Marlin_main.cpp 305 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef FILAMENT_SENSOR
  80. #include "fsensor.h"
  81. #endif //FILAMENT_SENSOR
  82. #ifdef TMC2130
  83. #include "tmc2130.h"
  84. #endif //TMC2130
  85. #ifdef W25X20CL
  86. #include "w25x20cl.h"
  87. #include "optiboot_w25x20cl.h"
  88. #endif //W25X20CL
  89. #ifdef BLINKM
  90. #include "BlinkM.h"
  91. #include "Wire.h"
  92. #endif
  93. #ifdef ULTRALCD
  94. #include "ultralcd.h"
  95. #endif
  96. #if NUM_SERVOS > 0
  97. #include "Servo.h"
  98. #endif
  99. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  100. #include <SPI.h>
  101. #endif
  102. #include "mmu.h"
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "sound.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. //filament types
  116. #define FILAMENT_DEFAULT 0
  117. #define FILAMENT_FLEX 1
  118. #define FILAMENT_PVA 2
  119. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  120. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  121. //Implemented Codes
  122. //-------------------
  123. // PRUSA CODES
  124. // P F - Returns FW versions
  125. // P R - Returns revision of printer
  126. // G0 -> G1
  127. // G1 - Coordinated Movement X Y Z E
  128. // G2 - CW ARC
  129. // G3 - CCW ARC
  130. // G4 - Dwell S<seconds> or P<milliseconds>
  131. // G10 - retract filament according to settings of M207
  132. // G11 - retract recover filament according to settings of M208
  133. // G28 - Home all Axis
  134. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  135. // G30 - Single Z Probe, probes bed at current XY location.
  136. // G31 - Dock sled (Z_PROBE_SLED only)
  137. // G32 - Undock sled (Z_PROBE_SLED only)
  138. // G80 - Automatic mesh bed leveling
  139. // G81 - Print bed profile
  140. // G90 - Use Absolute Coordinates
  141. // G91 - Use Relative Coordinates
  142. // G92 - Set current position to coordinates given
  143. // M Codes
  144. // M0 - Unconditional stop - Wait for user to press a button on the LCD
  145. // M1 - Same as M0
  146. // M17 - Enable/Power all stepper motors
  147. // M18 - Disable all stepper motors; same as M84
  148. // M20 - List SD card
  149. // M21 - Init SD card
  150. // M22 - Release SD card
  151. // M23 - Select SD file (M23 filename.g)
  152. // M24 - Start/resume SD print
  153. // M25 - Pause SD print
  154. // M26 - Set SD position in bytes (M26 S12345)
  155. // M27 - Report SD print status
  156. // M28 - Start SD write (M28 filename.g)
  157. // M29 - Stop SD write
  158. // M30 - Delete file from SD (M30 filename.g)
  159. // M31 - Output time since last M109 or SD card start to serial
  160. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  161. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  162. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  163. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  164. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  165. // M73 - Show percent done and print time remaining
  166. // M80 - Turn on Power Supply
  167. // M81 - Turn off Power Supply
  168. // M82 - Set E codes absolute (default)
  169. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  170. // M84 - Disable steppers until next move,
  171. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  172. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  173. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  174. // M92 - Set axis_steps_per_unit - same syntax as G92
  175. // M104 - Set extruder target temp
  176. // M105 - Read current temp
  177. // M106 - Fan on
  178. // M107 - Fan off
  179. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  180. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  181. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  182. // M112 - Emergency stop
  183. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  184. // M114 - Output current position to serial port
  185. // M115 - Capabilities string
  186. // M117 - display message
  187. // M119 - Output Endstop status to serial port
  188. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  189. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  190. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  191. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  192. // M140 - Set bed target temp
  193. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  194. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  195. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  196. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  197. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  198. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  199. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  200. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  201. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  202. // M206 - set additional homing offset
  203. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  204. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  205. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  206. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  207. // M220 S<factor in percent>- set speed factor override percentage
  208. // M221 S<factor in percent>- set extrude factor override percentage
  209. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  210. // M240 - Trigger a camera to take a photograph
  211. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  212. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  213. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  214. // M301 - Set PID parameters P I and D
  215. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  216. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  217. // M304 - Set bed PID parameters P I and D
  218. // M400 - Finish all moves
  219. // M401 - Lower z-probe if present
  220. // M402 - Raise z-probe if present
  221. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  222. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  223. // M406 - Turn off Filament Sensor extrusion control
  224. // M407 - Displays measured filament diameter
  225. // M500 - stores parameters in EEPROM
  226. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  227. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  228. // M503 - print the current settings (from memory not from EEPROM)
  229. // M509 - force language selection on next restart
  230. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  231. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  232. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  233. // M860 - Wait for PINDA thermistor to reach target temperature.
  234. // M861 - Set / Read PINDA temperature compensation offsets
  235. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  236. // M907 - Set digital trimpot motor current using axis codes.
  237. // M908 - Control digital trimpot directly.
  238. // M350 - Set microstepping mode.
  239. // M351 - Toggle MS1 MS2 pins directly.
  240. // M928 - Start SD logging (M928 filename.g) - ended by M29
  241. // M999 - Restart after being stopped by error
  242. //Stepper Movement Variables
  243. //===========================================================================
  244. //=============================imported variables============================
  245. //===========================================================================
  246. //===========================================================================
  247. //=============================public variables=============================
  248. //===========================================================================
  249. #ifdef SDSUPPORT
  250. CardReader card;
  251. #endif
  252. unsigned long PingTime = millis();
  253. unsigned long NcTime;
  254. //used for PINDA temp calibration and pause print
  255. #define DEFAULT_RETRACTION 1
  256. #define DEFAULT_RETRACTION_MM 4 //MM
  257. float default_retraction = DEFAULT_RETRACTION;
  258. float homing_feedrate[] = HOMING_FEEDRATE;
  259. // Currently only the extruder axis may be switched to a relative mode.
  260. // Other axes are always absolute or relative based on the common relative_mode flag.
  261. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  262. int feedmultiply=100; //100->1 200->2
  263. int saved_feedmultiply;
  264. int extrudemultiply=100; //100->1 200->2
  265. int extruder_multiply[EXTRUDERS] = {100
  266. #if EXTRUDERS > 1
  267. , 100
  268. #if EXTRUDERS > 2
  269. , 100
  270. #endif
  271. #endif
  272. };
  273. int bowden_length[4] = {385, 385, 385, 385};
  274. bool is_usb_printing = false;
  275. bool homing_flag = false;
  276. bool temp_cal_active = false;
  277. unsigned long kicktime = millis()+100000;
  278. unsigned int usb_printing_counter;
  279. int8_t lcd_change_fil_state = 0;
  280. int feedmultiplyBckp = 100;
  281. float HotendTempBckp = 0;
  282. int fanSpeedBckp = 0;
  283. float pause_lastpos[4];
  284. unsigned long pause_time = 0;
  285. unsigned long start_pause_print = millis();
  286. unsigned long t_fan_rising_edge = millis();
  287. LongTimer safetyTimer;
  288. LongTimer crashDetTimer;
  289. //unsigned long load_filament_time;
  290. bool mesh_bed_leveling_flag = false;
  291. bool mesh_bed_run_from_menu = false;
  292. int8_t FarmMode = 0;
  293. bool prusa_sd_card_upload = false;
  294. unsigned int status_number = 0;
  295. unsigned long total_filament_used;
  296. unsigned int heating_status;
  297. unsigned int heating_status_counter;
  298. bool loading_flag = false;
  299. char snmm_filaments_used = 0;
  300. bool fan_state[2];
  301. int fan_edge_counter[2];
  302. int fan_speed[2];
  303. char dir_names[3][9];
  304. bool sortAlpha = false;
  305. float extruder_multiplier[EXTRUDERS] = {1.0
  306. #if EXTRUDERS > 1
  307. , 1.0
  308. #if EXTRUDERS > 2
  309. , 1.0
  310. #endif
  311. #endif
  312. };
  313. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  314. //shortcuts for more readable code
  315. #define _x current_position[X_AXIS]
  316. #define _y current_position[Y_AXIS]
  317. #define _z current_position[Z_AXIS]
  318. #define _e current_position[E_AXIS]
  319. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  320. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  321. bool axis_known_position[3] = {false, false, false};
  322. // Extruder offset
  323. #if EXTRUDERS > 1
  324. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  325. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  326. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  327. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  328. #endif
  329. };
  330. #endif
  331. uint8_t active_extruder = 0;
  332. int fanSpeed=0;
  333. #ifdef FWRETRACT
  334. bool retracted[EXTRUDERS]={false
  335. #if EXTRUDERS > 1
  336. , false
  337. #if EXTRUDERS > 2
  338. , false
  339. #endif
  340. #endif
  341. };
  342. bool retracted_swap[EXTRUDERS]={false
  343. #if EXTRUDERS > 1
  344. , false
  345. #if EXTRUDERS > 2
  346. , false
  347. #endif
  348. #endif
  349. };
  350. float retract_length_swap = RETRACT_LENGTH_SWAP;
  351. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  352. #endif
  353. #ifdef PS_DEFAULT_OFF
  354. bool powersupply = false;
  355. #else
  356. bool powersupply = true;
  357. #endif
  358. bool cancel_heatup = false ;
  359. #ifdef HOST_KEEPALIVE_FEATURE
  360. int busy_state = NOT_BUSY;
  361. static long prev_busy_signal_ms = -1;
  362. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  363. #else
  364. #define host_keepalive();
  365. #define KEEPALIVE_STATE(n);
  366. #endif
  367. const char errormagic[] PROGMEM = "Error:";
  368. const char echomagic[] PROGMEM = "echo:";
  369. bool no_response = false;
  370. uint8_t important_status;
  371. uint8_t saved_filament_type;
  372. // save/restore printing
  373. bool saved_printing = false;
  374. // save/restore printing in case that mmu was not responding
  375. bool mmu_print_saved = false;
  376. // storing estimated time to end of print counted by slicer
  377. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  378. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  379. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  380. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  381. bool wizard_active = false; //autoload temporarily disabled during wizard
  382. //===========================================================================
  383. //=============================Private Variables=============================
  384. //===========================================================================
  385. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  386. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  387. // For tracing an arc
  388. static float offset[3] = {0.0, 0.0, 0.0};
  389. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  390. // Determines Absolute or Relative Coordinates.
  391. // Also there is bool axis_relative_modes[] per axis flag.
  392. static bool relative_mode = false;
  393. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  394. //static float tt = 0;
  395. //static float bt = 0;
  396. //Inactivity shutdown variables
  397. static unsigned long previous_millis_cmd = 0;
  398. unsigned long max_inactive_time = 0;
  399. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  400. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  401. unsigned long starttime=0;
  402. unsigned long stoptime=0;
  403. unsigned long _usb_timer = 0;
  404. bool extruder_under_pressure = true;
  405. bool Stopped=false;
  406. #if NUM_SERVOS > 0
  407. Servo servos[NUM_SERVOS];
  408. #endif
  409. bool CooldownNoWait = true;
  410. bool target_direction;
  411. //Insert variables if CHDK is defined
  412. #ifdef CHDK
  413. unsigned long chdkHigh = 0;
  414. boolean chdkActive = false;
  415. #endif
  416. // save/restore printing
  417. static uint32_t saved_sdpos = 0;
  418. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  419. static float saved_pos[4] = { 0, 0, 0, 0 };
  420. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  421. static float saved_feedrate2 = 0;
  422. static uint8_t saved_active_extruder = 0;
  423. static bool saved_extruder_under_pressure = false;
  424. static bool saved_extruder_relative_mode = false;
  425. //===========================================================================
  426. //=============================Routines======================================
  427. //===========================================================================
  428. static void get_arc_coordinates();
  429. static bool setTargetedHotend(int code, uint8_t &extruder);
  430. static void print_time_remaining_init();
  431. static void wait_for_heater(long codenum, uint8_t extruder);
  432. uint16_t gcode_in_progress = 0;
  433. uint16_t mcode_in_progress = 0;
  434. void serial_echopair_P(const char *s_P, float v)
  435. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  436. void serial_echopair_P(const char *s_P, double v)
  437. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  438. void serial_echopair_P(const char *s_P, unsigned long v)
  439. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  440. #ifdef SDSUPPORT
  441. #include "SdFatUtil.h"
  442. int freeMemory() { return SdFatUtil::FreeRam(); }
  443. #else
  444. extern "C" {
  445. extern unsigned int __bss_end;
  446. extern unsigned int __heap_start;
  447. extern void *__brkval;
  448. int freeMemory() {
  449. int free_memory;
  450. if ((int)__brkval == 0)
  451. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  452. else
  453. free_memory = ((int)&free_memory) - ((int)__brkval);
  454. return free_memory;
  455. }
  456. }
  457. #endif //!SDSUPPORT
  458. void setup_killpin()
  459. {
  460. #if defined(KILL_PIN) && KILL_PIN > -1
  461. SET_INPUT(KILL_PIN);
  462. WRITE(KILL_PIN,HIGH);
  463. #endif
  464. }
  465. // Set home pin
  466. void setup_homepin(void)
  467. {
  468. #if defined(HOME_PIN) && HOME_PIN > -1
  469. SET_INPUT(HOME_PIN);
  470. WRITE(HOME_PIN,HIGH);
  471. #endif
  472. }
  473. void setup_photpin()
  474. {
  475. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  476. SET_OUTPUT(PHOTOGRAPH_PIN);
  477. WRITE(PHOTOGRAPH_PIN, LOW);
  478. #endif
  479. }
  480. void setup_powerhold()
  481. {
  482. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  483. SET_OUTPUT(SUICIDE_PIN);
  484. WRITE(SUICIDE_PIN, HIGH);
  485. #endif
  486. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  487. SET_OUTPUT(PS_ON_PIN);
  488. #if defined(PS_DEFAULT_OFF)
  489. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  490. #else
  491. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  492. #endif
  493. #endif
  494. }
  495. void suicide()
  496. {
  497. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  498. SET_OUTPUT(SUICIDE_PIN);
  499. WRITE(SUICIDE_PIN, LOW);
  500. #endif
  501. }
  502. void servo_init()
  503. {
  504. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  505. servos[0].attach(SERVO0_PIN);
  506. #endif
  507. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  508. servos[1].attach(SERVO1_PIN);
  509. #endif
  510. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  511. servos[2].attach(SERVO2_PIN);
  512. #endif
  513. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  514. servos[3].attach(SERVO3_PIN);
  515. #endif
  516. #if (NUM_SERVOS >= 5)
  517. #error "TODO: enter initalisation code for more servos"
  518. #endif
  519. }
  520. void stop_and_save_print_to_ram(float z_move, float e_move);
  521. void restore_print_from_ram_and_continue(float e_move);
  522. bool fans_check_enabled = true;
  523. #ifdef TMC2130
  524. extern int8_t CrashDetectMenu;
  525. void crashdet_enable()
  526. {
  527. tmc2130_sg_stop_on_crash = true;
  528. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  529. CrashDetectMenu = 1;
  530. }
  531. void crashdet_disable()
  532. {
  533. tmc2130_sg_stop_on_crash = false;
  534. tmc2130_sg_crash = 0;
  535. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  536. CrashDetectMenu = 0;
  537. }
  538. void crashdet_stop_and_save_print()
  539. {
  540. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  541. }
  542. void crashdet_restore_print_and_continue()
  543. {
  544. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  545. // babystep_apply();
  546. }
  547. void crashdet_stop_and_save_print2()
  548. {
  549. cli();
  550. planner_abort_hard(); //abort printing
  551. cmdqueue_reset(); //empty cmdqueue
  552. card.sdprinting = false;
  553. card.closefile();
  554. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  555. st_reset_timer();
  556. sei();
  557. }
  558. void crashdet_detected(uint8_t mask)
  559. {
  560. st_synchronize();
  561. static uint8_t crashDet_counter = 0;
  562. bool automatic_recovery_after_crash = true;
  563. if (crashDet_counter++ == 0) {
  564. crashDetTimer.start();
  565. }
  566. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  567. crashDetTimer.stop();
  568. crashDet_counter = 0;
  569. }
  570. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  571. automatic_recovery_after_crash = false;
  572. crashDetTimer.stop();
  573. crashDet_counter = 0;
  574. }
  575. else {
  576. crashDetTimer.start();
  577. }
  578. lcd_update_enable(true);
  579. lcd_clear();
  580. lcd_update(2);
  581. if (mask & X_AXIS_MASK)
  582. {
  583. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  584. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  585. }
  586. if (mask & Y_AXIS_MASK)
  587. {
  588. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  589. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  590. }
  591. lcd_update_enable(true);
  592. lcd_update(2);
  593. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  594. gcode_G28(true, true, false); //home X and Y
  595. st_synchronize();
  596. if (automatic_recovery_after_crash) {
  597. enquecommand_P(PSTR("CRASH_RECOVER"));
  598. }else{
  599. HotendTempBckp = degTargetHotend(active_extruder);
  600. setTargetHotend(0, active_extruder);
  601. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  602. lcd_update_enable(true);
  603. if (yesno)
  604. {
  605. char cmd1[10];
  606. strcpy(cmd1, "M109 S");
  607. strcat(cmd1, ftostr3(HotendTempBckp));
  608. enquecommand(cmd1);
  609. enquecommand_P(PSTR("CRASH_RECOVER"));
  610. }
  611. else
  612. {
  613. enquecommand_P(PSTR("CRASH_CANCEL"));
  614. }
  615. }
  616. }
  617. void crashdet_recover()
  618. {
  619. crashdet_restore_print_and_continue();
  620. tmc2130_sg_stop_on_crash = true;
  621. }
  622. void crashdet_cancel()
  623. {
  624. tmc2130_sg_stop_on_crash = true;
  625. if (saved_printing_type == PRINTING_TYPE_SD) {
  626. lcd_print_stop();
  627. }else if(saved_printing_type == PRINTING_TYPE_USB){
  628. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  629. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  630. }
  631. }
  632. #endif //TMC2130
  633. void failstats_reset_print()
  634. {
  635. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  636. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  637. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  638. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  639. }
  640. #ifdef MESH_BED_LEVELING
  641. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  642. #endif
  643. // Factory reset function
  644. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  645. // Level input parameter sets depth of reset
  646. // Quiet parameter masks all waitings for user interact.
  647. int er_progress = 0;
  648. void factory_reset(char level, bool quiet)
  649. {
  650. lcd_clear();
  651. switch (level) {
  652. // Level 0: Language reset
  653. case 0:
  654. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  655. WRITE(BEEPER, HIGH);
  656. _delay_ms(100);
  657. WRITE(BEEPER, LOW);
  658. lang_reset();
  659. break;
  660. //Level 1: Reset statistics
  661. case 1:
  662. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  663. WRITE(BEEPER, HIGH);
  664. _delay_ms(100);
  665. WRITE(BEEPER, LOW);
  666. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  667. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  668. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  669. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  670. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  671. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  672. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  673. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  674. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  675. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  676. lcd_menu_statistics();
  677. break;
  678. // Level 2: Prepare for shipping
  679. case 2:
  680. //lcd_puts_P(PSTR("Factory RESET"));
  681. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  682. // Force language selection at the next boot up.
  683. lang_reset();
  684. // Force the "Follow calibration flow" message at the next boot up.
  685. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  686. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  687. farm_no = 0;
  688. farm_mode = false;
  689. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  690. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  691. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  692. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  693. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  694. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  695. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  696. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  697. #ifdef FILAMENT_SENSOR
  698. fsensor_enable();
  699. fsensor_autoload_set(true);
  700. #endif //FILAMENT_SENSOR
  701. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  702. WRITE(BEEPER, HIGH);
  703. _delay_ms(100);
  704. WRITE(BEEPER, LOW);
  705. //_delay_ms(2000);
  706. break;
  707. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  708. case 3:
  709. lcd_puts_P(PSTR("Factory RESET"));
  710. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  711. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  712. WRITE(BEEPER, HIGH);
  713. _delay_ms(100);
  714. WRITE(BEEPER, LOW);
  715. er_progress = 0;
  716. lcd_puts_at_P(3, 3, PSTR(" "));
  717. lcd_set_cursor(3, 3);
  718. lcd_print(er_progress);
  719. // Erase EEPROM
  720. for (int i = 0; i < 4096; i++) {
  721. eeprom_write_byte((uint8_t*)i, 0xFF);
  722. if (i % 41 == 0) {
  723. er_progress++;
  724. lcd_puts_at_P(3, 3, PSTR(" "));
  725. lcd_set_cursor(3, 3);
  726. lcd_print(er_progress);
  727. lcd_puts_P(PSTR("%"));
  728. }
  729. }
  730. break;
  731. case 4:
  732. bowden_menu();
  733. break;
  734. default:
  735. break;
  736. }
  737. }
  738. FILE _uartout = {0};
  739. int uart_putchar(char c, FILE *stream)
  740. {
  741. MYSERIAL.write(c);
  742. return 0;
  743. }
  744. void lcd_splash()
  745. {
  746. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  747. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  748. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  749. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  750. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  751. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  752. }
  753. void factory_reset()
  754. {
  755. KEEPALIVE_STATE(PAUSED_FOR_USER);
  756. if (!READ(BTN_ENC))
  757. {
  758. _delay_ms(1000);
  759. if (!READ(BTN_ENC))
  760. {
  761. lcd_clear();
  762. lcd_puts_P(PSTR("Factory RESET"));
  763. SET_OUTPUT(BEEPER);
  764. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  765. WRITE(BEEPER, HIGH);
  766. while (!READ(BTN_ENC));
  767. WRITE(BEEPER, LOW);
  768. _delay_ms(2000);
  769. char level = reset_menu();
  770. factory_reset(level, false);
  771. switch (level) {
  772. case 0: _delay_ms(0); break;
  773. case 1: _delay_ms(0); break;
  774. case 2: _delay_ms(0); break;
  775. case 3: _delay_ms(0); break;
  776. }
  777. }
  778. }
  779. KEEPALIVE_STATE(IN_HANDLER);
  780. }
  781. void show_fw_version_warnings() {
  782. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  783. switch (FW_DEV_VERSION) {
  784. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  785. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  786. case(FW_VERSION_DEVEL):
  787. case(FW_VERSION_DEBUG):
  788. lcd_update_enable(false);
  789. lcd_clear();
  790. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  791. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  792. #else
  793. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  794. #endif
  795. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  796. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  797. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  798. lcd_wait_for_click();
  799. break;
  800. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  801. }
  802. lcd_update_enable(true);
  803. }
  804. uint8_t check_printer_version()
  805. {
  806. uint8_t version_changed = 0;
  807. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  808. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  809. if (printer_type != PRINTER_TYPE) {
  810. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  811. else version_changed |= 0b10;
  812. }
  813. if (motherboard != MOTHERBOARD) {
  814. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  815. else version_changed |= 0b01;
  816. }
  817. return version_changed;
  818. }
  819. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  820. {
  821. for (unsigned int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  822. }
  823. #ifdef BOOTAPP
  824. #include "bootapp.h" //bootloader support
  825. #endif //BOOTAPP
  826. #if (LANG_MODE != 0) //secondary language support
  827. #ifdef W25X20CL
  828. // language update from external flash
  829. #define LANGBOOT_BLOCKSIZE 0x1000u
  830. #define LANGBOOT_RAMBUFFER 0x0800
  831. void update_sec_lang_from_external_flash()
  832. {
  833. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  834. {
  835. uint8_t lang = boot_reserved >> 4;
  836. uint8_t state = boot_reserved & 0xf;
  837. lang_table_header_t header;
  838. uint32_t src_addr;
  839. if (lang_get_header(lang, &header, &src_addr))
  840. {
  841. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  842. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  843. delay(100);
  844. boot_reserved = (state + 1) | (lang << 4);
  845. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  846. {
  847. cli();
  848. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  849. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  850. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  851. if (state == 0)
  852. {
  853. //TODO - check header integrity
  854. }
  855. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  856. }
  857. else
  858. {
  859. //TODO - check sec lang data integrity
  860. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  861. }
  862. }
  863. }
  864. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  865. }
  866. #ifdef DEBUG_W25X20CL
  867. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  868. {
  869. lang_table_header_t header;
  870. uint8_t count = 0;
  871. uint32_t addr = 0x00000;
  872. while (1)
  873. {
  874. printf_P(_n("LANGTABLE%d:"), count);
  875. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  876. if (header.magic != LANG_MAGIC)
  877. {
  878. printf_P(_n("NG!\n"));
  879. break;
  880. }
  881. printf_P(_n("OK\n"));
  882. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  883. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  884. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  885. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  886. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  887. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  888. addr += header.size;
  889. codes[count] = header.code;
  890. count ++;
  891. }
  892. return count;
  893. }
  894. void list_sec_lang_from_external_flash()
  895. {
  896. uint16_t codes[8];
  897. uint8_t count = lang_xflash_enum_codes(codes);
  898. printf_P(_n("XFlash lang count = %hhd\n"), count);
  899. }
  900. #endif //DEBUG_W25X20CL
  901. #endif //W25X20CL
  902. #endif //(LANG_MODE != 0)
  903. // "Setup" function is called by the Arduino framework on startup.
  904. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  905. // are initialized by the main() routine provided by the Arduino framework.
  906. void setup()
  907. {
  908. mmu_init();
  909. ultralcd_init();
  910. spi_init();
  911. lcd_splash();
  912. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  913. #ifdef W25X20CL
  914. if (!w25x20cl_init())
  915. kill(_i("External SPI flash W25X20CL not responding."));
  916. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  917. optiboot_w25x20cl_enter();
  918. #endif
  919. #if (LANG_MODE != 0) //secondary language support
  920. #ifdef W25X20CL
  921. if (w25x20cl_init())
  922. update_sec_lang_from_external_flash();
  923. #endif //W25X20CL
  924. #endif //(LANG_MODE != 0)
  925. setup_killpin();
  926. setup_powerhold();
  927. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  928. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  929. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  930. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  931. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  932. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  933. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  934. if (farm_mode)
  935. {
  936. no_response = true; //we need confirmation by recieving PRUSA thx
  937. important_status = 8;
  938. prusa_statistics(8);
  939. selectedSerialPort = 1;
  940. #ifdef TMC2130
  941. //increased extruder current (PFW363)
  942. tmc2130_current_h[E_AXIS] = 36;
  943. tmc2130_current_r[E_AXIS] = 36;
  944. #endif //TMC2130
  945. #ifdef FILAMENT_SENSOR
  946. //disabled filament autoload (PFW360)
  947. fsensor_autoload_set(false);
  948. #endif //FILAMENT_SENSOR
  949. }
  950. MYSERIAL.begin(BAUDRATE);
  951. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  952. stdout = uartout;
  953. SERIAL_PROTOCOLLNPGM("start");
  954. SERIAL_ECHO_START;
  955. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  956. #ifdef DEBUG_SEC_LANG
  957. lang_table_header_t header;
  958. uint32_t src_addr = 0x00000;
  959. if (lang_get_header(1, &header, &src_addr))
  960. {
  961. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  962. #define LT_PRINT_TEST 2
  963. // flash usage
  964. // total p.test
  965. //0 252718 t+c text code
  966. //1 253142 424 170 254
  967. //2 253040 322 164 158
  968. //3 253248 530 135 395
  969. #if (LT_PRINT_TEST==1) //not optimized printf
  970. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  971. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  972. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  973. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  974. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  975. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  976. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  977. #elif (LT_PRINT_TEST==2) //optimized printf
  978. printf_P(
  979. _n(
  980. " _src_addr = 0x%08lx\n"
  981. " _lt_magic = 0x%08lx %S\n"
  982. " _lt_size = 0x%04x (%d)\n"
  983. " _lt_count = 0x%04x (%d)\n"
  984. " _lt_chsum = 0x%04x\n"
  985. " _lt_code = 0x%04x (%c%c)\n"
  986. " _lt_resv1 = 0x%08lx\n"
  987. ),
  988. src_addr,
  989. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  990. header.size, header.size,
  991. header.count, header.count,
  992. header.checksum,
  993. header.code, header.code >> 8, header.code & 0xff,
  994. header.signature
  995. );
  996. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  997. MYSERIAL.print(" _src_addr = 0x");
  998. MYSERIAL.println(src_addr, 16);
  999. MYSERIAL.print(" _lt_magic = 0x");
  1000. MYSERIAL.print(header.magic, 16);
  1001. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1002. MYSERIAL.print(" _lt_size = 0x");
  1003. MYSERIAL.print(header.size, 16);
  1004. MYSERIAL.print(" (");
  1005. MYSERIAL.print(header.size, 10);
  1006. MYSERIAL.println(")");
  1007. MYSERIAL.print(" _lt_count = 0x");
  1008. MYSERIAL.print(header.count, 16);
  1009. MYSERIAL.print(" (");
  1010. MYSERIAL.print(header.count, 10);
  1011. MYSERIAL.println(")");
  1012. MYSERIAL.print(" _lt_chsum = 0x");
  1013. MYSERIAL.println(header.checksum, 16);
  1014. MYSERIAL.print(" _lt_code = 0x");
  1015. MYSERIAL.print(header.code, 16);
  1016. MYSERIAL.print(" (");
  1017. MYSERIAL.print((char)(header.code >> 8), 0);
  1018. MYSERIAL.print((char)(header.code & 0xff), 0);
  1019. MYSERIAL.println(")");
  1020. MYSERIAL.print(" _lt_resv1 = 0x");
  1021. MYSERIAL.println(header.signature, 16);
  1022. #endif //(LT_PRINT_TEST==)
  1023. #undef LT_PRINT_TEST
  1024. #if 0
  1025. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1026. for (uint16_t i = 0; i < 1024; i++)
  1027. {
  1028. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1029. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1030. if ((i % 16) == 15) putchar('\n');
  1031. }
  1032. #endif
  1033. uint16_t sum = 0;
  1034. for (uint16_t i = 0; i < header.size; i++)
  1035. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1036. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1037. sum -= header.checksum; //subtract checksum
  1038. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1039. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1040. if (sum == header.checksum)
  1041. printf_P(_n("Checksum OK\n"), sum);
  1042. else
  1043. printf_P(_n("Checksum NG\n"), sum);
  1044. }
  1045. else
  1046. printf_P(_n("lang_get_header failed!\n"));
  1047. #if 0
  1048. for (uint16_t i = 0; i < 1024*10; i++)
  1049. {
  1050. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1051. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1052. if ((i % 16) == 15) putchar('\n');
  1053. }
  1054. #endif
  1055. #if 0
  1056. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1057. for (int i = 0; i < 4096; ++i) {
  1058. int b = eeprom_read_byte((unsigned char*)i);
  1059. if (b != 255) {
  1060. SERIAL_ECHO(i);
  1061. SERIAL_ECHO(":");
  1062. SERIAL_ECHO(b);
  1063. SERIAL_ECHOLN("");
  1064. }
  1065. }
  1066. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1067. #endif
  1068. #endif //DEBUG_SEC_LANG
  1069. // Check startup - does nothing if bootloader sets MCUSR to 0
  1070. byte mcu = MCUSR;
  1071. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1072. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1073. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1074. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1075. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1076. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1077. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1078. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1079. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1080. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1081. MCUSR = 0;
  1082. //SERIAL_ECHORPGM(MSG_MARLIN);
  1083. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1084. #ifdef STRING_VERSION_CONFIG_H
  1085. #ifdef STRING_CONFIG_H_AUTHOR
  1086. SERIAL_ECHO_START;
  1087. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1088. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1089. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1090. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1091. SERIAL_ECHOPGM("Compiled: ");
  1092. SERIAL_ECHOLNPGM(__DATE__);
  1093. #endif
  1094. #endif
  1095. SERIAL_ECHO_START;
  1096. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1097. SERIAL_ECHO(freeMemory());
  1098. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1099. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1100. //lcd_update_enable(false); // why do we need this?? - andre
  1101. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1102. bool previous_settings_retrieved = false;
  1103. uint8_t hw_changed = check_printer_version();
  1104. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1105. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1106. }
  1107. else { //printer version was changed so use default settings
  1108. Config_ResetDefault();
  1109. }
  1110. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1111. tp_init(); // Initialize temperature loop
  1112. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1113. plan_init(); // Initialize planner;
  1114. factory_reset();
  1115. lcd_encoder_diff=0;
  1116. #ifdef TMC2130
  1117. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1118. if (silentMode == 0xff) silentMode = 0;
  1119. tmc2130_mode = TMC2130_MODE_NORMAL;
  1120. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1121. if (crashdet && !farm_mode)
  1122. {
  1123. crashdet_enable();
  1124. puts_P(_N("CrashDetect ENABLED!"));
  1125. }
  1126. else
  1127. {
  1128. crashdet_disable();
  1129. puts_P(_N("CrashDetect DISABLED"));
  1130. }
  1131. #ifdef TMC2130_LINEARITY_CORRECTION
  1132. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1133. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1134. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1135. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1136. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1137. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1138. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1139. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1140. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1141. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1142. #endif //TMC2130_LINEARITY_CORRECTION
  1143. #ifdef TMC2130_VARIABLE_RESOLUTION
  1144. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1145. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1146. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1147. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1148. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1149. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1150. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1151. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1152. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1153. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1154. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1155. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1156. #else //TMC2130_VARIABLE_RESOLUTION
  1157. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1158. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1159. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1160. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1161. #endif //TMC2130_VARIABLE_RESOLUTION
  1162. #endif //TMC2130
  1163. st_init(); // Initialize stepper, this enables interrupts!
