123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 |
- /*
- motion_control.c - high level interface for issuing motion commands
- Part of Grbl
- Copyright (c) 2009-2011 Simen Svale Skogsrud
- Copyright (c) 2011 Sungeun K. Jeon
-
- Grbl is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
- Grbl is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with Grbl. If not, see <http://www.gnu.org/licenses/>.
- */
- #include "Marlin.h"
- #include "stepper.h"
- #include "planner.h"
- // The arc is approximated by generating a huge number of tiny, linear segments. The length of each
- // segment is configured in settings.mm_per_arc_segment.
- void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1,
- uint8_t axis_linear, float feed_rate, float radius, uint8_t isclockwise, uint8_t extruder)
- {
- // int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled();
- // plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc
- float center_axis0 = position[axis_0] + offset[axis_0];
- float center_axis1 = position[axis_1] + offset[axis_1];
- float linear_travel = target[axis_linear] - position[axis_linear];
- float extruder_travel = target[E_AXIS] - position[E_AXIS];
- float r_axis0 = -offset[axis_0]; // Radius vector from center to current location
- float r_axis1 = -offset[axis_1];
- float rt_axis0 = target[axis_0] - center_axis0;
- float rt_axis1 = target[axis_1] - center_axis1;
-
- // CCW angle between position and target from circle center. Only one atan2() trig computation required.
- float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
- if (angular_travel < 0) { angular_travel += 2*M_PI; }
- if (isclockwise) { angular_travel -= 2*M_PI; }
-
- //20141002:full circle for G03 did not work, e.g. G03 X80 Y80 I20 J0 F2000 is giving an Angle of zero so head is not moving
- //to compensate when start pos = target pos && angle is zero -> angle = 2Pi
- if (position[axis_0] == target[axis_0] && position[axis_1] == target[axis_1] && angular_travel == 0)
- {
- angular_travel += 2*M_PI;
- }
- //end fix G03
-
- float millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
- if (millimeters_of_travel < 0.001) { return; }
- uint16_t segments = floor(millimeters_of_travel/MM_PER_ARC_SEGMENT);
- if(segments == 0) segments = 1;
-
- /*
- // Multiply inverse feed_rate to compensate for the fact that this movement is approximated
- // by a number of discrete segments. The inverse feed_rate should be correct for the sum of
- // all segments.
- if (invert_feed_rate) { feed_rate *= segments; }
- */
- float theta_per_segment = angular_travel/segments;
- float linear_per_segment = linear_travel/segments;
- float extruder_per_segment = extruder_travel/segments;
-
- /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
- and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
- r_T = [cos(phi) -sin(phi);
- sin(phi) cos(phi] * r ;
-
- For arc generation, the center of the circle is the axis of rotation and the radius vector is
- defined from the circle center to the initial position. Each line segment is formed by successive
- vector rotations. This requires only two cos() and sin() computations to form the rotation
- matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
- all double numbers are single precision on the Arduino. (True double precision will not have
- round off issues for CNC applications.) Single precision error can accumulate to be greater than
- tool precision in some cases. Therefore, arc path correction is implemented.
- Small angle approximation may be used to reduce computation overhead further. This approximation
- holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
- theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
- to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
- numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
- issue for CNC machines with the single precision Arduino calculations.
-
- This approximation also allows mc_arc to immediately insert a line segment into the planner
- without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
- a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
- This is important when there are successive arc motions.
- */
- // Vector rotation matrix values
- float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
- float sin_T = theta_per_segment;
-
- float arc_target[4];
- float sin_Ti;
- float cos_Ti;
- float r_axisi;
- uint16_t i;
- int8_t count = 0;
- // Initialize the linear axis
- arc_target[axis_linear] = position[axis_linear];
-
- // Initialize the extruder axis
- arc_target[E_AXIS] = position[E_AXIS];
- for (i = 1; i<segments; i++) { // Increment (segments-1)
-
- if (count < N_ARC_CORRECTION) {
- // Apply vector rotation matrix
- r_axisi = r_axis0*sin_T + r_axis1*cos_T;
- r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
- r_axis1 = r_axisi;
- count++;
- } else {
- // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
- // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
- cos_Ti = cos(i*theta_per_segment);
- sin_Ti = sin(i*theta_per_segment);
- r_axis0 = -offset[axis_0]*cos_Ti + offset[axis_1]*sin_Ti;
- r_axis1 = -offset[axis_0]*sin_Ti - offset[axis_1]*cos_Ti;
- count = 0;
- }
- // Update arc_target location
- arc_target[axis_0] = center_axis0 + r_axis0;
- arc_target[axis_1] = center_axis1 + r_axis1;
- arc_target[axis_linear] += linear_per_segment;
- arc_target[E_AXIS] += extruder_per_segment;
- clamp_to_software_endstops(arc_target);
- plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, extruder);
-
- }
- // Ensure last segment arrives at target location.
- plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, extruder);
- // plan_set_acceleration_manager_enabled(acceleration_manager_was_enabled);
- }
|