Marlin_main.cpp 269 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. // M114 - Output current position to serial port
  148. // M115 - Capabilities string
  149. // M117 - display message
  150. // M119 - Output Endstop status to serial port
  151. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  152. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  153. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M140 - Set bed target temp
  156. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  160. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  164. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. // M206 - set additional homing offset
  166. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  168. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. // M220 S<factor in percent>- set speed factor override percentage
  171. // M221 S<factor in percent>- set extrude factor override percentage
  172. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  173. // M240 - Trigger a camera to take a photograph
  174. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  176. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. // M301 - Set PID parameters P I and D
  178. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. // M304 - Set bed PID parameters P I and D
  181. // M400 - Finish all moves
  182. // M401 - Lower z-probe if present
  183. // M402 - Raise z-probe if present
  184. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  185. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  186. // M406 - Turn off Filament Sensor extrusion control
  187. // M407 - Displays measured filament diameter
  188. // M500 - stores parameters in EEPROM
  189. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  190. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  191. // M503 - print the current settings (from memory not from EEPROM)
  192. // M509 - force language selection on next restart
  193. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  196. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  197. // M907 - Set digital trimpot motor current using axis codes.
  198. // M908 - Control digital trimpot directly.
  199. // M350 - Set microstepping mode.
  200. // M351 - Toggle MS1 MS2 pins directly.
  201. // M928 - Start SD logging (M928 filename.g) - ended by M29
  202. // M999 - Restart after being stopped by error
  203. //Stepper Movement Variables
  204. //===========================================================================
  205. //=============================imported variables============================
  206. //===========================================================================
  207. //===========================================================================
  208. //=============================public variables=============================
  209. //===========================================================================
  210. #ifdef SDSUPPORT
  211. CardReader card;
  212. #endif
  213. unsigned long PingTime = millis();
  214. union Data
  215. {
  216. byte b[2];
  217. int value;
  218. };
  219. float homing_feedrate[] = HOMING_FEEDRATE;
  220. // Currently only the extruder axis may be switched to a relative mode.
  221. // Other axes are always absolute or relative based on the common relative_mode flag.
  222. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  223. int feedmultiply=100; //100->1 200->2
  224. int saved_feedmultiply;
  225. int extrudemultiply=100; //100->1 200->2
  226. int extruder_multiply[EXTRUDERS] = {100
  227. #if EXTRUDERS > 1
  228. , 100
  229. #if EXTRUDERS > 2
  230. , 100
  231. #endif
  232. #endif
  233. };
  234. int bowden_length[4] = {385, 385, 385, 385};
  235. bool is_usb_printing = false;
  236. bool homing_flag = false;
  237. bool temp_cal_active = false;
  238. unsigned long kicktime = millis()+100000;
  239. unsigned int usb_printing_counter;
  240. int lcd_change_fil_state = 0;
  241. int feedmultiplyBckp = 100;
  242. float HotendTempBckp = 0;
  243. int fanSpeedBckp = 0;
  244. float pause_lastpos[4];
  245. unsigned long pause_time = 0;
  246. unsigned long start_pause_print = millis();
  247. unsigned long t_fan_rising_edge = millis();
  248. //unsigned long load_filament_time;
  249. bool mesh_bed_leveling_flag = false;
  250. bool mesh_bed_run_from_menu = false;
  251. unsigned char lang_selected = 0;
  252. int8_t FarmMode = 0;
  253. bool prusa_sd_card_upload = false;
  254. unsigned int status_number = 0;
  255. unsigned long total_filament_used;
  256. unsigned int heating_status;
  257. unsigned int heating_status_counter;
  258. bool custom_message;
  259. bool loading_flag = false;
  260. unsigned int custom_message_type;
  261. unsigned int custom_message_state;
  262. char snmm_filaments_used = 0;
  263. float distance_from_min[2];
  264. bool fan_state[2];
  265. int fan_edge_counter[2];
  266. int fan_speed[2];
  267. char dir_names[3][9];
  268. bool sortAlpha = false;
  269. bool volumetric_enabled = false;
  270. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  271. #if EXTRUDERS > 1
  272. , DEFAULT_NOMINAL_FILAMENT_DIA
  273. #if EXTRUDERS > 2
  274. , DEFAULT_NOMINAL_FILAMENT_DIA
  275. #endif
  276. #endif
  277. };
  278. float volumetric_multiplier[EXTRUDERS] = {1.0
  279. #if EXTRUDERS > 1
  280. , 1.0
  281. #if EXTRUDERS > 2
  282. , 1.0
  283. #endif
  284. #endif
  285. };
  286. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  287. float add_homing[3]={0,0,0};
  288. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  289. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  290. bool axis_known_position[3] = {false, false, false};
  291. float zprobe_zoffset;
  292. // Extruder offset
  293. #if EXTRUDERS > 1
  294. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  295. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  296. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  297. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  298. #endif
  299. };
  300. #endif
  301. uint8_t active_extruder = 0;
  302. int fanSpeed=0;
  303. #ifdef FWRETRACT
  304. bool autoretract_enabled=false;
  305. bool retracted[EXTRUDERS]={false
  306. #if EXTRUDERS > 1
  307. , false
  308. #if EXTRUDERS > 2
  309. , false
  310. #endif
  311. #endif
  312. };
  313. bool retracted_swap[EXTRUDERS]={false
  314. #if EXTRUDERS > 1
  315. , false
  316. #if EXTRUDERS > 2
  317. , false
  318. #endif
  319. #endif
  320. };
  321. float retract_length = RETRACT_LENGTH;
  322. float retract_length_swap = RETRACT_LENGTH_SWAP;
  323. float retract_feedrate = RETRACT_FEEDRATE;
  324. float retract_zlift = RETRACT_ZLIFT;
  325. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  326. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  327. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  328. #endif
  329. #ifdef ULTIPANEL
  330. #ifdef PS_DEFAULT_OFF
  331. bool powersupply = false;
  332. #else
  333. bool powersupply = true;
  334. #endif
  335. #endif
  336. bool cancel_heatup = false ;
  337. #ifdef HOST_KEEPALIVE_FEATURE
  338. int busy_state = NOT_BUSY;
  339. static long prev_busy_signal_ms = -1;
  340. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  341. #else
  342. #define host_keepalive();
  343. #define KEEPALIVE_STATE(n);
  344. #endif
  345. #ifdef FILAMENT_SENSOR
  346. //Variables for Filament Sensor input
  347. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  348. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  349. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  350. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  351. int delay_index1=0; //index into ring buffer
  352. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  353. float delay_dist=0; //delay distance counter
  354. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  355. #endif
  356. const char errormagic[] PROGMEM = "Error:";
  357. const char echomagic[] PROGMEM = "echo:";
  358. //===========================================================================
  359. //=============================Private Variables=============================
  360. //===========================================================================
  361. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  362. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  363. static float delta[3] = {0.0, 0.0, 0.0};
  364. // For tracing an arc
  365. static float offset[3] = {0.0, 0.0, 0.0};
  366. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  367. // Determines Absolute or Relative Coordinates.
  368. // Also there is bool axis_relative_modes[] per axis flag.
  369. static bool relative_mode = false;
  370. #ifndef _DISABLE_M42_M226
  371. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  372. #endif //_DISABLE_M42_M226
  373. //static float tt = 0;
  374. //static float bt = 0;
  375. //Inactivity shutdown variables
  376. static unsigned long previous_millis_cmd = 0;
  377. unsigned long max_inactive_time = 0;
  378. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  379. unsigned long starttime=0;
  380. unsigned long stoptime=0;
  381. unsigned long _usb_timer = 0;
  382. static uint8_t tmp_extruder;
  383. bool extruder_under_pressure = true;
  384. bool Stopped=false;
  385. #if NUM_SERVOS > 0
  386. Servo servos[NUM_SERVOS];
  387. #endif
  388. bool CooldownNoWait = true;
  389. bool target_direction;
  390. //Insert variables if CHDK is defined
  391. #ifdef CHDK
  392. unsigned long chdkHigh = 0;
  393. boolean chdkActive = false;
  394. #endif
  395. //===========================================================================
  396. //=============================Routines======================================
  397. //===========================================================================
  398. void get_arc_coordinates();
  399. bool setTargetedHotend(int code);
  400. void serial_echopair_P(const char *s_P, float v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. void serial_echopair_P(const char *s_P, double v)
  403. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  404. void serial_echopair_P(const char *s_P, unsigned long v)
  405. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  406. #ifdef SDSUPPORT
  407. #include "SdFatUtil.h"
  408. int freeMemory() { return SdFatUtil::FreeRam(); }
  409. #else
  410. extern "C" {
  411. extern unsigned int __bss_end;
  412. extern unsigned int __heap_start;
  413. extern void *__brkval;
  414. int freeMemory() {
  415. int free_memory;
  416. if ((int)__brkval == 0)
  417. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  418. else
  419. free_memory = ((int)&free_memory) - ((int)__brkval);
  420. return free_memory;
  421. }
  422. }
  423. #endif //!SDSUPPORT
  424. void setup_killpin()
  425. {
  426. #if defined(KILL_PIN) && KILL_PIN > -1
  427. SET_INPUT(KILL_PIN);
  428. WRITE(KILL_PIN,HIGH);
  429. #endif
  430. }
  431. // Set home pin
  432. void setup_homepin(void)
  433. {
  434. #if defined(HOME_PIN) && HOME_PIN > -1
  435. SET_INPUT(HOME_PIN);
  436. WRITE(HOME_PIN,HIGH);
  437. #endif
  438. }
  439. void setup_photpin()
  440. {
  441. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  442. SET_OUTPUT(PHOTOGRAPH_PIN);
  443. WRITE(PHOTOGRAPH_PIN, LOW);
  444. #endif
  445. }
  446. void setup_powerhold()
  447. {
  448. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  449. SET_OUTPUT(SUICIDE_PIN);
  450. WRITE(SUICIDE_PIN, HIGH);
  451. #endif
  452. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  453. SET_OUTPUT(PS_ON_PIN);
  454. #if defined(PS_DEFAULT_OFF)
  455. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  456. #else
  457. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  458. #endif
  459. #endif
  460. }
  461. void suicide()
  462. {
  463. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  464. SET_OUTPUT(SUICIDE_PIN);
  465. WRITE(SUICIDE_PIN, LOW);
  466. #endif
  467. }
  468. void servo_init()
  469. {
  470. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  471. servos[0].attach(SERVO0_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  474. servos[1].attach(SERVO1_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  477. servos[2].attach(SERVO2_PIN);
  478. #endif
  479. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  480. servos[3].attach(SERVO3_PIN);
  481. #endif
  482. #if (NUM_SERVOS >= 5)
  483. #error "TODO: enter initalisation code for more servos"
  484. #endif
  485. }
  486. static void lcd_language_menu();
  487. void stop_and_save_print_to_ram(float z_move, float e_move);
  488. void restore_print_from_ram_and_continue(float e_move);
  489. bool fans_check_enabled = true;
  490. bool filament_autoload_enabled = true;
  491. extern int8_t CrashDetectMenu;
  492. void crashdet_enable()
  493. {
  494. // MYSERIAL.println("crashdet_enable");
  495. tmc2130_sg_stop_on_crash = true;
  496. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  497. CrashDetectMenu = 1;
  498. }
  499. void crashdet_disable()
  500. {
  501. // MYSERIAL.println("crashdet_disable");
  502. tmc2130_sg_stop_on_crash = false;
  503. tmc2130_sg_crash = false;
  504. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  505. CrashDetectMenu = 0;
  506. }
  507. void crashdet_stop_and_save_print()
  508. {
  509. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  510. }
  511. void crashdet_restore_print_and_continue()
  512. {
  513. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  514. // babystep_apply();
  515. }
  516. void crashdet_stop_and_save_print2()
  517. {
  518. cli();
  519. planner_abort_hard(); //abort printing
  520. cmdqueue_reset(); //empty cmdqueue
  521. card.sdprinting = false;
  522. card.closefile();
  523. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  524. st_reset_timer();
  525. sei();
  526. }
  527. void crashdet_detected()
  528. {
  529. // printf("CRASH_DETECTED");
  530. /* while (!is_buffer_empty())
  531. {
  532. process_commands();
  533. cmdqueue_pop_front();
  534. }*/
  535. st_synchronize();
  536. lcd_update_enable(true);
  537. lcd_implementation_clear();
  538. lcd_update(2);
  539. // Increment crash counter
  540. uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
  541. crash_count++;
  542. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
  543. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  544. bool yesno = true;
  545. #else
  546. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  547. #endif
  548. lcd_update_enable(true);
  549. lcd_update(2);
  550. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  551. if (yesno)
  552. {
  553. enquecommand_P(PSTR("G28 X Y"));
  554. enquecommand_P(PSTR("CRASH_RECOVER"));
  555. }
  556. else
  557. {
  558. enquecommand_P(PSTR("CRASH_CANCEL"));
  559. }
  560. }
  561. void crashdet_recover()
  562. {
  563. crashdet_restore_print_and_continue();
  564. tmc2130_sg_stop_on_crash = true;
  565. }
  566. void crashdet_cancel()
  567. {
  568. card.sdprinting = false;
  569. card.closefile();
  570. tmc2130_sg_stop_on_crash = true;
  571. }
  572. #ifdef MESH_BED_LEVELING
  573. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  574. #endif
  575. // Factory reset function
  576. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  577. // Level input parameter sets depth of reset
  578. // Quiet parameter masks all waitings for user interact.
  579. int er_progress = 0;
  580. void factory_reset(char level, bool quiet)
  581. {
  582. lcd_implementation_clear();
  583. int cursor_pos = 0;
  584. switch (level) {
  585. // Level 0: Language reset
  586. case 0:
  587. WRITE(BEEPER, HIGH);
  588. _delay_ms(100);
  589. WRITE(BEEPER, LOW);
  590. lcd_force_language_selection();
  591. break;
  592. //Level 1: Reset statistics
  593. case 1:
  594. WRITE(BEEPER, HIGH);
  595. _delay_ms(100);
  596. WRITE(BEEPER, LOW);
  597. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  598. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  599. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  600. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT, 0);
  601. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  602. lcd_menu_statistics();
  603. break;
  604. // Level 2: Prepare for shipping
  605. case 2:
  606. //lcd_printPGM(PSTR("Factory RESET"));
  607. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  608. // Force language selection at the next boot up.
  609. lcd_force_language_selection();
  610. // Force the "Follow calibration flow" message at the next boot up.
  611. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  612. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  613. farm_no = 0;
  614. farm_mode == false;
  615. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  616. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  617. WRITE(BEEPER, HIGH);
  618. _delay_ms(100);
  619. WRITE(BEEPER, LOW);
  620. //_delay_ms(2000);
  621. break;
  622. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  623. case 3:
  624. lcd_printPGM(PSTR("Factory RESET"));
  625. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  626. WRITE(BEEPER, HIGH);
  627. _delay_ms(100);
  628. WRITE(BEEPER, LOW);
  629. er_progress = 0;
  630. lcd_print_at_PGM(3, 3, PSTR(" "));
  631. lcd_implementation_print_at(3, 3, er_progress);
  632. // Erase EEPROM
  633. for (int i = 0; i < 4096; i++) {
  634. eeprom_write_byte((uint8_t*)i, 0xFF);
  635. if (i % 41 == 0) {
  636. er_progress++;
  637. lcd_print_at_PGM(3, 3, PSTR(" "));
  638. lcd_implementation_print_at(3, 3, er_progress);
  639. lcd_printPGM(PSTR("%"));
  640. }
  641. }
  642. break;
  643. case 4:
  644. bowden_menu();
  645. break;
  646. default:
  647. break;
  648. }
  649. }
  650. #include "LiquidCrystal.h"
  651. extern LiquidCrystal lcd;
  652. FILE _lcdout = {0};
  653. int lcd_putchar(char c, FILE *stream)
  654. {
  655. lcd.write(c);
  656. return 0;
  657. }
  658. FILE _uartout = {0};
  659. int uart_putchar(char c, FILE *stream)
  660. {
  661. MYSERIAL.write(c);
  662. return 0;
  663. }
  664. void lcd_splash()
  665. {
  666. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  667. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  668. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  669. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  670. }
  671. void factory_reset()
  672. {
  673. KEEPALIVE_STATE(PAUSED_FOR_USER);
  674. if (!READ(BTN_ENC))
  675. {
  676. _delay_ms(1000);
  677. if (!READ(BTN_ENC))
  678. {
  679. lcd_implementation_clear();
  680. lcd_printPGM(PSTR("Factory RESET"));
  681. SET_OUTPUT(BEEPER);
  682. WRITE(BEEPER, HIGH);
  683. while (!READ(BTN_ENC));
  684. WRITE(BEEPER, LOW);
  685. _delay_ms(2000);
  686. char level = reset_menu();
  687. factory_reset(level, false);
  688. switch (level) {
  689. case 0: _delay_ms(0); break;
  690. case 1: _delay_ms(0); break;
  691. case 2: _delay_ms(0); break;
  692. case 3: _delay_ms(0); break;
  693. }
  694. // _delay_ms(100);
  695. /*
  696. #ifdef MESH_BED_LEVELING
  697. _delay_ms(2000);
  698. if (!READ(BTN_ENC))
  699. {
  700. WRITE(BEEPER, HIGH);
  701. _delay_ms(100);
  702. WRITE(BEEPER, LOW);
  703. _delay_ms(200);
  704. WRITE(BEEPER, HIGH);
  705. _delay_ms(100);
  706. WRITE(BEEPER, LOW);
  707. int _z = 0;
  708. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  709. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  710. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  711. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  712. }
  713. else
  714. {
  715. WRITE(BEEPER, HIGH);
  716. _delay_ms(100);
  717. WRITE(BEEPER, LOW);
  718. }
  719. #endif // mesh */
  720. }
  721. }
  722. else
  723. {
  724. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  725. }
  726. KEEPALIVE_STATE(IN_HANDLER);
  727. }
  728. void show_fw_version_warnings() {
  729. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  730. switch (FW_DEV_VERSION) {
  731. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  732. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  733. case(FW_VERSION_DEVEL):
  734. case(FW_VERSION_DEBUG):
  735. lcd_update_enable(false);
  736. lcd_implementation_clear();
  737. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  738. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  739. #else
  740. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  741. #endif
  742. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  743. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  744. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  745. lcd_wait_for_click();
  746. break;
  747. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  748. }
  749. lcd_update_enable(true);
  750. }
  751. // "Setup" function is called by the Arduino framework on startup.
  752. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  753. // are initialized by the main() routine provided by the Arduino framework.
  754. void setup()
  755. {
  756. lcd_init();
  757. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  758. lcd_splash();
  759. setup_killpin();
  760. setup_powerhold();
  761. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  762. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  763. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  764. if (farm_no == 0xFFFF) farm_no = 0;
  765. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  766. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  767. if (farm_mode)
  768. {
  769. prusa_statistics(8);
  770. selectedSerialPort = 1;
  771. }
  772. MYSERIAL.begin(BAUDRATE);
  773. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  774. stdout = uartout;
  775. SERIAL_PROTOCOLLNPGM("start");
  776. SERIAL_ECHO_START;
  777. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  778. #if 0
  779. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  780. for (int i = 0; i < 4096; ++i) {
  781. int b = eeprom_read_byte((unsigned char*)i);
  782. if (b != 255) {
  783. SERIAL_ECHO(i);
  784. SERIAL_ECHO(":");
  785. SERIAL_ECHO(b);
  786. SERIAL_ECHOLN("");
  787. }
  788. }
  789. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  790. #endif
  791. // Check startup - does nothing if bootloader sets MCUSR to 0
  792. byte mcu = MCUSR;
  793. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  794. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  795. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  796. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  797. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  798. if (mcu & 1) puts_P(MSG_POWERUP);
  799. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  800. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  801. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  802. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  803. MCUSR = 0;
  804. //SERIAL_ECHORPGM(MSG_MARLIN);
  805. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  806. #ifdef STRING_VERSION_CONFIG_H
  807. #ifdef STRING_CONFIG_H_AUTHOR
  808. SERIAL_ECHO_START;
  809. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  810. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  811. SERIAL_ECHORPGM(MSG_AUTHOR);
  812. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  813. SERIAL_ECHOPGM("Compiled: ");
  814. SERIAL_ECHOLNPGM(__DATE__);
  815. #endif
  816. #endif
  817. SERIAL_ECHO_START;
  818. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  819. SERIAL_ECHO(freeMemory());
  820. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  821. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  822. //lcd_update_enable(false); // why do we need this?? - andre
  823. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  824. Config_RetrieveSettings(EEPROM_OFFSET);
  825. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  826. tp_init(); // Initialize temperature loop
  827. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  828. plan_init(); // Initialize planner;
  829. watchdog_init();
  830. factory_reset();
  831. #ifdef TMC2130
  832. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  833. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  834. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  835. if (crashdet)
  836. {
  837. crashdet_enable();
  838. MYSERIAL.println("CrashDetect ENABLED!");
  839. }
  840. else
  841. {
  842. crashdet_disable();
  843. MYSERIAL.println("CrashDetect DISABLED");
  844. }
  845. #endif //TMC2130
  846. st_init(); // Initialize stepper, this enables interrupts!
  847. setup_photpin();
  848. servo_init();
  849. // Reset the machine correction matrix.
  850. // It does not make sense to load the correction matrix until the machine is homed.
  851. world2machine_reset();
  852. #ifdef PAT9125
  853. fsensor_init();
  854. #endif //PAT9125
  855. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  856. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  857. #endif
  858. #ifdef DIGIPOT_I2C
  859. digipot_i2c_init();
  860. #endif
  861. setup_homepin();
  862. if (1) {
  863. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  864. // try to run to zero phase before powering the Z motor.
  865. // Move in negative direction
  866. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  867. // Round the current micro-micro steps to micro steps.
  868. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  869. // Until the phase counter is reset to zero.
  870. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  871. delay(2);
  872. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  873. delay(2);
  874. }
  875. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  876. }
  877. #if defined(Z_AXIS_ALWAYS_ON)
  878. enable_z();
  879. #endif
  880. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  881. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  882. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  883. if (farm_no == 0xFFFF) farm_no = 0;
  884. if (farm_mode)
  885. {
  886. prusa_statistics(8);
  887. }
  888. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  889. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  890. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  891. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  892. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  893. // where all the EEPROM entries are set to 0x0ff.
  894. // Once a firmware boots up, it forces at least a language selection, which changes
  895. // EEPROM_LANG to number lower than 0x0ff.
  896. // 1) Set a high power mode.
  897. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  898. tmc2130_mode = TMC2130_MODE_NORMAL;
  899. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  900. }
  901. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  902. // but this times out if a blocking dialog is shown in setup().
  903. card.initsd();
  904. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff)
  905. eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  906. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT) == 0xff)
  907. eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT, 0);
  908. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff)
  909. eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  910. #ifdef SNMM
  911. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  912. int _z = BOWDEN_LENGTH;
  913. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  914. }
  915. #endif
  916. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  917. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  918. // is being written into the EEPROM, so the update procedure will be triggered only once.
  919. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  920. if (lang_selected >= LANG_NUM){
  921. lcd_mylang();
  922. }
  923. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  924. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  925. temp_cal_active = false;
  926. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  927. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  928. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  929. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  930. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  931. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  932. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  933. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  934. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  935. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  936. temp_cal_active = true;
  937. }
  938. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  939. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  940. }
  941. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  942. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  943. }
  944. check_babystep(); //checking if Z babystep is in allowed range
  945. setup_uvlo_interrupt();
  946. #ifndef DEBUG_DISABLE_FANCHECK
  947. setup_fan_interrupt();
  948. #endif //DEBUG_DISABLE_FANCHECK
  949. #ifndef DEBUG_DISABLE_FSENSORCHECK
  950. fsensor_setup_interrupt();
  951. #endif //DEBUG_DISABLE_FSENSORCHECK
  952. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  953. #ifndef DEBUG_DISABLE_STARTMSGS
  954. KEEPALIVE_STATE(PAUSED_FOR_USER);
  955. show_fw_version_warnings();
  956. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  957. lcd_wizard(0);
  958. }
  959. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  960. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  961. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  962. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  963. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  964. // Show the message.
  965. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  966. }
  967. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  968. // Show the message.
  969. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  970. lcd_update_enable(true);
  971. }
  972. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  973. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  974. lcd_update_enable(true);
  975. }
  976. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  977. // Show the message.
  978. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  979. }
  980. }
  981. KEEPALIVE_STATE(IN_PROCESS);
  982. #endif //DEBUG_DISABLE_STARTMSGS
  983. lcd_update_enable(true);
  984. lcd_implementation_clear();
  985. lcd_update(2);
  986. // Store the currently running firmware into an eeprom,
  987. // so the next time the firmware gets updated, it will know from which version it has been updated.
  988. update_current_firmware_version_to_eeprom();
  989. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  990. /*
  991. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  992. else {
  993. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  994. lcd_update_enable(true);
  995. lcd_update(2);
  996. lcd_setstatuspgm(WELCOME_MSG);
  997. }
  998. */
  999. manage_heater(); // Update temperatures
  1000. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1001. MYSERIAL.println("Power panic detected!");
  1002. MYSERIAL.print("Current bed temp:");
  1003. MYSERIAL.println(degBed());
  1004. MYSERIAL.print("Saved bed temp:");
  1005. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1006. #endif
  1007. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1008. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1009. MYSERIAL.println("Automatic recovery!");
  1010. #endif
  1011. recover_print(1);
  1012. }
  1013. else{
  1014. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1015. MYSERIAL.println("Normal recovery!");
  1016. #endif
  1017. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1018. else {
  1019. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1020. lcd_update_enable(true);
  1021. lcd_update(2);
  1022. lcd_setstatuspgm(WELCOME_MSG);
  1023. }
  1024. }
  1025. }
  1026. KEEPALIVE_STATE(NOT_BUSY);
  1027. wdt_enable(WDTO_4S);
  1028. }
  1029. #ifdef PAT9125
  1030. void fsensor_init() {
  1031. int pat9125 = pat9125_init();
  1032. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1033. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1034. if (!pat9125)
  1035. {
  1036. fsensor = 0; //disable sensor
  1037. fsensor_not_responding = true;
  1038. }
  1039. else {
  1040. fsensor_not_responding = false;
  1041. }
  1042. puts_P(PSTR("FSensor "));
  1043. if (fsensor)
  1044. {
  1045. puts_P(PSTR("ENABLED\n"));
  1046. fsensor_enable();
  1047. }
  1048. else
  1049. {
  1050. puts_P(PSTR("DISABLED\n"));
  1051. fsensor_disable();
  1052. }
  1053. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1054. filament_autoload_enabled = false;
  1055. fsensor_disable();
  1056. #endif //DEBUG_DISABLE_FSENSORCHECK
  1057. }
  1058. #endif //PAT9125
  1059. void trace();
  1060. #define CHUNK_SIZE 64 // bytes
  1061. #define SAFETY_MARGIN 1
  1062. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1063. int chunkHead = 0;
  1064. int serial_read_stream() {
  1065. setTargetHotend(0, 0);
  1066. setTargetBed(0);
  1067. lcd_implementation_clear();
  1068. lcd_printPGM(PSTR(" Upload in progress"));
  1069. // first wait for how many bytes we will receive
  1070. uint32_t bytesToReceive;
  1071. // receive the four bytes
  1072. char bytesToReceiveBuffer[4];
  1073. for (int i=0; i<4; i++) {
  1074. int data;
  1075. while ((data = MYSERIAL.read()) == -1) {};
  1076. bytesToReceiveBuffer[i] = data;
  1077. }
  1078. // make it a uint32
  1079. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1080. // we're ready, notify the sender
  1081. MYSERIAL.write('+');
  1082. // lock in the routine
  1083. uint32_t receivedBytes = 0;
  1084. while (prusa_sd_card_upload) {
  1085. int i;
  1086. for (i=0; i<CHUNK_SIZE; i++) {
  1087. int data;
  1088. // check if we're not done
  1089. if (receivedBytes == bytesToReceive) {
  1090. break;
  1091. }
  1092. // read the next byte
  1093. while ((data = MYSERIAL.read()) == -1) {};
  1094. receivedBytes++;
  1095. // save it to the chunk
  1096. chunk[i] = data;
  1097. }
  1098. // write the chunk to SD
  1099. card.write_command_no_newline(&chunk[0]);
  1100. // notify the sender we're ready for more data
  1101. MYSERIAL.write('+');
  1102. // for safety
  1103. manage_heater();
  1104. // check if we're done
  1105. if(receivedBytes == bytesToReceive) {
  1106. trace(); // beep
  1107. card.closefile();
  1108. prusa_sd_card_upload = false;
  1109. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1110. return 0;
  1111. }
  1112. }
  1113. }
  1114. #ifdef HOST_KEEPALIVE_FEATURE
  1115. /**
  1116. * Output a "busy" message at regular intervals
  1117. * while the machine is not accepting commands.