  1164. #ifdef TMC2130
  1165. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1166. update_mode_profile();
  1167. tmc2130_init();
  1168. #endif //TMC2130
  1169. setup_photpin();
  1170. servo_init();
  1171. // Reset the machine correction matrix.
  1172. // It does not make sense to load the correction matrix until the machine is homed.
  1173. world2machine_reset();
  1174. #ifdef FILAMENT_SENSOR
  1175. fsensor_init();
  1176. #endif //FILAMENT_SENSOR
  1177. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1178. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1179. #endif
  1180. setup_homepin();
  1181. #ifdef TMC2130
  1182. if (1) {
  1183. // try to run to zero phase before powering the Z motor.
  1184. // Move in negative direction
  1185. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1186. // Round the current micro-micro steps to micro steps.
  1187. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1188. // Until the phase counter is reset to zero.
  1189. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1190. delay(2);
  1191. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1192. delay(2);
  1193. }
  1194. }
  1195. #endif //TMC2130
  1196. #if defined(Z_AXIS_ALWAYS_ON)
  1197. enable_z();
  1198. #endif
  1199. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1200. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1201. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1202. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1203. if (farm_mode)
  1204. {
  1205. prusa_statistics(8);
  1206. }
  1207. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1208. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1209. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1210. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1211. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1212. // where all the EEPROM entries are set to 0x0ff.
  1213. // Once a firmware boots up, it forces at least a language selection, which changes
  1214. // EEPROM_LANG to number lower than 0x0ff.
  1215. // 1) Set a high power mode.
  1216. #ifdef TMC2130
  1217. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1218. tmc2130_mode = TMC2130_MODE_NORMAL;
  1219. #endif //TMC2130
  1220. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1221. }
  1222. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1223. // but this times out if a blocking dialog is shown in setup().
  1224. card.initsd();
  1225. #ifdef DEBUG_SD_SPEED_TEST
  1226. if (card.cardOK)
  1227. {
  1228. uint8_t* buff = (uint8_t*)block_buffer;
  1229. uint32_t block = 0;
  1230. uint32_t sumr = 0;
  1231. uint32_t sumw = 0;
  1232. for (int i = 0; i < 1024; i++)
  1233. {
  1234. uint32_t u = micros();
  1235. bool res = card.card.readBlock(i, buff);
  1236. u = micros() - u;
  1237. if (res)
  1238. {
  1239. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1240. sumr += u;
  1241. u = micros();
  1242. res = card.card.writeBlock(i, buff);
  1243. u = micros() - u;
  1244. if (res)
  1245. {
  1246. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1247. sumw += u;
  1248. }
  1249. else
  1250. {
  1251. printf_P(PSTR("writeBlock %4d error\n"), i);
  1252. break;
  1253. }
  1254. }
  1255. else
  1256. {
  1257. printf_P(PSTR("readBlock %4d error\n"), i);
  1258. break;
  1259. }
  1260. }
  1261. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1262. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1263. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1264. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1265. }
  1266. else
  1267. printf_P(PSTR("Card NG!\n"));
  1268. #endif //DEBUG_SD_SPEED_TEST
  1269. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1270. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1271. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1272. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1273. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1274. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1275. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1276. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1277. #ifdef SNMM
  1278. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1279. int _z = BOWDEN_LENGTH;
  1280. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1281. }
  1282. #endif
  1283. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1284. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1285. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1286. #if (LANG_MODE != 0) //secondary language support
  1287. #ifdef DEBUG_W25X20CL
  1288. W25X20CL_SPI_ENTER();
  1289. uint8_t uid[8]; // 64bit unique id
  1290. w25x20cl_rd_uid(uid);
  1291. puts_P(_n("W25X20CL UID="));
  1292. for (uint8_t i = 0; i < 8; i ++)
  1293. printf_P(PSTR("%02hhx"), uid[i]);
  1294. putchar('\n');
  1295. list_sec_lang_from_external_flash();
  1296. #endif //DEBUG_W25X20CL
  1297. // lang_reset();
  1298. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1299. lcd_language();
  1300. #ifdef DEBUG_SEC_LANG
  1301. uint16_t sec_lang_code = lang_get_code(1);
  1302. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1303. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1304. // lang_print_sec_lang(uartout);
  1305. #endif //DEBUG_SEC_LANG
  1306. #endif //(LANG_MODE != 0)
  1307. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1308. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1309. temp_cal_active = false;
  1310. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1311. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1312. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1313. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1314. int16_t z_shift = 0;
  1315. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1316. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1317. temp_cal_active = false;
  1318. }
  1319. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1320. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1321. }
  1322. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1323. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1324. }
  1325. check_babystep(); //checking if Z babystep is in allowed range
  1326. #ifdef UVLO_SUPPORT
  1327. setup_uvlo_interrupt();
  1328. #endif //UVLO_SUPPORT
  1329. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1330. setup_fan_interrupt();
  1331. #endif //DEBUG_DISABLE_FANCHECK
  1332. #ifdef FILAMENT_SENSOR
  1333. fsensor_setup_interrupt();
  1334. #endif //FILAMENT_SENSOR
  1335. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1336. #ifndef DEBUG_DISABLE_STARTMSGS
  1337. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1338. show_fw_version_warnings();
  1339. switch (hw_changed) {
  1340. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1341. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1342. case(0b01):
  1343. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1344. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1345. break;
  1346. case(0b10):
  1347. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1348. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1349. break;
  1350. case(0b11):
  1351. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1352. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1353. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1354. break;
  1355. default: break; //no change, show no message
  1356. }
  1357. if (!previous_settings_retrieved) {
  1358. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1359. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1360. }
  1361. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1362. lcd_wizard(0);
  1363. }
  1364. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1365. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1366. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1367. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1368. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1369. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1370. // Show the message.
  1371. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1372. }
  1373. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1374. // Show the message.
  1375. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1376. lcd_update_enable(true);
  1377. }
  1378. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1379. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1380. lcd_update_enable(true);
  1381. }
  1382. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1383. // Show the message.
  1384. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1385. }
  1386. }
  1387. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1388. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1389. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1390. update_current_firmware_version_to_eeprom();
  1391. lcd_selftest();
  1392. }
  1393. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1394. KEEPALIVE_STATE(IN_PROCESS);
  1395. #endif //DEBUG_DISABLE_STARTMSGS
  1396. lcd_update_enable(true);
  1397. lcd_clear();
  1398. lcd_update(2);
  1399. // Store the currently running firmware into an eeprom,
  1400. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1401. update_current_firmware_version_to_eeprom();
  1402. #ifdef TMC2130
  1403. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1404. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1405. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1406. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1407. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1408. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1409. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1410. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1411. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1412. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1413. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1414. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1415. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1416. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1417. #endif //TMC2130
  1418. #ifdef UVLO_SUPPORT
  1419. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1420. /*
  1421. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1422. else {
  1423. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1424. lcd_update_enable(true);
  1425. lcd_update(2);
  1426. lcd_setstatuspgm(_T(WELCOME_MSG));
  1427. }
  1428. */
  1429. manage_heater(); // Update temperatures
  1430. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1431. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1432. #endif
  1433. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1434. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1435. puts_P(_N("Automatic recovery!"));
  1436. #endif
  1437. recover_print(1);
  1438. }
  1439. else{
  1440. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1441. puts_P(_N("Normal recovery!"));
  1442. #endif
  1443. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1444. else {
  1445. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1446. lcd_update_enable(true);
  1447. lcd_update(2);
  1448. lcd_setstatuspgm(_T(WELCOME_MSG));
  1449. }
  1450. }
  1451. }
  1452. #endif //UVLO_SUPPORT
  1453. KEEPALIVE_STATE(NOT_BUSY);
  1454. #ifdef WATCHDOG
  1455. wdt_enable(WDTO_4S);
  1456. #endif //WATCHDOG
  1457. }
  1458. void trace();
  1459. #define CHUNK_SIZE 64 // bytes
  1460. #define SAFETY_MARGIN 1
  1461. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1462. int chunkHead = 0;
  1463. void serial_read_stream() {
  1464. setAllTargetHotends(0);
  1465. setTargetBed(0);
  1466. lcd_clear();
  1467. lcd_puts_P(PSTR(" Upload in progress"));
  1468. // first wait for how many bytes we will receive
  1469. uint32_t bytesToReceive;
  1470. // receive the four bytes
  1471. char bytesToReceiveBuffer[4];
  1472. for (int i=0; i<4; i++) {
  1473. int data;
  1474. while ((data = MYSERIAL.read()) == -1) {};
  1475. bytesToReceiveBuffer[i] = data;
  1476. }
  1477. // make it a uint32
  1478. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1479. // we're ready, notify the sender
  1480. MYSERIAL.write('+');
  1481. // lock in the routine
  1482. uint32_t receivedBytes = 0;
  1483. while (prusa_sd_card_upload) {
  1484. int i;
  1485. for (i=0; i<CHUNK_SIZE; i++) {
  1486. int data;
  1487. // check if we're not done
  1488. if (receivedBytes == bytesToReceive) {
  1489. break;
  1490. }
  1491. // read the next byte
  1492. while ((data = MYSERIAL.read()) == -1) {};
  1493. receivedBytes++;
  1494. // save it to the chunk
  1495. chunk[i] = data;
  1496. }
  1497. // write the chunk to SD
  1498. card.write_command_no_newline(&chunk[0]);
  1499. // notify the sender we're ready for more data
  1500. MYSERIAL.write('+');
  1501. // for safety
  1502. manage_heater();
  1503. // check if we're done
  1504. if(receivedBytes == bytesToReceive) {
  1505. trace(); // beep
  1506. card.closefile();
  1507. prusa_sd_card_upload = false;
  1508. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1509. }
  1510. }
  1511. }
  1512. #ifdef HOST_KEEPALIVE_FEATURE
  1513. /**
  1514. * Output a "busy" message at regular intervals
  1515. * while the machine is not accepting commands.
  1516. */
  1517. void host_keepalive() {
  1518. if (farm_mode) return;
  1519. long ms = millis();
  1520. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1521. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1522. switch (busy_state) {
  1523. case IN_HANDLER:
  1524. case IN_PROCESS:
  1525. SERIAL_ECHO_START;
  1526. SERIAL_ECHOLNPGM("busy: processing");
  1527. break;
  1528. case PAUSED_FOR_USER:
  1529. SERIAL_ECHO_START;
  1530. SERIAL_ECHOLNPGM("busy: paused for user");
  1531. break;
  1532. case PAUSED_FOR_INPUT:
  1533. SERIAL_ECHO_START;
  1534. SERIAL_ECHOLNPGM("busy: paused for input");
  1535. break;
  1536. default:
  1537. break;
  1538. }
  1539. }
  1540. prev_busy_signal_ms = ms;
  1541. }
  1542. #endif
  1543. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1544. // Before loop(), the setup() function is called by the main() routine.
  1545. void loop()
  1546. {
  1547. KEEPALIVE_STATE(NOT_BUSY);
  1548. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1549. {
  1550. is_usb_printing = true;
  1551. usb_printing_counter--;
  1552. _usb_timer = millis();
  1553. }
  1554. if (usb_printing_counter == 0)
  1555. {
  1556. is_usb_printing = false;
  1557. }
  1558. if (prusa_sd_card_upload)
  1559. {
  1560. //we read byte-by byte
  1561. serial_read_stream();
  1562. } else
  1563. {
  1564. get_command();
  1565. #ifdef SDSUPPORT
  1566. card.checkautostart(false);
  1567. #endif
  1568. if(buflen)
  1569. {
  1570. cmdbuffer_front_already_processed = false;
  1571. #ifdef SDSUPPORT
  1572. if(card.saving)
  1573. {
  1574. // Saving a G-code file onto an SD-card is in progress.
  1575. // Saving starts with M28, saving until M29 is seen.
  1576. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1577. card.write_command(CMDBUFFER_CURRENT_STRING);
  1578. if(card.logging)
  1579. process_commands();
  1580. else
  1581. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1582. } else {
  1583. card.closefile();
  1584. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1585. }
  1586. } else {
  1587. process_commands();
  1588. }
  1589. #else
  1590. process_commands();
  1591. #endif //SDSUPPORT
  1592. if (! cmdbuffer_front_already_processed && buflen)
  1593. {
  1594. // ptr points to the start of the block currently being processed.
  1595. // The first character in the block is the block type.
  1596. char *ptr = cmdbuffer + bufindr;
  1597. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1598. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1599. union {
  1600. struct {
  1601. char lo;
  1602. char hi;
  1603. } lohi;
  1604. uint16_t value;
  1605. } sdlen;
  1606. sdlen.value = 0;
  1607. {
  1608. // This block locks the interrupts globally for 3.25 us,
  1609. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1610. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1611. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1612. cli();
  1613. // Reset the command to something, which will be ignored by the power panic routine,
  1614. // so this buffer length will not be counted twice.
  1615. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1616. // Extract the current buffer length.
  1617. sdlen.lohi.lo = *ptr ++;
  1618. sdlen.lohi.hi = *ptr;
  1619. // and pass it to the planner queue.
  1620. planner_add_sd_length(sdlen.value);
  1621. sei();
  1622. }
  1623. }
  1624. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1625. cli();
  1626. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1627. // and one for each command to previous block in the planner queue.
  1628. planner_add_sd_length(1);
  1629. sei();
  1630. }
  1631. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1632. // this block's SD card length will not be counted twice as its command type has been replaced
  1633. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1634. cmdqueue_pop_front();
  1635. }
  1636. host_keepalive();
  1637. }
  1638. }
  1639. //check heater every n milliseconds
  1640. manage_heater();
  1641. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1642. checkHitEndstops();
  1643. lcd_update(0);
  1644. #ifdef FILAMENT_SENSOR
  1645. if (mcode_in_progress != 600 && !mmu_enabled) //M600 not in progress
  1646. fsensor_update();
  1647. #endif //FILAMENT_SENSOR
  1648. #ifdef TMC2130
  1649. tmc2130_check_overtemp();
  1650. if (tmc2130_sg_crash)
  1651. {
  1652. uint8_t crash = tmc2130_sg_crash;
  1653. tmc2130_sg_crash = 0;
  1654. // crashdet_stop_and_save_print();
  1655. switch (crash)
  1656. {
  1657. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1658. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1659. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1660. }
  1661. }
  1662. #endif //TMC2130
  1663. mmu_loop();
  1664. }
  1665. #define DEFINE_PGM_READ_ANY(type, reader) \
  1666. static inline type pgm_read_any(const type *p) \
  1667. { return pgm_read_##reader##_near(p); }
  1668. DEFINE_PGM_READ_ANY(float, float);
  1669. DEFINE_PGM_READ_ANY(signed char, byte);
  1670. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1671. static const PROGMEM type array##_P[3] = \
  1672. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1673. static inline type array(int axis) \
  1674. { return pgm_read_any(&array##_P[axis]); } \
  1675. type array##_ext(int axis) \
  1676. { return pgm_read_any(&array##_P[axis]); }
  1677. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1678. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1679. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1680. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1681. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1682. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1683. static void axis_is_at_home(int axis) {
  1684. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1685. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1686. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1687. }
  1688. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1689. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1690. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1691. saved_feedrate = feedrate;
  1692. saved_feedmultiply = feedmultiply;
  1693. feedmultiply = 100;
  1694. previous_millis_cmd = millis();
  1695. enable_endstops(enable_endstops_now);
  1696. }
  1697. static void clean_up_after_endstop_move() {
  1698. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1699. enable_endstops(false);
  1700. #endif
  1701. feedrate = saved_feedrate;
  1702. feedmultiply = saved_feedmultiply;
  1703. previous_millis_cmd = millis();
  1704. }
  1705. #ifdef ENABLE_AUTO_BED_LEVELING
  1706. #ifdef AUTO_BED_LEVELING_GRID
  1707. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1708. {
  1709. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1710. planeNormal.debug("planeNormal");
  1711. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1712. //bedLevel.debug("bedLevel");
  1713. //plan_bed_level_matrix.debug("bed level before");
  1714. //vector_3 uncorrected_position = plan_get_position_mm();
  1715. //uncorrected_position.debug("position before");
  1716. vector_3 corrected_position = plan_get_position();
  1717. // corrected_position.debug("position after");
  1718. current_position[X_AXIS] = corrected_position.x;
  1719. current_position[Y_AXIS] = corrected_position.y;
  1720. current_position[Z_AXIS] = corrected_position.z;
  1721. // put the bed at 0 so we don't go below it.
  1722. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1723. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1724. }
  1725. #else // not AUTO_BED_LEVELING_GRID
  1726. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1727. plan_bed_level_matrix.set_to_identity();
  1728. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1729. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1730. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1731. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1732. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1733. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1734. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1735. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1736. vector_3 corrected_position = plan_get_position();
  1737. current_position[X_AXIS] = corrected_position.x;
  1738. current_position[Y_AXIS] = corrected_position.y;
  1739. current_position[Z_AXIS] = corrected_position.z;
  1740. // put the bed at 0 so we don't go below it.
  1741. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1742. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1743. }
  1744. #endif // AUTO_BED_LEVELING_GRID
  1745. static void run_z_probe() {
  1746. plan_bed_level_matrix.set_to_identity();
  1747. feedrate = homing_feedrate[Z_AXIS];
  1748. // move down until you find the bed
  1749. float zPosition = -10;
  1750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1751. st_synchronize();
  1752. // we have to let the planner know where we are right now as it is not where we said to go.
  1753. zPosition = st_get_position_mm(Z_AXIS);
  1754. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1755. // move up the retract distance
  1756. zPosition += home_retract_mm(Z_AXIS);
  1757. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1758. st_synchronize();
  1759. // move back down slowly to find bed
  1760. feedrate = homing_feedrate[Z_AXIS]/4;
  1761. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1762. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1763. st_synchronize();
  1764. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1765. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1766. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1767. }
  1768. static void do_blocking_move_to(float x, float y, float z) {
  1769. float oldFeedRate = feedrate;
  1770. feedrate = homing_feedrate[Z_AXIS];
  1771. current_position[Z_AXIS] = z;
  1772. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1773. st_synchronize();
  1774. feedrate = XY_TRAVEL_SPEED;
  1775. current_position[X_AXIS] = x;
  1776. current_position[Y_AXIS] = y;
  1777. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1778. st_synchronize();
  1779. feedrate = oldFeedRate;
  1780. }
  1781. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1782. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1783. }
  1784. /// Probe bed height at position (x,y), returns the measured z value
  1785. static float probe_pt(float x, float y, float z_before) {
  1786. // move to right place
  1787. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1788. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1789. run_z_probe();
  1790. float measured_z = current_position[Z_AXIS];
  1791. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1792. SERIAL_PROTOCOLPGM(" x: ");
  1793. SERIAL_PROTOCOL(x);
  1794. SERIAL_PROTOCOLPGM(" y: ");
  1795. SERIAL_PROTOCOL(y);
  1796. SERIAL_PROTOCOLPGM(" z: ");
  1797. SERIAL_PROTOCOL(measured_z);
  1798. SERIAL_PROTOCOLPGM("\n");
  1799. return measured_z;
  1800. }
  1801. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1802. #ifdef LIN_ADVANCE
  1803. /**
  1804. * M900: Set and/or Get advance K factor and WH/D ratio
  1805. *
  1806. * K<factor> Set advance K factor
  1807. * R<ratio> Set ratio directly (overrides WH/D)
  1808. * W<width> H<height> D<diam> Set ratio from WH/D
  1809. */
  1810. inline void gcode_M900() {
  1811. st_synchronize();
  1812. const float newK = code_seen('K') ? code_value_float() : -1;
  1813. if (newK >= 0) extruder_advance_k = newK;
  1814. float newR = code_seen('R') ? code_value_float() : -1;
  1815. if (newR < 0) {
  1816. const float newD = code_seen('D') ? code_value_float() : -1,
  1817. newW = code_seen('W') ? code_value_float() : -1,
  1818. newH = code_seen('H') ? code_value_float() : -1;
  1819. if (newD >= 0 && newW >= 0 && newH >= 0)
  1820. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1821. }
  1822. if (newR >= 0) advance_ed_ratio = newR;
  1823. SERIAL_ECHO_START;
  1824. SERIAL_ECHOPGM("Advance K=");
  1825. SERIAL_ECHOLN(extruder_advance_k);
  1826. SERIAL_ECHOPGM(" E/D=");
  1827. const float ratio = advance_ed_ratio;
  1828. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1829. }
  1830. #endif // LIN_ADVANCE
  1831. bool check_commands() {
  1832. bool end_command_found = false;
  1833. while (buflen)
  1834. {
  1835. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1836. if (!cmdbuffer_front_already_processed)
  1837. cmdqueue_pop_front();
  1838. cmdbuffer_front_already_processed = false;
  1839. }
  1840. return end_command_found;
  1841. }
  1842. #ifdef TMC2130
  1843. bool calibrate_z_auto()
  1844. {
  1845. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1846. lcd_clear();
  1847. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1848. bool endstops_enabled = enable_endstops(true);
  1849. int axis_up_dir = -home_dir(Z_AXIS);
  1850. tmc2130_home_enter(Z_AXIS_MASK);
  1851. current_position[Z_AXIS] = 0;
  1852. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1853. set_destination_to_current();
  1854. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1855. feedrate = homing_feedrate[Z_AXIS];
  1856. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1857. st_synchronize();
  1858. // current_position[axis] = 0;
  1859. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1860. tmc2130_home_exit();
  1861. enable_endstops(false);
  1862. current_position[Z_AXIS] = 0;
  1863. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1864. set_destination_to_current();
  1865. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1866. feedrate = homing_feedrate[Z_AXIS] / 2;
  1867. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1868. st_synchronize();
  1869. enable_endstops(endstops_enabled);
  1870. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1871. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1872. return true;
  1873. }
  1874. #endif //TMC2130
  1875. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1876. {
  1877. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1878. #define HOMEAXIS_DO(LETTER) \
  1879. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1880. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1881. {
  1882. int axis_home_dir = home_dir(axis);
  1883. feedrate = homing_feedrate[axis];
  1884. #ifdef TMC2130
  1885. tmc2130_home_enter(X_AXIS_MASK << axis);
  1886. #endif //TMC2130
  1887. // Move right a bit, so that the print head does not touch the left end position,
  1888. // and the following left movement has a chance to achieve the required velocity
  1889. // for the stall guard to work.
  1890. current_position[axis] = 0;
  1891. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1892. set_destination_to_current();
  1893. // destination[axis] = 11.f;
  1894. destination[axis] = 3.f;
  1895. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1896. st_synchronize();
  1897. // Move left away from the possible collision with the collision detection disabled.
  1898. endstops_hit_on_purpose();
  1899. enable_endstops(false);
  1900. current_position[axis] = 0;
  1901. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1902. destination[axis] = - 1.;
  1903. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1904. st_synchronize();
  1905. // Now continue to move up to the left end stop with the collision detection enabled.
  1906. enable_endstops(true);
  1907. destination[axis] = - 1.1 * max_length(axis);
  1908. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1909. st_synchronize();
  1910. for (uint8_t i = 0; i < cnt; i++)
  1911. {
  1912. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1913. endstops_hit_on_purpose();
  1914. enable_endstops(false);
  1915. current_position[axis] = 0;
  1916. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1917. destination[axis] = 10.f;
  1918. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1919. st_synchronize();
  1920. endstops_hit_on_purpose();
  1921. // Now move left up to the collision, this time with a repeatable velocity.
