temperature.cpp 66 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "messages.h"
  33. #include "Timer.h"
  34. #include "Configuration_prusa.h"
  35. //===========================================================================
  36. //=============================public variables============================
  37. //===========================================================================
  38. int target_temperature[EXTRUDERS] = { 0 };
  39. int target_temperature_bed = 0;
  40. int current_temperature_raw[EXTRUDERS] = { 0 };
  41. float current_temperature[EXTRUDERS] = { 0.0 };
  42. #ifdef PINDA_THERMISTOR
  43. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  44. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  45. float current_temperature_pinda = 0.0;
  46. #endif //PINDA_THERMISTOR
  47. #ifdef AMBIENT_THERMISTOR
  48. int current_temperature_raw_ambient = 0 ;
  49. float current_temperature_ambient = 0.0;
  50. #endif //AMBIENT_THERMISTOR
  51. #ifdef VOLT_PWR_PIN
  52. int current_voltage_raw_pwr = 0;
  53. #endif
  54. #ifdef VOLT_BED_PIN
  55. int current_voltage_raw_bed = 0;
  56. #endif
  57. int current_temperature_bed_raw = 0;
  58. float current_temperature_bed = 0.0;
  59. #ifdef PIDTEMP
  60. float _Kp, _Ki, _Kd;
  61. int pid_cycle, pid_number_of_cycles;
  62. bool pid_tuning_finished = false;
  63. #ifdef PID_ADD_EXTRUSION_RATE
  64. float Kc=DEFAULT_Kc;
  65. #endif
  66. #endif //PIDTEMP
  67. #ifdef FAN_SOFT_PWM
  68. unsigned char fanSpeedSoftPwm;
  69. #endif
  70. #ifdef FANCHECK
  71. volatile uint8_t fan_check_error = EFCE_OK;
  72. #endif
  73. unsigned char soft_pwm_bed;
  74. #ifdef BABYSTEPPING
  75. volatile int babystepsTodo[3]={0,0,0};
  76. #endif
  77. //===========================================================================
  78. //=============================private variables============================
  79. //===========================================================================
  80. static volatile bool temp_meas_ready = false;
  81. #ifdef PIDTEMP
  82. //static cannot be external:
  83. static float iState_sum[EXTRUDERS] = { 0 };
  84. static float dState_last[EXTRUDERS] = { 0 };
  85. static float pTerm[EXTRUDERS];
  86. static float iTerm[EXTRUDERS];
  87. static float dTerm[EXTRUDERS];
  88. //int output;
  89. static float pid_error[EXTRUDERS];
  90. static float iState_sum_min[EXTRUDERS];
  91. static float iState_sum_max[EXTRUDERS];
  92. // static float pid_input[EXTRUDERS];
  93. // static float pid_output[EXTRUDERS];
  94. static bool pid_reset[EXTRUDERS];
  95. #endif //PIDTEMP
  96. #ifdef PIDTEMPBED
  97. //static cannot be external:
  98. static float temp_iState_bed = { 0 };
  99. static float temp_dState_bed = { 0 };
  100. static float pTerm_bed;
  101. static float iTerm_bed;
  102. static float dTerm_bed;
  103. //int output;
  104. static float pid_error_bed;
  105. static float temp_iState_min_bed;
  106. static float temp_iState_max_bed;
  107. #else //PIDTEMPBED
  108. static unsigned long previous_millis_bed_heater;
  109. #endif //PIDTEMPBED
  110. static unsigned char soft_pwm[EXTRUDERS];
  111. #ifdef FAN_SOFT_PWM
  112. static unsigned char soft_pwm_fan;
  113. #endif
  114. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  115. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  116. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  117. unsigned long extruder_autofan_last_check = _millis();
  118. uint8_t fanSpeedBckp = 255;
  119. bool fan_measuring = false;
  120. #endif
  121. #if EXTRUDERS > 3
  122. # error Unsupported number of extruders
  123. #elif EXTRUDERS > 2
  124. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  125. #elif EXTRUDERS > 1
  126. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  127. #else
  128. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  129. #endif
  130. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  131. // Init min and max temp with extreme values to prevent false errors during startup
  132. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  133. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  134. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  135. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  136. #ifdef BED_MINTEMP
  137. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  138. #endif
  139. #ifdef BED_MAXTEMP
  140. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  141. #endif
  142. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  143. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  144. static float analog2temp(int raw, uint8_t e);
  145. static float analog2tempBed(int raw);
  146. static float analog2tempAmbient(int raw);
  147. static void updateTemperaturesFromRawValues();
  148. enum TempRunawayStates
  149. {
  150. TempRunaway_INACTIVE = 0,
  151. TempRunaway_PREHEAT = 1,
  152. TempRunaway_ACTIVE = 2,
  153. };
  154. #ifndef SOFT_PWM_SCALE
  155. #define SOFT_PWM_SCALE 0
  156. #endif
  157. //===========================================================================
  158. //============================= functions ============================
  159. //===========================================================================
  160. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  161. static float temp_runaway_status[4];
  162. static float temp_runaway_target[4];
  163. static float temp_runaway_timer[4];
  164. static int temp_runaway_error_counter[4];
  165. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  166. static void temp_runaway_stop(bool isPreheat, bool isBed);
  167. #endif
  168. void PID_autotune(float temp, int extruder, int ncycles)
  169. {
  170. pid_number_of_cycles = ncycles;
  171. pid_tuning_finished = false;
  172. float input = 0.0;
  173. pid_cycle=0;
  174. bool heating = true;
  175. unsigned long temp_millis = _millis();
  176. unsigned long t1=temp_millis;
  177. unsigned long t2=temp_millis;
  178. long t_high = 0;
  179. long t_low = 0;
  180. long bias, d;
  181. float Ku, Tu;
  182. float max = 0, min = 10000;
  183. uint8_t safety_check_cycles = 0;
  184. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  185. float temp_ambient;
  186. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  187. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  188. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  189. unsigned long extruder_autofan_last_check = _millis();
  190. #endif
  191. if ((extruder >= EXTRUDERS)
  192. #if (TEMP_BED_PIN <= -1)
  193. ||(extruder < 0)
  194. #endif
  195. ){
  196. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  197. pid_tuning_finished = true;
  198. pid_cycle = 0;
  199. return;
  200. }
  201. SERIAL_ECHOLN("PID Autotune start");
  202. disable_heater(); // switch off all heaters.