  1118. */
  1119. void host_keepalive() {
  1120. if (farm_mode) return;
  1121. long ms = millis();
  1122. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1123. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1124. switch (busy_state) {
  1125. case IN_HANDLER:
  1126. case IN_PROCESS:
  1127. SERIAL_ECHO_START;
  1128. SERIAL_ECHOLNPGM("busy: processing");
  1129. break;
  1130. case PAUSED_FOR_USER:
  1131. SERIAL_ECHO_START;
  1132. SERIAL_ECHOLNPGM("busy: paused for user");
  1133. break;
  1134. case PAUSED_FOR_INPUT:
  1135. SERIAL_ECHO_START;
  1136. SERIAL_ECHOLNPGM("busy: paused for input");
  1137. break;
  1138. default:
  1139. break;
  1140. }
  1141. }
  1142. prev_busy_signal_ms = ms;
  1143. }
  1144. #endif
  1145. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1146. // Before loop(), the setup() function is called by the main() routine.
  1147. void loop()
  1148. {
  1149. KEEPALIVE_STATE(NOT_BUSY);
  1150. bool stack_integrity = true;
  1151. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1152. {
  1153. is_usb_printing = true;
  1154. usb_printing_counter--;
  1155. _usb_timer = millis();
  1156. }
  1157. if (usb_printing_counter == 0)
  1158. {
  1159. is_usb_printing = false;
  1160. }
  1161. if (prusa_sd_card_upload)
  1162. {
  1163. //we read byte-by byte
  1164. serial_read_stream();
  1165. } else
  1166. {
  1167. get_command();
  1168. #ifdef SDSUPPORT
  1169. card.checkautostart(false);
  1170. #endif
  1171. if(buflen)
  1172. {
  1173. cmdbuffer_front_already_processed = false;
  1174. #ifdef SDSUPPORT
  1175. if(card.saving)
  1176. {
  1177. // Saving a G-code file onto an SD-card is in progress.
  1178. // Saving starts with M28, saving until M29 is seen.
  1179. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1180. card.write_command(CMDBUFFER_CURRENT_STRING);
  1181. if(card.logging)
  1182. process_commands();
  1183. else
  1184. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1185. } else {
  1186. card.closefile();
  1187. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1188. }
  1189. } else {
  1190. process_commands();
  1191. }
  1192. #else
  1193. process_commands();
  1194. #endif //SDSUPPORT
  1195. if (! cmdbuffer_front_already_processed && buflen)
  1196. {
  1197. // ptr points to the start of the block currently being processed.
  1198. // The first character in the block is the block type.
  1199. char *ptr = cmdbuffer + bufindr;
  1200. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1201. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1202. union {
  1203. struct {
  1204. char lo;
  1205. char hi;
  1206. } lohi;
  1207. uint16_t value;
  1208. } sdlen;
  1209. sdlen.value = 0;
  1210. {
  1211. // This block locks the interrupts globally for 3.25 us,
  1212. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1213. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1214. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1215. cli();
  1216. // Reset the command to something, which will be ignored by the power panic routine,
  1217. // so this buffer length will not be counted twice.
  1218. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1219. // Extract the current buffer length.
  1220. sdlen.lohi.lo = *ptr ++;
  1221. sdlen.lohi.hi = *ptr;
  1222. // and pass it to the planner queue.
  1223. planner_add_sd_length(sdlen.value);
  1224. sei();
  1225. }
  1226. }
  1227. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1228. // this block's SD card length will not be counted twice as its command type has been replaced
  1229. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1230. cmdqueue_pop_front();
  1231. }
  1232. host_keepalive();
  1233. }
  1234. }
  1235. //check heater every n milliseconds
  1236. manage_heater();
  1237. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1238. checkHitEndstops();
  1239. lcd_update();
  1240. #ifdef PAT9125
  1241. fsensor_update();
  1242. #endif //PAT9125
  1243. #ifdef TMC2130
  1244. tmc2130_check_overtemp();
  1245. if (tmc2130_sg_crash)
  1246. {
  1247. tmc2130_sg_crash = false;
  1248. // crashdet_stop_and_save_print();
  1249. enquecommand_P((PSTR("CRASH_DETECTED")));
  1250. }
  1251. #endif //TMC2130
  1252. }
  1253. #define DEFINE_PGM_READ_ANY(type, reader) \
  1254. static inline type pgm_read_any(const type *p) \
  1255. { return pgm_read_##reader##_near(p); }
  1256. DEFINE_PGM_READ_ANY(float, float);
  1257. DEFINE_PGM_READ_ANY(signed char, byte);
  1258. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1259. static const PROGMEM type array##_P[3] = \
  1260. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1261. static inline type array(int axis) \
  1262. { return pgm_read_any(&array##_P[axis]); } \
  1263. type array##_ext(int axis) \
  1264. { return pgm_read_any(&array##_P[axis]); }
  1265. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1266. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1267. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1268. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1269. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1270. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1271. static void axis_is_at_home(int axis) {
  1272. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1273. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1274. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1275. }
  1276. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1277. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1278. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1279. saved_feedrate = feedrate;
  1280. saved_feedmultiply = feedmultiply;
  1281. feedmultiply = 100;
  1282. previous_millis_cmd = millis();
  1283. enable_endstops(enable_endstops_now);
  1284. }
  1285. static void clean_up_after_endstop_move() {
  1286. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1287. enable_endstops(false);
  1288. #endif
  1289. feedrate = saved_feedrate;
  1290. feedmultiply = saved_feedmultiply;
  1291. previous_millis_cmd = millis();
  1292. }
  1293. #ifdef ENABLE_AUTO_BED_LEVELING
  1294. #ifdef AUTO_BED_LEVELING_GRID
  1295. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1296. {
  1297. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1298. planeNormal.debug("planeNormal");
  1299. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1300. //bedLevel.debug("bedLevel");
  1301. //plan_bed_level_matrix.debug("bed level before");
  1302. //vector_3 uncorrected_position = plan_get_position_mm();
  1303. //uncorrected_position.debug("position before");
  1304. vector_3 corrected_position = plan_get_position();
  1305. // corrected_position.debug("position after");
  1306. current_position[X_AXIS] = corrected_position.x;
  1307. current_position[Y_AXIS] = corrected_position.y;
  1308. current_position[Z_AXIS] = corrected_position.z;
  1309. // put the bed at 0 so we don't go below it.
  1310. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1311. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1312. }
  1313. #else // not AUTO_BED_LEVELING_GRID
  1314. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1315. plan_bed_level_matrix.set_to_identity();
  1316. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1317. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1318. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1319. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1320. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1321. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1322. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1323. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1324. vector_3 corrected_position = plan_get_position();
  1325. current_position[X_AXIS] = corrected_position.x;
  1326. current_position[Y_AXIS] = corrected_position.y;
  1327. current_position[Z_AXIS] = corrected_position.z;
  1328. // put the bed at 0 so we don't go below it.
  1329. current_position[Z_AXIS] = zprobe_zoffset;
  1330. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1331. }
  1332. #endif // AUTO_BED_LEVELING_GRID
  1333. static void run_z_probe() {
  1334. plan_bed_level_matrix.set_to_identity();
  1335. feedrate = homing_feedrate[Z_AXIS];
  1336. // move down until you find the bed
  1337. float zPosition = -10;
  1338. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1339. st_synchronize();
  1340. // we have to let the planner know where we are right now as it is not where we said to go.
  1341. zPosition = st_get_position_mm(Z_AXIS);
  1342. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1343. // move up the retract distance
  1344. zPosition += home_retract_mm(Z_AXIS);
  1345. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1346. st_synchronize();
  1347. // move back down slowly to find bed
  1348. feedrate = homing_feedrate[Z_AXIS]/4;
  1349. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1350. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1351. st_synchronize();
  1352. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1353. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1354. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1355. }
  1356. static void do_blocking_move_to(float x, float y, float z) {
  1357. float oldFeedRate = feedrate;
  1358. feedrate = homing_feedrate[Z_AXIS];
  1359. current_position[Z_AXIS] = z;
  1360. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1361. st_synchronize();
  1362. feedrate = XY_TRAVEL_SPEED;
  1363. current_position[X_AXIS] = x;
  1364. current_position[Y_AXIS] = y;
  1365. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1366. st_synchronize();
  1367. feedrate = oldFeedRate;
  1368. }
  1369. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1370. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1371. }
  1372. /// Probe bed height at position (x,y), returns the measured z value
  1373. static float probe_pt(float x, float y, float z_before) {
  1374. // move to right place
  1375. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1376. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1377. run_z_probe();
  1378. float measured_z = current_position[Z_AXIS];
  1379. SERIAL_PROTOCOLRPGM(MSG_BED);
  1380. SERIAL_PROTOCOLPGM(" x: ");
  1381. SERIAL_PROTOCOL(x);
  1382. SERIAL_PROTOCOLPGM(" y: ");
  1383. SERIAL_PROTOCOL(y);
  1384. SERIAL_PROTOCOLPGM(" z: ");
  1385. SERIAL_PROTOCOL(measured_z);
  1386. SERIAL_PROTOCOLPGM("\n");
  1387. return measured_z;
  1388. }
  1389. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1390. #ifdef LIN_ADVANCE
  1391. /**
  1392. * M900: Set and/or Get advance K factor and WH/D ratio
  1393. *
  1394. * K<factor> Set advance K factor
  1395. * R<ratio> Set ratio directly (overrides WH/D)
  1396. * W<width> H<height> D<diam> Set ratio from WH/D
  1397. */
  1398. inline void gcode_M900() {
  1399. st_synchronize();
  1400. const float newK = code_seen('K') ? code_value_float() : -1;
  1401. if (newK >= 0) extruder_advance_k = newK;
  1402. float newR = code_seen('R') ? code_value_float() : -1;
  1403. if (newR < 0) {
  1404. const float newD = code_seen('D') ? code_value_float() : -1,
  1405. newW = code_seen('W') ? code_value_float() : -1,
  1406. newH = code_seen('H') ? code_value_float() : -1;
  1407. if (newD >= 0 && newW >= 0 && newH >= 0)
  1408. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1409. }
  1410. if (newR >= 0) advance_ed_ratio = newR;
  1411. SERIAL_ECHO_START;
  1412. SERIAL_ECHOPGM("Advance K=");
  1413. SERIAL_ECHOLN(extruder_advance_k);
  1414. SERIAL_ECHOPGM(" E/D=");
  1415. const float ratio = advance_ed_ratio;
  1416. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1417. }
  1418. #endif // LIN_ADVANCE
  1419. bool check_commands() {
  1420. bool end_command_found = false;
  1421. while (buflen)
  1422. {
  1423. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1424. if (!cmdbuffer_front_already_processed)
  1425. cmdqueue_pop_front();
  1426. cmdbuffer_front_already_processed = false;
  1427. }
  1428. return end_command_found;
  1429. }
  1430. #ifdef TMC2130
  1431. bool calibrate_z_auto()
  1432. {
  1433. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1434. lcd_implementation_clear();
  1435. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1436. bool endstops_enabled = enable_endstops(true);
  1437. int axis_up_dir = -home_dir(Z_AXIS);
  1438. tmc2130_home_enter(Z_AXIS_MASK);
  1439. current_position[Z_AXIS] = 0;
  1440. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1441. set_destination_to_current();
  1442. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1443. feedrate = homing_feedrate[Z_AXIS];
  1444. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1445. st_synchronize();
  1446. // current_position[axis] = 0;
  1447. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1448. tmc2130_home_exit();
  1449. enable_endstops(false);
  1450. current_position[Z_AXIS] = 0;
  1451. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1452. set_destination_to_current();
  1453. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1454. feedrate = homing_feedrate[Z_AXIS] / 2;
  1455. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1456. st_synchronize();
  1457. enable_endstops(endstops_enabled);
  1458. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1459. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1460. return true;
  1461. }
  1462. #endif //TMC2130
  1463. void homeaxis(int axis)
  1464. {
  1465. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1466. #define HOMEAXIS_DO(LETTER) \
  1467. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1468. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1469. {
  1470. int axis_home_dir = home_dir(axis);
  1471. feedrate = homing_feedrate[axis];
  1472. #ifdef TMC2130
  1473. tmc2130_home_enter(X_AXIS_MASK << axis);
  1474. #endif
  1475. // Move right a bit, so that the print head does not touch the left end position,
  1476. // and the following left movement has a chance to achieve the required velocity
  1477. // for the stall guard to work.
  1478. current_position[axis] = 0;
  1479. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1480. // destination[axis] = 11.f;
  1481. destination[axis] = 3.f;
  1482. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1483. st_synchronize();
  1484. // Move left away from the possible collision with the collision detection disabled.
  1485. endstops_hit_on_purpose();
  1486. enable_endstops(false);
  1487. current_position[axis] = 0;
  1488. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1489. destination[axis] = - 1.;
  1490. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1491. st_synchronize();
  1492. // Now continue to move up to the left end stop with the collision detection enabled.
  1493. enable_endstops(true);
  1494. destination[axis] = - 1.1 * max_length(axis);
  1495. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1496. st_synchronize();
  1497. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1498. endstops_hit_on_purpose();
  1499. enable_endstops(false);
  1500. current_position[axis] = 0;
  1501. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1502. destination[axis] = 10.f;
  1503. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1504. st_synchronize();
  1505. endstops_hit_on_purpose();
  1506. // Now move left up to the collision, this time with a repeatable velocity.
  1507. enable_endstops(true);
  1508. destination[axis] = - 15.f;
  1509. feedrate = homing_feedrate[axis]/2;
  1510. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1511. st_synchronize();
  1512. axis_is_at_home(axis);
  1513. axis_known_position[axis] = true;
  1514. #ifdef TMC2130
  1515. tmc2130_home_exit();
  1516. #endif
  1517. // Move the X carriage away from the collision.
  1518. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1519. endstops_hit_on_purpose();
  1520. enable_endstops(false);
  1521. {
  1522. // Two full periods (4 full steps).
  1523. float gap = 0.32f * 2.f;
  1524. current_position[axis] -= gap;
  1525. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1526. current_position[axis] += gap;
  1527. }
  1528. destination[axis] = current_position[axis];
  1529. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1530. st_synchronize();
  1531. feedrate = 0.0;
  1532. }
  1533. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1534. {
  1535. int axis_home_dir = home_dir(axis);
  1536. current_position[axis] = 0;
  1537. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1538. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1539. feedrate = homing_feedrate[axis];
  1540. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1541. st_synchronize();
  1542. current_position[axis] = 0;
  1543. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1544. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1545. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1546. st_synchronize();
  1547. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1548. feedrate = homing_feedrate[axis]/2 ;
  1549. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1550. st_synchronize();
  1551. axis_is_at_home(axis);
  1552. destination[axis] = current_position[axis];
  1553. feedrate = 0.0;
  1554. endstops_hit_on_purpose();
  1555. axis_known_position[axis] = true;
  1556. }
  1557. enable_endstops(endstops_enabled);
  1558. }
  1559. /**/
  1560. void home_xy()
  1561. {
  1562. set_destination_to_current();
  1563. homeaxis(X_AXIS);
  1564. homeaxis(Y_AXIS);
  1565. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1566. endstops_hit_on_purpose();
  1567. }
  1568. void refresh_cmd_timeout(void)
  1569. {
  1570. previous_millis_cmd = millis();
  1571. }
  1572. #ifdef FWRETRACT
  1573. void retract(bool retracting, bool swapretract = false) {
  1574. if(retracting && !retracted[active_extruder]) {
  1575. destination[X_AXIS]=current_position[X_AXIS];
  1576. destination[Y_AXIS]=current_position[Y_AXIS];
  1577. destination[Z_AXIS]=current_position[Z_AXIS];
  1578. destination[E_AXIS]=current_position[E_AXIS];
  1579. if (swapretract) {
  1580. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1581. } else {
  1582. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1583. }
  1584. plan_set_e_position(current_position[E_AXIS]);
  1585. float oldFeedrate = feedrate;
  1586. feedrate=retract_feedrate*60;
  1587. retracted[active_extruder]=true;
  1588. prepare_move();
  1589. current_position[Z_AXIS]-=retract_zlift;
  1590. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1591. prepare_move();
  1592. feedrate = oldFeedrate;
  1593. } else if(!retracting && retracted[active_extruder]) {
  1594. destination[X_AXIS]=current_position[X_AXIS];
  1595. destination[Y_AXIS]=current_position[Y_AXIS];
  1596. destination[Z_AXIS]=current_position[Z_AXIS];
  1597. destination[E_AXIS]=current_position[E_AXIS];
  1598. current_position[Z_AXIS]+=retract_zlift;
  1599. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1600. //prepare_move();
  1601. if (swapretract) {
  1602. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1603. } else {
  1604. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1605. }
  1606. plan_set_e_position(current_position[E_AXIS]);
  1607. float oldFeedrate = feedrate;
  1608. feedrate=retract_recover_feedrate*60;
  1609. retracted[active_extruder]=false;
  1610. prepare_move();
  1611. feedrate = oldFeedrate;
  1612. }
  1613. } //retract
  1614. #endif //FWRETRACT
  1615. void trace() {
  1616. tone(BEEPER, 440);
  1617. delay(25);
  1618. noTone(BEEPER);
  1619. delay(20);
  1620. }
  1621. /*
  1622. void ramming() {
  1623. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1624. if (current_temperature[0] < 230) {
  1625. //PLA
  1626. max_feedrate[E_AXIS] = 50;
  1627. //current_position[E_AXIS] -= 8;
  1628. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1629. //current_position[E_AXIS] += 8;
  1630. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1631. current_position[E_AXIS] += 5.4;
  1632. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1633. current_position[E_AXIS] += 3.2;
  1634. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1635. current_position[E_AXIS] += 3;
  1636. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1637. st_synchronize();
  1638. max_feedrate[E_AXIS] = 80;
  1639. current_position[E_AXIS] -= 82;
  1640. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1641. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1642. current_position[E_AXIS] -= 20;
  1643. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1644. current_position[E_AXIS] += 5;
  1645. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1646. current_position[E_AXIS] += 5;
  1647. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1648. current_position[E_AXIS] -= 10;
  1649. st_synchronize();
  1650. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1651. current_position[E_AXIS] += 10;
  1652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1653. current_position[E_AXIS] -= 10;
  1654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1655. current_position[E_AXIS] += 10;
  1656. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1657. current_position[E_AXIS] -= 10;
  1658. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1659. st_synchronize();
  1660. }
  1661. else {
  1662. //ABS
  1663. max_feedrate[E_AXIS] = 50;
  1664. //current_position[E_AXIS] -= 8;
  1665. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1666. //current_position[E_AXIS] += 8;
  1667. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1668. current_position[E_AXIS] += 3.1;
  1669. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1670. current_position[E_AXIS] += 3.1;
  1671. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1672. current_position[E_AXIS] += 4;
  1673. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1674. st_synchronize();
  1675. //current_position[X_AXIS] += 23; //delay
  1676. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1677. //current_position[X_AXIS] -= 23; //delay
  1678. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1679. delay(4700);
  1680. max_feedrate[E_AXIS] = 80;
  1681. current_position[E_AXIS] -= 92;
  1682. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1683. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1684. current_position[E_AXIS] -= 5;
  1685. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1686. current_position[E_AXIS] += 5;
  1687. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1688. current_position[E_AXIS] -= 5;
  1689. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1690. st_synchronize();
  1691. current_position[E_AXIS] += 5;
  1692. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1693. current_position[E_AXIS] -= 5;
  1694. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1695. current_position[E_AXIS] += 5;
  1696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1697. current_position[E_AXIS] -= 5;
  1698. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1699. st_synchronize();
  1700. }
  1701. }
  1702. */
  1703. #ifdef TMC2130
  1704. void force_high_power_mode(bool start_high_power_section) {
  1705. uint8_t silent;
  1706. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1707. if (silent == 1) {
  1708. //we are in silent mode, set to normal mode to enable crash detection
  1709. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1710. st_synchronize();
  1711. cli();
  1712. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1713. tmc2130_init();
  1714. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1715. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1716. st_reset_timer();
  1717. sei();
  1718. digipot_init();
  1719. }
  1720. }
  1721. #endif //TMC2130
  1722. bool gcode_M45(bool onlyZ)
  1723. {
  1724. bool final_result = false;
  1725. #ifdef TMC2130
  1726. FORCE_HIGH_POWER_START;
  1727. #endif // TMC2130
  1728. // Only Z calibration?
  1729. if (!onlyZ)
  1730. {
  1731. setTargetBed(0);
  1732. setTargetHotend(0, 0);
  1733. setTargetHotend(0, 1);
  1734. setTargetHotend(0, 2);
  1735. adjust_bed_reset(); //reset bed level correction
  1736. }
  1737. // Disable the default update procedure of the display. We will do a modal dialog.
  1738. lcd_update_enable(false);
  1739. // Let the planner use the uncorrected coordinates.
  1740. mbl.reset();
  1741. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1742. // the planner will not perform any adjustments in the XY plane.
  1743. // Wait for the motors to stop and update the current position with the absolute values.
  1744. world2machine_revert_to_uncorrected();
  1745. // Reset the baby step value applied without moving the axes.
  1746. babystep_reset();
  1747. // Mark all axes as in a need for homing.
  1748. memset(axis_known_position, 0, sizeof(axis_known_position));
  1749. // Home in the XY plane.
  1750. //set_destination_to_current();
  1751. setup_for_endstop_move();
  1752. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1753. home_xy();
  1754. enable_endstops(false);
  1755. current_position[X_AXIS] += 5;
  1756. current_position[Y_AXIS] += 5;
  1757. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1758. st_synchronize();
  1759. // Let the user move the Z axes up to the end stoppers.
  1760. #ifdef TMC2130
  1761. if (calibrate_z_auto())
  1762. {
  1763. #else //TMC2130
  1764. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1765. {
  1766. #endif //TMC2130
  1767. refresh_cmd_timeout();
  1768. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1769. //{
  1770. // lcd_wait_for_cool_down();
  1771. //}
  1772. if(!onlyZ)
  1773. {
  1774. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1775. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1776. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1777. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1778. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1779. KEEPALIVE_STATE(IN_HANDLER);
  1780. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1781. lcd_implementation_print_at(0, 2, 1);
  1782. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1783. }
  1784. // Move the print head close to the bed.
  1785. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1786. bool endstops_enabled = enable_endstops(true);
  1787. tmc2130_home_enter(Z_AXIS_MASK);
  1788. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1789. st_synchronize();
  1790. tmc2130_home_exit();
  1791. enable_endstops(endstops_enabled);
  1792. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1793. {
  1794. //#ifdef TMC2130
  1795. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  1796. //#endif
  1797. int8_t verbosity_level = 0;
  1798. if (code_seen('V'))
  1799. {
  1800. // Just 'V' without a number counts as V1.
  1801. char c = strchr_pointer[1];
  1802. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1803. }
  1804. if (onlyZ)
  1805. {
  1806. clean_up_after_endstop_move();
  1807. // Z only calibration.
  1808. // Load the machine correction matrix
  1809. world2machine_initialize();
  1810. // and correct the current_position to match the transformed coordinate system.
  1811. world2machine_update_current();
  1812. //FIXME
  1813. bool result = sample_mesh_and_store_reference();
  1814. if (result)
  1815. {
  1816. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1817. // Shipped, the nozzle height has been set already. The user can start printing now.
  1818. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1819. final_result = true;
  1820. // babystep_apply();
  1821. }
  1822. }
  1823. else
  1824. {
  1825. // Reset the baby step value and the baby step applied flag.
  1826. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  1827. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1828. // Complete XYZ calibration.
  1829. uint8_t point_too_far_mask = 0;
  1830. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1831. clean_up_after_endstop_move();
  1832. // Print head up.
  1833. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1834. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1835. st_synchronize();
  1836. if (result >= 0)
  1837. {
  1838. point_too_far_mask = 0;
  1839. // Second half: The fine adjustment.
  1840. // Let the planner use the uncorrected coordinates.
  1841. mbl.reset();
  1842. world2machine_reset();
  1843. // Home in the XY plane.
  1844. setup_for_endstop_move();
  1845. home_xy();
  1846. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1847. clean_up_after_endstop_move();
  1848. // Print head up.
  1849. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1850. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1851. st_synchronize();
  1852. // if (result >= 0) babystep_apply();
  1853. }
  1854. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1855. if (result >= 0)
  1856. {
  1857. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1858. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1859. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1860. final_result = true;
  1861. }
  1862. }
  1863. #ifdef TMC2130
  1864. tmc2130_home_exit();
  1865. #endif
  1866. }
  1867. else
  1868. {
  1869. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  1870. final_result = false;
  1871. }
  1872. }
  1873. else
  1874. {
  1875. // Timeouted.