  1922. enable_endstops(true);
  1923. destination[axis] = - 11.f;
  1924. #ifdef TMC2130
  1925. feedrate = homing_feedrate[axis];
  1926. #else //TMC2130
  1927. feedrate = homing_feedrate[axis] / 2;
  1928. #endif //TMC2130
  1929. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1930. st_synchronize();
  1931. #ifdef TMC2130
  1932. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1933. if (pstep) pstep[i] = mscnt >> 4;
  1934. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1935. #endif //TMC2130
  1936. }
  1937. endstops_hit_on_purpose();
  1938. enable_endstops(false);
  1939. #ifdef TMC2130
  1940. uint8_t orig = tmc2130_home_origin[axis];
  1941. uint8_t back = tmc2130_home_bsteps[axis];
  1942. if (tmc2130_home_enabled && (orig <= 63))
  1943. {
  1944. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1945. if (back > 0)
  1946. tmc2130_do_steps(axis, back, 1, 1000);
  1947. }
  1948. else
  1949. tmc2130_do_steps(axis, 8, 2, 1000);
  1950. tmc2130_home_exit();
  1951. #endif //TMC2130
  1952. axis_is_at_home(axis);
  1953. axis_known_position[axis] = true;
  1954. // Move from minimum
  1955. #ifdef TMC2130
  1956. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1957. #else //TMC2130
  1958. float dist = 0.01f * 64;
  1959. #endif //TMC2130
  1960. current_position[axis] -= dist;
  1961. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1962. current_position[axis] += dist;
  1963. destination[axis] = current_position[axis];
  1964. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1965. st_synchronize();
  1966. feedrate = 0.0;
  1967. }
  1968. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1969. {
  1970. #ifdef TMC2130
  1971. FORCE_HIGH_POWER_START;
  1972. #endif
  1973. int axis_home_dir = home_dir(axis);
  1974. current_position[axis] = 0;
  1975. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1976. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1977. feedrate = homing_feedrate[axis];
  1978. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1979. st_synchronize();
  1980. #ifdef TMC2130
  1981. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1982. FORCE_HIGH_POWER_END;
  1983. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1984. return;
  1985. }
  1986. #endif //TMC2130
  1987. current_position[axis] = 0;
  1988. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1989. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1990. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1991. st_synchronize();
  1992. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1993. feedrate = homing_feedrate[axis]/2 ;
  1994. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1995. st_synchronize();
  1996. #ifdef TMC2130
  1997. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1998. FORCE_HIGH_POWER_END;
  1999. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2000. return;
  2001. }
  2002. #endif //TMC2130
  2003. axis_is_at_home(axis);
  2004. destination[axis] = current_position[axis];
  2005. feedrate = 0.0;
  2006. endstops_hit_on_purpose();
  2007. axis_known_position[axis] = true;
  2008. #ifdef TMC2130
  2009. FORCE_HIGH_POWER_END;
  2010. #endif
  2011. }
  2012. enable_endstops(endstops_enabled);
  2013. }
  2014. /**/
  2015. void home_xy()
  2016. {
  2017. set_destination_to_current();
  2018. homeaxis(X_AXIS);
  2019. homeaxis(Y_AXIS);
  2020. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2021. endstops_hit_on_purpose();
  2022. }
  2023. void refresh_cmd_timeout(void)
  2024. {
  2025. previous_millis_cmd = millis();
  2026. }
  2027. #ifdef FWRETRACT
  2028. void retract(bool retracting, bool swapretract = false) {
  2029. if(retracting && !retracted[active_extruder]) {
  2030. destination[X_AXIS]=current_position[X_AXIS];
  2031. destination[Y_AXIS]=current_position[Y_AXIS];
  2032. destination[Z_AXIS]=current_position[Z_AXIS];
  2033. destination[E_AXIS]=current_position[E_AXIS];
  2034. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  2035. plan_set_e_position(current_position[E_AXIS]);
  2036. float oldFeedrate = feedrate;
  2037. feedrate=cs.retract_feedrate*60;
  2038. retracted[active_extruder]=true;
  2039. prepare_move();
  2040. current_position[Z_AXIS]-=cs.retract_zlift;
  2041. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2042. prepare_move();
  2043. feedrate = oldFeedrate;
  2044. } else if(!retracting && retracted[active_extruder]) {
  2045. destination[X_AXIS]=current_position[X_AXIS];
  2046. destination[Y_AXIS]=current_position[Y_AXIS];
  2047. destination[Z_AXIS]=current_position[Z_AXIS];
  2048. destination[E_AXIS]=current_position[E_AXIS];
  2049. current_position[Z_AXIS]+=cs.retract_zlift;
  2050. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2051. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  2052. plan_set_e_position(current_position[E_AXIS]);
  2053. float oldFeedrate = feedrate;
  2054. feedrate=cs.retract_recover_feedrate*60;
  2055. retracted[active_extruder]=false;
  2056. prepare_move();
  2057. feedrate = oldFeedrate;
  2058. }
  2059. } //retract
  2060. #endif //FWRETRACT
  2061. void trace() {
  2062. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  2063. tone(BEEPER, 440);
  2064. delay(25);
  2065. noTone(BEEPER);
  2066. delay(20);
  2067. }
  2068. /*
  2069. void ramming() {
  2070. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2071. if (current_temperature[0] < 230) {
  2072. //PLA
  2073. max_feedrate[E_AXIS] = 50;
  2074. //current_position[E_AXIS] -= 8;
  2075. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2076. //current_position[E_AXIS] += 8;
  2077. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2078. current_position[E_AXIS] += 5.4;
  2079. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2080. current_position[E_AXIS] += 3.2;
  2081. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2082. current_position[E_AXIS] += 3;
  2083. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2084. st_synchronize();
  2085. max_feedrate[E_AXIS] = 80;
  2086. current_position[E_AXIS] -= 82;
  2087. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2088. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2089. current_position[E_AXIS] -= 20;
  2090. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2091. current_position[E_AXIS] += 5;
  2092. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2093. current_position[E_AXIS] += 5;
  2094. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2095. current_position[E_AXIS] -= 10;
  2096. st_synchronize();
  2097. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2098. current_position[E_AXIS] += 10;
  2099. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2100. current_position[E_AXIS] -= 10;
  2101. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2102. current_position[E_AXIS] += 10;
  2103. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2104. current_position[E_AXIS] -= 10;
  2105. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2106. st_synchronize();
  2107. }
  2108. else {
  2109. //ABS
  2110. max_feedrate[E_AXIS] = 50;
  2111. //current_position[E_AXIS] -= 8;
  2112. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2113. //current_position[E_AXIS] += 8;
  2114. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2115. current_position[E_AXIS] += 3.1;
  2116. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2117. current_position[E_AXIS] += 3.1;
  2118. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2119. current_position[E_AXIS] += 4;
  2120. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2121. st_synchronize();
  2122. //current_position[X_AXIS] += 23; //delay
  2123. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2124. //current_position[X_AXIS] -= 23; //delay
  2125. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2126. delay(4700);
  2127. max_feedrate[E_AXIS] = 80;
  2128. current_position[E_AXIS] -= 92;
  2129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2130. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2131. current_position[E_AXIS] -= 5;
  2132. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2133. current_position[E_AXIS] += 5;
  2134. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2135. current_position[E_AXIS] -= 5;
  2136. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2137. st_synchronize();
  2138. current_position[E_AXIS] += 5;
  2139. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2140. current_position[E_AXIS] -= 5;
  2141. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2142. current_position[E_AXIS] += 5;
  2143. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2144. current_position[E_AXIS] -= 5;
  2145. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2146. st_synchronize();
  2147. }
  2148. }
  2149. */
  2150. #ifdef TMC2130
  2151. void force_high_power_mode(bool start_high_power_section) {
  2152. uint8_t silent;
  2153. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2154. if (silent == 1) {
  2155. //we are in silent mode, set to normal mode to enable crash detection
  2156. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2157. st_synchronize();
  2158. cli();
  2159. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2160. update_mode_profile();
  2161. tmc2130_init();
  2162. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2163. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2164. st_reset_timer();
  2165. sei();
  2166. }
  2167. }
  2168. #endif //TMC2130
  2169. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2170. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2171. }
  2172. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2173. st_synchronize();
  2174. #if 0
  2175. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2176. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2177. #endif
  2178. // Flag for the display update routine and to disable the print cancelation during homing.
  2179. homing_flag = true;
  2180. // Which axes should be homed?
  2181. bool home_x = home_x_axis;
  2182. bool home_y = home_y_axis;
  2183. bool home_z = home_z_axis;
  2184. // Either all X,Y,Z codes are present, or none of them.
  2185. bool home_all_axes = home_x == home_y && home_x == home_z;
  2186. if (home_all_axes)
  2187. // No X/Y/Z code provided means to home all axes.
  2188. home_x = home_y = home_z = true;
  2189. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2190. if (home_all_axes) {
  2191. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2192. feedrate = homing_feedrate[Z_AXIS];
  2193. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2194. st_synchronize();
  2195. }
  2196. #ifdef ENABLE_AUTO_BED_LEVELING
  2197. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2198. #endif //ENABLE_AUTO_BED_LEVELING
  2199. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2200. // the planner will not perform any adjustments in the XY plane.
  2201. // Wait for the motors to stop and update the current position with the absolute values.
  2202. world2machine_revert_to_uncorrected();
  2203. // For mesh bed leveling deactivate the matrix temporarily.
  2204. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2205. // in a single axis only.
  2206. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2207. #ifdef MESH_BED_LEVELING
  2208. uint8_t mbl_was_active = mbl.active;
  2209. mbl.active = 0;
  2210. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2211. #endif
  2212. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2213. // consumed during the first movements following this statement.
  2214. if (home_z)
  2215. babystep_undo();
  2216. saved_feedrate = feedrate;
  2217. saved_feedmultiply = feedmultiply;
  2218. feedmultiply = 100;
  2219. previous_millis_cmd = millis();
  2220. enable_endstops(true);
  2221. memcpy(destination, current_position, sizeof(destination));
  2222. feedrate = 0.0;
  2223. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2224. if(home_z)
  2225. homeaxis(Z_AXIS);
  2226. #endif
  2227. #ifdef QUICK_HOME
  2228. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2229. if(home_x && home_y) //first diagonal move
  2230. {
  2231. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2232. int x_axis_home_dir = home_dir(X_AXIS);
  2233. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2234. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2235. feedrate = homing_feedrate[X_AXIS];
  2236. if(homing_feedrate[Y_AXIS]<feedrate)
  2237. feedrate = homing_feedrate[Y_AXIS];
  2238. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2239. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2240. } else {
  2241. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2242. }
  2243. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2244. st_synchronize();
  2245. axis_is_at_home(X_AXIS);
  2246. axis_is_at_home(Y_AXIS);
  2247. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2248. destination[X_AXIS] = current_position[X_AXIS];
  2249. destination[Y_AXIS] = current_position[Y_AXIS];
  2250. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2251. feedrate = 0.0;
  2252. st_synchronize();
  2253. endstops_hit_on_purpose();
  2254. current_position[X_AXIS] = destination[X_AXIS];
  2255. current_position[Y_AXIS] = destination[Y_AXIS];
  2256. current_position[Z_AXIS] = destination[Z_AXIS];
  2257. }
  2258. #endif /* QUICK_HOME */
  2259. #ifdef TMC2130
  2260. if(home_x)
  2261. {
  2262. if (!calib)
  2263. homeaxis(X_AXIS);
  2264. else
  2265. tmc2130_home_calibrate(X_AXIS);
  2266. }
  2267. if(home_y)
  2268. {
  2269. if (!calib)
  2270. homeaxis(Y_AXIS);
  2271. else
  2272. tmc2130_home_calibrate(Y_AXIS);
  2273. }
  2274. #endif //TMC2130
  2275. if(home_x_axis && home_x_value != 0)
  2276. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2277. if(home_y_axis && home_y_value != 0)
  2278. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2279. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2280. #ifndef Z_SAFE_HOMING
  2281. if(home_z) {
  2282. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2283. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2284. feedrate = max_feedrate[Z_AXIS];
  2285. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2286. st_synchronize();
  2287. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2288. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2289. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2290. {
  2291. homeaxis(X_AXIS);
  2292. homeaxis(Y_AXIS);
  2293. }
  2294. // 1st mesh bed leveling measurement point, corrected.
  2295. world2machine_initialize();
  2296. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2297. world2machine_reset();
  2298. if (destination[Y_AXIS] < Y_MIN_POS)
  2299. destination[Y_AXIS] = Y_MIN_POS;
  2300. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2301. feedrate = homing_feedrate[Z_AXIS]/10;
  2302. current_position[Z_AXIS] = 0;
  2303. enable_endstops(false);
  2304. #ifdef DEBUG_BUILD
  2305. SERIAL_ECHOLNPGM("plan_set_position()");
  2306. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2307. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2308. #endif
  2309. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2310. #ifdef DEBUG_BUILD
  2311. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2312. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2313. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2314. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2315. #endif
  2316. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2317. st_synchronize();
  2318. current_position[X_AXIS] = destination[X_AXIS];
  2319. current_position[Y_AXIS] = destination[Y_AXIS];
  2320. enable_endstops(true);
  2321. endstops_hit_on_purpose();
  2322. homeaxis(Z_AXIS);
  2323. #else // MESH_BED_LEVELING
  2324. homeaxis(Z_AXIS);
  2325. #endif // MESH_BED_LEVELING
  2326. }
  2327. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2328. if(home_all_axes) {
  2329. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2330. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2331. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2332. feedrate = XY_TRAVEL_SPEED/60;
  2333. current_position[Z_AXIS] = 0;
  2334. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2335. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2336. st_synchronize();
  2337. current_position[X_AXIS] = destination[X_AXIS];
  2338. current_position[Y_AXIS] = destination[Y_AXIS];
  2339. homeaxis(Z_AXIS);
  2340. }
  2341. // Let's see if X and Y are homed and probe is inside bed area.
  2342. if(home_z) {
  2343. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2344. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2345. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2346. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2347. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2348. current_position[Z_AXIS] = 0;
  2349. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2350. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2351. feedrate = max_feedrate[Z_AXIS];
  2352. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2353. st_synchronize();
  2354. homeaxis(Z_AXIS);
  2355. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2356. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2357. SERIAL_ECHO_START;
  2358. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2359. } else {
  2360. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2361. SERIAL_ECHO_START;
  2362. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2363. }
  2364. }
  2365. #endif // Z_SAFE_HOMING
  2366. #endif // Z_HOME_DIR < 0
  2367. if(home_z_axis && home_z_value != 0)
  2368. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2369. #ifdef ENABLE_AUTO_BED_LEVELING
  2370. if(home_z)
  2371. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2372. #endif
  2373. // Set the planner and stepper routine positions.
  2374. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2375. // contains the machine coordinates.
  2376. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2377. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2378. enable_endstops(false);
  2379. #endif
  2380. feedrate = saved_feedrate;
  2381. feedmultiply = saved_feedmultiply;
  2382. previous_millis_cmd = millis();
  2383. endstops_hit_on_purpose();
  2384. #ifndef MESH_BED_LEVELING
  2385. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2386. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2387. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2388. lcd_adjust_z();
  2389. #endif
  2390. // Load the machine correction matrix
  2391. world2machine_initialize();
  2392. // and correct the current_position XY axes to match the transformed coordinate system.
  2393. world2machine_update_current();
  2394. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2395. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2396. {
  2397. if (! home_z && mbl_was_active) {
  2398. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2399. mbl.active = true;
  2400. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2401. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2402. }
  2403. }
  2404. else
  2405. {
  2406. st_synchronize();
  2407. homing_flag = false;
  2408. }
  2409. #endif
  2410. if (farm_mode) { prusa_statistics(20); };
  2411. homing_flag = false;
  2412. #if 0
  2413. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2414. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2415. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2416. #endif
  2417. }
  2418. void adjust_bed_reset()
  2419. {
  2420. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2421. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2422. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2423. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2424. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2425. }
  2426. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2427. {
  2428. bool final_result = false;
  2429. #ifdef TMC2130
  2430. FORCE_HIGH_POWER_START;
  2431. #endif // TMC2130
  2432. // Only Z calibration?
  2433. if (!onlyZ)
  2434. {
  2435. setTargetBed(0);
  2436. setAllTargetHotends(0);
  2437. adjust_bed_reset(); //reset bed level correction
  2438. }
  2439. // Disable the default update procedure of the display. We will do a modal dialog.
  2440. lcd_update_enable(false);
  2441. // Let the planner use the uncorrected coordinates.
  2442. mbl.reset();
  2443. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2444. // the planner will not perform any adjustments in the XY plane.
  2445. // Wait for the motors to stop and update the current position with the absolute values.
  2446. world2machine_revert_to_uncorrected();
  2447. // Reset the baby step value applied without moving the axes.
  2448. babystep_reset();
  2449. // Mark all axes as in a need for homing.
  2450. memset(axis_known_position, 0, sizeof(axis_known_position));
  2451. // Home in the XY plane.
  2452. //set_destination_to_current();
  2453. setup_for_endstop_move();
  2454. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2455. home_xy();
  2456. enable_endstops(false);
  2457. current_position[X_AXIS] += 5;
  2458. current_position[Y_AXIS] += 5;
  2459. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2460. st_synchronize();
  2461. // Let the user move the Z axes up to the end stoppers.
  2462. #ifdef TMC2130
  2463. if (calibrate_z_auto())
  2464. {
  2465. #else //TMC2130
  2466. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2467. {
  2468. #endif //TMC2130
  2469. refresh_cmd_timeout();
  2470. #ifndef STEEL_SHEET
  2471. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2472. {
  2473. lcd_wait_for_cool_down();
  2474. }
  2475. #endif //STEEL_SHEET
  2476. if(!onlyZ)
  2477. {
  2478. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2479. #ifdef STEEL_SHEET
  2480. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2481. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2482. #endif //STEEL_SHEET
  2483. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2484. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2485. KEEPALIVE_STATE(IN_HANDLER);
  2486. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2487. lcd_set_cursor(0, 2);
  2488. lcd_print(1);
  2489. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2490. }
  2491. // Move the print head close to the bed.
  2492. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2493. bool endstops_enabled = enable_endstops(true);
  2494. #ifdef TMC2130
  2495. tmc2130_home_enter(Z_AXIS_MASK);
  2496. #endif //TMC2130
  2497. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2498. st_synchronize();
  2499. #ifdef TMC2130
  2500. tmc2130_home_exit();
  2501. #endif //TMC2130
  2502. enable_endstops(endstops_enabled);
  2503. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2504. {
  2505. int8_t verbosity_level = 0;
  2506. if (code_seen('V'))
  2507. {
  2508. // Just 'V' without a number counts as V1.
  2509. char c = strchr_pointer[1];
  2510. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2511. }
  2512. if (onlyZ)
  2513. {
  2514. clean_up_after_endstop_move();
  2515. // Z only calibration.
  2516. // Load the machine correction matrix
  2517. world2machine_initialize();
  2518. // and correct the current_position to match the transformed coordinate system.
  2519. world2machine_update_current();
  2520. //FIXME
  2521. bool result = sample_mesh_and_store_reference();
  2522. if (result)
  2523. {
  2524. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2525. // Shipped, the nozzle height has been set already. The user can start printing now.
  2526. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2527. final_result = true;
  2528. // babystep_apply();
  2529. }
  2530. }
  2531. else
  2532. {
  2533. // Reset the baby step value and the baby step applied flag.
  2534. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2535. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2536. // Complete XYZ calibration.
  2537. uint8_t point_too_far_mask = 0;
  2538. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2539. clean_up_after_endstop_move();
  2540. // Print head up.
  2541. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2542. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2543. st_synchronize();
  2544. //#ifndef NEW_XYZCAL
  2545. if (result >= 0)
  2546. {
  2547. #ifdef HEATBED_V2
  2548. sample_z();
  2549. #else //HEATBED_V2
  2550. point_too_far_mask = 0;
  2551. // Second half: The fine adjustment.
  2552. // Let the planner use the uncorrected coordinates.
  2553. mbl.reset();
  2554. world2machine_reset();
  2555. // Home in the XY plane.
  2556. setup_for_endstop_move();
  2557. home_xy();
  2558. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2559. clean_up_after_endstop_move();
  2560. // Print head up.
  2561. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2562. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2563. st_synchronize();
  2564. // if (result >= 0) babystep_apply();
  2565. #endif //HEATBED_V2
  2566. }
  2567. //#endif //NEW_XYZCAL
  2568. lcd_update_enable(true);
  2569. lcd_update(2);
  2570. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2571. if (result >= 0)
  2572. {
  2573. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2574. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2575. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2576. final_result = true;
  2577. }
  2578. }
  2579. #ifdef TMC2130
  2580. tmc2130_home_exit();
  2581. #endif
  2582. }
  2583. else
  2584. {
  2585. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2586. final_result = false;
  2587. }
  2588. }
  2589. else
  2590. {
  2591. // Timeouted.
  2592. }
  2593. lcd_update_enable(true);
  2594. #ifdef TMC2130
  2595. FORCE_HIGH_POWER_END;
  2596. #endif // TMC2130
  2597. return final_result;
  2598. }
  2599. void gcode_M114()
  2600. {
  2601. SERIAL_PROTOCOLPGM("X:");
  2602. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2603. SERIAL_PROTOCOLPGM(" Y:");
  2604. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2605. SERIAL_PROTOCOLPGM(" Z:");
  2606. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2607. SERIAL_PROTOCOLPGM(" E:");
  2608. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2609. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2610. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2611. SERIAL_PROTOCOLPGM(" Y:");
  2612. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2613. SERIAL_PROTOCOLPGM(" Z:");
  2614. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2615. SERIAL_PROTOCOLPGM(" E:");
  2616. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2617. SERIAL_PROTOCOLLN("");
  2618. }
  2619. void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float e_shift_late) {
  2620. st_synchronize();
  2621. float lastpos[4];
  2622. if (farm_mode)
  2623. {
  2624. prusa_statistics(22);
  2625. }
  2626. //First backup current position and settings
  2627. feedmultiplyBckp=feedmultiply;
  2628. HotendTempBckp = degTargetHotend(active_extruder);
  2629. fanSpeedBckp = fanSpeed;
  2630. lastpos[X_AXIS]=current_position[X_AXIS];
  2631. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2632. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2633. lastpos[E_AXIS]=current_position[E_AXIS];
  2634. //Retract E
  2635. current_position[E_AXIS]+= e_shift;
  2636. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2637. st_synchronize();
  2638. //Lift Z
  2639. current_position[Z_AXIS]+= z_shift;
  2640. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2641. st_synchronize();
  2642. //Move XY to side
  2643. current_position[X_AXIS]= x_position;
  2644. current_position[Y_AXIS]= y_position;
  2645. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2646. st_synchronize();
  2647. //Beep, manage nozzle heater and wait for user to start unload filament
  2648. if(!mmu_enabled) M600_wait_for_user();
  2649. lcd_change_fil_state = 0;
  2650. // Unload filament
  2651. if (mmu_enabled)
  2652. extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2653. else
  2654. unload_filament(); //unload filament for single material (used also in M702)
  2655. //finish moves
  2656. st_synchronize();
  2657. if (!mmu_enabled)
  2658. {
  2659. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2660. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2661. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2662. lcd_update_enable(true);
  2663. }
  2664. if (mmu_enabled)
  2665. {
  2666. if (!automatic) {
  2667. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2668. mmu_M600_wait_and_beep();
  2669. if (saved_printing) {
  2670. lcd_clear();
  2671. lcd_set_cursor(0, 2);
  2672. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2673. mmu_command(MMU_CMD_R0);
  2674. manage_response(false, false);
  2675. }
  2676. }
  2677. mmu_M600_load_filament(automatic);
  2678. }
  2679. else
  2680. M600_load_filament();
  2681. if(!automatic) M600_check_state();
  2682. lcd_update_enable(true);
  2683. //Not let's go back to print
  2684. fanSpeed = fanSpeedBckp;
  2685. //Feed a little of filament to stabilize pressure
  2686. if (!automatic) {
  2687. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2688. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2689. }
  2690. //Move XY back
  2691. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2692. st_synchronize();
  2693. //Move Z back
  2694. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2695. st_synchronize();
  2696. //Set E position to original
  2697. plan_set_e_position(lastpos[E_AXIS]);
  2698. memcpy(current_position, lastpos, sizeof(lastpos));
  2699. memcpy(destination, current_position, sizeof(current_position));
  2700. //Recover feed rate
  2701. feedmultiply=feedmultiplyBckp;
  2702. char cmd[9];
  2703. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2704. enquecommand(cmd);
  2705. lcd_setstatuspgm(_T(WELCOME_MSG));
  2706. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2707. }
  2708. void gcode_M701()
  2709. {
  2710. printf_P(PSTR("gcode_M701 begin\n"));
  2711. if (mmu_enabled)
  2712. {
  2713. extr_adj(tmp_extruder);//loads current extruder
  2714. mmu_extruder = tmp_extruder;
  2715. }
  2716. else
  2717. {
  2718. enable_z();
  2719. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2720. #ifdef FILAMENT_SENSOR
  2721. fsensor_oq_meassure_start(40);
  2722. #endif //FILAMENT_SENSOR
  2723. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2724. current_position[E_AXIS] += 40;
  2725. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2726. st_synchronize();
  2727. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2728. current_position[E_AXIS] += 30;
  2729. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2730. st_synchronize();
  2731. current_position[E_AXIS] += 25;
  2732. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2733. st_synchronize();
  2734. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) tone(BEEPER, 500);
  2735. delay_keep_alive(50);
  2736. noTone(BEEPER);
  2737. if (!farm_mode && loading_flag) {
  2738. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2739. while (!clean) {
  2740. lcd_update_enable(true);
  2741. lcd_update(2);
  2742. current_position[E_AXIS] += 25;
  2743. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2744. st_synchronize();
  2745. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2746. }
  2747. }
  2748. lcd_update_enable(true);
  2749. lcd_update(2);
  2750. lcd_setstatuspgm(_T(WELCOME_MSG));
  2751. disable_z();
  2752. loading_flag = false;
  2753. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2754. #ifdef FILAMENT_SENSOR
  2755. if (mmu_enabled == false)
  2756. {
  2757. fsensor_oq_meassure_stop();
  2758. if (!fsensor_oq_result())
  2759. {
  2760. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2761. lcd_update_enable(true);
  2762. lcd_update(2);
  2763. if (disable)
  2764. fsensor_disable();
  2765. }
  2766. }
  2767. #endif //FILAMENT_SENSOR
  2768. }
  2769. }
  2770. /**
  2771. * @brief Get serial number from 32U2 processor
  2772. *
  2773. * Typical format of S/N is:CZPX0917X003XC13518
  2774. *
  2775. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2776. *
  2777. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2778. * reply is transmitted to serial port 1 character by character.
  2779. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2780. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2781. * in any case.
  2782. */
  2783. static void gcode_PRUSA_SN()
  2784. {
  2785. if (farm_mode) {
  2786. selectedSerialPort = 0;
  2787. putchar(';');
  2788. putchar('S');
  2789. int numbersRead = 0;
  2790. ShortTimer timeout;
  2791. timeout.start();
  2792. while (numbersRead < 19) {
  2793. while (MSerial.available() > 0) {
  2794. uint8_t serial_char = MSerial.read();
  2795. selectedSerialPort = 1;
  2796. putchar(serial_char);
  2797. numbersRead++;
  2798. selectedSerialPort = 0;
  2799. }
  2800. if (timeout.expired(100u)) break;
  2801. }
  2802. selectedSerialPort = 1;
  2803. putchar('\n');
  2804. #if 0
  2805. for (int b = 0; b < 3; b++) {
  2806. tone(BEEPER, 110);
  2807. delay(50);
  2808. noTone(BEEPER);
  2809. delay(50);
  2810. }
  2811. #endif
  2812. } else {
  2813. puts_P(_N("Not in farm mode."));
  2814. }
  2815. }
  2816. #ifdef BACKLASH_X
  2817. extern uint8_t st_backlash_x;
  2818. #endif //BACKLASH_X
  2819. #ifdef BACKLASH_Y
  2820. extern uint8_t st_backlash_y;
  2821. #endif //BACKLASH_Y
  2822. void process_commands()
  2823. {
  2824. if (!buflen) return; //empty command
  2825. #ifdef FILAMENT_RUNOUT_SUPPORT
  2826. SET_INPUT(FR_SENS);
  2827. #endif
  2828. #ifdef CMDBUFFER_DEBUG
  2829. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2830. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2831. SERIAL_ECHOLNPGM("");
  2832. SERIAL_ECHOPGM("In cmdqueue: ");
  2833. SERIAL_ECHO(buflen);
  2834. SERIAL_ECHOLNPGM("");
  2835. #endif /* CMDBUFFER_DEBUG */
  2836. unsigned long codenum; //throw away variable
  2837. char *starpos = NULL;
  2838. #ifdef ENABLE_AUTO_BED_LEVELING
  2839. float x_tmp, y_tmp, z_tmp, real_z;
  2840. #endif
  2841. // PRUSA GCODES
  2842. KEEPALIVE_STATE(IN_HANDLER);
  2843. #ifdef SNMM
  2844. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2845. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2846. int8_t SilentMode;
  2847. #endif
  2848. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2849. starpos = (strchr(strchr_pointer + 5, '*'));
  2850. if (starpos != NULL)
  2851. *(starpos) = '\0';
  2852. lcd_setstatus(strchr_pointer + 5);
  2853. }
  2854. #ifdef TMC2130
  2855. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2856. {
  2857. if(code_seen("CRASH_DETECTED"))
  2858. {
  2859. uint8_t mask = 0;
  2860. if (code_seen('X')) mask |= X_AXIS_MASK;
  2861. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2862. crashdet_detected(mask);
  2863. }
  2864. else if(code_seen("CRASH_RECOVER"))
  2865. crashdet_recover();
  2866. else if(code_seen("CRASH_CANCEL"))
  2867. crashdet_cancel();
  2868. }
  2869. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2870. {
  2871. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2872. {
  2873. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2874. axis = (axis == 'E')?3:(axis - 'X');
  2875. if (axis < 4)
  2876. {
  2877. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2878. tmc2130_set_wave(axis, 247, fac);
  2879. }
  2880. }
  2881. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2882. {
  2883. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2884. axis = (axis == 'E')?3:(axis - 'X');
  2885. if (axis < 4)
  2886. {
  2887. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2888. uint16_t res = tmc2130_get_res(axis);
  2889. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2890. }
  2891. }
  2892. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2893. {
  2894. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2895. axis = (axis == 'E')?3:(axis - 'X');
  2896. if (axis < 4)
  2897. {
  2898. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2899. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2900. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2901. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2902. char* str_end = 0;
  2903. if (CMDBUFFER_CURRENT_STRING[14])
  2904. {
  2905. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2906. if (str_end && *str_end)
  2907. {
  2908. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2909. if (str_end && *str_end)
  2910. {
  2911. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2912. if (str_end && *str_end)
  2913. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2914. }
  2915. }
  2916. }
  2917. tmc2130_chopper_config[axis].toff = chop0;
  2918. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2919. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2920. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2921. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2922. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2923. }
  2924. }
  2925. }
  2926. #ifdef BACKLASH_X
  2927. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2928. {
  2929. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2930. st_backlash_x = bl;
  2931. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2932. }
  2933. #endif //BACKLASH_X
  2934. #ifdef BACKLASH_Y
  2935. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2936. {
  2937. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2938. st_backlash_y = bl;
  2939. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2940. }
  2941. #endif //BACKLASH_Y
  2942. #endif //TMC2130
  2943. else if (code_seen("FSENSOR_RECOVER")) {
  2944. fsensor_restore_print_and_continue();
  2945. }
  2946. else if(code_seen("PRUSA")){
  2947. if (code_seen("Ping")) { //PRUSA Ping
  2948. if (farm_mode) {
  2949. PingTime = millis();
  2950. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2951. }
  2952. }
  2953. else if (code_seen("PRN")) {
  2954. printf_P(_N("%d"), status_number);
  2955. }else if (code_seen("FAN")) {
  2956. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2957. }else if (code_seen("fn")) {
  2958. if (farm_mode) {
  2959. printf_P(_N("%d"), farm_no);
  2960. }
  2961. else {
  2962. puts_P(_N("Not in farm mode."));
  2963. }
  2964. }
  2965. else if (code_seen("thx"))
  2966. {
  2967. no_response = false;
  2968. }
  2969. else if (code_seen("uvlo"))
  2970. {
  2971. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  2972. enquecommand_P(PSTR("M24"));
  2973. }
  2974. else if (code_seen("MMURES"))
  2975. {
  2976. mmu_reset();
  2977. }
  2978. else if (code_seen("RESET")) {
  2979. // careful!