  203. if (extruder<0)
  204. {
  205. soft_pwm_bed = (MAX_BED_POWER)/2;
  206. timer02_set_pwm0(soft_pwm_bed << 1);
  207. bias = d = (MAX_BED_POWER)/2;
  208. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  209. }
  210. else
  211. {
  212. soft_pwm[extruder] = (PID_MAX)/2;
  213. bias = d = (PID_MAX)/2;
  214. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  215. }
  216. for(;;) {
  217. #ifdef WATCHDOG
  218. wdt_reset();
  219. #endif //WATCHDOG
  220. if(temp_meas_ready == true) { // temp sample ready
  221. updateTemperaturesFromRawValues();
  222. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  223. max=max(max,input);
  224. min=min(min,input);
  225. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  226. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  227. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  228. if(_millis() - extruder_autofan_last_check > 2500) {
  229. checkExtruderAutoFans();
  230. extruder_autofan_last_check = _millis();
  231. }
  232. #endif
  233. if(heating == true && input > temp) {
  234. if(_millis() - t2 > 5000) {
  235. heating=false;
  236. if (extruder<0)
  237. {
  238. soft_pwm_bed = (bias - d) >> 1;
  239. timer02_set_pwm0(soft_pwm_bed << 1);
  240. }
  241. else
  242. soft_pwm[extruder] = (bias - d) >> 1;
  243. t1=_millis();
  244. t_high=t1 - t2;
  245. max=temp;
  246. }
  247. }
  248. if(heating == false && input < temp) {
  249. if(_millis() - t1 > 5000) {
  250. heating=true;
  251. t2=_millis();
  252. t_low=t2 - t1;
  253. if(pid_cycle > 0) {
  254. bias += (d*(t_high - t_low))/(t_low + t_high);
  255. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  256. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  257. else d = bias;
  258. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  259. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  260. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  261. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  262. if(pid_cycle > 2) {
  263. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  264. Tu = ((float)(t_low + t_high)/1000.0);
  265. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  266. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  267. _Kp = 0.6*Ku;
  268. _Ki = 2*_Kp/Tu;
  269. _Kd = _Kp*Tu/8;
  270. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  271. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  272. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  273. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  274. /*
  275. _Kp = 0.33*Ku;
  276. _Ki = _Kp/Tu;
  277. _Kd = _Kp*Tu/3;
  278. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  279. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  280. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  281. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  282. _Kp = 0.2*Ku;
  283. _Ki = 2*_Kp/Tu;
  284. _Kd = _Kp*Tu/3;
  285. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  286. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  287. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  288. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  289. */
  290. }
  291. }
  292. if (extruder<0)
  293. {
  294. soft_pwm_bed = (bias + d) >> 1;
  295. timer02_set_pwm0(soft_pwm_bed << 1);
  296. }
  297. else
  298. soft_pwm[extruder] = (bias + d) >> 1;
  299. pid_cycle++;
  300. min=temp;
  301. }
  302. }
  303. }
  304. if(input > (temp + 20)) {
  305. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  306. pid_tuning_finished = true;
  307. pid_cycle = 0;
  308. return;
  309. }
  310. if(_millis() - temp_millis > 2000) {
  311. int p;
  312. if (extruder<0){
  313. p=soft_pwm_bed;
  314. SERIAL_PROTOCOLPGM("B:");
  315. }else{
  316. p=soft_pwm[extruder];
  317. SERIAL_PROTOCOLPGM("T:");
  318. }
  319. SERIAL_PROTOCOL(input);
  320. SERIAL_PROTOCOLPGM(" @:");
  321. SERIAL_PROTOCOLLN(p);
  322. if (safety_check_cycles == 0) { //save ambient temp
  323. temp_ambient = input;
  324. //SERIAL_ECHOPGM("Ambient T: ");
  325. //MYSERIAL.println(temp_ambient);
  326. safety_check_cycles++;
  327. }
  328. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  329. safety_check_cycles++;
  330. }
  331. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  332. safety_check_cycles++;
  333. //SERIAL_ECHOPGM("Time from beginning: ");
  334. //MYSERIAL.print(safety_check_cycles_count * 2);
  335. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  336. //MYSERIAL.println(input - temp_ambient);
  337. if (abs(input - temp_ambient) < 5.0) {
  338. temp_runaway_stop(false, (extruder<0));
  339. pid_tuning_finished = true;
  340. return;
  341. }
  342. }
  343. temp_millis = _millis();
  344. }
  345. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  346. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  347. pid_tuning_finished = true;
  348. pid_cycle = 0;
  349. return;
  350. }
  351. if(pid_cycle > ncycles) {
  352. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  353. pid_tuning_finished = true;
  354. pid_cycle = 0;
  355. return;
  356. }
  357. lcd_update(0);
  358. }
  359. }
  360. void updatePID()
  361. {
  362. #ifdef PIDTEMP
  363. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  364. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  365. }
  366. #endif
  367. #ifdef PIDTEMPBED
  368. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  369. #endif
  370. }
  371. int getHeaterPower(int heater) {
  372. if (heater<0)
  373. return soft_pwm_bed;
  374. return soft_pwm[heater];
  375. }
  376. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  377. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  378. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  379. #if defined(FAN_PIN) && FAN_PIN > -1
  380. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  381. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  382. #endif
  383. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  384. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  385. #endif
  386. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  387. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  388. #endif
  389. #endif
  390. void setExtruderAutoFanState(int pin, bool state)
  391. {
  392. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  393. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  394. pinMode(pin, OUTPUT);
  395. digitalWrite(pin, newFanSpeed);
  396. //analogWrite(pin, newFanSpeed);
  397. }
  398. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  399. void countFanSpeed()
  400. {
  401. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  402. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  403. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  404. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  405. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  406. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  407. SERIAL_ECHOLNPGM(" ");*/
  408. fan_edge_counter[0] = 0;
  409. fan_edge_counter[1] = 0;
  410. }
  411. void checkFanSpeed()
  412. {
  413. uint8_t max_print_fan_errors = 0;
  414. uint8_t max_extruder_fan_errors = 0;
  415. #ifdef FAN_SOFT_PWM
  416. max_print_fan_errors = 3; //15 seconds
  417. max_extruder_fan_errors = 2; //10seconds
  418. #else //FAN_SOFT_PWM
  419. max_print_fan_errors = 15; //15 seconds
  420. max_extruder_fan_errors = 5; //5 seconds
  421. #endif //FAN_SOFT_PWM
  422. if(fans_check_enabled != false)
  423. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  424. static unsigned char fan_speed_errors[2] = { 0,0 };
  425. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  426. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
  427. else{
  428. fan_speed_errors[0] = 0;
  429. host_keepalive();
  430. }
  431. #endif
  432. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  433. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  434. else fan_speed_errors[1] = 0;
  435. #endif
  436. // drop the fan_check_error flag when both fans are ok
  437. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  438. // we may even send some info to the LCD from here
  439. fan_check_error = EFCE_FIXED;
  440. }
  441. if ((fan_check_error == EFCE_FIXED) && !PRINTER_ACTIVE){
  442. fan_check_error = EFCE_OK; //if the issue is fixed while the printer is doing nothing, reenable processing immediately.
  443. lcd_reset_alert_level(); //for another fan speed error
  444. }
  445. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  446. fan_speed_errors[0] = 0;
  447. fanSpeedError(0); //extruder fan
  448. }
  449. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  450. fan_speed_errors[1] = 0;
  451. fanSpeedError(1); //print fan
  452. }
  453. }
  454. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  455. //! Extracted from fanSpeedError to save some space.
  456. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  457. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  458. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  459. SERIAL_ECHOLNRPGM(serialMsg);
  460. if (get_message_level() == 0) {
  461. Sound_MakeCustom(200,0,true);
  462. LCD_ALERTMESSAGERPGM(lcdMsg);
  463. }
  464. }
  465. void fanSpeedError(unsigned char _fan) {
  466. if (get_message_level() != 0 && isPrintPaused) return;
  467. //to ensure that target temp. is not set to zero in case that we are resuming print
  468. if (card.sdprinting || is_usb_printing) {
  469. if (heating_status != 0) {
  470. lcd_print_stop();
  471. }
  472. else {
  473. fan_check_error = EFCE_DETECTED; //plans error for next processed command
  474. }
  475. }
  476. else {
  477. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED); //Why pause octoprint? is_usb_printing would be true in that case, so there is no need for this.
  478. setTargetHotend0(0);
  479. heating_status = 0;
  480. fan_check_error = EFCE_REPORTED;
  481. }
  482. switch (_fan) {
  483. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  484. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), MSG_FANCHECK_EXTRUDER);
  485. break;
  486. case 1:
  487. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT);
  488. break;
  489. }
  490. // SERIAL_PROTOCOLLNRPGM(MSG_OK); //This ok messes things up with octoprint.
  491. }
  492. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  493. void checkExtruderAutoFans()
  494. {
  495. uint8_t fanState = 0;
  496. // which fan pins need to be turned on?