  1876. }
  1877. lcd_update_enable(true);
  1878. #ifdef TMC2130
  1879. FORCE_HIGH_POWER_END;
  1880. #endif // TMC2130
  1881. return final_result;
  1882. }
  1883. void gcode_M701()
  1884. {
  1885. #ifdef SNMM
  1886. extr_adj(snmm_extruder);//loads current extruder
  1887. #else
  1888. enable_z();
  1889. custom_message = true;
  1890. custom_message_type = 2;
  1891. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1892. current_position[E_AXIS] += 70;
  1893. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1894. current_position[E_AXIS] += 25;
  1895. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1896. st_synchronize();
  1897. tone(BEEPER, 500);
  1898. delay_keep_alive(50);
  1899. noTone(BEEPER);
  1900. if (!farm_mode && loading_flag) {
  1901. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1902. while (!clean) {
  1903. lcd_update_enable(true);
  1904. lcd_update(2);
  1905. current_position[E_AXIS] += 25;
  1906. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1907. st_synchronize();
  1908. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1909. }
  1910. }
  1911. lcd_update_enable(true);
  1912. lcd_update(2);
  1913. lcd_setstatuspgm(WELCOME_MSG);
  1914. disable_z();
  1915. loading_flag = false;
  1916. custom_message = false;
  1917. custom_message_type = 0;
  1918. #endif
  1919. }
  1920. void process_commands()
  1921. {
  1922. #ifdef FILAMENT_RUNOUT_SUPPORT
  1923. SET_INPUT(FR_SENS);
  1924. #endif
  1925. #ifdef CMDBUFFER_DEBUG
  1926. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1927. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1928. SERIAL_ECHOLNPGM("");
  1929. SERIAL_ECHOPGM("In cmdqueue: ");
  1930. SERIAL_ECHO(buflen);
  1931. SERIAL_ECHOLNPGM("");
  1932. #endif /* CMDBUFFER_DEBUG */
  1933. unsigned long codenum; //throw away variable
  1934. char *starpos = NULL;
  1935. #ifdef ENABLE_AUTO_BED_LEVELING
  1936. float x_tmp, y_tmp, z_tmp, real_z;
  1937. #endif
  1938. // PRUSA GCODES
  1939. KEEPALIVE_STATE(IN_HANDLER);
  1940. #ifdef SNMM
  1941. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1942. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1943. int8_t SilentMode;
  1944. #endif
  1945. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1946. starpos = (strchr(strchr_pointer + 5, '*'));
  1947. if (starpos != NULL)
  1948. *(starpos) = '\0';
  1949. lcd_setstatus(strchr_pointer + 5);
  1950. }
  1951. else if(code_seen("CRASH_DETECTED"))
  1952. crashdet_detected();
  1953. else if(code_seen("CRASH_RECOVER"))
  1954. crashdet_recover();
  1955. else if(code_seen("CRASH_CANCEL"))
  1956. crashdet_cancel();
  1957. else if(code_seen("PRUSA")){
  1958. if (code_seen("Ping")) { //PRUSA Ping
  1959. if (farm_mode) {
  1960. PingTime = millis();
  1961. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1962. }
  1963. }
  1964. else if (code_seen("PRN")) {
  1965. MYSERIAL.println(status_number);
  1966. }else if (code_seen("FAN")) {
  1967. MYSERIAL.print("E0:");
  1968. MYSERIAL.print(60*fan_speed[0]);
  1969. MYSERIAL.println(" RPM");
  1970. MYSERIAL.print("PRN0:");
  1971. MYSERIAL.print(60*fan_speed[1]);
  1972. MYSERIAL.println(" RPM");
  1973. }else if (code_seen("fn")) {
  1974. if (farm_mode) {
  1975. MYSERIAL.println(farm_no);
  1976. }
  1977. else {
  1978. MYSERIAL.println("Not in farm mode.");
  1979. }
  1980. }else if (code_seen("fv")) {
  1981. // get file version
  1982. #ifdef SDSUPPORT
  1983. card.openFile(strchr_pointer + 3,true);
  1984. while (true) {
  1985. uint16_t readByte = card.get();
  1986. MYSERIAL.write(readByte);
  1987. if (readByte=='\n') {
  1988. break;
  1989. }
  1990. }
  1991. card.closefile();
  1992. #endif // SDSUPPORT
  1993. } else if (code_seen("M28")) {
  1994. trace();
  1995. prusa_sd_card_upload = true;
  1996. card.openFile(strchr_pointer+4,false);
  1997. } else if (code_seen("SN")) {
  1998. if (farm_mode) {
  1999. selectedSerialPort = 0;
  2000. MSerial.write(";S");
  2001. // S/N is:CZPX0917X003XC13518
  2002. int numbersRead = 0;
  2003. while (numbersRead < 19) {
  2004. while (MSerial.available() > 0) {
  2005. uint8_t serial_char = MSerial.read();
  2006. selectedSerialPort = 1;
  2007. MSerial.write(serial_char);
  2008. numbersRead++;
  2009. selectedSerialPort = 0;
  2010. }
  2011. }
  2012. selectedSerialPort = 1;
  2013. MSerial.write('\n');
  2014. /*for (int b = 0; b < 3; b++) {
  2015. tone(BEEPER, 110);
  2016. delay(50);
  2017. noTone(BEEPER);
  2018. delay(50);
  2019. }*/
  2020. } else {
  2021. MYSERIAL.println("Not in farm mode.");
  2022. }
  2023. } else if(code_seen("Fir")){
  2024. SERIAL_PROTOCOLLN(FW_VERSION);
  2025. } else if(code_seen("Rev")){
  2026. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2027. } else if(code_seen("Lang")) {
  2028. lcd_force_language_selection();
  2029. } else if(code_seen("Lz")) {
  2030. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2031. } else if (code_seen("SERIAL LOW")) {
  2032. MYSERIAL.println("SERIAL LOW");
  2033. MYSERIAL.begin(BAUDRATE);
  2034. return;
  2035. } else if (code_seen("SERIAL HIGH")) {
  2036. MYSERIAL.println("SERIAL HIGH");
  2037. MYSERIAL.begin(1152000);
  2038. return;
  2039. } else if(code_seen("Beat")) {
  2040. // Kick farm link timer
  2041. kicktime = millis();
  2042. } else if(code_seen("FR")) {
  2043. // Factory full reset
  2044. factory_reset(0,true);
  2045. }
  2046. //else if (code_seen('Cal')) {
  2047. // lcd_calibration();
  2048. // }
  2049. }
  2050. else if (code_seen('^')) {
  2051. // nothing, this is a version line
  2052. } else if(code_seen('G'))
  2053. {
  2054. switch((int)code_value())
  2055. {
  2056. case 0: // G0 -> G1
  2057. case 1: // G1
  2058. if(Stopped == false) {
  2059. #ifdef FILAMENT_RUNOUT_SUPPORT
  2060. if(READ(FR_SENS)){
  2061. feedmultiplyBckp=feedmultiply;
  2062. float target[4];
  2063. float lastpos[4];
  2064. target[X_AXIS]=current_position[X_AXIS];
  2065. target[Y_AXIS]=current_position[Y_AXIS];
  2066. target[Z_AXIS]=current_position[Z_AXIS];
  2067. target[E_AXIS]=current_position[E_AXIS];
  2068. lastpos[X_AXIS]=current_position[X_AXIS];
  2069. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2070. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2071. lastpos[E_AXIS]=current_position[E_AXIS];
  2072. //retract by E
  2073. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2074. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2075. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2076. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2077. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2078. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2079. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2080. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2081. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2082. //finish moves
  2083. st_synchronize();
  2084. //disable extruder steppers so filament can be removed
  2085. disable_e0();
  2086. disable_e1();
  2087. disable_e2();
  2088. delay(100);
  2089. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2090. uint8_t cnt=0;
  2091. int counterBeep = 0;
  2092. lcd_wait_interact();
  2093. while(!lcd_clicked()){
  2094. cnt++;
  2095. manage_heater();
  2096. manage_inactivity(true);
  2097. //lcd_update();
  2098. if(cnt==0)
  2099. {
  2100. #if BEEPER > 0
  2101. if (counterBeep== 500){
  2102. counterBeep = 0;
  2103. }
  2104. SET_OUTPUT(BEEPER);
  2105. if (counterBeep== 0){
  2106. WRITE(BEEPER,HIGH);
  2107. }
  2108. if (counterBeep== 20){
  2109. WRITE(BEEPER,LOW);
  2110. }
  2111. counterBeep++;
  2112. #else
  2113. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2114. lcd_buzz(1000/6,100);
  2115. #else
  2116. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2117. #endif
  2118. #endif
  2119. }
  2120. }
  2121. WRITE(BEEPER,LOW);
  2122. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2123. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2124. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2125. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2126. lcd_change_fil_state = 0;
  2127. lcd_loading_filament();
  2128. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2129. lcd_change_fil_state = 0;
  2130. lcd_alright();
  2131. switch(lcd_change_fil_state){
  2132. case 2:
  2133. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2134. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2135. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2136. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2137. lcd_loading_filament();
  2138. break;
  2139. case 3:
  2140. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2141. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2142. lcd_loading_color();
  2143. break;
  2144. default:
  2145. lcd_change_success();
  2146. break;
  2147. }
  2148. }
  2149. target[E_AXIS]+= 5;
  2150. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2151. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2152. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2153. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2154. //plan_set_e_position(current_position[E_AXIS]);
  2155. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2156. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2157. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2158. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2159. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2160. plan_set_e_position(lastpos[E_AXIS]);
  2161. feedmultiply=feedmultiplyBckp;
  2162. char cmd[9];
  2163. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2164. enquecommand(cmd);
  2165. }
  2166. #endif
  2167. get_coordinates(); // For X Y Z E F
  2168. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2169. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2170. }
  2171. #ifdef FWRETRACT
  2172. if(autoretract_enabled)
  2173. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2174. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2175. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2176. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2177. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2178. retract(!retracted);
  2179. return;
  2180. }
  2181. }
  2182. #endif //FWRETRACT
  2183. prepare_move();
  2184. //ClearToSend();
  2185. }
  2186. break;
  2187. case 2: // G2 - CW ARC
  2188. if(Stopped == false) {
  2189. get_arc_coordinates();
  2190. prepare_arc_move(true);
  2191. }
  2192. break;
  2193. case 3: // G3 - CCW ARC
  2194. if(Stopped == false) {
  2195. get_arc_coordinates();
  2196. prepare_arc_move(false);
  2197. }
  2198. break;
  2199. case 4: // G4 dwell
  2200. codenum = 0;
  2201. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2202. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2203. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2204. st_synchronize();
  2205. codenum += millis(); // keep track of when we started waiting
  2206. previous_millis_cmd = millis();
  2207. while(millis() < codenum) {
  2208. manage_heater();
  2209. manage_inactivity();
  2210. lcd_update();
  2211. }
  2212. break;
  2213. #ifdef FWRETRACT
  2214. case 10: // G10 retract
  2215. #if EXTRUDERS > 1
  2216. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2217. retract(true,retracted_swap[active_extruder]);
  2218. #else
  2219. retract(true);
  2220. #endif
  2221. break;
  2222. case 11: // G11 retract_recover
  2223. #if EXTRUDERS > 1
  2224. retract(false,retracted_swap[active_extruder]);
  2225. #else
  2226. retract(false);
  2227. #endif
  2228. break;
  2229. #endif //FWRETRACT
  2230. case 28: //G28 Home all Axis one at a time
  2231. {
  2232. st_synchronize();
  2233. #if 0
  2234. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2235. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2236. #endif
  2237. // Flag for the display update routine and to disable the print cancelation during homing.
  2238. homing_flag = true;
  2239. // Which axes should be homed?
  2240. bool home_x = code_seen(axis_codes[X_AXIS]);
  2241. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2242. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2243. // Either all X,Y,Z codes are present, or none of them.
  2244. bool home_all_axes = home_x == home_y && home_x == home_z;
  2245. if (home_all_axes)
  2246. // No X/Y/Z code provided means to home all axes.
  2247. home_x = home_y = home_z = true;
  2248. #ifdef ENABLE_AUTO_BED_LEVELING
  2249. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2250. #endif //ENABLE_AUTO_BED_LEVELING
  2251. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2252. // the planner will not perform any adjustments in the XY plane.
  2253. // Wait for the motors to stop and update the current position with the absolute values.
  2254. world2machine_revert_to_uncorrected();
  2255. // For mesh bed leveling deactivate the matrix temporarily.
  2256. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2257. // in a single axis only.
  2258. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2259. #ifdef MESH_BED_LEVELING
  2260. uint8_t mbl_was_active = mbl.active;
  2261. mbl.active = 0;
  2262. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2263. #endif
  2264. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2265. // consumed during the first movements following this statement.
  2266. if (home_z)
  2267. babystep_undo();
  2268. saved_feedrate = feedrate;
  2269. saved_feedmultiply = feedmultiply;
  2270. feedmultiply = 100;
  2271. previous_millis_cmd = millis();
  2272. enable_endstops(true);
  2273. memcpy(destination, current_position, sizeof(destination));
  2274. feedrate = 0.0;
  2275. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2276. if(home_z)
  2277. homeaxis(Z_AXIS);
  2278. #endif
  2279. #ifdef QUICK_HOME
  2280. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2281. if(home_x && home_y) //first diagonal move
  2282. {
  2283. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2284. int x_axis_home_dir = home_dir(X_AXIS);
  2285. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2286. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2287. feedrate = homing_feedrate[X_AXIS];
  2288. if(homing_feedrate[Y_AXIS]<feedrate)
  2289. feedrate = homing_feedrate[Y_AXIS];
  2290. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2291. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2292. } else {
  2293. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2294. }
  2295. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2296. st_synchronize();
  2297. axis_is_at_home(X_AXIS);
  2298. axis_is_at_home(Y_AXIS);
  2299. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2300. destination[X_AXIS] = current_position[X_AXIS];
  2301. destination[Y_AXIS] = current_position[Y_AXIS];
  2302. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2303. feedrate = 0.0;
  2304. st_synchronize();
  2305. endstops_hit_on_purpose();
  2306. current_position[X_AXIS] = destination[X_AXIS];
  2307. current_position[Y_AXIS] = destination[Y_AXIS];
  2308. current_position[Z_AXIS] = destination[Z_AXIS];
  2309. }
  2310. #endif /* QUICK_HOME */
  2311. if(home_x)
  2312. homeaxis(X_AXIS);
  2313. if(home_y)
  2314. homeaxis(Y_AXIS);
  2315. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2316. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2317. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2318. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2319. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2320. #ifndef Z_SAFE_HOMING
  2321. if(home_z) {
  2322. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2323. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2324. feedrate = max_feedrate[Z_AXIS];
  2325. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2326. st_synchronize();
  2327. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2328. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2329. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2330. {
  2331. homeaxis(X_AXIS);
  2332. homeaxis(Y_AXIS);
  2333. }
  2334. // 1st mesh bed leveling measurement point, corrected.
  2335. world2machine_initialize();
  2336. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2337. world2machine_reset();
  2338. if (destination[Y_AXIS] < Y_MIN_POS)
  2339. destination[Y_AXIS] = Y_MIN_POS;
  2340. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2341. feedrate = homing_feedrate[Z_AXIS]/10;
  2342. current_position[Z_AXIS] = 0;
  2343. enable_endstops(false);
  2344. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2345. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2346. st_synchronize();
  2347. current_position[X_AXIS] = destination[X_AXIS];
  2348. current_position[Y_AXIS] = destination[Y_AXIS];
  2349. enable_endstops(true);
  2350. endstops_hit_on_purpose();
  2351. homeaxis(Z_AXIS);
  2352. #else // MESH_BED_LEVELING
  2353. homeaxis(Z_AXIS);
  2354. #endif // MESH_BED_LEVELING
  2355. }
  2356. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2357. if(home_all_axes) {
  2358. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2359. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2360. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2361. feedrate = XY_TRAVEL_SPEED/60;
  2362. current_position[Z_AXIS] = 0;
  2363. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2364. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2365. st_synchronize();
  2366. current_position[X_AXIS] = destination[X_AXIS];
  2367. current_position[Y_AXIS] = destination[Y_AXIS];
  2368. homeaxis(Z_AXIS);
  2369. }
  2370. // Let's see if X and Y are homed and probe is inside bed area.
  2371. if(home_z) {
  2372. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2373. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2374. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2375. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2376. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2377. current_position[Z_AXIS] = 0;
  2378. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2379. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2380. feedrate = max_feedrate[Z_AXIS];
  2381. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2382. st_synchronize();
  2383. homeaxis(Z_AXIS);
  2384. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2385. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2386. SERIAL_ECHO_START;
  2387. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2388. } else {
  2389. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2390. SERIAL_ECHO_START;
  2391. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2392. }
  2393. }
  2394. #endif // Z_SAFE_HOMING
  2395. #endif // Z_HOME_DIR < 0
  2396. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2397. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2398. #ifdef ENABLE_AUTO_BED_LEVELING
  2399. if(home_z)
  2400. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2401. #endif
  2402. // Set the planner and stepper routine positions.
  2403. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2404. // contains the machine coordinates.
  2405. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2406. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2407. enable_endstops(false);
  2408. #endif
  2409. feedrate = saved_feedrate;
  2410. feedmultiply = saved_feedmultiply;
  2411. previous_millis_cmd = millis();
  2412. endstops_hit_on_purpose();
  2413. #ifndef MESH_BED_LEVELING
  2414. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2415. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2416. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2417. lcd_adjust_z();
  2418. #endif
  2419. // Load the machine correction matrix
  2420. world2machine_initialize();
  2421. // and correct the current_position XY axes to match the transformed coordinate system.
  2422. world2machine_update_current();
  2423. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2424. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2425. {
  2426. if (! home_z && mbl_was_active) {
  2427. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2428. mbl.active = true;
  2429. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2430. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2431. }
  2432. }
  2433. else
  2434. {
  2435. st_synchronize();
  2436. homing_flag = false;
  2437. // Push the commands to the front of the message queue in the reverse order!
  2438. // There shall be always enough space reserved for these commands.
  2439. // enquecommand_front_P((PSTR("G80")));
  2440. goto case_G80;
  2441. }
  2442. #endif
  2443. if (farm_mode) { prusa_statistics(20); };
  2444. homing_flag = false;
  2445. #if 0
  2446. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2447. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2448. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2449. #endif
  2450. break;
  2451. }
  2452. #ifdef ENABLE_AUTO_BED_LEVELING
  2453. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2454. {
  2455. #if Z_MIN_PIN == -1
  2456. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2457. #endif
  2458. // Prevent user from running a G29 without first homing in X and Y
  2459. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2460. {
  2461. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2462. SERIAL_ECHO_START;
  2463. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2464. break; // abort G29, since we don't know where we are
  2465. }
  2466. st_synchronize();
  2467. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2468. //vector_3 corrected_position = plan_get_position_mm();
  2469. //corrected_position.debug("position before G29");
  2470. plan_bed_level_matrix.set_to_identity();
  2471. vector_3 uncorrected_position = plan_get_position();
  2472. //uncorrected_position.debug("position durring G29");
  2473. current_position[X_AXIS] = uncorrected_position.x;
  2474. current_position[Y_AXIS] = uncorrected_position.y;
  2475. current_position[Z_AXIS] = uncorrected_position.z;
  2476. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2477. setup_for_endstop_move();
  2478. feedrate = homing_feedrate[Z_AXIS];
  2479. #ifdef AUTO_BED_LEVELING_GRID
  2480. // probe at the points of a lattice grid
  2481. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2482. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2483. // solve the plane equation ax + by + d = z
  2484. // A is the matrix with rows [x y 1] for all the probed points
  2485. // B is the vector of the Z positions
  2486. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2487. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2488. // "A" matrix of the linear system of equations
  2489. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2490. // "B" vector of Z points
  2491. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2492. int probePointCounter = 0;
  2493. bool zig = true;
  2494. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2495. {
  2496. int xProbe, xInc;
  2497. if (zig)
  2498. {
  2499. xProbe = LEFT_PROBE_BED_POSITION;
  2500. //xEnd = RIGHT_PROBE_BED_POSITION;
  2501. xInc = xGridSpacing;
  2502. zig = false;
  2503. } else // zag
  2504. {
  2505. xProbe = RIGHT_PROBE_BED_POSITION;
  2506. //xEnd = LEFT_PROBE_BED_POSITION;
  2507. xInc = -xGridSpacing;
  2508. zig = true;
  2509. }
  2510. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2511. {
  2512. float z_before;
  2513. if (probePointCounter == 0)
  2514. {
  2515. // raise before probing
  2516. z_before = Z_RAISE_BEFORE_PROBING;
  2517. } else
  2518. {
  2519. // raise extruder
  2520. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2521. }
  2522. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2523. eqnBVector[probePointCounter] = measured_z;
  2524. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2525. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2526. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2527. probePointCounter++;
  2528. xProbe += xInc;
  2529. }
  2530. }
  2531. clean_up_after_endstop_move();
  2532. // solve lsq problem
  2533. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2534. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2535. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2536. SERIAL_PROTOCOLPGM(" b: ");
  2537. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2538. SERIAL_PROTOCOLPGM(" d: ");
  2539. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2540. set_bed_level_equation_lsq(plane_equation_coefficients);
  2541. free(plane_equation_coefficients);
  2542. #else // AUTO_BED_LEVELING_GRID not defined
  2543. // Probe at 3 arbitrary points
  2544. // probe 1
  2545. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2546. // probe 2
  2547. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2548. // probe 3
  2549. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2550. clean_up_after_endstop_move();
  2551. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2552. #endif // AUTO_BED_LEVELING_GRID
  2553. st_synchronize();
  2554. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2555. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2556. // When the bed is uneven, this height must be corrected.
  2557. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2558. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2559. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2560. z_tmp = current_position[Z_AXIS];
  2561. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2562. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2563. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2564. }
  2565. break;
  2566. #ifndef Z_PROBE_SLED
  2567. case 30: // G30 Single Z Probe
  2568. {
  2569. st_synchronize();
  2570. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2571. setup_for_endstop_move();
  2572. feedrate = homing_feedrate[Z_AXIS];
  2573. run_z_probe();
  2574. SERIAL_PROTOCOLPGM(MSG_BED);
  2575. SERIAL_PROTOCOLPGM(" X: ");
  2576. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2577. SERIAL_PROTOCOLPGM(" Y: ");
  2578. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2579. SERIAL_PROTOCOLPGM(" Z: ");
  2580. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2581. SERIAL_PROTOCOLPGM("\n");
  2582. clean_up_after_endstop_move();
  2583. }
  2584. break;
  2585. #else
  2586. case 31: // dock the sled
  2587. dock_sled(true);
  2588. break;
  2589. case 32: // undock the sled
  2590. dock_sled(false);
  2591. break;
  2592. #endif // Z_PROBE_SLED
  2593. #endif // ENABLE_AUTO_BED_LEVELING
  2594. #ifdef MESH_BED_LEVELING
  2595. case 30: // G30 Single Z Probe
  2596. {
  2597. st_synchronize();
  2598. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2599. setup_for_endstop_move();
  2600. feedrate = homing_feedrate[Z_AXIS];
  2601. find_bed_induction_sensor_point_z(-10.f, 3);
  2602. SERIAL_PROTOCOLRPGM(MSG_BED);
  2603. SERIAL_PROTOCOLPGM(" X: ");
  2604. MYSERIAL.print(current_position[X_AXIS], 5);
  2605. SERIAL_PROTOCOLPGM(" Y: ");
  2606. MYSERIAL.print(current_position[Y_AXIS], 5);
  2607. SERIAL_PROTOCOLPGM(" Z: ");
  2608. MYSERIAL.print(current_position[Z_AXIS], 5);
  2609. SERIAL_PROTOCOLPGM("\n");
  2610. clean_up_after_endstop_move();
  2611. }
  2612. break;
  2613. case 75:
  2614. {
  2615. for (int i = 40; i <= 110; i++) {
  2616. MYSERIAL.print(i);
  2617. MYSERIAL.print(" ");
  2618. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2619. }
  2620. }
  2621. break;
  2622. case 76: //PINDA probe temperature calibration
  2623. {
  2624. #ifdef PINDA_THERMISTOR
  2625. if (true)
  2626. {
  2627. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2628. // We don't know where we are! HOME!
  2629. // Push the commands to the front of the message queue in the reverse order!
  2630. // There shall be always enough space reserved for these commands.
  2631. repeatcommand_front(); // repeat G76 with all its parameters
  2632. enquecommand_front_P((PSTR("G28 W0")));
  2633. break;
  2634. }
  2635. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2636. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2637. float zero_z;
  2638. int z_shift = 0; //unit: steps
  2639. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2640. if (start_temp < 35) start_temp = 35;
  2641. if (start_temp < current_temperature_pinda) start_temp += 5;
  2642. SERIAL_ECHOPGM("start temperature: ");
  2643. MYSERIAL.println(start_temp);
  2644. // setTargetHotend(200, 0);
  2645. setTargetBed(70 + (start_temp - 30));
  2646. custom_message = true;
  2647. custom_message_type = 4;
  2648. custom_message_state = 1;
  2649. custom_message = MSG_TEMP_CALIBRATION;
  2650. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2651. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2652. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2653. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2654. st_synchronize();
  2655. while (current_temperature_pinda < start_temp)
  2656. {
  2657. delay_keep_alive(1000);
  2658. serialecho_temperatures();
  2659. }
  2660. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2661. current_position[Z_AXIS] = 5;
  2662. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2663. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2664. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2666. st_synchronize();
  2667. find_bed_induction_sensor_point_z(-1.f);
  2668. zero_z = current_position[Z_AXIS];
  2669. //current_position[Z_AXIS]
  2670. SERIAL_ECHOLNPGM("");
  2671. SERIAL_ECHOPGM("ZERO: ");
  2672. MYSERIAL.print(current_position[Z_AXIS]);
  2673. SERIAL_ECHOLNPGM("");
  2674. int i = -1; for (; i < 5; i++)
  2675. {
  2676. float temp = (40 + i * 5);
  2677. SERIAL_ECHOPGM("Step: ");
  2678. MYSERIAL.print(i + 2);
  2679. SERIAL_ECHOLNPGM("/6 (skipped)");
  2680. SERIAL_ECHOPGM("PINDA temperature: ");
  2681. MYSERIAL.print((40 + i*5));
  2682. SERIAL_ECHOPGM(" Z shift (mm):");
  2683. MYSERIAL.print(0);
  2684. SERIAL_ECHOLNPGM("");
  2685. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2686. if (start_temp <= temp) break;
  2687. }
  2688. for (i++; i < 5; i++)
  2689. {
  2690. float temp = (40 + i * 5);
  2691. SERIAL_ECHOPGM("Step: ");
  2692. MYSERIAL.print(i + 2);
  2693. SERIAL_ECHOLNPGM("/6");
  2694. custom_message_state = i + 2;
  2695. setTargetBed(50 + 10 * (temp - 30) / 5);
  2696. // setTargetHotend(255, 0);
  2697. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2698. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2699. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2700. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2701. st_synchronize();
  2702. while (current_temperature_pinda < temp)
  2703. {
  2704. delay_keep_alive(1000);
  2705. serialecho_temperatures();
  2706. }
  2707. current_position[Z_AXIS] = 5;
  2708. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2709. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2710. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2711. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2712. st_synchronize();
  2713. find_bed_induction_sensor_point_z(-1.f);
  2714. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2715. SERIAL_ECHOLNPGM("");
  2716. SERIAL_ECHOPGM("PINDA temperature: ");
  2717. MYSERIAL.print(current_temperature_pinda);
  2718. SERIAL_ECHOPGM(" Z shift (mm):");
  2719. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2720. SERIAL_ECHOLNPGM("");
  2721. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2722. }
  2723. custom_message_type = 0;
  2724. custom_message = false;
  2725. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2726. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2727. disable_x();
  2728. disable_y();
  2729. disable_z();
  2730. disable_e0();
  2731. disable_e1();
  2732. disable_e2();
  2733. setTargetBed(0); //set bed target temperature back to 0
  2734. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2735. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2736. lcd_update_enable(true);
  2737. lcd_update(2);
  2738. break;
  2739. }
  2740. #endif //PINDA_THERMISTOR
  2741. setTargetBed(PINDA_MIN_T);
  2742. float zero_z;
  2743. int z_shift = 0; //unit: steps
  2744. int t_c; // temperature
  2745. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2746. // We don't know where we are! HOME!