  2980. if (farm_mode) {
  2981. #ifdef WATCHDOG
  2982. boot_app_magic = BOOT_APP_MAGIC;
  2983. boot_app_flags = BOOT_APP_FLG_RUN;
  2984. wdt_enable(WDTO_15MS);
  2985. cli();
  2986. while(1);
  2987. #else //WATCHDOG
  2988. asm volatile("jmp 0x3E000");
  2989. #endif //WATCHDOG
  2990. }
  2991. else {
  2992. MYSERIAL.println("Not in farm mode.");
  2993. }
  2994. }else if (code_seen("fv")) {
  2995. // get file version
  2996. #ifdef SDSUPPORT
  2997. card.openFile(strchr_pointer + 3,true);
  2998. while (true) {
  2999. uint16_t readByte = card.get();
  3000. MYSERIAL.write(readByte);
  3001. if (readByte=='\n') {
  3002. break;
  3003. }
  3004. }
  3005. card.closefile();
  3006. #endif // SDSUPPORT
  3007. } else if (code_seen("M28")) {
  3008. trace();
  3009. prusa_sd_card_upload = true;
  3010. card.openFile(strchr_pointer+4,false);
  3011. } else if (code_seen("SN")) {
  3012. gcode_PRUSA_SN();
  3013. } else if(code_seen("Fir")){
  3014. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3015. } else if(code_seen("Rev")){
  3016. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3017. } else if(code_seen("Lang")) {
  3018. lang_reset();
  3019. } else if(code_seen("Lz")) {
  3020. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3021. } else if(code_seen("Beat")) {
  3022. // Kick farm link timer
  3023. kicktime = millis();
  3024. } else if(code_seen("FR")) {
  3025. // Factory full reset
  3026. factory_reset(0,true);
  3027. }
  3028. //else if (code_seen('Cal')) {
  3029. // lcd_calibration();
  3030. // }
  3031. }
  3032. else if (code_seen('^')) {
  3033. // nothing, this is a version line
  3034. } else if(code_seen('G'))
  3035. {
  3036. gcode_in_progress = (int)code_value();
  3037. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3038. switch (gcode_in_progress)
  3039. {
  3040. case 0: // G0 -> G1
  3041. case 1: // G1
  3042. if(Stopped == false) {
  3043. #ifdef FILAMENT_RUNOUT_SUPPORT
  3044. if(READ(FR_SENS)){
  3045. feedmultiplyBckp=feedmultiply;
  3046. float target[4];
  3047. float lastpos[4];
  3048. target[X_AXIS]=current_position[X_AXIS];
  3049. target[Y_AXIS]=current_position[Y_AXIS];
  3050. target[Z_AXIS]=current_position[Z_AXIS];
  3051. target[E_AXIS]=current_position[E_AXIS];
  3052. lastpos[X_AXIS]=current_position[X_AXIS];
  3053. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3054. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3055. lastpos[E_AXIS]=current_position[E_AXIS];
  3056. //retract by E
  3057. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3058. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3059. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3060. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3061. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3062. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3063. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3064. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3065. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3066. //finish moves
  3067. st_synchronize();
  3068. //disable extruder steppers so filament can be removed
  3069. disable_e0();
  3070. disable_e1();
  3071. disable_e2();
  3072. delay(100);
  3073. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3074. uint8_t cnt=0;
  3075. int counterBeep = 0;
  3076. lcd_wait_interact();
  3077. while(!lcd_clicked()){
  3078. cnt++;
  3079. manage_heater();
  3080. manage_inactivity(true);
  3081. //lcd_update(0);
  3082. if(cnt==0)
  3083. {
  3084. #if BEEPER > 0
  3085. if (counterBeep== 500){
  3086. counterBeep = 0;
  3087. }
  3088. SET_OUTPUT(BEEPER);
  3089. if (counterBeep== 0){
  3090. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3091. WRITE(BEEPER,HIGH);
  3092. }
  3093. if (counterBeep== 20){
  3094. WRITE(BEEPER,LOW);
  3095. }
  3096. counterBeep++;
  3097. #else
  3098. #endif
  3099. }
  3100. }
  3101. WRITE(BEEPER,LOW);
  3102. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3103. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3104. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3105. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3106. lcd_change_fil_state = 0;
  3107. lcd_loading_filament();
  3108. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3109. lcd_change_fil_state = 0;
  3110. lcd_alright();
  3111. switch(lcd_change_fil_state){
  3112. case 2:
  3113. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3114. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3115. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3116. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3117. lcd_loading_filament();
  3118. break;
  3119. case 3:
  3120. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3121. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3122. lcd_loading_color();
  3123. break;
  3124. default:
  3125. lcd_change_success();
  3126. break;
  3127. }
  3128. }
  3129. target[E_AXIS]+= 5;
  3130. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3131. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3132. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3133. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3134. //plan_set_e_position(current_position[E_AXIS]);
  3135. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3136. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3137. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3138. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3139. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3140. plan_set_e_position(lastpos[E_AXIS]);
  3141. feedmultiply=feedmultiplyBckp;
  3142. char cmd[9];
  3143. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3144. enquecommand(cmd);
  3145. }
  3146. #endif
  3147. get_coordinates(); // For X Y Z E F
  3148. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3149. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3150. }
  3151. #ifdef FWRETRACT
  3152. if(cs.autoretract_enabled)
  3153. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3154. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3155. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3156. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3157. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3158. retract(!retracted[active_extruder]);
  3159. return;
  3160. }
  3161. }
  3162. #endif //FWRETRACT
  3163. prepare_move();
  3164. //ClearToSend();
  3165. }
  3166. break;
  3167. case 2: // G2 - CW ARC
  3168. if(Stopped == false) {
  3169. get_arc_coordinates();
  3170. prepare_arc_move(true);
  3171. }
  3172. break;
  3173. case 3: // G3 - CCW ARC
  3174. if(Stopped == false) {
  3175. get_arc_coordinates();
  3176. prepare_arc_move(false);
  3177. }
  3178. break;
  3179. case 4: // G4 dwell
  3180. codenum = 0;
  3181. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3182. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3183. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3184. st_synchronize();
  3185. codenum += millis(); // keep track of when we started waiting
  3186. previous_millis_cmd = millis();
  3187. while(millis() < codenum) {
  3188. manage_heater();
  3189. manage_inactivity();
  3190. lcd_update(0);
  3191. }
  3192. break;
  3193. #ifdef FWRETRACT
  3194. case 10: // G10 retract
  3195. #if EXTRUDERS > 1
  3196. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3197. retract(true,retracted_swap[active_extruder]);
  3198. #else
  3199. retract(true);
  3200. #endif
  3201. break;
  3202. case 11: // G11 retract_recover
  3203. #if EXTRUDERS > 1
  3204. retract(false,retracted_swap[active_extruder]);
  3205. #else
  3206. retract(false);
  3207. #endif
  3208. break;
  3209. #endif //FWRETRACT
  3210. case 28: //G28 Home all Axis one at a time
  3211. {
  3212. long home_x_value = 0;
  3213. long home_y_value = 0;
  3214. long home_z_value = 0;
  3215. // Which axes should be homed?
  3216. bool home_x = code_seen(axis_codes[X_AXIS]);
  3217. home_x_value = code_value_long();
  3218. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3219. home_y_value = code_value_long();
  3220. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3221. home_z_value = code_value_long();
  3222. bool without_mbl = code_seen('W');
  3223. // calibrate?
  3224. bool calib = code_seen('C');
  3225. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3226. if ((home_x || home_y || without_mbl || home_z) == false) {
  3227. // Push the commands to the front of the message queue in the reverse order!
  3228. // There shall be always enough space reserved for these commands.
  3229. goto case_G80;
  3230. }
  3231. break;
  3232. }
  3233. #ifdef ENABLE_AUTO_BED_LEVELING
  3234. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3235. {
  3236. #if Z_MIN_PIN == -1
  3237. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3238. #endif
  3239. // Prevent user from running a G29 without first homing in X and Y
  3240. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3241. {
  3242. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3243. SERIAL_ECHO_START;
  3244. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3245. break; // abort G29, since we don't know where we are
  3246. }
  3247. st_synchronize();
  3248. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3249. //vector_3 corrected_position = plan_get_position_mm();
  3250. //corrected_position.debug("position before G29");
  3251. plan_bed_level_matrix.set_to_identity();
  3252. vector_3 uncorrected_position = plan_get_position();
  3253. //uncorrected_position.debug("position durring G29");
  3254. current_position[X_AXIS] = uncorrected_position.x;
  3255. current_position[Y_AXIS] = uncorrected_position.y;
  3256. current_position[Z_AXIS] = uncorrected_position.z;
  3257. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3258. setup_for_endstop_move();
  3259. feedrate = homing_feedrate[Z_AXIS];
  3260. #ifdef AUTO_BED_LEVELING_GRID
  3261. // probe at the points of a lattice grid
  3262. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3263. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3264. // solve the plane equation ax + by + d = z
  3265. // A is the matrix with rows [x y 1] for all the probed points
  3266. // B is the vector of the Z positions
  3267. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3268. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3269. // "A" matrix of the linear system of equations
  3270. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3271. // "B" vector of Z points
  3272. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3273. int probePointCounter = 0;
  3274. bool zig = true;
  3275. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3276. {
  3277. int xProbe, xInc;
  3278. if (zig)
  3279. {
  3280. xProbe = LEFT_PROBE_BED_POSITION;
  3281. //xEnd = RIGHT_PROBE_BED_POSITION;
  3282. xInc = xGridSpacing;
  3283. zig = false;
  3284. } else // zag
  3285. {
  3286. xProbe = RIGHT_PROBE_BED_POSITION;
  3287. //xEnd = LEFT_PROBE_BED_POSITION;
  3288. xInc = -xGridSpacing;
  3289. zig = true;
  3290. }
  3291. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3292. {
  3293. float z_before;
  3294. if (probePointCounter == 0)
  3295. {
  3296. // raise before probing
  3297. z_before = Z_RAISE_BEFORE_PROBING;
  3298. } else
  3299. {
  3300. // raise extruder
  3301. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3302. }
  3303. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3304. eqnBVector[probePointCounter] = measured_z;
  3305. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3306. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3307. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3308. probePointCounter++;
  3309. xProbe += xInc;
  3310. }
  3311. }
  3312. clean_up_after_endstop_move();
  3313. // solve lsq problem
  3314. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3315. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3316. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3317. SERIAL_PROTOCOLPGM(" b: ");
  3318. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3319. SERIAL_PROTOCOLPGM(" d: ");
  3320. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3321. set_bed_level_equation_lsq(plane_equation_coefficients);
  3322. free(plane_equation_coefficients);
  3323. #else // AUTO_BED_LEVELING_GRID not defined
  3324. // Probe at 3 arbitrary points
  3325. // probe 1
  3326. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3327. // probe 2
  3328. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3329. // probe 3
  3330. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3331. clean_up_after_endstop_move();
  3332. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3333. #endif // AUTO_BED_LEVELING_GRID
  3334. st_synchronize();
  3335. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3336. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3337. // When the bed is uneven, this height must be corrected.
  3338. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3339. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3340. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3341. z_tmp = current_position[Z_AXIS];
  3342. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3343. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3344. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3345. }
  3346. break;
  3347. #ifndef Z_PROBE_SLED
  3348. case 30: // G30 Single Z Probe
  3349. {
  3350. st_synchronize();
  3351. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3352. setup_for_endstop_move();
  3353. feedrate = homing_feedrate[Z_AXIS];
  3354. run_z_probe();
  3355. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3356. SERIAL_PROTOCOLPGM(" X: ");
  3357. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3358. SERIAL_PROTOCOLPGM(" Y: ");
  3359. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3360. SERIAL_PROTOCOLPGM(" Z: ");
  3361. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3362. SERIAL_PROTOCOLPGM("\n");
  3363. clean_up_after_endstop_move();
  3364. }
  3365. break;
  3366. #else
  3367. case 31: // dock the sled
  3368. dock_sled(true);
  3369. break;
  3370. case 32: // undock the sled
  3371. dock_sled(false);
  3372. break;
  3373. #endif // Z_PROBE_SLED
  3374. #endif // ENABLE_AUTO_BED_LEVELING
  3375. #ifdef MESH_BED_LEVELING
  3376. case 30: // G30 Single Z Probe
  3377. {
  3378. st_synchronize();
  3379. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3380. setup_for_endstop_move();
  3381. feedrate = homing_feedrate[Z_AXIS];
  3382. find_bed_induction_sensor_point_z(-10.f, 3);
  3383. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3384. clean_up_after_endstop_move();
  3385. }
  3386. break;
  3387. case 75:
  3388. {
  3389. for (int i = 40; i <= 110; i++)
  3390. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3391. }
  3392. break;
  3393. case 76: //PINDA probe temperature calibration
  3394. {
  3395. #ifdef PINDA_THERMISTOR
  3396. if (true)
  3397. {
  3398. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3399. //we need to know accurate position of first calibration point
  3400. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3401. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3402. break;
  3403. }
  3404. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3405. {
  3406. // We don't know where we are! HOME!
  3407. // Push the commands to the front of the message queue in the reverse order!
  3408. // There shall be always enough space reserved for these commands.
  3409. repeatcommand_front(); // repeat G76 with all its parameters
  3410. enquecommand_front_P((PSTR("G28 W0")));
  3411. break;
  3412. }
  3413. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3414. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3415. if (result)
  3416. {
  3417. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3418. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3419. current_position[Z_AXIS] = 50;
  3420. current_position[Y_AXIS] = 180;
  3421. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3422. st_synchronize();
  3423. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3424. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3425. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3426. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3427. st_synchronize();
  3428. gcode_G28(false, false, true);
  3429. }
  3430. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3431. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3432. current_position[Z_AXIS] = 100;
  3433. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3434. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3435. lcd_temp_cal_show_result(false);
  3436. break;
  3437. }
  3438. }
  3439. lcd_update_enable(true);
  3440. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3441. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3442. float zero_z;
  3443. int z_shift = 0; //unit: steps
  3444. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3445. if (start_temp < 35) start_temp = 35;
  3446. if (start_temp < current_temperature_pinda) start_temp += 5;
  3447. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3448. // setTargetHotend(200, 0);
  3449. setTargetBed(70 + (start_temp - 30));
  3450. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3451. custom_message_state = 1;
  3452. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3453. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3454. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3455. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3456. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3457. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3458. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3459. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3460. st_synchronize();
  3461. while (current_temperature_pinda < start_temp)
  3462. {
  3463. delay_keep_alive(1000);
  3464. serialecho_temperatures();
  3465. }
  3466. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3467. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3468. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3469. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3470. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3471. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3472. st_synchronize();
  3473. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3474. if (find_z_result == false) {
  3475. lcd_temp_cal_show_result(find_z_result);
  3476. break;
  3477. }
  3478. zero_z = current_position[Z_AXIS];
  3479. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3480. int i = -1; for (; i < 5; i++)
  3481. {
  3482. float temp = (40 + i * 5);
  3483. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3484. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3485. if (start_temp <= temp) break;
  3486. }
  3487. for (i++; i < 5; i++)
  3488. {
  3489. float temp = (40 + i * 5);
  3490. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3491. custom_message_state = i + 2;
  3492. setTargetBed(50 + 10 * (temp - 30) / 5);
  3493. // setTargetHotend(255, 0);
  3494. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3495. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3496. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3497. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3498. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3499. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3500. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3501. st_synchronize();
  3502. while (current_temperature_pinda < temp)
  3503. {
  3504. delay_keep_alive(1000);
  3505. serialecho_temperatures();
  3506. }
  3507. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3508. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3509. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3510. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3511. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3512. st_synchronize();
  3513. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3514. if (find_z_result == false) {
  3515. lcd_temp_cal_show_result(find_z_result);
  3516. break;
  3517. }
  3518. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3519. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3520. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3521. }
  3522. lcd_temp_cal_show_result(true);
  3523. break;
  3524. }
  3525. #endif //PINDA_THERMISTOR
  3526. setTargetBed(PINDA_MIN_T);
  3527. float zero_z;
  3528. int z_shift = 0; //unit: steps
  3529. int t_c; // temperature
  3530. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3531. // We don't know where we are! HOME!
  3532. // Push the commands to the front of the message queue in the reverse order!
  3533. // There shall be always enough space reserved for these commands.
  3534. repeatcommand_front(); // repeat G76 with all its parameters
  3535. enquecommand_front_P((PSTR("G28 W0")));
  3536. break;
  3537. }
  3538. puts_P(_N("PINDA probe calibration start"));
  3539. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3540. custom_message_state = 1;
  3541. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3542. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3543. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3544. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3545. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3546. st_synchronize();
  3547. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3548. delay_keep_alive(1000);
  3549. serialecho_temperatures();
  3550. }
  3551. //enquecommand_P(PSTR("M190 S50"));
  3552. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3553. delay_keep_alive(1000);
  3554. serialecho_temperatures();
  3555. }
  3556. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3557. current_position[Z_AXIS] = 5;
  3558. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3559. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3560. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3561. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3562. st_synchronize();
  3563. find_bed_induction_sensor_point_z(-1.f);
  3564. zero_z = current_position[Z_AXIS];
  3565. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3566. for (int i = 0; i<5; i++) {
  3567. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3568. custom_message_state = i + 2;
  3569. t_c = 60 + i * 10;
  3570. setTargetBed(t_c);
  3571. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3572. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3573. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3574. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3575. st_synchronize();
  3576. while (degBed() < t_c) {
  3577. delay_keep_alive(1000);
  3578. serialecho_temperatures();
  3579. }
  3580. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3581. delay_keep_alive(1000);
  3582. serialecho_temperatures();
  3583. }
  3584. current_position[Z_AXIS] = 5;
  3585. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3586. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3587. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3588. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3589. st_synchronize();
  3590. find_bed_induction_sensor_point_z(-1.f);
  3591. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3592. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3593. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3594. }
  3595. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3596. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3597. puts_P(_N("Temperature calibration done."));
  3598. disable_x();
  3599. disable_y();
  3600. disable_z();
  3601. disable_e0();
  3602. disable_e1();
  3603. disable_e2();
  3604. setTargetBed(0); //set bed target temperature back to 0
  3605. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3606. temp_cal_active = true;
  3607. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3608. lcd_update_enable(true);
  3609. lcd_update(2);
  3610. }
  3611. break;
  3612. #ifdef DIS
  3613. case 77:
  3614. {
  3615. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3616. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3617. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3618. float dimension_x = 40;
  3619. float dimension_y = 40;
  3620. int points_x = 40;
  3621. int points_y = 40;
  3622. float offset_x = 74;
  3623. float offset_y = 33;
  3624. if (code_seen('X')) dimension_x = code_value();
  3625. if (code_seen('Y')) dimension_y = code_value();
  3626. if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
  3627. if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
  3628. if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
  3629. if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
  3630. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3631. } break;
  3632. #endif
  3633. case 79: {
  3634. for (int i = 255; i > 0; i = i - 5) {
  3635. fanSpeed = i;
  3636. //delay_keep_alive(2000);
  3637. for (int j = 0; j < 100; j++) {
  3638. delay_keep_alive(100);
  3639. }
  3640. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3641. }
  3642. }break;
  3643. /**
  3644. * G80: Mesh-based Z probe, probes a grid and produces a
  3645. * mesh to compensate for variable bed height
  3646. *
  3647. * The S0 report the points as below
  3648. *
  3649. * +----> X-axis
  3650. * |
  3651. * |
  3652. * v Y-axis
  3653. *
  3654. */
  3655. case 80:
  3656. #ifdef MK1BP
  3657. break;
  3658. #endif //MK1BP
  3659. case_G80:
  3660. {
  3661. mesh_bed_leveling_flag = true;
  3662. static bool run = false;
  3663. #ifdef SUPPORT_VERBOSITY
  3664. int8_t verbosity_level = 0;
  3665. if (code_seen('V')) {
  3666. // Just 'V' without a number counts as V1.
  3667. char c = strchr_pointer[1];
  3668. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3669. }
  3670. #endif //SUPPORT_VERBOSITY
  3671. // Firstly check if we know where we are
  3672. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3673. // We don't know where we are! HOME!
  3674. // Push the commands to the front of the message queue in the reverse order!
  3675. // There shall be always enough space reserved for these commands.
  3676. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3677. repeatcommand_front(); // repeat G80 with all its parameters
  3678. enquecommand_front_P((PSTR("G28 W0")));
  3679. }
  3680. else {
  3681. mesh_bed_leveling_flag = false;
  3682. }
  3683. break;
  3684. }
  3685. bool temp_comp_start = true;
  3686. #ifdef PINDA_THERMISTOR
  3687. temp_comp_start = false;
  3688. #endif //PINDA_THERMISTOR
  3689. if (temp_comp_start)
  3690. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3691. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3692. temp_compensation_start();
  3693. run = true;
  3694. repeatcommand_front(); // repeat G80 with all its parameters
  3695. enquecommand_front_P((PSTR("G28 W0")));
  3696. }
  3697. else {
  3698. mesh_bed_leveling_flag = false;
  3699. }
  3700. break;
  3701. }
  3702. run = false;
  3703. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3704. mesh_bed_leveling_flag = false;
  3705. break;
  3706. }
  3707. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3708. unsigned int custom_message_type_old = custom_message_type;
  3709. unsigned int custom_message_state_old = custom_message_state;
  3710. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3711. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3712. lcd_update(1);
  3713. mbl.reset(); //reset mesh bed leveling
  3714. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3715. // consumed during the first movements following this statement.
  3716. babystep_undo();
  3717. // Cycle through all points and probe them
  3718. // First move up. During this first movement, the babystepping will be reverted.
  3719. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3720. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3721. // The move to the first calibration point.
  3722. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3723. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3724. #ifdef SUPPORT_VERBOSITY
  3725. if (verbosity_level >= 1)
  3726. {
  3727. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3728. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3729. }
  3730. #endif //SUPPORT_VERBOSITY
  3731. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3732. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3733. // Wait until the move is finished.
  3734. st_synchronize();
  3735. int mesh_point = 0; //index number of calibration point
  3736. int ix = 0;
  3737. int iy = 0;
  3738. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3739. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3740. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3741. #ifdef SUPPORT_VERBOSITY
  3742. if (verbosity_level >= 1) {
  3743. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3744. }
  3745. #endif // SUPPORT_VERBOSITY
  3746. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3747. const char *kill_message = NULL;
  3748. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3749. // Get coords of a measuring point.
  3750. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3751. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3752. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3753. float z0 = 0.f;
  3754. if (has_z && mesh_point > 0) {
  3755. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3756. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3757. //#if 0
  3758. #ifdef SUPPORT_VERBOSITY
  3759. if (verbosity_level >= 1) {
  3760. SERIAL_ECHOLNPGM("");
  3761. SERIAL_ECHOPGM("Bed leveling, point: ");
  3762. MYSERIAL.print(mesh_point);
  3763. SERIAL_ECHOPGM(", calibration z: ");
  3764. MYSERIAL.print(z0, 5);
  3765. SERIAL_ECHOLNPGM("");
  3766. }
  3767. #endif // SUPPORT_VERBOSITY
  3768. //#endif
  3769. }
  3770. // Move Z up to MESH_HOME_Z_SEARCH.
  3771. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3772. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3773. st_synchronize();
  3774. // Move to XY position of the sensor point.
  3775. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3776. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3777. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3778. #ifdef SUPPORT_VERBOSITY
  3779. if (verbosity_level >= 1) {
  3780. SERIAL_PROTOCOL(mesh_point);
  3781. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3782. }
  3783. #endif // SUPPORT_VERBOSITY
  3784. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3785. st_synchronize();
  3786. // Go down until endstop is hit
  3787. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3788. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3789. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3790. break;
  3791. }
  3792. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3793. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3794. break;
  3795. }
  3796. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3797. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3798. break;
  3799. }
  3800. #ifdef SUPPORT_VERBOSITY
  3801. if (verbosity_level >= 10) {
  3802. SERIAL_ECHOPGM("X: ");
  3803. MYSERIAL.print(current_position[X_AXIS], 5);
  3804. SERIAL_ECHOLNPGM("");
  3805. SERIAL_ECHOPGM("Y: ");
  3806. MYSERIAL.print(current_position[Y_AXIS], 5);
  3807. SERIAL_PROTOCOLPGM("\n");
  3808. }
  3809. #endif // SUPPORT_VERBOSITY
  3810. float offset_z = 0;
  3811. #ifdef PINDA_THERMISTOR
  3812. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3813. #endif //PINDA_THERMISTOR
  3814. // #ifdef SUPPORT_VERBOSITY
  3815. /* if (verbosity_level >= 1)
  3816. {
  3817. SERIAL_ECHOPGM("mesh bed leveling: ");
  3818. MYSERIAL.print(current_position[Z_AXIS], 5);
  3819. SERIAL_ECHOPGM(" offset: ");
  3820. MYSERIAL.print(offset_z, 5);
  3821. SERIAL_ECHOLNPGM("");
  3822. }*/
  3823. // #endif // SUPPORT_VERBOSITY
  3824. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3825. custom_message_state--;
  3826. mesh_point++;
  3827. lcd_update(1);
  3828. }
  3829. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3830. #ifdef SUPPORT_VERBOSITY
  3831. if (verbosity_level >= 20) {
  3832. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3833. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3834. MYSERIAL.print(current_position[Z_AXIS], 5);
  3835. }
  3836. #endif // SUPPORT_VERBOSITY
  3837. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3838. st_synchronize();
  3839. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3840. kill(kill_message);
  3841. SERIAL_ECHOLNPGM("killed");
  3842. }
  3843. clean_up_after_endstop_move();
  3844. // SERIAL_ECHOLNPGM("clean up finished ");
  3845. bool apply_temp_comp = true;
  3846. #ifdef PINDA_THERMISTOR
  3847. apply_temp_comp = false;
  3848. #endif
  3849. if (apply_temp_comp)
  3850. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3851. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3852. // SERIAL_ECHOLNPGM("babystep applied");
  3853. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3854. #ifdef SUPPORT_VERBOSITY
  3855. if (verbosity_level >= 1) {
  3856. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3857. }
  3858. #endif // SUPPORT_VERBOSITY
  3859. for (uint8_t i = 0; i < 4; ++i) {
  3860. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3861. long correction = 0;
  3862. if (code_seen(codes[i]))
  3863. correction = code_value_long();
  3864. else if (eeprom_bed_correction_valid) {
  3865. unsigned char *addr = (i < 2) ?
  3866. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3867. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3868. correction = eeprom_read_int8(addr);
  3869. }
  3870. if (correction == 0)
  3871. continue;
  3872. float offset = float(correction) * 0.001f;
  3873. if (fabs(offset) > 0.101f) {
  3874. SERIAL_ERROR_START;
  3875. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3876. SERIAL_ECHO(offset);
  3877. SERIAL_ECHOLNPGM(" microns");
  3878. }
  3879. else {
  3880. switch (i) {
  3881. case 0:
  3882. for (uint8_t row = 0; row < 3; ++row) {
  3883. mbl.z_values[row][1] += 0.5f * offset;
  3884. mbl.z_values[row][0] += offset;
  3885. }
  3886. break;
  3887. case 1:
  3888. for (uint8_t row = 0; row < 3; ++row) {
  3889. mbl.z_values[row][1] += 0.5f * offset;
  3890. mbl.z_values[row][2] += offset;
  3891. }
  3892. break;
  3893. case 2:
  3894. for (uint8_t col = 0; col < 3; ++col) {
  3895. mbl.z_values[1][col] += 0.5f * offset;
  3896. mbl.z_values[0][col] += offset;
  3897. }
  3898. break;
  3899. case 3:
  3900. for (uint8_t col = 0; col < 3; ++col) {
  3901. mbl.z_values[1][col] += 0.5f * offset;
  3902. mbl.z_values[2][col] += offset;
  3903. }
  3904. break;
  3905. }
  3906. }
  3907. }
  3908. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3909. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3910. // SERIAL_ECHOLNPGM("Upsample finished");
  3911. mbl.active = 1; //activate mesh bed leveling
  3912. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3913. go_home_with_z_lift();
  3914. // SERIAL_ECHOLNPGM("Go home finished");
  3915. //unretract (after PINDA preheat retraction)
  3916. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3917. current_position[E_AXIS] += default_retraction;
  3918. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3919. }
  3920. KEEPALIVE_STATE(NOT_BUSY);
  3921. // Restore custom message state
  3922. lcd_setstatuspgm(_T(WELCOME_MSG));
  3923. custom_message_type = custom_message_type_old;
  3924. custom_message_state = custom_message_state_old;
  3925. mesh_bed_leveling_flag = false;
  3926. mesh_bed_run_from_menu = false;
  3927. lcd_update(2);
  3928. }
  3929. break;
  3930. /**
  3931. * G81: Print mesh bed leveling status and bed profile if activated
  3932. */
  3933. case 81:
  3934. if (mbl.active) {
  3935. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3936. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3937. SERIAL_PROTOCOLPGM(",");
  3938. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3939. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3940. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3941. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3942. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3943. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3944. SERIAL_PROTOCOLPGM(" ");
  3945. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3946. }
  3947. SERIAL_PROTOCOLPGM("\n");
  3948. }
  3949. }
  3950. else
  3951. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3952. break;
  3953. #if 0
  3954. /**
  3955. * G82: Single Z probe at current location
  3956. *
  3957. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3958. *
  3959. */
  3960. case 82:
  3961. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3962. setup_for_endstop_move();
  3963. find_bed_induction_sensor_point_z();
  3964. clean_up_after_endstop_move();
  3965. SERIAL_PROTOCOLPGM("Bed found at: ");
  3966. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3967. SERIAL_PROTOCOLPGM("\n");
  3968. break;
  3969. /**
  3970. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3971. */
  3972. case 83:
  3973. {
  3974. int babystepz = code_seen('S') ? code_value() : 0;
  3975. int BabyPosition = code_seen('P') ? code_value() : 0;
  3976. if (babystepz != 0) {
  3977. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3978. // Is the axis indexed starting with zero or one?
  3979. if (BabyPosition > 4) {
  3980. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3981. }else{
  3982. // Save it to the eeprom
  3983. babystepLoadZ = babystepz;
  3984. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3985. // adjust the Z
  3986. babystepsTodoZadd(babystepLoadZ);
  3987. }
  3988. }
  3989. }
  3990. break;
  3991. /**
  3992. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3993. */
  3994. case 84:
  3995. babystepsTodoZsubtract(babystepLoadZ);
  3996. // babystepLoadZ = 0;
  3997. break;
  3998. /**
  3999. * G85: Prusa3D specific: Pick best babystep
  4000. */
  4001. case 85:
  4002. lcd_pick_babystep();
  4003. break;
  4004. #endif
  4005. /**
  4006. * G86: Prusa3D specific: Disable babystep correction after home.
  4007. * This G-code will be performed at the start of a calibration script.
  4008. */
  4009. case 86:
  4010. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4011. break;
  4012. /**
  4013. * G87: Prusa3D specific: Enable babystep correction after home
  4014. * This G-code will be performed at the end of a calibration script.
