all axes as in a need for homing.
  1679. memset(axis_known_position, 0, sizeof(axis_known_position));
  1680. // Home in the XY plane.
  1681. //set_destination_to_current();
  1682. setup_for_endstop_move();
  1683. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1684. home_xy();
  1685. // Let the user move the Z axes up to the end stoppers.
  1686. #ifdef TMC2130
  1687. if (calibrate_z_auto())
  1688. {
  1689. #else //TMC2130
  1690. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1691. {
  1692. #endif //TMC2130
  1693. refresh_cmd_timeout();
  1694. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1695. //{
  1696. // lcd_wait_for_cool_down();
  1697. //}
  1698. if(!onlyZ)
  1699. {
  1700. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1701. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1702. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1703. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1704. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1705. KEEPALIVE_STATE(IN_HANDLER);
  1706. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1707. lcd_implementation_print_at(0, 2, 1);
  1708. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1709. }
  1710. // Move the print head close to the bed.
  1711. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1712. bool endstops_enabled = enable_endstops(true);
  1713. tmc2130_home_enter(Z_AXIS_MASK);
  1714. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1715. st_synchronize();
  1716. tmc2130_home_exit();
  1717. enable_endstops(endstops_enabled);
  1718. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1719. {
  1720. //#ifdef TMC2130
  1721. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  1722. //#endif
  1723. int8_t verbosity_level = 0;
  1724. if (code_seen('V'))
  1725. {
  1726. // Just 'V' without a number counts as V1.
  1727. char c = strchr_pointer[1];
  1728. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1729. }
  1730. if (onlyZ)
  1731. {
  1732. clean_up_after_endstop_move();
  1733. // Z only calibration.
  1734. // Load the machine correction matrix
  1735. world2machine_initialize();
  1736. // and correct the current_position to match the transformed coordinate system.
  1737. world2machine_update_current();
  1738. //FIXME
  1739. bool result = sample_mesh_and_store_reference();
  1740. if (result)
  1741. {
  1742. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1743. // Shipped, the nozzle height has been set already. The user can start printing now.
  1744. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1745. final_result = true;
  1746. // babystep_apply();
  1747. }
  1748. }
  1749. else
  1750. {
  1751. // Reset the baby step value and the baby step applied flag.
  1752. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  1753. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1754. // Complete XYZ calibration.
  1755. uint8_t point_too_far_mask = 0;
  1756. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1757. clean_up_after_endstop_move();
  1758. // Print head up.
  1759. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1760. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1761. st_synchronize();
  1762. if (result >= 0)
  1763. {
  1764. point_too_far_mask = 0;
  1765. // Second half: The fine adjustment.
  1766. // Let the planner use the uncorrected coordinates.
  1767. mbl.reset();
  1768. world2machine_reset();
  1769. // Home in the XY plane.
  1770. setup_for_endstop_move();
  1771. home_xy();
  1772. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1773. clean_up_after_endstop_move();
  1774. // Print head up.
  1775. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1776. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1777. st_synchronize();
  1778. // if (result >= 0) babystep_apply();
  1779. }
  1780. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1781. if (result >= 0)
  1782. {
  1783. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1784. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1785. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1786. final_result = true;
  1787. }
  1788. }
  1789. #ifdef TMC2130
  1790. tmc2130_home_exit();
  1791. #endif
  1792. }
  1793. else
  1794. {
  1795. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  1796. final_result = false;
  1797. }
  1798. }
  1799. else
  1800. {
  1801. // Timeouted.
  1802. }
  1803. lcd_update_enable(true);
  1804. #ifdef TMC2130
  1805. FORCE_HIGH_POWER_END;
  1806. #endif // TMC2130
  1807. return final_result;
  1808. }
  1809. void gcode_M701()
  1810. {
  1811. #ifdef SNMM
  1812. extr_adj(snmm_extruder);//loads current extruder
  1813. #else
  1814. enable_z();
  1815. custom_message = true;
  1816. custom_message_type = 2;
  1817. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1818. current_position[E_AXIS] += 70;
  1819. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1820. current_position[E_AXIS] += 25;
  1821. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1822. st_synchronize();
  1823. if (!farm_mode && loading_flag) {
  1824. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1825. while (!clean) {
  1826. lcd_update_enable(true);
  1827. lcd_update(2);
  1828. current_position[E_AXIS] += 25;
  1829. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1830. st_synchronize();
  1831. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1832. }
  1833. }
  1834. lcd_update_enable(true);
  1835. lcd_update(2);
  1836. lcd_setstatuspgm(WELCOME_MSG);
  1837. disable_z();
  1838. loading_flag = false;
  1839. custom_message = false;
  1840. custom_message_type = 0;
  1841. #endif
  1842. }
  1843. void process_commands()
  1844. {
  1845. #ifdef FILAMENT_RUNOUT_SUPPORT
  1846. SET_INPUT(FR_SENS);
  1847. #endif
  1848. #ifdef CMDBUFFER_DEBUG
  1849. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1850. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1851. SERIAL_ECHOLNPGM("");
  1852. SERIAL_ECHOPGM("In cmdqueue: ");
  1853. SERIAL_ECHO(buflen);
  1854. SERIAL_ECHOLNPGM("");
  1855. #endif /* CMDBUFFER_DEBUG */
  1856. unsigned long codenum; //throw away variable
  1857. char *starpos = NULL;
  1858. #ifdef ENABLE_AUTO_BED_LEVELING
  1859. float x_tmp, y_tmp, z_tmp, real_z;
  1860. #endif
  1861. // PRUSA GCODES
  1862. KEEPALIVE_STATE(IN_HANDLER);
  1863. #ifdef SNMM
  1864. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1865. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1866. int8_t SilentMode;
  1867. #endif
  1868. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1869. starpos = (strchr(strchr_pointer + 5, '*'));
  1870. if (starpos != NULL)
  1871. *(starpos) = '\0';
  1872. lcd_setstatus(strchr_pointer + 5);
  1873. }
  1874. else if(code_seen("CRASH_DETECTED"))
  1875. crashdet_detected();
  1876. else if(code_seen("CRASH_RECOVER"))
  1877. crashdet_recover();
  1878. else if(code_seen("CRASH_CANCEL"))
  1879. crashdet_cancel();
  1880. else if(code_seen("PRUSA")){
  1881. if (code_seen("Ping")) { //PRUSA Ping
  1882. if (farm_mode) {
  1883. PingTime = millis();
  1884. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1885. }
  1886. }
  1887. else if (code_seen("PRN")) {
  1888. MYSERIAL.println(status_number);
  1889. }else if (code_seen("FAN")) {
  1890. MYSERIAL.print("E0:");
  1891. MYSERIAL.print(60*fan_speed[0]);
  1892. MYSERIAL.println(" RPM");
  1893. MYSERIAL.print("PRN0:");
  1894. MYSERIAL.print(60*fan_speed[1]);
  1895. MYSERIAL.println(" RPM");
  1896. }else if (code_seen("fn")) {
  1897. if (farm_mode) {
  1898. MYSERIAL.println(farm_no);
  1899. }
  1900. else {
  1901. MYSERIAL.println("Not in farm mode.");
  1902. }
  1903. }else if (code_seen("fv")) {
  1904. // get file version
  1905. #ifdef SDSUPPORT
  1906. card.openFile(strchr_pointer + 3,true);
  1907. while (true) {
  1908. uint16_t readByte = card.get();
  1909. MYSERIAL.write(readByte);
  1910. if (readByte=='\n') {
  1911. break;
  1912. }
  1913. }
  1914. card.closefile();
  1915. #endif // SDSUPPORT
  1916. } else if (code_seen("M28")) {
  1917. trace();
  1918. prusa_sd_card_upload = true;
  1919. card.openFile(strchr_pointer+4,false);
  1920. } else if (code_seen("SN")) {
  1921. if (farm_mode) {
  1922. selectedSerialPort = 0;
  1923. MSerial.write(";S");
  1924. // S/N is:CZPX0917X003XC13518
  1925. int numbersRead = 0;
  1926. while (numbersRead < 19) {
  1927. while (MSerial.available() > 0) {
  1928. uint8_t serial_char = MSerial.read();
  1929. selectedSerialPort = 1;
  1930. MSerial.write(serial_char);
  1931. numbersRead++;
  1932. selectedSerialPort = 0;
  1933. }
  1934. }
  1935. selectedSerialPort = 1;
  1936. MSerial.write('\n');
  1937. /*for (int b = 0; b < 3; b++) {
  1938. tone(BEEPER, 110);
  1939. delay(50);
  1940. noTone(BEEPER);
  1941. delay(50);
  1942. }*/
  1943. } else {
  1944. MYSERIAL.println("Not in farm mode.");
  1945. }
  1946. } else if(code_seen("Fir")){
  1947. SERIAL_PROTOCOLLN(FW_version);
  1948. } else if(code_seen("Rev")){
  1949. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1950. } else if(code_seen("Lang")) {
  1951. lcd_force_language_selection();
  1952. } else if(code_seen("Lz")) {
  1953. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1954. } else if (code_seen("SERIAL LOW")) {
  1955. MYSERIAL.println("SERIAL LOW");
  1956. MYSERIAL.begin(BAUDRATE);
  1957. return;
  1958. } else if (code_seen("SERIAL HIGH")) {
  1959. MYSERIAL.println("SERIAL HIGH");
  1960. MYSERIAL.begin(1152000);
  1961. return;
  1962. } else if(code_seen("Beat")) {
  1963. // Kick farm link timer
  1964. kicktime = millis();
  1965. } else if(code_seen("FR")) {
  1966. // Factory full reset
  1967. factory_reset(0,true);
  1968. }
  1969. //else if (code_seen('Cal')) {
  1970. // lcd_calibration();
  1971. // }
  1972. }
  1973. else if (code_seen('^')) {
  1974. // nothing, this is a version line
  1975. } else if(code_seen('G'))
  1976. {
  1977. switch((int)code_value())
  1978. {
  1979. case 0: // G0 -> G1
  1980. case 1: // G1
  1981. if(Stopped == false) {
  1982. #ifdef FILAMENT_RUNOUT_SUPPORT
  1983. if(READ(FR_SENS)){
  1984. feedmultiplyBckp=feedmultiply;
  1985. float target[4];
  1986. float lastpos[4];
  1987. target[X_AXIS]=current_position[X_AXIS];
  1988. target[Y_AXIS]=current_position[Y_AXIS];
  1989. target[Z_AXIS]=current_position[Z_AXIS];
  1990. target[E_AXIS]=current_position[E_AXIS];
  1991. lastpos[X_AXIS]=current_position[X_AXIS];
  1992. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1993. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1994. lastpos[E_AXIS]=current_position[E_AXIS];
  1995. //retract by E
  1996. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1997. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1998. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1999. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2000. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2001. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2002. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2003. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2004. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2005. //finish moves
  2006. st_synchronize();
  2007. //disable extruder steppers so filament can be removed
  2008. disable_e0();
  2009. disable_e1();
  2010. disable_e2();
  2011. delay(100);
  2012. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2013. uint8_t cnt=0;
  2014. int counterBeep = 0;
  2015. lcd_wait_interact();
  2016. while(!lcd_clicked()){
  2017. cnt++;
  2018. manage_heater();
  2019. manage_inactivity(true);
  2020. //lcd_update();
  2021. if(cnt==0)
  2022. {
  2023. #if BEEPER > 0
  2024. if (counterBeep== 500){
  2025. counterBeep = 0;
  2026. }
  2027. SET_OUTPUT(BEEPER);
  2028. if (counterBeep== 0){
  2029. WRITE(BEEPER,HIGH);
  2030. }
  2031. if (counterBeep== 20){
  2032. WRITE(BEEPER,LOW);
  2033. }
  2034. counterBeep++;
  2035. #else
  2036. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2037. lcd_buzz(1000/6,100);
  2038. #else
  2039. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2040. #endif
  2041. #endif
  2042. }
  2043. }
  2044. WRITE(BEEPER,LOW);
  2045. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2046. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2047. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2048. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2049. lcd_change_fil_state = 0;
  2050. lcd_loading_filament();
  2051. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2052. lcd_change_fil_state = 0;
  2053. lcd_alright();
  2054. switch(lcd_change_fil_state){
  2055. case 2:
  2056. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2057. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2058. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2059. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2060. lcd_loading_filament();
  2061. break;
  2062. case 3:
  2063. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2064. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2065. lcd_loading_color();
  2066. break;
  2067. default:
  2068. lcd_change_success();
  2069. break;
  2070. }
  2071. }
  2072. target[E_AXIS]+= 5;
  2073. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2074. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2075. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2076. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2077. //plan_set_e_position(current_position[E_AXIS]);
  2078. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2079. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2080. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2081. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2082. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2083. plan_set_e_position(lastpos[E_AXIS]);
  2084. feedmultiply=feedmultiplyBckp;
  2085. char cmd[9];
  2086. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2087. enquecommand(cmd);
  2088. }
  2089. #endif
  2090. get_coordinates(); // For X Y Z E F
  2091. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2092. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2093. }
  2094. #ifdef FWRETRACT
  2095. if(autoretract_enabled)
  2096. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2097. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2098. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2099. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2100. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2101. retract(!retracted);
  2102. return;
  2103. }
  2104. }
  2105. #endif //FWRETRACT
  2106. prepare_move();
  2107. //ClearToSend();
  2108. }
  2109. break;
  2110. case 2: // G2 - CW ARC
  2111. if(Stopped == false) {
  2112. get_arc_coordinates();
  2113. prepare_arc_move(true);
  2114. }
  2115. break;
  2116. case 3: // G3 - CCW ARC
  2117. if(Stopped == false) {
  2118. get_arc_coordinates();
  2119. prepare_arc_move(false);
  2120. }
  2121. break;
  2122. case 4: // G4 dwell
  2123. codenum = 0;
  2124. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2125. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2126. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2127. st_synchronize();
  2128. codenum += millis(); // keep track of when we started waiting
  2129. previous_millis_cmd = millis();
  2130. while(millis() < codenum) {
  2131. manage_heater();
  2132. manage_inactivity();
  2133. lcd_update();
  2134. }
  2135. break;
  2136. #ifdef FWRETRACT
  2137. case 10: // G10 retract
  2138. #if EXTRUDERS > 1
  2139. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2140. retract(true,retracted_swap[active_extruder]);
  2141. #else
  2142. retract(true);
  2143. #endif
  2144. break;
  2145. case 11: // G11 retract_recover
  2146. #if EXTRUDERS > 1
  2147. retract(false,retracted_swap[active_extruder]);
  2148. #else
  2149. retract(false);
  2150. #endif
  2151. break;
  2152. #endif //FWRETRACT
  2153. case 28: //G28 Home all Axis one at a time
  2154. {
  2155. st_synchronize();
  2156. #if 1
  2157. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2158. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2159. #endif
  2160. // Flag for the display update routine and to disable the print cancelation during homing.
  2161. homing_flag = true;
  2162. // Which axes should be homed?
  2163. bool home_x = code_seen(axis_codes[X_AXIS]);
  2164. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2165. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2166. // Either all X,Y,Z codes are present, or none of them.
  2167. bool home_all_axes = home_x == home_y && home_x == home_z;
  2168. if (home_all_axes)
  2169. // No X/Y/Z code provided means to home all axes.
  2170. home_x = home_y = home_z = true;
  2171. #ifdef ENABLE_AUTO_BED_LEVELING
  2172. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2173. #endif //ENABLE_AUTO_BED_LEVELING
  2174. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2175. // the planner will not perform any adjustments in the XY plane.
  2176. // Wait for the motors to stop and update the current position with the absolute values.
  2177. world2machine_revert_to_uncorrected();
  2178. // For mesh bed leveling deactivate the matrix temporarily.
  2179. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2180. // in a single axis only.
  2181. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2182. #ifdef MESH_BED_LEVELING
  2183. uint8_t mbl_was_active = mbl.active;
  2184. mbl.active = 0;
  2185. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2186. #endif
  2187. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2188. // consumed during the first movements following this statement.
  2189. if (home_z)
  2190. babystep_undo();
  2191. saved_feedrate = feedrate;
  2192. saved_feedmultiply = feedmultiply;
  2193. feedmultiply = 100;
  2194. previous_millis_cmd = millis();
  2195. enable_endstops(true);
  2196. memcpy(destination, current_position, sizeof(destination));
  2197. feedrate = 0.0;
  2198. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2199. if(home_z)
  2200. homeaxis(Z_AXIS);
  2201. #endif
  2202. #ifdef QUICK_HOME
  2203. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2204. if(home_x && home_y) //first diagonal move
  2205. {
  2206. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2207. int x_axis_home_dir = home_dir(X_AXIS);
  2208. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2209. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2210. feedrate = homing_feedrate[X_AXIS];
  2211. if(homing_feedrate[Y_AXIS]<feedrate)
  2212. feedrate = homing_feedrate[Y_AXIS];
  2213. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2214. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2215. } else {
  2216. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2217. }
  2218. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2219. st_synchronize();
  2220. axis_is_at_home(X_AXIS);
  2221. axis_is_at_home(Y_AXIS);
  2222. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2223. destination[X_AXIS] = current_position[X_AXIS];
  2224. destination[Y_AXIS] = current_position[Y_AXIS];
  2225. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2226. feedrate = 0.0;
  2227. st_synchronize();
  2228. endstops_hit_on_purpose();
  2229. current_position[X_AXIS] = destination[X_AXIS];
  2230. current_position[Y_AXIS] = destination[Y_AXIS];
  2231. current_position[Z_AXIS] = destination[Z_AXIS];
  2232. }
  2233. #endif /* QUICK_HOME */
  2234. if(home_x)
  2235. homeaxis(X_AXIS);
  2236. if(home_y)
  2237. homeaxis(Y_AXIS);
  2238. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2239. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2240. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2241. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2242. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2243. #ifndef Z_SAFE_HOMING
  2244. if(home_z) {
  2245. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2246. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2247. feedrate = max_feedrate[Z_AXIS];
  2248. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2249. st_synchronize();
  2250. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2251. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2252. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2253. {
  2254. homeaxis(X_AXIS);
  2255. homeaxis(Y_AXIS);
  2256. }
  2257. // 1st mesh bed leveling measurement point, corrected.
  2258. world2machine_initialize();
  2259. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2260. world2machine_reset();
  2261. if (destination[Y_AXIS] < Y_MIN_POS)
  2262. destination[Y_AXIS] = Y_MIN_POS;
  2263. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2264. feedrate = homing_feedrate[Z_AXIS]/10;
  2265. current_position[Z_AXIS] = 0;
  2266. enable_endstops(false);
  2267. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2268. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2269. st_synchronize();
  2270. current_position[X_AXIS] = destination[X_AXIS];
  2271. current_position[Y_AXIS] = destination[Y_AXIS];
  2272. enable_endstops(true);
  2273. endstops_hit_on_purpose();
  2274. homeaxis(Z_AXIS);
  2275. #else // MESH_BED_LEVELING
  2276. homeaxis(Z_AXIS);
  2277. #endif // MESH_BED_LEVELING
  2278. }
  2279. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2280. if(home_all_axes) {
  2281. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2282. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2283. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2284. feedrate = XY_TRAVEL_SPEED/60;
  2285. current_position[Z_AXIS] = 0;
  2286. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2287. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2288. st_synchronize();
  2289. current_position[X_AXIS] = destination[X_AXIS];
  2290. current_position[Y_AXIS] = destination[Y_AXIS];
  2291. homeaxis(Z_AXIS);
  2292. }
  2293. // Let's see if X and Y are homed and probe is inside bed area.
  2294. if(home_z) {
  2295. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2296. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2297. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2298. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2299. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2300. current_position[Z_AXIS] = 0;
  2301. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2302. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2303. feedrate = max_feedrate[Z_AXIS];
  2304. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2305. st_synchronize();
  2306. homeaxis(Z_AXIS);
  2307. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2308. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2309. SERIAL_ECHO_START;
  2310. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2311. } else {
  2312. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2313. SERIAL_ECHO_START;
  2314. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2315. }
  2316. }
  2317. #endif // Z_SAFE_HOMING
  2318. #endif // Z_HOME_DIR < 0
  2319. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2320. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2321. #ifdef ENABLE_AUTO_BED_LEVELING
  2322. if(home_z)
  2323. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2324. #endif
  2325. // Set the planner and stepper routine positions.