  497. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  498. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  499. fanState |= 1;
  500. #endif
  501. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  502. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  503. {
  504. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  505. fanState |= 1;
  506. else
  507. fanState |= 2;
  508. }
  509. #endif
  510. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  511. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  512. {
  513. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  514. fanState |= 1;
  515. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  516. fanState |= 2;
  517. else
  518. fanState |= 4;
  519. }
  520. #endif
  521. // update extruder auto fan states
  522. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  523. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  524. #endif
  525. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  526. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  527. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  528. #endif
  529. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  530. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  531. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  532. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  533. #endif
  534. }
  535. #endif // any extruder auto fan pins set
  536. // ready for eventually parameters adjusting
  537. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  538. //void resetPID(uint8_t extruder)
  539. {
  540. }
  541. void manage_heater()
  542. {
  543. #ifdef WATCHDOG
  544. wdt_reset();
  545. #endif //WATCHDOG
  546. float pid_input;
  547. float pid_output;
  548. if(temp_meas_ready != true) //better readability
  549. return;
  550. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  551. updateTemperaturesFromRawValues();
  552. check_max_temp();
  553. check_min_temp();
  554. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  555. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  556. #endif
  557. for(int e = 0; e < EXTRUDERS; e++)
  558. {
  559. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  560. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  561. #endif
  562. #ifdef PIDTEMP
  563. pid_input = current_temperature[e];
  564. #ifndef PID_OPENLOOP
  565. if(target_temperature[e] == 0) {
  566. pid_output = 0;
  567. pid_reset[e] = true;
  568. } else {
  569. pid_error[e] = target_temperature[e] - pid_input;
  570. if(pid_reset[e]) {
  571. iState_sum[e] = 0.0;
  572. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  573. pid_reset[e] = false;
  574. }
  575. #ifndef PonM
  576. pTerm[e] = cs.Kp * pid_error[e];
  577. iState_sum[e] += pid_error[e];
  578. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  579. iTerm[e] = cs.Ki * iState_sum[e];
  580. // PID_K1 defined in Configuration.h in the PID settings
  581. #define K2 (1.0-PID_K1)
  582. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  583. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  584. if (pid_output > PID_MAX) {
  585. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  586. pid_output=PID_MAX;
  587. } else if (pid_output < 0) {
  588. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  589. pid_output=0;
  590. }
  591. #else // PonM ("Proportional on Measurement" method)
  592. iState_sum[e] += cs.Ki * pid_error[e];
  593. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  594. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  595. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  596. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  597. pid_output = constrain(pid_output, 0, PID_MAX);
  598. #endif // PonM
  599. }
  600. dState_last[e] = pid_input;
  601. #else
  602. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  603. #endif //PID_OPENLOOP
  604. #ifdef PID_DEBUG
  605. SERIAL_ECHO_START;
  606. SERIAL_ECHO(" PID_DEBUG ");
  607. SERIAL_ECHO(e);
  608. SERIAL_ECHO(": Input ");
  609. SERIAL_ECHO(pid_input);
  610. SERIAL_ECHO(" Output ");
  611. SERIAL_ECHO(pid_output);
  612. SERIAL_ECHO(" pTerm ");
  613. SERIAL_ECHO(pTerm[e]);
  614. SERIAL_ECHO(" iTerm ");
  615. SERIAL_ECHO(iTerm[e]);
  616. SERIAL_ECHO(" dTerm ");
  617. SERIAL_ECHOLN(-dTerm[e]);
  618. #endif //PID_DEBUG
  619. #else /* PID off */
  620. pid_output = 0;
  621. if(current_temperature[e] < target_temperature[e]) {
  622. pid_output = PID_MAX;
  623. }
  624. #endif
  625. // Check if temperature is within the correct range
  626. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  627. {
  628. soft_pwm[e] = (int)pid_output >> 1;
  629. }
  630. else
  631. {
  632. soft_pwm[e] = 0;
  633. }
  634. } // End extruder for loop
  635. #define FAN_CHECK_PERIOD 5000 //5s
  636. #define FAN_CHECK_DURATION 100 //100ms
  637. #ifndef DEBUG_DISABLE_FANCHECK
  638. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  639. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  640. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  641. #ifdef FAN_SOFT_PWM
  642. #ifdef FANCHECK
  643. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  644. extruder_autofan_last_check = _millis();
  645. fanSpeedBckp = fanSpeedSoftPwm;
  646. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  647. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  648. fanSpeedSoftPwm = 255;
  649. }
  650. fan_measuring = true;
  651. }
  652. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  653. countFanSpeed();
  654. checkFanSpeed();
  655. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  656. fanSpeedSoftPwm = fanSpeedBckp;
  657. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  658. extruder_autofan_last_check = _millis();
  659. fan_measuring = false;
  660. }
  661. #endif //FANCHECK
  662. checkExtruderAutoFans();
  663. #else //FAN_SOFT_PWM
  664. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  665. {
  666. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  667. countFanSpeed();
  668. checkFanSpeed();
  669. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  670. checkExtruderAutoFans();
  671. extruder_autofan_last_check = _millis();
  672. }
  673. #endif //FAN_SOFT_PWM
  674. #endif
  675. #endif //DEBUG_DISABLE_FANCHECK
  676. #ifndef PIDTEMPBED
  677. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  678. return;
  679. previous_millis_bed_heater = _millis();
  680. #endif
  681. #if TEMP_SENSOR_BED != 0
  682. #ifdef PIDTEMPBED
  683. pid_input = current_temperature_bed;
  684. #ifndef PID_OPENLOOP
  685. pid_error_bed = target_temperature_bed - pid_input;
  686. pTerm_bed = cs.bedKp * pid_error_bed;
  687. temp_iState_bed += pid_error_bed;
  688. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  689. iTerm_bed = cs.bedKi * temp_iState_bed;
  690. //PID_K1 defined in Configuration.h in the PID settings
  691. #define K2 (1.0-PID_K1)
  692. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  693. temp_dState_bed = pid_input;
  694. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  695. if (pid_output > MAX_BED_POWER) {
  696. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  697. pid_output=MAX_BED_POWER;
  698. } else if (pid_output < 0){
  699. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  700. pid_output=0;
  701. }
  702. #else
  703. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  704. #endif //PID_OPENLOOP
  705. if(current_temperature_bed < BED_MAXTEMP)
  706. {
  707. soft_pwm_bed = (int)pid_output >> 1;
  708. timer02_set_pwm0(soft_pwm_bed << 1);
  709. }
  710. else {
  711. soft_pwm_bed = 0;
  712. timer02_set_pwm0(soft_pwm_bed << 1);
  713. }
  714. #elif !defined(BED_LIMIT_SWITCHING)
  715. // Check if temperature is within the correct range
  716. if(current_temperature_bed < BED_MAXTEMP)
  717. {
  718. if(current_temperature_bed >= target_temperature_bed)
  719. {
  720. soft_pwm_bed = 0;
  721. timer02_set_pwm0(soft_pwm_bed << 1);
  722. }
  723. else
  724. {
  725. soft_pwm_bed = MAX_BED_POWER>>1;
  726. timer02_set_pwm0(soft_pwm_bed << 1);
  727. }
  728. }
  729. else
  730. {
  731. soft_pwm_bed = 0;
  732. timer02_set_pwm0(soft_pwm_bed << 1);
  733. WRITE(HEATER_BED_PIN,LOW);
  734. }
  735. #else //#ifdef BED_LIMIT_SWITCHING
  736. // Check if temperature is within the correct band
  737. if(current_temperature_bed < BED_MAXTEMP)
  738. {
  739. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  740. {
  741. soft_pwm_bed = 0;
  742. timer02_set_pwm0(soft_pwm_bed << 1);
  743. }
  744. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  745. {
  746. soft_pwm_bed = MAX_BED_POWER>>1;
  747. timer02_set_pwm0(soft_pwm_bed << 1);
  748. }
  749. }
  750. else
  751. {
  752. soft_pwm_bed = 0;
  753. timer02_set_pwm0(soft_pwm_bed << 1);
  754. WRITE(HEATER_BED_PIN,LOW);
  755. }
  756. #endif
  757. if(target_temperature_bed==0)
  758. {
  759. soft_pwm_bed = 0;
  760. timer02_set_pwm0(soft_pwm_bed << 1);
  761. }
  762. #endif
  763. host_keepalive();
  764. }
  765. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  766. // Derived from RepRap FiveD extruder::getTemperature()
  767. // For hot end temperature measurement.