  4015. */
  4016. case 87:
  4017. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4018. break;
  4019. /**
  4020. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4021. */
  4022. case 88:
  4023. break;
  4024. #endif // ENABLE_MESH_BED_LEVELING
  4025. case 90: // G90
  4026. relative_mode = false;
  4027. break;
  4028. case 91: // G91
  4029. relative_mode = true;
  4030. break;
  4031. case 92: // G92
  4032. if(!code_seen(axis_codes[E_AXIS]))
  4033. st_synchronize();
  4034. for(int8_t i=0; i < NUM_AXIS; i++) {
  4035. if(code_seen(axis_codes[i])) {
  4036. if(i == E_AXIS) {
  4037. current_position[i] = code_value();
  4038. plan_set_e_position(current_position[E_AXIS]);
  4039. }
  4040. else {
  4041. current_position[i] = code_value()+cs.add_homing[i];
  4042. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4043. }
  4044. }
  4045. }
  4046. break;
  4047. case 98: // G98 (activate farm mode)
  4048. farm_mode = 1;
  4049. PingTime = millis();
  4050. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4051. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4052. SilentModeMenu = SILENT_MODE_OFF;
  4053. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4054. break;
  4055. case 99: // G99 (deactivate farm mode)
  4056. farm_mode = 0;
  4057. lcd_printer_connected();
  4058. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4059. lcd_update(2);
  4060. break;
  4061. default:
  4062. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4063. }
  4064. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4065. gcode_in_progress = 0;
  4066. } // end if(code_seen('G'))
  4067. else if(code_seen('M'))
  4068. {
  4069. int index;
  4070. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4071. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4072. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4073. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4074. } else
  4075. {
  4076. mcode_in_progress = (int)code_value();
  4077. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4078. switch(mcode_in_progress)
  4079. {
  4080. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4081. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4082. {
  4083. char *src = strchr_pointer + 2;
  4084. codenum = 0;
  4085. bool hasP = false, hasS = false;
  4086. if (code_seen('P')) {
  4087. codenum = code_value(); // milliseconds to wait
  4088. hasP = codenum > 0;
  4089. }
  4090. if (code_seen('S')) {
  4091. codenum = code_value() * 1000; // seconds to wait
  4092. hasS = codenum > 0;
  4093. }
  4094. starpos = strchr(src, '*');
  4095. if (starpos != NULL) *(starpos) = '\0';
  4096. while (*src == ' ') ++src;
  4097. if (!hasP && !hasS && *src != '\0') {
  4098. lcd_setstatus(src);
  4099. } else {
  4100. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4101. }
  4102. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4103. st_synchronize();
  4104. previous_millis_cmd = millis();
  4105. if (codenum > 0){
  4106. codenum += millis(); // keep track of when we started waiting
  4107. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4108. while(millis() < codenum && !lcd_clicked()){
  4109. manage_heater();
  4110. manage_inactivity(true);
  4111. lcd_update(0);
  4112. }
  4113. KEEPALIVE_STATE(IN_HANDLER);
  4114. lcd_ignore_click(false);
  4115. }else{
  4116. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4117. while(!lcd_clicked()){
  4118. manage_heater();
  4119. manage_inactivity(true);
  4120. lcd_update(0);
  4121. }
  4122. KEEPALIVE_STATE(IN_HANDLER);
  4123. }
  4124. if (IS_SD_PRINTING)
  4125. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4126. else
  4127. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4128. }
  4129. break;
  4130. case 17:
  4131. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4132. enable_x();
  4133. enable_y();
  4134. enable_z();
  4135. enable_e0();
  4136. enable_e1();
  4137. enable_e2();
  4138. break;
  4139. #ifdef SDSUPPORT
  4140. case 20: // M20 - list SD card
  4141. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4142. card.ls();
  4143. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4144. break;
  4145. case 21: // M21 - init SD card
  4146. card.initsd();
  4147. break;
  4148. case 22: //M22 - release SD card
  4149. card.release();
  4150. break;
  4151. case 23: //M23 - Select file
  4152. starpos = (strchr(strchr_pointer + 4,'*'));
  4153. if(starpos!=NULL)
  4154. *(starpos)='\0';
  4155. card.openFile(strchr_pointer + 4,true);
  4156. break;
  4157. case 24: //M24 - Start SD print
  4158. if (!card.paused)
  4159. failstats_reset_print();
  4160. card.startFileprint();
  4161. starttime=millis();
  4162. break;
  4163. case 25: //M25 - Pause SD print
  4164. card.pauseSDPrint();
  4165. break;
  4166. case 26: //M26 - Set SD index
  4167. if(card.cardOK && code_seen('S')) {
  4168. card.setIndex(code_value_long());
  4169. }
  4170. break;
  4171. case 27: //M27 - Get SD status
  4172. card.getStatus();
  4173. break;
  4174. case 28: //M28 - Start SD write
  4175. starpos = (strchr(strchr_pointer + 4,'*'));
  4176. if(starpos != NULL){
  4177. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4178. strchr_pointer = strchr(npos,' ') + 1;
  4179. *(starpos) = '\0';
  4180. }
  4181. card.openFile(strchr_pointer+4,false);
  4182. break;
  4183. case 29: //M29 - Stop SD write
  4184. //processed in write to file routine above
  4185. //card,saving = false;
  4186. break;
  4187. case 30: //M30 <filename> Delete File
  4188. if (card.cardOK){
  4189. card.closefile();
  4190. starpos = (strchr(strchr_pointer + 4,'*'));
  4191. if(starpos != NULL){
  4192. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4193. strchr_pointer = strchr(npos,' ') + 1;
  4194. *(starpos) = '\0';
  4195. }
  4196. card.removeFile(strchr_pointer + 4);
  4197. }
  4198. break;
  4199. case 32: //M32 - Select file and start SD print
  4200. {
  4201. if(card.sdprinting) {
  4202. st_synchronize();
  4203. }
  4204. starpos = (strchr(strchr_pointer + 4,'*'));
  4205. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4206. if(namestartpos==NULL)
  4207. {
  4208. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4209. }
  4210. else
  4211. namestartpos++; //to skip the '!'
  4212. if(starpos!=NULL)
  4213. *(starpos)='\0';
  4214. bool call_procedure=(code_seen('P'));
  4215. if(strchr_pointer>namestartpos)
  4216. call_procedure=false; //false alert, 'P' found within filename
  4217. if( card.cardOK )
  4218. {
  4219. card.openFile(namestartpos,true,!call_procedure);
  4220. if(code_seen('S'))
  4221. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4222. card.setIndex(code_value_long());
  4223. card.startFileprint();
  4224. if(!call_procedure)
  4225. starttime=millis(); //procedure calls count as normal print time.
  4226. }
  4227. } break;
  4228. case 928: //M928 - Start SD write
  4229. starpos = (strchr(strchr_pointer + 5,'*'));
  4230. if(starpos != NULL){
  4231. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4232. strchr_pointer = strchr(npos,' ') + 1;
  4233. *(starpos) = '\0';
  4234. }
  4235. card.openLogFile(strchr_pointer+5);
  4236. break;
  4237. #endif //SDSUPPORT
  4238. case 31: //M31 take time since the start of the SD print or an M109 command
  4239. {
  4240. stoptime=millis();
  4241. char time[30];
  4242. unsigned long t=(stoptime-starttime)/1000;
  4243. int sec,min;
  4244. min=t/60;
  4245. sec=t%60;
  4246. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4247. SERIAL_ECHO_START;
  4248. SERIAL_ECHOLN(time);
  4249. lcd_setstatus(time);
  4250. autotempShutdown();
  4251. }
  4252. break;
  4253. case 42: //M42 -Change pin status via gcode
  4254. if (code_seen('S'))
  4255. {
  4256. int pin_status = code_value();
  4257. int pin_number = LED_PIN;
  4258. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4259. pin_number = code_value();
  4260. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4261. {
  4262. if (sensitive_pins[i] == pin_number)
  4263. {
  4264. pin_number = -1;
  4265. break;
  4266. }
  4267. }
  4268. #if defined(FAN_PIN) && FAN_PIN > -1
  4269. if (pin_number == FAN_PIN)
  4270. fanSpeed = pin_status;
  4271. #endif
  4272. if (pin_number > -1)
  4273. {
  4274. pinMode(pin_number, OUTPUT);
  4275. digitalWrite(pin_number, pin_status);
  4276. analogWrite(pin_number, pin_status);
  4277. }
  4278. }
  4279. break;
  4280. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4281. // Reset the baby step value and the baby step applied flag.
  4282. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4283. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4284. // Reset the skew and offset in both RAM and EEPROM.
  4285. reset_bed_offset_and_skew();
  4286. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4287. // the planner will not perform any adjustments in the XY plane.
  4288. // Wait for the motors to stop and update the current position with the absolute values.
  4289. world2machine_revert_to_uncorrected();
  4290. break;
  4291. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4292. {
  4293. int8_t verbosity_level = 0;
  4294. bool only_Z = code_seen('Z');
  4295. #ifdef SUPPORT_VERBOSITY
  4296. if (code_seen('V'))
  4297. {
  4298. // Just 'V' without a number counts as V1.
  4299. char c = strchr_pointer[1];
  4300. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4301. }
  4302. #endif //SUPPORT_VERBOSITY
  4303. gcode_M45(only_Z, verbosity_level);
  4304. }
  4305. break;
  4306. /*
  4307. case 46:
  4308. {
  4309. // M46: Prusa3D: Show the assigned IP address.
  4310. uint8_t ip[4];
  4311. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4312. if (hasIP) {
  4313. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4314. SERIAL_ECHO(int(ip[0]));
  4315. SERIAL_ECHOPGM(".");
  4316. SERIAL_ECHO(int(ip[1]));
  4317. SERIAL_ECHOPGM(".");
  4318. SERIAL_ECHO(int(ip[2]));
  4319. SERIAL_ECHOPGM(".");
  4320. SERIAL_ECHO(int(ip[3]));
  4321. SERIAL_ECHOLNPGM("");
  4322. } else {
  4323. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4324. }
  4325. break;
  4326. }
  4327. */
  4328. case 47:
  4329. // M47: Prusa3D: Show end stops dialog on the display.
  4330. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4331. lcd_diag_show_end_stops();
  4332. KEEPALIVE_STATE(IN_HANDLER);
  4333. break;
  4334. #if 0
  4335. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4336. {
  4337. // Disable the default update procedure of the display. We will do a modal dialog.
  4338. lcd_update_enable(false);
  4339. // Let the planner use the uncorrected coordinates.
  4340. mbl.reset();
  4341. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4342. // the planner will not perform any adjustments in the XY plane.
  4343. // Wait for the motors to stop and update the current position with the absolute values.
  4344. world2machine_revert_to_uncorrected();
  4345. // Move the print head close to the bed.
  4346. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4347. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4348. st_synchronize();
  4349. // Home in the XY plane.
  4350. set_destination_to_current();
  4351. setup_for_endstop_move();
  4352. home_xy();
  4353. int8_t verbosity_level = 0;
  4354. if (code_seen('V')) {
  4355. // Just 'V' without a number counts as V1.
  4356. char c = strchr_pointer[1];
  4357. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4358. }
  4359. bool success = scan_bed_induction_points(verbosity_level);
  4360. clean_up_after_endstop_move();
  4361. // Print head up.
  4362. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4363. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4364. st_synchronize();
  4365. lcd_update_enable(true);
  4366. break;
  4367. }
  4368. #endif
  4369. // M48 Z-Probe repeatability measurement function.
  4370. //
  4371. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4372. //
  4373. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4374. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4375. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4376. // regenerated.
  4377. //
  4378. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4379. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4380. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4381. //
  4382. #ifdef ENABLE_AUTO_BED_LEVELING
  4383. #ifdef Z_PROBE_REPEATABILITY_TEST
  4384. case 48: // M48 Z-Probe repeatability
  4385. {
  4386. #if Z_MIN_PIN == -1
  4387. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4388. #endif
  4389. double sum=0.0;
  4390. double mean=0.0;
  4391. double sigma=0.0;
  4392. double sample_set[50];
  4393. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4394. double X_current, Y_current, Z_current;
  4395. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4396. if (code_seen('V') || code_seen('v')) {
  4397. verbose_level = code_value();
  4398. if (verbose_level<0 || verbose_level>4 ) {
  4399. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4400. goto Sigma_Exit;
  4401. }
  4402. }
  4403. if (verbose_level > 0) {
  4404. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4405. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4406. }
  4407. if (code_seen('n')) {
  4408. n_samples = code_value();
  4409. if (n_samples<4 || n_samples>50 ) {
  4410. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4411. goto Sigma_Exit;
  4412. }
  4413. }
  4414. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4415. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4416. Z_current = st_get_position_mm(Z_AXIS);
  4417. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4418. ext_position = st_get_position_mm(E_AXIS);
  4419. if (code_seen('X') || code_seen('x') ) {
  4420. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4421. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4422. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4423. goto Sigma_Exit;
  4424. }
  4425. }
  4426. if (code_seen('Y') || code_seen('y') ) {
  4427. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4428. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4429. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4430. goto Sigma_Exit;
  4431. }
  4432. }
  4433. if (code_seen('L') || code_seen('l') ) {
  4434. n_legs = code_value();
  4435. if ( n_legs==1 )
  4436. n_legs = 2;
  4437. if ( n_legs<0 || n_legs>15 ) {
  4438. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4439. goto Sigma_Exit;
  4440. }
  4441. }
  4442. //
  4443. // Do all the preliminary setup work. First raise the probe.
  4444. //
  4445. st_synchronize();
  4446. plan_bed_level_matrix.set_to_identity();
  4447. plan_buffer_line( X_current, Y_current, Z_start_location,
  4448. ext_position,
  4449. homing_feedrate[Z_AXIS]/60,
  4450. active_extruder);
  4451. st_synchronize();
  4452. //
  4453. // Now get everything to the specified probe point So we can safely do a probe to
  4454. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4455. // use that as a starting point for each probe.
  4456. //
  4457. if (verbose_level > 2)
  4458. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4459. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4460. ext_position,
  4461. homing_feedrate[X_AXIS]/60,
  4462. active_extruder);
  4463. st_synchronize();
  4464. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4465. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4466. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4467. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4468. //
  4469. // OK, do the inital probe to get us close to the bed.
  4470. // Then retrace the right amount and use that in subsequent probes
  4471. //
  4472. setup_for_endstop_move();
  4473. run_z_probe();
  4474. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4475. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4476. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4477. ext_position,
  4478. homing_feedrate[X_AXIS]/60,
  4479. active_extruder);
  4480. st_synchronize();
  4481. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4482. for( n=0; n<n_samples; n++) {
  4483. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4484. if ( n_legs) {
  4485. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4486. int rotational_direction, l;
  4487. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4488. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4489. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4490. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4491. //SERIAL_ECHOPAIR(" theta: ",theta);
  4492. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4493. //SERIAL_PROTOCOLLNPGM("");
  4494. for( l=0; l<n_legs-1; l++) {
  4495. if (rotational_direction==1)
  4496. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4497. else
  4498. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4499. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4500. if ( radius<0.0 )
  4501. radius = -radius;
  4502. X_current = X_probe_location + cos(theta) * radius;
  4503. Y_current = Y_probe_location + sin(theta) * radius;
  4504. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4505. X_current = X_MIN_POS;
  4506. if ( X_current>X_MAX_POS)
  4507. X_current = X_MAX_POS;
  4508. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4509. Y_current = Y_MIN_POS;
  4510. if ( Y_current>Y_MAX_POS)
  4511. Y_current = Y_MAX_POS;
  4512. if (verbose_level>3 ) {
  4513. SERIAL_ECHOPAIR("x: ", X_current);
  4514. SERIAL_ECHOPAIR("y: ", Y_current);
  4515. SERIAL_PROTOCOLLNPGM("");
  4516. }
  4517. do_blocking_move_to( X_current, Y_current, Z_current );
  4518. }
  4519. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4520. }
  4521. setup_for_endstop_move();
  4522. run_z_probe();
  4523. sample_set[n] = current_position[Z_AXIS];
  4524. //
  4525. // Get the current mean for the data points we have so far
  4526. //
  4527. sum=0.0;
  4528. for( j=0; j<=n; j++) {
  4529. sum = sum + sample_set[j];
  4530. }
  4531. mean = sum / (double (n+1));
  4532. //
  4533. // Now, use that mean to calculate the standard deviation for the
  4534. // data points we have so far
  4535. //
  4536. sum=0.0;
  4537. for( j=0; j<=n; j++) {
  4538. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4539. }
  4540. sigma = sqrt( sum / (double (n+1)) );
  4541. if (verbose_level > 1) {
  4542. SERIAL_PROTOCOL(n+1);
  4543. SERIAL_PROTOCOL(" of ");
  4544. SERIAL_PROTOCOL(n_samples);
  4545. SERIAL_PROTOCOLPGM(" z: ");
  4546. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4547. }
  4548. if (verbose_level > 2) {
  4549. SERIAL_PROTOCOL(" mean: ");
  4550. SERIAL_PROTOCOL_F(mean,6);
  4551. SERIAL_PROTOCOL(" sigma: ");
  4552. SERIAL_PROTOCOL_F(sigma,6);
  4553. }
  4554. if (verbose_level > 0)
  4555. SERIAL_PROTOCOLPGM("\n");
  4556. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4557. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4558. st_synchronize();
  4559. }
  4560. delay(1000);
  4561. clean_up_after_endstop_move();
  4562. // enable_endstops(true);
  4563. if (verbose_level > 0) {
  4564. SERIAL_PROTOCOLPGM("Mean: ");
  4565. SERIAL_PROTOCOL_F(mean, 6);
  4566. SERIAL_PROTOCOLPGM("\n");
  4567. }
  4568. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4569. SERIAL_PROTOCOL_F(sigma, 6);
  4570. SERIAL_PROTOCOLPGM("\n\n");
  4571. Sigma_Exit:
  4572. break;
  4573. }
  4574. #endif // Z_PROBE_REPEATABILITY_TEST
  4575. #endif // ENABLE_AUTO_BED_LEVELING
  4576. case 73: //M73 show percent done and time remaining
  4577. if(code_seen('P')) print_percent_done_normal = code_value();
  4578. if(code_seen('R')) print_time_remaining_normal = code_value();
  4579. if(code_seen('Q')) print_percent_done_silent = code_value();
  4580. if(code_seen('S')) print_time_remaining_silent = code_value();
  4581. {
  4582. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4583. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4584. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4585. }
  4586. break;
  4587. case 104: // M104
  4588. {
  4589. uint8_t extruder;
  4590. if(setTargetedHotend(104,extruder)){
  4591. break;
  4592. }
  4593. if (code_seen('S'))
  4594. {
  4595. setTargetHotendSafe(code_value(), extruder);
  4596. }
  4597. setWatch();
  4598. break;
  4599. }
  4600. case 112: // M112 -Emergency Stop
  4601. kill(_n(""), 3);
  4602. break;
  4603. case 140: // M140 set bed temp
  4604. if (code_seen('S')) setTargetBed(code_value());
  4605. break;
  4606. case 105 : // M105
  4607. {
  4608. uint8_t extruder;
  4609. if(setTargetedHotend(105, extruder)){
  4610. break;
  4611. }
  4612. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4613. SERIAL_PROTOCOLPGM("ok T:");
  4614. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4615. SERIAL_PROTOCOLPGM(" /");
  4616. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4617. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4618. SERIAL_PROTOCOLPGM(" B:");
  4619. SERIAL_PROTOCOL_F(degBed(),1);
  4620. SERIAL_PROTOCOLPGM(" /");
  4621. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4622. #endif //TEMP_BED_PIN
  4623. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4624. SERIAL_PROTOCOLPGM(" T");
  4625. SERIAL_PROTOCOL(cur_extruder);
  4626. SERIAL_PROTOCOLPGM(":");
  4627. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4628. SERIAL_PROTOCOLPGM(" /");
  4629. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4630. }
  4631. #else
  4632. SERIAL_ERROR_START;
  4633. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4634. #endif
  4635. SERIAL_PROTOCOLPGM(" @:");
  4636. #ifdef EXTRUDER_WATTS
  4637. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4638. SERIAL_PROTOCOLPGM("W");
  4639. #else
  4640. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4641. #endif
  4642. SERIAL_PROTOCOLPGM(" B@:");
  4643. #ifdef BED_WATTS
  4644. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4645. SERIAL_PROTOCOLPGM("W");
  4646. #else
  4647. SERIAL_PROTOCOL(getHeaterPower(-1));
  4648. #endif
  4649. #ifdef PINDA_THERMISTOR
  4650. SERIAL_PROTOCOLPGM(" P:");
  4651. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4652. #endif //PINDA_THERMISTOR
  4653. #ifdef AMBIENT_THERMISTOR
  4654. SERIAL_PROTOCOLPGM(" A:");
  4655. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4656. #endif //AMBIENT_THERMISTOR
  4657. #ifdef SHOW_TEMP_ADC_VALUES
  4658. {float raw = 0.0;
  4659. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4660. SERIAL_PROTOCOLPGM(" ADC B:");
  4661. SERIAL_PROTOCOL_F(degBed(),1);
  4662. SERIAL_PROTOCOLPGM("C->");
  4663. raw = rawBedTemp();
  4664. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4665. SERIAL_PROTOCOLPGM(" Rb->");
  4666. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4667. SERIAL_PROTOCOLPGM(" Rxb->");
  4668. SERIAL_PROTOCOL_F(raw, 5);
  4669. #endif
  4670. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4671. SERIAL_PROTOCOLPGM(" T");
  4672. SERIAL_PROTOCOL(cur_extruder);
  4673. SERIAL_PROTOCOLPGM(":");
  4674. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4675. SERIAL_PROTOCOLPGM("C->");
  4676. raw = rawHotendTemp(cur_extruder);
  4677. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4678. SERIAL_PROTOCOLPGM(" Rt");
  4679. SERIAL_PROTOCOL(cur_extruder);
  4680. SERIAL_PROTOCOLPGM("->");
  4681. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4682. SERIAL_PROTOCOLPGM(" Rx");
  4683. SERIAL_PROTOCOL(cur_extruder);
  4684. SERIAL_PROTOCOLPGM("->");
  4685. SERIAL_PROTOCOL_F(raw, 5);
  4686. }}
  4687. #endif
  4688. SERIAL_PROTOCOLLN("");
  4689. KEEPALIVE_STATE(NOT_BUSY);
  4690. return;
  4691. break;
  4692. }
  4693. case 109:
  4694. {// M109 - Wait for extruder heater to reach target.
  4695. uint8_t extruder;
  4696. if(setTargetedHotend(109, extruder)){
  4697. break;
  4698. }
  4699. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4700. heating_status = 1;
  4701. if (farm_mode) { prusa_statistics(1); };
  4702. #ifdef AUTOTEMP
  4703. autotemp_enabled=false;
  4704. #endif
  4705. if (code_seen('S')) {
  4706. setTargetHotendSafe(code_value(), extruder);
  4707. CooldownNoWait = true;
  4708. } else if (code_seen('R')) {
  4709. setTargetHotendSafe(code_value(), extruder);
  4710. CooldownNoWait = false;
  4711. }
  4712. #ifdef AUTOTEMP
  4713. if (code_seen('S')) autotemp_min=code_value();
  4714. if (code_seen('B')) autotemp_max=code_value();
  4715. if (code_seen('F'))
  4716. {
  4717. autotemp_factor=code_value();
  4718. autotemp_enabled=true;
  4719. }
  4720. #endif
  4721. setWatch();
  4722. codenum = millis();
  4723. /* See if we are heating up or cooling down */
  4724. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4725. KEEPALIVE_STATE(NOT_BUSY);
  4726. cancel_heatup = false;
  4727. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4728. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4729. KEEPALIVE_STATE(IN_HANDLER);
  4730. heating_status = 2;
  4731. if (farm_mode) { prusa_statistics(2); };
  4732. //starttime=millis();
  4733. previous_millis_cmd = millis();
  4734. }
  4735. break;
  4736. case 190: // M190 - Wait for bed heater to reach target.
  4737. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4738. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4739. heating_status = 3;
  4740. if (farm_mode) { prusa_statistics(1); };
  4741. if (code_seen('S'))
  4742. {
  4743. setTargetBed(code_value());
  4744. CooldownNoWait = true;
  4745. }
  4746. else if (code_seen('R'))
  4747. {
  4748. setTargetBed(code_value());
  4749. CooldownNoWait = false;
  4750. }
  4751. codenum = millis();
  4752. cancel_heatup = false;
  4753. target_direction = isHeatingBed(); // true if heating, false if cooling
  4754. KEEPALIVE_STATE(NOT_BUSY);
  4755. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4756. {
  4757. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4758. {
  4759. if (!farm_mode) {
  4760. float tt = degHotend(active_extruder);
  4761. SERIAL_PROTOCOLPGM("T:");
  4762. SERIAL_PROTOCOL(tt);
  4763. SERIAL_PROTOCOLPGM(" E:");
  4764. SERIAL_PROTOCOL((int)active_extruder);
  4765. SERIAL_PROTOCOLPGM(" B:");
  4766. SERIAL_PROTOCOL_F(degBed(), 1);
  4767. SERIAL_PROTOCOLLN("");
  4768. }
  4769. codenum = millis();
  4770. }
  4771. manage_heater();
  4772. manage_inactivity();
  4773. lcd_update(0);
  4774. }
  4775. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4776. KEEPALIVE_STATE(IN_HANDLER);
  4777. heating_status = 4;
  4778. previous_millis_cmd = millis();
  4779. #endif
  4780. break;
  4781. #if defined(FAN_PIN) && FAN_PIN > -1
  4782. case 106: //M106 Fan On
  4783. if (code_seen('S')){
  4784. fanSpeed=constrain(code_value(),0,255);
  4785. }
  4786. else {
  4787. fanSpeed=255;
  4788. }
  4789. break;
  4790. case 107: //M107 Fan Off
  4791. fanSpeed = 0;
  4792. break;
  4793. #endif //FAN_PIN
  4794. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4795. case 80: // M80 - Turn on Power Supply
  4796. SET_OUTPUT(PS_ON_PIN); //GND
  4797. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4798. // If you have a switch on suicide pin, this is useful
  4799. // if you want to start another print with suicide feature after
  4800. // a print without suicide...
  4801. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4802. SET_OUTPUT(SUICIDE_PIN);
  4803. WRITE(SUICIDE_PIN, HIGH);
  4804. #endif
  4805. powersupply = true;
  4806. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4807. lcd_update(0);
  4808. break;
  4809. #endif
  4810. case 81: // M81 - Turn off Power Supply
  4811. disable_heater();
  4812. st_synchronize();
  4813. disable_e0();
  4814. disable_e1();
  4815. disable_e2();
  4816. finishAndDisableSteppers();
  4817. fanSpeed = 0;
  4818. delay(1000); // Wait a little before to switch off
  4819. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4820. st_synchronize();
  4821. suicide();
  4822. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4823. SET_OUTPUT(PS_ON_PIN);
  4824. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4825. #endif
  4826. powersupply = false;
  4827. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4828. lcd_update(0);
  4829. break;
  4830. case 82:
  4831. axis_relative_modes[3] = false;
  4832. break;
  4833. case 83:
  4834. axis_relative_modes[3] = true;
  4835. break;
  4836. case 18: //compatibility
  4837. case 84: // M84
  4838. if(code_seen('S')){
  4839. stepper_inactive_time = code_value() * 1000;
  4840. }
  4841. else
  4842. {
  4843. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4844. if(all_axis)
  4845. {
  4846. st_synchronize();
  4847. disable_e0();
  4848. disable_e1();
  4849. disable_e2();
  4850. finishAndDisableSteppers();
  4851. }
  4852. else
  4853. {
  4854. st_synchronize();
  4855. if (code_seen('X')) disable_x();
  4856. if (code_seen('Y')) disable_y();
  4857. if (code_seen('Z')) disable_z();
  4858. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4859. if (code_seen('E')) {
  4860. disable_e0();
  4861. disable_e1();
  4862. disable_e2();
  4863. }
  4864. #endif
  4865. }
  4866. }
  4867. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4868. print_time_remaining_init();
  4869. snmm_filaments_used = 0;
  4870. break;
  4871. case 85: // M85
  4872. if(code_seen('S')) {
  4873. max_inactive_time = code_value() * 1000;
  4874. }
  4875. break;
  4876. #ifdef SAFETYTIMER
  4877. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4878. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4879. if (code_seen('S')) {
  4880. safetytimer_inactive_time = code_value() * 1000;
  4881. safetyTimer.start();
  4882. }
  4883. break;
  4884. #endif
  4885. case 92: // M92
  4886. for(int8_t i=0; i < NUM_AXIS; i++)
  4887. {
  4888. if(code_seen(axis_codes[i]))
  4889. {
  4890. if(i == 3) { // E
  4891. float value = code_value();
  4892. if(value < 20.0) {
  4893. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4894. cs.max_jerk[E_AXIS] *= factor;
  4895. max_feedrate[i] *= factor;
  4896. axis_steps_per_sqr_second[i] *= factor;
  4897. }
  4898. cs.axis_steps_per_unit[i] = value;
  4899. }
  4900. else {
  4901. cs.axis_steps_per_unit[i] = code_value();
  4902. }
  4903. }
  4904. }
  4905. break;
  4906. case 110: // M110 - reset line pos
  4907. if (code_seen('N'))
  4908. gcode_LastN = code_value_long();
  4909. break;
  4910. #ifdef HOST_KEEPALIVE_FEATURE
  4911. case 113: // M113 - Get or set Host Keepalive interval
  4912. if (code_seen('S')) {
  4913. host_keepalive_interval = (uint8_t)code_value_short();
  4914. // NOMORE(host_keepalive_interval, 60);
  4915. }
  4916. else {
  4917. SERIAL_ECHO_START;
  4918. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4919. SERIAL_PROTOCOLLN("");
  4920. }
  4921. break;
  4922. #endif
  4923. case 115: // M115
  4924. if (code_seen('V')) {
  4925. // Report the Prusa version number.
  4926. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4927. } else if (code_seen('U')) {
  4928. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4929. // pause the print and ask the user to upgrade the firmware.