  2326. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2327. // contains the machine coordinates.
  2328. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2329. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2330. enable_endstops(false);
  2331. #endif
  2332. feedrate = saved_feedrate;
  2333. feedmultiply = saved_feedmultiply;
  2334. previous_millis_cmd = millis();
  2335. endstops_hit_on_purpose();
  2336. #ifndef MESH_BED_LEVELING
  2337. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2338. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2339. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2340. lcd_adjust_z();
  2341. #endif
  2342. // Load the machine correction matrix
  2343. world2machine_initialize();
  2344. // and correct the current_position XY axes to match the transformed coordinate system.
  2345. world2machine_update_current();
  2346. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2347. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2348. {
  2349. if (! home_z && mbl_was_active) {
  2350. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2351. mbl.active = true;
  2352. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2353. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2354. }
  2355. }
  2356. else
  2357. {
  2358. st_synchronize();
  2359. homing_flag = false;
  2360. // Push the commands to the front of the message queue in the reverse order!
  2361. // There shall be always enough space reserved for these commands.
  2362. // enquecommand_front_P((PSTR("G80")));
  2363. goto case_G80;
  2364. }
  2365. #endif
  2366. if (farm_mode) { prusa_statistics(20); };
  2367. homing_flag = false;
  2368. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2369. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2370. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2371. break;
  2372. }
  2373. #ifdef ENABLE_AUTO_BED_LEVELING
  2374. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2375. {
  2376. #if Z_MIN_PIN == -1
  2377. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2378. #endif
  2379. // Prevent user from running a G29 without first homing in X and Y
  2380. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2381. {
  2382. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2383. SERIAL_ECHO_START;
  2384. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2385. break; // abort G29, since we don't know where we are
  2386. }
  2387. st_synchronize();
  2388. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2389. //vector_3 corrected_position = plan_get_position_mm();
  2390. //corrected_position.debug("position before G29");
  2391. plan_bed_level_matrix.set_to_identity();
  2392. vector_3 uncorrected_position = plan_get_position();
  2393. //uncorrected_position.debug("position durring G29");
  2394. current_position[X_AXIS] = uncorrected_position.x;
  2395. current_position[Y_AXIS] = uncorrected_position.y;
  2396. current_position[Z_AXIS] = uncorrected_position.z;
  2397. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2398. setup_for_endstop_move();
  2399. feedrate = homing_feedrate[Z_AXIS];
  2400. #ifdef AUTO_BED_LEVELING_GRID
  2401. // probe at the points of a lattice grid
  2402. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2403. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2404. // solve the plane equation ax + by + d = z
  2405. // A is the matrix with rows [x y 1] for all the probed points
  2406. // B is the vector of the Z positions
  2407. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2408. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2409. // "A" matrix of the linear system of equations
  2410. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2411. // "B" vector of Z points
  2412. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2413. int probePointCounter = 0;
  2414. bool zig = true;
  2415. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2416. {
  2417. int xProbe, xInc;
  2418. if (zig)
  2419. {
  2420. xProbe = LEFT_PROBE_BED_POSITION;
  2421. //xEnd = RIGHT_PROBE_BED_POSITION;
  2422. xInc = xGridSpacing;
  2423. zig = false;
  2424. } else // zag
  2425. {
  2426. xProbe = RIGHT_PROBE_BED_POSITION;
  2427. //xEnd = LEFT_PROBE_BED_POSITION;
  2428. xInc = -xGridSpacing;
  2429. zig = true;
  2430. }
  2431. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2432. {
  2433. float z_before;
  2434. if (probePointCounter == 0)
  2435. {
  2436. // raise before probing
  2437. z_before = Z_RAISE_BEFORE_PROBING;
  2438. } else
  2439. {
  2440. // raise extruder
  2441. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2442. }
  2443. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2444. eqnBVector[probePointCounter] = measured_z;
  2445. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2446. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2447. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2448. probePointCounter++;
  2449. xProbe += xInc;
  2450. }
  2451. }
  2452. clean_up_after_endstop_move();
  2453. // solve lsq problem
  2454. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2455. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2456. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2457. SERIAL_PROTOCOLPGM(" b: ");
  2458. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2459. SERIAL_PROTOCOLPGM(" d: ");
  2460. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2461. set_bed_level_equation_lsq(plane_equation_coefficients);
  2462. free(plane_equation_coefficients);
  2463. #else // AUTO_BED_LEVELING_GRID not defined
  2464. // Probe at 3 arbitrary points
  2465. // probe 1
  2466. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2467. // probe 2
  2468. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2469. // probe 3
  2470. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2471. clean_up_after_endstop_move();
  2472. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2473. #endif // AUTO_BED_LEVELING_GRID
  2474. st_synchronize();
  2475. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2476. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2477. // When the bed is uneven, this height must be corrected.
  2478. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2479. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2480. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2481. z_tmp = current_position[Z_AXIS];
  2482. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2483. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2484. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2485. }
  2486. break;
  2487. #ifndef Z_PROBE_SLED
  2488. case 30: // G30 Single Z Probe
  2489. {
  2490. st_synchronize();
  2491. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2492. setup_for_endstop_move();
  2493. feedrate = homing_feedrate[Z_AXIS];
  2494. run_z_probe();
  2495. SERIAL_PROTOCOLPGM(MSG_BED);
  2496. SERIAL_PROTOCOLPGM(" X: ");
  2497. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2498. SERIAL_PROTOCOLPGM(" Y: ");
  2499. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2500. SERIAL_PROTOCOLPGM(" Z: ");
  2501. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2502. SERIAL_PROTOCOLPGM("\n");
  2503. clean_up_after_endstop_move();
  2504. }
  2505. break;
  2506. #else
  2507. case 31: // dock the sled
  2508. dock_sled(true);
  2509. break;
  2510. case 32: // undock the sled
  2511. dock_sled(false);
  2512. break;
  2513. #endif // Z_PROBE_SLED
  2514. #endif // ENABLE_AUTO_BED_LEVELING
  2515. #ifdef MESH_BED_LEVELING
  2516. case 30: // G30 Single Z Probe
  2517. {
  2518. st_synchronize();
  2519. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2520. setup_for_endstop_move();
  2521. feedrate = homing_feedrate[Z_AXIS];
  2522. find_bed_induction_sensor_point_z(-10.f, 3);
  2523. SERIAL_PROTOCOLRPGM(MSG_BED);
  2524. SERIAL_PROTOCOLPGM(" X: ");
  2525. MYSERIAL.print(current_position[X_AXIS], 5);
  2526. SERIAL_PROTOCOLPGM(" Y: ");
  2527. MYSERIAL.print(current_position[Y_AXIS], 5);
  2528. SERIAL_PROTOCOLPGM(" Z: ");
  2529. MYSERIAL.print(current_position[Z_AXIS], 5);
  2530. SERIAL_PROTOCOLPGM("\n");
  2531. clean_up_after_endstop_move();
  2532. }
  2533. break;
  2534. case 75:
  2535. {
  2536. for (int i = 40; i <= 110; i++) {
  2537. MYSERIAL.print(i);
  2538. MYSERIAL.print(" ");
  2539. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2540. }
  2541. }
  2542. break;
  2543. case 76: //PINDA probe temperature calibration
  2544. {
  2545. #ifdef PINDA_THERMISTOR
  2546. if (true)
  2547. {
  2548. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2549. // We don't know where we are! HOME!
  2550. // Push the commands to the front of the message queue in the reverse order!
  2551. // There shall be always enough space reserved for these commands.
  2552. repeatcommand_front(); // repeat G76 with all its parameters
  2553. enquecommand_front_P((PSTR("G28 W0")));
  2554. break;
  2555. }
  2556. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2557. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2558. float zero_z;
  2559. int z_shift = 0; //unit: steps
  2560. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2561. if (start_temp < 35) start_temp = 35;
  2562. if (start_temp < current_temperature_pinda) start_temp += 5;
  2563. SERIAL_ECHOPGM("start temperature: ");
  2564. MYSERIAL.println(start_temp);
  2565. // setTargetHotend(200, 0);
  2566. setTargetBed(70 + (start_temp - 30));
  2567. custom_message = true;
  2568. custom_message_type = 4;
  2569. custom_message_state = 1;
  2570. custom_message = MSG_TEMP_CALIBRATION;
  2571. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2572. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2573. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2574. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2575. st_synchronize();
  2576. while (current_temperature_pinda < start_temp)
  2577. {
  2578. delay_keep_alive(1000);
  2579. serialecho_temperatures();
  2580. }
  2581. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2582. current_position[Z_AXIS] = 5;
  2583. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2584. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2585. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2586. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2587. st_synchronize();
  2588. find_bed_induction_sensor_point_z(-1.f);
  2589. zero_z = current_position[Z_AXIS];
  2590. //current_position[Z_AXIS]
  2591. SERIAL_ECHOLNPGM("");
  2592. SERIAL_ECHOPGM("ZERO: ");
  2593. MYSERIAL.print(current_position[Z_AXIS]);
  2594. SERIAL_ECHOLNPGM("");
  2595. int i = -1; for (; i < 5; i++)
  2596. {
  2597. float temp = (40 + i * 5);
  2598. SERIAL_ECHOPGM("Step: ");
  2599. MYSERIAL.print(i + 2);
  2600. SERIAL_ECHOLNPGM("/6 (skipped)");
  2601. SERIAL_ECHOPGM("PINDA temperature: ");
  2602. MYSERIAL.print((40 + i*5));
  2603. SERIAL_ECHOPGM(" Z shift (mm):");
  2604. MYSERIAL.print(0);
  2605. SERIAL_ECHOLNPGM("");
  2606. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2607. if (start_temp <= temp) break;
  2608. }
  2609. for (i++; i < 5; i++)
  2610. {
  2611. float temp = (40 + i * 5);
  2612. SERIAL_ECHOPGM("Step: ");
  2613. MYSERIAL.print(i + 2);
  2614. SERIAL_ECHOLNPGM("/6");
  2615. custom_message_state = i + 2;
  2616. setTargetBed(50 + 10 * (temp - 30) / 5);
  2617. // setTargetHotend(255, 0);
  2618. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2619. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2620. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2621. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2622. st_synchronize();
  2623. while (current_temperature_pinda < temp)
  2624. {
  2625. delay_keep_alive(1000);
  2626. serialecho_temperatures();
  2627. }
  2628. current_position[Z_AXIS] = 5;
  2629. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2630. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2631. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2632. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2633. st_synchronize();
  2634. find_bed_induction_sensor_point_z(-1.f);
  2635. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2636. SERIAL_ECHOLNPGM("");
  2637. SERIAL_ECHOPGM("PINDA temperature: ");
  2638. MYSERIAL.print(current_temperature_pinda);
  2639. SERIAL_ECHOPGM(" Z shift (mm):");
  2640. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2641. SERIAL_ECHOLNPGM("");
  2642. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2643. }
  2644. custom_message_type = 0;
  2645. custom_message = false;
  2646. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2647. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2648. disable_x();
  2649. disable_y();
  2650. disable_z();
  2651. disable_e0();
  2652. disable_e1();
  2653. disable_e2();
  2654. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2655. lcd_update_enable(true);
  2656. lcd_update(2);
  2657. setTargetBed(0); //set bed target temperature back to 0
  2658. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2659. break;
  2660. }
  2661. #endif //PINDA_THERMISTOR
  2662. setTargetBed(PINDA_MIN_T);
  2663. float zero_z;
  2664. int z_shift = 0; //unit: steps
  2665. int t_c; // temperature
  2666. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2667. // We don't know where we are! HOME!
  2668. // Push the commands to the front of the message queue in the reverse order!
  2669. // There shall be always enough space reserved for these commands.
  2670. repeatcommand_front(); // repeat G76 with all its parameters
  2671. enquecommand_front_P((PSTR("G28 W0")));
  2672. break;
  2673. }
  2674. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2675. custom_message = true;
  2676. custom_message_type = 4;
  2677. custom_message_state = 1;
  2678. custom_message = MSG_TEMP_CALIBRATION;
  2679. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2680. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2681. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2682. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2683. st_synchronize();
  2684. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2685. delay_keep_alive(1000);
  2686. serialecho_temperatures();
  2687. }
  2688. //enquecommand_P(PSTR("M190 S50"));
  2689. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2690. delay_keep_alive(1000);
  2691. serialecho_temperatures();
  2692. }
  2693. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2694. current_position[Z_AXIS] = 5;
  2695. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2696. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2697. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2698. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2699. st_synchronize();
  2700. find_bed_induction_sensor_point_z(-1.f);
  2701. zero_z = current_position[Z_AXIS];
  2702. //current_position[Z_AXIS]
  2703. SERIAL_ECHOLNPGM("");
  2704. SERIAL_ECHOPGM("ZERO: ");
  2705. MYSERIAL.print(current_position[Z_AXIS]);
  2706. SERIAL_ECHOLNPGM("");
  2707. for (int i = 0; i<5; i++) {
  2708. SERIAL_ECHOPGM("Step: ");
  2709. MYSERIAL.print(i+2);
  2710. SERIAL_ECHOLNPGM("/6");
  2711. custom_message_state = i + 2;
  2712. t_c = 60 + i * 10;
  2713. setTargetBed(t_c);
  2714. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2715. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2716. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2717. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2718. st_synchronize();
  2719. while (degBed() < t_c) {
  2720. delay_keep_alive(1000);
  2721. serialecho_temperatures();
  2722. }
  2723. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2724. delay_keep_alive(1000);
  2725. serialecho_temperatures();
  2726. }
  2727. current_position[Z_AXIS] = 5;
  2728. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2729. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2730. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2731. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2732. st_synchronize();
  2733. find_bed_induction_sensor_point_z(-1.f);
  2734. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2735. SERIAL_ECHOLNPGM("");
  2736. SERIAL_ECHOPGM("Temperature: ");
  2737. MYSERIAL.print(t_c);
  2738. SERIAL_ECHOPGM(" Z shift (mm):");
  2739. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2740. SERIAL_ECHOLNPGM("");
  2741. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2742. }
  2743. custom_message_type = 0;
  2744. custom_message = false;
  2745. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2746. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2747. disable_x();
  2748. disable_y();
  2749. disable_z();
  2750. disable_e0();
  2751. disable_e1();
  2752. disable_e2();
  2753. setTargetBed(0); //set bed target temperature back to 0
  2754. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2755. lcd_update_enable(true);
  2756. lcd_update(2);
  2757. }
  2758. break;
  2759. #ifdef DIS
  2760. case 77:
  2761. {
  2762. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2763. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2764. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2765. float dimension_x = 40;
  2766. float dimension_y = 40;
  2767. int points_x = 40;
  2768. int points_y = 40;
  2769. float offset_x = 74;
  2770. float offset_y = 33;
  2771. if (code_seen('X')) dimension_x = code_value();
  2772. if (code_seen('Y')) dimension_y = code_value();
  2773. if (code_seen('XP')) points_x = code_value();
  2774. if (code_seen('YP')) points_y = code_value();
  2775. if (code_seen('XO')) offset_x = code_value();
  2776. if (code_seen('YO')) offset_y = code_value();
  2777. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2778. } break;
  2779. #endif
  2780. case 79: {
  2781. for (int i = 255; i > 0; i = i - 5) {
  2782. fanSpeed = i;
  2783. //delay_keep_alive(2000);
  2784. for (int j = 0; j < 100; j++) {
  2785. delay_keep_alive(100);
  2786. }
  2787. fan_speed[1];
  2788. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2789. }
  2790. }break;
  2791. /**
  2792. * G80: Mesh-based Z probe, probes a grid and produces a
  2793. * mesh to compensate for variable bed height
  2794. *
  2795. * The S0 report the points as below
  2796. *
  2797. * +----> X-axis
  2798. * |
  2799. * |
  2800. * v Y-axis
  2801. *
  2802. */
  2803. case 80:
  2804. #ifdef MK1BP
  2805. break;
  2806. #endif //MK1BP
  2807. case_G80:
  2808. {
  2809. mesh_bed_leveling_flag = true;
  2810. int8_t verbosity_level = 0;
  2811. static bool run = false;
  2812. if (code_seen('V')) {
  2813. // Just 'V' without a number counts as V1.
  2814. char c = strchr_pointer[1];
  2815. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2816. }
  2817. // Firstly check if we know where we are
  2818. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2819. // We don't know where we are! HOME!
  2820. // Push the commands to the front of the message queue in the reverse order!
  2821. // There shall be always enough space reserved for these commands.
  2822. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2823. repeatcommand_front(); // repeat G80 with all its parameters
  2824. enquecommand_front_P((PSTR("G28 W0")));
  2825. }
  2826. else {
  2827. mesh_bed_leveling_flag = false;
  2828. }
  2829. break;
  2830. }
  2831. bool temp_comp_start = true;
  2832. #ifdef PINDA_THERMISTOR
  2833. temp_comp_start = false;
  2834. #endif //PINDA_THERMISTOR
  2835. if (temp_comp_start)
  2836. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2837. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2838. temp_compensation_start();
  2839. run = true;
  2840. repeatcommand_front(); // repeat G80 with all its parameters
  2841. enquecommand_front_P((PSTR("G28 W0")));
  2842. }
  2843. else {
  2844. mesh_bed_leveling_flag = false;
  2845. }
  2846. break;
  2847. }
  2848. run = false;
  2849. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2850. mesh_bed_leveling_flag = false;
  2851. break;
  2852. }
  2853. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2854. bool custom_message_old = custom_message;
  2855. unsigned int custom_message_type_old = custom_message_type;
  2856. unsigned int custom_message_state_old = custom_message_state;
  2857. custom_message = true;
  2858. custom_message_type = 1;
  2859. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2860. lcd_update(1);
  2861. mbl.reset(); //reset mesh bed leveling
  2862. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2863. // consumed during the first movements following this statement.
  2864. babystep_undo();
  2865. // Cycle through all points and probe them
  2866. // First move up. During this first movement, the babystepping will be reverted.
  2867. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2868. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2869. // The move to the first calibration point.
  2870. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2871. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2872. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2873. #ifdef SUPPORT_VERBOSITY
  2874. if (verbosity_level >= 1) {
  2875. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2876. }
  2877. #endif //SUPPORT_VERBOSITY
  2878. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2879. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2880. // Wait until the move is finished.
  2881. st_synchronize();
  2882. int mesh_point = 0; //index number of calibration point
  2883. int ix = 0;
  2884. int iy = 0;
  2885. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2886. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2887. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2888. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2889. #ifdef SUPPORT_VERBOSITY
  2890. if (verbosity_level >= 1) {
  2891. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2892. }
  2893. #endif // SUPPORT_VERBOSITY
  2894. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2895. const char *kill_message = NULL;
  2896. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2897. // Get coords of a measuring point.
  2898. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2899. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2900. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2901. float z0 = 0.f;
  2902. if (has_z && mesh_point > 0) {
  2903. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2904. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2905. //#if 0
  2906. #ifdef SUPPORT_VERBOSITY
  2907. if (verbosity_level >= 1) {
  2908. SERIAL_ECHOLNPGM("");
  2909. SERIAL_ECHOPGM("Bed leveling, point: ");
  2910. MYSERIAL.print(mesh_point);
  2911. SERIAL_ECHOPGM(", calibration z: ");
  2912. MYSERIAL.print(z0, 5);
  2913. SERIAL_ECHOLNPGM("");
  2914. }
  2915. #endif // SUPPORT_VERBOSITY
  2916. //#endif
  2917. }
  2918. // Move Z up to MESH_HOME_Z_SEARCH.
  2919. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2920. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2921. st_synchronize();
  2922. // Move to XY position of the sensor point.