  2747. // Push the commands to the front of the message queue in the reverse order!
  2748. // There shall be always enough space reserved for these commands.
  2749. repeatcommand_front(); // repeat G76 with all its parameters
  2750. enquecommand_front_P((PSTR("G28 W0")));
  2751. break;
  2752. }
  2753. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2754. custom_message = true;
  2755. custom_message_type = 4;
  2756. custom_message_state = 1;
  2757. custom_message = MSG_TEMP_CALIBRATION;
  2758. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2759. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2760. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2761. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2762. st_synchronize();
  2763. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2764. delay_keep_alive(1000);
  2765. serialecho_temperatures();
  2766. }
  2767. //enquecommand_P(PSTR("M190 S50"));
  2768. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2769. delay_keep_alive(1000);
  2770. serialecho_temperatures();
  2771. }
  2772. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2773. current_position[Z_AXIS] = 5;
  2774. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2775. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2776. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2777. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2778. st_synchronize();
  2779. find_bed_induction_sensor_point_z(-1.f);
  2780. zero_z = current_position[Z_AXIS];
  2781. //current_position[Z_AXIS]
  2782. SERIAL_ECHOLNPGM("");
  2783. SERIAL_ECHOPGM("ZERO: ");
  2784. MYSERIAL.print(current_position[Z_AXIS]);
  2785. SERIAL_ECHOLNPGM("");
  2786. for (int i = 0; i<5; i++) {
  2787. SERIAL_ECHOPGM("Step: ");
  2788. MYSERIAL.print(i+2);
  2789. SERIAL_ECHOLNPGM("/6");
  2790. custom_message_state = i + 2;
  2791. t_c = 60 + i * 10;
  2792. setTargetBed(t_c);
  2793. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2794. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2795. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2797. st_synchronize();
  2798. while (degBed() < t_c) {
  2799. delay_keep_alive(1000);
  2800. serialecho_temperatures();
  2801. }
  2802. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2803. delay_keep_alive(1000);
  2804. serialecho_temperatures();
  2805. }
  2806. current_position[Z_AXIS] = 5;
  2807. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2808. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2809. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2810. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2811. st_synchronize();
  2812. find_bed_induction_sensor_point_z(-1.f);
  2813. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2814. SERIAL_ECHOLNPGM("");
  2815. SERIAL_ECHOPGM("Temperature: ");
  2816. MYSERIAL.print(t_c);
  2817. SERIAL_ECHOPGM(" Z shift (mm):");
  2818. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2819. SERIAL_ECHOLNPGM("");
  2820. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2821. }
  2822. custom_message_type = 0;
  2823. custom_message = false;
  2824. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2825. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2826. disable_x();
  2827. disable_y();
  2828. disable_z();
  2829. disable_e0();
  2830. disable_e1();
  2831. disable_e2();
  2832. setTargetBed(0); //set bed target temperature back to 0
  2833. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2834. lcd_update_enable(true);
  2835. lcd_update(2);
  2836. }
  2837. break;
  2838. #ifdef DIS
  2839. case 77:
  2840. {
  2841. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2842. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2843. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2844. float dimension_x = 40;
  2845. float dimension_y = 40;
  2846. int points_x = 40;
  2847. int points_y = 40;
  2848. float offset_x = 74;
  2849. float offset_y = 33;
  2850. if (code_seen('X')) dimension_x = code_value();
  2851. if (code_seen('Y')) dimension_y = code_value();
  2852. if (code_seen('XP')) points_x = code_value();
  2853. if (code_seen('YP')) points_y = code_value();
  2854. if (code_seen('XO')) offset_x = code_value();
  2855. if (code_seen('YO')) offset_y = code_value();
  2856. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2857. } break;
  2858. #endif
  2859. case 79: {
  2860. for (int i = 255; i > 0; i = i - 5) {
  2861. fanSpeed = i;
  2862. //delay_keep_alive(2000);
  2863. for (int j = 0; j < 100; j++) {
  2864. delay_keep_alive(100);
  2865. }
  2866. fan_speed[1];
  2867. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2868. }
  2869. }break;
  2870. /**
  2871. * G80: Mesh-based Z probe, probes a grid and produces a
  2872. * mesh to compensate for variable bed height
  2873. *
  2874. * The S0 report the points as below
  2875. *
  2876. * +----> X-axis
  2877. * |
  2878. * |
  2879. * v Y-axis
  2880. *
  2881. */
  2882. case 80:
  2883. #ifdef MK1BP
  2884. break;
  2885. #endif //MK1BP
  2886. case_G80:
  2887. {
  2888. mesh_bed_leveling_flag = true;
  2889. int8_t verbosity_level = 0;
  2890. static bool run = false;
  2891. if (code_seen('V')) {
  2892. // Just 'V' without a number counts as V1.
  2893. char c = strchr_pointer[1];
  2894. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2895. }
  2896. // Firstly check if we know where we are
  2897. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2898. // We don't know where we are! HOME!
  2899. // Push the commands to the front of the message queue in the reverse order!
  2900. // There shall be always enough space reserved for these commands.
  2901. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2902. repeatcommand_front(); // repeat G80 with all its parameters
  2903. enquecommand_front_P((PSTR("G28 W0")));
  2904. }
  2905. else {
  2906. mesh_bed_leveling_flag = false;
  2907. }
  2908. break;
  2909. }
  2910. bool temp_comp_start = true;
  2911. #ifdef PINDA_THERMISTOR
  2912. temp_comp_start = false;
  2913. #endif //PINDA_THERMISTOR
  2914. if (temp_comp_start)
  2915. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2916. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2917. temp_compensation_start();
  2918. run = true;
  2919. repeatcommand_front(); // repeat G80 with all its parameters
  2920. enquecommand_front_P((PSTR("G28 W0")));
  2921. }
  2922. else {
  2923. mesh_bed_leveling_flag = false;
  2924. }
  2925. break;
  2926. }
  2927. run = false;
  2928. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2929. mesh_bed_leveling_flag = false;
  2930. break;
  2931. }
  2932. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2933. bool custom_message_old = custom_message;
  2934. unsigned int custom_message_type_old = custom_message_type;
  2935. unsigned int custom_message_state_old = custom_message_state;
  2936. custom_message = true;
  2937. custom_message_type = 1;
  2938. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2939. lcd_update(1);
  2940. mbl.reset(); //reset mesh bed leveling
  2941. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2942. // consumed during the first movements following this statement.
  2943. babystep_undo();
  2944. // Cycle through all points and probe them
  2945. // First move up. During this first movement, the babystepping will be reverted.
  2946. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2947. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2948. // The move to the first calibration point.
  2949. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2950. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2951. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2952. #ifdef SUPPORT_VERBOSITY
  2953. if (verbosity_level >= 1) {
  2954. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2955. }
  2956. #endif //SUPPORT_VERBOSITY
  2957. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2958. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2959. // Wait until the move is finished.
  2960. st_synchronize();
  2961. int mesh_point = 0; //index number of calibration point
  2962. int ix = 0;
  2963. int iy = 0;
  2964. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2965. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2966. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2967. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2968. #ifdef SUPPORT_VERBOSITY
  2969. if (verbosity_level >= 1) {
  2970. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2971. }
  2972. #endif // SUPPORT_VERBOSITY
  2973. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2974. const char *kill_message = NULL;
  2975. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2976. // Get coords of a measuring point.
  2977. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2978. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2979. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2980. float z0 = 0.f;
  2981. if (has_z && mesh_point > 0) {
  2982. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2983. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2984. //#if 0
  2985. #ifdef SUPPORT_VERBOSITY
  2986. if (verbosity_level >= 1) {
  2987. SERIAL_ECHOLNPGM("");
  2988. SERIAL_ECHOPGM("Bed leveling, point: ");
  2989. MYSERIAL.print(mesh_point);
  2990. SERIAL_ECHOPGM(", calibration z: ");
  2991. MYSERIAL.print(z0, 5);
  2992. SERIAL_ECHOLNPGM("");
  2993. }
  2994. #endif // SUPPORT_VERBOSITY
  2995. //#endif
  2996. }
  2997. // Move Z up to MESH_HOME_Z_SEARCH.
  2998. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2999. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3000. st_synchronize();
  3001. // Move to XY position of the sensor point.
  3002. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3003. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3004. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3005. #ifdef SUPPORT_VERBOSITY
  3006. if (verbosity_level >= 1) {
  3007. SERIAL_PROTOCOL(mesh_point);
  3008. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3009. }
  3010. #endif // SUPPORT_VERBOSITY
  3011. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3012. st_synchronize();
  3013. // Go down until endstop is hit
  3014. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3015. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3016. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  3017. break;
  3018. }
  3019. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3020. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  3021. break;
  3022. }
  3023. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3024. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  3025. break;
  3026. }
  3027. #ifdef SUPPORT_VERBOSITY
  3028. if (verbosity_level >= 10) {
  3029. SERIAL_ECHOPGM("X: ");
  3030. MYSERIAL.print(current_position[X_AXIS], 5);
  3031. SERIAL_ECHOLNPGM("");
  3032. SERIAL_ECHOPGM("Y: ");
  3033. MYSERIAL.print(current_position[Y_AXIS], 5);
  3034. SERIAL_PROTOCOLPGM("\n");
  3035. }
  3036. #endif // SUPPORT_VERBOSITY
  3037. float offset_z = 0;
  3038. #ifdef PINDA_THERMISTOR
  3039. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3040. #endif //PINDA_THERMISTOR
  3041. // #ifdef SUPPORT_VERBOSITY
  3042. /* if (verbosity_level >= 1)
  3043. {
  3044. SERIAL_ECHOPGM("mesh bed leveling: ");
  3045. MYSERIAL.print(current_position[Z_AXIS], 5);
  3046. SERIAL_ECHOPGM(" offset: ");
  3047. MYSERIAL.print(offset_z, 5);
  3048. SERIAL_ECHOLNPGM("");
  3049. }*/
  3050. // #endif // SUPPORT_VERBOSITY
  3051. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3052. custom_message_state--;
  3053. mesh_point++;
  3054. lcd_update(1);
  3055. }
  3056. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3057. #ifdef SUPPORT_VERBOSITY
  3058. if (verbosity_level >= 20) {
  3059. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3060. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3061. MYSERIAL.print(current_position[Z_AXIS], 5);
  3062. }
  3063. #endif // SUPPORT_VERBOSITY
  3064. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3065. st_synchronize();
  3066. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3067. kill(kill_message);
  3068. SERIAL_ECHOLNPGM("killed");
  3069. }
  3070. clean_up_after_endstop_move();
  3071. // SERIAL_ECHOLNPGM("clean up finished ");
  3072. bool apply_temp_comp = true;
  3073. #ifdef PINDA_THERMISTOR
  3074. apply_temp_comp = false;
  3075. #endif
  3076. if (apply_temp_comp)
  3077. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3078. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3079. // SERIAL_ECHOLNPGM("babystep applied");
  3080. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3081. #ifdef SUPPORT_VERBOSITY
  3082. if (verbosity_level >= 1) {
  3083. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3084. }
  3085. #endif // SUPPORT_VERBOSITY
  3086. for (uint8_t i = 0; i < 4; ++i) {
  3087. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3088. long correction = 0;
  3089. if (code_seen(codes[i]))
  3090. correction = code_value_long();
  3091. else if (eeprom_bed_correction_valid) {
  3092. unsigned char *addr = (i < 2) ?
  3093. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3094. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3095. correction = eeprom_read_int8(addr);
  3096. }
  3097. if (correction == 0)
  3098. continue;
  3099. float offset = float(correction) * 0.001f;
  3100. if (fabs(offset) > 0.101f) {
  3101. SERIAL_ERROR_START;
  3102. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3103. SERIAL_ECHO(offset);
  3104. SERIAL_ECHOLNPGM(" microns");
  3105. }
  3106. else {
  3107. switch (i) {
  3108. case 0:
  3109. for (uint8_t row = 0; row < 3; ++row) {
  3110. mbl.z_values[row][1] += 0.5f * offset;
  3111. mbl.z_values[row][0] += offset;
  3112. }
  3113. break;
  3114. case 1:
  3115. for (uint8_t row = 0; row < 3; ++row) {
  3116. mbl.z_values[row][1] += 0.5f * offset;
  3117. mbl.z_values[row][2] += offset;
  3118. }
  3119. break;
  3120. case 2:
  3121. for (uint8_t col = 0; col < 3; ++col) {
  3122. mbl.z_values[1][col] += 0.5f * offset;
  3123. mbl.z_values[0][col] += offset;
  3124. }
  3125. break;
  3126. case 3:
  3127. for (uint8_t col = 0; col < 3; ++col) {
  3128. mbl.z_values[1][col] += 0.5f * offset;
  3129. mbl.z_values[2][col] += offset;
  3130. }
  3131. break;
  3132. }
  3133. }
  3134. }
  3135. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3136. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3137. // SERIAL_ECHOLNPGM("Upsample finished");
  3138. mbl.active = 1; //activate mesh bed leveling
  3139. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3140. go_home_with_z_lift();
  3141. // SERIAL_ECHOLNPGM("Go home finished");
  3142. //unretract (after PINDA preheat retraction)
  3143. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3144. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3145. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3146. }
  3147. KEEPALIVE_STATE(NOT_BUSY);
  3148. // Restore custom message state
  3149. custom_message = custom_message_old;
  3150. custom_message_type = custom_message_type_old;
  3151. custom_message_state = custom_message_state_old;
  3152. mesh_bed_leveling_flag = false;
  3153. mesh_bed_run_from_menu = false;
  3154. lcd_update(2);
  3155. }
  3156. break;
  3157. /**
  3158. * G81: Print mesh bed leveling status and bed profile if activated
  3159. */
  3160. case 81:
  3161. if (mbl.active) {
  3162. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3163. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3164. SERIAL_PROTOCOLPGM(",");
  3165. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3166. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3167. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3168. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3169. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3170. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3171. SERIAL_PROTOCOLPGM(" ");
  3172. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3173. }
  3174. SERIAL_PROTOCOLPGM("\n");
  3175. }
  3176. }
  3177. else
  3178. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3179. break;
  3180. #if 0
  3181. /**
  3182. * G82: Single Z probe at current location
  3183. *
  3184. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3185. *
  3186. */
  3187. case 82:
  3188. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3189. setup_for_endstop_move();
  3190. find_bed_induction_sensor_point_z();
  3191. clean_up_after_endstop_move();
  3192. SERIAL_PROTOCOLPGM("Bed found at: ");
  3193. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3194. SERIAL_PROTOCOLPGM("\n");
  3195. break;
  3196. /**
  3197. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3198. */
  3199. case 83:
  3200. {
  3201. int babystepz = code_seen('S') ? code_value() : 0;
  3202. int BabyPosition = code_seen('P') ? code_value() : 0;
  3203. if (babystepz != 0) {
  3204. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3205. // Is the axis indexed starting with zero or one?
  3206. if (BabyPosition > 4) {
  3207. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3208. }else{
  3209. // Save it to the eeprom
  3210. babystepLoadZ = babystepz;
  3211. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3212. // adjust the Z
  3213. babystepsTodoZadd(babystepLoadZ);
  3214. }
  3215. }
  3216. }
  3217. break;
  3218. /**
  3219. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3220. */
  3221. case 84:
  3222. babystepsTodoZsubtract(babystepLoadZ);
  3223. // babystepLoadZ = 0;
  3224. break;
  3225. /**
  3226. * G85: Prusa3D specific: Pick best babystep
  3227. */
  3228. case 85:
  3229. lcd_pick_babystep();
  3230. break;
  3231. #endif
  3232. /**
  3233. * G86: Prusa3D specific: Disable babystep correction after home.
  3234. * This G-code will be performed at the start of a calibration script.
  3235. */
  3236. case 86:
  3237. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3238. break;
  3239. /**
  3240. * G87: Prusa3D specific: Enable babystep correction after home
  3241. * This G-code will be performed at the end of a calibration script.
  3242. */
  3243. case 87:
  3244. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3245. break;
  3246. /**
  3247. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3248. */
  3249. case 88:
  3250. break;
  3251. #endif // ENABLE_MESH_BED_LEVELING
  3252. case 90: // G90
  3253. relative_mode = false;
  3254. break;
  3255. case 91: // G91
  3256. relative_mode = true;
  3257. break;
  3258. case 92: // G92
  3259. if(!code_seen(axis_codes[E_AXIS]))
  3260. st_synchronize();
  3261. for(int8_t i=0; i < NUM_AXIS; i++) {
  3262. if(code_seen(axis_codes[i])) {
  3263. if(i == E_AXIS) {
  3264. current_position[i] = code_value();
  3265. plan_set_e_position(current_position[E_AXIS]);
  3266. }
  3267. else {
  3268. current_position[i] = code_value()+add_homing[i];
  3269. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3270. }
  3271. }
  3272. }
  3273. break;
  3274. case 98: //activate farm mode
  3275. farm_mode = 1;
  3276. PingTime = millis();
  3277. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3278. break;
  3279. case 99: //deactivate farm mode
  3280. farm_mode = 0;
  3281. lcd_printer_connected();
  3282. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3283. lcd_update(2);
  3284. break;
  3285. default:
  3286. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3287. }
  3288. } // end if(code_seen('G'))
  3289. else if(code_seen('M'))
  3290. {
  3291. int index;
  3292. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3293. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3294. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3295. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3296. } else
  3297. switch((int)code_value())
  3298. {
  3299. #ifdef ULTIPANEL
  3300. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3301. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3302. {
  3303. char *src = strchr_pointer + 2;
  3304. codenum = 0;
  3305. bool hasP = false, hasS = false;
  3306. if (code_seen('P')) {
  3307. codenum = code_value(); // milliseconds to wait
  3308. hasP = codenum > 0;
  3309. }
  3310. if (code_seen('S')) {
  3311. codenum = code_value() * 1000; // seconds to wait
  3312. hasS = codenum > 0;
  3313. }
  3314. starpos = strchr(src, '*');
  3315. if (starpos != NULL) *(starpos) = '\0';
  3316. while (*src == ' ') ++src;
  3317. if (!hasP && !hasS && *src != '\0') {
  3318. lcd_setstatus(src);
  3319. } else {
  3320. LCD_MESSAGERPGM(MSG_USERWAIT);
  3321. }
  3322. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3323. st_synchronize();
  3324. previous_millis_cmd = millis();
  3325. if (codenum > 0){
  3326. codenum += millis(); // keep track of when we started waiting
  3327. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3328. while(millis() < codenum && !lcd_clicked()){
  3329. manage_heater();
  3330. manage_inactivity(true);
  3331. lcd_update();
  3332. }
  3333. KEEPALIVE_STATE(IN_HANDLER);
  3334. lcd_ignore_click(false);
  3335. }else{
  3336. if (!lcd_detected())
  3337. break;
  3338. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3339. while(!lcd_clicked()){
  3340. manage_heater();
  3341. manage_inactivity(true);
  3342. lcd_update();
  3343. }
  3344. KEEPALIVE_STATE(IN_HANDLER);
  3345. }
  3346. if (IS_SD_PRINTING)
  3347. LCD_MESSAGERPGM(MSG_RESUMING);
  3348. else
  3349. LCD_MESSAGERPGM(WELCOME_MSG);
  3350. }
  3351. break;
  3352. #endif
  3353. case 17:
  3354. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3355. enable_x();
  3356. enable_y();
  3357. enable_z();
  3358. enable_e0();
  3359. enable_e1();
  3360. enable_e2();
  3361. break;
  3362. #ifdef SDSUPPORT
  3363. case 20: // M20 - list SD card
  3364. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3365. card.ls();
  3366. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3367. break;
  3368. case 21: // M21 - init SD card
  3369. card.initsd();
  3370. break;
  3371. case 22: //M22 - release SD card
  3372. card.release();
  3373. break;
  3374. case 23: //M23 - Select file
  3375. starpos = (strchr(strchr_pointer + 4,'*'));
  3376. if(starpos!=NULL)
  3377. *(starpos)='\0';
  3378. card.openFile(strchr_pointer + 4,true);
  3379. break;
  3380. case 24: //M24 - Start SD print
  3381. card.startFileprint();
  3382. starttime=millis();
  3383. break;
  3384. case 25: //M25 - Pause SD print
  3385. card.pauseSDPrint();
  3386. break;
  3387. case 26: //M26 - Set SD index
  3388. if(card.cardOK && code_seen('S')) {
  3389. card.setIndex(code_value_long());
  3390. }
  3391. break;
  3392. case 27: //M27 - Get SD status
  3393. card.getStatus();
  3394. break;
  3395. case 28: //M28 - Start SD write
  3396. starpos = (strchr(strchr_pointer + 4,'*'));
  3397. if(starpos != NULL){
  3398. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3399. strchr_pointer = strchr(npos,' ') + 1;
  3400. *(starpos) = '\0';
  3401. }
  3402. card.openFile(strchr_pointer+4,false);
  3403. break;
  3404. case 29: //M29 - Stop SD write
  3405. //processed in write to file routine above
  3406. //card,saving = false;
  3407. break;
  3408. case 30: //M30 <filename> Delete File
  3409. if (card.cardOK){
  3410. card.closefile();
  3411. starpos = (strchr(strchr_pointer + 4,'*'));
  3412. if(starpos != NULL){
  3413. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3414. strchr_pointer = strchr(npos,' ') + 1;
  3415. *(starpos) = '\0';
  3416. }
  3417. card.removeFile(strchr_pointer + 4);
  3418. }
  3419. break;
  3420. case 32: //M32 - Select file and start SD print
  3421. {
  3422. if(card.sdprinting) {
  3423. st_synchronize();
  3424. }
  3425. starpos = (strchr(strchr_pointer + 4,'*'));
  3426. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3427. if(namestartpos==NULL)
  3428. {
  3429. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3430. }
  3431. else
  3432. namestartpos++; //to skip the '!'
  3433. if(starpos!=NULL)
  3434. *(starpos)='\0';
  3435. bool call_procedure=(code_seen('P'));
  3436. if(strchr_pointer>namestartpos)
  3437. call_procedure=false; //false alert, 'P' found within filename
  3438. if( card.cardOK )
  3439. {
  3440. card.openFile(namestartpos,true,!call_procedure);
  3441. if(code_seen('S'))
  3442. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3443. card.setIndex(code_value_long());
  3444. card.startFileprint();
  3445. if(!call_procedure)
  3446. starttime=millis(); //procedure calls count as normal print time.
  3447. }
  3448. } break;
  3449. case 928: //M928 - Start SD write
  3450. starpos = (strchr(strchr_pointer + 5,'*'));
  3451. if(starpos != NULL){
  3452. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3453. strchr_pointer = strchr(npos,' ') + 1;
  3454. *(starpos) = '\0';
  3455. }
  3456. card.openLogFile(strchr_pointer+5);
  3457. break;
  3458. #endif //SDSUPPORT
  3459. case 31: //M31 take time since the start of the SD print or an M109 command
  3460. {
  3461. stoptime=millis();
  3462. char time[30];
  3463. unsigned long t=(stoptime-starttime)/1000;
  3464. int sec,min;
  3465. min=t/60;
  3466. sec=t%60;
  3467. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3468. SERIAL_ECHO_START;
  3469. SERIAL_ECHOLN(time);
  3470. lcd_setstatus(time);
  3471. autotempShutdown();
  3472. }
  3473. break;
  3474. #ifndef _DISABLE_M42_M226
  3475. case 42: //M42 -Change pin status via gcode
  3476. if (code_seen('S'))
  3477. {
  3478. int pin_status = code_value();
  3479. int pin_number = LED_PIN;
  3480. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3481. pin_number = code_value();
  3482. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3483. {
  3484. if (sensitive_pins[i] == pin_number)
  3485. {
  3486. pin_number = -1;
  3487. break;
  3488. }
  3489. }
  3490. #if defined(FAN_PIN) && FAN_PIN > -1
  3491. if (pin_number == FAN_PIN)
  3492. fanSpeed = pin_status;
  3493. #endif
  3494. if (pin_number > -1)
  3495. {
  3496. pinMode(pin_number, OUTPUT);
  3497. digitalWrite(pin_number, pin_status);
  3498. analogWrite(pin_number, pin_status);
  3499. }
  3500. }
  3501. break;
  3502. #endif //_DISABLE_M42_M226
  3503. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3504. // Reset the baby step value and the baby step applied flag.
  3505. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3506. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3507. // Reset the skew and offset in both RAM and EEPROM.
  3508. reset_bed_offset_and_skew();
  3509. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3510. // the planner will not perform any adjustments in the XY plane.
  3511. // Wait for the motors to stop and update the current position with the absolute values.
  3512. world2machine_revert_to_uncorrected();
  3513. break;
  3514. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3515. {
  3516. bool only_Z = code_seen('Z');
  3517. gcode_M45(only_Z);
  3518. }
  3519. break;
  3520. /*
  3521. case 46:
  3522. {
  3523. // M46: Prusa3D: Show the assigned IP address.
  3524. uint8_t ip[4];
  3525. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3526. if (hasIP) {
  3527. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3528. SERIAL_ECHO(int(ip[0]));
  3529. SERIAL_ECHOPGM(".");
  3530. SERIAL_ECHO(int(ip[1]));
  3531. SERIAL_ECHOPGM(".");
  3532. SERIAL_ECHO(int(ip[2]));
  3533. SERIAL_ECHOPGM(".");
  3534. SERIAL_ECHO(int(ip[3]));
  3535. SERIAL_ECHOLNPGM("");
  3536. } else {
  3537. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3538. }
  3539. break;
  3540. }
  3541. */
  3542. case 47:
  3543. // M47: Prusa3D: Show end stops dialog on the display.
  3544. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3545. lcd_diag_show_end_stops();
  3546. KEEPALIVE_STATE(IN_HANDLER);
  3547. break;
  3548. #if 0
  3549. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3550. {
  3551. // Disable the default update procedure of the display. We will do a modal dialog.
  3552. lcd_update_enable(false);
  3553. // Let the planner use the uncorrected coordinates.
  3554. mbl.reset();
  3555. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3556. // the planner will not perform any adjustments in the XY plane.