  768. static float analog2temp(int raw, uint8_t e) {
  769. if(e >= EXTRUDERS)
  770. {
  771. SERIAL_ERROR_START;
  772. SERIAL_ERROR((int)e);
  773. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  774. kill(PSTR(""), 6);
  775. return 0.0;
  776. }
  777. #ifdef HEATER_0_USES_MAX6675
  778. if (e == 0)
  779. {
  780. return 0.25 * raw;
  781. }
  782. #endif
  783. if(heater_ttbl_map[e] != NULL)
  784. {
  785. float celsius = 0;
  786. uint8_t i;
  787. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  788. for (i=1; i<heater_ttbllen_map[e]; i++)
  789. {
  790. if (PGM_RD_W((*tt)[i][0]) > raw)
  791. {
  792. celsius = PGM_RD_W((*tt)[i-1][1]) +
  793. (raw - PGM_RD_W((*tt)[i-1][0])) *
  794. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  795. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  796. break;
  797. }
  798. }
  799. // Overflow: Set to last value in the table
  800. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  801. return celsius;
  802. }
  803. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  804. }
  805. // Derived from RepRap FiveD extruder::getTemperature()
  806. // For bed temperature measurement.
  807. static float analog2tempBed(int raw) {
  808. #ifdef BED_USES_THERMISTOR
  809. float celsius = 0;
  810. byte i;
  811. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  812. {
  813. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  814. {
  815. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  816. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  817. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  818. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  819. break;
  820. }
  821. }
  822. // Overflow: Set to last value in the table
  823. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  824. // temperature offset adjustment
  825. #ifdef BED_OFFSET
  826. float _offset = BED_OFFSET;
  827. float _offset_center = BED_OFFSET_CENTER;
  828. float _offset_start = BED_OFFSET_START;
  829. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  830. float _second_koef = (_offset / 2) / (100 - _offset_center);
  831. if (celsius >= _offset_start && celsius <= _offset_center)
  832. {
  833. celsius = celsius + (_first_koef * (celsius - _offset_start));
  834. }
  835. else if (celsius > _offset_center && celsius <= 100)
  836. {
  837. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  838. }
  839. else if (celsius > 100)
  840. {
  841. celsius = celsius + _offset;
  842. }
  843. #endif
  844. return celsius;
  845. #elif defined BED_USES_AD595
  846. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  847. #else
  848. return 0;
  849. #endif
  850. }
  851. #ifdef AMBIENT_THERMISTOR
  852. static float analog2tempAmbient(int raw)
  853. {
  854. float celsius = 0;
  855. byte i;
  856. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  857. {
  858. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  859. {
  860. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  861. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  862. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  863. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  864. break;
  865. }
  866. }
  867. // Overflow: Set to last value in the table
  868. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  869. return celsius;
  870. }
  871. #endif //AMBIENT_THERMISTOR
  872. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  873. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  874. static void updateTemperaturesFromRawValues()
  875. {
  876. for(uint8_t e=0;e<EXTRUDERS;e++)
  877. {
  878. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  879. }
  880. #ifdef PINDA_THERMISTOR
  881. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  882. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  883. #endif
  884. #ifdef AMBIENT_THERMISTOR
  885. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  886. #endif
  887. #ifdef DEBUG_HEATER_BED_SIM
  888. current_temperature_bed = target_temperature_bed;
  889. #else //DEBUG_HEATER_BED_SIM
  890. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  891. #endif //DEBUG_HEATER_BED_SIM
  892. CRITICAL_SECTION_START;
  893. temp_meas_ready = false;
  894. CRITICAL_SECTION_END;
  895. }
  896. void tp_init()
  897. {
  898. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  899. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  900. MCUCR=(1<<JTD);
  901. MCUCR=(1<<JTD);
  902. #endif
  903. // Finish init of mult extruder arrays
  904. for(int e = 0; e < EXTRUDERS; e++) {
  905. // populate with the first value
  906. maxttemp[e] = maxttemp[0];
  907. #ifdef PIDTEMP
  908. iState_sum_min[e] = 0.0;
  909. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  910. #endif //PIDTEMP
  911. #ifdef PIDTEMPBED
  912. temp_iState_min_bed = 0.0;
  913. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  914. #endif //PIDTEMPBED
  915. }
  916. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  917. SET_OUTPUT(HEATER_0_PIN);
  918. #endif
  919. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  920. SET_OUTPUT(HEATER_1_PIN);
  921. #endif
  922. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  923. SET_OUTPUT(HEATER_2_PIN);
  924. #endif
  925. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  926. SET_OUTPUT(HEATER_BED_PIN);
  927. #endif
  928. #if defined(FAN_PIN) && (FAN_PIN > -1)
  929. SET_OUTPUT(FAN_PIN);
  930. #ifdef FAST_PWM_FAN
  931. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  932. #endif
  933. #ifdef FAN_SOFT_PWM
  934. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  935. #endif
  936. #endif
  937. #ifdef HEATER_0_USES_MAX6675
  938. #ifndef SDSUPPORT
  939. SET_OUTPUT(SCK_PIN);
  940. WRITE(SCK_PIN,0);
  941. SET_OUTPUT(MOSI_PIN);
  942. WRITE(MOSI_PIN,1);
  943. SET_INPUT(MISO_PIN);
  944. WRITE(MISO_PIN,1);
  945. #endif
  946. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  947. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  948. pinMode(SS_PIN, OUTPUT);
  949. digitalWrite(SS_PIN,0);
  950. pinMode(MAX6675_SS, OUTPUT);
  951. digitalWrite(MAX6675_SS,1);
  952. #endif
  953. adc_init();
  954. timer0_init();
  955. OCR2B = 128;
  956. TIMSK2 |= (1<<OCIE2B);
  957. // Wait for temperature measurement to settle
  958. _delay(250);
  959. #ifdef HEATER_0_MINTEMP
  960. minttemp[0] = HEATER_0_MINTEMP;
  961. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  962. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  963. minttemp_raw[0] += OVERSAMPLENR;
  964. #else
  965. minttemp_raw[0] -= OVERSAMPLENR;
  966. #endif
  967. }
  968. #endif //MINTEMP
  969. #ifdef HEATER_0_MAXTEMP
  970. maxttemp[0] = HEATER_0_MAXTEMP;
  971. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  972. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  973. maxttemp_raw[0] -= OVERSAMPLENR;
  974. #else
  975. maxttemp_raw[0] += OVERSAMPLENR;
  976. #endif
  977. }
  978. #endif //MAXTEMP
  979. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  980. minttemp[1] = HEATER_1_MINTEMP;
  981. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  982. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  983. minttemp_raw[1] += OVERSAMPLENR;
  984. #else
  985. minttemp_raw[1] -= OVERSAMPLENR;
  986. #endif
  987. }
  988. #endif // MINTEMP 1
  989. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  990. maxttemp[1] = HEATER_1_MAXTEMP;
  991. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  992. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  993. maxttemp_raw[1] -= OVERSAMPLENR;
  994. #else
  995. maxttemp_raw[1] += OVERSAMPLENR;
  996. #endif
  997. }
  998. #endif //MAXTEMP 1
  999. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1000. minttemp[2] = HEATER_2_MINTEMP;
  1001. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1002. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1003. minttemp_raw[2] += OVERSAMPLENR;