  2923. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2924. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2925. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2926. #ifdef SUPPORT_VERBOSITY
  2927. if (verbosity_level >= 1) {
  2928. SERIAL_PROTOCOL(mesh_point);
  2929. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2930. }
  2931. #endif // SUPPORT_VERBOSITY
  2932. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2933. st_synchronize();
  2934. // Go down until endstop is hit
  2935. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2936. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2937. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2938. break;
  2939. }
  2940. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2941. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2942. break;
  2943. }
  2944. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2945. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2946. break;
  2947. }
  2948. #ifdef SUPPORT_VERBOSITY
  2949. if (verbosity_level >= 10) {
  2950. SERIAL_ECHOPGM("X: ");
  2951. MYSERIAL.print(current_position[X_AXIS], 5);
  2952. SERIAL_ECHOLNPGM("");
  2953. SERIAL_ECHOPGM("Y: ");
  2954. MYSERIAL.print(current_position[Y_AXIS], 5);
  2955. SERIAL_PROTOCOLPGM("\n");
  2956. }
  2957. #endif // SUPPORT_VERBOSITY
  2958. float offset_z = 0;
  2959. #ifdef PINDA_THERMISTOR
  2960. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  2961. #endif //PINDA_THERMISTOR
  2962. // #ifdef SUPPORT_VERBOSITY
  2963. // if (verbosity_level >= 1)
  2964. {
  2965. SERIAL_ECHOPGM("mesh bed leveling: ");
  2966. MYSERIAL.print(current_position[Z_AXIS], 5);
  2967. SERIAL_ECHOPGM(" offset: ");
  2968. MYSERIAL.print(offset_z, 5);
  2969. SERIAL_ECHOLNPGM("");
  2970. }
  2971. // #endif // SUPPORT_VERBOSITY
  2972. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2973. custom_message_state--;
  2974. mesh_point++;
  2975. lcd_update(1);
  2976. }
  2977. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2978. #ifdef SUPPORT_VERBOSITY
  2979. if (verbosity_level >= 20) {
  2980. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2981. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2982. MYSERIAL.print(current_position[Z_AXIS], 5);
  2983. }
  2984. #endif // SUPPORT_VERBOSITY
  2985. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2986. st_synchronize();
  2987. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2988. kill(kill_message);
  2989. SERIAL_ECHOLNPGM("killed");
  2990. }
  2991. clean_up_after_endstop_move();
  2992. SERIAL_ECHOLNPGM("clean up finished ");
  2993. bool apply_temp_comp = true;
  2994. #ifdef PINDA_THERMISTOR
  2995. apply_temp_comp = false;
  2996. #endif
  2997. if (apply_temp_comp)
  2998. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2999. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3000. SERIAL_ECHOLNPGM("babystep applied");
  3001. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3002. #ifdef SUPPORT_VERBOSITY
  3003. if (verbosity_level >= 1) {
  3004. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3005. }
  3006. #endif // SUPPORT_VERBOSITY
  3007. for (uint8_t i = 0; i < 4; ++i) {
  3008. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3009. long correction = 0;
  3010. if (code_seen(codes[i]))
  3011. correction = code_value_long();
  3012. else if (eeprom_bed_correction_valid) {
  3013. unsigned char *addr = (i < 2) ?
  3014. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3015. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3016. correction = eeprom_read_int8(addr);
  3017. }
  3018. if (correction == 0)
  3019. continue;
  3020. float offset = float(correction) * 0.001f;
  3021. if (fabs(offset) > 0.101f) {
  3022. SERIAL_ERROR_START;
  3023. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3024. SERIAL_ECHO(offset);
  3025. SERIAL_ECHOLNPGM(" microns");
  3026. }
  3027. else {
  3028. switch (i) {
  3029. case 0:
  3030. for (uint8_t row = 0; row < 3; ++row) {
  3031. mbl.z_values[row][1] += 0.5f * offset;
  3032. mbl.z_values[row][0] += offset;
  3033. }
  3034. break;
  3035. case 1:
  3036. for (uint8_t row = 0; row < 3; ++row) {
  3037. mbl.z_values[row][1] += 0.5f * offset;
  3038. mbl.z_values[row][2] += offset;
  3039. }
  3040. break;
  3041. case 2:
  3042. for (uint8_t col = 0; col < 3; ++col) {
  3043. mbl.z_values[1][col] += 0.5f * offset;
  3044. mbl.z_values[0][col] += offset;
  3045. }
  3046. break;
  3047. case 3:
  3048. for (uint8_t col = 0; col < 3; ++col) {
  3049. mbl.z_values[1][col] += 0.5f * offset;
  3050. mbl.z_values[2][col] += offset;
  3051. }
  3052. break;
  3053. }
  3054. }
  3055. }
  3056. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3057. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3058. SERIAL_ECHOLNPGM("Upsample finished");
  3059. mbl.active = 1; //activate mesh bed leveling
  3060. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3061. go_home_with_z_lift();
  3062. SERIAL_ECHOLNPGM("Go home finished");
  3063. //unretract (after PINDA preheat retraction)
  3064. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3065. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3066. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3067. }
  3068. KEEPALIVE_STATE(NOT_BUSY);
  3069. // Restore custom message state
  3070. custom_message = custom_message_old;
  3071. custom_message_type = custom_message_type_old;
  3072. custom_message_state = custom_message_state_old;
  3073. mesh_bed_leveling_flag = false;
  3074. mesh_bed_run_from_menu = false;
  3075. lcd_update(2);
  3076. }
  3077. break;
  3078. /**
  3079. * G81: Print mesh bed leveling status and bed profile if activated
  3080. */
  3081. case 81:
  3082. if (mbl.active) {
  3083. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3084. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3085. SERIAL_PROTOCOLPGM(",");
  3086. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3087. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3088. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3089. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3090. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3091. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3092. SERIAL_PROTOCOLPGM(" ");
  3093. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3094. }
  3095. SERIAL_PROTOCOLPGM("\n");
  3096. }
  3097. }
  3098. else
  3099. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3100. break;
  3101. #if 0
  3102. /**
  3103. * G82: Single Z probe at current location
  3104. *
  3105. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3106. *
  3107. */
  3108. case 82:
  3109. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3110. setup_for_endstop_move();
  3111. find_bed_induction_sensor_point_z();
  3112. clean_up_after_endstop_move();
  3113. SERIAL_PROTOCOLPGM("Bed found at: ");
  3114. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3115. SERIAL_PROTOCOLPGM("\n");
  3116. break;
  3117. /**
  3118. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3119. */
  3120. case 83:
  3121. {
  3122. int babystepz = code_seen('S') ? code_value() : 0;
  3123. int BabyPosition = code_seen('P') ? code_value() : 0;
  3124. if (babystepz != 0) {
  3125. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3126. // Is the axis indexed starting with zero or one?
  3127. if (BabyPosition > 4) {
  3128. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3129. }else{
  3130. // Save it to the eeprom
  3131. babystepLoadZ = babystepz;
  3132. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3133. // adjust the Z
  3134. babystepsTodoZadd(babystepLoadZ);
  3135. }
  3136. }
  3137. }
  3138. break;
  3139. /**
  3140. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3141. */
  3142. case 84:
  3143. babystepsTodoZsubtract(babystepLoadZ);
  3144. // babystepLoadZ = 0;
  3145. break;
  3146. /**
  3147. * G85: Prusa3D specific: Pick best babystep
  3148. */
  3149. case 85:
  3150. lcd_pick_babystep();
  3151. break;
  3152. #endif
  3153. /**
  3154. * G86: Prusa3D specific: Disable babystep correction after home.
  3155. * This G-code will be performed at the start of a calibration script.
  3156. */
  3157. case 86:
  3158. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3159. break;
  3160. /**
  3161. * G87: Prusa3D specific: Enable babystep correction after home
  3162. * This G-code will be performed at the end of a calibration script.
  3163. */
  3164. case 87:
  3165. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3166. break;
  3167. /**
  3168. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3169. */
  3170. case 88:
  3171. break;
  3172. #endif // ENABLE_MESH_BED_LEVELING
  3173. case 90: // G90
  3174. relative_mode = false;
  3175. break;
  3176. case 91: // G91
  3177. relative_mode = true;
  3178. break;
  3179. case 92: // G92
  3180. if(!code_seen(axis_codes[E_AXIS]))
  3181. st_synchronize();
  3182. for(int8_t i=0; i < NUM_AXIS; i++) {
  3183. if(code_seen(axis_codes[i])) {
  3184. if(i == E_AXIS) {
  3185. current_position[i] = code_value();
  3186. plan_set_e_position(current_position[E_AXIS]);
  3187. }
  3188. else {
  3189. current_position[i] = code_value()+add_homing[i];
  3190. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3191. }
  3192. }
  3193. }
  3194. break;
  3195. case 98: //activate farm mode
  3196. farm_mode = 1;
  3197. PingTime = millis();
  3198. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3199. break;
  3200. case 99: //deactivate farm mode
  3201. farm_mode = 0;
  3202. lcd_printer_connected();
  3203. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3204. lcd_update(2);
  3205. break;
  3206. }
  3207. } // end if(code_seen('G'))
  3208. else if(code_seen('M'))
  3209. {
  3210. int index;
  3211. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3212. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3213. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3214. SERIAL_ECHOLNPGM("Invalid M code");
  3215. } else
  3216. switch((int)code_value())
  3217. {
  3218. #ifdef ULTIPANEL
  3219. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3220. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3221. {
  3222. char *src = strchr_pointer + 2;
  3223. codenum = 0;
  3224. bool hasP = false, hasS = false;
  3225. if (code_seen('P')) {
  3226. codenum = code_value(); // milliseconds to wait
  3227. hasP = codenum > 0;
  3228. }
  3229. if (code_seen('S')) {
  3230. codenum = code_value() * 1000; // seconds to wait
  3231. hasS = codenum > 0;
  3232. }
  3233. starpos = strchr(src, '*');
  3234. if (starpos != NULL) *(starpos) = '\0';
  3235. while (*src == ' ') ++src;
  3236. if (!hasP && !hasS && *src != '\0') {
  3237. lcd_setstatus(src);
  3238. } else {
  3239. LCD_MESSAGERPGM(MSG_USERWAIT);
  3240. }
  3241. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3242. st_synchronize();
  3243. previous_millis_cmd = millis();
  3244. if (codenum > 0){
  3245. codenum += millis(); // keep track of when we started waiting
  3246. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3247. while(millis() < codenum && !lcd_clicked()){
  3248. manage_heater();
  3249. manage_inactivity(true);
  3250. lcd_update();
  3251. }
  3252. KEEPALIVE_STATE(IN_HANDLER);
  3253. lcd_ignore_click(false);
  3254. }else{
  3255. if (!lcd_detected())
  3256. break;
  3257. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3258. while(!lcd_clicked()){
  3259. manage_heater();
  3260. manage_inactivity(true);
  3261. lcd_update();
  3262. }
  3263. KEEPALIVE_STATE(IN_HANDLER);
  3264. }
  3265. if (IS_SD_PRINTING)
  3266. LCD_MESSAGERPGM(MSG_RESUMING);
  3267. else
  3268. LCD_MESSAGERPGM(WELCOME_MSG);
  3269. }
  3270. break;
  3271. #endif
  3272. case 17:
  3273. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3274. enable_x();
  3275. enable_y();
  3276. enable_z();
  3277. enable_e0();
  3278. enable_e1();
  3279. enable_e2();
  3280. break;
  3281. #ifdef SDSUPPORT
  3282. case 20: // M20 - list SD card
  3283. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3284. card.ls();
  3285. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3286. break;
  3287. case 21: // M21 - init SD card
  3288. card.initsd();
  3289. break;
  3290. case 22: //M22 - release SD card
  3291. card.release();
  3292. break;
  3293. case 23: //M23 - Select file
  3294. starpos = (strchr(strchr_pointer + 4,'*'));
  3295. if(starpos!=NULL)
  3296. *(starpos)='\0';
  3297. card.openFile(strchr_pointer + 4,true);
  3298. break;
  3299. case 24: //M24 - Start SD print
  3300. card.startFileprint();
  3301. starttime=millis();
  3302. break;
  3303. case 25: //M25 - Pause SD print
  3304. card.pauseSDPrint();
  3305. break;
  3306. case 26: //M26 - Set SD index
  3307. if(card.cardOK && code_seen('S')) {
  3308. card.setIndex(code_value_long());
  3309. }
  3310. break;
  3311. case 27: //M27 - Get SD status
  3312. card.getStatus();
  3313. break;
  3314. case 28: //M28 - Start SD write
  3315. starpos = (strchr(strchr_pointer + 4,'*'));
  3316. if(starpos != NULL){
  3317. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3318. strchr_pointer = strchr(npos,' ') + 1;
  3319. *(starpos) = '\0';
  3320. }
  3321. card.openFile(strchr_pointer+4,false);
  3322. break;
  3323. case 29: //M29 - Stop SD write
  3324. //processed in write to file routine above
  3325. //card,saving = false;
  3326. break;
  3327. case 30: //M30 <filename> Delete File
  3328. if (card.cardOK){
  3329. card.closefile();
  3330. starpos = (strchr(strchr_pointer + 4,'*'));
  3331. if(starpos != NULL){
  3332. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3333. strchr_pointer = strchr(npos,' ') + 1;
  3334. *(starpos) = '\0';
  3335. }
  3336. card.removeFile(strchr_pointer + 4);
  3337. }
  3338. break;
  3339. case 32: //M32 - Select file and start SD print
  3340. {
  3341. if(card.sdprinting) {
  3342. st_synchronize();
  3343. }
  3344. starpos = (strchr(strchr_pointer + 4,'*'));
  3345. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3346. if(namestartpos==NULL)
  3347. {
  3348. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3349. }
  3350. else
  3351. namestartpos++; //to skip the '!'
  3352. if(starpos!=NULL)
  3353. *(starpos)='\0';
  3354. bool call_procedure=(code_seen('P'));
  3355. if(strchr_pointer>namestartpos)
  3356. call_procedure=false; //false alert, 'P' found within filename
  3357. if( card.cardOK )
  3358. {
  3359. card.openFile(namestartpos,true,!call_procedure);
  3360. if(code_seen('S'))
  3361. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3362. card.setIndex(code_value_long());
  3363. card.startFileprint();
  3364. if(!call_procedure)
  3365. starttime=millis(); //procedure calls count as normal print time.
  3366. }
  3367. } break;
  3368. case 928: //M928 - Start SD write
  3369. starpos = (strchr(strchr_pointer + 5,'*'));
  3370. if(starpos != NULL){
  3371. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3372. strchr_pointer = strchr(npos,' ') + 1;
  3373. *(starpos) = '\0';
  3374. }
  3375. card.openLogFile(strchr_pointer+5);
  3376. break;
  3377. #endif //SDSUPPORT
  3378. case 31: //M31 take time since the start of the SD print or an M109 command
  3379. {
  3380. stoptime=millis();
  3381. char time[30];
  3382. unsigned long t=(stoptime-starttime)/1000;
  3383. int sec,min;
  3384. min=t/60;
  3385. sec=t%60;
  3386. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3387. SERIAL_ECHO_START;
  3388. SERIAL_ECHOLN(time);
  3389. lcd_setstatus(time);
  3390. autotempShutdown();
  3391. }
  3392. break;
  3393. #ifndef _DISABLE_M42_M226
  3394. case 42: //M42 -Change pin status via gcode
  3395. if (code_seen('S'))
  3396. {
  3397. int pin_status = code_value();
  3398. int pin_number = LED_PIN;
  3399. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3400. pin_number = code_value();
  3401. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3402. {
  3403. if (sensitive_pins[i] == pin_number)
  3404. {
  3405. pin_number = -1;
  3406. break;
  3407. }
  3408. }
  3409. #if defined(FAN_PIN) && FAN_PIN > -1
  3410. if (pin_number == FAN_PIN)
  3411. fanSpeed = pin_status;
  3412. #endif
  3413. if (pin_number > -1)
  3414. {
  3415. pinMode(pin_number, OUTPUT);
  3416. digitalWrite(pin_number, pin_status);
  3417. analogWrite(pin_number, pin_status);
  3418. }
  3419. }
  3420. break;
  3421. #endif //_DISABLE_M42_M226
  3422. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3423. // Reset the baby step value and the baby step applied flag.
  3424. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3425. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3426. // Reset the skew and offset in both RAM and EEPROM.
  3427. reset_bed_offset_and_skew();
  3428. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3429. // the planner will not perform any adjustments in the XY plane.
  3430. // Wait for the motors to stop and update the current position with the absolute values.
  3431. world2machine_revert_to_uncorrected();
  3432. break;
  3433. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3434. {
  3435. bool only_Z = code_seen('Z');
  3436. gcode_M45(only_Z);
  3437. }
  3438. break;
  3439. /*
  3440. case 46:
  3441. {
  3442. // M46: Prusa3D: Show the assigned IP address.
  3443. uint8_t ip[4];
  3444. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3445. if (hasIP) {
  3446. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3447. SERIAL_ECHO(int(ip[0]));
  3448. SERIAL_ECHOPGM(".");
  3449. SERIAL_ECHO(int(ip[1]));
  3450. SERIAL_ECHOPGM(".");
  3451. SERIAL_ECHO(int(ip[2]));
  3452. SERIAL_ECHOPGM(".");
  3453. SERIAL_ECHO(int(ip[3]));
  3454. SERIAL_ECHOLNPGM("");
  3455. } else {
  3456. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3457. }
  3458. break;
  3459. }
  3460. */
  3461. case 47:
  3462. // M47: Prusa3D: Show end stops dialog on the display.
  3463. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3464. lcd_diag_show_end_stops();
  3465. KEEPALIVE_STATE(IN_HANDLER);
  3466. break;
  3467. #if 0
  3468. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3469. {
  3470. // Disable the default update procedure of the display. We will do a modal dialog.
  3471. lcd_update_enable(false);
  3472. // Let the planner use the uncorrected coordinates.
  3473. mbl.reset();
  3474. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3475. // the planner will not perform any adjustments in the XY plane.
  3476. // Wait for the motors to stop and update the current position with the absolute values.
  3477. world2machine_revert_to_uncorrected();
  3478. // Move the print head close to the bed.
  3479. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3480. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3481. st_synchronize();
  3482. // Home in the XY plane.
  3483. set_destination_to_current();
  3484. setup_for_endstop_move();
  3485. home_xy();
  3486. int8_t verbosity_level = 0;
  3487. if (code_seen('V')) {
  3488. // Just 'V' without a number counts as V1.
  3489. char c = strchr_pointer[1];
  3490. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3491. }
  3492. bool success = scan_bed_induction_points(verbosity_level);
  3493. clean_up_after_endstop_move();
  3494. // Print head up.
  3495. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3496. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3497. st_synchronize();
  3498. lcd_update_enable(true);
  3499. break;
  3500. }
  3501. #endif
  3502. // M48 Z-Probe repeatability measurement function.
  3503. //
  3504. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3505. //
  3506. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3507. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3508. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3509. // regenerated.
  3510. //
  3511. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3512. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3513. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3514. //
  3515. #ifdef ENABLE_AUTO_BED_LEVELING
  3516. #ifdef Z_PROBE_REPEATABILITY_TEST
  3517. case 48: // M48 Z-Probe repeatability
  3518. {
  3519. #if Z_MIN_PIN == -1
  3520. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3521. #endif
  3522. double sum=0.0;
  3523. double mean=0.0;
  3524. double sigma=0.0;
  3525. double sample_set[50];
  3526. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3527. double X_current, Y_current, Z_current;
  3528. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3529. if (code_seen('V') || code_seen('v')) {
  3530. verbose_level = code_value();
  3531. if (verbose_level<0 || verbose_level>4 ) {
  3532. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3533. goto Sigma_Exit;
  3534. }
  3535. }
  3536. if (verbose_level > 0) {
  3537. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3538. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3539. }
  3540. if (code_seen('n')) {
  3541. n_samples = code_value();
  3542. if (n_samples<4 || n_samples>50 ) {
  3543. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3544. goto Sigma_Exit;
  3545. }
  3546. }
  3547. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3548. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3549. Z_current = st_get_position_mm(Z_AXIS);
  3550. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3551. ext_position = st_get_position_mm(E_AXIS);
  3552. if (code_seen('X') || code_seen('x') ) {
  3553. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3554. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3555. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3556. goto Sigma_Exit;
  3557. }
  3558. }
  3559. if (code_seen('Y') || code_seen('y') ) {
  3560. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3561. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3562. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3563. goto Sigma_Exit;
  3564. }
  3565. }
  3566. if (code_seen('L') || code_seen('l') ) {
  3567. n_legs = code_value();
  3568. if ( n_legs==1 )
  3569. n_legs = 2;
  3570. if ( n_legs<0 || n_legs>15 ) {
  3571. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3572. goto Sigma_Exit;
  3573. }
  3574. }
  3575. //
  3576. // Do all the preliminary setup work. First raise the probe.