  3557. // Wait for the motors to stop and update the current position with the absolute values.
  3558. world2machine_revert_to_uncorrected();
  3559. // Move the print head close to the bed.
  3560. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3561. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3562. st_synchronize();
  3563. // Home in the XY plane.
  3564. set_destination_to_current();
  3565. setup_for_endstop_move();
  3566. home_xy();
  3567. int8_t verbosity_level = 0;
  3568. if (code_seen('V')) {
  3569. // Just 'V' without a number counts as V1.
  3570. char c = strchr_pointer[1];
  3571. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3572. }
  3573. bool success = scan_bed_induction_points(verbosity_level);
  3574. clean_up_after_endstop_move();
  3575. // Print head up.
  3576. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3577. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3578. st_synchronize();
  3579. lcd_update_enable(true);
  3580. break;
  3581. }
  3582. #endif
  3583. // M48 Z-Probe repeatability measurement function.
  3584. //
  3585. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3586. //
  3587. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3588. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3589. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3590. // regenerated.
  3591. //
  3592. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3593. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3594. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3595. //
  3596. #ifdef ENABLE_AUTO_BED_LEVELING
  3597. #ifdef Z_PROBE_REPEATABILITY_TEST
  3598. case 48: // M48 Z-Probe repeatability
  3599. {
  3600. #if Z_MIN_PIN == -1
  3601. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3602. #endif
  3603. double sum=0.0;
  3604. double mean=0.0;
  3605. double sigma=0.0;
  3606. double sample_set[50];
  3607. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3608. double X_current, Y_current, Z_current;
  3609. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3610. if (code_seen('V') || code_seen('v')) {
  3611. verbose_level = code_value();
  3612. if (verbose_level<0 || verbose_level>4 ) {
  3613. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3614. goto Sigma_Exit;
  3615. }
  3616. }
  3617. if (verbose_level > 0) {
  3618. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3619. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3620. }
  3621. if (code_seen('n')) {
  3622. n_samples = code_value();
  3623. if (n_samples<4 || n_samples>50 ) {
  3624. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3625. goto Sigma_Exit;
  3626. }
  3627. }
  3628. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3629. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3630. Z_current = st_get_position_mm(Z_AXIS);
  3631. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3632. ext_position = st_get_position_mm(E_AXIS);
  3633. if (code_seen('X') || code_seen('x') ) {
  3634. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3635. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3636. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3637. goto Sigma_Exit;
  3638. }
  3639. }
  3640. if (code_seen('Y') || code_seen('y') ) {
  3641. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3642. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3643. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3644. goto Sigma_Exit;
  3645. }
  3646. }
  3647. if (code_seen('L') || code_seen('l') ) {
  3648. n_legs = code_value();
  3649. if ( n_legs==1 )
  3650. n_legs = 2;
  3651. if ( n_legs<0 || n_legs>15 ) {
  3652. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3653. goto Sigma_Exit;
  3654. }
  3655. }
  3656. //
  3657. // Do all the preliminary setup work. First raise the probe.
  3658. //
  3659. st_synchronize();
  3660. plan_bed_level_matrix.set_to_identity();
  3661. plan_buffer_line( X_current, Y_current, Z_start_location,
  3662. ext_position,
  3663. homing_feedrate[Z_AXIS]/60,
  3664. active_extruder);
  3665. st_synchronize();
  3666. //
  3667. // Now get everything to the specified probe point So we can safely do a probe to
  3668. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3669. // use that as a starting point for each probe.
  3670. //
  3671. if (verbose_level > 2)
  3672. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3673. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3674. ext_position,
  3675. homing_feedrate[X_AXIS]/60,
  3676. active_extruder);
  3677. st_synchronize();
  3678. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3679. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3680. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3681. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3682. //
  3683. // OK, do the inital probe to get us close to the bed.
  3684. // Then retrace the right amount and use that in subsequent probes
  3685. //
  3686. setup_for_endstop_move();
  3687. run_z_probe();
  3688. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3689. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3690. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3691. ext_position,
  3692. homing_feedrate[X_AXIS]/60,
  3693. active_extruder);
  3694. st_synchronize();
  3695. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3696. for( n=0; n<n_samples; n++) {
  3697. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3698. if ( n_legs) {
  3699. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3700. int rotational_direction, l;
  3701. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3702. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3703. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3704. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3705. //SERIAL_ECHOPAIR(" theta: ",theta);
  3706. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3707. //SERIAL_PROTOCOLLNPGM("");
  3708. for( l=0; l<n_legs-1; l++) {
  3709. if (rotational_direction==1)
  3710. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3711. else
  3712. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3713. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3714. if ( radius<0.0 )
  3715. radius = -radius;
  3716. X_current = X_probe_location + cos(theta) * radius;
  3717. Y_current = Y_probe_location + sin(theta) * radius;
  3718. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3719. X_current = X_MIN_POS;
  3720. if ( X_current>X_MAX_POS)
  3721. X_current = X_MAX_POS;
  3722. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3723. Y_current = Y_MIN_POS;
  3724. if ( Y_current>Y_MAX_POS)
  3725. Y_current = Y_MAX_POS;
  3726. if (verbose_level>3 ) {
  3727. SERIAL_ECHOPAIR("x: ", X_current);
  3728. SERIAL_ECHOPAIR("y: ", Y_current);
  3729. SERIAL_PROTOCOLLNPGM("");
  3730. }
  3731. do_blocking_move_to( X_current, Y_current, Z_current );
  3732. }
  3733. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3734. }
  3735. setup_for_endstop_move();
  3736. run_z_probe();
  3737. sample_set[n] = current_position[Z_AXIS];
  3738. //
  3739. // Get the current mean for the data points we have so far
  3740. //
  3741. sum=0.0;
  3742. for( j=0; j<=n; j++) {
  3743. sum = sum + sample_set[j];
  3744. }
  3745. mean = sum / (double (n+1));
  3746. //
  3747. // Now, use that mean to calculate the standard deviation for the
  3748. // data points we have so far
  3749. //
  3750. sum=0.0;
  3751. for( j=0; j<=n; j++) {
  3752. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3753. }
  3754. sigma = sqrt( sum / (double (n+1)) );
  3755. if (verbose_level > 1) {
  3756. SERIAL_PROTOCOL(n+1);
  3757. SERIAL_PROTOCOL(" of ");
  3758. SERIAL_PROTOCOL(n_samples);
  3759. SERIAL_PROTOCOLPGM(" z: ");
  3760. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3761. }
  3762. if (verbose_level > 2) {
  3763. SERIAL_PROTOCOL(" mean: ");
  3764. SERIAL_PROTOCOL_F(mean,6);
  3765. SERIAL_PROTOCOL(" sigma: ");
  3766. SERIAL_PROTOCOL_F(sigma,6);
  3767. }
  3768. if (verbose_level > 0)
  3769. SERIAL_PROTOCOLPGM("\n");
  3770. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3771. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3772. st_synchronize();
  3773. }
  3774. delay(1000);
  3775. clean_up_after_endstop_move();
  3776. // enable_endstops(true);
  3777. if (verbose_level > 0) {
  3778. SERIAL_PROTOCOLPGM("Mean: ");
  3779. SERIAL_PROTOCOL_F(mean, 6);
  3780. SERIAL_PROTOCOLPGM("\n");
  3781. }
  3782. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3783. SERIAL_PROTOCOL_F(sigma, 6);
  3784. SERIAL_PROTOCOLPGM("\n\n");
  3785. Sigma_Exit:
  3786. break;
  3787. }
  3788. #endif // Z_PROBE_REPEATABILITY_TEST
  3789. #endif // ENABLE_AUTO_BED_LEVELING
  3790. case 104: // M104
  3791. if(setTargetedHotend(104)){
  3792. break;
  3793. }
  3794. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3795. setWatch();
  3796. break;
  3797. case 112: // M112 -Emergency Stop
  3798. kill("", 3);
  3799. break;
  3800. case 140: // M140 set bed temp
  3801. if (code_seen('S')) setTargetBed(code_value());
  3802. break;
  3803. case 105 : // M105
  3804. if(setTargetedHotend(105)){
  3805. break;
  3806. }
  3807. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3808. SERIAL_PROTOCOLPGM("ok T:");
  3809. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3810. SERIAL_PROTOCOLPGM(" /");
  3811. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3812. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3813. SERIAL_PROTOCOLPGM(" B:");
  3814. SERIAL_PROTOCOL_F(degBed(),1);
  3815. SERIAL_PROTOCOLPGM(" /");
  3816. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3817. #endif //TEMP_BED_PIN
  3818. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3819. SERIAL_PROTOCOLPGM(" T");
  3820. SERIAL_PROTOCOL(cur_extruder);
  3821. SERIAL_PROTOCOLPGM(":");
  3822. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3823. SERIAL_PROTOCOLPGM(" /");
  3824. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3825. }
  3826. #else
  3827. SERIAL_ERROR_START;
  3828. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3829. #endif
  3830. SERIAL_PROTOCOLPGM(" @:");
  3831. #ifdef EXTRUDER_WATTS
  3832. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3833. SERIAL_PROTOCOLPGM("W");
  3834. #else
  3835. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3836. #endif
  3837. SERIAL_PROTOCOLPGM(" B@:");
  3838. #ifdef BED_WATTS
  3839. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3840. SERIAL_PROTOCOLPGM("W");
  3841. #else
  3842. SERIAL_PROTOCOL(getHeaterPower(-1));
  3843. #endif
  3844. #ifdef PINDA_THERMISTOR
  3845. SERIAL_PROTOCOLPGM(" P:");
  3846. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3847. #endif //PINDA_THERMISTOR
  3848. #ifdef AMBIENT_THERMISTOR
  3849. SERIAL_PROTOCOLPGM(" A:");
  3850. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3851. #endif //AMBIENT_THERMISTOR
  3852. #ifdef SHOW_TEMP_ADC_VALUES
  3853. {float raw = 0.0;
  3854. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3855. SERIAL_PROTOCOLPGM(" ADC B:");
  3856. SERIAL_PROTOCOL_F(degBed(),1);
  3857. SERIAL_PROTOCOLPGM("C->");
  3858. raw = rawBedTemp();
  3859. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3860. SERIAL_PROTOCOLPGM(" Rb->");
  3861. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3862. SERIAL_PROTOCOLPGM(" Rxb->");
  3863. SERIAL_PROTOCOL_F(raw, 5);
  3864. #endif
  3865. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3866. SERIAL_PROTOCOLPGM(" T");
  3867. SERIAL_PROTOCOL(cur_extruder);
  3868. SERIAL_PROTOCOLPGM(":");
  3869. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3870. SERIAL_PROTOCOLPGM("C->");
  3871. raw = rawHotendTemp(cur_extruder);
  3872. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3873. SERIAL_PROTOCOLPGM(" Rt");
  3874. SERIAL_PROTOCOL(cur_extruder);
  3875. SERIAL_PROTOCOLPGM("->");
  3876. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3877. SERIAL_PROTOCOLPGM(" Rx");
  3878. SERIAL_PROTOCOL(cur_extruder);
  3879. SERIAL_PROTOCOLPGM("->");
  3880. SERIAL_PROTOCOL_F(raw, 5);
  3881. }}
  3882. #endif
  3883. SERIAL_PROTOCOLLN("");
  3884. KEEPALIVE_STATE(NOT_BUSY);
  3885. return;
  3886. break;
  3887. case 109:
  3888. {// M109 - Wait for extruder heater to reach target.
  3889. if(setTargetedHotend(109)){
  3890. break;
  3891. }
  3892. LCD_MESSAGERPGM(MSG_HEATING);
  3893. heating_status = 1;
  3894. if (farm_mode) { prusa_statistics(1); };
  3895. #ifdef AUTOTEMP
  3896. autotemp_enabled=false;
  3897. #endif
  3898. if (code_seen('S')) {
  3899. setTargetHotend(code_value(), tmp_extruder);
  3900. CooldownNoWait = true;
  3901. } else if (code_seen('R')) {
  3902. setTargetHotend(code_value(), tmp_extruder);
  3903. CooldownNoWait = false;
  3904. }
  3905. #ifdef AUTOTEMP
  3906. if (code_seen('S')) autotemp_min=code_value();
  3907. if (code_seen('B')) autotemp_max=code_value();
  3908. if (code_seen('F'))
  3909. {
  3910. autotemp_factor=code_value();
  3911. autotemp_enabled=true;
  3912. }
  3913. #endif
  3914. setWatch();
  3915. codenum = millis();
  3916. /* See if we are heating up or cooling down */
  3917. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3918. KEEPALIVE_STATE(NOT_BUSY);
  3919. cancel_heatup = false;
  3920. wait_for_heater(codenum); //loops until target temperature is reached
  3921. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3922. KEEPALIVE_STATE(IN_HANDLER);
  3923. heating_status = 2;
  3924. if (farm_mode) { prusa_statistics(2); };
  3925. //starttime=millis();
  3926. previous_millis_cmd = millis();
  3927. }
  3928. break;
  3929. case 190: // M190 - Wait for bed heater to reach target.
  3930. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3931. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3932. heating_status = 3;
  3933. if (farm_mode) { prusa_statistics(1); };
  3934. if (code_seen('S'))
  3935. {
  3936. setTargetBed(code_value());
  3937. CooldownNoWait = true;
  3938. }
  3939. else if (code_seen('R'))
  3940. {
  3941. setTargetBed(code_value());
  3942. CooldownNoWait = false;
  3943. }
  3944. codenum = millis();
  3945. cancel_heatup = false;
  3946. target_direction = isHeatingBed(); // true if heating, false if cooling
  3947. KEEPALIVE_STATE(NOT_BUSY);
  3948. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3949. {
  3950. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3951. {
  3952. if (!farm_mode) {
  3953. float tt = degHotend(active_extruder);
  3954. SERIAL_PROTOCOLPGM("T:");
  3955. SERIAL_PROTOCOL(tt);
  3956. SERIAL_PROTOCOLPGM(" E:");
  3957. SERIAL_PROTOCOL((int)active_extruder);
  3958. SERIAL_PROTOCOLPGM(" B:");
  3959. SERIAL_PROTOCOL_F(degBed(), 1);
  3960. SERIAL_PROTOCOLLN("");
  3961. }
  3962. codenum = millis();
  3963. }
  3964. manage_heater();
  3965. manage_inactivity();
  3966. lcd_update();
  3967. }
  3968. LCD_MESSAGERPGM(MSG_BED_DONE);
  3969. KEEPALIVE_STATE(IN_HANDLER);
  3970. heating_status = 4;
  3971. previous_millis_cmd = millis();
  3972. #endif
  3973. break;
  3974. #if defined(FAN_PIN) && FAN_PIN > -1
  3975. case 106: //M106 Fan On
  3976. if (code_seen('S')){
  3977. fanSpeed=constrain(code_value(),0,255);
  3978. }
  3979. else {
  3980. fanSpeed=255;
  3981. }
  3982. break;
  3983. case 107: //M107 Fan Off
  3984. fanSpeed = 0;
  3985. break;
  3986. #endif //FAN_PIN
  3987. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3988. case 80: // M80 - Turn on Power Supply
  3989. SET_OUTPUT(PS_ON_PIN); //GND
  3990. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3991. // If you have a switch on suicide pin, this is useful
  3992. // if you want to start another print with suicide feature after
  3993. // a print without suicide...
  3994. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3995. SET_OUTPUT(SUICIDE_PIN);
  3996. WRITE(SUICIDE_PIN, HIGH);
  3997. #endif
  3998. #ifdef ULTIPANEL
  3999. powersupply = true;
  4000. LCD_MESSAGERPGM(WELCOME_MSG);
  4001. lcd_update();
  4002. #endif
  4003. break;
  4004. #endif
  4005. case 81: // M81 - Turn off Power Supply
  4006. disable_heater();
  4007. st_synchronize();
  4008. disable_e0();
  4009. disable_e1();
  4010. disable_e2();
  4011. finishAndDisableSteppers();
  4012. fanSpeed = 0;
  4013. delay(1000); // Wait a little before to switch off
  4014. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4015. st_synchronize();
  4016. suicide();
  4017. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4018. SET_OUTPUT(PS_ON_PIN);
  4019. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4020. #endif
  4021. #ifdef ULTIPANEL
  4022. powersupply = false;
  4023. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4024. /*
  4025. MACHNAME = "Prusa i3"
  4026. MSGOFF = "Vypnuto"
  4027. "Prusai3"" ""vypnuto""."
  4028. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4029. */
  4030. lcd_update();
  4031. #endif
  4032. break;
  4033. case 82:
  4034. axis_relative_modes[3] = false;
  4035. break;
  4036. case 83:
  4037. axis_relative_modes[3] = true;
  4038. break;
  4039. case 18: //compatibility
  4040. case 84: // M84
  4041. if(code_seen('S')){
  4042. stepper_inactive_time = code_value() * 1000;
  4043. }
  4044. else
  4045. {
  4046. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4047. if(all_axis)
  4048. {
  4049. st_synchronize();
  4050. disable_e0();
  4051. disable_e1();
  4052. disable_e2();
  4053. finishAndDisableSteppers();
  4054. }
  4055. else
  4056. {
  4057. st_synchronize();
  4058. if (code_seen('X')) disable_x();
  4059. if (code_seen('Y')) disable_y();
  4060. if (code_seen('Z')) disable_z();
  4061. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4062. if (code_seen('E')) {
  4063. disable_e0();
  4064. disable_e1();
  4065. disable_e2();
  4066. }
  4067. #endif
  4068. }
  4069. }
  4070. snmm_filaments_used = 0;
  4071. break;
  4072. case 85: // M85
  4073. if(code_seen('S')) {
  4074. max_inactive_time = code_value() * 1000;
  4075. }
  4076. break;
  4077. case 92: // M92
  4078. for(int8_t i=0; i < NUM_AXIS; i++)
  4079. {
  4080. if(code_seen(axis_codes[i]))
  4081. {
  4082. if(i == 3) { // E
  4083. float value = code_value();
  4084. if(value < 20.0) {
  4085. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4086. max_jerk[E_AXIS] *= factor;
  4087. max_feedrate[i] *= factor;
  4088. axis_steps_per_sqr_second[i] *= factor;
  4089. }
  4090. axis_steps_per_unit[i] = value;
  4091. }
  4092. else {
  4093. axis_steps_per_unit[i] = code_value();
  4094. }
  4095. }
  4096. }
  4097. break;
  4098. case 110: // M110 - reset line pos
  4099. if (code_seen('N'))
  4100. gcode_LastN = code_value_long();
  4101. break;
  4102. #ifdef HOST_KEEPALIVE_FEATURE
  4103. case 113: // M113 - Get or set Host Keepalive interval
  4104. if (code_seen('S')) {
  4105. host_keepalive_interval = (uint8_t)code_value_short();
  4106. // NOMORE(host_keepalive_interval, 60);
  4107. }
  4108. else {
  4109. SERIAL_ECHO_START;
  4110. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4111. SERIAL_PROTOCOLLN("");
  4112. }
  4113. break;
  4114. #endif
  4115. case 115: // M115
  4116. if (code_seen('V')) {
  4117. // Report the Prusa version number.
  4118. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4119. } else if (code_seen('U')) {
  4120. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4121. // pause the print and ask the user to upgrade the firmware.