  1004. #else
  1005. minttemp_raw[2] -= OVERSAMPLENR;
  1006. #endif
  1007. }
  1008. #endif //MINTEMP 2
  1009. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1010. maxttemp[2] = HEATER_2_MAXTEMP;
  1011. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1012. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1013. maxttemp_raw[2] -= OVERSAMPLENR;
  1014. #else
  1015. maxttemp_raw[2] += OVERSAMPLENR;
  1016. #endif
  1017. }
  1018. #endif //MAXTEMP 2
  1019. #ifdef BED_MINTEMP
  1020. /* No bed MINTEMP error implemented?!? */
  1021. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1022. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1023. bed_minttemp_raw += OVERSAMPLENR;
  1024. #else
  1025. bed_minttemp_raw -= OVERSAMPLENR;
  1026. #endif
  1027. }
  1028. #endif //BED_MINTEMP
  1029. #ifdef BED_MAXTEMP
  1030. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1031. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1032. bed_maxttemp_raw -= OVERSAMPLENR;
  1033. #else
  1034. bed_maxttemp_raw += OVERSAMPLENR;
  1035. #endif
  1036. }
  1037. #endif //BED_MAXTEMP
  1038. }
  1039. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1040. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1041. {
  1042. float __delta;
  1043. float __hysteresis = 0;
  1044. int __timeout = 0;
  1045. bool temp_runaway_check_active = false;
  1046. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1047. static int __preheat_counter[2] = { 0,0};
  1048. static int __preheat_errors[2] = { 0,0};
  1049. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1050. {
  1051. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1052. if (_isbed)
  1053. {
  1054. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1055. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1056. }
  1057. #endif
  1058. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1059. if (!_isbed)
  1060. {
  1061. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1062. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1063. }
  1064. #endif
  1065. temp_runaway_timer[_heater_id] = _millis();
  1066. if (_output == 0)
  1067. {
  1068. temp_runaway_check_active = false;
  1069. temp_runaway_error_counter[_heater_id] = 0;
  1070. }
  1071. if (temp_runaway_target[_heater_id] != _target_temperature)
  1072. {
  1073. if (_target_temperature > 0)
  1074. {
  1075. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1076. temp_runaway_target[_heater_id] = _target_temperature;
  1077. __preheat_start[_heater_id] = _current_temperature;
  1078. __preheat_counter[_heater_id] = 0;
  1079. }
  1080. else
  1081. {
  1082. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1083. temp_runaway_target[_heater_id] = _target_temperature;
  1084. }
  1085. }
  1086. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1087. {
  1088. __preheat_counter[_heater_id]++;
  1089. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1090. {
  1091. /*SERIAL_ECHOPGM("Heater:");
  1092. MYSERIAL.print(_heater_id);
  1093. SERIAL_ECHOPGM(" T:");
  1094. MYSERIAL.print(_current_temperature);
  1095. SERIAL_ECHOPGM(" Tstart:");
  1096. MYSERIAL.print(__preheat_start[_heater_id]);
  1097. SERIAL_ECHOPGM(" delta:");
  1098. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1099. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1100. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1101. __delta=2.0;
  1102. if(_isbed)
  1103. {
  1104. __delta=3.0;
  1105. if(_current_temperature>90.0) __delta=2.0;
  1106. if(_current_temperature>105.0) __delta=0.6;
  1107. }
  1108. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1109. __preheat_errors[_heater_id]++;
  1110. /*SERIAL_ECHOPGM(" Preheat errors:");
  1111. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1112. }
  1113. else {
  1114. //SERIAL_ECHOLNPGM("");
  1115. __preheat_errors[_heater_id] = 0;
  1116. }
  1117. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1118. {
  1119. if (farm_mode) { prusa_statistics(0); }
  1120. temp_runaway_stop(true, _isbed);
  1121. if (farm_mode) { prusa_statistics(91); }
  1122. }
  1123. __preheat_start[_heater_id] = _current_temperature;
  1124. __preheat_counter[_heater_id] = 0;
  1125. }
  1126. }
  1127. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1128. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1129. {
  1130. /*SERIAL_ECHOPGM("Heater:");
  1131. MYSERIAL.print(_heater_id);
  1132. MYSERIAL.println(" ->tempRunaway");*/
  1133. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1134. temp_runaway_check_active = false;
  1135. temp_runaway_error_counter[_heater_id] = 0;
  1136. }
  1137. if (_output > 0)
  1138. {
  1139. temp_runaway_check_active = true;
  1140. }
  1141. if (temp_runaway_check_active)
  1142. {
  1143. // we are in range
  1144. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1145. {
  1146. temp_runaway_check_active = false;
  1147. temp_runaway_error_counter[_heater_id] = 0;
  1148. }
  1149. else
  1150. {
  1151. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1152. {
  1153. temp_runaway_error_counter[_heater_id]++;
  1154. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1155. {
  1156. if (farm_mode) { prusa_statistics(0); }
  1157. temp_runaway_stop(false, _isbed);
  1158. if (farm_mode) { prusa_statistics(90); }
  1159. }
  1160. }
  1161. }
  1162. }
  1163. }
  1164. }
  1165. void temp_runaway_stop(bool isPreheat, bool isBed)
  1166. {
  1167. cancel_heatup = true;
  1168. quickStop();
  1169. if (card.sdprinting)
  1170. {
  1171. card.sdprinting = false;
  1172. card.closefile();
  1173. }
  1174. // Clean the input command queue
  1175. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1176. cmdqueue_reset();
  1177. disable_heater();
  1178. disable_x();
  1179. disable_y();
  1180. disable_e0();
  1181. disable_e1();
  1182. disable_e2();
  1183. manage_heater();
  1184. lcd_update(0);
  1185. Sound_MakeCustom(200,0,true);
  1186. if (isPreheat)
  1187. {
  1188. Stop();
  1189. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1190. SERIAL_ERROR_START;
  1191. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1192. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1193. SET_OUTPUT(FAN_PIN);
  1194. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1195. #ifdef FAN_SOFT_PWM
  1196. fanSpeedSoftPwm = 255;
  1197. #else //FAN_SOFT_PWM
  1198. analogWrite(FAN_PIN, 255);
  1199. #endif //FAN_SOFT_PWM
  1200. fanSpeed = 255;
  1201. delayMicroseconds(2000);
  1202. }
  1203. else
  1204. {
  1205. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1206. SERIAL_ERROR_START;
  1207. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1208. }
  1209. }
  1210. #endif
  1211. void disable_heater()
  1212. {
  1213. setAllTargetHotends(0);
  1214. setTargetBed(0);
  1215. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1216. target_temperature[0]=0;
  1217. soft_pwm[0]=0;
  1218. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1219. WRITE(HEATER_0_PIN,LOW);
  1220. #endif
  1221. #endif
  1222. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1223. target_temperature[1]=0;
  1224. soft_pwm[1]=0;
  1225. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1226. WRITE(HEATER_1_PIN,LOW);
  1227. #endif
  1228. #endif
  1229. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1230. target_temperature[2]=0;
  1231. soft_pwm[2]=0;
  1232. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1233. WRITE(HEATER_2_PIN,LOW);
  1234. #endif
  1235. #endif
  1236. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1237. target_temperature_bed=0;
  1238. soft_pwm_bed=0;
  1239. timer02_set_pwm0(soft_pwm_bed << 1);
  1240. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1241. //WRITE(HEATER_BED_PIN,LOW);
  1242. #endif
  1243. #endif
  1244. }
  1245. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1246. //! than raw const char * of the messages themselves.