  3577. //
  3578. st_synchronize();
  3579. plan_bed_level_matrix.set_to_identity();
  3580. plan_buffer_line( X_current, Y_current, Z_start_location,
  3581. ext_position,
  3582. homing_feedrate[Z_AXIS]/60,
  3583. active_extruder);
  3584. st_synchronize();
  3585. //
  3586. // Now get everything to the specified probe point So we can safely do a probe to
  3587. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3588. // use that as a starting point for each probe.
  3589. //
  3590. if (verbose_level > 2)
  3591. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3592. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3593. ext_position,
  3594. homing_feedrate[X_AXIS]/60,
  3595. active_extruder);
  3596. st_synchronize();
  3597. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3598. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3599. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3600. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3601. //
  3602. // OK, do the inital probe to get us close to the bed.
  3603. // Then retrace the right amount and use that in subsequent probes
  3604. //
  3605. setup_for_endstop_move();
  3606. run_z_probe();
  3607. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3608. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3609. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3610. ext_position,
  3611. homing_feedrate[X_AXIS]/60,
  3612. active_extruder);
  3613. st_synchronize();
  3614. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3615. for( n=0; n<n_samples; n++) {
  3616. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3617. if ( n_legs) {
  3618. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3619. int rotational_direction, l;
  3620. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3621. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3622. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3623. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3624. //SERIAL_ECHOPAIR(" theta: ",theta);
  3625. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3626. //SERIAL_PROTOCOLLNPGM("");
  3627. for( l=0; l<n_legs-1; l++) {
  3628. if (rotational_direction==1)
  3629. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3630. else
  3631. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3632. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3633. if ( radius<0.0 )
  3634. radius = -radius;
  3635. X_current = X_probe_location + cos(theta) * radius;
  3636. Y_current = Y_probe_location + sin(theta) * radius;
  3637. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3638. X_current = X_MIN_POS;
  3639. if ( X_current>X_MAX_POS)
  3640. X_current = X_MAX_POS;
  3641. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3642. Y_current = Y_MIN_POS;
  3643. if ( Y_current>Y_MAX_POS)
  3644. Y_current = Y_MAX_POS;
  3645. if (verbose_level>3 ) {
  3646. SERIAL_ECHOPAIR("x: ", X_current);
  3647. SERIAL_ECHOPAIR("y: ", Y_current);
  3648. SERIAL_PROTOCOLLNPGM("");
  3649. }
  3650. do_blocking_move_to( X_current, Y_current, Z_current );
  3651. }
  3652. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3653. }
  3654. setup_for_endstop_move();
  3655. run_z_probe();
  3656. sample_set[n] = current_position[Z_AXIS];
  3657. //
  3658. // Get the current mean for the data points we have so far
  3659. //
  3660. sum=0.0;
  3661. for( j=0; j<=n; j++) {
  3662. sum = sum + sample_set[j];
  3663. }
  3664. mean = sum / (double (n+1));
  3665. //
  3666. // Now, use that mean to calculate the standard deviation for the
  3667. // data points we have so far
  3668. //
  3669. sum=0.0;
  3670. for( j=0; j<=n; j++) {
  3671. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3672. }
  3673. sigma = sqrt( sum / (double (n+1)) );
  3674. if (verbose_level > 1) {
  3675. SERIAL_PROTOCOL(n+1);
  3676. SERIAL_PROTOCOL(" of ");
  3677. SERIAL_PROTOCOL(n_samples);
  3678. SERIAL_PROTOCOLPGM(" z: ");
  3679. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3680. }
  3681. if (verbose_level > 2) {
  3682. SERIAL_PROTOCOL(" mean: ");
  3683. SERIAL_PROTOCOL_F(mean,6);
  3684. SERIAL_PROTOCOL(" sigma: ");
  3685. SERIAL_PROTOCOL_F(sigma,6);
  3686. }
  3687. if (verbose_level > 0)
  3688. SERIAL_PROTOCOLPGM("\n");
  3689. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3690. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3691. st_synchronize();
  3692. }
  3693. delay(1000);
  3694. clean_up_after_endstop_move();
  3695. // enable_endstops(true);
  3696. if (verbose_level > 0) {
  3697. SERIAL_PROTOCOLPGM("Mean: ");
  3698. SERIAL_PROTOCOL_F(mean, 6);
  3699. SERIAL_PROTOCOLPGM("\n");
  3700. }
  3701. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3702. SERIAL_PROTOCOL_F(sigma, 6);
  3703. SERIAL_PROTOCOLPGM("\n\n");
  3704. Sigma_Exit:
  3705. break;
  3706. }
  3707. #endif // Z_PROBE_REPEATABILITY_TEST
  3708. #endif // ENABLE_AUTO_BED_LEVELING
  3709. case 104: // M104
  3710. if(setTargetedHotend(104)){
  3711. break;
  3712. }
  3713. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3714. setWatch();
  3715. break;
  3716. case 112: // M112 -Emergency Stop
  3717. kill("", 3);
  3718. break;
  3719. case 140: // M140 set bed temp
  3720. if (code_seen('S')) setTargetBed(code_value());
  3721. break;
  3722. case 105 : // M105
  3723. if(setTargetedHotend(105)){
  3724. break;
  3725. }
  3726. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3727. SERIAL_PROTOCOLPGM("ok T:");
  3728. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3729. SERIAL_PROTOCOLPGM(" /");
  3730. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3731. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3732. SERIAL_PROTOCOLPGM(" B:");
  3733. SERIAL_PROTOCOL_F(degBed(),1);
  3734. SERIAL_PROTOCOLPGM(" /");
  3735. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3736. #endif //TEMP_BED_PIN
  3737. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3738. SERIAL_PROTOCOLPGM(" T");
  3739. SERIAL_PROTOCOL(cur_extruder);
  3740. SERIAL_PROTOCOLPGM(":");
  3741. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3742. SERIAL_PROTOCOLPGM(" /");
  3743. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3744. }
  3745. #else
  3746. SERIAL_ERROR_START;
  3747. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3748. #endif
  3749. SERIAL_PROTOCOLPGM(" @:");
  3750. #ifdef EXTRUDER_WATTS
  3751. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3752. SERIAL_PROTOCOLPGM("W");
  3753. #else
  3754. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3755. #endif
  3756. SERIAL_PROTOCOLPGM(" B@:");
  3757. #ifdef BED_WATTS
  3758. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3759. SERIAL_PROTOCOLPGM("W");
  3760. #else
  3761. SERIAL_PROTOCOL(getHeaterPower(-1));
  3762. #endif
  3763. #ifdef PINDA_THERMISTOR
  3764. SERIAL_PROTOCOLPGM(" P:");
  3765. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3766. #endif //PINDA_THERMISTOR
  3767. #ifdef AMBIENT_THERMISTOR
  3768. SERIAL_PROTOCOLPGM(" A:");
  3769. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3770. #endif //AMBIENT_THERMISTOR
  3771. #ifdef SHOW_TEMP_ADC_VALUES
  3772. {float raw = 0.0;
  3773. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3774. SERIAL_PROTOCOLPGM(" ADC B:");
  3775. SERIAL_PROTOCOL_F(degBed(),1);
  3776. SERIAL_PROTOCOLPGM("C->");
  3777. raw = rawBedTemp();
  3778. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3779. SERIAL_PROTOCOLPGM(" Rb->");
  3780. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3781. SERIAL_PROTOCOLPGM(" Rxb->");
  3782. SERIAL_PROTOCOL_F(raw, 5);
  3783. #endif
  3784. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3785. SERIAL_PROTOCOLPGM(" T");
  3786. SERIAL_PROTOCOL(cur_extruder);
  3787. SERIAL_PROTOCOLPGM(":");
  3788. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3789. SERIAL_PROTOCOLPGM("C->");
  3790. raw = rawHotendTemp(cur_extruder);
  3791. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3792. SERIAL_PROTOCOLPGM(" Rt");
  3793. SERIAL_PROTOCOL(cur_extruder);
  3794. SERIAL_PROTOCOLPGM("->");
  3795. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3796. SERIAL_PROTOCOLPGM(" Rx");
  3797. SERIAL_PROTOCOL(cur_extruder);
  3798. SERIAL_PROTOCOLPGM("->");
  3799. SERIAL_PROTOCOL_F(raw, 5);
  3800. }}
  3801. #endif
  3802. SERIAL_PROTOCOLLN("");
  3803. KEEPALIVE_STATE(NOT_BUSY);
  3804. return;
  3805. break;
  3806. case 109:
  3807. {// M109 - Wait for extruder heater to reach target.
  3808. if(setTargetedHotend(109)){
  3809. break;
  3810. }
  3811. LCD_MESSAGERPGM(MSG_HEATING);
  3812. heating_status = 1;
  3813. if (farm_mode) { prusa_statistics(1); };
  3814. #ifdef AUTOTEMP
  3815. autotemp_enabled=false;
  3816. #endif
  3817. if (code_seen('S')) {
  3818. setTargetHotend(code_value(), tmp_extruder);
  3819. CooldownNoWait = true;
  3820. } else if (code_seen('R')) {
  3821. setTargetHotend(code_value(), tmp_extruder);
  3822. CooldownNoWait = false;
  3823. }
  3824. #ifdef AUTOTEMP
  3825. if (code_seen('S')) autotemp_min=code_value();
  3826. if (code_seen('B')) autotemp_max=code_value();
  3827. if (code_seen('F'))
  3828. {
  3829. autotemp_factor=code_value();
  3830. autotemp_enabled=true;
  3831. }
  3832. #endif
  3833. setWatch();
  3834. codenum = millis();
  3835. /* See if we are heating up or cooling down */
  3836. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3837. KEEPALIVE_STATE(NOT_BUSY);
  3838. cancel_heatup = false;
  3839. wait_for_heater(codenum); //loops until target temperature is reached
  3840. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3841. KEEPALIVE_STATE(IN_HANDLER);
  3842. heating_status = 2;
  3843. if (farm_mode) { prusa_statistics(2); };
  3844. //starttime=millis();
  3845. previous_millis_cmd = millis();
  3846. }
  3847. break;
  3848. case 190: // M190 - Wait for bed heater to reach target.
  3849. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3850. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3851. heating_status = 3;
  3852. if (farm_mode) { prusa_statistics(1); };
  3853. if (code_seen('S'))
  3854. {
  3855. setTargetBed(code_value());
  3856. CooldownNoWait = true;
  3857. }
  3858. else if (code_seen('R'))
  3859. {
  3860. setTargetBed(code_value());
  3861. CooldownNoWait = false;
  3862. }
  3863. codenum = millis();
  3864. cancel_heatup = false;
  3865. target_direction = isHeatingBed(); // true if heating, false if cooling
  3866. KEEPALIVE_STATE(NOT_BUSY);
  3867. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3868. {
  3869. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3870. {
  3871. if (!farm_mode) {
  3872. float tt = degHotend(active_extruder);
  3873. SERIAL_PROTOCOLPGM("T:");
  3874. SERIAL_PROTOCOL(tt);
  3875. SERIAL_PROTOCOLPGM(" E:");
  3876. SERIAL_PROTOCOL((int)active_extruder);
  3877. SERIAL_PROTOCOLPGM(" B:");
  3878. SERIAL_PROTOCOL_F(degBed(), 1);
  3879. SERIAL_PROTOCOLLN("");
  3880. }
  3881. codenum = millis();
  3882. }
  3883. manage_heater();
  3884. manage_inactivity();
  3885. lcd_update();
  3886. }
  3887. LCD_MESSAGERPGM(MSG_BED_DONE);
  3888. KEEPALIVE_STATE(IN_HANDLER);
  3889. heating_status = 4;
  3890. previous_millis_cmd = millis();
  3891. #endif
  3892. break;
  3893. #if defined(FAN_PIN) && FAN_PIN > -1
  3894. case 106: //M106 Fan On
  3895. if (code_seen('S')){
  3896. fanSpeed=constrain(code_value(),0,255);
  3897. }
  3898. else {
  3899. fanSpeed=255;
  3900. }
  3901. break;
  3902. case 107: //M107 Fan Off
  3903. fanSpeed = 0;
  3904. break;
  3905. #endif //FAN_PIN
  3906. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3907. case 80: // M80 - Turn on Power Supply
  3908. SET_OUTPUT(PS_ON_PIN); //GND
  3909. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3910. // If you have a switch on suicide pin, this is useful
  3911. // if you want to start another print with suicide feature after
  3912. // a print without suicide...
  3913. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3914. SET_OUTPUT(SUICIDE_PIN);
  3915. WRITE(SUICIDE_PIN, HIGH);
  3916. #endif
  3917. #ifdef ULTIPANEL
  3918. powersupply = true;
  3919. LCD_MESSAGERPGM(WELCOME_MSG);
  3920. lcd_update();
  3921. #endif
  3922. break;
  3923. #endif
  3924. case 81: // M81 - Turn off Power Supply
  3925. disable_heater();
  3926. st_synchronize();
  3927. disable_e0();
  3928. disable_e1();
  3929. disable_e2();
  3930. finishAndDisableSteppers();
  3931. fanSpeed = 0;
  3932. delay(1000); // Wait a little before to switch off
  3933. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3934. st_synchronize();
  3935. suicide();
  3936. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3937. SET_OUTPUT(PS_ON_PIN);
  3938. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3939. #endif
  3940. #ifdef ULTIPANEL
  3941. powersupply = false;
  3942. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3943. /*
  3944. MACHNAME = "Prusa i3"
  3945. MSGOFF = "Vypnuto"
  3946. "Prusai3"" ""vypnuto""."
  3947. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3948. */
  3949. lcd_update();
  3950. #endif
  3951. break;
  3952. case 82:
  3953. axis_relative_modes[3] = false;
  3954. break;
  3955. case 83:
  3956. axis_relative_modes[3] = true;
  3957. break;
  3958. case 18: //compatibility
  3959. case 84: // M84
  3960. if(code_seen('S')){
  3961. stepper_inactive_time = code_value() * 1000;
  3962. }
  3963. else
  3964. {
  3965. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3966. if(all_axis)
  3967. {
  3968. st_synchronize();
  3969. disable_e0();
  3970. disable_e1();
  3971. disable_e2();
  3972. finishAndDisableSteppers();
  3973. }
  3974. else
  3975. {
  3976. st_synchronize();
  3977. if (code_seen('X')) disable_x();
  3978. if (code_seen('Y')) disable_y();
  3979. if (code_seen('Z')) disable_z();
  3980. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3981. if (code_seen('E')) {
  3982. disable_e0();
  3983. disable_e1();
  3984. disable_e2();
  3985. }
  3986. #endif
  3987. }
  3988. }
  3989. snmm_filaments_used = 0;
  3990. break;
  3991. case 85: // M85
  3992. if(code_seen('S')) {
  3993. max_inactive_time = code_value() * 1000;
  3994. }
  3995. break;
  3996. case 92: // M92
  3997. for(int8_t i=0; i < NUM_AXIS; i++)
  3998. {
  3999. if(code_seen(axis_codes[i]))
  4000. {
  4001. if(i == 3) { // E
  4002. float value = code_value();
  4003. if(value < 20.0) {
  4004. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4005. max_jerk[E_AXIS] *= factor;
  4006. max_feedrate[i] *= factor;
  4007. axis_steps_per_sqr_second[i] *= factor;
  4008. }
  4009. axis_steps_per_unit[i] = value;
  4010. }
  4011. else {
  4012. axis_steps_per_unit[i] = code_value();
  4013. }
  4014. }
  4015. }
  4016. break;
  4017. #ifdef HOST_KEEPALIVE_FEATURE
  4018. case 113: // M113 - Get or set Host Keepalive interval
  4019. if (code_seen('S')) {
  4020. host_keepalive_interval = (uint8_t)code_value_short();
  4021. // NOMORE(host_keepalive_interval, 60);
  4022. }
  4023. else {
  4024. SERIAL_ECHO_START;
  4025. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4026. SERIAL_PROTOCOLLN("");
  4027. }
  4028. break;
  4029. #endif
  4030. case 115: // M115
  4031. if (code_seen('V')) {
  4032. // Report the Prusa version number.
  4033. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4034. } else if (code_seen('U')) {
  4035. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4036. // pause the print and ask the user to upgrade the firmware.