  4122. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4123. } else {
  4124. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4125. }
  4126. break;
  4127. /* case 117: // M117 display message
  4128. starpos = (strchr(strchr_pointer + 5,'*'));
  4129. if(starpos!=NULL)
  4130. *(starpos)='\0';
  4131. lcd_setstatus(strchr_pointer + 5);
  4132. break;*/
  4133. case 114: // M114
  4134. SERIAL_PROTOCOLPGM("X:");
  4135. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4136. SERIAL_PROTOCOLPGM(" Y:");
  4137. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4138. SERIAL_PROTOCOLPGM(" Z:");
  4139. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4140. SERIAL_PROTOCOLPGM(" E:");
  4141. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4142. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4143. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4144. SERIAL_PROTOCOLPGM(" Y:");
  4145. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4146. SERIAL_PROTOCOLPGM(" Z:");
  4147. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4148. SERIAL_PROTOCOLPGM(" E:");
  4149. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  4150. SERIAL_PROTOCOLLN("");
  4151. break;
  4152. case 120: // M120
  4153. enable_endstops(false) ;
  4154. break;
  4155. case 121: // M121
  4156. enable_endstops(true) ;
  4157. break;
  4158. case 119: // M119
  4159. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4160. SERIAL_PROTOCOLLN("");
  4161. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4162. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4163. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4164. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4165. }else{
  4166. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4167. }
  4168. SERIAL_PROTOCOLLN("");
  4169. #endif
  4170. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4171. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4172. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4173. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4174. }else{
  4175. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4176. }
  4177. SERIAL_PROTOCOLLN("");
  4178. #endif
  4179. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4180. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4181. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4182. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4183. }else{
  4184. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4185. }
  4186. SERIAL_PROTOCOLLN("");
  4187. #endif
  4188. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4189. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4190. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4191. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4192. }else{
  4193. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4194. }
  4195. SERIAL_PROTOCOLLN("");
  4196. #endif
  4197. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4198. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4199. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4200. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4201. }else{
  4202. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4203. }
  4204. SERIAL_PROTOCOLLN("");
  4205. #endif
  4206. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4207. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4208. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4209. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4210. }else{
  4211. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4212. }
  4213. SERIAL_PROTOCOLLN("");
  4214. #endif
  4215. break;
  4216. //TODO: update for all axis, use for loop
  4217. #ifdef BLINKM
  4218. case 150: // M150
  4219. {
  4220. byte red;
  4221. byte grn;
  4222. byte blu;
  4223. if(code_seen('R')) red = code_value();
  4224. if(code_seen('U')) grn = code_value();
  4225. if(code_seen('B')) blu = code_value();
  4226. SendColors(red,grn,blu);
  4227. }
  4228. break;
  4229. #endif //BLINKM
  4230. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4231. {
  4232. tmp_extruder = active_extruder;
  4233. if(code_seen('T')) {
  4234. tmp_extruder = code_value();
  4235. if(tmp_extruder >= EXTRUDERS) {
  4236. SERIAL_ECHO_START;
  4237. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4238. break;
  4239. }
  4240. }
  4241. float area = .0;
  4242. if(code_seen('D')) {
  4243. float diameter = (float)code_value();
  4244. if (diameter == 0.0) {
  4245. // setting any extruder filament size disables volumetric on the assumption that
  4246. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4247. // for all extruders
  4248. volumetric_enabled = false;
  4249. } else {
  4250. filament_size[tmp_extruder] = (float)code_value();
  4251. // make sure all extruders have some sane value for the filament size
  4252. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4253. #if EXTRUDERS > 1
  4254. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4255. #if EXTRUDERS > 2
  4256. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4257. #endif
  4258. #endif
  4259. volumetric_enabled = true;
  4260. }
  4261. } else {
  4262. //reserved for setting filament diameter via UFID or filament measuring device
  4263. break;
  4264. }
  4265. calculate_volumetric_multipliers();
  4266. }
  4267. break;
  4268. case 201: // M201
  4269. for(int8_t i=0; i < NUM_AXIS; i++)
  4270. {
  4271. if(code_seen(axis_codes[i]))
  4272. {
  4273. max_acceleration_units_per_sq_second[i] = code_value();
  4274. }
  4275. }
  4276. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4277. reset_acceleration_rates();
  4278. break;
  4279. #if 0 // Not used for Sprinter/grbl gen6
  4280. case 202: // M202
  4281. for(int8_t i=0; i < NUM_AXIS; i++) {
  4282. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4283. }
  4284. break;
  4285. #endif
  4286. case 203: // M203 max feedrate mm/sec
  4287. for(int8_t i=0; i < NUM_AXIS; i++) {
  4288. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4289. }
  4290. break;
  4291. case 204: // M204 acclereration S normal moves T filmanent only moves
  4292. {
  4293. if(code_seen('S')) acceleration = code_value() ;
  4294. if(code_seen('T')) retract_acceleration = code_value() ;
  4295. }
  4296. break;
  4297. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4298. {
  4299. if(code_seen('S')) minimumfeedrate = code_value();
  4300. if(code_seen('T')) mintravelfeedrate = code_value();
  4301. if(code_seen('B')) minsegmenttime = code_value() ;
  4302. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4303. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4304. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4305. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4306. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4307. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4308. }
  4309. break;
  4310. case 206: // M206 additional homing offset
  4311. for(int8_t i=0; i < 3; i++)
  4312. {
  4313. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4314. }
  4315. break;
  4316. #ifdef FWRETRACT
  4317. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4318. {
  4319. if(code_seen('S'))
  4320. {
  4321. retract_length = code_value() ;
  4322. }
  4323. if(code_seen('F'))
  4324. {
  4325. retract_feedrate = code_value()/60 ;
  4326. }
  4327. if(code_seen('Z'))
  4328. {
  4329. retract_zlift = code_value() ;
  4330. }
  4331. }break;
  4332. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4333. {
  4334. if(code_seen('S'))
  4335. {
  4336. retract_recover_length = code_value() ;
  4337. }
  4338. if(code_seen('F'))
  4339. {
  4340. retract_recover_feedrate = code_value()/60 ;
  4341. }
  4342. }break;
  4343. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4344. {
  4345. if(code_seen('S'))
  4346. {
  4347. int t= code_value() ;
  4348. switch(t)
  4349. {
  4350. case 0:
  4351. {
  4352. autoretract_enabled=false;
  4353. retracted[0]=false;
  4354. #if EXTRUDERS > 1
  4355. retracted[1]=false;
  4356. #endif
  4357. #if EXTRUDERS > 2
  4358. retracted[2]=false;
  4359. #endif
  4360. }break;
  4361. case 1:
  4362. {
  4363. autoretract_enabled=true;
  4364. retracted[0]=false;
  4365. #if EXTRUDERS > 1
  4366. retracted[1]=false;
  4367. #endif
  4368. #if EXTRUDERS > 2
  4369. retracted[2]=false;
  4370. #endif
  4371. }break;
  4372. default:
  4373. SERIAL_ECHO_START;
  4374. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4375. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4376. SERIAL_ECHOLNPGM("\"(1)");
  4377. }
  4378. }
  4379. }break;
  4380. #endif // FWRETRACT
  4381. #if EXTRUDERS > 1
  4382. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4383. {
  4384. if(setTargetedHotend(218)){
  4385. break;
  4386. }
  4387. if(code_seen('X'))
  4388. {
  4389. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4390. }
  4391. if(code_seen('Y'))
  4392. {
  4393. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4394. }
  4395. SERIAL_ECHO_START;
  4396. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4397. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4398. {
  4399. SERIAL_ECHO(" ");
  4400. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4401. SERIAL_ECHO(",");
  4402. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4403. }
  4404. SERIAL_ECHOLN("");
  4405. }break;
  4406. #endif
  4407. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4408. {
  4409. if(code_seen('S'))
  4410. {
  4411. feedmultiply = code_value() ;
  4412. }
  4413. }
  4414. break;
  4415. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4416. {
  4417. if(code_seen('S'))
  4418. {
  4419. int tmp_code = code_value();
  4420. if (code_seen('T'))
  4421. {
  4422. if(setTargetedHotend(221)){
  4423. break;
  4424. }
  4425. extruder_multiply[tmp_extruder] = tmp_code;
  4426. }
  4427. else
  4428. {
  4429. extrudemultiply = tmp_code ;
  4430. }
  4431. }
  4432. }
  4433. break;
  4434. #ifndef _DISABLE_M42_M226
  4435. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4436. {
  4437. if(code_seen('P')){
  4438. int pin_number = code_value(); // pin number
  4439. int pin_state = -1; // required pin state - default is inverted
  4440. if(code_seen('S')) pin_state = code_value(); // required pin state
  4441. if(pin_state >= -1 && pin_state <= 1){
  4442. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4443. {
  4444. if (sensitive_pins[i] == pin_number)
  4445. {
  4446. pin_number = -1;
  4447. break;
  4448. }
  4449. }
  4450. if (pin_number > -1)
  4451. {
  4452. int target = LOW;
  4453. st_synchronize();
  4454. pinMode(pin_number, INPUT);
  4455. switch(pin_state){
  4456. case 1:
  4457. target = HIGH;
  4458. break;
  4459. case 0:
  4460. target = LOW;
  4461. break;
  4462. case -1:
  4463. target = !digitalRead(pin_number);
  4464. break;
  4465. }
  4466. while(digitalRead(pin_number) != target){
  4467. manage_heater();
  4468. manage_inactivity();
  4469. lcd_update();
  4470. }
  4471. }
  4472. }
  4473. }
  4474. }
  4475. break;
  4476. #endif //_DISABLE_M42_M226
  4477. #if NUM_SERVOS > 0
  4478. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4479. {
  4480. int servo_index = -1;
  4481. int servo_position = 0;
  4482. if (code_seen('P'))
  4483. servo_index = code_value();
  4484. if (code_seen('S')) {
  4485. servo_position = code_value();
  4486. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4487. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4488. servos[servo_index].attach(0);
  4489. #endif
  4490. servos[servo_index].write(servo_position);
  4491. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4492. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4493. servos[servo_index].detach();
  4494. #endif
  4495. }
  4496. else {
  4497. SERIAL_ECHO_START;
  4498. SERIAL_ECHO("Servo ");
  4499. SERIAL_ECHO(servo_index);
  4500. SERIAL_ECHOLN(" out of range");
  4501. }
  4502. }
  4503. else if (servo_index >= 0) {
  4504. SERIAL_PROTOCOL(MSG_OK);
  4505. SERIAL_PROTOCOL(" Servo ");
  4506. SERIAL_PROTOCOL(servo_index);
  4507. SERIAL_PROTOCOL(": ");
  4508. SERIAL_PROTOCOL(servos[servo_index].read());
  4509. SERIAL_PROTOCOLLN("");
  4510. }
  4511. }
  4512. break;
  4513. #endif // NUM_SERVOS > 0
  4514. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4515. case 300: // M300
  4516. {
  4517. int beepS = code_seen('S') ? code_value() : 110;
  4518. int beepP = code_seen('P') ? code_value() : 1000;
  4519. if (beepS > 0)
  4520. {
  4521. #if BEEPER > 0
  4522. tone(BEEPER, beepS);
  4523. delay(beepP);
  4524. noTone(BEEPER);
  4525. #elif defined(ULTRALCD)
  4526. lcd_buzz(beepS, beepP);
  4527. #elif defined(LCD_USE_I2C_BUZZER)
  4528. lcd_buzz(beepP, beepS);
  4529. #endif
  4530. }
  4531. else
  4532. {
  4533. delay(beepP);
  4534. }
  4535. }
  4536. break;
  4537. #endif // M300
  4538. #ifdef PIDTEMP
  4539. case 301: // M301
  4540. {
  4541. if(code_seen('P')) Kp = code_value();
  4542. if(code_seen('I')) Ki = scalePID_i(code_value());
  4543. if(code_seen('D')) Kd = scalePID_d(code_value());
  4544. #ifdef PID_ADD_EXTRUSION_RATE
  4545. if(code_seen('C')) Kc = code_value();
  4546. #endif
  4547. updatePID();
  4548. SERIAL_PROTOCOLRPGM(MSG_OK);
  4549. SERIAL_PROTOCOL(" p:");
  4550. SERIAL_PROTOCOL(Kp);
  4551. SERIAL_PROTOCOL(" i:");
  4552. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4553. SERIAL_PROTOCOL(" d:");
  4554. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4555. #ifdef PID_ADD_EXTRUSION_RATE
  4556. SERIAL_PROTOCOL(" c:");
  4557. //Kc does not have scaling applied above, or in resetting defaults
  4558. SERIAL_PROTOCOL(Kc);
  4559. #endif
  4560. SERIAL_PROTOCOLLN("");
  4561. }
  4562. break;
  4563. #endif //PIDTEMP
  4564. #ifdef PIDTEMPBED
  4565. case 304: // M304
  4566. {
  4567. if(code_seen('P')) bedKp = code_value();
  4568. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4569. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4570. updatePID();
  4571. SERIAL_PROTOCOLRPGM(MSG_OK);
  4572. SERIAL_PROTOCOL(" p:");
  4573. SERIAL_PROTOCOL(bedKp);
  4574. SERIAL_PROTOCOL(" i:");
  4575. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4576. SERIAL_PROTOCOL(" d:");
  4577. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4578. SERIAL_PROTOCOLLN("");
  4579. }
  4580. break;
  4581. #endif //PIDTEMP
  4582. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4583. {
  4584. #ifdef CHDK
  4585. SET_OUTPUT(CHDK);
  4586. WRITE(CHDK, HIGH);
  4587. chdkHigh = millis();
  4588. chdkActive = true;
  4589. #else
  4590. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4591. const uint8_t NUM_PULSES=16;
  4592. const float PULSE_LENGTH=0.01524;
  4593. for(int i=0; i < NUM_PULSES; i++) {
  4594. WRITE(PHOTOGRAPH_PIN, HIGH);
  4595. _delay_ms(PULSE_LENGTH);
  4596. WRITE(PHOTOGRAPH_PIN, LOW);
  4597. _delay_ms(PULSE_LENGTH);
  4598. }
  4599. delay(7.33);
  4600. for(int i=0; i < NUM_PULSES; i++) {
  4601. WRITE(PHOTOGRAPH_PIN, HIGH);
  4602. _delay_ms(PULSE_LENGTH);
  4603. WRITE(PHOTOGRAPH_PIN, LOW);
  4604. _delay_ms(PULSE_LENGTH);
  4605. }
  4606. #endif
  4607. #endif //chdk end if
  4608. }
  4609. break;
  4610. #ifdef DOGLCD
  4611. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4612. {
  4613. if (code_seen('C')) {
  4614. lcd_setcontrast( ((int)code_value())&63 );
  4615. }
  4616. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4617. SERIAL_PROTOCOL(lcd_contrast);
  4618. SERIAL_PROTOCOLLN("");
  4619. }
  4620. break;
  4621. #endif
  4622. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4623. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4624. {
  4625. float temp = .0;
  4626. if (code_seen('S')) temp=code_value();
  4627. set_extrude_min_temp(temp);
  4628. }
  4629. break;
  4630. #endif
  4631. case 303: // M303 PID autotune
  4632. {
  4633. float temp = 150.0;
  4634. int e=0;
  4635. int c=5;
  4636. if (code_seen('E')) e=code_value();
  4637. if (e<0)
  4638. temp=70;
  4639. if (code_seen('S')) temp=code_value();
  4640. if (code_seen('C')) c=code_value();
  4641. PID_autotune(temp, e, c);
  4642. }
  4643. break;
  4644. case 400: // M400 finish all moves
  4645. {
  4646. st_synchronize();
  4647. }
  4648. break;
  4649. #ifdef FILAMENT_SENSOR
  4650. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4651. {
  4652. #if (FILWIDTH_PIN > -1)
  4653. if(code_seen('N')) filament_width_nominal=code_value();
  4654. else{
  4655. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4656. SERIAL_PROTOCOLLN(filament_width_nominal);
  4657. }
  4658. #endif
  4659. }
  4660. break;
  4661. case 405: //M405 Turn on filament sensor for control
  4662. {
  4663. if(code_seen('D')) meas_delay_cm=code_value();
  4664. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4665. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4666. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4667. {
  4668. int temp_ratio = widthFil_to_size_ratio();
  4669. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4670. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4671. }
  4672. delay_index1=0;
  4673. delay_index2=0;
  4674. }
  4675. filament_sensor = true ;
  4676. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4677. //SERIAL_PROTOCOL(filament_width_meas);
  4678. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4679. //SERIAL_PROTOCOL(extrudemultiply);
  4680. }
  4681. break;
  4682. case 406: //M406 Turn off filament sensor for control
  4683. {
  4684. filament_sensor = false ;
  4685. }
  4686. break;
  4687. case 407: //M407 Display measured filament diameter
  4688. {
  4689. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4690. SERIAL_PROTOCOLLN(filament_width_meas);
  4691. }
  4692. break;
  4693. #endif
  4694. case 500: // M500 Store settings in EEPROM
  4695. {
  4696. Config_StoreSettings(EEPROM_OFFSET);
  4697. }
  4698. break;
  4699. case 501: // M501 Read settings from EEPROM
  4700. {
  4701. Config_RetrieveSettings(EEPROM_OFFSET);
  4702. }
  4703. break;
  4704. case 502: // M502 Revert to default settings
  4705. {
  4706. Config_ResetDefault();
  4707. }
  4708. break;
  4709. case 503: // M503 print settings currently in memory
  4710. {
  4711. Config_PrintSettings();
  4712. }
  4713. break;
  4714. case 509: //M509 Force language selection
  4715. {
  4716. lcd_force_language_selection();
  4717. SERIAL_ECHO_START;
  4718. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4719. }
  4720. break;
  4721. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4722. case 540:
  4723. {
  4724. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4725. }
  4726. break;
  4727. #endif
  4728. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4729. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4730. {
  4731. float value;
  4732. if (code_seen('Z'))
  4733. {
  4734. value = code_value();
  4735. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4736. {
  4737. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4738. SERIAL_ECHO_START;
  4739. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4740. SERIAL_PROTOCOLLN("");
  4741. }
  4742. else
  4743. {
  4744. SERIAL_ECHO_START;
  4745. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4746. SERIAL_ECHORPGM(MSG_Z_MIN);
  4747. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4748. SERIAL_ECHORPGM(MSG_Z_MAX);
  4749. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4750. SERIAL_PROTOCOLLN("");
  4751. }
  4752. }
  4753. else
  4754. {
  4755. SERIAL_ECHO_START;
  4756. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4757. SERIAL_ECHO(-zprobe_zoffset);
  4758. SERIAL_PROTOCOLLN("");
  4759. }
  4760. break;
  4761. }
  4762. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4763. #ifdef FILAMENTCHANGEENABLE
  4764. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4765. {
  4766. bool old_fsensor_enabled = fsensor_enabled;
  4767. fsensor_enabled = false; //temporary solution for unexpected restarting
  4768. st_synchronize();
  4769. float target[4];
  4770. float lastpos[4];
  4771. if (farm_mode)
  4772. {
  4773. prusa_statistics(22);
  4774. }
  4775. feedmultiplyBckp=feedmultiply;
  4776. int8_t TooLowZ = 0;
  4777. float HotendTempBckp = degTargetHotend(active_extruder);
  4778. int fanSpeedBckp = fanSpeed;
  4779. target[X_AXIS]=current_position[X_AXIS];
  4780. target[Y_AXIS]=current_position[Y_AXIS];
  4781. target[Z_AXIS]=current_position[Z_AXIS];
  4782. target[E_AXIS]=current_position[E_AXIS];
  4783. lastpos[X_AXIS]=current_position[X_AXIS];
  4784. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4785. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4786. lastpos[E_AXIS]=current_position[E_AXIS];
  4787. //Restract extruder
  4788. if(code_seen('E'))
  4789. {
  4790. target[E_AXIS]+= code_value();
  4791. }
  4792. else
  4793. {
  4794. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4795. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4796. #endif
  4797. }
  4798. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4799. //Lift Z
  4800. if(code_seen('Z'))
  4801. {
  4802. target[Z_AXIS]+= code_value();
  4803. }
  4804. else
  4805. {
  4806. #ifdef FILAMENTCHANGE_ZADD
  4807. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4808. if(target[Z_AXIS] < 10){
  4809. target[Z_AXIS]+= 10 ;
  4810. TooLowZ = 1;
  4811. }else{
  4812. TooLowZ = 0;
  4813. }
  4814. #endif
  4815. }
  4816. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4817. //Move XY to side
  4818. if(code_seen('X'))
  4819. {
  4820. target[X_AXIS]+= code_value();
  4821. }
  4822. else
  4823. {
  4824. #ifdef FILAMENTCHANGE_XPOS
  4825. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4826. #endif
  4827. }
  4828. if(code_seen('Y'))
  4829. {
  4830. target[Y_AXIS]= code_value();
  4831. }
  4832. else
  4833. {
  4834. #ifdef FILAMENTCHANGE_YPOS
  4835. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4836. #endif
  4837. }
  4838. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4839. st_synchronize();
  4840. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4841. uint8_t cnt = 0;
  4842. int counterBeep = 0;
  4843. fanSpeed = 0;
  4844. unsigned long waiting_start_time = millis();
  4845. uint8_t wait_for_user_state = 0;
  4846. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4847. while (!(wait_for_user_state == 0 && lcd_clicked())){
  4848. //cnt++;
  4849. manage_heater();
  4850. manage_inactivity(true);
  4851. /*#ifdef SNMM
  4852. target[E_AXIS] += 0.002;
  4853. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4854. #endif // SNMM*/
  4855. //if (cnt == 0)
  4856. {
  4857. #if BEEPER > 0
  4858. if (counterBeep == 500) {
  4859. counterBeep = 0;
  4860. }
  4861. SET_OUTPUT(BEEPER);
  4862. if (counterBeep == 0) {
  4863. WRITE(BEEPER, HIGH);
  4864. }
  4865. if (counterBeep == 20) {
  4866. WRITE(BEEPER, LOW);
  4867. }
  4868. counterBeep++;
  4869. #else
  4870. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4871. lcd_buzz(1000 / 6, 100);
  4872. #else
  4873. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4874. #endif
  4875. #endif
  4876. }
  4877. switch (wait_for_user_state) {
  4878. case 0:
  4879. delay_keep_alive(4);
  4880. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  4881. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  4882. wait_for_user_state = 1;
  4883. setTargetHotend(0, 0);
  4884. setTargetHotend(0, 1);
  4885. setTargetHotend(0, 2);
  4886. st_synchronize();
  4887. disable_e0();
  4888. disable_e1();
  4889. disable_e2();
  4890. }
  4891. break;
  4892. case 1:
  4893. delay_keep_alive(4);
  4894. if (lcd_clicked()) {
  4895. setTargetHotend(HotendTempBckp, active_extruder);
  4896. lcd_wait_for_heater();
  4897. wait_for_user_state = 2;
  4898. }
  4899. break;
  4900. case 2:
  4901. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  4902. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4903. waiting_start_time = millis();
  4904. wait_for_user_state = 0;
  4905. }
  4906. else {
  4907. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  4908. lcd.setCursor(1, 4);
  4909. lcd.print(ftostr3(degHotend(active_extruder)));
  4910. }
  4911. break;
  4912. }
  4913. }
  4914. WRITE(BEEPER, LOW);
  4915. lcd_change_fil_state = 0;
  4916. // Unload filament
  4917. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  4918. KEEPALIVE_STATE(IN_HANDLER);
  4919. custom_message = true;
  4920. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4921. if (code_seen('L'))
  4922. {
  4923. target[E_AXIS] += code_value();
  4924. }
  4925. else
  4926. {
  4927. #ifdef SNMM
  4928. #else
  4929. #ifdef FILAMENTCHANGE_FINALRETRACT
  4930. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4931. #endif
  4932. #endif // SNMM
  4933. }
  4934. #ifdef SNMM
  4935. target[E_AXIS] += 12;
  4936. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4937. target[E_AXIS] += 6;
  4938. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4939. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4940. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4941. st_synchronize();
  4942. target[E_AXIS] += (FIL_COOLING);
  4943. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4944. target[E_AXIS] += (FIL_COOLING*-1);
  4945. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4946. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  4947. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4948. st_synchronize();
  4949. #else
  4950. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4951. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  4952. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4953. target[E_AXIS] -= 45;
  4954. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  4955. st_synchronize();
  4956. target[E_AXIS] -= 15;
  4957. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  4958. st_synchronize();
  4959. target[E_AXIS] -= 20;
  4960. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  4961. st_synchronize();
  4962. #endif // SNMM
  4963. //finish moves
  4964. st_synchronize();
  4965. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  4966. //disable extruder steppers so filament can be removed
  4967. disable_e0();
  4968. disable_e1();
  4969. disable_e2();
  4970. delay(100);
  4971. WRITE(BEEPER, HIGH);
  4972. counterBeep = 0;
  4973. while(!lcd_clicked() && (counterBeep < 50)) {
  4974. if(counterBeep > 5) WRITE(BEEPER, LOW);
  4975. delay_keep_alive(100);
  4976. counterBeep++;
  4977. }
  4978. WRITE(BEEPER, LOW);
  4979. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4980. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true);
  4981. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  4982. //lcd_return_to_status();
  4983. lcd_update_enable(true);
  4984. //Wait for user to insert filament
  4985. lcd_wait_interact();
  4986. //load_filament_time = millis();
  4987. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4988. #ifdef PAT9125
  4989. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  4990. #endif //PAT9125
  4991. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  4992. while(!lcd_clicked())
  4993. {
  4994. manage_heater();
  4995. manage_inactivity(true);
  4996. #ifdef PAT9125
  4997. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  4998. {
  4999. tone(BEEPER, 1000);
  5000. delay_keep_alive(50);
  5001. noTone(BEEPER);
  5002. break;
  5003. }
  5004. #endif //PAT9125
  5005. /*#ifdef SNMM
  5006. target[E_AXIS] += 0.002;
  5007. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5008. #endif // SNMM*/
  5009. }
  5010. #ifdef PAT9125
  5011. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5012. #endif //PAT9125
  5013. //WRITE(BEEPER, LOW);
  5014. KEEPALIVE_STATE(IN_HANDLER);
  5015. #ifdef SNMM
  5016. display_loading();
  5017. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5018. do {
  5019. target[E_AXIS] += 0.002;
  5020. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5021. delay_keep_alive(2);
  5022. } while (!lcd_clicked());
  5023. KEEPALIVE_STATE(IN_HANDLER);
  5024. /*if (millis() - load_filament_time > 2) {
  5025. load_filament_time = millis();
  5026. target[E_AXIS] += 0.001;
  5027. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5028. }*/
  5029. //Filament inserted
  5030. //Feed the filament to the end of nozzle quickly
  5031. st_synchronize();
  5032. target[E_AXIS] += bowden_length[snmm_extruder];
  5033. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5034. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5035. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5036. target[E_AXIS] += 40;
  5037. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5038. target[E_AXIS] += 10;
  5039. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5040. #else
  5041. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5042. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5043. #endif // SNMM
  5044. //Extrude some filament
  5045. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5046. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5047. //Wait for user to check the state
  5048. lcd_change_fil_state = 0;
  5049. lcd_loading_filament();
  5050. tone(BEEPER, 500);
  5051. delay_keep_alive(50);
  5052. noTone(BEEPER);
  5053. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5054. lcd_change_fil_state = 0;
  5055. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5056. lcd_alright();
  5057. KEEPALIVE_STATE(IN_HANDLER);
  5058. switch(lcd_change_fil_state){
  5059. // Filament failed to load so load it again
  5060. case 2:
  5061. #ifdef SNMM
  5062. display_loading();
  5063. do {
  5064. target[E_AXIS] += 0.002;
  5065. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5066. delay_keep_alive(2);
  5067. } while (!lcd_clicked());
  5068. st_synchronize();
  5069. target[E_AXIS] += bowden_length[snmm_extruder];
  5070. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5071. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5072. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5073. target[E_AXIS] += 40;
  5074. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5075. target[E_AXIS] += 10;
  5076. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5077. #else
  5078. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5079. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5080. #endif
  5081. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5082. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5083. lcd_loading_filament();
  5084. break;
  5085. // Filament loaded properly but color is not clear
  5086. case 3:
  5087. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5088. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5089. lcd_loading_color();
  5090. break;
  5091. // Everything good
  5092. default:
  5093. lcd_change_success();
  5094. lcd_update_enable(true);
  5095. break;
  5096. }
  5097. }
  5098. //Not let's go back to print
  5099. fanSpeed = fanSpeedBckp;
  5100. //Feed a little of filament to stabilize pressure
  5101. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5102. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5103. //Retract
  5104. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5105. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5106. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5107. //Move XY back
  5108. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5109. //Move Z back
  5110. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5111. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5112. //Unretract
  5113. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5114. //Set E position to original
  5115. plan_set_e_position(lastpos[E_AXIS]);
  5116. //Recover feed rate
  5117. feedmultiply=feedmultiplyBckp;
  5118. char cmd[9];
  5119. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5120. enquecommand(cmd);
  5121. lcd_setstatuspgm(WELCOME_MSG);
  5122. custom_message = false;
  5123. custom_message_type = 0;
  5124. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5125. #ifdef PAT9125
  5126. if (fsensor_M600)
  5127. {
  5128. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5129. st_synchronize();
  5130. while (!is_buffer_empty())
  5131. {
  5132. process_commands();
  5133. cmdqueue_pop_front();
  5134. }
  5135. fsensor_enable();
  5136. fsensor_restore_print_and_continue();
  5137. }
  5138. #endif //PAT9125
  5139. }
  5140. break;
  5141. #endif //FILAMENTCHANGEENABLE
  5142. case 601: {
  5143. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5144. }
  5145. break;
  5146. case 602: {
  5147. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5148. }
  5149. break;
  5150. #ifdef LIN_ADVANCE
  5151. case 900: // M900: Set LIN_ADVANCE options.
  5152. gcode_M900();
  5153. break;
  5154. #endif
  5155. case 907: // M907 Set digital trimpot motor current using axis codes.
  5156. {
  5157. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5158. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5159. if(code_seen('B')) digipot_current(4,code_value());
  5160. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5161. #endif
  5162. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5163. if(code_seen('X')) digipot_current(0, code_value());
  5164. #endif
  5165. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5166. if(code_seen('Z')) digipot_current(1, code_value());
  5167. #endif
  5168. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5169. if(code_seen('E')) digipot_current(2, code_value());
  5170. #endif
  5171. #ifdef DIGIPOT_I2C
  5172. // this one uses actual amps in floating point
  5173. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5174. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5175. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5176. #endif
  5177. }
  5178. break;
  5179. case 908: // M908 Control digital trimpot directly.