  4930. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4931. } else {
  4932. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4933. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4934. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4935. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4936. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4937. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4938. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4939. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4940. SERIAL_ECHOPGM(" UUID:");
  4941. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4942. }
  4943. break;
  4944. /* case 117: // M117 display message
  4945. starpos = (strchr(strchr_pointer + 5,'*'));
  4946. if(starpos!=NULL)
  4947. *(starpos)='\0';
  4948. lcd_setstatus(strchr_pointer + 5);
  4949. break;*/
  4950. case 114: // M114
  4951. gcode_M114();
  4952. break;
  4953. case 120: // M120
  4954. enable_endstops(false) ;
  4955. break;
  4956. case 121: // M121
  4957. enable_endstops(true) ;
  4958. break;
  4959. case 119: // M119
  4960. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4961. SERIAL_PROTOCOLLN("");
  4962. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4963. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4964. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4965. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4966. }else{
  4967. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4968. }
  4969. SERIAL_PROTOCOLLN("");
  4970. #endif
  4971. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4972. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4973. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4974. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4975. }else{
  4976. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4977. }
  4978. SERIAL_PROTOCOLLN("");
  4979. #endif
  4980. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4981. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4982. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4983. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4984. }else{
  4985. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4986. }
  4987. SERIAL_PROTOCOLLN("");
  4988. #endif
  4989. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4990. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4991. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4992. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4993. }else{
  4994. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4995. }
  4996. SERIAL_PROTOCOLLN("");
  4997. #endif
  4998. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4999. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5000. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5001. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5002. }else{
  5003. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5004. }
  5005. SERIAL_PROTOCOLLN("");
  5006. #endif
  5007. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5008. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5009. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5010. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5011. }else{
  5012. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5013. }
  5014. SERIAL_PROTOCOLLN("");
  5015. #endif
  5016. break;
  5017. //TODO: update for all axis, use for loop
  5018. #ifdef BLINKM
  5019. case 150: // M150
  5020. {
  5021. byte red;
  5022. byte grn;
  5023. byte blu;
  5024. if(code_seen('R')) red = code_value();
  5025. if(code_seen('U')) grn = code_value();
  5026. if(code_seen('B')) blu = code_value();
  5027. SendColors(red,grn,blu);
  5028. }
  5029. break;
  5030. #endif //BLINKM
  5031. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5032. {
  5033. uint8_t extruder = active_extruder;
  5034. if(code_seen('T')) {
  5035. extruder = code_value();
  5036. if(extruder >= EXTRUDERS) {
  5037. SERIAL_ECHO_START;
  5038. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5039. break;
  5040. }
  5041. }
  5042. if(code_seen('D')) {
  5043. float diameter = (float)code_value();
  5044. if (diameter == 0.0) {
  5045. // setting any extruder filament size disables volumetric on the assumption that
  5046. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5047. // for all extruders
  5048. cs.volumetric_enabled = false;
  5049. } else {
  5050. cs.filament_size[extruder] = (float)code_value();
  5051. // make sure all extruders have some sane value for the filament size
  5052. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5053. #if EXTRUDERS > 1
  5054. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5055. #if EXTRUDERS > 2
  5056. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5057. #endif
  5058. #endif
  5059. cs.volumetric_enabled = true;
  5060. }
  5061. } else {
  5062. //reserved for setting filament diameter via UFID or filament measuring device
  5063. break;
  5064. }
  5065. calculate_extruder_multipliers();
  5066. }
  5067. break;
  5068. case 201: // M201
  5069. for (int8_t i = 0; i < NUM_AXIS; i++)
  5070. {
  5071. if (code_seen(axis_codes[i]))
  5072. {
  5073. unsigned long val = code_value();
  5074. #ifdef TMC2130
  5075. unsigned long val_silent = val;
  5076. if ((i == X_AXIS) || (i == Y_AXIS))
  5077. {
  5078. if (val > NORMAL_MAX_ACCEL_XY)
  5079. val = NORMAL_MAX_ACCEL_XY;
  5080. if (val_silent > SILENT_MAX_ACCEL_XY)
  5081. val_silent = SILENT_MAX_ACCEL_XY;
  5082. }
  5083. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5084. max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5085. #else //TMC2130
  5086. max_acceleration_units_per_sq_second[i] = val;
  5087. #endif //TMC2130
  5088. }
  5089. }
  5090. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5091. reset_acceleration_rates();
  5092. break;
  5093. #if 0 // Not used for Sprinter/grbl gen6
  5094. case 202: // M202
  5095. for(int8_t i=0; i < NUM_AXIS; i++) {
  5096. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5097. }
  5098. break;
  5099. #endif
  5100. case 203: // M203 max feedrate mm/sec
  5101. for (int8_t i = 0; i < NUM_AXIS; i++)
  5102. {
  5103. if (code_seen(axis_codes[i]))
  5104. {
  5105. float val = code_value();
  5106. #ifdef TMC2130
  5107. float val_silent = val;
  5108. if ((i == X_AXIS) || (i == Y_AXIS))
  5109. {
  5110. if (val > NORMAL_MAX_FEEDRATE_XY)
  5111. val = NORMAL_MAX_FEEDRATE_XY;
  5112. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5113. val_silent = SILENT_MAX_FEEDRATE_XY;
  5114. }
  5115. cs.max_feedrate_normal[i] = val;
  5116. max_feedrate_silent[i] = val_silent;
  5117. #else //TMC2130
  5118. max_feedrate[i] = val;
  5119. #endif //TMC2130
  5120. }
  5121. }
  5122. break;
  5123. case 204:
  5124. // M204 acclereration settings.
  5125. // Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5126. // and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5127. {
  5128. if(code_seen('S')) {
  5129. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5130. // and it is also generated by Slic3r to control acceleration per extrusion type
  5131. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5132. cs.acceleration = code_value();
  5133. // Interpret the T value as retract acceleration in the old Marlin format.
  5134. if(code_seen('T'))
  5135. cs.retract_acceleration = code_value();
  5136. } else {
  5137. // New acceleration format, compatible with the upstream Marlin.
  5138. if(code_seen('P'))
  5139. cs.acceleration = code_value();
  5140. if(code_seen('R'))
  5141. cs.retract_acceleration = code_value();
  5142. if(code_seen('T')) {
  5143. // Interpret the T value as the travel acceleration in the new Marlin format.
  5144. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5145. // travel_acceleration = code_value();
  5146. }
  5147. }
  5148. }
  5149. break;
  5150. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5151. {
  5152. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5153. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5154. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5155. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5156. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5157. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5158. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5159. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5160. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5161. }
  5162. break;
  5163. case 206: // M206 additional homing offset
  5164. for(int8_t i=0; i < 3; i++)
  5165. {
  5166. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5167. }
  5168. break;
  5169. #ifdef FWRETRACT
  5170. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5171. {
  5172. if(code_seen('S'))
  5173. {
  5174. cs.retract_length = code_value() ;
  5175. }
  5176. if(code_seen('F'))
  5177. {
  5178. cs.retract_feedrate = code_value()/60 ;
  5179. }
  5180. if(code_seen('Z'))
  5181. {
  5182. cs.retract_zlift = code_value() ;
  5183. }
  5184. }break;
  5185. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5186. {
  5187. if(code_seen('S'))
  5188. {
  5189. cs.retract_recover_length = code_value() ;
  5190. }
  5191. if(code_seen('F'))
  5192. {
  5193. cs.retract_recover_feedrate = code_value()/60 ;
  5194. }
  5195. }break;
  5196. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5197. {
  5198. if(code_seen('S'))
  5199. {
  5200. int t= code_value() ;
  5201. switch(t)
  5202. {
  5203. case 0:
  5204. {
  5205. cs.autoretract_enabled=false;
  5206. retracted[0]=false;
  5207. #if EXTRUDERS > 1
  5208. retracted[1]=false;
  5209. #endif
  5210. #if EXTRUDERS > 2
  5211. retracted[2]=false;
  5212. #endif
  5213. }break;
  5214. case 1:
  5215. {
  5216. cs.autoretract_enabled=true;
  5217. retracted[0]=false;
  5218. #if EXTRUDERS > 1
  5219. retracted[1]=false;
  5220. #endif
  5221. #if EXTRUDERS > 2
  5222. retracted[2]=false;
  5223. #endif
  5224. }break;
  5225. default:
  5226. SERIAL_ECHO_START;
  5227. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5228. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5229. SERIAL_ECHOLNPGM("\"(1)");
  5230. }
  5231. }
  5232. }break;
  5233. #endif // FWRETRACT
  5234. #if EXTRUDERS > 1
  5235. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5236. {
  5237. uint8_t extruder;
  5238. if(setTargetedHotend(218, extruder)){
  5239. break;
  5240. }
  5241. if(code_seen('X'))
  5242. {
  5243. extruder_offset[X_AXIS][extruder] = code_value();
  5244. }
  5245. if(code_seen('Y'))
  5246. {
  5247. extruder_offset[Y_AXIS][extruder] = code_value();
  5248. }
  5249. SERIAL_ECHO_START;
  5250. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5251. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5252. {
  5253. SERIAL_ECHO(" ");
  5254. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5255. SERIAL_ECHO(",");
  5256. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5257. }
  5258. SERIAL_ECHOLN("");
  5259. }break;
  5260. #endif
  5261. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5262. {
  5263. if(code_seen('S'))
  5264. {
  5265. feedmultiply = code_value() ;
  5266. }
  5267. }
  5268. break;
  5269. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5270. {
  5271. if(code_seen('S'))
  5272. {
  5273. int tmp_code = code_value();
  5274. if (code_seen('T'))
  5275. {
  5276. uint8_t extruder;
  5277. if(setTargetedHotend(221, extruder)){
  5278. break;
  5279. }
  5280. extruder_multiply[extruder] = tmp_code;
  5281. }
  5282. else
  5283. {
  5284. extrudemultiply = tmp_code ;
  5285. }
  5286. }
  5287. calculate_extruder_multipliers();
  5288. }
  5289. break;
  5290. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5291. {
  5292. if(code_seen('P')){
  5293. int pin_number = code_value(); // pin number
  5294. int pin_state = -1; // required pin state - default is inverted
  5295. if(code_seen('S')) pin_state = code_value(); // required pin state
  5296. if(pin_state >= -1 && pin_state <= 1){
  5297. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5298. {
  5299. if (sensitive_pins[i] == pin_number)
  5300. {
  5301. pin_number = -1;
  5302. break;
  5303. }
  5304. }
  5305. if (pin_number > -1)
  5306. {
  5307. int target = LOW;
  5308. st_synchronize();
  5309. pinMode(pin_number, INPUT);
  5310. switch(pin_state){
  5311. case 1:
  5312. target = HIGH;
  5313. break;
  5314. case 0:
  5315. target = LOW;
  5316. break;
  5317. case -1:
  5318. target = !digitalRead(pin_number);
  5319. break;
  5320. }
  5321. while(digitalRead(pin_number) != target){
  5322. manage_heater();
  5323. manage_inactivity();
  5324. lcd_update(0);
  5325. }
  5326. }
  5327. }
  5328. }
  5329. }
  5330. break;
  5331. #if NUM_SERVOS > 0
  5332. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5333. {
  5334. int servo_index = -1;
  5335. int servo_position = 0;
  5336. if (code_seen('P'))
  5337. servo_index = code_value();
  5338. if (code_seen('S')) {
  5339. servo_position = code_value();
  5340. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5341. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5342. servos[servo_index].attach(0);
  5343. #endif
  5344. servos[servo_index].write(servo_position);
  5345. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5346. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5347. servos[servo_index].detach();
  5348. #endif
  5349. }
  5350. else {
  5351. SERIAL_ECHO_START;
  5352. SERIAL_ECHO("Servo ");
  5353. SERIAL_ECHO(servo_index);
  5354. SERIAL_ECHOLN(" out of range");
  5355. }
  5356. }
  5357. else if (servo_index >= 0) {
  5358. SERIAL_PROTOCOL(_T(MSG_OK));
  5359. SERIAL_PROTOCOL(" Servo ");
  5360. SERIAL_PROTOCOL(servo_index);
  5361. SERIAL_PROTOCOL(": ");
  5362. SERIAL_PROTOCOL(servos[servo_index].read());
  5363. SERIAL_PROTOCOLLN("");
  5364. }
  5365. }
  5366. break;
  5367. #endif // NUM_SERVOS > 0
  5368. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5369. case 300: // M300
  5370. {
  5371. int beepS = code_seen('S') ? code_value() : 110;
  5372. int beepP = code_seen('P') ? code_value() : 1000;
  5373. if (beepS > 0)
  5374. {
  5375. #if BEEPER > 0
  5376. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5377. tone(BEEPER, beepS);
  5378. delay(beepP);
  5379. noTone(BEEPER);
  5380. #endif
  5381. }
  5382. else
  5383. {
  5384. delay(beepP);
  5385. }
  5386. }
  5387. break;
  5388. #endif // M300
  5389. #ifdef PIDTEMP
  5390. case 301: // M301
  5391. {
  5392. if(code_seen('P')) cs.Kp = code_value();
  5393. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5394. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5395. #ifdef PID_ADD_EXTRUSION_RATE
  5396. if(code_seen('C')) Kc = code_value();
  5397. #endif
  5398. updatePID();
  5399. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5400. SERIAL_PROTOCOL(" p:");
  5401. SERIAL_PROTOCOL(cs.Kp);
  5402. SERIAL_PROTOCOL(" i:");
  5403. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5404. SERIAL_PROTOCOL(" d:");
  5405. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5406. #ifdef PID_ADD_EXTRUSION_RATE
  5407. SERIAL_PROTOCOL(" c:");
  5408. //Kc does not have scaling applied above, or in resetting defaults
  5409. SERIAL_PROTOCOL(Kc);
  5410. #endif
  5411. SERIAL_PROTOCOLLN("");
  5412. }
  5413. break;
  5414. #endif //PIDTEMP
  5415. #ifdef PIDTEMPBED
  5416. case 304: // M304
  5417. {
  5418. if(code_seen('P')) cs.bedKp = code_value();
  5419. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5420. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5421. updatePID();
  5422. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5423. SERIAL_PROTOCOL(" p:");
  5424. SERIAL_PROTOCOL(cs.bedKp);
  5425. SERIAL_PROTOCOL(" i:");
  5426. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5427. SERIAL_PROTOCOL(" d:");
  5428. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5429. SERIAL_PROTOCOLLN("");
  5430. }
  5431. break;
  5432. #endif //PIDTEMP
  5433. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5434. {
  5435. #ifdef CHDK
  5436. SET_OUTPUT(CHDK);
  5437. WRITE(CHDK, HIGH);
  5438. chdkHigh = millis();
  5439. chdkActive = true;
  5440. #else
  5441. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5442. const uint8_t NUM_PULSES=16;
  5443. const float PULSE_LENGTH=0.01524;
  5444. for(int i=0; i < NUM_PULSES; i++) {
  5445. WRITE(PHOTOGRAPH_PIN, HIGH);
  5446. _delay_ms(PULSE_LENGTH);
  5447. WRITE(PHOTOGRAPH_PIN, LOW);
  5448. _delay_ms(PULSE_LENGTH);
  5449. }
  5450. delay(7.33);
  5451. for(int i=0; i < NUM_PULSES; i++) {
  5452. WRITE(PHOTOGRAPH_PIN, HIGH);
  5453. _delay_ms(PULSE_LENGTH);
  5454. WRITE(PHOTOGRAPH_PIN, LOW);
  5455. _delay_ms(PULSE_LENGTH);
  5456. }
  5457. #endif
  5458. #endif //chdk end if
  5459. }
  5460. break;
  5461. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5462. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5463. {
  5464. float temp = .0;
  5465. if (code_seen('S')) temp=code_value();
  5466. set_extrude_min_temp(temp);
  5467. }
  5468. break;
  5469. #endif
  5470. case 303: // M303 PID autotune
  5471. {
  5472. float temp = 150.0;
  5473. int e=0;
  5474. int c=5;
  5475. if (code_seen('E')) e=code_value();
  5476. if (e<0)
  5477. temp=70;
  5478. if (code_seen('S')) temp=code_value();
  5479. if (code_seen('C')) c=code_value();
  5480. PID_autotune(temp, e, c);
  5481. }
  5482. break;
  5483. case 400: // M400 finish all moves
  5484. {
  5485. st_synchronize();
  5486. }
  5487. break;
  5488. case 403: //M403 set filament type (material) for particular extruder and send this information to mmu
  5489. {
  5490. //currently three different materials are needed (default, flex and PVA)
  5491. //add storing this information for different load/unload profiles etc. in the future
  5492. //firmware does not wait for "ok" from mmu
  5493. if (mmu_enabled)
  5494. {
  5495. uint8_t extruder;
  5496. uint8_t filament;
  5497. if(code_seen('E')) extruder = code_value();
  5498. if(code_seen('F')) filament = code_value();
  5499. mmu_set_filament_type(extruder, filament);
  5500. }
  5501. }
  5502. break;
  5503. case 500: // M500 Store settings in EEPROM
  5504. {
  5505. Config_StoreSettings(EEPROM_OFFSET);
  5506. }
  5507. break;
  5508. case 501: // M501 Read settings from EEPROM
  5509. {
  5510. Config_RetrieveSettings(EEPROM_OFFSET);
  5511. }
  5512. break;
  5513. case 502: // M502 Revert to default settings
  5514. {
  5515. Config_ResetDefault();
  5516. }
  5517. break;
  5518. case 503: // M503 print settings currently in memory
  5519. {
  5520. Config_PrintSettings();
  5521. }
  5522. break;
  5523. case 509: //M509 Force language selection
  5524. {
  5525. lang_reset();
  5526. SERIAL_ECHO_START;
  5527. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5528. }
  5529. break;
  5530. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5531. case 540:
  5532. {
  5533. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5534. }
  5535. break;
  5536. #endif
  5537. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5538. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5539. {
  5540. float value;
  5541. if (code_seen('Z'))
  5542. {
  5543. value = code_value();
  5544. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5545. {
  5546. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5547. SERIAL_ECHO_START;
  5548. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5549. SERIAL_PROTOCOLLN("");
  5550. }
  5551. else
  5552. {
  5553. SERIAL_ECHO_START;
  5554. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5555. SERIAL_ECHORPGM(MSG_Z_MIN);
  5556. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5557. SERIAL_ECHORPGM(MSG_Z_MAX);
  5558. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5559. SERIAL_PROTOCOLLN("");
  5560. }
  5561. }
  5562. else
  5563. {
  5564. SERIAL_ECHO_START;
  5565. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5566. SERIAL_ECHO(-cs.zprobe_zoffset);
  5567. SERIAL_PROTOCOLLN("");
  5568. }
  5569. break;
  5570. }
  5571. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5572. #ifdef FILAMENTCHANGEENABLE
  5573. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5574. {
  5575. st_synchronize();
  5576. float x_position = current_position[X_AXIS];
  5577. float y_position = current_position[Y_AXIS];
  5578. float z_shift = 0;
  5579. float e_shift_init = 0;
  5580. float e_shift_late = 0;
  5581. bool automatic = false;
  5582. //Retract extruder
  5583. if(code_seen('E'))
  5584. {
  5585. e_shift_init = code_value();
  5586. }
  5587. else
  5588. {
  5589. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5590. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5591. #endif
  5592. }
  5593. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5594. if (code_seen('L'))
  5595. {
  5596. e_shift_late = code_value();
  5597. }
  5598. else
  5599. {
  5600. #ifdef FILAMENTCHANGE_FINALRETRACT
  5601. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5602. #endif
  5603. }
  5604. //Lift Z
  5605. if(code_seen('Z'))
  5606. {
  5607. z_shift = code_value();
  5608. }
  5609. else
  5610. {
  5611. #ifdef FILAMENTCHANGE_ZADD
  5612. z_shift= FILAMENTCHANGE_ZADD ;
  5613. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5614. #endif
  5615. }
  5616. //Move XY to side
  5617. if(code_seen('X'))
  5618. {
  5619. x_position = code_value();
  5620. }
  5621. else
  5622. {
  5623. #ifdef FILAMENTCHANGE_XPOS
  5624. x_position = FILAMENTCHANGE_XPOS;
  5625. #endif
  5626. }
  5627. if(code_seen('Y'))
  5628. {
  5629. y_position = code_value();
  5630. }
  5631. else
  5632. {
  5633. #ifdef FILAMENTCHANGE_YPOS
  5634. y_position = FILAMENTCHANGE_YPOS ;
  5635. #endif
  5636. }
  5637. if (mmu_enabled && code_seen("AUTO"))
  5638. automatic = true;
  5639. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5640. }
  5641. break;
  5642. #endif //FILAMENTCHANGEENABLE
  5643. case 601: {
  5644. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5645. }
  5646. break;
  5647. case 602: {
  5648. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5649. }
  5650. break;
  5651. #ifdef PINDA_THERMISTOR
  5652. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5653. {
  5654. int set_target_pinda = 0;
  5655. if (code_seen('S')) {
  5656. set_target_pinda = code_value();
  5657. }
  5658. else {
  5659. break;
  5660. }
  5661. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5662. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5663. SERIAL_PROTOCOL(set_target_pinda);
  5664. SERIAL_PROTOCOLLN("");
  5665. codenum = millis();
  5666. cancel_heatup = false;
  5667. bool is_pinda_cooling = false;
  5668. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5669. is_pinda_cooling = true;
  5670. }
  5671. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5672. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5673. {
  5674. SERIAL_PROTOCOLPGM("P:");
  5675. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5676. SERIAL_PROTOCOLPGM("/");
  5677. SERIAL_PROTOCOL(set_target_pinda);
  5678. SERIAL_PROTOCOLLN("");
  5679. codenum = millis();
  5680. }
  5681. manage_heater();
  5682. manage_inactivity();
  5683. lcd_update(0);
  5684. }
  5685. LCD_MESSAGERPGM(_T(MSG_OK));
  5686. break;
  5687. }
  5688. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5689. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5690. uint8_t cal_status = calibration_status_pinda();
  5691. int16_t usteps = 0;
  5692. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5693. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5694. for (uint8_t i = 0; i < 6; i++)
  5695. {
  5696. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5697. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5698. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5699. SERIAL_PROTOCOLPGM(", ");
  5700. SERIAL_PROTOCOL(35 + (i * 5));
  5701. SERIAL_PROTOCOLPGM(", ");
  5702. SERIAL_PROTOCOL(usteps);
  5703. SERIAL_PROTOCOLPGM(", ");
  5704. SERIAL_PROTOCOL(mm * 1000);
  5705. SERIAL_PROTOCOLLN("");
  5706. }
  5707. }
  5708. else if (code_seen('!')) { // ! - Set factory default values
  5709. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5710. int16_t z_shift = 8; //40C - 20um - 8usteps
  5711. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5712. z_shift = 24; //45C - 60um - 24usteps
  5713. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5714. z_shift = 48; //50C - 120um - 48usteps
  5715. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5716. z_shift = 80; //55C - 200um - 80usteps
  5717. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5718. z_shift = 120; //60C - 300um - 120usteps
  5719. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5720. SERIAL_PROTOCOLLN("factory restored");
  5721. }
  5722. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5723. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5724. int16_t z_shift = 0;
  5725. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5726. SERIAL_PROTOCOLLN("zerorized");
  5727. }
  5728. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5729. int16_t usteps = code_value();
  5730. if (code_seen('I')) {
  5731. byte index = code_value();
  5732. if ((index >= 0) && (index < 5)) {
  5733. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5734. SERIAL_PROTOCOLLN("OK");
  5735. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5736. for (uint8_t i = 0; i < 6; i++)
  5737. {
  5738. usteps = 0;
  5739. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5740. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5741. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5742. SERIAL_PROTOCOLPGM(", ");
  5743. SERIAL_PROTOCOL(35 + (i * 5));
  5744. SERIAL_PROTOCOLPGM(", ");
  5745. SERIAL_PROTOCOL(usteps);
  5746. SERIAL_PROTOCOLPGM(", ");
  5747. SERIAL_PROTOCOL(mm * 1000);
  5748. SERIAL_PROTOCOLLN("");
  5749. }
  5750. }
  5751. }
  5752. }
  5753. else {
  5754. SERIAL_PROTOCOLPGM("no valid command");
  5755. }
  5756. break;
  5757. #endif //PINDA_THERMISTOR
  5758. #ifdef LIN_ADVANCE
  5759. case 900: // M900: Set LIN_ADVANCE options.
  5760. gcode_M900();
  5761. break;
  5762. #endif
  5763. case 907: // M907 Set digital trimpot motor current using axis codes.
  5764. {
  5765. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5766. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5767. if(code_seen('B')) st_current_set(4,code_value());
  5768. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5769. #endif
  5770. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5771. if(code_seen('X')) st_current_set(0, code_value());
  5772. #endif
  5773. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5774. if(code_seen('Z')) st_current_set(1, code_value());
  5775. #endif
  5776. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5777. if(code_seen('E')) st_current_set(2, code_value());
  5778. #endif
  5779. }
  5780. break;
  5781. case 908: // M908 Control digital trimpot directly.
  5782. {
  5783. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5784. uint8_t channel,current;
  5785. if(code_seen('P')) channel=code_value();
  5786. if(code_seen('S')) current=code_value();
  5787. digitalPotWrite(channel, current);
  5788. #endif
  5789. }
  5790. break;
  5791. #ifdef TMC2130
  5792. case 910: // M910 TMC2130 init
  5793. {
  5794. tmc2130_init();
  5795. }
  5796. break;
  5797. case 911: // M911 Set TMC2130 holding currents
  5798. {
  5799. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5800. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5801. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5802. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5803. }
  5804. break;
  5805. case 912: // M912 Set TMC2130 running currents
  5806. {
  5807. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5808. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5809. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5810. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5811. }
  5812. break;
  5813. case 913: // M913 Print TMC2130 currents
  5814. {
  5815. tmc2130_print_currents();
  5816. }
  5817. break;
  5818. case 914: // M914 Set normal mode
  5819. {
  5820. tmc2130_mode = TMC2130_MODE_NORMAL;
  5821. update_mode_profile();
  5822. tmc2130_init();
  5823. }
  5824. break;
  5825. case 915: // M915 Set silent mode
  5826. {
  5827. tmc2130_mode = TMC2130_MODE_SILENT;
  5828. update_mode_profile();
  5829. tmc2130_init();
  5830. }
  5831. break;
  5832. case 916: // M916 Set sg_thrs
  5833. {
  5834. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5835. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5836. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5837. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5838. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5839. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5840. }
  5841. break;
  5842. case 917: // M917 Set TMC2130 pwm_ampl
  5843. {
  5844. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5845. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5846. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5847. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5848. }
  5849. break;
  5850. case 918: // M918 Set TMC2130 pwm_grad
  5851. {
  5852. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5853. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5854. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5855. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5856. }
  5857. break;
  5858. #endif //TMC2130
  5859. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5860. {
  5861. #ifdef TMC2130
  5862. if(code_seen('E'))
  5863. {
  5864. uint16_t res_new = code_value();
  5865. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5866. {
  5867. st_synchronize();
  5868. uint8_t axis = E_AXIS;
  5869. uint16_t res = tmc2130_get_res(axis);
  5870. tmc2130_set_res(axis, res_new);
  5871. if (res_new > res)
  5872. {
  5873. uint16_t fac = (res_new / res);
  5874. cs.axis_steps_per_unit[axis] *= fac;
  5875. position[E_AXIS] *= fac;
  5876. }
  5877. else
  5878. {
  5879. uint16_t fac = (res / res_new);
  5880. cs.axis_steps_per_unit[axis] /= fac;
  5881. position[E_AXIS] /= fac;
  5882. }
  5883. }
  5884. }
  5885. #else //TMC2130
  5886. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5887. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5888. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5889. if(code_seen('B')) microstep_mode(4,code_value());
  5890. microstep_readings();
  5891. #endif
  5892. #endif //TMC2130
  5893. }
  5894. break;
  5895. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5896. {
  5897. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5898. if(code_seen('S')) switch((int)code_value())
  5899. {
  5900. case 1:
  5901. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5902. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5903. break;
  5904. case 2:
  5905. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5906. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5907. break;
  5908. }
  5909. microstep_readings();
  5910. #endif
  5911. }
  5912. break;
  5913. case 701: //M701: load filament
  5914. {
  5915. if (mmu_enabled && code_seen('E'))
  5916. tmp_extruder = code_value();
  5917. gcode_M701();
  5918. }
  5919. break;
  5920. case 702:
  5921. {
  5922. if (mmu_enabled)
  5923. {
  5924. if (code_seen('U'))
  5925. extr_unload_used(); //unload all filaments which were used in current print
  5926. else if (code_seen('C'))
  5927. extr_unload(); //unload just current filament
  5928. else
  5929. extr_unload_all(); //unload all filaments
  5930. }
  5931. else
  5932. unload_filament();
  5933. }
  5934. break;
  5935. case 999: // M999: Restart after being stopped
  5936. Stopped = false;
  5937. lcd_reset_alert_level();
  5938. gcode_LastN = Stopped_gcode_LastN;
  5939. FlushSerialRequestResend();
  5940. break;
  5941. default:
  5942. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5943. }
  5944. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  5945. mcode_in_progress = 0;
  5946. }
  5947. } // end if(code_seen('M')) (end of M codes)
  5948. else if(code_seen('T'))
  5949. {
  5950. int index;
  5951. st_synchronize();
  5952. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5953. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?') {
  5954. SERIAL_ECHOLNPGM("Invalid T code.");
  5955. }
  5956. else {
  5957. if (*(strchr_pointer + index) == '?') {
  5958. tmp_extruder = choose_extruder_menu();
  5959. }
  5960. else {
  5961. tmp_extruder = code_value();
  5962. }
  5963. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5964. if (mmu_enabled)
  5965. {
  5966. mmu_command(MMU_CMD_T0 + tmp_extruder);
  5967. manage_response(true, true);
  5968. mmu_command(MMU_CMD_C0);
  5969. mmu_extruder = tmp_extruder; //filament change is finished
  5970. if (*(strchr_pointer + index) == '?')// for single material usage with mmu
  5971. {
  5972. mmu_load_to_nozzle();
  5973. }
  5974. }
  5975. else
  5976. {
  5977. #ifdef SNMM
  5978. #ifdef LIN_ADVANCE
  5979. if (mmu_extruder != tmp_extruder)
  5980. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5981. #endif
  5982. mmu_extruder = tmp_extruder;
  5983. delay(100);
  5984. disable_e0();
  5985. disable_e1();
  5986. disable_e2();
  5987. pinMode(E_MUX0_PIN, OUTPUT);
  5988. pinMode(E_MUX1_PIN, OUTPUT);
  5989. delay(100);
  5990. SERIAL_ECHO_START;
  5991. SERIAL_ECHO("T:");
  5992. SERIAL_ECHOLN((int)tmp_extruder);
  5993. switch (tmp_extruder) {
  5994. case 1:
  5995. WRITE(E_MUX0_PIN, HIGH);
  5996. WRITE(E_MUX1_PIN, LOW);
  5997. break;
  5998. case 2:
  5999. WRITE(E_MUX0_PIN, LOW);
  6000. WRITE(E_MUX1_PIN, HIGH);
  6001. break;
  6002. case 3:
  6003. WRITE(E_MUX0_PIN, HIGH);
  6004. WRITE(E_MUX1_PIN, HIGH);
  6005. break;
  6006. default:
  6007. WRITE(E_MUX0_PIN, LOW);
  6008. WRITE(E_MUX1_PIN, LOW);
  6009. break;
  6010. }
  6011. delay(100);
  6012. #else //SNMM
  6013. if (tmp_extruder >= EXTRUDERS) {
  6014. SERIAL_ECHO_START;
  6015. SERIAL_ECHOPGM("T");
  6016. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6017. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6018. }
  6019. else {
  6020. #if EXTRUDERS > 1
  6021. boolean make_move = false;
  6022. #endif
  6023. if (code_seen('F')) {
  6024. #if EXTRUDERS > 1
  6025. make_move = true;
  6026. #endif
  6027. next_feedrate = code_value();
  6028. if (next_feedrate > 0.0) {
  6029. feedrate = next_feedrate;
  6030. }
  6031. }
  6032. #if EXTRUDERS > 1
  6033. if (tmp_extruder != active_extruder) {
  6034. // Save current position to return to after applying extruder offset
  6035. memcpy(destination, current_position, sizeof(destination));
  6036. // Offset extruder (only by XY)
  6037. int i;
  6038. for (i = 0; i < 2; i++) {
  6039. current_position[i] = current_position[i] -
  6040. extruder_offset[i][active_extruder] +
  6041. extruder_offset[i][tmp_extruder];
  6042. }
  6043. // Set the new active extruder and position
  6044. active_extruder = tmp_extruder;
  6045. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6046. // Move to the old position if 'F' was in the parameters
  6047. if (make_move && Stopped == false) {
  6048. prepare_move();
  6049. }
  6050. }
  6051. #endif
  6052. SERIAL_ECHO_START;
  6053. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6054. SERIAL_PROTOCOLLN((int)active_extruder);
  6055. }
  6056. #endif //SNMM
  6057. }
  6058. }
  6059. } // end if(code_seen('T')) (end of T codes)
  6060. else if (code_seen('D')) // D codes (debug)
  6061. {
  6062. switch((int)code_value())
  6063. {
  6064. #ifdef DEBUG_DCODES
  6065. case -1: // D-1 - Endless loop
  6066. dcode__1(); break;
  6067. case 0: // D0 - Reset
  6068. dcode_0(); break;
  6069. case 1: // D1 - Clear EEPROM
  6070. dcode_1(); break;
  6071. case 2: // D2 - Read/Write RAM
  6072. dcode_2(); break;
  6073. #endif //DEBUG_DCODES
  6074. #ifdef DEBUG_DCODE3
  6075. case 3: // D3 - Read/Write EEPROM
  6076. dcode_3(); break;
  6077. #endif //DEBUG_DCODE3
  6078. #ifdef DEBUG_DCODES
  6079. case 4: // D4 - Read/Write PIN
  6080. dcode_4(); break;
  6081. case 5: // D5 - Read/Write FLASH
  6082. // dcode_5(); break;
  6083. break;
  6084. case 6: // D6 - Read/Write external FLASH
  6085. dcode_6(); break;
  6086. case 7: // D7 - Read/Write Bootloader
  6087. dcode_7(); break;
  6088. case 8: // D8 - Read/Write PINDA
  6089. dcode_8(); break;
  6090. case 9: // D9 - Read/Write ADC
  6091. dcode_9(); break;
  6092. case 10: // D10 - XYZ calibration = OK
  6093. dcode_10(); break;
  6094. #ifdef TMC2130
  6095. case 2130: // D9125 - TMC2130
  6096. dcode_2130(); break;
  6097. #endif //TMC2130
  6098. #ifdef FILAMENT_SENSOR
  6099. case 9125: // D9125 - FILAMENT_SENSOR
  6100. dcode_9125(); break;
  6101. #endif //FILAMENT_SENSOR
  6102. #endif //DEBUG_DCODES
  6103. }
  6104. }
  6105. else
  6106. {
  6107. SERIAL_ECHO_START;
  6108. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6109. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6110. SERIAL_ECHOLNPGM("\"(2)");
  6111. }
  6112. KEEPALIVE_STATE(NOT_BUSY);
  6113. ClearToSend();
  6114. }
  6115. void FlushSerialRequestResend()
  6116. {
  6117. //char cmdbuffer[bufindr][100]="Resend:";
  6118. MYSERIAL.flush();
  6119. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6120. }
  6121. // Confirm the execution of a command, if sent from a serial line.