  4037. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4038. } else {
  4039. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4040. }
  4041. break;
  4042. /* case 117: // M117 display message
  4043. starpos = (strchr(strchr_pointer + 5,'*'));
  4044. if(starpos!=NULL)
  4045. *(starpos)='\0';
  4046. lcd_setstatus(strchr_pointer + 5);
  4047. break;*/
  4048. case 114: // M114
  4049. SERIAL_PROTOCOLPGM("X:");
  4050. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4051. SERIAL_PROTOCOLPGM(" Y:");
  4052. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4053. SERIAL_PROTOCOLPGM(" Z:");
  4054. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4055. SERIAL_PROTOCOLPGM(" E:");
  4056. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4057. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4058. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4059. SERIAL_PROTOCOLPGM(" Y:");
  4060. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4061. SERIAL_PROTOCOLPGM(" Z:");
  4062. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4063. SERIAL_PROTOCOLPGM(" E:");
  4064. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  4065. SERIAL_PROTOCOLLN("");
  4066. break;
  4067. case 120: // M120
  4068. enable_endstops(false) ;
  4069. break;
  4070. case 121: // M121
  4071. enable_endstops(true) ;
  4072. break;
  4073. case 119: // M119
  4074. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4075. SERIAL_PROTOCOLLN("");
  4076. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4077. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4078. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4079. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4080. }else{
  4081. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4082. }
  4083. SERIAL_PROTOCOLLN("");
  4084. #endif
  4085. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4086. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4087. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4088. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4089. }else{
  4090. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4091. }
  4092. SERIAL_PROTOCOLLN("");
  4093. #endif
  4094. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4095. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4096. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4097. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4098. }else{
  4099. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4100. }
  4101. SERIAL_PROTOCOLLN("");
  4102. #endif
  4103. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4104. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4105. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4106. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4107. }else{
  4108. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4109. }
  4110. SERIAL_PROTOCOLLN("");
  4111. #endif
  4112. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4113. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4114. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4115. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4116. }else{
  4117. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4118. }
  4119. SERIAL_PROTOCOLLN("");
  4120. #endif
  4121. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4122. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4123. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4124. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4125. }else{
  4126. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4127. }
  4128. SERIAL_PROTOCOLLN("");
  4129. #endif
  4130. break;
  4131. //TODO: update for all axis, use for loop
  4132. #ifdef BLINKM
  4133. case 150: // M150
  4134. {
  4135. byte red;
  4136. byte grn;
  4137. byte blu;
  4138. if(code_seen('R')) red = code_value();
  4139. if(code_seen('U')) grn = code_value();
  4140. if(code_seen('B')) blu = code_value();
  4141. SendColors(red,grn,blu);
  4142. }
  4143. break;
  4144. #endif //BLINKM
  4145. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4146. {
  4147. tmp_extruder = active_extruder;
  4148. if(code_seen('T')) {
  4149. tmp_extruder = code_value();
  4150. if(tmp_extruder >= EXTRUDERS) {
  4151. SERIAL_ECHO_START;
  4152. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4153. break;
  4154. }
  4155. }
  4156. float area = .0;
  4157. if(code_seen('D')) {
  4158. float diameter = (float)code_value();
  4159. if (diameter == 0.0) {
  4160. // setting any extruder filament size disables volumetric on the assumption that
  4161. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4162. // for all extruders
  4163. volumetric_enabled = false;
  4164. } else {
  4165. filament_size[tmp_extruder] = (float)code_value();
  4166. // make sure all extruders have some sane value for the filament size
  4167. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4168. #if EXTRUDERS > 1
  4169. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4170. #if EXTRUDERS > 2
  4171. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4172. #endif
  4173. #endif
  4174. volumetric_enabled = true;
  4175. }
  4176. } else {
  4177. //reserved for setting filament diameter via UFID or filament measuring device
  4178. break;
  4179. }
  4180. calculate_volumetric_multipliers();
  4181. }
  4182. break;
  4183. case 201: // M201
  4184. for(int8_t i=0; i < NUM_AXIS; i++)
  4185. {
  4186. if(code_seen(axis_codes[i]))
  4187. {
  4188. max_acceleration_units_per_sq_second[i] = code_value();
  4189. }
  4190. }
  4191. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4192. reset_acceleration_rates();
  4193. break;
  4194. #if 0 // Not used for Sprinter/grbl gen6
  4195. case 202: // M202
  4196. for(int8_t i=0; i < NUM_AXIS; i++) {
  4197. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4198. }
  4199. break;
  4200. #endif
  4201. case 203: // M203 max feedrate mm/sec
  4202. for(int8_t i=0; i < NUM_AXIS; i++) {
  4203. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4204. }
  4205. break;
  4206. case 204: // M204 acclereration S normal moves T filmanent only moves
  4207. {
  4208. if(code_seen('S')) acceleration = code_value() ;
  4209. if(code_seen('T')) retract_acceleration = code_value() ;
  4210. }
  4211. break;
  4212. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4213. {
  4214. if(code_seen('S')) minimumfeedrate = code_value();
  4215. if(code_seen('T')) mintravelfeedrate = code_value();
  4216. if(code_seen('B')) minsegmenttime = code_value() ;
  4217. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4218. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4219. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4220. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4221. }
  4222. break;
  4223. case 206: // M206 additional homing offset
  4224. for(int8_t i=0; i < 3; i++)
  4225. {
  4226. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4227. }
  4228. break;
  4229. #ifdef FWRETRACT
  4230. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4231. {
  4232. if(code_seen('S'))
  4233. {
  4234. retract_length = code_value() ;
  4235. }
  4236. if(code_seen('F'))
  4237. {
  4238. retract_feedrate = code_value()/60 ;
  4239. }
  4240. if(code_seen('Z'))
  4241. {
  4242. retract_zlift = code_value() ;
  4243. }
  4244. }break;
  4245. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4246. {
  4247. if(code_seen('S'))
  4248. {
  4249. retract_recover_length = code_value() ;
  4250. }
  4251. if(code_seen('F'))
  4252. {
  4253. retract_recover_feedrate = code_value()/60 ;
  4254. }
  4255. }break;
  4256. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4257. {
  4258. if(code_seen('S'))
  4259. {
  4260. int t= code_value() ;
  4261. switch(t)
  4262. {
  4263. case 0:
  4264. {
  4265. autoretract_enabled=false;
  4266. retracted[0]=false;
  4267. #if EXTRUDERS > 1
  4268. retracted[1]=false;
  4269. #endif
  4270. #if EXTRUDERS > 2
  4271. retracted[2]=false;
  4272. #endif
  4273. }break;
  4274. case 1:
  4275. {
  4276. autoretract_enabled=true;
  4277. retracted[0]=false;
  4278. #if EXTRUDERS > 1
  4279. retracted[1]=false;
  4280. #endif
  4281. #if EXTRUDERS > 2
  4282. retracted[2]=false;
  4283. #endif
  4284. }break;
  4285. default:
  4286. SERIAL_ECHO_START;
  4287. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4288. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4289. SERIAL_ECHOLNPGM("\"(1)");
  4290. }
  4291. }
  4292. }break;
  4293. #endif // FWRETRACT
  4294. #if EXTRUDERS > 1
  4295. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4296. {
  4297. if(setTargetedHotend(218)){
  4298. break;
  4299. }
  4300. if(code_seen('X'))
  4301. {
  4302. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4303. }
  4304. if(code_seen('Y'))
  4305. {
  4306. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4307. }
  4308. SERIAL_ECHO_START;
  4309. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4310. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4311. {
  4312. SERIAL_ECHO(" ");
  4313. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4314. SERIAL_ECHO(",");
  4315. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4316. }
  4317. SERIAL_ECHOLN("");
  4318. }break;
  4319. #endif
  4320. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4321. {
  4322. if(code_seen('S'))
  4323. {
  4324. feedmultiply = code_value() ;
  4325. }
  4326. }
  4327. break;
  4328. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4329. {
  4330. if(code_seen('S'))
  4331. {
  4332. int tmp_code = code_value();
  4333. if (code_seen('T'))
  4334. {
  4335. if(setTargetedHotend(221)){
  4336. break;
  4337. }
  4338. extruder_multiply[tmp_extruder] = tmp_code;
  4339. }
  4340. else
  4341. {
  4342. extrudemultiply = tmp_code ;
  4343. }
  4344. }
  4345. }
  4346. break;
  4347. #ifndef _DISABLE_M42_M226
  4348. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4349. {
  4350. if(code_seen('P')){
  4351. int pin_number = code_value(); // pin number
  4352. int pin_state = -1; // required pin state - default is inverted
  4353. if(code_seen('S')) pin_state = code_value(); // required pin state
  4354. if(pin_state >= -1 && pin_state <= 1){
  4355. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4356. {
  4357. if (sensitive_pins[i] == pin_number)
  4358. {
  4359. pin_number = -1;
  4360. break;
  4361. }
  4362. }
  4363. if (pin_number > -1)
  4364. {
  4365. int target = LOW;
  4366. st_synchronize();
  4367. pinMode(pin_number, INPUT);
  4368. switch(pin_state){
  4369. case 1:
  4370. target = HIGH;
  4371. break;
  4372. case 0:
  4373. target = LOW;
  4374. break;
  4375. case -1:
  4376. target = !digitalRead(pin_number);
  4377. break;
  4378. }
  4379. while(digitalRead(pin_number) != target){
  4380. manage_heater();
  4381. manage_inactivity();
  4382. lcd_update();
  4383. }
  4384. }
  4385. }
  4386. }
  4387. }
  4388. break;
  4389. #endif //_DISABLE_M42_M226
  4390. #if NUM_SERVOS > 0
  4391. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4392. {
  4393. int servo_index = -1;
  4394. int servo_position = 0;
  4395. if (code_seen('P'))
  4396. servo_index = code_value();
  4397. if (code_seen('S')) {
  4398. servo_position = code_value();
  4399. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4400. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4401. servos[servo_index].attach(0);
  4402. #endif
  4403. servos[servo_index].write(servo_position);
  4404. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4405. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4406. servos[servo_index].detach();
  4407. #endif
  4408. }
  4409. else {
  4410. SERIAL_ECHO_START;
  4411. SERIAL_ECHO("Servo ");
  4412. SERIAL_ECHO(servo_index);
  4413. SERIAL_ECHOLN(" out of range");
  4414. }
  4415. }
  4416. else if (servo_index >= 0) {
  4417. SERIAL_PROTOCOL(MSG_OK);
  4418. SERIAL_PROTOCOL(" Servo ");
  4419. SERIAL_PROTOCOL(servo_index);
  4420. SERIAL_PROTOCOL(": ");
  4421. SERIAL_PROTOCOL(servos[servo_index].read());
  4422. SERIAL_PROTOCOLLN("");
  4423. }
  4424. }
  4425. break;
  4426. #endif // NUM_SERVOS > 0
  4427. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4428. case 300: // M300
  4429. {
  4430. int beepS = code_seen('S') ? code_value() : 110;
  4431. int beepP = code_seen('P') ? code_value() : 1000;
  4432. if (beepS > 0)
  4433. {
  4434. #if BEEPER > 0
  4435. tone(BEEPER, beepS);
  4436. delay(beepP);
  4437. noTone(BEEPER);
  4438. #elif defined(ULTRALCD)
  4439. lcd_buzz(beepS, beepP);
  4440. #elif defined(LCD_USE_I2C_BUZZER)
  4441. lcd_buzz(beepP, beepS);
  4442. #endif
  4443. }
  4444. else
  4445. {
  4446. delay(beepP);
  4447. }
  4448. }
  4449. break;
  4450. #endif // M300
  4451. #ifdef PIDTEMP
  4452. case 301: // M301
  4453. {
  4454. if(code_seen('P')) Kp = code_value();
  4455. if(code_seen('I')) Ki = scalePID_i(code_value());
  4456. if(code_seen('D')) Kd = scalePID_d(code_value());
  4457. #ifdef PID_ADD_EXTRUSION_RATE
  4458. if(code_seen('C')) Kc = code_value();
  4459. #endif
  4460. updatePID();
  4461. SERIAL_PROTOCOLRPGM(MSG_OK);
  4462. SERIAL_PROTOCOL(" p:");
  4463. SERIAL_PROTOCOL(Kp);
  4464. SERIAL_PROTOCOL(" i:");
  4465. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4466. SERIAL_PROTOCOL(" d:");
  4467. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4468. #ifdef PID_ADD_EXTRUSION_RATE
  4469. SERIAL_PROTOCOL(" c:");
  4470. //Kc does not have scaling applied above, or in resetting defaults
  4471. SERIAL_PROTOCOL(Kc);
  4472. #endif
  4473. SERIAL_PROTOCOLLN("");
  4474. }
  4475. break;
  4476. #endif //PIDTEMP
  4477. #ifdef PIDTEMPBED
  4478. case 304: // M304
  4479. {
  4480. if(code_seen('P')) bedKp = code_value();
  4481. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4482. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4483. updatePID();
  4484. SERIAL_PROTOCOLRPGM(MSG_OK);
  4485. SERIAL_PROTOCOL(" p:");
  4486. SERIAL_PROTOCOL(bedKp);
  4487. SERIAL_PROTOCOL(" i:");
  4488. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4489. SERIAL_PROTOCOL(" d:");
  4490. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4491. SERIAL_PROTOCOLLN("");
  4492. }
  4493. break;
  4494. #endif //PIDTEMP
  4495. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4496. {
  4497. #ifdef CHDK
  4498. SET_OUTPUT(CHDK);
  4499. WRITE(CHDK, HIGH);
  4500. chdkHigh = millis();
  4501. chdkActive = true;
  4502. #else
  4503. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4504. const uint8_t NUM_PULSES=16;
  4505. const float PULSE_LENGTH=0.01524;
  4506. for(int i=0; i < NUM_PULSES; i++) {
  4507. WRITE(PHOTOGRAPH_PIN, HIGH);
  4508. _delay_ms(PULSE_LENGTH);
  4509. WRITE(PHOTOGRAPH_PIN, LOW);
  4510. _delay_ms(PULSE_LENGTH);
  4511. }
  4512. delay(7.33);
  4513. for(int i=0; i < NUM_PULSES; i++) {
  4514. WRITE(PHOTOGRAPH_PIN, HIGH);
  4515. _delay_ms(PULSE_LENGTH);
  4516. WRITE(PHOTOGRAPH_PIN, LOW);
  4517. _delay_ms(PULSE_LENGTH);
  4518. }
  4519. #endif
  4520. #endif //chdk end if
  4521. }
  4522. break;
  4523. #ifdef DOGLCD
  4524. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4525. {
  4526. if (code_seen('C')) {
  4527. lcd_setcontrast( ((int)code_value())&63 );
  4528. }
  4529. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4530. SERIAL_PROTOCOL(lcd_contrast);
  4531. SERIAL_PROTOCOLLN("");
  4532. }
  4533. break;
  4534. #endif
  4535. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4536. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4537. {
  4538. float temp = .0;
  4539. if (code_seen('S')) temp=code_value();
  4540. set_extrude_min_temp(temp);
  4541. }
  4542. break;
  4543. #endif
  4544. case 303: // M303 PID autotune
  4545. {
  4546. float temp = 150.0;
  4547. int e=0;
  4548. int c=5;
  4549. if (code_seen('E')) e=code_value();
  4550. if (e<0)
  4551. temp=70;
  4552. if (code_seen('S')) temp=code_value();
  4553. if (code_seen('C')) c=code_value();
  4554. PID_autotune(temp, e, c);
  4555. }
  4556. break;
  4557. case 400: // M400 finish all moves
  4558. {
  4559. st_synchronize();
  4560. }
  4561. break;
  4562. #ifdef FILAMENT_SENSOR
  4563. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4564. {
  4565. #if (FILWIDTH_PIN > -1)
  4566. if(code_seen('N')) filament_width_nominal=code_value();
  4567. else{
  4568. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4569. SERIAL_PROTOCOLLN(filament_width_nominal);
  4570. }
  4571. #endif
  4572. }
  4573. break;
  4574. case 405: //M405 Turn on filament sensor for control
  4575. {
  4576. if(code_seen('D')) meas_delay_cm=code_value();
  4577. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4578. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4579. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4580. {
  4581. int temp_ratio = widthFil_to_size_ratio();
  4582. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4583. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4584. }
  4585. delay_index1=0;
  4586. delay_index2=0;
  4587. }
  4588. filament_sensor = true ;
  4589. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4590. //SERIAL_PROTOCOL(filament_width_meas);
  4591. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4592. //SERIAL_PROTOCOL(extrudemultiply);
  4593. }
  4594. break;
  4595. case 406: //M406 Turn off filament sensor for control
  4596. {
  4597. filament_sensor = false ;
  4598. }
  4599. break;
  4600. case 407: //M407 Display measured filament diameter
  4601. {
  4602. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4603. SERIAL_PROTOCOLLN(filament_width_meas);
  4604. }
  4605. break;
  4606. #endif
  4607. case 500: // M500 Store settings in EEPROM
  4608. {
  4609. Config_StoreSettings(EEPROM_OFFSET);
  4610. }
  4611. break;
  4612. case 501: // M501 Read settings from EEPROM
  4613. {
  4614. Config_RetrieveSettings(EEPROM_OFFSET);
  4615. }
  4616. break;
  4617. case 502: // M502 Revert to default settings
  4618. {
  4619. Config_ResetDefault();
  4620. }
  4621. break;
  4622. case 503: // M503 print settings currently in memory
  4623. {
  4624. Config_PrintSettings();
  4625. }
  4626. break;
  4627. case 509: //M509 Force language selection
  4628. {
  4629. lcd_force_language_selection();
  4630. SERIAL_ECHO_START;
  4631. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4632. }
  4633. break;
  4634. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4635. case 540:
  4636. {
  4637. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4638. }
  4639. break;
  4640. #endif
  4641. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4642. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4643. {
  4644. float value;
  4645. if (code_seen('Z'))
  4646. {
  4647. value = code_value();
  4648. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4649. {
  4650. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4651. SERIAL_ECHO_START;
  4652. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4653. SERIAL_PROTOCOLLN("");
  4654. }
  4655. else
  4656. {
  4657. SERIAL_ECHO_START;
  4658. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4659. SERIAL_ECHORPGM(MSG_Z_MIN);
  4660. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4661. SERIAL_ECHORPGM(MSG_Z_MAX);
  4662. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4663. SERIAL_PROTOCOLLN("");
  4664. }
  4665. }
  4666. else
  4667. {
  4668. SERIAL_ECHO_START;
  4669. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4670. SERIAL_ECHO(-zprobe_zoffset);
  4671. SERIAL_PROTOCOLLN("");
  4672. }
  4673. break;
  4674. }
  4675. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4676. #ifdef FILAMENTCHANGEENABLE
  4677. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4678. {
  4679. MYSERIAL.println("!!!!M600!!!!");
  4680. bool old_fsensor_enabled = fsensor_enabled;
  4681. fsensor_enabled = false; //temporary solution for unexpected restarting
  4682. st_synchronize();
  4683. float target[4];
  4684. float lastpos[4];
  4685. if (farm_mode)
  4686. {
  4687. prusa_statistics(22);
  4688. }
  4689. feedmultiplyBckp=feedmultiply;
  4690. int8_t TooLowZ = 0;
  4691. target[X_AXIS]=current_position[X_AXIS];
  4692. target[Y_AXIS]=current_position[Y_AXIS];
  4693. target[Z_AXIS]=current_position[Z_AXIS];
  4694. target[E_AXIS]=current_position[E_AXIS];
  4695. lastpos[X_AXIS]=current_position[X_AXIS];
  4696. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4697. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4698. lastpos[E_AXIS]=current_position[E_AXIS];
  4699. //Restract extruder
  4700. if(code_seen('E'))
  4701. {
  4702. target[E_AXIS]+= code_value();
  4703. }
  4704. else
  4705. {
  4706. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4707. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4708. #endif
  4709. }
  4710. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4711. //Lift Z
  4712. if(code_seen('Z'))
  4713. {
  4714. target[Z_AXIS]+= code_value();
  4715. }
  4716. else
  4717. {
  4718. #ifdef FILAMENTCHANGE_ZADD
  4719. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4720. if(target[Z_AXIS] < 10){
  4721. target[Z_AXIS]+= 10 ;
  4722. TooLowZ = 1;
  4723. }else{
  4724. TooLowZ = 0;
  4725. }
  4726. #endif
  4727. }
  4728. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4729. //Move XY to side
  4730. if(code_seen('X'))
  4731. {
  4732. target[X_AXIS]+= code_value();
  4733. }
  4734. else
  4735. {
  4736. #ifdef FILAMENTCHANGE_XPOS
  4737. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4738. #endif
  4739. }
  4740. if(code_seen('Y'))
  4741. {
  4742. target[Y_AXIS]= code_value();
  4743. }
  4744. else
  4745. {
  4746. #ifdef FILAMENTCHANGE_YPOS
  4747. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4748. #endif
  4749. }
  4750. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4751. st_synchronize();
  4752. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4753. uint8_t cnt = 0;
  4754. int counterBeep = 0;
  4755. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4756. while (!lcd_clicked()) {
  4757. cnt++;
  4758. manage_heater();
  4759. manage_inactivity(true);
  4760. /*#ifdef SNMM
  4761. target[E_AXIS] += 0.002;
  4762. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4763. #endif // SNMM*/
  4764. if (cnt == 0)
  4765. {
  4766. #if BEEPER > 0
  4767. if (counterBeep == 500) {
  4768. counterBeep = 0;
  4769. }
  4770. SET_OUTPUT(BEEPER);
  4771. if (counterBeep == 0) {
  4772. WRITE(BEEPER, HIGH);
  4773. }
  4774. if (counterBeep == 20) {
  4775. WRITE(BEEPER, LOW);
  4776. }
  4777. counterBeep++;
  4778. #else
  4779. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4780. lcd_buzz(1000 / 6, 100);
  4781. #else
  4782. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4783. #endif
  4784. #endif
  4785. }
  4786. }
  4787. WRITE(BEEPER, LOW);
  4788. lcd_change_fil_state = 0;
  4789. while (lcd_change_fil_state == 0) {
  4790. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  4791. KEEPALIVE_STATE(IN_HANDLER);
  4792. custom_message = true;
  4793. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4794. // Unload filament
  4795. if (code_seen('L'))
  4796. {
  4797. target[E_AXIS] += code_value();
  4798. }
  4799. else
  4800. {
  4801. #ifdef SNMM
  4802. #else
  4803. #ifdef FILAMENTCHANGE_FINALRETRACT
  4804. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4805. #endif
  4806. #endif // SNMM
  4807. }
  4808. #ifdef SNMM
  4809. target[E_AXIS] += 12;
  4810. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4811. target[E_AXIS] += 6;
  4812. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4813. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4814. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4815. st_synchronize();
  4816. target[E_AXIS] += (FIL_COOLING);
  4817. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4818. target[E_AXIS] += (FIL_COOLING*-1);
  4819. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4820. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  4821. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4822. st_synchronize();
  4823. #else
  4824. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4825. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  4826. #endif // SNMM
  4827. //finish moves
  4828. st_synchronize();
  4829. //disable extruder steppers so filament can be removed
  4830. disable_e0();
  4831. disable_e1();
  4832. disable_e2();
  4833. delay(100);
  4834. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4835. lcd_change_fil_state = !lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFULL, false, false);
  4836. //lcd_return_to_status();
  4837. lcd_update_enable(true);
  4838. }
  4839. //Wait for user to insert filament
  4840. lcd_wait_interact();
  4841. //load_filament_time = millis();
  4842. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4843. #ifdef PAT9125
  4844. if (fsensor_M600) fsensor_autoload_check_start();
  4845. #endif //PAT9125
  4846. while(!lcd_clicked())
  4847. {
  4848. manage_heater();
  4849. manage_inactivity(true);
  4850. #ifdef PAT9125
  4851. if (fsensor_M600 && fsensor_check_autoload())
  4852. break;
  4853. #endif //PAT9125
  4854. /*#ifdef SNMM
  4855. target[E_AXIS] += 0.002;
  4856. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4857. #endif // SNMM*/
  4858. }
  4859. #ifdef PAT9125
  4860. if (fsensor_M600) fsensor_autoload_check_stop();
  4861. #endif //PAT9125
  4862. //WRITE(BEEPER, LOW);
  4863. KEEPALIVE_STATE(IN_HANDLER);
  4864. #ifdef SNMM
  4865. display_loading();
  4866. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4867. do {
  4868. target[E_AXIS] += 0.002;
  4869. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4870. delay_keep_alive(2);
  4871. } while (!lcd_clicked());
  4872. KEEPALIVE_STATE(IN_HANDLER);
  4873. /*if (millis() - load_filament_time > 2) {
  4874. load_filament_time = millis();
  4875. target[E_AXIS] += 0.001;
  4876. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4877. }*/
  4878. //Filament inserted
  4879. //Feed the filament to the end of nozzle quickly
  4880. st_synchronize();
  4881. target[E_AXIS] += bowden_length[snmm_extruder];
  4882. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4883. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4884. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4885. target[E_AXIS] += 40;
  4886. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4887. target[E_AXIS] += 10;
  4888. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4889. #else
  4890. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4891. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4892. #endif // SNMM
  4893. //Extrude some filament
  4894. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4895. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4896. //Wait for user to check the state
  4897. lcd_change_fil_state = 0;
  4898. lcd_loading_filament();
  4899. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4900. lcd_change_fil_state = 0;
  4901. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4902. lcd_alright();
  4903. KEEPALIVE_STATE(IN_HANDLER);
  4904. switch(lcd_change_fil_state){
  4905. // Filament failed to load so load it again
  4906. case 2:
  4907. #ifdef SNMM
  4908. display_loading();
  4909. do {
  4910. target[E_AXIS] += 0.002;
  4911. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4912. delay_keep_alive(2);
  4913. } while (!lcd_clicked());
  4914. st_synchronize();
  4915. target[E_AXIS] += bowden_length[snmm_extruder];
  4916. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4917. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4918. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4919. target[E_AXIS] += 40;
  4920. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4921. target[E_AXIS] += 10;
  4922. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4923. #else
  4924. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4925. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4926. #endif
  4927. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4928. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4929. lcd_loading_filament();
  4930. break;
  4931. // Filament loaded properly but color is not clear
  4932. case 3:
  4933. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4934. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4935. lcd_loading_color();
  4936. break;
  4937. // Everything good
  4938. default:
  4939. lcd_change_success();
  4940. lcd_update_enable(true);
  4941. break;
  4942. }
  4943. }
  4944. //Not let's go back to print
  4945. //Feed a little of filament to stabilize pressure
  4946. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4947. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4948. //Retract
  4949. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4950. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4951. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4952. //Move XY back
  4953. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4954. //Move Z back
  4955. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4956. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4957. //Unretract
  4958. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4959. //Set E position to original
  4960. plan_set_e_position(lastpos[E_AXIS]);
  4961. //Recover feed rate
  4962. feedmultiply=feedmultiplyBckp;
  4963. char cmd[9];
  4964. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4965. enquecommand(cmd);
  4966. lcd_setstatuspgm(WELCOME_MSG);
  4967. custom_message = false;
  4968. custom_message_type = 0;
  4969. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  4970. #ifdef PAT9125
  4971. if (fsensor_M600)
  4972. {
  4973. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  4974. st_synchronize();
  4975. while (!is_buffer_empty())
  4976. {
  4977. process_commands();
  4978. cmdqueue_pop_front();
  4979. }
  4980. fsensor_enable();
  4981. fsensor_restore_print_and_continue();
  4982. }
  4983. #endif //PAT9125
  4984. }
  4985. break;
  4986. #endif //FILAMENTCHANGEENABLE
  4987. case 601: {
  4988. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4989. }
  4990. break;
  4991. case 602: {
  4992. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4993. }
  4994. break;
  4995. #ifdef LIN_ADVANCE
  4996. case 900: // M900: Set LIN_ADVANCE options.