  5180. {
  5181. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5182. uint8_t channel,current;
  5183. if(code_seen('P')) channel=code_value();
  5184. if(code_seen('S')) current=code_value();
  5185. digitalPotWrite(channel, current);
  5186. #endif
  5187. }
  5188. break;
  5189. case 910: // M910 TMC2130 init
  5190. {
  5191. tmc2130_init();
  5192. }
  5193. break;
  5194. case 911: // M911 Set TMC2130 holding currents
  5195. {
  5196. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5197. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5198. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5199. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5200. }
  5201. break;
  5202. case 912: // M912 Set TMC2130 running currents
  5203. {
  5204. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5205. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5206. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5207. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5208. }
  5209. break;
  5210. case 913: // M913 Print TMC2130 currents
  5211. {
  5212. tmc2130_print_currents();
  5213. }
  5214. break;
  5215. case 914: // M914 Set normal mode
  5216. {
  5217. tmc2130_mode = TMC2130_MODE_NORMAL;
  5218. tmc2130_init();
  5219. }
  5220. break;
  5221. case 915: // M915 Set silent mode
  5222. {
  5223. tmc2130_mode = TMC2130_MODE_SILENT;
  5224. tmc2130_init();
  5225. }
  5226. break;
  5227. case 916: // M916 Set sg_thrs
  5228. {
  5229. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5230. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5231. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5232. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5233. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5234. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5235. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5236. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5237. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5238. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5239. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5240. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5241. }
  5242. break;
  5243. case 917: // M917 Set TMC2130 pwm_ampl
  5244. {
  5245. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5246. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5247. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5248. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5249. }
  5250. break;
  5251. case 918: // M918 Set TMC2130 pwm_grad
  5252. {
  5253. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5254. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5255. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5256. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5257. }
  5258. break;
  5259. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5260. {
  5261. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5262. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5263. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5264. if(code_seen('B')) microstep_mode(4,code_value());
  5265. microstep_readings();
  5266. #endif
  5267. }
  5268. break;
  5269. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5270. {
  5271. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5272. if(code_seen('S')) switch((int)code_value())
  5273. {
  5274. case 1:
  5275. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5276. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5277. break;
  5278. case 2:
  5279. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5280. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5281. break;
  5282. }
  5283. microstep_readings();
  5284. #endif
  5285. }
  5286. break;
  5287. case 701: //M701: load filament
  5288. {
  5289. gcode_M701();
  5290. }
  5291. break;
  5292. case 702:
  5293. {
  5294. #ifdef SNMM
  5295. if (code_seen('U')) {
  5296. extr_unload_used(); //unload all filaments which were used in current print
  5297. }
  5298. else if (code_seen('C')) {
  5299. extr_unload(); //unload just current filament
  5300. }
  5301. else {
  5302. extr_unload_all(); //unload all filaments
  5303. }
  5304. #else
  5305. bool old_fsensor_enabled = fsensor_enabled;
  5306. fsensor_enabled = false;
  5307. custom_message = true;
  5308. custom_message_type = 2;
  5309. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5310. // extr_unload2();
  5311. current_position[E_AXIS] -= 45;
  5312. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5313. st_synchronize();
  5314. current_position[E_AXIS] -= 15;
  5315. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5316. st_synchronize();
  5317. current_position[E_AXIS] -= 20;
  5318. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5319. st_synchronize();
  5320. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5321. //disable extruder steppers so filament can be removed
  5322. disable_e0();
  5323. disable_e1();
  5324. disable_e2();
  5325. delay(100);
  5326. WRITE(BEEPER, HIGH);
  5327. uint8_t counterBeep = 0;
  5328. while (!lcd_clicked() && (counterBeep < 50)) {
  5329. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5330. delay_keep_alive(100);
  5331. counterBeep++;
  5332. }
  5333. WRITE(BEEPER, LOW);
  5334. st_synchronize();
  5335. while (lcd_clicked()) delay_keep_alive(100);
  5336. lcd_update_enable(true);
  5337. lcd_setstatuspgm(WELCOME_MSG);
  5338. custom_message = false;
  5339. custom_message_type = 0;
  5340. fsensor_enabled = old_fsensor_enabled;
  5341. #endif
  5342. }
  5343. break;
  5344. case 999: // M999: Restart after being stopped
  5345. Stopped = false;
  5346. lcd_reset_alert_level();
  5347. gcode_LastN = Stopped_gcode_LastN;
  5348. FlushSerialRequestResend();
  5349. break;
  5350. default:
  5351. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5352. }
  5353. } // end if(code_seen('M')) (end of M codes)
  5354. else if(code_seen('T'))
  5355. {
  5356. int index;
  5357. st_synchronize();
  5358. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5359. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5360. SERIAL_ECHOLNPGM("Invalid T code.");
  5361. }
  5362. else {
  5363. if (*(strchr_pointer + index) == '?') {
  5364. tmp_extruder = choose_extruder_menu();
  5365. }
  5366. else {
  5367. tmp_extruder = code_value();
  5368. }
  5369. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5370. #ifdef SNMM
  5371. #ifdef LIN_ADVANCE
  5372. if (snmm_extruder != tmp_extruder)
  5373. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5374. #endif
  5375. snmm_extruder = tmp_extruder;
  5376. delay(100);
  5377. disable_e0();
  5378. disable_e1();
  5379. disable_e2();
  5380. pinMode(E_MUX0_PIN, OUTPUT);
  5381. pinMode(E_MUX1_PIN, OUTPUT);
  5382. pinMode(E_MUX2_PIN, OUTPUT);
  5383. delay(100);
  5384. SERIAL_ECHO_START;
  5385. SERIAL_ECHO("T:");
  5386. SERIAL_ECHOLN((int)tmp_extruder);
  5387. switch (tmp_extruder) {
  5388. case 1:
  5389. WRITE(E_MUX0_PIN, HIGH);
  5390. WRITE(E_MUX1_PIN, LOW);
  5391. WRITE(E_MUX2_PIN, LOW);
  5392. break;
  5393. case 2:
  5394. WRITE(E_MUX0_PIN, LOW);
  5395. WRITE(E_MUX1_PIN, HIGH);
  5396. WRITE(E_MUX2_PIN, LOW);
  5397. break;
  5398. case 3:
  5399. WRITE(E_MUX0_PIN, HIGH);
  5400. WRITE(E_MUX1_PIN, HIGH);
  5401. WRITE(E_MUX2_PIN, LOW);
  5402. break;
  5403. default:
  5404. WRITE(E_MUX0_PIN, LOW);
  5405. WRITE(E_MUX1_PIN, LOW);
  5406. WRITE(E_MUX2_PIN, LOW);
  5407. break;
  5408. }
  5409. delay(100);
  5410. #else
  5411. if (tmp_extruder >= EXTRUDERS) {
  5412. SERIAL_ECHO_START;
  5413. SERIAL_ECHOPGM("T");
  5414. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5415. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5416. }
  5417. else {
  5418. boolean make_move = false;
  5419. if (code_seen('F')) {
  5420. make_move = true;
  5421. next_feedrate = code_value();
  5422. if (next_feedrate > 0.0) {
  5423. feedrate = next_feedrate;
  5424. }
  5425. }
  5426. #if EXTRUDERS > 1
  5427. if (tmp_extruder != active_extruder) {
  5428. // Save current position to return to after applying extruder offset
  5429. memcpy(destination, current_position, sizeof(destination));
  5430. // Offset extruder (only by XY)
  5431. int i;
  5432. for (i = 0; i < 2; i++) {
  5433. current_position[i] = current_position[i] -
  5434. extruder_offset[i][active_extruder] +
  5435. extruder_offset[i][tmp_extruder];
  5436. }
  5437. // Set the new active extruder and position
  5438. active_extruder = tmp_extruder;
  5439. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5440. // Move to the old position if 'F' was in the parameters
  5441. if (make_move && Stopped == false) {
  5442. prepare_move();
  5443. }
  5444. }
  5445. #endif
  5446. SERIAL_ECHO_START;
  5447. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5448. SERIAL_PROTOCOLLN((int)active_extruder);
  5449. }
  5450. #endif
  5451. }
  5452. } // end if(code_seen('T')) (end of T codes)
  5453. #ifdef DEBUG_DCODES
  5454. else if (code_seen('D')) // D codes (debug)
  5455. {
  5456. switch((int)code_value())
  5457. {
  5458. case -1: // D-1 - Endless loop
  5459. dcode__1(); break;
  5460. case 0: // D0 - Reset
  5461. dcode_0(); break;
  5462. case 1: // D1 - Clear EEPROM
  5463. dcode_1(); break;
  5464. case 2: // D2 - Read/Write RAM
  5465. dcode_2(); break;
  5466. case 3: // D3 - Read/Write EEPROM
  5467. dcode_3(); break;
  5468. case 4: // D4 - Read/Write PIN
  5469. dcode_4(); break;
  5470. case 5: // D5 - Read/Write FLASH
  5471. // dcode_5(); break;
  5472. break;
  5473. case 6: // D6 - Read/Write external FLASH
  5474. dcode_6(); break;
  5475. case 7: // D7 - Read/Write Bootloader
  5476. dcode_7(); break;
  5477. case 8: // D8 - Read/Write PINDA
  5478. dcode_8(); break;
  5479. case 9: // D9 - Read/Write ADC
  5480. dcode_9(); break;
  5481. case 10: // D10 - XYZ calibration = OK
  5482. dcode_10(); break;
  5483. case 12: //D12 - Reset failstat counters
  5484. dcode_12(); break;
  5485. case 2130: // D9125 - TMC2130
  5486. dcode_2130(); break;
  5487. case 9125: // D9125 - PAT9125
  5488. dcode_9125(); break;
  5489. }
  5490. }
  5491. #endif //DEBUG_DCODES
  5492. else
  5493. {
  5494. SERIAL_ECHO_START;
  5495. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5496. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5497. SERIAL_ECHOLNPGM("\"(2)");
  5498. }
  5499. KEEPALIVE_STATE(NOT_BUSY);
  5500. ClearToSend();
  5501. }
  5502. void FlushSerialRequestResend()
  5503. {
  5504. //char cmdbuffer[bufindr][100]="Resend:";
  5505. MYSERIAL.flush();
  5506. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5507. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5508. previous_millis_cmd = millis();
  5509. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5510. }
  5511. // Confirm the execution of a command, if sent from a serial line.
  5512. // Execution of a command from a SD card will not be confirmed.
  5513. void ClearToSend()
  5514. {
  5515. previous_millis_cmd = millis();
  5516. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5517. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5518. }
  5519. void get_coordinates()
  5520. {
  5521. bool seen[4]={false,false,false,false};
  5522. for(int8_t i=0; i < NUM_AXIS; i++) {
  5523. if(code_seen(axis_codes[i]))
  5524. {
  5525. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5526. seen[i]=true;
  5527. }
  5528. else destination[i] = current_position[i]; //Are these else lines really needed?
  5529. }
  5530. if(code_seen('F')) {
  5531. next_feedrate = code_value();
  5532. #ifdef MAX_SILENT_FEEDRATE
  5533. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5534. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5535. #endif //MAX_SILENT_FEEDRATE
  5536. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5537. }
  5538. }
  5539. void get_arc_coordinates()
  5540. {
  5541. #ifdef SF_ARC_FIX
  5542. bool relative_mode_backup = relative_mode;
  5543. relative_mode = true;
  5544. #endif
  5545. get_coordinates();
  5546. #ifdef SF_ARC_FIX
  5547. relative_mode=relative_mode_backup;
  5548. #endif
  5549. if(code_seen('I')) {
  5550. offset[0] = code_value();
  5551. }
  5552. else {
  5553. offset[0] = 0.0;
  5554. }
  5555. if(code_seen('J')) {
  5556. offset[1] = code_value();
  5557. }
  5558. else {
  5559. offset[1] = 0.0;
  5560. }
  5561. }
  5562. void clamp_to_software_endstops(float target[3])
  5563. {
  5564. #ifdef DEBUG_DISABLE_SWLIMITS
  5565. return;
  5566. #endif //DEBUG_DISABLE_SWLIMITS
  5567. world2machine_clamp(target[0], target[1]);
  5568. // Clamp the Z coordinate.
  5569. if (min_software_endstops) {
  5570. float negative_z_offset = 0;
  5571. #ifdef ENABLE_AUTO_BED_LEVELING
  5572. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5573. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5574. #endif
  5575. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5576. }
  5577. if (max_software_endstops) {
  5578. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5579. }
  5580. }
  5581. #ifdef MESH_BED_LEVELING
  5582. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5583. float dx = x - current_position[X_AXIS];
  5584. float dy = y - current_position[Y_AXIS];
  5585. float dz = z - current_position[Z_AXIS];
  5586. int n_segments = 0;
  5587. if (mbl.active) {
  5588. float len = abs(dx) + abs(dy);
  5589. if (len > 0)
  5590. // Split to 3cm segments or shorter.
  5591. n_segments = int(ceil(len / 30.f));
  5592. }
  5593. if (n_segments > 1) {
  5594. float de = e - current_position[E_AXIS];
  5595. for (int i = 1; i < n_segments; ++ i) {
  5596. float t = float(i) / float(n_segments);
  5597. plan_buffer_line(
  5598. current_position[X_AXIS] + t * dx,
  5599. current_position[Y_AXIS] + t * dy,
  5600. current_position[Z_AXIS] + t * dz,
  5601. current_position[E_AXIS] + t * de,
  5602. feed_rate, extruder);
  5603. }
  5604. }
  5605. // The rest of the path.
  5606. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5607. current_position[X_AXIS] = x;
  5608. current_position[Y_AXIS] = y;
  5609. current_position[Z_AXIS] = z;
  5610. current_position[E_AXIS] = e;
  5611. }
  5612. #endif // MESH_BED_LEVELING
  5613. void prepare_move()
  5614. {
  5615. clamp_to_software_endstops(destination);
  5616. previous_millis_cmd = millis();
  5617. // Do not use feedmultiply for E or Z only moves
  5618. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5619. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5620. }
  5621. else {
  5622. #ifdef MESH_BED_LEVELING
  5623. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5624. #else
  5625. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5626. #endif
  5627. }
  5628. for(int8_t i=0; i < NUM_AXIS; i++) {
  5629. current_position[i] = destination[i];
  5630. }
  5631. }
  5632. void prepare_arc_move(char isclockwise) {
  5633. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5634. // Trace the arc
  5635. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5636. // As far as the parser is concerned, the position is now == target. In reality the
  5637. // motion control system might still be processing the action and the real tool position
  5638. // in any intermediate location.
  5639. for(int8_t i=0; i < NUM_AXIS; i++) {
  5640. current_position[i] = destination[i];
  5641. }
  5642. previous_millis_cmd = millis();
  5643. }
  5644. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5645. #if defined(FAN_PIN)
  5646. #if CONTROLLERFAN_PIN == FAN_PIN
  5647. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5648. #endif
  5649. #endif
  5650. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5651. unsigned long lastMotorCheck = 0;
  5652. void controllerFan()
  5653. {
  5654. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5655. {
  5656. lastMotorCheck = millis();
  5657. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5658. #if EXTRUDERS > 2
  5659. || !READ(E2_ENABLE_PIN)
  5660. #endif
  5661. #if EXTRUDER > 1
  5662. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5663. || !READ(X2_ENABLE_PIN)
  5664. #endif
  5665. || !READ(E1_ENABLE_PIN)
  5666. #endif
  5667. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5668. {
  5669. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5670. }
  5671. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5672. {
  5673. digitalWrite(CONTROLLERFAN_PIN, 0);
  5674. analogWrite(CONTROLLERFAN_PIN, 0);
  5675. }
  5676. else
  5677. {
  5678. // allows digital or PWM fan output to be used (see M42 handling)
  5679. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5680. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5681. }
  5682. }
  5683. }
  5684. #endif
  5685. #ifdef TEMP_STAT_LEDS
  5686. static bool blue_led = false;
  5687. static bool red_led = false;
  5688. static uint32_t stat_update = 0;
  5689. void handle_status_leds(void) {
  5690. float max_temp = 0.0;
  5691. if(millis() > stat_update) {
  5692. stat_update += 500; // Update every 0.5s
  5693. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5694. max_temp = max(max_temp, degHotend(cur_extruder));
  5695. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5696. }
  5697. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5698. max_temp = max(max_temp, degTargetBed());
  5699. max_temp = max(max_temp, degBed());
  5700. #endif
  5701. if((max_temp > 55.0) && (red_led == false)) {
  5702. digitalWrite(STAT_LED_RED, 1);
  5703. digitalWrite(STAT_LED_BLUE, 0);
  5704. red_led = true;
  5705. blue_led = false;
  5706. }
  5707. if((max_temp < 54.0) && (blue_led == false)) {
  5708. digitalWrite(STAT_LED_RED, 0);
  5709. digitalWrite(STAT_LED_BLUE, 1);
  5710. red_led = false;
  5711. blue_led = true;
  5712. }
  5713. }
  5714. }
  5715. #endif
  5716. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5717. {
  5718. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  5719. {
  5720. if (fsensor_autoload_enabled)
  5721. {
  5722. if (fsensor_check_autoload())
  5723. {
  5724. if (degHotend0() > EXTRUDE_MINTEMP)
  5725. {
  5726. fsensor_autoload_check_stop();
  5727. tone(BEEPER, 1000);
  5728. delay_keep_alive(50);
  5729. noTone(BEEPER);
  5730. loading_flag = true;
  5731. enquecommand_front_P((PSTR("M701")));
  5732. }
  5733. else
  5734. {
  5735. lcd_update_enable(false);
  5736. lcd_implementation_clear();
  5737. lcd.setCursor(0, 0);
  5738. lcd_printPGM(MSG_ERROR);
  5739. lcd.setCursor(0, 2);
  5740. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  5741. delay(2000);
  5742. lcd_implementation_clear();
  5743. lcd_update_enable(true);
  5744. }
  5745. }
  5746. }
  5747. else
  5748. fsensor_autoload_check_start();
  5749. }
  5750. else
  5751. if (fsensor_autoload_enabled)
  5752. fsensor_autoload_check_stop();
  5753. #if defined(KILL_PIN) && KILL_PIN > -1
  5754. static int killCount = 0; // make the inactivity button a bit less responsive
  5755. const int KILL_DELAY = 10000;
  5756. #endif
  5757. if(buflen < (BUFSIZE-1)){
  5758. get_command();
  5759. }
  5760. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5761. if(max_inactive_time)
  5762. kill("", 4);
  5763. if(stepper_inactive_time) {
  5764. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5765. {
  5766. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5767. disable_x();
  5768. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5769. disable_y();
  5770. disable_z();
  5771. disable_e0();
  5772. disable_e1();
  5773. disable_e2();
  5774. }
  5775. }
  5776. }
  5777. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5778. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5779. {
  5780. chdkActive = false;
  5781. WRITE(CHDK, LOW);
  5782. }
  5783. #endif
  5784. #if defined(KILL_PIN) && KILL_PIN > -1
  5785. // Check if the kill button was pressed and wait just in case it was an accidental
  5786. // key kill key press
  5787. // -------------------------------------------------------------------------------
  5788. if( 0 == READ(KILL_PIN) )
  5789. {
  5790. killCount++;
  5791. }
  5792. else if (killCount > 0)
  5793. {
  5794. killCount--;
  5795. }
  5796. // Exceeded threshold and we can confirm that it was not accidental
  5797. // KILL the machine
  5798. // ----------------------------------------------------------------
  5799. if ( killCount >= KILL_DELAY)
  5800. {
  5801. kill("", 5);
  5802. }
  5803. #endif
  5804. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5805. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5806. #endif
  5807. #ifdef EXTRUDER_RUNOUT_PREVENT
  5808. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5809. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5810. {
  5811. bool oldstatus=READ(E0_ENABLE_PIN);
  5812. enable_e0();
  5813. float oldepos=current_position[E_AXIS];
  5814. float oldedes=destination[E_AXIS];
  5815. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5816. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5817. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5818. current_position[E_AXIS]=oldepos;
  5819. destination[E_AXIS]=oldedes;
  5820. plan_set_e_position(oldepos);
  5821. previous_millis_cmd=millis();
  5822. st_synchronize();
  5823. WRITE(E0_ENABLE_PIN,oldstatus);
  5824. }
  5825. #endif
  5826. #ifdef TEMP_STAT_LEDS
  5827. handle_status_leds();
  5828. #endif
  5829. check_axes_activity();
  5830. }
  5831. void kill(const char *full_screen_message, unsigned char id)
  5832. {
  5833. SERIAL_ECHOPGM("KILL: ");
  5834. MYSERIAL.println(int(id));
  5835. //return;
  5836. cli(); // Stop interrupts
  5837. disable_heater();
  5838. disable_x();
  5839. // SERIAL_ECHOLNPGM("kill - disable Y");
  5840. disable_y();
  5841. disable_z();
  5842. disable_e0();
  5843. disable_e1();
  5844. disable_e2();
  5845. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5846. pinMode(PS_ON_PIN,INPUT);
  5847. #endif
  5848. SERIAL_ERROR_START;
  5849. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5850. if (full_screen_message != NULL) {
  5851. SERIAL_ERRORLNRPGM(full_screen_message);
  5852. lcd_display_message_fullscreen_P(full_screen_message);
  5853. } else {
  5854. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5855. }
  5856. // FMC small patch to update the LCD before ending
  5857. sei(); // enable interrupts
  5858. for ( int i=5; i--; lcd_update())
  5859. {
  5860. delay(200);
  5861. }
  5862. cli(); // disable interrupts
  5863. suicide();
  5864. while(1)
  5865. {
  5866. wdt_reset();
  5867. /* Intentionally left empty */
  5868. } // Wait for reset
  5869. }
  5870. void Stop()
  5871. {
  5872. disable_heater();
  5873. if(Stopped == false) {
  5874. Stopped = true;
  5875. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5876. SERIAL_ERROR_START;
  5877. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5878. LCD_MESSAGERPGM(MSG_STOPPED);
  5879. }
  5880. }
  5881. bool IsStopped() { return Stopped; };
  5882. #ifdef FAST_PWM_FAN
  5883. void setPwmFrequency(uint8_t pin, int val)
  5884. {
  5885. val &= 0x07;
  5886. switch(digitalPinToTimer(pin))
  5887. {
  5888. #if defined(TCCR0A)
  5889. case TIMER0A:
  5890. case TIMER0B:
  5891. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5892. // TCCR0B |= val;
  5893. break;
  5894. #endif
  5895. #if defined(TCCR1A)
  5896. case TIMER1A:
  5897. case TIMER1B:
  5898. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5899. // TCCR1B |= val;
  5900. break;
  5901. #endif
  5902. #if defined(TCCR2)
  5903. case TIMER2:
  5904. case TIMER2:
  5905. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5906. TCCR2 |= val;
  5907. break;
  5908. #endif
  5909. #if defined(TCCR2A)
  5910. case TIMER2A:
  5911. case TIMER2B:
  5912. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5913. TCCR2B |= val;
  5914. break;
  5915. #endif
  5916. #if defined(TCCR3A)
  5917. case TIMER3A:
  5918. case TIMER3B:
  5919. case TIMER3C:
  5920. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5921. TCCR3B |= val;
  5922. break;
  5923. #endif
  5924. #if defined(TCCR4A)
  5925. case TIMER4A:
  5926. case TIMER4B:
  5927. case TIMER4C:
  5928. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5929. TCCR4B |= val;
  5930. break;
  5931. #endif
  5932. #if defined(TCCR5A)
  5933. case TIMER5A:
  5934. case TIMER5B:
  5935. case TIMER5C:
  5936. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5937. TCCR5B |= val;
  5938. break;
  5939. #endif
  5940. }
  5941. }
  5942. #endif //FAST_PWM_FAN
  5943. bool setTargetedHotend(int code){
  5944. tmp_extruder = active_extruder;
  5945. if(code_seen('T')) {
  5946. tmp_extruder = code_value();
  5947. if(tmp_extruder >= EXTRUDERS) {
  5948. SERIAL_ECHO_START;
  5949. switch(code){
  5950. case 104:
  5951. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5952. break;
  5953. case 105:
  5954. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5955. break;
  5956. case 109:
  5957. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5958. break;
  5959. case 218:
  5960. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5961. break;
  5962. case 221:
  5963. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5964. break;
  5965. }
  5966. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5967. return true;
  5968. }
  5969. }
  5970. return false;
  5971. }
  5972. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5973. {
  5974. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5975. {
  5976. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5977. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5978. }
  5979. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5980. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5981. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5982. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5983. total_filament_used = 0;
  5984. }
  5985. float calculate_volumetric_multiplier(float diameter) {
  5986. float area = .0;
  5987. float radius = .0;
  5988. radius = diameter * .5;
  5989. if (! volumetric_enabled || radius == 0) {
  5990. area = 1;
  5991. }
  5992. else {
  5993. area = M_PI * pow(radius, 2);
  5994. }
  5995. return 1.0 / area;
  5996. }
  5997. void calculate_volumetric_multipliers() {
  5998. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5999. #if EXTRUDERS > 1
  6000. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  6001. #if EXTRUDERS > 2
  6002. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  6003. #endif
  6004. #endif
  6005. }
  6006. void delay_keep_alive(unsigned int ms)
  6007. {
  6008. for (;;) {
  6009. manage_heater();
  6010. // Manage inactivity, but don't disable steppers on timeout.
  6011. manage_inactivity(true);
  6012. lcd_update();
  6013. if (ms == 0)
  6014. break;
  6015. else if (ms >= 50) {
  6016. delay(50);
  6017. ms -= 50;
  6018. } else {
  6019. delay(ms);
  6020. ms = 0;
  6021. }
  6022. }
  6023. }
  6024. void wait_for_heater(long codenum) {
  6025. #ifdef TEMP_RESIDENCY_TIME
  6026. long residencyStart;
  6027. residencyStart = -1;
  6028. /* continue to loop until we have reached the target temp
  6029. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6030. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6031. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6032. #else
  6033. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6034. #endif //TEMP_RESIDENCY_TIME
  6035. if ((millis() - codenum) > 1000UL)
  6036. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6037. if (!farm_mode) {
  6038. SERIAL_PROTOCOLPGM("T:");
  6039. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6040. SERIAL_PROTOCOLPGM(" E:");
  6041. SERIAL_PROTOCOL((int)tmp_extruder);
  6042. #ifdef TEMP_RESIDENCY_TIME
  6043. SERIAL_PROTOCOLPGM(" W:");
  6044. if (residencyStart > -1)
  6045. {
  6046. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6047. SERIAL_PROTOCOLLN(codenum);
  6048. }
  6049. else
  6050. {
  6051. SERIAL_PROTOCOLLN("?");
  6052. }
  6053. }
  6054. #else
  6055. SERIAL_PROTOCOLLN("");
  6056. #endif
  6057. codenum = millis();
  6058. }
  6059. manage_heater();
  6060. manage_inactivity();
  6061. lcd_update();
  6062. #ifdef TEMP_RESIDENCY_TIME
  6063. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6064. or when current temp falls outside the hysteresis after target temp was reached */
  6065. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6066. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6067. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6068. {
  6069. residencyStart = millis();
  6070. }
  6071. #endif //TEMP_RESIDENCY_TIME
  6072. }
  6073. }
  6074. void check_babystep() {
  6075. int babystep_z;
  6076. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6077. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6078. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6079. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6080. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6081. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6082. lcd_update_enable(true);
  6083. }
  6084. }
  6085. #ifdef DIS
  6086. void d_setup()
  6087. {
  6088. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6089. pinMode(D_DATA, INPUT_PULLUP);
  6090. pinMode(D_REQUIRE, OUTPUT);
  6091. digitalWrite(D_REQUIRE, HIGH);
  6092. }
  6093. float d_ReadData()
  6094. {
  6095. int digit[13];
  6096. String mergeOutput;
  6097. float output;
  6098. digitalWrite(D_REQUIRE, HIGH);
  6099. for (int i = 0; i<13; i++)
  6100. {
  6101. for (int j = 0; j < 4; j++)
  6102. {
  6103. while (digitalRead(D_DATACLOCK) == LOW) {}
  6104. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6105. bitWrite(digit[i], j, digitalRead(D_DATA));
  6106. }
  6107. }
  6108. digitalWrite(D_REQUIRE, LOW);
  6109. mergeOutput = "";
  6110. output = 0;
  6111. for (int r = 5; r <= 10; r++) //Merge digits
  6112. {
  6113. mergeOutput += digit[r];
  6114. }
  6115. output = mergeOutput.toFloat();
  6116. if (digit[4] == 8) //Handle sign
  6117. {
  6118. output *= -1;
  6119. }
  6120. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6121. {
  6122. output /= 10;
  6123. }
  6124. return output;
  6125. }
  6126. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6127. int t1 = 0;
  6128. int t_delay = 0;
  6129. int digit[13];
  6130. int m;
  6131. char str[3];
  6132. //String mergeOutput;
  6133. char mergeOutput[15];
  6134. float output;
  6135. int mesh_point = 0; //index number of calibration point
  6136. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6137. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6138. float mesh_home_z_search = 4;
  6139. float row[x_points_num];
  6140. int ix = 0;
  6141. int iy = 0;
  6142. char* filename_wldsd = "wldsd.txt";
  6143. char data_wldsd[70];
  6144. char numb_wldsd[10];
  6145. d_setup();
  6146. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6147. // We don't know where we are! HOME!
  6148. // Push the commands to the front of the message queue in the reverse order!
  6149. // There shall be always enough space reserved for these commands.