  6122. // Execution of a command from a SD card will not be confirmed.
  6123. void ClearToSend()
  6124. {
  6125. previous_millis_cmd = millis();
  6126. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6127. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6128. }
  6129. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6130. void update_currents() {
  6131. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6132. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6133. float tmp_motor[3];
  6134. //SERIAL_ECHOLNPGM("Currents updated: ");
  6135. if (destination[Z_AXIS] < Z_SILENT) {
  6136. //SERIAL_ECHOLNPGM("LOW");
  6137. for (uint8_t i = 0; i < 3; i++) {
  6138. st_current_set(i, current_low[i]);
  6139. /*MYSERIAL.print(int(i));
  6140. SERIAL_ECHOPGM(": ");
  6141. MYSERIAL.println(current_low[i]);*/
  6142. }
  6143. }
  6144. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6145. //SERIAL_ECHOLNPGM("HIGH");
  6146. for (uint8_t i = 0; i < 3; i++) {
  6147. st_current_set(i, current_high[i]);
  6148. /*MYSERIAL.print(int(i));
  6149. SERIAL_ECHOPGM(": ");
  6150. MYSERIAL.println(current_high[i]);*/
  6151. }
  6152. }
  6153. else {
  6154. for (uint8_t i = 0; i < 3; i++) {
  6155. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6156. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6157. st_current_set(i, tmp_motor[i]);
  6158. /*MYSERIAL.print(int(i));
  6159. SERIAL_ECHOPGM(": ");
  6160. MYSERIAL.println(tmp_motor[i]);*/
  6161. }
  6162. }
  6163. }
  6164. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6165. void get_coordinates()
  6166. {
  6167. bool seen[4]={false,false,false,false};
  6168. for(int8_t i=0; i < NUM_AXIS; i++) {
  6169. if(code_seen(axis_codes[i]))
  6170. {
  6171. bool relative = axis_relative_modes[i] || relative_mode;
  6172. destination[i] = (float)code_value();
  6173. if (i == E_AXIS) {
  6174. float emult = extruder_multiplier[active_extruder];
  6175. if (emult != 1.) {
  6176. if (! relative) {
  6177. destination[i] -= current_position[i];
  6178. relative = true;
  6179. }
  6180. destination[i] *= emult;
  6181. }
  6182. }
  6183. if (relative)
  6184. destination[i] += current_position[i];
  6185. seen[i]=true;
  6186. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6187. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6188. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6189. }
  6190. else destination[i] = current_position[i]; //Are these else lines really needed?
  6191. }
  6192. if(code_seen('F')) {
  6193. next_feedrate = code_value();
  6194. #ifdef MAX_SILENT_FEEDRATE
  6195. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6196. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6197. #endif //MAX_SILENT_FEEDRATE
  6198. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6199. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6200. {
  6201. // float e_max_speed =
  6202. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6203. }
  6204. }
  6205. }
  6206. void get_arc_coordinates()
  6207. {
  6208. #ifdef SF_ARC_FIX
  6209. bool relative_mode_backup = relative_mode;
  6210. relative_mode = true;
  6211. #endif
  6212. get_coordinates();
  6213. #ifdef SF_ARC_FIX
  6214. relative_mode=relative_mode_backup;
  6215. #endif
  6216. if(code_seen('I')) {
  6217. offset[0] = code_value();
  6218. }
  6219. else {
  6220. offset[0] = 0.0;
  6221. }
  6222. if(code_seen('J')) {
  6223. offset[1] = code_value();
  6224. }
  6225. else {
  6226. offset[1] = 0.0;
  6227. }
  6228. }
  6229. void clamp_to_software_endstops(float target[3])
  6230. {
  6231. #ifdef DEBUG_DISABLE_SWLIMITS
  6232. return;
  6233. #endif //DEBUG_DISABLE_SWLIMITS
  6234. world2machine_clamp(target[0], target[1]);
  6235. // Clamp the Z coordinate.
  6236. if (min_software_endstops) {
  6237. float negative_z_offset = 0;
  6238. #ifdef ENABLE_AUTO_BED_LEVELING
  6239. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6240. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6241. #endif
  6242. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6243. }
  6244. if (max_software_endstops) {
  6245. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6246. }
  6247. }
  6248. #ifdef MESH_BED_LEVELING
  6249. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6250. float dx = x - current_position[X_AXIS];
  6251. float dy = y - current_position[Y_AXIS];
  6252. float dz = z - current_position[Z_AXIS];
  6253. int n_segments = 0;
  6254. if (mbl.active) {
  6255. float len = abs(dx) + abs(dy);
  6256. if (len > 0)
  6257. // Split to 3cm segments or shorter.
  6258. n_segments = int(ceil(len / 30.f));
  6259. }
  6260. if (n_segments > 1) {
  6261. float de = e - current_position[E_AXIS];
  6262. for (int i = 1; i < n_segments; ++ i) {
  6263. float t = float(i) / float(n_segments);
  6264. if (saved_printing || (mbl.active == false)) return;
  6265. plan_buffer_line(
  6266. current_position[X_AXIS] + t * dx,
  6267. current_position[Y_AXIS] + t * dy,
  6268. current_position[Z_AXIS] + t * dz,
  6269. current_position[E_AXIS] + t * de,
  6270. feed_rate, extruder);
  6271. }
  6272. }
  6273. // The rest of the path.
  6274. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6275. current_position[X_AXIS] = x;
  6276. current_position[Y_AXIS] = y;
  6277. current_position[Z_AXIS] = z;
  6278. current_position[E_AXIS] = e;
  6279. }
  6280. #endif // MESH_BED_LEVELING
  6281. void prepare_move()
  6282. {
  6283. clamp_to_software_endstops(destination);
  6284. previous_millis_cmd = millis();
  6285. // Do not use feedmultiply for E or Z only moves
  6286. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6287. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6288. }
  6289. else {
  6290. #ifdef MESH_BED_LEVELING
  6291. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6292. #else
  6293. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6294. #endif
  6295. }
  6296. for(int8_t i=0; i < NUM_AXIS; i++) {
  6297. current_position[i] = destination[i];
  6298. }
  6299. }
  6300. void prepare_arc_move(char isclockwise) {
  6301. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6302. // Trace the arc
  6303. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6304. // As far as the parser is concerned, the position is now == target. In reality the
  6305. // motion control system might still be processing the action and the real tool position
  6306. // in any intermediate location.
  6307. for(int8_t i=0; i < NUM_AXIS; i++) {
  6308. current_position[i] = destination[i];
  6309. }
  6310. previous_millis_cmd = millis();
  6311. }
  6312. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6313. #if defined(FAN_PIN)
  6314. #if CONTROLLERFAN_PIN == FAN_PIN
  6315. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6316. #endif
  6317. #endif
  6318. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6319. unsigned long lastMotorCheck = 0;
  6320. void controllerFan()
  6321. {
  6322. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6323. {
  6324. lastMotorCheck = millis();
  6325. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6326. #if EXTRUDERS > 2
  6327. || !READ(E2_ENABLE_PIN)
  6328. #endif
  6329. #if EXTRUDER > 1
  6330. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6331. || !READ(X2_ENABLE_PIN)
  6332. #endif
  6333. || !READ(E1_ENABLE_PIN)
  6334. #endif
  6335. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6336. {
  6337. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6338. }
  6339. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6340. {
  6341. digitalWrite(CONTROLLERFAN_PIN, 0);
  6342. analogWrite(CONTROLLERFAN_PIN, 0);
  6343. }
  6344. else
  6345. {
  6346. // allows digital or PWM fan output to be used (see M42 handling)
  6347. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6348. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6349. }
  6350. }
  6351. }
  6352. #endif
  6353. #ifdef TEMP_STAT_LEDS
  6354. static bool blue_led = false;
  6355. static bool red_led = false;
  6356. static uint32_t stat_update = 0;
  6357. void handle_status_leds(void) {
  6358. float max_temp = 0.0;
  6359. if(millis() > stat_update) {
  6360. stat_update += 500; // Update every 0.5s
  6361. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6362. max_temp = max(max_temp, degHotend(cur_extruder));
  6363. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6364. }
  6365. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6366. max_temp = max(max_temp, degTargetBed());
  6367. max_temp = max(max_temp, degBed());
  6368. #endif
  6369. if((max_temp > 55.0) && (red_led == false)) {
  6370. digitalWrite(STAT_LED_RED, 1);
  6371. digitalWrite(STAT_LED_BLUE, 0);
  6372. red_led = true;
  6373. blue_led = false;
  6374. }
  6375. if((max_temp < 54.0) && (blue_led == false)) {
  6376. digitalWrite(STAT_LED_RED, 0);
  6377. digitalWrite(STAT_LED_BLUE, 1);
  6378. red_led = false;
  6379. blue_led = true;
  6380. }
  6381. }
  6382. }
  6383. #endif
  6384. #ifdef SAFETYTIMER
  6385. /**
  6386. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6387. *
  6388. * Full screen blocking notification message is shown after heater turning off.
  6389. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6390. * damage print.
  6391. *
  6392. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6393. */
  6394. static void handleSafetyTimer()
  6395. {
  6396. #if (EXTRUDERS > 1)
  6397. #error Implemented only for one extruder.
  6398. #endif //(EXTRUDERS > 1)
  6399. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6400. {
  6401. safetyTimer.stop();
  6402. }
  6403. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6404. {
  6405. safetyTimer.start();
  6406. }
  6407. else if (safetyTimer.expired(safetytimer_inactive_time))
  6408. {
  6409. setTargetBed(0);
  6410. setAllTargetHotends(0);
  6411. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6412. }
  6413. }
  6414. #endif //SAFETYTIMER
  6415. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6416. {
  6417. #ifdef FILAMENT_SENSOR
  6418. if (mmu_enabled == false)
  6419. {
  6420. if (mcode_in_progress != 600) //M600 not in progress
  6421. {
  6422. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6423. {
  6424. if (fsensor_check_autoload())
  6425. {
  6426. fsensor_autoload_check_stop();
  6427. if (degHotend0() > EXTRUDE_MINTEMP)
  6428. {
  6429. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6430. tone(BEEPER, 1000);
  6431. delay_keep_alive(50);
  6432. noTone(BEEPER);
  6433. loading_flag = true;
  6434. enquecommand_front_P((PSTR("M701")));
  6435. }
  6436. else
  6437. {
  6438. lcd_update_enable(false);
  6439. lcd_clear();
  6440. lcd_set_cursor(0, 0);
  6441. lcd_puts_P(_T(MSG_ERROR));
  6442. lcd_set_cursor(0, 2);
  6443. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6444. delay(2000);
  6445. lcd_clear();
  6446. lcd_update_enable(true);
  6447. }
  6448. }
  6449. }
  6450. else
  6451. fsensor_autoload_check_stop();
  6452. }
  6453. }
  6454. #endif //FILAMENT_SENSOR
  6455. #ifdef SAFETYTIMER
  6456. handleSafetyTimer();
  6457. #endif //SAFETYTIMER
  6458. #if defined(KILL_PIN) && KILL_PIN > -1
  6459. static int killCount = 0; // make the inactivity button a bit less responsive
  6460. const int KILL_DELAY = 10000;
  6461. #endif
  6462. if(buflen < (BUFSIZE-1)){
  6463. get_command();
  6464. }
  6465. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6466. if(max_inactive_time)
  6467. kill(_n(""), 4);
  6468. if(stepper_inactive_time) {
  6469. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6470. {
  6471. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6472. disable_x();
  6473. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6474. disable_y();
  6475. disable_z();
  6476. disable_e0();
  6477. disable_e1();
  6478. disable_e2();
  6479. }
  6480. }
  6481. }
  6482. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6483. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6484. {
  6485. chdkActive = false;
  6486. WRITE(CHDK, LOW);
  6487. }
  6488. #endif
  6489. #if defined(KILL_PIN) && KILL_PIN > -1
  6490. // Check if the kill button was pressed and wait just in case it was an accidental
  6491. // key kill key press
  6492. // -------------------------------------------------------------------------------
  6493. if( 0 == READ(KILL_PIN) )
  6494. {
  6495. killCount++;
  6496. }
  6497. else if (killCount > 0)
  6498. {
  6499. killCount--;
  6500. }
  6501. // Exceeded threshold and we can confirm that it was not accidental
  6502. // KILL the machine
  6503. // ----------------------------------------------------------------
  6504. if ( killCount >= KILL_DELAY)
  6505. {
  6506. kill("", 5);
  6507. }
  6508. #endif
  6509. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6510. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6511. #endif
  6512. #ifdef EXTRUDER_RUNOUT_PREVENT
  6513. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6514. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6515. {
  6516. bool oldstatus=READ(E0_ENABLE_PIN);
  6517. enable_e0();
  6518. float oldepos=current_position[E_AXIS];
  6519. float oldedes=destination[E_AXIS];
  6520. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6521. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  6522. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  6523. current_position[E_AXIS]=oldepos;
  6524. destination[E_AXIS]=oldedes;
  6525. plan_set_e_position(oldepos);
  6526. previous_millis_cmd=millis();
  6527. st_synchronize();
  6528. WRITE(E0_ENABLE_PIN,oldstatus);
  6529. }
  6530. #endif
  6531. #ifdef TEMP_STAT_LEDS
  6532. handle_status_leds();
  6533. #endif
  6534. check_axes_activity();
  6535. mmu_loop();
  6536. }
  6537. void kill(const char *full_screen_message, unsigned char id)
  6538. {
  6539. printf_P(_N("KILL: %d\n"), id);
  6540. //return;
  6541. cli(); // Stop interrupts
  6542. disable_heater();
  6543. disable_x();
  6544. // SERIAL_ECHOLNPGM("kill - disable Y");
  6545. disable_y();
  6546. disable_z();
  6547. disable_e0();
  6548. disable_e1();
  6549. disable_e2();
  6550. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6551. pinMode(PS_ON_PIN,INPUT);
  6552. #endif
  6553. SERIAL_ERROR_START;
  6554. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6555. if (full_screen_message != NULL) {
  6556. SERIAL_ERRORLNRPGM(full_screen_message);
  6557. lcd_display_message_fullscreen_P(full_screen_message);
  6558. } else {
  6559. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6560. }
  6561. // FMC small patch to update the LCD before ending
  6562. sei(); // enable interrupts
  6563. for ( int i=5; i--; lcd_update(0))
  6564. {
  6565. delay(200);
  6566. }
  6567. cli(); // disable interrupts
  6568. suicide();
  6569. while(1)
  6570. {
  6571. #ifdef WATCHDOG
  6572. wdt_reset();
  6573. #endif //WATCHDOG
  6574. /* Intentionally left empty */
  6575. } // Wait for reset
  6576. }
  6577. void Stop()
  6578. {
  6579. disable_heater();
  6580. if(Stopped == false) {
  6581. Stopped = true;
  6582. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6583. SERIAL_ERROR_START;
  6584. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6585. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6586. }
  6587. }
  6588. bool IsStopped() { return Stopped; };
  6589. #ifdef FAST_PWM_FAN
  6590. void setPwmFrequency(uint8_t pin, int val)
  6591. {
  6592. val &= 0x07;
  6593. switch(digitalPinToTimer(pin))
  6594. {
  6595. #if defined(TCCR0A)
  6596. case TIMER0A:
  6597. case TIMER0B:
  6598. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6599. // TCCR0B |= val;
  6600. break;
  6601. #endif
  6602. #if defined(TCCR1A)
  6603. case TIMER1A:
  6604. case TIMER1B:
  6605. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6606. // TCCR1B |= val;
  6607. break;
  6608. #endif
  6609. #if defined(TCCR2)
  6610. case TIMER2:
  6611. case TIMER2:
  6612. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6613. TCCR2 |= val;
  6614. break;
  6615. #endif
  6616. #if defined(TCCR2A)
  6617. case TIMER2A:
  6618. case TIMER2B:
  6619. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6620. TCCR2B |= val;
  6621. break;
  6622. #endif
  6623. #if defined(TCCR3A)
  6624. case TIMER3A:
  6625. case TIMER3B:
  6626. case TIMER3C:
  6627. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6628. TCCR3B |= val;
  6629. break;
  6630. #endif
  6631. #if defined(TCCR4A)
  6632. case TIMER4A:
  6633. case TIMER4B:
  6634. case TIMER4C:
  6635. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6636. TCCR4B |= val;
  6637. break;
  6638. #endif
  6639. #if defined(TCCR5A)
  6640. case TIMER5A:
  6641. case TIMER5B:
  6642. case TIMER5C:
  6643. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6644. TCCR5B |= val;
  6645. break;
  6646. #endif
  6647. }
  6648. }
  6649. #endif //FAST_PWM_FAN
  6650. //! @brief Get and validate extruder number
  6651. //!
  6652. //! If it is not specified, active_extruder is returned in parameter extruder.
  6653. //! @param [in] code M code number
  6654. //! @param [out] extruder
  6655. //! @return error
  6656. //! @retval true Invalid extruder specified in T code
  6657. //! @retval false Valid extruder specified in T code, or not specifiead
  6658. bool setTargetedHotend(int code, uint8_t &extruder)
  6659. {
  6660. extruder = active_extruder;
  6661. if(code_seen('T')) {
  6662. extruder = code_value();
  6663. if(extruder >= EXTRUDERS) {
  6664. SERIAL_ECHO_START;
  6665. switch(code){
  6666. case 104:
  6667. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6668. break;
  6669. case 105:
  6670. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6671. break;
  6672. case 109:
  6673. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6674. break;
  6675. case 218:
  6676. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6677. break;
  6678. case 221:
  6679. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6680. break;
  6681. }
  6682. SERIAL_PROTOCOLLN((int)extruder);
  6683. return true;
  6684. }
  6685. }
  6686. return false;
  6687. }
  6688. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6689. {
  6690. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6691. {
  6692. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6693. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6694. }
  6695. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6696. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6697. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6698. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6699. total_filament_used = 0;
  6700. }
  6701. float calculate_extruder_multiplier(float diameter) {
  6702. float out = 1.f;
  6703. if (cs.volumetric_enabled && diameter > 0.f) {
  6704. float area = M_PI * diameter * diameter * 0.25;
  6705. out = 1.f / area;
  6706. }
  6707. if (extrudemultiply != 100)
  6708. out *= float(extrudemultiply) * 0.01f;
  6709. return out;
  6710. }
  6711. void calculate_extruder_multipliers() {
  6712. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  6713. #if EXTRUDERS > 1
  6714. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  6715. #if EXTRUDERS > 2
  6716. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  6717. #endif
  6718. #endif
  6719. }
  6720. void delay_keep_alive(unsigned int ms)
  6721. {
  6722. for (;;) {
  6723. manage_heater();
  6724. // Manage inactivity, but don't disable steppers on timeout.
  6725. manage_inactivity(true);
  6726. lcd_update(0);
  6727. if (ms == 0)
  6728. break;
  6729. else if (ms >= 50) {
  6730. delay(50);
  6731. ms -= 50;
  6732. } else {
  6733. delay(ms);
  6734. ms = 0;
  6735. }
  6736. }
  6737. }
  6738. static void wait_for_heater(long codenum, uint8_t extruder) {
  6739. #ifdef TEMP_RESIDENCY_TIME
  6740. long residencyStart;
  6741. residencyStart = -1;
  6742. /* continue to loop until we have reached the target temp
  6743. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6744. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6745. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6746. #else
  6747. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6748. #endif //TEMP_RESIDENCY_TIME
  6749. if ((millis() - codenum) > 1000UL)
  6750. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6751. if (!farm_mode) {
  6752. SERIAL_PROTOCOLPGM("T:");
  6753. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  6754. SERIAL_PROTOCOLPGM(" E:");
  6755. SERIAL_PROTOCOL((int)extruder);
  6756. #ifdef TEMP_RESIDENCY_TIME
  6757. SERIAL_PROTOCOLPGM(" W:");
  6758. if (residencyStart > -1)
  6759. {
  6760. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6761. SERIAL_PROTOCOLLN(codenum);
  6762. }
  6763. else
  6764. {
  6765. SERIAL_PROTOCOLLN("?");
  6766. }
  6767. }
  6768. #else
  6769. SERIAL_PROTOCOLLN("");
  6770. #endif
  6771. codenum = millis();
  6772. }
  6773. manage_heater();
  6774. manage_inactivity();
  6775. lcd_update(0);
  6776. #ifdef TEMP_RESIDENCY_TIME
  6777. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6778. or when current temp falls outside the hysteresis after target temp was reached */
  6779. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  6780. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  6781. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  6782. {
  6783. residencyStart = millis();
  6784. }
  6785. #endif //TEMP_RESIDENCY_TIME
  6786. }
  6787. }
  6788. void check_babystep()
  6789. {
  6790. int babystep_z;
  6791. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6792. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6793. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6794. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6795. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6796. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6797. lcd_update_enable(true);
  6798. }
  6799. }
  6800. #ifdef DIS
  6801. void d_setup()
  6802. {
  6803. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6804. pinMode(D_DATA, INPUT_PULLUP);
  6805. pinMode(D_REQUIRE, OUTPUT);
  6806. digitalWrite(D_REQUIRE, HIGH);
  6807. }
  6808. float d_ReadData()
  6809. {
  6810. int digit[13];
  6811. String mergeOutput;
  6812. float output;
  6813. digitalWrite(D_REQUIRE, HIGH);
  6814. for (int i = 0; i<13; i++)
  6815. {
  6816. for (int j = 0; j < 4; j++)
  6817. {
  6818. while (digitalRead(D_DATACLOCK) == LOW) {}
  6819. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6820. bitWrite(digit[i], j, digitalRead(D_DATA));
  6821. }
  6822. }
  6823. digitalWrite(D_REQUIRE, LOW);
  6824. mergeOutput = "";
  6825. output = 0;
  6826. for (int r = 5; r <= 10; r++) //Merge digits
  6827. {
  6828. mergeOutput += digit[r];
  6829. }
  6830. output = mergeOutput.toFloat();
  6831. if (digit[4] == 8) //Handle sign
  6832. {
  6833. output *= -1;
  6834. }
  6835. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6836. {
  6837. output /= 10;
  6838. }
  6839. return output;
  6840. }
  6841. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6842. int t1 = 0;
  6843. int t_delay = 0;
  6844. int digit[13];
  6845. int m;
  6846. char str[3];
  6847. //String mergeOutput;
  6848. char mergeOutput[15];
  6849. float output;
  6850. int mesh_point = 0; //index number of calibration point
  6851. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6852. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6853. float mesh_home_z_search = 4;
  6854. float row[x_points_num];
  6855. int ix = 0;
  6856. int iy = 0;
  6857. const char* filename_wldsd = "wldsd.txt";
  6858. char data_wldsd[70];
  6859. char numb_wldsd[10];
  6860. d_setup();
  6861. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6862. // We don't know where we are! HOME!
  6863. // Push the commands to the front of the message queue in the reverse order!
  6864. // There shall be always enough space reserved for these commands.
