planner.cpp 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #include "ConfigurationStore.h"
  43. #ifdef MESH_BED_LEVELING
  44. #include "mesh_bed_leveling.h"
  45. #include "mesh_bed_calibration.h"
  46. #endif
  47. #ifdef TMC2130
  48. #include "tmc2130.h"
  49. #endif //TMC2130
  50. //===========================================================================
  51. //=============================public variables ============================
  52. //===========================================================================
  53. // Use M203 to override by software
  54. float* max_feedrate = cs.max_feedrate_normal;
  55. // Use M201 to override by software
  56. unsigned long* max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  57. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  58. #ifdef ENABLE_AUTO_BED_LEVELING
  59. // this holds the required transform to compensate for bed level
  60. matrix_3x3 plan_bed_level_matrix = {
  61. 1.0, 0.0, 0.0,
  62. 0.0, 1.0, 0.0,
  63. 0.0, 0.0, 1.0,
  64. };
  65. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  66. // The current position of the tool in absolute steps
  67. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  68. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  69. static float previous_nominal_speed; // Nominal speed of previous path line segment
  70. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  71. uint8_t maxlimit_status;
  72. #ifdef AUTOTEMP
  73. float autotemp_max=250;
  74. float autotemp_min=210;
  75. float autotemp_factor=0.1;
  76. bool autotemp_enabled=false;
  77. #endif
  78. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  79. //===========================================================================
  80. //=================semi-private variables, used in inline functions =====
  81. //===========================================================================
  82. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  83. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  84. volatile unsigned char block_buffer_tail; // Index of the block to process now
  85. #ifdef PLANNER_DIAGNOSTICS
  86. // Diagnostic function: Minimum number of planned moves since the last
  87. static uint8_t g_cntr_planner_queue_min = 0;
  88. #endif /* PLANNER_DIAGNOSTICS */
  89. //===========================================================================
  90. //=============================private variables ============================
  91. //===========================================================================
  92. #ifdef PREVENT_DANGEROUS_EXTRUDE
  93. float extrude_min_temp=EXTRUDE_MINTEMP;
  94. #endif
  95. #ifdef LIN_ADVANCE
  96. float extruder_advance_K = LIN_ADVANCE_K;
  97. float position_float[NUM_AXIS] = { 0, 0, 0, 0 };
  98. #endif
  99. // Returns the index of the next block in the ring buffer
  100. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  101. static inline int8_t next_block_index(int8_t block_index) {
  102. if (++ block_index == BLOCK_BUFFER_SIZE)
  103. block_index = 0;
  104. return block_index;
  105. }
  106. // Returns the index of the previous block in the ring buffer
  107. static inline int8_t prev_block_index(int8_t block_index) {
  108. if (block_index == 0)
  109. block_index = BLOCK_BUFFER_SIZE;
  110. -- block_index;
  111. return block_index;
  112. }
  113. //===========================================================================
  114. //=============================functions ============================
  115. //===========================================================================
  116. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  117. // given acceleration:
  118. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  119. {
  120. if (acceleration!=0) {
  121. return((target_rate*target_rate-initial_rate*initial_rate)/
  122. (2.0*acceleration));
  123. }
  124. else {
  125. return 0.0; // acceleration was 0, set acceleration distance to 0
  126. }
  127. }
  128. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  129. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  130. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  131. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  132. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  133. {
  134. if (acceleration!=0) {
  135. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  136. (4.0*acceleration) );
  137. }
  138. else {
  139. return 0.0; // acceleration was 0, set intersection distance to 0
  140. }
  141. }
  142. // Minimum stepper rate 120Hz.
  143. #define MINIMAL_STEP_RATE 120
  144. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  145. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  146. {
  147. // These two lines are the only floating point calculations performed in this routine.
  148. // initial_rate, final_rate in Hz.
  149. // Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
  150. // the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
  151. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  152. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  153. // Limit minimal step rate (Otherwise the timer will overflow.)
  154. if (initial_rate < MINIMAL_STEP_RATE)
  155. initial_rate = MINIMAL_STEP_RATE;
  156. if (initial_rate > block->nominal_rate)
  157. initial_rate = block->nominal_rate;
  158. if (final_rate < MINIMAL_STEP_RATE)
  159. final_rate = MINIMAL_STEP_RATE;
  160. if (final_rate > block->nominal_rate)
  161. final_rate = block->nominal_rate;
  162. uint32_t acceleration = block->acceleration_st;
  163. if (acceleration == 0)
  164. // Don't allow zero acceleration.