  1247. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1248. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1249. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1250. //! remember the last alert message sent to the LCD
  1251. //! to prevent flicker and improve speed
  1252. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1253. void max_temp_error(uint8_t e) {
  1254. disable_heater();
  1255. if(IsStopped() == false) {
  1256. SERIAL_ERROR_START;
  1257. SERIAL_ERRORLN((int)e);
  1258. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1259. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1260. }
  1261. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1262. Stop();
  1263. #endif
  1264. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1265. SET_OUTPUT(FAN_PIN);
  1266. SET_OUTPUT(BEEPER);
  1267. WRITE(FAN_PIN, 1);
  1268. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1269. WRITE(BEEPER, 1);
  1270. // fanSpeed will consumed by the check_axes_activity() routine.
  1271. fanSpeed=255;
  1272. if (farm_mode) { prusa_statistics(93); }
  1273. }
  1274. void min_temp_error(uint8_t e) {
  1275. #ifdef DEBUG_DISABLE_MINTEMP
  1276. return;
  1277. #endif
  1278. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1279. disable_heater();
  1280. static const char err[] PROGMEM = "Err: MINTEMP";
  1281. if(IsStopped() == false) {
  1282. SERIAL_ERROR_START;
  1283. SERIAL_ERRORLN((int)e);
  1284. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1285. lcd_setalertstatuspgm(err);
  1286. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1287. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1288. // we are already stopped due to some error, only update the status message without flickering
  1289. lcd_updatestatuspgm(err);
  1290. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1291. }
  1292. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1293. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1294. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1295. // lcd_print_stop();
  1296. // }
  1297. Stop();
  1298. #endif
  1299. if (farm_mode) { prusa_statistics(92); }
  1300. }
  1301. void bed_max_temp_error(void) {
  1302. #if HEATER_BED_PIN > -1
  1303. //WRITE(HEATER_BED_PIN, 0);
  1304. #endif
  1305. if(IsStopped() == false) {
  1306. SERIAL_ERROR_START;
  1307. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1308. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1309. }
  1310. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1311. Stop();
  1312. #endif
  1313. }
  1314. void bed_min_temp_error(void) {
  1315. #ifdef DEBUG_DISABLE_MINTEMP
  1316. return;
  1317. #endif
  1318. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1319. #if HEATER_BED_PIN > -1
  1320. //WRITE(HEATER_BED_PIN, 0);
  1321. #endif
  1322. static const char err[] PROGMEM = "Err: MINTEMP BED";
  1323. if(IsStopped() == false) {
  1324. SERIAL_ERROR_START;
  1325. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1326. lcd_setalertstatuspgm(err);
  1327. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1328. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1329. // we are already stopped due to some error, only update the status message without flickering
  1330. lcd_updatestatuspgm(err);
  1331. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1332. }
  1333. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1334. Stop();
  1335. #endif
  1336. }
  1337. #ifdef HEATER_0_USES_MAX6675
  1338. #define MAX6675_HEAT_INTERVAL 250
  1339. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1340. int max6675_temp = 2000;
  1341. int read_max6675()
  1342. {
  1343. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1344. return max6675_temp;
  1345. max6675_previous_millis = _millis();
  1346. max6675_temp = 0;
  1347. #ifdef PRR
  1348. PRR &= ~(1<<PRSPI);
  1349. #elif defined PRR0
  1350. PRR0 &= ~(1<<PRSPI);
  1351. #endif
  1352. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1353. // enable TT_MAX6675
  1354. WRITE(MAX6675_SS, 0);
  1355. // ensure 100ns delay - a bit extra is fine
  1356. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1357. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1358. // read MSB
  1359. SPDR = 0;
  1360. for (;(SPSR & (1<<SPIF)) == 0;);
  1361. max6675_temp = SPDR;
  1362. max6675_temp <<= 8;
  1363. // read LSB
  1364. SPDR = 0;
  1365. for (;(SPSR & (1<<SPIF)) == 0;);
  1366. max6675_temp |= SPDR;
  1367. // disable TT_MAX6675
  1368. WRITE(MAX6675_SS, 1);
  1369. if (max6675_temp & 4)
  1370. {
  1371. // thermocouple open
  1372. max6675_temp = 2000;
  1373. }
  1374. else
  1375. {
  1376. max6675_temp = max6675_temp >> 3;
  1377. }
  1378. return max6675_temp;
  1379. }
  1380. #endif
  1381. extern "C" {
  1382. void adc_ready(void) //callback from adc when sampling finished
  1383. {
  1384. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1385. #ifdef PINDA_THERMISTOR
  1386. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1387. #endif //PINDA_THERMISTOR
  1388. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1389. #ifdef VOLT_PWR_PIN
  1390. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1391. #endif
  1392. #ifdef AMBIENT_THERMISTOR
  1393. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
  1394. #endif //AMBIENT_THERMISTOR
  1395. #ifdef VOLT_BED_PIN
  1396. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1397. #endif
  1398. temp_meas_ready = true;
  1399. }
  1400. } // extern "C"
  1401. // Timer2 (originaly timer0) is shared with millies
  1402. #ifdef SYSTEM_TIMER_2
  1403. ISR(TIMER2_COMPB_vect)
  1404. #else //SYSTEM_TIMER_2
  1405. ISR(TIMER0_COMPB_vect)
  1406. #endif //SYSTEM_TIMER_2
  1407. {
  1408. static bool _lock = false;
  1409. if (_lock) return;
  1410. _lock = true;
  1411. asm("sei");
  1412. if (!temp_meas_ready) adc_cycle();
  1413. lcd_buttons_update();
  1414. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1415. static uint8_t soft_pwm_0;
  1416. #ifdef SLOW_PWM_HEATERS
  1417. static unsigned char slow_pwm_count = 0;
  1418. static unsigned char state_heater_0 = 0;
  1419. static unsigned char state_timer_heater_0 = 0;
  1420. #endif
  1421. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1422. static unsigned char soft_pwm_1;
  1423. #ifdef SLOW_PWM_HEATERS
  1424. static unsigned char state_heater_1 = 0;
  1425. static unsigned char state_timer_heater_1 = 0;
  1426. #endif
  1427. #endif
  1428. #if EXTRUDERS > 2
  1429. static unsigned char soft_pwm_2;
  1430. #ifdef SLOW_PWM_HEATERS
  1431. static unsigned char state_heater_2 = 0;
  1432. static unsigned char state_timer_heater_2 = 0;
  1433. #endif
  1434. #endif
  1435. #if HEATER_BED_PIN > -1
  1436. // @@DR static unsigned char soft_pwm_b;
  1437. #ifdef SLOW_PWM_HEATERS
  1438. static unsigned char state_heater_b = 0;
  1439. static unsigned char state_timer_heater_b = 0;
  1440. #endif
  1441. #endif
  1442. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1443. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1444. #endif
  1445. #ifndef SLOW_PWM_HEATERS
  1446. /*
  1447. * standard PWM modulation
  1448. */
  1449. if (pwm_count == 0)
  1450. {
  1451. soft_pwm_0 = soft_pwm[0];
  1452. if(soft_pwm_0 > 0)
  1453. {
  1454. WRITE(HEATER_0_PIN,1);
  1455. #ifdef HEATERS_PARALLEL
  1456. WRITE(HEATER_1_PIN,1);
  1457. #endif
  1458. } else WRITE(HEATER_0_PIN,0);
  1459. #if EXTRUDERS > 1
  1460. soft_pwm_1 = soft_pwm[1];
  1461. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1462. #endif
  1463. #if EXTRUDERS > 2
  1464. soft_pwm_2 = soft_pwm[2];
  1465. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1466. #endif
  1467. }
  1468. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1469. #if 0 // @@DR vypnuto pro hw pwm bedu