  6865. repeatcommand_front(); // repeat G80 with all its parameters
  6866. enquecommand_front_P((PSTR("G28 W0")));
  6867. enquecommand_front_P((PSTR("G1 Z5")));
  6868. return;
  6869. }
  6870. unsigned int custom_message_type_old = custom_message_type;
  6871. unsigned int custom_message_state_old = custom_message_state;
  6872. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  6873. custom_message_state = (x_points_num * y_points_num) + 10;
  6874. lcd_update(1);
  6875. mbl.reset();
  6876. babystep_undo();
  6877. card.openFile(filename_wldsd, false);
  6878. current_position[Z_AXIS] = mesh_home_z_search;
  6879. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6880. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6881. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6882. setup_for_endstop_move(false);
  6883. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6884. SERIAL_PROTOCOL(x_points_num);
  6885. SERIAL_PROTOCOLPGM(",");
  6886. SERIAL_PROTOCOL(y_points_num);
  6887. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6888. SERIAL_PROTOCOL(mesh_home_z_search);
  6889. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6890. SERIAL_PROTOCOL(x_dimension);
  6891. SERIAL_PROTOCOLPGM(",");
  6892. SERIAL_PROTOCOL(y_dimension);
  6893. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6894. while (mesh_point != x_points_num * y_points_num) {
  6895. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6896. iy = mesh_point / x_points_num;
  6897. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6898. float z0 = 0.f;
  6899. current_position[Z_AXIS] = mesh_home_z_search;
  6900. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6901. st_synchronize();
  6902. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6903. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6904. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6905. st_synchronize();
  6906. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6907. break;
  6908. card.closefile();
  6909. }
  6910. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6911. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6912. //strcat(data_wldsd, numb_wldsd);
  6913. //MYSERIAL.println(data_wldsd);
  6914. //delay(1000);
  6915. //delay(3000);
  6916. //t1 = millis();
  6917. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6918. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6919. memset(digit, 0, sizeof(digit));
  6920. //cli();
  6921. digitalWrite(D_REQUIRE, LOW);
  6922. for (int i = 0; i<13; i++)
  6923. {
  6924. //t1 = millis();
  6925. for (int j = 0; j < 4; j++)
  6926. {
  6927. while (digitalRead(D_DATACLOCK) == LOW) {}
  6928. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6929. bitWrite(digit[i], j, digitalRead(D_DATA));
  6930. }
  6931. //t_delay = (millis() - t1);
  6932. //SERIAL_PROTOCOLPGM(" ");
  6933. //SERIAL_PROTOCOL_F(t_delay, 5);
  6934. //SERIAL_PROTOCOLPGM(" ");
  6935. }
  6936. //sei();
  6937. digitalWrite(D_REQUIRE, HIGH);
  6938. mergeOutput[0] = '\0';
  6939. output = 0;
  6940. for (int r = 5; r <= 10; r++) //Merge digits
  6941. {
  6942. sprintf(str, "%d", digit[r]);
  6943. strcat(mergeOutput, str);
  6944. }
  6945. output = atof(mergeOutput);
  6946. if (digit[4] == 8) //Handle sign
  6947. {
  6948. output *= -1;
  6949. }
  6950. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6951. {
  6952. output *= 0.1;
  6953. }
  6954. //output = d_ReadData();
  6955. //row[ix] = current_position[Z_AXIS];
  6956. memset(data_wldsd, 0, sizeof(data_wldsd));
  6957. for (int i = 0; i <3; i++) {
  6958. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6959. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6960. strcat(data_wldsd, numb_wldsd);
  6961. strcat(data_wldsd, ";");
  6962. }
  6963. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6964. dtostrf(output, 8, 5, numb_wldsd);
  6965. strcat(data_wldsd, numb_wldsd);
  6966. //strcat(data_wldsd, ";");
  6967. card.write_command(data_wldsd);
  6968. //row[ix] = d_ReadData();
  6969. row[ix] = output; // current_position[Z_AXIS];
  6970. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6971. for (int i = 0; i < x_points_num; i++) {
  6972. SERIAL_PROTOCOLPGM(" ");
  6973. SERIAL_PROTOCOL_F(row[i], 5);
  6974. }
  6975. SERIAL_PROTOCOLPGM("\n");
  6976. }
  6977. custom_message_state--;
  6978. mesh_point++;
  6979. lcd_update(1);
  6980. }
  6981. card.closefile();
  6982. }
  6983. #endif
  6984. void temp_compensation_start() {
  6985. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  6986. custom_message_state = PINDA_HEAT_T + 1;
  6987. lcd_update(2);
  6988. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6989. current_position[E_AXIS] -= default_retraction;
  6990. }
  6991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6992. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6993. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6994. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6995. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6996. st_synchronize();
  6997. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6998. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6999. delay_keep_alive(1000);
  7000. custom_message_state = PINDA_HEAT_T - i;
  7001. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7002. else lcd_update(1);
  7003. }
  7004. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7005. custom_message_state = 0;
  7006. }
  7007. void temp_compensation_apply() {
  7008. int i_add;
  7009. int z_shift = 0;
  7010. float z_shift_mm;
  7011. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7012. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7013. i_add = (target_temperature_bed - 60) / 10;
  7014. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7015. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7016. }else {
  7017. //interpolation
  7018. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7019. }
  7020. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7021. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7022. st_synchronize();
  7023. plan_set_z_position(current_position[Z_AXIS]);
  7024. }
  7025. else {
  7026. //we have no temp compensation data
  7027. }
  7028. }
  7029. float temp_comp_interpolation(float inp_temperature) {
  7030. //cubic spline interpolation
  7031. int n, i, j;
  7032. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7033. int shift[10];
  7034. int temp_C[10];
  7035. n = 6; //number of measured points
  7036. shift[0] = 0;
  7037. for (i = 0; i < n; i++) {
  7038. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7039. temp_C[i] = 50 + i * 10; //temperature in C
  7040. #ifdef PINDA_THERMISTOR
  7041. temp_C[i] = 35 + i * 5; //temperature in C
  7042. #else
  7043. temp_C[i] = 50 + i * 10; //temperature in C
  7044. #endif
  7045. x[i] = (float)temp_C[i];
  7046. f[i] = (float)shift[i];
  7047. }
  7048. if (inp_temperature < x[0]) return 0;
  7049. for (i = n - 1; i>0; i--) {
  7050. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7051. h[i - 1] = x[i] - x[i - 1];
  7052. }
  7053. //*********** formation of h, s , f matrix **************
  7054. for (i = 1; i<n - 1; i++) {
  7055. m[i][i] = 2 * (h[i - 1] + h[i]);
  7056. if (i != 1) {
  7057. m[i][i - 1] = h[i - 1];
  7058. m[i - 1][i] = h[i - 1];
  7059. }
  7060. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7061. }
  7062. //*********** forward elimination **************
  7063. for (i = 1; i<n - 2; i++) {
  7064. temp = (m[i + 1][i] / m[i][i]);
  7065. for (j = 1; j <= n - 1; j++)
  7066. m[i + 1][j] -= temp*m[i][j];
  7067. }
  7068. //*********** backward substitution *********
  7069. for (i = n - 2; i>0; i--) {
  7070. sum = 0;
  7071. for (j = i; j <= n - 2; j++)
  7072. sum += m[i][j] * s[j];
  7073. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7074. }
  7075. for (i = 0; i<n - 1; i++)
  7076. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7077. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7078. b = s[i] / 2;
  7079. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7080. d = f[i];
  7081. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7082. }
  7083. return sum;
  7084. }
  7085. #ifdef PINDA_THERMISTOR
  7086. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7087. {
  7088. if (!temp_cal_active) return 0;
  7089. if (!calibration_status_pinda()) return 0;
  7090. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7091. }
  7092. #endif //PINDA_THERMISTOR
  7093. void long_pause() //long pause print
  7094. {
  7095. st_synchronize();
  7096. //save currently set parameters to global variables
  7097. saved_feedmultiply = feedmultiply;
  7098. HotendTempBckp = degTargetHotend(active_extruder);
  7099. fanSpeedBckp = fanSpeed;
  7100. start_pause_print = millis();
  7101. //save position
  7102. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7103. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7104. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7105. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7106. //retract
  7107. current_position[E_AXIS] -= default_retraction;
  7108. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7109. //lift z
  7110. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7111. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7112. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7113. //set nozzle target temperature to 0
  7114. setAllTargetHotends(0);
  7115. //Move XY to side
  7116. current_position[X_AXIS] = X_PAUSE_POS;
  7117. current_position[Y_AXIS] = Y_PAUSE_POS;
  7118. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7119. // Turn off the print fan
  7120. fanSpeed = 0;
  7121. st_synchronize();
  7122. }
  7123. void serialecho_temperatures() {
  7124. float tt = degHotend(active_extruder);
  7125. SERIAL_PROTOCOLPGM("T:");
  7126. SERIAL_PROTOCOL(tt);
  7127. SERIAL_PROTOCOLPGM(" E:");
  7128. SERIAL_PROTOCOL((int)active_extruder);
  7129. SERIAL_PROTOCOLPGM(" B:");
  7130. SERIAL_PROTOCOL_F(degBed(), 1);
  7131. SERIAL_PROTOCOLLN("");
  7132. }
  7133. extern uint32_t sdpos_atomic;
  7134. #ifdef UVLO_SUPPORT
  7135. void uvlo_()
  7136. {
  7137. unsigned long time_start = millis();
  7138. bool sd_print = card.sdprinting;
  7139. // Conserve power as soon as possible.
  7140. disable_x();
  7141. disable_y();
  7142. #ifdef TMC2130
  7143. tmc2130_set_current_h(Z_AXIS, 20);
  7144. tmc2130_set_current_r(Z_AXIS, 20);
  7145. tmc2130_set_current_h(E_AXIS, 20);
  7146. tmc2130_set_current_r(E_AXIS, 20);
  7147. #endif //TMC2130
  7148. // Indicate that the interrupt has been triggered.
  7149. // SERIAL_ECHOLNPGM("UVLO");
  7150. // Read out the current Z motor microstep counter. This will be later used
  7151. // for reaching the zero full step before powering off.
  7152. uint16_t z_microsteps = 0;
  7153. #ifdef TMC2130
  7154. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7155. #endif //TMC2130
  7156. // Calculate the file position, from which to resume this print.
  7157. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7158. {
  7159. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7160. sd_position -= sdlen_planner;
  7161. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7162. sd_position -= sdlen_cmdqueue;
  7163. if (sd_position < 0) sd_position = 0;
  7164. }
  7165. // Backup the feedrate in mm/min.
  7166. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7167. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7168. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7169. // are in action.
  7170. planner_abort_hard();
  7171. // Store the current extruder position.
  7172. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7173. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7174. // Clean the input command queue.
  7175. cmdqueue_reset();
  7176. card.sdprinting = false;
  7177. // card.closefile();
  7178. // Enable stepper driver interrupt to move Z axis.
  7179. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7180. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7181. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7182. sei();
  7183. plan_buffer_line(
  7184. current_position[X_AXIS],
  7185. current_position[Y_AXIS],
  7186. current_position[Z_AXIS],
  7187. current_position[E_AXIS] - default_retraction,
  7188. 95, active_extruder);
  7189. st_synchronize();
  7190. disable_e0();
  7191. plan_buffer_line(
  7192. current_position[X_AXIS],
  7193. current_position[Y_AXIS],
  7194. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7195. current_position[E_AXIS] - default_retraction,
  7196. 40, active_extruder);
  7197. st_synchronize();
  7198. disable_e0();
  7199. plan_buffer_line(
  7200. current_position[X_AXIS],
  7201. current_position[Y_AXIS],
  7202. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7203. current_position[E_AXIS] - default_retraction,
  7204. 40, active_extruder);
  7205. st_synchronize();
  7206. disable_e0();
  7207. disable_z();
  7208. // Move Z up to the next 0th full step.
  7209. // Write the file position.
  7210. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7211. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7212. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7213. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7214. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7215. // Scale the z value to 1u resolution.
  7216. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7217. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7218. }
  7219. // Read out the current Z motor microstep counter. This will be later used
  7220. // for reaching the zero full step before powering off.
  7221. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7222. // Store the current position.
  7223. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7224. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7225. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7226. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7227. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7228. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7229. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7230. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7231. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7232. #if EXTRUDERS > 1
  7233. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7234. #if EXTRUDERS > 2
  7235. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7236. #endif
  7237. #endif
  7238. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7239. // Finaly store the "power outage" flag.
  7240. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7241. st_synchronize();
  7242. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7243. disable_z();
  7244. // Increment power failure counter
  7245. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7246. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7247. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7248. #if 0
  7249. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7250. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7251. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7252. st_synchronize();
  7253. #endif
  7254. wdt_enable(WDTO_500MS);
  7255. WRITE(BEEPER,HIGH);
  7256. while(1)
  7257. ;
  7258. }
  7259. void uvlo_tiny()
  7260. {
  7261. uint16_t z_microsteps=0;
  7262. // Conserve power as soon as possible.
  7263. disable_x();
  7264. disable_y();
  7265. disable_e0();
  7266. #ifdef TMC2130
  7267. tmc2130_set_current_h(Z_AXIS, 20);
  7268. tmc2130_set_current_r(Z_AXIS, 20);
  7269. #endif //TMC2130
  7270. // Read out the current Z motor microstep counter
  7271. #ifdef TMC2130
  7272. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7273. #endif //TMC2130
  7274. planner_abort_hard();
  7275. sei();
  7276. plan_buffer_line(
  7277. current_position[X_AXIS],
  7278. current_position[Y_AXIS],
  7279. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7280. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/cs.axis_steps_per_unit[Z_AXIS],
  7281. current_position[E_AXIS],
  7282. 40, active_extruder);
  7283. st_synchronize();
  7284. disable_z();
  7285. // Finaly store the "power outage" flag.
  7286. //if(sd_print)
  7287. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7288. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7289. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7290. // Increment power failure counter
  7291. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7292. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7293. wdt_enable(WDTO_500MS);
  7294. WRITE(BEEPER,HIGH);
  7295. while(1)
  7296. ;
  7297. }
  7298. #endif //UVLO_SUPPORT
  7299. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7300. void setup_fan_interrupt() {
  7301. //INT7
  7302. DDRE &= ~(1 << 7); //input pin
  7303. PORTE &= ~(1 << 7); //no internal pull-up
  7304. //start with sensing rising edge
  7305. EICRB &= ~(1 << 6);
  7306. EICRB |= (1 << 7);
  7307. //enable INT7 interrupt
  7308. EIMSK |= (1 << 7);
  7309. }
  7310. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7311. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7312. ISR(INT7_vect) {
  7313. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7314. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7315. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7316. t_fan_rising_edge = millis_nc();
  7317. }
  7318. else { //interrupt was triggered by falling edge
  7319. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7320. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7321. }
  7322. }
  7323. EICRB ^= (1 << 6); //change edge
  7324. }
  7325. #endif
  7326. #ifdef UVLO_SUPPORT
  7327. void setup_uvlo_interrupt() {
  7328. DDRE &= ~(1 << 4); //input pin
  7329. PORTE &= ~(1 << 4); //no internal pull-up
  7330. //sensing falling edge
  7331. EICRB |= (1 << 0);
  7332. EICRB &= ~(1 << 1);
  7333. //enable INT4 interrupt
  7334. EIMSK |= (1 << 4);
  7335. }
  7336. ISR(INT4_vect) {
  7337. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7338. SERIAL_ECHOLNPGM("INT4");
  7339. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7340. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7341. }
  7342. void recover_print(uint8_t automatic) {
  7343. char cmd[30];
  7344. lcd_update_enable(true);
  7345. lcd_update(2);
  7346. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7347. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7348. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7349. // Lift the print head, so one may remove the excess priming material.
  7350. if(!bTiny&&(current_position[Z_AXIS]<25))
  7351. enquecommand_P(PSTR("G1 Z25 F800"));
  7352. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7353. enquecommand_P(PSTR("G28 X Y"));
  7354. // Set the target bed and nozzle temperatures and wait.
  7355. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7356. enquecommand(cmd);
  7357. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7358. enquecommand(cmd);
  7359. enquecommand_P(PSTR("M83")); //E axis relative mode
  7360. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7361. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7362. if(automatic == 0){
  7363. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7364. }
  7365. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7366. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7367. // Restart the print.
  7368. restore_print_from_eeprom();
  7369. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7370. }
  7371. void recover_machine_state_after_power_panic(bool bTiny)
  7372. {
  7373. char cmd[30];
  7374. // 1) Recover the logical cordinates at the time of the power panic.
  7375. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7376. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7377. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7378. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7379. // The current position after power panic is moved to the next closest 0th full step.
  7380. if(bTiny)
  7381. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7382. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7383. else
  7384. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7385. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7386. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7387. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7388. sprintf_P(cmd, PSTR("G92 E"));
  7389. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7390. enquecommand(cmd);
  7391. }
  7392. memcpy(destination, current_position, sizeof(destination));
  7393. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7394. print_world_coordinates();
  7395. // 2) Initialize the logical to physical coordinate system transformation.
  7396. world2machine_initialize();
  7397. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7398. mbl.active = false;
  7399. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7400. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7401. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7402. // Scale the z value to 10u resolution.
  7403. int16_t v;
  7404. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7405. if (v != 0)
  7406. mbl.active = true;
  7407. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7408. }
  7409. if (mbl.active)
  7410. mbl.upsample_3x3();
  7411. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7412. // print_mesh_bed_leveling_table();
  7413. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7414. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7415. babystep_load();
  7416. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7417. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7418. // 6) Power up the motors, mark their positions as known.
  7419. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7420. axis_known_position[X_AXIS] = true; enable_x();
  7421. axis_known_position[Y_AXIS] = true; enable_y();
  7422. axis_known_position[Z_AXIS] = true; enable_z();
  7423. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7424. print_physical_coordinates();
  7425. // 7) Recover the target temperatures.
  7426. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7427. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7428. // 8) Recover extruder multipilers
  7429. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7430. #if EXTRUDERS > 1
  7431. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7432. #if EXTRUDERS > 2
  7433. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7434. #endif
  7435. #endif
  7436. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7437. }
  7438. void restore_print_from_eeprom() {
  7439. int feedrate_rec;
  7440. uint8_t fan_speed_rec;
  7441. char cmd[30];
  7442. char filename[13];
  7443. uint8_t depth = 0;
  7444. char dir_name[9];
  7445. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7446. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7447. SERIAL_ECHOPGM("Feedrate:");
  7448. MYSERIAL.println(feedrate_rec);
  7449. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7450. MYSERIAL.println(int(depth));
  7451. for (int i = 0; i < depth; i++) {
  7452. for (int j = 0; j < 8; j++) {
  7453. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7454. }
  7455. dir_name[8] = '\0';
  7456. MYSERIAL.println(dir_name);
  7457. strcpy(dir_names[i], dir_name);
  7458. card.chdir(dir_name);
  7459. }
  7460. for (int i = 0; i < 8; i++) {
  7461. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7462. }
  7463. filename[8] = '\0';
  7464. MYSERIAL.print(filename);
  7465. strcat_P(filename, PSTR(".gco"));
  7466. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7467. enquecommand(cmd);
  7468. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7469. SERIAL_ECHOPGM("Position read from eeprom:");
  7470. MYSERIAL.println(position);
  7471. // E axis relative mode.
  7472. enquecommand_P(PSTR("M83"));
  7473. // Move to the XY print position in logical coordinates, where the print has been killed.
  7474. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7475. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7476. strcat_P(cmd, PSTR(" F2000"));
  7477. enquecommand(cmd);
  7478. // Move the Z axis down to the print, in logical coordinates.
  7479. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7480. enquecommand(cmd);
  7481. // Unretract.
  7482. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7483. // Set the feedrate saved at the power panic.
  7484. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7485. enquecommand(cmd);
  7486. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7487. {
  7488. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7489. }
  7490. // Set the fan speed saved at the power panic.
  7491. strcpy_P(cmd, PSTR("M106 S"));
  7492. strcat(cmd, itostr3(int(fan_speed_rec)));
  7493. enquecommand(cmd);
  7494. // Set a position in the file.
  7495. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7496. enquecommand(cmd);
  7497. enquecommand_P(PSTR("G4 S0"));
  7498. enquecommand_P(PSTR("PRUSA uvlo"));
  7499. }
  7500. #endif //UVLO_SUPPORT
  7501. ////////////////////////////////////////////////////////////////////////////////
  7502. // save/restore printing
  7503. void stop_and_save_print_to_ram(float z_move, float e_move)
  7504. {
  7505. if (saved_printing) return;
  7506. #if 0
  7507. unsigned char nplanner_blocks;
  7508. #endif
  7509. unsigned char nlines;
  7510. uint16_t sdlen_planner;
  7511. uint16_t sdlen_cmdqueue;
  7512. cli();
  7513. if (card.sdprinting) {
  7514. #if 0
  7515. nplanner_blocks = number_of_blocks();
  7516. #endif
  7517. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7518. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7519. saved_sdpos -= sdlen_planner;
  7520. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7521. saved_sdpos -= sdlen_cmdqueue;
  7522. saved_printing_type = PRINTING_TYPE_SD;
  7523. }
  7524. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7525. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7526. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7527. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7528. saved_sdpos -= nlines;
  7529. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7530. saved_printing_type = PRINTING_TYPE_USB;
  7531. }
  7532. else {
  7533. //not sd printing nor usb printing
  7534. }
  7535. #if 0
  7536. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7537. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7538. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7539. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7540. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7541. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7542. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7543. {
  7544. card.setIndex(saved_sdpos);
  7545. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7546. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7547. MYSERIAL.print(char(card.get()));
  7548. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7549. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7550. MYSERIAL.print(char(card.get()));
  7551. SERIAL_ECHOLNPGM("End of command buffer");
  7552. }
  7553. {
  7554. // Print the content of the planner buffer, line by line:
  7555. card.setIndex(saved_sdpos);
  7556. int8_t iline = 0;
  7557. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7558. SERIAL_ECHOPGM("Planner line (from file): ");
  7559. MYSERIAL.print(int(iline), DEC);
  7560. SERIAL_ECHOPGM(", length: ");
  7561. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7562. SERIAL_ECHOPGM(", steps: (");
  7563. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7564. SERIAL_ECHOPGM(",");
  7565. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7566. SERIAL_ECHOPGM(",");
  7567. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7568. SERIAL_ECHOPGM(",");
  7569. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7570. SERIAL_ECHOPGM("), events: ");
  7571. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7572. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7573. MYSERIAL.print(char(card.get()));
  7574. }
  7575. }
  7576. {
  7577. // Print the content of the command buffer, line by line:
  7578. int8_t iline = 0;
  7579. union {
  7580. struct {
  7581. char lo;
  7582. char hi;
  7583. } lohi;
  7584. uint16_t value;
  7585. } sdlen_single;
  7586. int _bufindr = bufindr;
  7587. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7588. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7589. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7590. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7591. }
  7592. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7593. MYSERIAL.print(int(iline), DEC);
  7594. SERIAL_ECHOPGM(", type: ");
  7595. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7596. SERIAL_ECHOPGM(", len: ");
  7597. MYSERIAL.println(sdlen_single.value, DEC);
  7598. // Print the content of the buffer line.
  7599. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7600. SERIAL_ECHOPGM("Buffer line (from file): ");
  7601. MYSERIAL.println(int(iline), DEC);
  7602. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7603. MYSERIAL.print(char(card.get()));
  7604. if (-- _buflen == 0)
  7605. break;
  7606. // First skip the current command ID and iterate up to the end of the string.
  7607. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7608. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7609. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7610. // If the end of the buffer was empty,
  7611. if (_bufindr == sizeof(cmdbuffer)) {
  7612. // skip to the start and find the nonzero command.
  7613. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7614. }
  7615. }
  7616. }
  7617. #endif
  7618. #if 0
  7619. saved_feedrate2 = feedrate; //save feedrate
  7620. #else
  7621. // Try to deduce the feedrate from the first block of the planner.
  7622. // Speed is in mm/min.
  7623. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7624. #endif
  7625. planner_abort_hard(); //abort printing
  7626. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7627. saved_active_extruder = active_extruder; //save active_extruder
  7628. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7629. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7630. cmdqueue_reset(); //empty cmdqueue
  7631. card.sdprinting = false;
  7632. // card.closefile();
  7633. saved_printing = true;
  7634. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7635. st_reset_timer();
  7636. sei();
  7637. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7638. #if 1
  7639. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7640. char buf[48];
  7641. // First unretract (relative extrusion)
  7642. if(!saved_extruder_relative_mode){
  7643. strcpy_P(buf, PSTR("M83"));
  7644. enquecommand(buf, false);
  7645. }
  7646. //retract 45mm/s
  7647. strcpy_P(buf, PSTR("G1 E"));
  7648. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7649. strcat_P(buf, PSTR(" F"));
  7650. dtostrf(2700, 8, 3, buf + strlen(buf));
  7651. enquecommand(buf, false);
  7652. // Then lift Z axis
  7653. strcpy_P(buf, PSTR("G1 Z"));
  7654. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7655. strcat_P(buf, PSTR(" F"));
  7656. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7657. // At this point the command queue is empty.
  7658. enquecommand(buf, false);
  7659. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7660. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7661. repeatcommand_front();
  7662. #else
  7663. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7664. st_synchronize(); //wait moving
  7665. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7666. memcpy(destination, current_position, sizeof(destination));
  7667. #endif
  7668. }
  7669. }
  7670. void restore_print_from_ram_and_continue(float e_move)
  7671. {
  7672. if (!saved_printing) return;
  7673. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7674. // current_position[axis] = st_get_position_mm(axis);
  7675. active_extruder = saved_active_extruder; //restore active_extruder
  7676. feedrate = saved_feedrate2; //restore feedrate
  7677. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7678. float e = saved_pos[E_AXIS] - e_move;
  7679. plan_set_e_position(e);
  7680. //first move print head in XY to the saved position:
  7681. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7682. st_synchronize();
  7683. //then move Z
  7684. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7685. st_synchronize();
  7686. //and finaly unretract (35mm/s)
  7687. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7688. st_synchronize();
  7689. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7690. memcpy(destination, current_position, sizeof(destination));
  7691. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7692. card.setIndex(saved_sdpos);
  7693. sdpos_atomic = saved_sdpos;
  7694. card.sdprinting = true;
  7695. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7696. }
  7697. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7698. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7699. serial_count = 0;
  7700. FlushSerialRequestResend();
  7701. }
  7702. else {
  7703. //not sd printing nor usb printing
  7704. }
  7705. lcd_setstatuspgm(_T(WELCOME_MSG));
  7706. saved_printing = false;
  7707. }
  7708. void print_world_coordinates()
  7709. {
  7710. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7711. }
  7712. void print_physical_coordinates()
  7713. {
  7714. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7715. }
  7716. void print_mesh_bed_leveling_table()
  7717. {
  7718. SERIAL_ECHOPGM("mesh bed leveling: ");
  7719. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7720. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7721. MYSERIAL.print(mbl.z_values[y][x], 3);
  7722. SERIAL_ECHOPGM(" ");
  7723. }
  7724. SERIAL_ECHOLNPGM("");
  7725. }
  7726. uint16_t print_time_remaining() {
  7727. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7728. #ifdef TMC2130
  7729. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7730. else print_t = print_time_remaining_silent;
  7731. #else
  7732. print_t = print_time_remaining_normal;
  7733. #endif //TMC2130
  7734. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  7735. return print_t;
  7736. }
  7737. uint8_t calc_percent_done()
  7738. {
  7739. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7740. uint8_t percent_done = 0;
  7741. #ifdef TMC2130
  7742. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7743. percent_done = print_percent_done_normal;
  7744. }
  7745. else if (print_percent_done_silent <= 100) {
  7746. percent_done = print_percent_done_silent;
  7747. }
  7748. #else
  7749. if (print_percent_done_normal <= 100) {
  7750. percent_done = print_percent_done_normal;
  7751. }
  7752. #endif //TMC2130
  7753. else {
  7754. percent_done = card.percentDone();
  7755. }
  7756. return percent_done;
  7757. }
  7758. static void print_time_remaining_init()
  7759. {
  7760. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7761. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7762. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7763. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7764. }
  7765. void M600_check_state()
  7766. {
  7767. //Wait for user to check the state
  7768. lcd_change_fil_state = 0;
  7769. while (lcd_change_fil_state != 1){
  7770. lcd_change_fil_state = 0;
  7771. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7772. lcd_alright();
  7773. KEEPALIVE_STATE(IN_HANDLER);
  7774. switch(lcd_change_fil_state){
  7775. // Filament failed to load so load it again
  7776. case 2:
  7777. if (mmu_enabled)
  7778. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  7779. else
  7780. M600_load_filament_movements();
  7781. break;
  7782. // Filament loaded properly but color is not clear
  7783. case 3:
  7784. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  7786. lcd_loading_color();
  7787. break;
  7788. // Everything good
  7789. default:
  7790. lcd_change_success();
  7791. break;
  7792. }
  7793. }
  7794. }
  7795. void M600_wait_for_user() {
  7796. //Beep, manage nozzle heater and wait for user to start unload filament
  7797. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7798. int counterBeep = 0;
  7799. unsigned long waiting_start_time = millis();
  7800. uint8_t wait_for_user_state = 0;
  7801. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7802. bool bFirst=true;
  7803. while (!(wait_for_user_state == 0 && lcd_clicked())){
  7804. manage_heater();
  7805. manage_inactivity(true);
  7806. #if BEEPER > 0
  7807. if (counterBeep == 500) {
  7808. counterBeep = 0;
  7809. }
  7810. SET_OUTPUT(BEEPER);
  7811. if (counterBeep == 0) {
  7812. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  7813. {
  7814. bFirst=false;
  7815. WRITE(BEEPER, HIGH);
  7816. }
  7817. }
  7818. if (counterBeep == 20) {
  7819. WRITE(BEEPER, LOW);
  7820. }
  7821. counterBeep++;
  7822. #endif //BEEPER > 0
  7823. switch (wait_for_user_state) {
  7824. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  7825. delay_keep_alive(4);
  7826. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  7827. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  7828. wait_for_user_state = 1;
  7829. setTargetHotend(0, 0);
  7830. setTargetHotend(0, 1);
  7831. setTargetHotend(0, 2);
  7832. st_synchronize();
  7833. disable_e0();
  7834. disable_e1();
  7835. disable_e2();
  7836. }
  7837. break;
  7838. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  7839. delay_keep_alive(4);
  7840. if (lcd_clicked()) {
  7841. setTargetHotend(HotendTempBckp, active_extruder);
  7842. lcd_wait_for_heater();
  7843. wait_for_user_state = 2;
  7844. }
  7845. break;
  7846. case 2: //waiting for nozzle to reach target temperature
  7847. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  7848. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7849. waiting_start_time = millis();
  7850. wait_for_user_state = 0;
  7851. }
  7852. else {
  7853. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  7854. lcd_set_cursor(1, 4);
  7855. lcd_print(ftostr3(degHotend(active_extruder)));
  7856. }
  7857. break;
  7858. }
  7859. }
  7860. WRITE(BEEPER, LOW);
  7861. }
  7862. void M600_load_filament_movements()
  7863. {
  7864. #ifdef SNMM
  7865. display_loading();
  7866. do
  7867. {
  7868. current_position[E_AXIS] += 0.002;
  7869. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7870. delay_keep_alive(2);
  7871. }
  7872. while (!lcd_clicked());
  7873. st_synchronize();
  7874. current_position[E_AXIS] += bowden_length[mmu_extruder];
  7875. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  7876. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  7877. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  7878. current_position[E_AXIS] += 40;
  7879. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7880. current_position[E_AXIS] += 10;
  7881. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7882. #else
  7883. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  7884. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  7885. #endif
  7886. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7887. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  7888. lcd_loading_filament();
  7889. }
  7890. void M600_load_filament() {
  7891. //load filament for single material and SNMM
  7892. lcd_wait_interact();
  7893. //load_filament_time = millis();
  7894. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7895. #ifdef FILAMENT_SENSOR
  7896. fsensor_autoload_check_start();
  7897. #endif //FILAMENT_SENSOR
  7898. while(!lcd_clicked())
  7899. {
  7900. manage_heater();
  7901. manage_inactivity(true);
  7902. #ifdef FILAMENT_SENSOR
  7903. if (fsensor_check_autoload())
  7904. {
  7905. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7906. tone(BEEPER, 1000);
  7907. delay_keep_alive(50);
  7908. noTone(BEEPER);
  7909. break;
  7910. }
  7911. #endif //FILAMENT_SENSOR
  7912. }
  7913. #ifdef FILAMENT_SENSOR
  7914. fsensor_autoload_check_stop();
  7915. #endif //FILAMENT_SENSOR
  7916. KEEPALIVE_STATE(IN_HANDLER);
  7917. #ifdef FILAMENT_SENSOR
  7918. fsensor_oq_meassure_start(70);
  7919. #endif //FILAMENT_SENSOR
  7920. M600_load_filament_movements();
  7921. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7922. tone(BEEPER, 500);
  7923. delay_keep_alive(50);
  7924. noTone(BEEPER);
  7925. #ifdef FILAMENT_SENSOR
  7926. fsensor_oq_meassure_stop();
  7927. if (!fsensor_oq_result())
  7928. {
  7929. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  7930. lcd_update_enable(true);
  7931. lcd_update(2);
  7932. if (disable)
  7933. fsensor_disable();
  7934. }
  7935. #endif //FILAMENT_SENSOR
  7936. lcd_update_enable(false);
  7937. }
  7938. #define FIL_LOAD_LENGTH 60