  165. acceleration = 1;
  166. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  167. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  168. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  169. //FIXME assert that this result fits a 64bit unsigned int.
  170. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  171. uint32_t final_rate_sqr = final_rate*final_rate;
  172. uint32_t acceleration_x2 = acceleration << 1;
  173. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  174. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  175. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  176. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  177. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  178. // Size of Plateau of Nominal Rate.
  179. uint32_t plateau_steps = 0;
  180. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  181. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  182. // in order to reach the final_rate exactly at the end of this block.
  183. if (accel_decel_steps < block->step_event_count.wide) {
  184. plateau_steps = block->step_event_count.wide - accel_decel_steps;
  185. } else {
  186. uint32_t acceleration_x4 = acceleration << 2;
  187. // Avoid negative numbers
  188. if (final_rate_sqr >= initial_rate_sqr) {
  189. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  190. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  191. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  192. #if 0
  193. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  194. #else
  195. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  196. if (block->step_event_count.wide & 1)
  197. accelerate_steps += acceleration_x2;
  198. accelerate_steps /= acceleration_x4;
  199. accelerate_steps += (block->step_event_count.wide >> 1);
  200. #endif
  201. if (accelerate_steps > block->step_event_count.wide)
  202. accelerate_steps = block->step_event_count.wide;
  203. } else {
  204. #if 0
  205. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  206. #else
  207. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  208. if (block->step_event_count.wide & 1)
  209. decelerate_steps += acceleration_x2;
  210. decelerate_steps /= acceleration_x4;
  211. decelerate_steps += (block->step_event_count.wide >> 1);
  212. #endif
  213. if (decelerate_steps > block->step_event_count.wide)
  214. decelerate_steps = block->step_event_count.wide;
  215. accelerate_steps = block->step_event_count.wide - decelerate_steps;
  216. }
  217. }
  218. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  219. // This block locks the interrupts globally for 4.38 us,
  220. // which corresponds to a maximum repeat frequency of 228.57 kHz.
  221. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  222. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  223. if (! block->busy) { // Don't update variables if block is busy.
  224. block->accelerate_until = accelerate_steps;
  225. block->decelerate_after = accelerate_steps+plateau_steps;
  226. block->initial_rate = initial_rate;
  227. block->final_rate = final_rate;
  228. }
  229. CRITICAL_SECTION_END;
  230. }
  231. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  232. // decceleration within the allotted distance.
  233. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  234. {
  235. // assert(decceleration < 0);
  236. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  237. }
  238. // Recalculates the motion plan according to the following algorithm:
  239. //
  240. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  241. // so that:
  242. // a. The junction jerk is within the set limit
  243. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  244. // acceleration.
  245. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  246. // a. The speed increase within one block would require faster accelleration than the one, true
  247. // constant acceleration.
  248. //
  249. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  250. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  251. // the set limit. Finally it will:
  252. //
  253. // 3. Recalculate trapezoids for all blocks.
  254. //
  255. //FIXME This routine is called 15x every time a new line is added to the planner,
  256. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  257. // if the CPU is found lacking computational power.
  258. //
  259. // Following sources may be used to optimize the 8-bit AVR code:
  260. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  261. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  262. //
  263. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  264. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  265. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  266. //
  267. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  268. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  269. // https://github.com/rekka/avrmultiplication
  270. //
  271. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  272. // https://courses.cit.cornell.edu/ee476/Math/
  273. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  274. //
  275. void planner_recalculate(const float &safe_final_speed)
  276. {
  277. // Reverse pass
  278. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  279. // by consuming the blocks, therefore shortening the queue.
  280. unsigned char tail = block_buffer_tail;
  281. uint8_t block_index;
  282. block_t *prev, *current, *next;
  283. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  284. // At least three blocks are in the queue?
  285. unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  286. if (n_blocks >= 3) {
  287. // Initialize the last tripple of blocks.
  288. block_index = prev_block_index(block_buffer_head);
  289. next = block_buffer + block_index;
  290. current = block_buffer + (block_index = prev_block_index(block_index));
  291. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  292. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  293. // 1) it may already be running at the stepper interrupt,
  294. // 2) there is no way to limit it when going in the forward direction.
  295. while (block_index != tail) {
  296. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  297. // Don't modify the entry velocity of the starting block.
  298. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  299. // for the stepper interrupt routine to use them.
  300. tail = block_index;
  301. // Update the number of blocks to process.