  1470. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1471. // teoreticky by se tato cast uz vubec nemusela poustet
  1472. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1473. {
  1474. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1475. # ifndef SYSTEM_TIMER_2
  1476. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1477. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1478. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1479. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1480. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1481. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1482. # endif //SYSTEM_TIMER_2
  1483. }
  1484. #endif
  1485. #endif
  1486. #ifdef FAN_SOFT_PWM
  1487. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1488. {
  1489. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1490. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1491. }
  1492. #endif
  1493. if(soft_pwm_0 < pwm_count)
  1494. {
  1495. WRITE(HEATER_0_PIN,0);
  1496. #ifdef HEATERS_PARALLEL
  1497. WRITE(HEATER_1_PIN,0);
  1498. #endif
  1499. }
  1500. #if EXTRUDERS > 1
  1501. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1502. #endif
  1503. #if EXTRUDERS > 2
  1504. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1505. #endif
  1506. #if 0 // @@DR
  1507. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1508. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1509. //WRITE(HEATER_BED_PIN,0);
  1510. }
  1511. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1512. #endif
  1513. #endif
  1514. #ifdef FAN_SOFT_PWM
  1515. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1516. #endif
  1517. pwm_count += (1 << SOFT_PWM_SCALE);
  1518. pwm_count &= 0x7f;
  1519. #else //ifndef SLOW_PWM_HEATERS
  1520. /*
  1521. * SLOW PWM HEATERS
  1522. *
  1523. * for heaters drived by relay
  1524. */
  1525. #ifndef MIN_STATE_TIME
  1526. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1527. #endif
  1528. if (slow_pwm_count == 0) {
  1529. // EXTRUDER 0
  1530. soft_pwm_0 = soft_pwm[0];
  1531. if (soft_pwm_0 > 0) {
  1532. // turn ON heather only if the minimum time is up
  1533. if (state_timer_heater_0 == 0) {
  1534. // if change state set timer
  1535. if (state_heater_0 == 0) {
  1536. state_timer_heater_0 = MIN_STATE_TIME;
  1537. }
  1538. state_heater_0 = 1;
  1539. WRITE(HEATER_0_PIN, 1);
  1540. #ifdef HEATERS_PARALLEL
  1541. WRITE(HEATER_1_PIN, 1);
  1542. #endif
  1543. }
  1544. } else {
  1545. // turn OFF heather only if the minimum time is up
  1546. if (state_timer_heater_0 == 0) {
  1547. // if change state set timer
  1548. if (state_heater_0 == 1) {
  1549. state_timer_heater_0 = MIN_STATE_TIME;
  1550. }
  1551. state_heater_0 = 0;
  1552. WRITE(HEATER_0_PIN, 0);
  1553. #ifdef HEATERS_PARALLEL
  1554. WRITE(HEATER_1_PIN, 0);
  1555. #endif
  1556. }
  1557. }
  1558. #if EXTRUDERS > 1
  1559. // EXTRUDER 1
  1560. soft_pwm_1 = soft_pwm[1];
  1561. if (soft_pwm_1 > 0) {
  1562. // turn ON heather only if the minimum time is up
  1563. if (state_timer_heater_1 == 0) {
  1564. // if change state set timer
  1565. if (state_heater_1 == 0) {
  1566. state_timer_heater_1 = MIN_STATE_TIME;
  1567. }
  1568. state_heater_1 = 1;
  1569. WRITE(HEATER_1_PIN, 1);
  1570. }
  1571. } else {
  1572. // turn OFF heather only if the minimum time is up
  1573. if (state_timer_heater_1 == 0) {
  1574. // if change state set timer
  1575. if (state_heater_1 == 1) {
  1576. state_timer_heater_1 = MIN_STATE_TIME;
  1577. }
  1578. state_heater_1 = 0;
  1579. WRITE(HEATER_1_PIN, 0);
  1580. }
  1581. }
  1582. #endif
  1583. #if EXTRUDERS > 2
  1584. // EXTRUDER 2
  1585. soft_pwm_2 = soft_pwm[2];
  1586. if (soft_pwm_2 > 0) {
  1587. // turn ON heather only if the minimum time is up
  1588. if (state_timer_heater_2 == 0) {
  1589. // if change state set timer
  1590. if (state_heater_2 == 0) {
  1591. state_timer_heater_2 = MIN_STATE_TIME;
  1592. }
  1593. state_heater_2 = 1;
  1594. WRITE(HEATER_2_PIN, 1);
  1595. }
  1596. } else {
  1597. // turn OFF heather only if the minimum time is up
  1598. if (state_timer_heater_2 == 0) {
  1599. // if change state set timer
  1600. if (state_heater_2 == 1) {
  1601. state_timer_heater_2 = MIN_STATE_TIME;
  1602. }
  1603. state_heater_2 = 0;
  1604. WRITE(HEATER_2_PIN, 0);
  1605. }
  1606. }
  1607. #endif
  1608. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1609. // BED
  1610. soft_pwm_b = soft_pwm_bed;
  1611. if (soft_pwm_b > 0) {
  1612. // turn ON heather only if the minimum time is up
  1613. if (state_timer_heater_b == 0) {
  1614. // if change state set timer
  1615. if (state_heater_b == 0) {
  1616. state_timer_heater_b = MIN_STATE_TIME;
  1617. }
  1618. state_heater_b = 1;
  1619. //WRITE(HEATER_BED_PIN, 1);
  1620. }
  1621. } else {
  1622. // turn OFF heather only if the minimum time is up
  1623. if (state_timer_heater_b == 0) {
  1624. // if change state set timer
  1625. if (state_heater_b == 1) {
  1626. state_timer_heater_b = MIN_STATE_TIME;
  1627. }
  1628. state_heater_b = 0;
  1629. WRITE(HEATER_BED_PIN, 0);
  1630. }
  1631. }
  1632. #endif
  1633. } // if (slow_pwm_count == 0)
  1634. // EXTRUDER 0
  1635. if (soft_pwm_0 < slow_pwm_count) {
  1636. // turn OFF heather only if the minimum time is up
  1637. if (state_timer_heater_0 == 0) {
  1638. // if change state set timer
  1639. if (state_heater_0 == 1) {
  1640. state_timer_heater_0 = MIN_STATE_TIME;
  1641. }
  1642. state_heater_0 = 0;
  1643. WRITE(HEATER_0_PIN, 0);
  1644. #ifdef HEATERS_PARALLEL
  1645. WRITE(HEATER_1_PIN, 0);
  1646. #endif
  1647. }
  1648. }
  1649. #if EXTRUDERS > 1
  1650. // EXTRUDER 1
  1651. if (soft_pwm_1 < slow_pwm_count) {
  1652. // turn OFF heather only if the minimum time is up
  1653. if (state_timer_heater_1 == 0) {
  1654. // if change state set timer
  1655. if (state_heater_1 == 1) {
  1656. state_timer_heater_1 = MIN_STATE_TIME;
  1657. }
  1658. state_heater_1 = 0;
  1659. WRITE(HEATER_1_PIN, 0);
  1660. }
  1661. }
  1662. #endif
  1663. #if EXTRUDERS > 2
  1664. // EXTRUDER 2
  1665. if (soft_pwm_2 < slow_pwm_count) {
  1666. // turn OFF heather only if the minimum time is up
  1667. if (state_timer_heater_2 == 0) {
  1668. // if change state set timer
  1669. if (state_heater_2 == 1) {
  1670. state_timer_heater_2 = MIN_STATE_TIME;
  1671. }
  1672. state_heater_2 = 0;
  1673. WRITE(HEATER_2_PIN, 0);
  1674. }
  1675. }
  1676. #endif
  1677. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1678. // BED
  1679. if (soft_pwm_b < slow_pwm_count) {
  1680. // turn OFF heather only if the minimum time is up
  1681. if (state_timer_heater_b == 0) {
  1682. // if change state set timer
  1683. if (state_heater_b == 1) {
  1684. state_timer_heater_b = MIN_STATE_TIME;
  1685. }
  1686. state_heater_b = 0;
  1687. WRITE(HEATER_BED_PIN, 0);
  1688. }
  1689. }
  1690. #endif
  1691. #ifdef FAN_SOFT_PWM
  1692. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1693. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1694. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1695. }
  1696. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1697. #endif
  1698. pwm_count += (1 << SOFT_PWM_SCALE);
  1699. pwm_count &= 0x7f;
  1700. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1701. if ((pwm_count % 64) == 0) {
  1702. slow_pwm_count++;
  1703. slow_pwm_count &= 0x7f;
  1704. // Extruder 0
  1705. if (state_timer_heater_0 > 0) {
  1706. state_timer_heater_0--;
  1707. }
  1708. #if EXTRUDERS > 1
  1709. // Extruder 1
  1710. if (state_timer_heater_1 > 0)
  1711. state_timer_heater_1--;
  1712. #endif
  1713. #if EXTRUDERS > 2
  1714. // Extruder 2
  1715. if (state_timer_heater_2 > 0)
  1716. state_timer_heater_2--;