  4997. gcode_M900();
  4998. break;
  4999. #endif
  5000. case 907: // M907 Set digital trimpot motor current using axis codes.
  5001. {
  5002. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5003. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5004. if(code_seen('B')) digipot_current(4,code_value());
  5005. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5006. #endif
  5007. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5008. if(code_seen('X')) digipot_current(0, code_value());
  5009. #endif
  5010. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5011. if(code_seen('Z')) digipot_current(1, code_value());
  5012. #endif
  5013. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5014. if(code_seen('E')) digipot_current(2, code_value());
  5015. #endif
  5016. #ifdef DIGIPOT_I2C
  5017. // this one uses actual amps in floating point
  5018. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5019. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5020. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5021. #endif
  5022. }
  5023. break;
  5024. case 908: // M908 Control digital trimpot directly.
  5025. {
  5026. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5027. uint8_t channel,current;
  5028. if(code_seen('P')) channel=code_value();
  5029. if(code_seen('S')) current=code_value();
  5030. digitalPotWrite(channel, current);
  5031. #endif
  5032. }
  5033. break;
  5034. case 910: // M910 TMC2130 init
  5035. {
  5036. tmc2130_init();
  5037. }
  5038. break;
  5039. case 911: // M911 Set TMC2130 holding currents
  5040. {
  5041. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5042. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5043. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5044. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5045. }
  5046. break;
  5047. case 912: // M912 Set TMC2130 running currents
  5048. {
  5049. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5050. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5051. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5052. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5053. }
  5054. break;
  5055. case 913: // M913 Print TMC2130 currents
  5056. {
  5057. tmc2130_print_currents();
  5058. }
  5059. break;
  5060. case 914: // M914 Set normal mode
  5061. {
  5062. tmc2130_mode = TMC2130_MODE_NORMAL;
  5063. tmc2130_init();
  5064. }
  5065. break;
  5066. case 915: // M915 Set silent mode
  5067. {
  5068. tmc2130_mode = TMC2130_MODE_SILENT;
  5069. tmc2130_init();
  5070. }
  5071. break;
  5072. case 916: // M916 Set sg_thrs
  5073. {
  5074. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5075. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5076. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5077. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5078. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5079. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5080. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5081. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5082. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5083. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5084. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5085. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5086. }
  5087. break;
  5088. case 917: // M917 Set TMC2130 pwm_ampl
  5089. {
  5090. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5091. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5092. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5093. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5094. }
  5095. break;
  5096. case 918: // M918 Set TMC2130 pwm_grad
  5097. {
  5098. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5099. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5100. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5101. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5102. }
  5103. break;
  5104. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5105. {
  5106. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5107. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5108. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5109. if(code_seen('B')) microstep_mode(4,code_value());
  5110. microstep_readings();
  5111. #endif
  5112. }
  5113. break;
  5114. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5115. {
  5116. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5117. if(code_seen('S')) switch((int)code_value())
  5118. {
  5119. case 1:
  5120. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5121. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5122. break;
  5123. case 2:
  5124. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5125. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5126. break;
  5127. }
  5128. microstep_readings();
  5129. #endif
  5130. }
  5131. break;
  5132. case 701: //M701: load filament
  5133. {
  5134. gcode_M701();
  5135. }
  5136. break;
  5137. case 702:
  5138. {
  5139. #ifdef SNMM
  5140. if (code_seen('U')) {
  5141. extr_unload_used(); //unload all filaments which were used in current print
  5142. }
  5143. else if (code_seen('C')) {
  5144. extr_unload(); //unload just current filament
  5145. }
  5146. else {
  5147. extr_unload_all(); //unload all filaments
  5148. }
  5149. #else
  5150. bool old_fsensor_enabled = fsensor_enabled;
  5151. fsensor_enabled = false;
  5152. custom_message = true;
  5153. custom_message_type = 2;
  5154. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5155. // extr_unload2();
  5156. current_position[E_AXIS] -= 80;
  5157. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  5158. st_synchronize();
  5159. lcd_setstatuspgm(WELCOME_MSG);
  5160. custom_message = false;
  5161. custom_message_type = 0;
  5162. fsensor_enabled = old_fsensor_enabled;
  5163. #endif
  5164. }
  5165. break;
  5166. case 999: // M999: Restart after being stopped
  5167. Stopped = false;
  5168. lcd_reset_alert_level();
  5169. gcode_LastN = Stopped_gcode_LastN;
  5170. FlushSerialRequestResend();
  5171. break;
  5172. default: SERIAL_ECHOLNPGM("Invalid M code.");
  5173. }
  5174. } // end if(code_seen('M')) (end of M codes)
  5175. else if(code_seen('T'))
  5176. {
  5177. int index;
  5178. st_synchronize();
  5179. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5180. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5181. SERIAL_ECHOLNPGM("Invalid T code.");
  5182. }
  5183. else {
  5184. if (*(strchr_pointer + index) == '?') {
  5185. tmp_extruder = choose_extruder_menu();
  5186. }
  5187. else {
  5188. tmp_extruder = code_value();
  5189. }
  5190. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5191. #ifdef SNMM
  5192. #ifdef LIN_ADVANCE
  5193. if (snmm_extruder != tmp_extruder)
  5194. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5195. #endif
  5196. snmm_extruder = tmp_extruder;
  5197. delay(100);
  5198. disable_e0();
  5199. disable_e1();
  5200. disable_e2();
  5201. pinMode(E_MUX0_PIN, OUTPUT);
  5202. pinMode(E_MUX1_PIN, OUTPUT);
  5203. pinMode(E_MUX2_PIN, OUTPUT);
  5204. delay(100);
  5205. SERIAL_ECHO_START;
  5206. SERIAL_ECHO("T:");
  5207. SERIAL_ECHOLN((int)tmp_extruder);
  5208. switch (tmp_extruder) {
  5209. case 1:
  5210. WRITE(E_MUX0_PIN, HIGH);
  5211. WRITE(E_MUX1_PIN, LOW);
  5212. WRITE(E_MUX2_PIN, LOW);
  5213. break;
  5214. case 2:
  5215. WRITE(E_MUX0_PIN, LOW);
  5216. WRITE(E_MUX1_PIN, HIGH);
  5217. WRITE(E_MUX2_PIN, LOW);
  5218. break;
  5219. case 3:
  5220. WRITE(E_MUX0_PIN, HIGH);
  5221. WRITE(E_MUX1_PIN, HIGH);
  5222. WRITE(E_MUX2_PIN, LOW);
  5223. break;
  5224. default:
  5225. WRITE(E_MUX0_PIN, LOW);
  5226. WRITE(E_MUX1_PIN, LOW);
  5227. WRITE(E_MUX2_PIN, LOW);
  5228. break;
  5229. }
  5230. delay(100);
  5231. #else
  5232. if (tmp_extruder >= EXTRUDERS) {
  5233. SERIAL_ECHO_START;
  5234. SERIAL_ECHOPGM("T");
  5235. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5236. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5237. }
  5238. else {
  5239. boolean make_move = false;
  5240. if (code_seen('F')) {
  5241. make_move = true;
  5242. next_feedrate = code_value();
  5243. if (next_feedrate > 0.0) {
  5244. feedrate = next_feedrate;
  5245. }
  5246. }
  5247. #if EXTRUDERS > 1
  5248. if (tmp_extruder != active_extruder) {
  5249. // Save current position to return to after applying extruder offset
  5250. memcpy(destination, current_position, sizeof(destination));
  5251. // Offset extruder (only by XY)
  5252. int i;
  5253. for (i = 0; i < 2; i++) {
  5254. current_position[i] = current_position[i] -
  5255. extruder_offset[i][active_extruder] +
  5256. extruder_offset[i][tmp_extruder];
  5257. }
  5258. // Set the new active extruder and position
  5259. active_extruder = tmp_extruder;
  5260. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5261. // Move to the old position if 'F' was in the parameters
  5262. if (make_move && Stopped == false) {
  5263. prepare_move();
  5264. }
  5265. }
  5266. #endif
  5267. SERIAL_ECHO_START;
  5268. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5269. SERIAL_PROTOCOLLN((int)active_extruder);
  5270. }
  5271. #endif
  5272. }
  5273. } // end if(code_seen('T')) (end of T codes)
  5274. #ifdef DEBUG_DCODES
  5275. else if (code_seen('D')) // D codes (debug)
  5276. {
  5277. switch((int)code_value())
  5278. {
  5279. case -1: // D-1 - Endless loop
  5280. dcode__1(); break;
  5281. case 0: // D0 - Reset
  5282. dcode_0(); break;
  5283. case 1: // D1 - Clear EEPROM
  5284. dcode_1(); break;
  5285. case 2: // D2 - Read/Write RAM
  5286. dcode_2(); break;
  5287. case 3: // D3 - Read/Write EEPROM
  5288. dcode_3(); break;
  5289. case 4: // D4 - Read/Write PIN
  5290. dcode_4(); break;
  5291. case 5: // D5 - Read/Write FLASH
  5292. // dcode_5(); break;
  5293. break;
  5294. case 6: // D6 - Read/Write external FLASH
  5295. dcode_6(); break;
  5296. case 7: // D7 - Read/Write Bootloader
  5297. dcode_7(); break;
  5298. case 8: // D8 - Read/Write PINDA
  5299. dcode_8(); break;
  5300. case 10: // D10 - XYZ calibration = OK
  5301. dcode_10(); break;
  5302. case 12: //D12 - Reset failstat counters
  5303. dcode_12(); break;
  5304. case 2130: // D9125 - TMC2130
  5305. dcode_2130(); break;
  5306. case 9125: // D9125 - PAT9125
  5307. dcode_9125(); break;
  5308. }
  5309. }
  5310. #endif //DEBUG_DCODES
  5311. else
  5312. {
  5313. SERIAL_ECHO_START;
  5314. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5315. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5316. SERIAL_ECHOLNPGM("\"(2)");
  5317. }
  5318. KEEPALIVE_STATE(NOT_BUSY);
  5319. ClearToSend();
  5320. }
  5321. void FlushSerialRequestResend()
  5322. {
  5323. //char cmdbuffer[bufindr][100]="Resend:";
  5324. MYSERIAL.flush();
  5325. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5326. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5327. ClearToSend();
  5328. }
  5329. // Confirm the execution of a command, if sent from a serial line.
  5330. // Execution of a command from a SD card will not be confirmed.
  5331. void ClearToSend()
  5332. {
  5333. previous_millis_cmd = millis();
  5334. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5335. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5336. }
  5337. void get_coordinates()
  5338. {
  5339. bool seen[4]={false,false,false,false};
  5340. for(int8_t i=0; i < NUM_AXIS; i++) {
  5341. if(code_seen(axis_codes[i]))
  5342. {
  5343. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5344. seen[i]=true;
  5345. }
  5346. else destination[i] = current_position[i]; //Are these else lines really needed?
  5347. }
  5348. if(code_seen('F')) {
  5349. next_feedrate = code_value();
  5350. #ifdef MAX_SILENT_FEEDRATE
  5351. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5352. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5353. #endif //MAX_SILENT_FEEDRATE
  5354. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5355. }
  5356. }
  5357. void get_arc_coordinates()
  5358. {
  5359. #ifdef SF_ARC_FIX
  5360. bool relative_mode_backup = relative_mode;
  5361. relative_mode = true;
  5362. #endif
  5363. get_coordinates();
  5364. #ifdef SF_ARC_FIX
  5365. relative_mode=relative_mode_backup;
  5366. #endif
  5367. if(code_seen('I')) {
  5368. offset[0] = code_value();
  5369. }
  5370. else {
  5371. offset[0] = 0.0;
  5372. }
  5373. if(code_seen('J')) {
  5374. offset[1] = code_value();
  5375. }
  5376. else {
  5377. offset[1] = 0.0;
  5378. }
  5379. }
  5380. void clamp_to_software_endstops(float target[3])
  5381. {
  5382. #ifdef DEBUG_DISABLE_SWLIMITS
  5383. return;
  5384. #endif //DEBUG_DISABLE_SWLIMITS
  5385. world2machine_clamp(target[0], target[1]);
  5386. // Clamp the Z coordinate.
  5387. if (min_software_endstops) {
  5388. float negative_z_offset = 0;
  5389. #ifdef ENABLE_AUTO_BED_LEVELING
  5390. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5391. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5392. #endif
  5393. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5394. }
  5395. if (max_software_endstops) {
  5396. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5397. }
  5398. }
  5399. #ifdef MESH_BED_LEVELING
  5400. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5401. float dx = x - current_position[X_AXIS];
  5402. float dy = y - current_position[Y_AXIS];
  5403. float dz = z - current_position[Z_AXIS];
  5404. int n_segments = 0;
  5405. if (mbl.active) {
  5406. float len = abs(dx) + abs(dy);
  5407. if (len > 0)
  5408. // Split to 3cm segments or shorter.
  5409. n_segments = int(ceil(len / 30.f));
  5410. }
  5411. if (n_segments > 1) {
  5412. float de = e - current_position[E_AXIS];
  5413. for (int i = 1; i < n_segments; ++ i) {
  5414. float t = float(i) / float(n_segments);
  5415. plan_buffer_line(
  5416. current_position[X_AXIS] + t * dx,
  5417. current_position[Y_AXIS] + t * dy,
  5418. current_position[Z_AXIS] + t * dz,
  5419. current_position[E_AXIS] + t * de,
  5420. feed_rate, extruder);
  5421. }
  5422. }
  5423. // The rest of the path.
  5424. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5425. current_position[X_AXIS] = x;
  5426. current_position[Y_AXIS] = y;
  5427. current_position[Z_AXIS] = z;
  5428. current_position[E_AXIS] = e;
  5429. }
  5430. #endif // MESH_BED_LEVELING
  5431. void prepare_move()
  5432. {
  5433. clamp_to_software_endstops(destination);
  5434. previous_millis_cmd = millis();
  5435. // Do not use feedmultiply for E or Z only moves
  5436. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5437. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5438. }
  5439. else {
  5440. #ifdef MESH_BED_LEVELING
  5441. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5442. #else
  5443. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5444. #endif
  5445. }
  5446. for(int8_t i=0; i < NUM_AXIS; i++) {
  5447. current_position[i] = destination[i];
  5448. }
  5449. }
  5450. void prepare_arc_move(char isclockwise) {
  5451. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5452. // Trace the arc
  5453. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5454. // As far as the parser is concerned, the position is now == target. In reality the
  5455. // motion control system might still be processing the action and the real tool position
  5456. // in any intermediate location.