  6150. repeatcommand_front(); // repeat G80 with all its parameters
  6151. enquecommand_front_P((PSTR("G28 W0")));
  6152. enquecommand_front_P((PSTR("G1 Z5")));
  6153. return;
  6154. }
  6155. bool custom_message_old = custom_message;
  6156. unsigned int custom_message_type_old = custom_message_type;
  6157. unsigned int custom_message_state_old = custom_message_state;
  6158. custom_message = true;
  6159. custom_message_type = 1;
  6160. custom_message_state = (x_points_num * y_points_num) + 10;
  6161. lcd_update(1);
  6162. mbl.reset();
  6163. babystep_undo();
  6164. card.openFile(filename_wldsd, false);
  6165. current_position[Z_AXIS] = mesh_home_z_search;
  6166. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6167. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6168. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6169. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6170. setup_for_endstop_move(false);
  6171. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6172. SERIAL_PROTOCOL(x_points_num);
  6173. SERIAL_PROTOCOLPGM(",");
  6174. SERIAL_PROTOCOL(y_points_num);
  6175. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6176. SERIAL_PROTOCOL(mesh_home_z_search);
  6177. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6178. SERIAL_PROTOCOL(x_dimension);
  6179. SERIAL_PROTOCOLPGM(",");
  6180. SERIAL_PROTOCOL(y_dimension);
  6181. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6182. while (mesh_point != x_points_num * y_points_num) {
  6183. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6184. iy = mesh_point / x_points_num;
  6185. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6186. float z0 = 0.f;
  6187. current_position[Z_AXIS] = mesh_home_z_search;
  6188. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6189. st_synchronize();
  6190. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6191. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6192. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6193. st_synchronize();
  6194. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6195. break;
  6196. card.closefile();
  6197. }
  6198. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6199. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6200. //strcat(data_wldsd, numb_wldsd);
  6201. //MYSERIAL.println(data_wldsd);
  6202. //delay(1000);
  6203. //delay(3000);
  6204. //t1 = millis();
  6205. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6206. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6207. memset(digit, 0, sizeof(digit));
  6208. //cli();
  6209. digitalWrite(D_REQUIRE, LOW);
  6210. for (int i = 0; i<13; i++)
  6211. {
  6212. //t1 = millis();
  6213. for (int j = 0; j < 4; j++)
  6214. {
  6215. while (digitalRead(D_DATACLOCK) == LOW) {}
  6216. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6217. bitWrite(digit[i], j, digitalRead(D_DATA));
  6218. }
  6219. //t_delay = (millis() - t1);
  6220. //SERIAL_PROTOCOLPGM(" ");
  6221. //SERIAL_PROTOCOL_F(t_delay, 5);
  6222. //SERIAL_PROTOCOLPGM(" ");
  6223. }
  6224. //sei();
  6225. digitalWrite(D_REQUIRE, HIGH);
  6226. mergeOutput[0] = '\0';
  6227. output = 0;
  6228. for (int r = 5; r <= 10; r++) //Merge digits
  6229. {
  6230. sprintf(str, "%d", digit[r]);
  6231. strcat(mergeOutput, str);
  6232. }
  6233. output = atof(mergeOutput);
  6234. if (digit[4] == 8) //Handle sign
  6235. {
  6236. output *= -1;
  6237. }
  6238. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6239. {
  6240. output *= 0.1;
  6241. }
  6242. //output = d_ReadData();
  6243. //row[ix] = current_position[Z_AXIS];
  6244. memset(data_wldsd, 0, sizeof(data_wldsd));
  6245. for (int i = 0; i <3; i++) {
  6246. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6247. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6248. strcat(data_wldsd, numb_wldsd);
  6249. strcat(data_wldsd, ";");
  6250. }
  6251. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6252. dtostrf(output, 8, 5, numb_wldsd);
  6253. strcat(data_wldsd, numb_wldsd);
  6254. //strcat(data_wldsd, ";");
  6255. card.write_command(data_wldsd);
  6256. //row[ix] = d_ReadData();
  6257. row[ix] = output; // current_position[Z_AXIS];
  6258. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6259. for (int i = 0; i < x_points_num; i++) {
  6260. SERIAL_PROTOCOLPGM(" ");
  6261. SERIAL_PROTOCOL_F(row[i], 5);
  6262. }
  6263. SERIAL_PROTOCOLPGM("\n");
  6264. }
  6265. custom_message_state--;
  6266. mesh_point++;
  6267. lcd_update(1);
  6268. }
  6269. card.closefile();
  6270. }
  6271. #endif
  6272. void temp_compensation_start() {
  6273. custom_message = true;
  6274. custom_message_type = 5;
  6275. custom_message_state = PINDA_HEAT_T + 1;
  6276. lcd_update(2);
  6277. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6278. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6279. }
  6280. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6281. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6282. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6283. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6284. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6285. st_synchronize();
  6286. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6287. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6288. delay_keep_alive(1000);
  6289. custom_message_state = PINDA_HEAT_T - i;
  6290. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6291. else lcd_update(1);
  6292. }
  6293. custom_message_type = 0;
  6294. custom_message_state = 0;
  6295. custom_message = false;
  6296. }
  6297. void temp_compensation_apply() {
  6298. int i_add;
  6299. int compensation_value;
  6300. int z_shift = 0;
  6301. float z_shift_mm;
  6302. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6303. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6304. i_add = (target_temperature_bed - 60) / 10;
  6305. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6306. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6307. }else {
  6308. //interpolation
  6309. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6310. }
  6311. SERIAL_PROTOCOLPGM("\n");
  6312. SERIAL_PROTOCOLPGM("Z shift applied:");
  6313. MYSERIAL.print(z_shift_mm);
  6314. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6315. st_synchronize();
  6316. plan_set_z_position(current_position[Z_AXIS]);
  6317. }
  6318. else {
  6319. //we have no temp compensation data
  6320. }
  6321. }
  6322. float temp_comp_interpolation(float inp_temperature) {
  6323. //cubic spline interpolation
  6324. int n, i, j, k;
  6325. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6326. int shift[10];
  6327. int temp_C[10];
  6328. n = 6; //number of measured points
  6329. shift[0] = 0;
  6330. for (i = 0; i < n; i++) {
  6331. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6332. temp_C[i] = 50 + i * 10; //temperature in C
  6333. #ifdef PINDA_THERMISTOR
  6334. temp_C[i] = 35 + i * 5; //temperature in C
  6335. #else
  6336. temp_C[i] = 50 + i * 10; //temperature in C
  6337. #endif
  6338. x[i] = (float)temp_C[i];
  6339. f[i] = (float)shift[i];
  6340. }
  6341. if (inp_temperature < x[0]) return 0;
  6342. for (i = n - 1; i>0; i--) {
  6343. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6344. h[i - 1] = x[i] - x[i - 1];
  6345. }
  6346. //*********** formation of h, s , f matrix **************
  6347. for (i = 1; i<n - 1; i++) {
  6348. m[i][i] = 2 * (h[i - 1] + h[i]);
  6349. if (i != 1) {
  6350. m[i][i - 1] = h[i - 1];
  6351. m[i - 1][i] = h[i - 1];
  6352. }
  6353. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6354. }
  6355. //*********** forward elimination **************
  6356. for (i = 1; i<n - 2; i++) {
  6357. temp = (m[i + 1][i] / m[i][i]);
  6358. for (j = 1; j <= n - 1; j++)
  6359. m[i + 1][j] -= temp*m[i][j];
  6360. }
  6361. //*********** backward substitution *********
  6362. for (i = n - 2; i>0; i--) {
  6363. sum = 0;
  6364. for (j = i; j <= n - 2; j++)
  6365. sum += m[i][j] * s[j];
  6366. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6367. }
  6368. for (i = 0; i<n - 1; i++)
  6369. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6370. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6371. b = s[i] / 2;
  6372. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6373. d = f[i];
  6374. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6375. }
  6376. return sum;
  6377. }
  6378. #ifdef PINDA_THERMISTOR
  6379. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6380. {
  6381. if (!temp_cal_active) return 0;
  6382. if (!calibration_status_pinda()) return 0;
  6383. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6384. }
  6385. #endif //PINDA_THERMISTOR
  6386. void long_pause() //long pause print
  6387. {
  6388. st_synchronize();
  6389. //save currently set parameters to global variables
  6390. saved_feedmultiply = feedmultiply;
  6391. HotendTempBckp = degTargetHotend(active_extruder);
  6392. fanSpeedBckp = fanSpeed;
  6393. start_pause_print = millis();
  6394. //save position
  6395. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6396. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6397. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6398. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6399. //retract
  6400. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6401. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6402. //lift z
  6403. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6404. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6405. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6406. //set nozzle target temperature to 0
  6407. setTargetHotend(0, 0);
  6408. setTargetHotend(0, 1);
  6409. setTargetHotend(0, 2);
  6410. //Move XY to side
  6411. current_position[X_AXIS] = X_PAUSE_POS;
  6412. current_position[Y_AXIS] = Y_PAUSE_POS;
  6413. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6414. // Turn off the print fan
  6415. fanSpeed = 0;
  6416. st_synchronize();
  6417. }
  6418. void serialecho_temperatures() {
  6419. float tt = degHotend(active_extruder);
  6420. SERIAL_PROTOCOLPGM("T:");
  6421. SERIAL_PROTOCOL(tt);
  6422. SERIAL_PROTOCOLPGM(" E:");
  6423. SERIAL_PROTOCOL((int)active_extruder);
  6424. SERIAL_PROTOCOLPGM(" B:");
  6425. SERIAL_PROTOCOL_F(degBed(), 1);
  6426. SERIAL_PROTOCOLLN("");
  6427. }
  6428. extern uint32_t sdpos_atomic;
  6429. void uvlo_()
  6430. {
  6431. unsigned long time_start = millis();
  6432. bool sd_print = card.sdprinting;
  6433. // Conserve power as soon as possible.
  6434. disable_x();
  6435. disable_y();
  6436. disable_e0();
  6437. tmc2130_set_current_h(Z_AXIS, 20);
  6438. tmc2130_set_current_r(Z_AXIS, 20);
  6439. tmc2130_set_current_h(E_AXIS, 20);
  6440. tmc2130_set_current_r(E_AXIS, 20);
  6441. // Indicate that the interrupt has been triggered.
  6442. // SERIAL_ECHOLNPGM("UVLO");
  6443. // Read out the current Z motor microstep counter. This will be later used
  6444. // for reaching the zero full step before powering off.
  6445. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6446. // Calculate the file position, from which to resume this print.
  6447. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6448. {
  6449. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6450. sd_position -= sdlen_planner;
  6451. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6452. sd_position -= sdlen_cmdqueue;
  6453. if (sd_position < 0) sd_position = 0;
  6454. }
  6455. // Backup the feedrate in mm/min.
  6456. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6457. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6458. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6459. // are in action.
  6460. planner_abort_hard();
  6461. // Store the current extruder position.
  6462. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6463. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6464. // Clean the input command queue.
  6465. cmdqueue_reset();
  6466. card.sdprinting = false;
  6467. // card.closefile();
  6468. // Enable stepper driver interrupt to move Z axis.
  6469. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6470. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6471. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6472. sei();
  6473. plan_buffer_line(
  6474. current_position[X_AXIS],
  6475. current_position[Y_AXIS],
  6476. current_position[Z_AXIS],
  6477. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6478. 95, active_extruder);
  6479. st_synchronize();
  6480. disable_e0();
  6481. plan_buffer_line(
  6482. current_position[X_AXIS],
  6483. current_position[Y_AXIS],
  6484. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6485. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6486. 40, active_extruder);
  6487. st_synchronize();
  6488. disable_e0();
  6489. plan_buffer_line(
  6490. current_position[X_AXIS],
  6491. current_position[Y_AXIS],
  6492. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6493. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6494. 40, active_extruder);
  6495. st_synchronize();
  6496. disable_e0();
  6497. disable_z();
  6498. // Move Z up to the next 0th full step.
  6499. // Write the file position.
  6500. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6501. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6502. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6503. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6504. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6505. // Scale the z value to 1u resolution.
  6506. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6507. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6508. }
  6509. // Read out the current Z motor microstep counter. This will be later used
  6510. // for reaching the zero full step before powering off.
  6511. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6512. // Store the current position.
  6513. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6514. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6515. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6516. // Store the current feed rate, temperatures and fan speed.
  6517. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6518. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6519. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6520. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6521. // Finaly store the "power outage" flag.
  6522. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6523. st_synchronize();
  6524. SERIAL_ECHOPGM("stps");
  6525. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6526. disable_z();
  6527. // Increment power failure counter
  6528. uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
  6529. power_count++;
  6530. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
  6531. SERIAL_ECHOLNPGM("UVLO - end");
  6532. MYSERIAL.println(millis() - time_start);
  6533. #if 0
  6534. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6535. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6536. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6537. st_synchronize();
  6538. #endif
  6539. cli();
  6540. volatile unsigned int ppcount = 0;
  6541. SET_OUTPUT(BEEPER);
  6542. WRITE(BEEPER, HIGH);
  6543. for(ppcount = 0; ppcount < 2000; ppcount ++){
  6544. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6545. }
  6546. WRITE(BEEPER, LOW);
  6547. while(1){
  6548. #if 1
  6549. WRITE(BEEPER, LOW);
  6550. for(ppcount = 0; ppcount < 8000; ppcount ++){
  6551. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6552. }
  6553. #endif
  6554. };
  6555. }
  6556. void setup_fan_interrupt() {
  6557. //INT7
  6558. DDRE &= ~(1 << 7); //input pin
  6559. PORTE &= ~(1 << 7); //no internal pull-up
  6560. //start with sensing rising edge
  6561. EICRB &= ~(1 << 6);
  6562. EICRB |= (1 << 7);
  6563. //enable INT7 interrupt
  6564. EIMSK |= (1 << 7);
  6565. }
  6566. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  6567. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  6568. ISR(INT7_vect) {
  6569. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6570. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6571. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6572. t_fan_rising_edge = millis_nc();
  6573. }
  6574. else { //interrupt was triggered by falling edge
  6575. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6576. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6577. }
  6578. }
  6579. EICRB ^= (1 << 6); //change edge
  6580. }
  6581. void setup_uvlo_interrupt() {
  6582. DDRE &= ~(1 << 4); //input pin
  6583. PORTE &= ~(1 << 4); //no internal pull-up
  6584. //sensing falling edge
  6585. EICRB |= (1 << 0);
  6586. EICRB &= ~(1 << 1);
  6587. //enable INT4 interrupt
  6588. EIMSK |= (1 << 4);
  6589. }
  6590. ISR(INT4_vect) {
  6591. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6592. SERIAL_ECHOLNPGM("INT4");
  6593. if (IS_SD_PRINTING) uvlo_();
  6594. }
  6595. void recover_print(uint8_t automatic) {
  6596. char cmd[30];
  6597. lcd_update_enable(true);
  6598. lcd_update(2);
  6599. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6600. recover_machine_state_after_power_panic();
  6601. // Set the target bed and nozzle temperatures.
  6602. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6603. enquecommand(cmd);
  6604. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6605. enquecommand(cmd);
  6606. // Lift the print head, so one may remove the excess priming material.
  6607. if (current_position[Z_AXIS] < 25)
  6608. enquecommand_P(PSTR("G1 Z25 F800"));
  6609. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6610. enquecommand_P(PSTR("G28 X Y"));
  6611. // Set the target bed and nozzle temperatures and wait.
  6612. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6613. enquecommand(cmd);
  6614. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6615. enquecommand(cmd);
  6616. enquecommand_P(PSTR("M83")); //E axis relative mode
  6617. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6618. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6619. if(automatic == 0){
  6620. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6621. }
  6622. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6623. // Mark the power panic status as inactive.
  6624. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6625. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6626. delay_keep_alive(1000);
  6627. }*/
  6628. SERIAL_ECHOPGM("After waiting for temp:");
  6629. SERIAL_ECHOPGM("Current position X_AXIS:");
  6630. MYSERIAL.println(current_position[X_AXIS]);
  6631. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6632. MYSERIAL.println(current_position[Y_AXIS]);
  6633. // Restart the print.
  6634. restore_print_from_eeprom();
  6635. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6636. MYSERIAL.print(current_position[Z_AXIS]);
  6637. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6638. MYSERIAL.print(current_position[E_AXIS]);
  6639. }
  6640. void recover_machine_state_after_power_panic()
  6641. {
  6642. char cmd[30];
  6643. // 1) Recover the logical cordinates at the time of the power panic.
  6644. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6645. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6646. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6647. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6648. // The current position after power panic is moved to the next closest 0th full step.
  6649. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6650. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6651. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  6652. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6653. sprintf_P(cmd, PSTR("G92 E"));
  6654. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  6655. enquecommand(cmd);
  6656. }
  6657. memcpy(destination, current_position, sizeof(destination));
  6658. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6659. print_world_coordinates();
  6660. // 2) Initialize the logical to physical coordinate system transformation.
  6661. world2machine_initialize();
  6662. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6663. mbl.active = false;
  6664. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6665. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6666. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6667. // Scale the z value to 10u resolution.
  6668. int16_t v;
  6669. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6670. if (v != 0)
  6671. mbl.active = true;
  6672. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6673. }
  6674. if (mbl.active)
  6675. mbl.upsample_3x3();
  6676. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6677. // print_mesh_bed_leveling_table();
  6678. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6679. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6680. babystep_load();
  6681. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6682. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6683. // 6) Power up the motors, mark their positions as known.
  6684. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6685. axis_known_position[X_AXIS] = true; enable_x();
  6686. axis_known_position[Y_AXIS] = true; enable_y();
  6687. axis_known_position[Z_AXIS] = true; enable_z();
  6688. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6689. print_physical_coordinates();
  6690. // 7) Recover the target temperatures.
  6691. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6692. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6693. }
  6694. void restore_print_from_eeprom() {
  6695. float x_rec, y_rec, z_pos;
  6696. int feedrate_rec;
  6697. uint8_t fan_speed_rec;
  6698. char cmd[30];
  6699. char* c;
  6700. char filename[13];
  6701. uint8_t depth = 0;
  6702. char dir_name[9];
  6703. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6704. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6705. SERIAL_ECHOPGM("Feedrate:");
  6706. MYSERIAL.println(feedrate_rec);
  6707. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6708. MYSERIAL.println(int(depth));
  6709. for (int i = 0; i < depth; i++) {
  6710. for (int j = 0; j < 8; j++) {
  6711. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6712. }
  6713. dir_name[8] = '\0';
  6714. MYSERIAL.println(dir_name);
  6715. card.chdir(dir_name);
  6716. }
  6717. for (int i = 0; i < 8; i++) {
  6718. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6719. }
  6720. filename[8] = '\0';
  6721. MYSERIAL.print(filename);
  6722. strcat_P(filename, PSTR(".gco"));
  6723. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6724. for (c = &cmd[4]; *c; c++)
  6725. *c = tolower(*c);
  6726. enquecommand(cmd);
  6727. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6728. SERIAL_ECHOPGM("Position read from eeprom:");
  6729. MYSERIAL.println(position);
  6730. // E axis relative mode.
  6731. enquecommand_P(PSTR("M83"));
  6732. // Move to the XY print position in logical coordinates, where the print has been killed.
  6733. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6734. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6735. strcat_P(cmd, PSTR(" F2000"));
  6736. enquecommand(cmd);
  6737. // Move the Z axis down to the print, in logical coordinates.
  6738. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6739. enquecommand(cmd);
  6740. // Unretract.
  6741. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  6742. // Set the feedrate saved at the power panic.
  6743. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6744. enquecommand(cmd);
  6745. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6746. {
  6747. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6748. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6749. }
  6750. // Set the fan speed saved at the power panic.
  6751. strcpy_P(cmd, PSTR("M106 S"));
  6752. strcat(cmd, itostr3(int(fan_speed_rec)));
  6753. enquecommand(cmd);
  6754. // Set a position in the file.
  6755. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6756. enquecommand(cmd);
  6757. // Start SD print.
  6758. enquecommand_P(PSTR("M24"));
  6759. }
  6760. ////////////////////////////////////////////////////////////////////////////////
  6761. // new save/restore printing
  6762. //extern uint32_t sdpos_atomic;
  6763. bool saved_printing = false;
  6764. uint32_t saved_sdpos = 0;
  6765. float saved_pos[4] = {0, 0, 0, 0};
  6766. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6767. float saved_feedrate2 = 0;
  6768. uint8_t saved_active_extruder = 0;
  6769. bool saved_extruder_under_pressure = false;
  6770. void stop_and_save_print_to_ram(float z_move, float e_move)
  6771. {
  6772. if (saved_printing) return;
  6773. cli();
  6774. unsigned char nplanner_blocks = number_of_blocks();
  6775. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6776. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6777. saved_sdpos -= sdlen_planner;
  6778. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6779. saved_sdpos -= sdlen_cmdqueue;
  6780. #if 0
  6781. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6782. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6783. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6784. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6785. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6786. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6787. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6788. {
  6789. card.setIndex(saved_sdpos);
  6790. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6791. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6792. MYSERIAL.print(char(card.get()));
  6793. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6794. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6795. MYSERIAL.print(char(card.get()));
  6796. SERIAL_ECHOLNPGM("End of command buffer");
  6797. }
  6798. {
  6799. // Print the content of the planner buffer, line by line:
  6800. card.setIndex(saved_sdpos);
  6801. int8_t iline = 0;
  6802. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6803. SERIAL_ECHOPGM("Planner line (from file): ");
  6804. MYSERIAL.print(int(iline), DEC);
  6805. SERIAL_ECHOPGM(", length: ");
  6806. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6807. SERIAL_ECHOPGM(", steps: (");
  6808. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6809. SERIAL_ECHOPGM(",");
  6810. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6811. SERIAL_ECHOPGM(",");
  6812. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6813. SERIAL_ECHOPGM(",");
  6814. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6815. SERIAL_ECHOPGM("), events: ");
  6816. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6817. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6818. MYSERIAL.print(char(card.get()));
  6819. }
  6820. }
  6821. {
  6822. // Print the content of the command buffer, line by line:
  6823. int8_t iline = 0;
  6824. union {
  6825. struct {
  6826. char lo;
  6827. char hi;
  6828. } lohi;
  6829. uint16_t value;
  6830. } sdlen_single;
  6831. int _bufindr = bufindr;
  6832. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6833. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6834. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6835. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6836. }
  6837. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6838. MYSERIAL.print(int(iline), DEC);
  6839. SERIAL_ECHOPGM(", type: ");
  6840. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6841. SERIAL_ECHOPGM(", len: ");
  6842. MYSERIAL.println(sdlen_single.value, DEC);
  6843. // Print the content of the buffer line.
  6844. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6845. SERIAL_ECHOPGM("Buffer line (from file): ");
  6846. MYSERIAL.print(int(iline), DEC);
  6847. MYSERIAL.println(int(iline), DEC);
  6848. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6849. MYSERIAL.print(char(card.get()));
  6850. if (-- _buflen == 0)
  6851. break;
  6852. // First skip the current command ID and iterate up to the end of the string.
  6853. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6854. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6855. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6856. // If the end of the buffer was empty,
  6857. if (_bufindr == sizeof(cmdbuffer)) {
  6858. // skip to the start and find the nonzero command.
  6859. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6860. }
  6861. }
  6862. }
  6863. #endif
  6864. #if 0
  6865. saved_feedrate2 = feedrate; //save feedrate
  6866. #else
  6867. // Try to deduce the feedrate from the first block of the planner.
  6868. // Speed is in mm/min.
  6869. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6870. #endif
  6871. planner_abort_hard(); //abort printing
  6872. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6873. saved_active_extruder = active_extruder; //save active_extruder
  6874. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6875. cmdqueue_reset(); //empty cmdqueue
  6876. card.sdprinting = false;
  6877. // card.closefile();
  6878. saved_printing = true;
  6879. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  6880. st_reset_timer();
  6881. sei();
  6882. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6883. #if 1
  6884. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6885. char buf[48];
  6886. strcpy_P(buf, PSTR("G1 Z"));
  6887. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6888. strcat_P(buf, PSTR(" E"));
  6889. // Relative extrusion
  6890. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6891. strcat_P(buf, PSTR(" F"));
  6892. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6893. // At this point the command queue is empty.
  6894. enquecommand(buf, false);
  6895. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6896. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6897. repeatcommand_front();
  6898. #else
  6899. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6900. st_synchronize(); //wait moving
  6901. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6902. memcpy(destination, current_position, sizeof(destination));
  6903. #endif
  6904. }
  6905. }
  6906. void restore_print_from_ram_and_continue(float e_move)
  6907. {
  6908. if (!saved_printing) return;
  6909. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6910. // current_position[axis] = st_get_position_mm(axis);
  6911. active_extruder = saved_active_extruder; //restore active_extruder
  6912. feedrate = saved_feedrate2; //restore feedrate
  6913. float e = saved_pos[E_AXIS] - e_move;
  6914. plan_set_e_position(e);
  6915. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6916. st_synchronize();
  6917. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6918. memcpy(destination, current_position, sizeof(destination));
  6919. card.setIndex(saved_sdpos);
  6920. sdpos_atomic = saved_sdpos;
  6921. card.sdprinting = true;
  6922. saved_printing = false;
  6923. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  6924. }
  6925. void print_world_coordinates()
  6926. {
  6927. SERIAL_ECHOPGM("world coordinates: (");
  6928. MYSERIAL.print(current_position[X_AXIS], 3);
  6929. SERIAL_ECHOPGM(", ");
  6930. MYSERIAL.print(current_position[Y_AXIS], 3);
  6931. SERIAL_ECHOPGM(", ");
  6932. MYSERIAL.print(current_position[Z_AXIS], 3);
  6933. SERIAL_ECHOLNPGM(")");
  6934. }
  6935. void print_physical_coordinates()
  6936. {
  6937. SERIAL_ECHOPGM("physical coordinates: (");
  6938. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6939. SERIAL_ECHOPGM(", ");
  6940. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6941. SERIAL_ECHOPGM(", ");
  6942. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6943. SERIAL_ECHOLNPGM(")");
  6944. }
  6945. void print_mesh_bed_leveling_table()
  6946. {
  6947. SERIAL_ECHOPGM("mesh bed leveling: ");
  6948. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6949. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6950. MYSERIAL.print(mbl.z_values[y][x], 3);
  6951. SERIAL_ECHOPGM(" ");
  6952. }
  6953. SERIAL_ECHOLNPGM("");
  6954. }
  6955. #define FIL_LOAD_LENGTH 60
  6956. void extr_unload2() { //unloads filament
  6957. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6958. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6959. // int8_t SilentMode;
  6960. uint8_t snmm_extruder = 0;
  6961. if (degHotend0() > EXTRUDE_MINTEMP) {
  6962. lcd_implementation_clear();
  6963. lcd_display_message_fullscreen_P(PSTR(""));
  6964. max_feedrate[E_AXIS] = 50;
  6965. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  6966. // lcd.print(" ");
  6967. // lcd.print(snmm_extruder + 1);
  6968. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  6969. if (current_position[Z_AXIS] < 15) {
  6970. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  6971. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  6972. }
  6973. current_position[E_AXIS] += 10; //extrusion
  6974. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  6975. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  6976. if (current_temperature[0] < 230) { //PLA & all other filaments
  6977. current_position[E_AXIS] += 5.4;
  6978. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  6979. current_position[E_AXIS] += 3.2;
  6980. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6981. current_position[E_AXIS] += 3;
  6982. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  6983. }
  6984. else { //ABS
  6985. current_position[E_AXIS] += 3.1;
  6986. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  6987. current_position[E_AXIS] += 3.1;
  6988. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  6989. current_position[E_AXIS] += 4;
  6990. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6991. /*current_position[X_AXIS] += 23; //delay
  6992. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  6993. current_position[X_AXIS] -= 23; //delay
  6994. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  6995. delay_keep_alive(4700);
  6996. }
  6997. max_feedrate[E_AXIS] = 80;
  6998. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  6999. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7000. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7001. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7002. st_synchronize();
  7003. //digipot_init();
  7004. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  7005. // else digipot_current(2, tmp_motor_loud[2]);
  7006. lcd_update_enable(true);
  7007. // lcd_return_to_status();
  7008. max_feedrate[E_AXIS] = 50;
  7009. }
  7010. else {
  7011. lcd_implementation_clear();
  7012. lcd.setCursor(0, 0);
  7013. lcd_printPGM(MSG_ERROR);
  7014. lcd.setCursor(0, 2);
  7015. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  7016. delay(2000);
  7017. lcd_implementation_clear();
  7018. }
  7019. // lcd_return_to_status();
  7020. }