  1717. #endif
  1718. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1719. // Bed
  1720. if (state_timer_heater_b > 0)
  1721. state_timer_heater_b--;
  1722. #endif
  1723. } //if ((pwm_count % 64) == 0) {
  1724. #endif //ifndef SLOW_PWM_HEATERS
  1725. #ifdef BABYSTEPPING
  1726. for(uint8_t axis=0;axis<3;axis++)
  1727. {
  1728. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1729. if(curTodo>0)
  1730. {
  1731. asm("cli");
  1732. babystep(axis,/*fwd*/true);
  1733. babystepsTodo[axis]--; //less to do next time
  1734. asm("sei");
  1735. }
  1736. else
  1737. if(curTodo<0)
  1738. {
  1739. asm("cli");
  1740. babystep(axis,/*fwd*/false);
  1741. babystepsTodo[axis]++; //less to do next time
  1742. asm("sei");
  1743. }
  1744. }
  1745. #endif //BABYSTEPPING
  1746. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1747. check_fans();
  1748. #endif //(defined(TACH_0))
  1749. _lock = false;
  1750. }
  1751. void check_max_temp()
  1752. {
  1753. //heater
  1754. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1755. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1756. #else
  1757. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1758. #endif
  1759. max_temp_error(0);
  1760. }
  1761. //bed
  1762. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1763. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1764. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1765. #else
  1766. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1767. #endif
  1768. target_temperature_bed = 0;
  1769. bed_max_temp_error();
  1770. }
  1771. #endif
  1772. }
  1773. //! number of repeating the same state with consecutive step() calls
  1774. //! used to slow down text switching
  1775. struct alert_automaton_mintemp {
  1776. private:
  1777. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1778. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1779. States state = States::Init;
  1780. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1781. void substep(States next_state){
  1782. if( repeat == 0 ){
  1783. state = next_state; // advance to the next state
  1784. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1785. } else {
  1786. --repeat;
  1787. }
  1788. }
  1789. public:
  1790. //! brief state automaton step routine
  1791. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1792. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1793. void step(float current_temp, float mintemp){
  1794. static const char m2[] PROGMEM = "MINTEMP fixed";
  1795. static const char m1[] PROGMEM = "Please restart";
  1796. switch(state){
  1797. case States::Init: // initial state - check hysteresis
  1798. if( current_temp > mintemp ){
  1799. state = States::TempAboveMintemp;
  1800. }
  1801. // otherwise keep the Err MINTEMP alert message on the display,
  1802. // i.e. do not transfer to state 1
  1803. break;
  1804. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1805. lcd_setalertstatuspgm(m2);
  1806. substep(States::ShowMintemp);
  1807. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1808. break;
  1809. case States::ShowPleaseRestart: // displaying "Please restart"
  1810. lcd_updatestatuspgm(m1);
  1811. substep(States::ShowMintemp);
  1812. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1813. break;
  1814. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1815. lcd_updatestatuspgm(m2);
  1816. substep(States::ShowPleaseRestart);
  1817. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1818. break;
  1819. }
  1820. }
  1821. };
  1822. static alert_automaton_mintemp alert_automaton_hotend, alert_automaton_bed;
  1823. void check_min_temp_heater0()
  1824. {
  1825. //heater
  1826. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1827. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1828. #else
  1829. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1830. #endif
  1831. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1832. min_temp_error(0);
  1833. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1834. // no recovery, just force the user to restart the printer
  1835. // which is a safer variant than just continuing printing
  1836. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1837. // we shall signalize, that MINTEMP has been fixed
  1838. // Code notice: normally the alert_automaton instance would have been placed here
  1839. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1840. // due to stupid compiler that takes 16 more bytes.
  1841. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1842. }
  1843. }
  1844. void check_min_temp_bed()
  1845. {
  1846. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1847. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1848. #else
  1849. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1850. #endif
  1851. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1852. bed_min_temp_error();
  1853. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1854. // no recovery, just force the user to restart the printer
  1855. // which is a safer variant than just continuing printing
  1856. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1857. }
  1858. }
  1859. void check_min_temp()
  1860. {
  1861. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1862. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1863. #ifdef AMBIENT_THERMISTOR
  1864. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1865. { // ambient temperature is low
  1866. #endif //AMBIENT_THERMISTOR
  1867. // *** 'common' part of code for MK2.5 & MK3
  1868. // * nozzle checking
  1869. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1870. { // ~ nozzle heating is on
  1871. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1872. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1873. {
  1874. bCheckingOnHeater=true; // not necessary
  1875. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1876. }
  1877. }
  1878. else { // ~ nozzle heating is off
  1879. oTimer4minTempHeater.start();
  1880. bCheckingOnHeater=false;
  1881. }
  1882. // * bed checking
  1883. if(target_temperature_bed>BED_MINTEMP)
  1884. { // ~ bed heating is on
  1885. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1886. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1887. {
  1888. bCheckingOnBed=true; // not necessary
  1889. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1890. }
  1891. }
  1892. else { // ~ bed heating is off
  1893. oTimer4minTempBed.start();
  1894. bCheckingOnBed=false;
  1895. }
  1896. // *** end of 'common' part
  1897. #ifdef AMBIENT_THERMISTOR
  1898. }
  1899. else { // ambient temperature is standard
  1900. check_min_temp_heater0();
  1901. check_min_temp_bed();
  1902. }
  1903. #endif //AMBIENT_THERMISTOR
  1904. }
  1905. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1906. void check_fans() {
  1907. #ifdef FAN_SOFT_PWM
  1908. if (READ(TACH_0) != fan_state[0]) {
  1909. if(fan_measuring) fan_edge_counter[0] ++;
  1910. fan_state[0] = !fan_state[0];
  1911. }
  1912. #else //FAN_SOFT_PWM
  1913. if (READ(TACH_0) != fan_state[0]) {
  1914. fan_edge_counter[0] ++;
  1915. fan_state[0] = !fan_state[0];
  1916. }
  1917. #endif
  1918. //if (READ(TACH_1) != fan_state[1]) {
  1919. // fan_edge_counter[1] ++;
  1920. // fan_state[1] = !fan_state[1];
  1921. //}
  1922. }
  1923. #endif //TACH_0
  1924. #ifdef PIDTEMP
  1925. // Apply the scale factors to the PID values
  1926. float scalePID_i(float i)
  1927. {
  1928. return i*PID_dT;
  1929. }
  1930. float unscalePID_i(float i)
  1931. {
  1932. return i/PID_dT;
  1933. }
  1934. float scalePID_d(float d)
  1935. {
  1936. return d/PID_dT;
  1937. }
  1938. float unscalePID_d(float d)
  1939. {
  1940. return d*PID_dT;
  1941. }
  1942. #endif //PIDTEMP