  5457. for(int8_t i=0; i < NUM_AXIS; i++) {
  5458. current_position[i] = destination[i];
  5459. }
  5460. previous_millis_cmd = millis();
  5461. }
  5462. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5463. #if defined(FAN_PIN)
  5464. #if CONTROLLERFAN_PIN == FAN_PIN
  5465. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5466. #endif
  5467. #endif
  5468. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5469. unsigned long lastMotorCheck = 0;
  5470. void controllerFan()
  5471. {
  5472. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5473. {
  5474. lastMotorCheck = millis();
  5475. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5476. #if EXTRUDERS > 2
  5477. || !READ(E2_ENABLE_PIN)
  5478. #endif
  5479. #if EXTRUDER > 1
  5480. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5481. || !READ(X2_ENABLE_PIN)
  5482. #endif
  5483. || !READ(E1_ENABLE_PIN)
  5484. #endif
  5485. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5486. {
  5487. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5488. }
  5489. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5490. {
  5491. digitalWrite(CONTROLLERFAN_PIN, 0);
  5492. analogWrite(CONTROLLERFAN_PIN, 0);
  5493. }
  5494. else
  5495. {
  5496. // allows digital or PWM fan output to be used (see M42 handling)
  5497. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5498. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5499. }
  5500. }
  5501. }
  5502. #endif
  5503. #ifdef TEMP_STAT_LEDS
  5504. static bool blue_led = false;
  5505. static bool red_led = false;
  5506. static uint32_t stat_update = 0;
  5507. void handle_status_leds(void) {
  5508. float max_temp = 0.0;
  5509. if(millis() > stat_update) {
  5510. stat_update += 500; // Update every 0.5s
  5511. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5512. max_temp = max(max_temp, degHotend(cur_extruder));
  5513. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5514. }
  5515. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5516. max_temp = max(max_temp, degTargetBed());
  5517. max_temp = max(max_temp, degBed());
  5518. #endif
  5519. if((max_temp > 55.0) && (red_led == false)) {
  5520. digitalWrite(STAT_LED_RED, 1);
  5521. digitalWrite(STAT_LED_BLUE, 0);
  5522. red_led = true;
  5523. blue_led = false;
  5524. }
  5525. if((max_temp < 54.0) && (blue_led == false)) {
  5526. digitalWrite(STAT_LED_RED, 0);
  5527. digitalWrite(STAT_LED_BLUE, 1);
  5528. red_led = false;
  5529. blue_led = true;
  5530. }
  5531. }
  5532. }
  5533. #endif
  5534. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5535. {
  5536. if (fsensor_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && (current_temperature[0] > EXTRUDE_MINTEMP))
  5537. {
  5538. if (fsensor_autoload_enabled)
  5539. {
  5540. if (fsensor_check_autoload())
  5541. {
  5542. fsensor_autoload_check_stop();
  5543. enquecommand_front_P((PSTR("M701")));
  5544. }
  5545. }
  5546. else
  5547. fsensor_autoload_check_start();
  5548. }
  5549. else
  5550. if (fsensor_autoload_enabled)
  5551. fsensor_autoload_check_stop();
  5552. #if defined(KILL_PIN) && KILL_PIN > -1
  5553. static int killCount = 0; // make the inactivity button a bit less responsive
  5554. const int KILL_DELAY = 10000;
  5555. #endif
  5556. if(buflen < (BUFSIZE-1)){
  5557. get_command();
  5558. }
  5559. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5560. if(max_inactive_time)
  5561. kill("", 4);
  5562. if(stepper_inactive_time) {
  5563. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5564. {
  5565. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5566. disable_x();
  5567. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5568. disable_y();
  5569. disable_z();
  5570. disable_e0();
  5571. disable_e1();
  5572. disable_e2();
  5573. }
  5574. }
  5575. }
  5576. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5577. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5578. {
  5579. chdkActive = false;
  5580. WRITE(CHDK, LOW);
  5581. }
  5582. #endif
  5583. #if defined(KILL_PIN) && KILL_PIN > -1
  5584. // Check if the kill button was pressed and wait just in case it was an accidental
  5585. // key kill key press
  5586. // -------------------------------------------------------------------------------
  5587. if( 0 == READ(KILL_PIN) )
  5588. {
  5589. killCount++;
  5590. }
  5591. else if (killCount > 0)
  5592. {
  5593. killCount--;
  5594. }
  5595. // Exceeded threshold and we can confirm that it was not accidental
  5596. // KILL the machine
  5597. // ----------------------------------------------------------------
  5598. if ( killCount >= KILL_DELAY)
  5599. {
  5600. kill("", 5);
  5601. }
  5602. #endif
  5603. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5604. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5605. #endif
  5606. #ifdef EXTRUDER_RUNOUT_PREVENT
  5607. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5608. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5609. {
  5610. bool oldstatus=READ(E0_ENABLE_PIN);
  5611. enable_e0();
  5612. float oldepos=current_position[E_AXIS];
  5613. float oldedes=destination[E_AXIS];
  5614. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5615. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5616. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5617. current_position[E_AXIS]=oldepos;
  5618. destination[E_AXIS]=oldedes;
  5619. plan_set_e_position(oldepos);
  5620. previous_millis_cmd=millis();
  5621. st_synchronize();
  5622. WRITE(E0_ENABLE_PIN,oldstatus);
  5623. }
  5624. #endif
  5625. #ifdef TEMP_STAT_LEDS
  5626. handle_status_leds();
  5627. #endif
  5628. check_axes_activity();
  5629. }
  5630. void kill(const char *full_screen_message, unsigned char id)
  5631. {
  5632. SERIAL_ECHOPGM("KILL: ");
  5633. MYSERIAL.println(int(id));
  5634. //return;
  5635. cli(); // Stop interrupts
  5636. disable_heater();
  5637. disable_x();
  5638. // SERIAL_ECHOLNPGM("kill - disable Y");
  5639. disable_y();
  5640. disable_z();
  5641. disable_e0();
  5642. disable_e1();
  5643. disable_e2();
  5644. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5645. pinMode(PS_ON_PIN,INPUT);
  5646. #endif
  5647. SERIAL_ERROR_START;
  5648. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5649. if (full_screen_message != NULL) {
  5650. SERIAL_ERRORLNRPGM(full_screen_message);
  5651. lcd_display_message_fullscreen_P(full_screen_message);
  5652. } else {
  5653. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5654. }
  5655. // FMC small patch to update the LCD before ending
  5656. sei(); // enable interrupts
  5657. for ( int i=5; i--; lcd_update())
  5658. {
  5659. delay(200);
  5660. }
  5661. cli(); // disable interrupts
  5662. suicide();
  5663. while(1)
  5664. {
  5665. wdt_reset();
  5666. /* Intentionally left empty */
  5667. } // Wait for reset
  5668. }
  5669. void Stop()
  5670. {
  5671. disable_heater();
  5672. if(Stopped == false) {
  5673. Stopped = true;
  5674. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5675. SERIAL_ERROR_START;
  5676. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5677. LCD_MESSAGERPGM(MSG_STOPPED);
  5678. }
  5679. }
  5680. bool IsStopped() { return Stopped; };
  5681. #ifdef FAST_PWM_FAN
  5682. void setPwmFrequency(uint8_t pin, int val)
  5683. {
  5684. val &= 0x07;
  5685. switch(digitalPinToTimer(pin))
  5686. {
  5687. #if defined(TCCR0A)
  5688. case TIMER0A:
  5689. case TIMER0B:
  5690. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5691. // TCCR0B |= val;
  5692. break;
  5693. #endif
  5694. #if defined(TCCR1A)
  5695. case TIMER1A:
  5696. case TIMER1B:
  5697. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5698. // TCCR1B |= val;
  5699. break;
  5700. #endif
  5701. #if defined(TCCR2)
  5702. case TIMER2:
  5703. case TIMER2:
  5704. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5705. TCCR2 |= val;
  5706. break;
  5707. #endif
  5708. #if defined(TCCR2A)
  5709. case TIMER2A:
  5710. case TIMER2B:
  5711. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5712. TCCR2B |= val;
  5713. break;
  5714. #endif
  5715. #if defined(TCCR3A)
  5716. case TIMER3A:
  5717. case TIMER3B:
  5718. case TIMER3C:
  5719. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5720. TCCR3B |= val;
  5721. break;
  5722. #endif
  5723. #if defined(TCCR4A)
  5724. case TIMER4A:
  5725. case TIMER4B:
  5726. case TIMER4C:
  5727. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5728. TCCR4B |= val;
  5729. break;
  5730. #endif
  5731. #if defined(TCCR5A)
  5732. case TIMER5A:
  5733. case TIMER5B:
  5734. case TIMER5C:
  5735. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5736. TCCR5B |= val;
  5737. break;
  5738. #endif
  5739. }
  5740. }
  5741. #endif //FAST_PWM_FAN
  5742. bool setTargetedHotend(int code){
  5743. tmp_extruder = active_extruder;
  5744. if(code_seen('T')) {
  5745. tmp_extruder = code_value();
  5746. if(tmp_extruder >= EXTRUDERS) {
  5747. SERIAL_ECHO_START;
  5748. switch(code){
  5749. case 104:
  5750. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5751. break;
  5752. case 105:
  5753. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5754. break;
  5755. case 109:
  5756. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5757. break;
  5758. case 218:
  5759. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5760. break;
  5761. case 221:
  5762. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5763. break;
  5764. }
  5765. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5766. return true;
  5767. }
  5768. }
  5769. return false;
  5770. }
  5771. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5772. {
  5773. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5774. {
  5775. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5776. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5777. }
  5778. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5779. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5780. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5781. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5782. total_filament_used = 0;
  5783. }
  5784. float calculate_volumetric_multiplier(float diameter) {
  5785. float area = .0;
  5786. float radius = .0;
  5787. radius = diameter * .5;
  5788. if (! volumetric_enabled || radius == 0) {
  5789. area = 1;
  5790. }
  5791. else {
  5792. area = M_PI * pow(radius, 2);
  5793. }
  5794. return 1.0 / area;
  5795. }
  5796. void calculate_volumetric_multipliers() {
  5797. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5798. #if EXTRUDERS > 1
  5799. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5800. #if EXTRUDERS > 2
  5801. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5802. #endif
  5803. #endif
  5804. }
  5805. void delay_keep_alive(unsigned int ms)
  5806. {
  5807. for (;;) {
  5808. manage_heater();
  5809. // Manage inactivity, but don't disable steppers on timeout.
  5810. manage_inactivity(true);
  5811. lcd_update();
  5812. if (ms == 0)
  5813. break;
  5814. else if (ms >= 50) {
  5815. delay(50);
  5816. ms -= 50;
  5817. } else {
  5818. delay(ms);
  5819. ms = 0;
  5820. }
  5821. }
  5822. }
  5823. void wait_for_heater(long codenum) {
  5824. #ifdef TEMP_RESIDENCY_TIME
  5825. long residencyStart;
  5826. residencyStart = -1;
  5827. /* continue to loop until we have reached the target temp
  5828. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5829. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5830. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5831. #else
  5832. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5833. #endif //TEMP_RESIDENCY_TIME
  5834. if ((millis() - codenum) > 1000UL)
  5835. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5836. if (!farm_mode) {
  5837. SERIAL_PROTOCOLPGM("T:");
  5838. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5839. SERIAL_PROTOCOLPGM(" E:");
  5840. SERIAL_PROTOCOL((int)tmp_extruder);
  5841. #ifdef TEMP_RESIDENCY_TIME
  5842. SERIAL_PROTOCOLPGM(" W:");
  5843. if (residencyStart > -1)
  5844. {
  5845. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5846. SERIAL_PROTOCOLLN(codenum);
  5847. }
  5848. else
  5849. {
  5850. SERIAL_PROTOCOLLN("?");
  5851. }
  5852. }
  5853. #else
  5854. SERIAL_PROTOCOLLN("");
  5855. #endif
  5856. codenum = millis();
  5857. }
  5858. manage_heater();
  5859. manage_inactivity();
  5860. lcd_update();
  5861. #ifdef TEMP_RESIDENCY_TIME
  5862. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5863. or when current temp falls outside the hysteresis after target temp was reached */
  5864. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5865. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5866. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5867. {
  5868. residencyStart = millis();
  5869. }
  5870. #endif //TEMP_RESIDENCY_TIME
  5871. }
  5872. }
  5873. void check_babystep() {
  5874. int babystep_z;
  5875. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5876. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5877. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5878. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5879. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5880. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5881. lcd_update_enable(true);
  5882. }
  5883. }
  5884. #ifdef DIS
  5885. void d_setup()
  5886. {
  5887. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5888. pinMode(D_DATA, INPUT_PULLUP);
  5889. pinMode(D_REQUIRE, OUTPUT);
  5890. digitalWrite(D_REQUIRE, HIGH);
  5891. }
  5892. float d_ReadData()
  5893. {
  5894. int digit[13];
  5895. String mergeOutput;
  5896. float output;
  5897. digitalWrite(D_REQUIRE, HIGH);
  5898. for (int i = 0; i<13; i++)
  5899. {
  5900. for (int j = 0; j < 4; j++)
  5901. {
  5902. while (digitalRead(D_DATACLOCK) == LOW) {}
  5903. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5904. bitWrite(digit[i], j, digitalRead(D_DATA));
  5905. }
  5906. }
  5907. digitalWrite(D_REQUIRE, LOW);
  5908. mergeOutput = "";
  5909. output = 0;
  5910. for (int r = 5; r <= 10; r++) //Merge digits
  5911. {
  5912. mergeOutput += digit[r];
  5913. }
  5914. output = mergeOutput.toFloat();
  5915. if (digit[4] == 8) //Handle sign
  5916. {
  5917. output *= -1;
  5918. }
  5919. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5920. {
  5921. output /= 10;
  5922. }
  5923. return output;
  5924. }
  5925. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5926. int t1 = 0;
  5927. int t_delay = 0;
  5928. int digit[13];
  5929. int m;
  5930. char str[3];
  5931. //String mergeOutput;
  5932. char mergeOutput[15];
  5933. float output;
  5934. int mesh_point = 0; //index number of calibration point
  5935. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5936. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5937. float mesh_home_z_search = 4;
  5938. float row[x_points_num];
  5939. int ix = 0;
  5940. int iy = 0;
  5941. char* filename_wldsd = "wldsd.txt";
  5942. char data_wldsd[70];
  5943. char numb_wldsd[10];
  5944. d_setup();
  5945. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5946. // We don't know where we are! HOME!
  5947. // Push the commands to the front of the message queue in the reverse order!
  5948. // There shall be always enough space reserved for these commands.
  5949. repeatcommand_front(); // repeat G80 with all its parameters
  5950. enquecommand_front_P((PSTR("G28 W0")));
  5951. enquecommand_front_P((PSTR("G1 Z5")));
  5952. return;
  5953. }
  5954. bool custom_message_old = custom_message;
  5955. unsigned int custom_message_type_old = custom_message_type;
  5956. unsigned int custom_message_state_old = custom_message_state;
  5957. custom_message = true;
  5958. custom_message_type = 1;
  5959. custom_message_state = (x_points_num * y_points_num) + 10;
  5960. lcd_update(1);
  5961. mbl.reset();
  5962. babystep_undo();
  5963. card.openFile(filename_wldsd, false);
  5964. current_position[Z_AXIS] = mesh_home_z_search;
  5965. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5966. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5967. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5968. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5969. setup_for_endstop_move(false);
  5970. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5971. SERIAL_PROTOCOL(x_points_num);
  5972. SERIAL_PROTOCOLPGM(",");
  5973. SERIAL_PROTOCOL(y_points_num);
  5974. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5975. SERIAL_PROTOCOL(mesh_home_z_search);
  5976. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5977. SERIAL_PROTOCOL(x_dimension);
  5978. SERIAL_PROTOCOLPGM(",");
  5979. SERIAL_PROTOCOL(y_dimension);
  5980. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5981. while (mesh_point != x_points_num * y_points_num) {
  5982. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5983. iy = mesh_point / x_points_num;
  5984. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5985. float z0 = 0.f;
  5986. current_position[Z_AXIS] = mesh_home_z_search;
  5987. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5988. st_synchronize();
  5989. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5990. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5992. st_synchronize();
  5993. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5994. break;
  5995. card.closefile();
  5996. }
  5997. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5998. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5999. //strcat(data_wldsd, numb_wldsd);
  6000. //MYSERIAL.println(data_wldsd);
  6001. //delay(1000);
  6002. //delay(3000);
  6003. //t1 = millis();
  6004. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6005. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6006. memset(digit, 0, sizeof(digit));
  6007. //cli();
  6008. digitalWrite(D_REQUIRE, LOW);
  6009. for (int i = 0; i<13; i++)
  6010. {
  6011. //t1 = millis();
  6012. for (int j = 0; j < 4; j++)
  6013. {
  6014. while (digitalRead(D_DATACLOCK) == LOW) {}
  6015. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6016. bitWrite(digit[i], j, digitalRead(D_DATA));
  6017. }
  6018. //t_delay = (millis() - t1);
  6019. //SERIAL_PROTOCOLPGM(" ");
  6020. //SERIAL_PROTOCOL_F(t_delay, 5);
  6021. //SERIAL_PROTOCOLPGM(" ");
  6022. }
  6023. //sei();
  6024. digitalWrite(D_REQUIRE, HIGH);
  6025. mergeOutput[0] = '\0';
  6026. output = 0;
  6027. for (int r = 5; r <= 10; r++) //Merge digits
  6028. {
  6029. sprintf(str, "%d", digit[r]);
  6030. strcat(mergeOutput, str);
  6031. }
  6032. output = atof(mergeOutput);
  6033. if (digit[4] == 8) //Handle sign
  6034. {
  6035. output *= -1;
  6036. }
  6037. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6038. {
  6039. output *= 0.1;
  6040. }
  6041. //output = d_ReadData();
  6042. //row[ix] = current_position[Z_AXIS];
  6043. memset(data_wldsd, 0, sizeof(data_wldsd));
  6044. for (int i = 0; i <3; i++) {
  6045. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6046. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6047. strcat(data_wldsd, numb_wldsd);
  6048. strcat(data_wldsd, ";");
  6049. }
  6050. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6051. dtostrf(output, 8, 5, numb_wldsd);
  6052. strcat(data_wldsd, numb_wldsd);
  6053. //strcat(data_wldsd, ";");
  6054. card.write_command(data_wldsd);
  6055. //row[ix] = d_ReadData();
  6056. row[ix] = output; // current_position[Z_AXIS];
  6057. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6058. for (int i = 0; i < x_points_num; i++) {
  6059. SERIAL_PROTOCOLPGM(" ");
  6060. SERIAL_PROTOCOL_F(row[i], 5);
  6061. }
  6062. SERIAL_PROTOCOLPGM("\n");
  6063. }
  6064. custom_message_state--;
  6065. mesh_point++;
  6066. lcd_update(1);
  6067. }
  6068. card.closefile();
  6069. }
  6070. #endif
  6071. void temp_compensation_start() {
  6072. custom_message = true;
  6073. custom_message_type = 5;
  6074. custom_message_state = PINDA_HEAT_T + 1;
  6075. lcd_update(2);
  6076. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6077. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6078. }
  6079. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6080. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6081. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6082. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6083. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6084. st_synchronize();
  6085. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6086. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6087. delay_keep_alive(1000);
  6088. custom_message_state = PINDA_HEAT_T - i;
  6089. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6090. else lcd_update(1);
  6091. }
  6092. custom_message_type = 0;
  6093. custom_message_state = 0;
  6094. custom_message = false;
  6095. }
  6096. void temp_compensation_apply() {
  6097. int i_add;
  6098. int compensation_value;
  6099. int z_shift = 0;
  6100. float z_shift_mm;
  6101. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6102. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6103. i_add = (target_temperature_bed - 60) / 10;
  6104. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6105. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6106. }else {
  6107. //interpolation
  6108. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6109. }
  6110. SERIAL_PROTOCOLPGM("\n");
  6111. SERIAL_PROTOCOLPGM("Z shift applied:");
  6112. MYSERIAL.print(z_shift_mm);
  6113. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6114. st_synchronize();
  6115. plan_set_z_position(current_position[Z_AXIS]);
  6116. }
  6117. else {
  6118. //we have no temp compensation data
  6119. }
  6120. }
  6121. float temp_comp_interpolation(float inp_temperature) {
  6122. //cubic spline interpolation
  6123. int n, i, j, k;
  6124. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6125. int shift[10];
  6126. int temp_C[10];
  6127. n = 6; //number of measured points
  6128. shift[0] = 0;
  6129. for (i = 0; i < n; i++) {
  6130. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6131. temp_C[i] = 50 + i * 10; //temperature in C
  6132. #ifdef PINDA_THERMISTOR
  6133. temp_C[i] = 35 + i * 5; //temperature in C
  6134. #else
  6135. temp_C[i] = 50 + i * 10; //temperature in C
  6136. #endif
  6137. x[i] = (float)temp_C[i];
  6138. f[i] = (float)shift[i];
  6139. }
  6140. if (inp_temperature < x[0]) return 0;
  6141. for (i = n - 1; i>0; i--) {
  6142. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6143. h[i - 1] = x[i] - x[i - 1];
  6144. }
  6145. //*********** formation of h, s , f matrix **************
  6146. for (i = 1; i<n - 1; i++) {
  6147. m[i][i] = 2 * (h[i - 1] + h[i]);
  6148. if (i != 1) {
  6149. m[i][i - 1] = h[i - 1];
  6150. m[i - 1][i] = h[i - 1];
  6151. }
  6152. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6153. }
  6154. //*********** forward elimination **************
  6155. for (i = 1; i<n - 2; i++) {
  6156. temp = (m[i + 1][i] / m[i][i]);
  6157. for (j = 1; j <= n - 1; j++)
  6158. m[i + 1][j] -= temp*m[i][j];
  6159. }
  6160. //*********** backward substitution *********
  6161. for (i = n - 2; i>0; i--) {
  6162. sum = 0;
  6163. for (j = i; j <= n - 2; j++)
  6164. sum += m[i][j] * s[j];
  6165. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6166. }
  6167. for (i = 0; i<n - 1; i++)
  6168. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6169. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6170. b = s[i] / 2;
  6171. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6172. d = f[i];
  6173. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6174. }
  6175. return sum;
  6176. }
  6177. #ifdef PINDA_THERMISTOR
  6178. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6179. {
  6180. if (!temp_cal_active) return 0;
  6181. if (!calibration_status_pinda()) return 0;
  6182. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6183. }
  6184. #endif //PINDA_THERMISTOR
  6185. void long_pause() //long pause print
  6186. {
  6187. st_synchronize();
  6188. //save currently set parameters to global variables
  6189. saved_feedmultiply = feedmultiply;
  6190. HotendTempBckp = degTargetHotend(active_extruder);
  6191. fanSpeedBckp = fanSpeed;
  6192. start_pause_print = millis();
  6193. //save position
  6194. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6195. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6196. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6197. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6198. //retract
  6199. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6200. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6201. //lift z
  6202. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6203. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6204. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6205. //set nozzle target temperature to 0
  6206. setTargetHotend(0, 0);
  6207. setTargetHotend(0, 1);
  6208. setTargetHotend(0, 2);
  6209. //Move XY to side
  6210. current_position[X_AXIS] = X_PAUSE_POS;
  6211. current_position[Y_AXIS] = Y_PAUSE_POS;
  6212. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6213. // Turn off the print fan
  6214. fanSpeed = 0;
  6215. st_synchronize();
  6216. }
  6217. void serialecho_temperatures() {
  6218. float tt = degHotend(active_extruder);
  6219. SERIAL_PROTOCOLPGM("T:");
  6220. SERIAL_PROTOCOL(tt);
  6221. SERIAL_PROTOCOLPGM(" E:");
  6222. SERIAL_PROTOCOL((int)active_extruder);
  6223. SERIAL_PROTOCOLPGM(" B:");
  6224. SERIAL_PROTOCOL_F(degBed(), 1);
  6225. SERIAL_PROTOCOLLN("");
  6226. }
  6227. extern uint32_t sdpos_atomic;
  6228. void uvlo_()
  6229. {
  6230. unsigned long time_start = millis();
  6231. bool sd_print = card.sdprinting;
  6232. // Conserve power as soon as possible.
  6233. disable_x();
  6234. disable_y();
  6235. tmc2130_set_current_h(Z_AXIS, 12);
  6236. tmc2130_set_current_r(Z_AXIS, 12);
  6237. tmc2130_set_current_h(E_AXIS, 20);
  6238. tmc2130_set_current_r(E_AXIS, 20);
  6239. // Indicate that the interrupt has been triggered.
  6240. SERIAL_ECHOLNPGM("UVLO");
  6241. // Read out the current Z motor microstep counter. This will be later used
  6242. // for reaching the zero full step before powering off.
  6243. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6244. // Calculate the file position, from which to resume this print.
  6245. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6246. {
  6247. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6248. sd_position -= sdlen_planner;
  6249. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6250. sd_position -= sdlen_cmdqueue;
  6251. if (sd_position < 0) sd_position = 0;
  6252. }
  6253. // Backup the feedrate in mm/min.
  6254. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6255. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6256. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6257. // are in action.
  6258. planner_abort_hard();
  6259. // Store the current extruder position.
  6260. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6261. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6262. // Clean the input command queue.
  6263. cmdqueue_reset();
  6264. card.sdprinting = false;
  6265. // card.closefile();
  6266. // Enable stepper driver interrupt to move Z axis.
  6267. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6268. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6269. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6270. sei();
  6271. plan_buffer_line(
  6272. current_position[X_AXIS],
  6273. current_position[Y_AXIS],
  6274. current_position[Z_AXIS],
  6275. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6276. 400, active_extruder);
  6277. plan_buffer_line(
  6278. current_position[X_AXIS],
  6279. current_position[Y_AXIS],
  6280. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6281. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6282. 40, active_extruder);
  6283. // Move Z up to the next 0th full step.
  6284. // Write the file position.
  6285. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6286. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6287. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6288. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6289. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6290. // Scale the z value to 1u resolution.
  6291. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6292. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6293. }
  6294. // Read out the current Z motor microstep counter. This will be later used
  6295. // for reaching the zero full step before powering off.
  6296. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6297. // Store the current position.
  6298. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6299. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6300. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6301. // Store the current feed rate, temperatures and fan speed.
  6302. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6303. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6304. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6305. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6306. // Finaly store the "power outage" flag.
  6307. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6308. st_synchronize();
  6309. SERIAL_ECHOPGM("stps");
  6310. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6311. #if 0
  6312. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6313. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6314. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6315. st_synchronize();
  6316. #endif
  6317. disable_z();
  6318. // Increment power failure counter
  6319. uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
  6320. power_count++;
  6321. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
  6322. SERIAL_ECHOLNPGM("UVLO - end");
  6323. MYSERIAL.println(millis() - time_start);
  6324. cli();
  6325. while(1);
  6326. }
  6327. void setup_fan_interrupt() {
  6328. //INT7
  6329. DDRE &= ~(1 << 7); //input pin
  6330. PORTE &= ~(1 << 7); //no internal pull-up
  6331. //start with sensing rising edge
  6332. EICRB &= ~(1 << 6);
  6333. EICRB |= (1 << 7);
  6334. //enable INT7 interrupt
  6335. EIMSK |= (1 << 7);
  6336. }
  6337. ISR(INT7_vect) {
  6338. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6339. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6340. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6341. t_fan_rising_edge = millis();
  6342. }
  6343. else { //interrupt was triggered by falling edge
  6344. if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6345. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6346. }
  6347. }
  6348. EICRB ^= (1 << 6); //change edge
  6349. }
  6350. void setup_uvlo_interrupt() {
  6351. DDRE &= ~(1 << 4); //input pin
  6352. PORTE &= ~(1 << 4); //no internal pull-up
  6353. //sensing falling edge
  6354. EICRB |= (1 << 0);
  6355. EICRB &= ~(1 << 1);
  6356. //enable INT4 interrupt
  6357. EIMSK |= (1 << 4);
  6358. }
  6359. ISR(INT4_vect) {
  6360. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6361. SERIAL_ECHOLNPGM("INT4");
  6362. if (IS_SD_PRINTING) uvlo_();
  6363. }
  6364. void recover_print(uint8_t automatic) {
  6365. char cmd[30];
  6366. lcd_update_enable(true);
  6367. lcd_update(2);
  6368. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6369. recover_machine_state_after_power_panic();
  6370. // Set the target bed and nozzle temperatures.
  6371. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6372. enquecommand(cmd);
  6373. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6374. enquecommand(cmd);
  6375. // Lift the print head, so one may remove the excess priming material.
  6376. if (current_position[Z_AXIS] < 25)
  6377. enquecommand_P(PSTR("G1 Z25 F800"));
  6378. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6379. enquecommand_P(PSTR("G28 X Y"));
  6380. // Set the target bed and nozzle temperatures and wait.
  6381. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6382. enquecommand(cmd);
  6383. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6384. enquecommand(cmd);
  6385. enquecommand_P(PSTR("M83")); //E axis relative mode
  6386. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6387. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6388. if(automatic == 0){
  6389. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6390. }
  6391. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6392. // Mark the power panic status as inactive.
  6393. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6394. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6395. delay_keep_alive(1000);
  6396. }*/
  6397. SERIAL_ECHOPGM("After waiting for temp:");
  6398. SERIAL_ECHOPGM("Current position X_AXIS:");
  6399. MYSERIAL.println(current_position[X_AXIS]);
  6400. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6401. MYSERIAL.println(current_position[Y_AXIS]);
  6402. // Restart the print.
  6403. restore_print_from_eeprom();
  6404. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6405. MYSERIAL.print(current_position[Z_AXIS]);
  6406. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6407. MYSERIAL.print(current_position[E_AXIS]);
  6408. }
  6409. void recover_machine_state_after_power_panic()
  6410. {
  6411. char cmd[30];
  6412. // 1) Recover the logical cordinates at the time of the power panic.
  6413. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6414. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6415. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6416. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6417. // The current position after power panic is moved to the next closest 0th full step.
  6418. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6419. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6420. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  6421. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6422. sprintf_P(cmd, PSTR("G92 E"));
  6423. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  6424. enquecommand(cmd);
  6425. }
  6426. memcpy(destination, current_position, sizeof(destination));
  6427. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6428. print_world_coordinates();
  6429. // 2) Initialize the logical to physical coordinate system transformation.
  6430. world2machine_initialize();
  6431. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6432. mbl.active = false;
  6433. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6434. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6435. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6436. // Scale the z value to 10u resolution.
  6437. int16_t v;
  6438. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6439. if (v != 0)
  6440. mbl.active = true;
  6441. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6442. }
  6443. if (mbl.active)
  6444. mbl.upsample_3x3();
  6445. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6446. print_mesh_bed_leveling_table();
  6447. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6448. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6449. babystep_load();
  6450. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6451. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6452. // 6) Power up the motors, mark their positions as known.
  6453. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6454. axis_known_position[X_AXIS] = true; enable_x();
  6455. axis_known_position[Y_AXIS] = true; enable_y();
  6456. axis_known_position[Z_AXIS] = true; enable_z();
  6457. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6458. print_physical_coordinates();
  6459. // 7) Recover the target temperatures.
  6460. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6461. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6462. }
  6463. void restore_print_from_eeprom() {
  6464. float x_rec, y_rec, z_pos;
  6465. int feedrate_rec;
  6466. uint8_t fan_speed_rec;
  6467. char cmd[30];
  6468. char* c;
  6469. char filename[13];
  6470. uint8_t depth = 0;
  6471. char dir_name[9];
  6472. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6473. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6474. SERIAL_ECHOPGM("Feedrate:");
  6475. MYSERIAL.println(feedrate_rec);
  6476. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6477. MYSERIAL.println(int(depth));
  6478. for (int i = 0; i < depth; i++) {
  6479. for (int j = 0; j < 8; j++) {
  6480. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6481. }
  6482. dir_name[8] = '\0';
  6483. MYSERIAL.println(dir_name);
  6484. card.chdir(dir_name);
  6485. }
  6486. for (int i = 0; i < 8; i++) {
  6487. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6488. }
  6489. filename[8] = '\0';
  6490. MYSERIAL.print(filename);
  6491. strcat_P(filename, PSTR(".gco"));
  6492. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6493. for (c = &cmd[4]; *c; c++)
  6494. *c = tolower(*c);
  6495. enquecommand(cmd);
  6496. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6497. SERIAL_ECHOPGM("Position read from eeprom:");
  6498. MYSERIAL.println(position);
  6499. // E axis relative mode.
  6500. enquecommand_P(PSTR("M83"));
  6501. // Move to the XY print position in logical coordinates, where the print has been killed.
  6502. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6503. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6504. strcat_P(cmd, PSTR(" F2000"));
  6505. enquecommand(cmd);
  6506. // Move the Z axis down to the print, in logical coordinates.
  6507. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6508. enquecommand(cmd);
  6509. // Unretract.
  6510. enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
  6511. // Set the feedrate saved at the power panic.
  6512. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6513. enquecommand(cmd);
  6514. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6515. {
  6516. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6517. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6518. }
  6519. // Set the fan speed saved at the power panic.
  6520. strcpy_P(cmd, PSTR("M106 S"));
  6521. strcat(cmd, itostr3(int(fan_speed_rec)));
  6522. enquecommand(cmd);
  6523. // Set a position in the file.
  6524. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6525. enquecommand(cmd);
  6526. // Start SD print.
  6527. enquecommand_P(PSTR("M24"));
  6528. }
  6529. ////////////////////////////////////////////////////////////////////////////////
  6530. // new save/restore printing
  6531. //extern uint32_t sdpos_atomic;
  6532. bool saved_printing = false;
  6533. uint32_t saved_sdpos = 0;
  6534. float saved_pos[4] = {0, 0, 0, 0};
  6535. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6536. float saved_feedrate2 = 0;
  6537. uint8_t saved_active_extruder = 0;
  6538. bool saved_extruder_under_pressure = false;
  6539. void stop_and_save_print_to_ram(float z_move, float e_move)
  6540. {
  6541. if (saved_printing) return;
  6542. cli();
  6543. unsigned char nplanner_blocks = number_of_blocks();
  6544. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6545. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6546. saved_sdpos -= sdlen_planner;
  6547. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6548. saved_sdpos -= sdlen_cmdqueue;
  6549. #if 0
  6550. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6551. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6552. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6553. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6554. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6555. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6556. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6557. {
  6558. card.setIndex(saved_sdpos);
  6559. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6560. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6561. MYSERIAL.print(char(card.get()));
  6562. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6563. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6564. MYSERIAL.print(char(card.get()));
  6565. SERIAL_ECHOLNPGM("End of command buffer");
  6566. }
  6567. {
  6568. // Print the content of the planner buffer, line by line:
  6569. card.setIndex(saved_sdpos);
  6570. int8_t iline = 0;
  6571. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6572. SERIAL_ECHOPGM("Planner line (from file): ");
  6573. MYSERIAL.print(int(iline), DEC);
  6574. SERIAL_ECHOPGM(", length: ");
  6575. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6576. SERIAL_ECHOPGM(", steps: (");
  6577. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6578. SERIAL_ECHOPGM(",");
  6579. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6580. SERIAL_ECHOPGM(",");
  6581. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6582. SERIAL_ECHOPGM(",");
  6583. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6584. SERIAL_ECHOPGM("), events: ");
  6585. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6586. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6587. MYSERIAL.print(char(card.get()));
  6588. }
  6589. }
  6590. {
  6591. // Print the content of the command buffer, line by line:
  6592. int8_t iline = 0;
  6593. union {
  6594. struct {
  6595. char lo;
  6596. char hi;
  6597. } lohi;
  6598. uint16_t value;
  6599. } sdlen_single;
  6600. int _bufindr = bufindr;
  6601. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6602. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6603. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6604. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6605. }
  6606. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6607. MYSERIAL.print(int(iline), DEC);
  6608. SERIAL_ECHOPGM(", type: ");
  6609. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6610. SERIAL_ECHOPGM(", len: ");
  6611. MYSERIAL.println(sdlen_single.value, DEC);
  6612. // Print the content of the buffer line.
  6613. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6614. SERIAL_ECHOPGM("Buffer line (from file): ");
  6615. MYSERIAL.print(int(iline), DEC);
  6616. MYSERIAL.println(int(iline), DEC);
  6617. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6618. MYSERIAL.print(char(card.get()));
  6619. if (-- _buflen == 0)
  6620. break;
  6621. // First skip the current command ID and iterate up to the end of the string.
  6622. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6623. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6624. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6625. // If the end of the buffer was empty,
  6626. if (_bufindr == sizeof(cmdbuffer)) {
  6627. // skip to the start and find the nonzero command.
  6628. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6629. }
  6630. }
  6631. }
  6632. #endif
  6633. #if 0
  6634. saved_feedrate2 = feedrate; //save feedrate
  6635. #else
  6636. // Try to deduce the feedrate from the first block of the planner.
  6637. // Speed is in mm/min.
  6638. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6639. #endif
  6640. planner_abort_hard(); //abort printing
  6641. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6642. saved_active_extruder = active_extruder; //save active_extruder
  6643. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6644. cmdqueue_reset(); //empty cmdqueue
  6645. card.sdprinting = false;
  6646. // card.closefile();
  6647. saved_printing = true;
  6648. sei();
  6649. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6650. #if 1
  6651. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6652. char buf[48];
  6653. strcpy_P(buf, PSTR("G1 Z"));
  6654. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6655. strcat_P(buf, PSTR(" E"));
  6656. // Relative extrusion
  6657. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6658. strcat_P(buf, PSTR(" F"));
  6659. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6660. // At this point the command queue is empty.
  6661. enquecommand(buf, false);
  6662. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6663. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6664. repeatcommand_front();
  6665. #else
  6666. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6667. st_synchronize(); //wait moving
  6668. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6669. memcpy(destination, current_position, sizeof(destination));
  6670. #endif
  6671. }
  6672. }
  6673. void restore_print_from_ram_and_continue(float e_move)
  6674. {
  6675. if (!saved_printing) return;
  6676. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6677. // current_position[axis] = st_get_position_mm(axis);
  6678. active_extruder = saved_active_extruder; //restore active_extruder
  6679. feedrate = saved_feedrate2; //restore feedrate
  6680. float e = saved_pos[E_AXIS] - e_move;
  6681. plan_set_e_position(e);
  6682. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6683. st_synchronize();
  6684. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6685. memcpy(destination, current_position, sizeof(destination));
  6686. card.setIndex(saved_sdpos);
  6687. sdpos_atomic = saved_sdpos;
  6688. card.sdprinting = true;
  6689. saved_printing = false;
  6690. }
  6691. void print_world_coordinates()
  6692. {
  6693. SERIAL_ECHOPGM("world coordinates: (");
  6694. MYSERIAL.print(current_position[X_AXIS], 3);
  6695. SERIAL_ECHOPGM(", ");
  6696. MYSERIAL.print(current_position[Y_AXIS], 3);
  6697. SERIAL_ECHOPGM(", ");
  6698. MYSERIAL.print(current_position[Z_AXIS], 3);
  6699. SERIAL_ECHOLNPGM(")");
  6700. }
  6701. void print_physical_coordinates()
  6702. {
  6703. SERIAL_ECHOPGM("physical coordinates: (");
  6704. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6705. SERIAL_ECHOPGM(", ");
  6706. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6707. SERIAL_ECHOPGM(", ");
  6708. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6709. SERIAL_ECHOLNPGM(")");
  6710. }
  6711. void print_mesh_bed_leveling_table()
  6712. {
  6713. SERIAL_ECHOPGM("mesh bed leveling: ");
  6714. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6715. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6716. MYSERIAL.print(mbl.z_values[y][x], 3);
  6717. SERIAL_ECHOPGM(" ");
  6718. }
  6719. SERIAL_ECHOLNPGM("");
  6720. }
  6721. #define FIL_LOAD_LENGTH 60
  6722. void extr_unload2() { //unloads filament
  6723. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6724. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6725. // int8_t SilentMode;
  6726. uint8_t snmm_extruder = 0;
  6727. if (degHotend0() > EXTRUDE_MINTEMP) {
  6728. lcd_implementation_clear();
  6729. lcd_display_message_fullscreen_P(PSTR(""));
  6730. max_feedrate[E_AXIS] = 50;
  6731. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  6732. // lcd.print(" ");
  6733. // lcd.print(snmm_extruder + 1);
  6734. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  6735. if (current_position[Z_AXIS] < 15) {
  6736. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  6737. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  6738. }
  6739. current_position[E_AXIS] += 10; //extrusion
  6740. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  6741. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  6742. if (current_temperature[0] < 230) { //PLA & all other filaments
  6743. current_position[E_AXIS] += 5.4;
  6744. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  6745. current_position[E_AXIS] += 3.2;
  6746. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6747. current_position[E_AXIS] += 3;
  6748. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  6749. }
  6750. else { //ABS
  6751. current_position[E_AXIS] += 3.1;
  6752. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  6753. current_position[E_AXIS] += 3.1;
  6754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  6755. current_position[E_AXIS] += 4;
  6756. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6757. /*current_position[X_AXIS] += 23; //delay
  6758. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  6759. current_position[X_AXIS] -= 23; //delay
  6760. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  6761. delay_keep_alive(4700);
  6762. }
  6763. max_feedrate[E_AXIS] = 80;
  6764. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6765. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6766. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6767. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6768. st_synchronize();
  6769. //digipot_init();
  6770. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  6771. // else digipot_current(2, tmp_motor_loud[2]);
  6772. lcd_update_enable(true);
  6773. // lcd_return_to_status();
  6774. max_feedrate[E_AXIS] = 50;
  6775. }
  6776. else {
  6777. lcd_implementation_clear();
  6778. lcd.setCursor(0, 0);
  6779. lcd_printPGM(MSG_ERROR);
  6780. lcd.setCursor(0, 2);
  6781. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  6782. delay(2000);
  6783. lcd_implementation_clear();
  6784. }
  6785. // lcd_return_to_status();
  6786. }