  302. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  303. // SERIAL_ECHOLNPGM("START");
  304. break;
  305. }
  306. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  307. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  308. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  309. if (current->entry_speed != current->max_entry_speed) {
  310. // assert(current->entry_speed < current->max_entry_speed);
  311. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  312. // segment and the maximum acceleration allowed for this segment.
  313. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  314. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  315. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  316. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  317. // together with an assembly 32bit->16bit sqrt function.
  318. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  319. current->max_entry_speed :
  320. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  321. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  322. current->flag |= BLOCK_FLAG_RECALCULATE;
  323. }
  324. next = current;
  325. current = block_buffer + (block_index = prev_block_index(block_index));
  326. }
  327. }
  328. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  329. // Forward pass and recalculate the trapezoids.
  330. if (n_blocks >= 2) {
  331. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  332. block_index = tail;
  333. prev = block_buffer + block_index;
  334. current = block_buffer + (block_index = next_block_index(block_index));
  335. do {
  336. // If the previous block is an acceleration block, but it is not long enough to complete the
  337. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  338. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  339. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  340. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  341. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  342. // Check for junction speed change
  343. if (current->entry_speed != entry_speed) {
  344. current->entry_speed = entry_speed;
  345. current->flag |= BLOCK_FLAG_RECALCULATE;
  346. }
  347. }
  348. // Recalculate if current block entry or exit junction speed has changed.
  349. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  350. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  351. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  352. #ifdef LIN_ADVANCE
  353. if (current->use_advance_lead) {
  354. const float comp = current->e_D_ratio * extruder_advance_K * cs.axis_steps_per_unit[E_AXIS];
  355. current->max_adv_steps = current->nominal_speed * comp;
  356. current->final_adv_steps = next->entry_speed * comp;
  357. }
  358. #endif
  359. // Reset current only to ensure next trapezoid is computed.
  360. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  361. }
  362. prev = current;
  363. current = block_buffer + (block_index = next_block_index(block_index));
  364. } while (block_index != block_buffer_head);
  365. }
  366. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  367. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  368. current = block_buffer + prev_block_index(block_buffer_head);
  369. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  370. #ifdef LIN_ADVANCE
  371. if (current->use_advance_lead) {
  372. const float comp = current->e_D_ratio * extruder_advance_K * cs.axis_steps_per_unit[E_AXIS];
  373. current->max_adv_steps = current->nominal_speed * comp;
  374. current->final_adv_steps = safe_final_speed * comp;
  375. }
  376. #endif
  377. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  378. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  379. }
  380. void plan_init() {
  381. block_buffer_head = 0;
  382. block_buffer_tail = 0;
  383. memset(position, 0, sizeof(position)); // clear position
  384. #ifdef LIN_ADVANCE
  385. memset(position_float, 0, sizeof(position)); // clear position
  386. #endif
  387. previous_speed[0] = 0.0;
  388. previous_speed[1] = 0.0;
  389. previous_speed[2] = 0.0;
  390. previous_speed[3] = 0.0;
  391. previous_nominal_speed = 0.0;
  392. }
  393. #ifdef AUTOTEMP
  394. void getHighESpeed()
  395. {
  396. static float oldt=0;
  397. if(!autotemp_enabled){
  398. return;
  399. }
  400. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  401. return; //do nothing
  402. }
  403. float high=0.0;
  404. uint8_t block_index = block_buffer_tail;
  405. while(block_index != block_buffer_head) {
  406. if((block_buffer[block_index].steps_x.wide != 0) ||
  407. (block_buffer[block_index].steps_y.wide != 0) ||
  408. (block_buffer[block_index].steps_z.wide != 0)) {
  409. float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
  410. //se; mm/sec;
  411. if(se>high)
  412. {
  413. high=se;
  414. }
  415. }
  416. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  417. }
  418. float g=autotemp_min+high*autotemp_factor;
  419. float t=g;
  420. if(t<autotemp_min)
  421. t=autotemp_min;
  422. if(t>autotemp_max)
  423. t=autotemp_max;
  424. if(oldt>t)
  425. {
  426. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  427. }
  428. oldt=t;
  429. setTargetHotend0(t);
  430. }
  431. #endif
  432. bool e_active()
  433. {
  434. unsigned char e_active = 0;
  435. block_t *block;
  436. if(block_buffer_tail != block_buffer_head)
  437. {
  438. uint8_t block_index = block_buffer_tail;
  439. while(block_index != block_buffer_head)
  440. {
  441. block = &block_buffer[block_index];
  442. if(block->steps_e.wide != 0) e_active++;
  443. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  444. }
  445. }
  446. return (e_active > 0) ? true : false ;
  447. }
  448. void check_axes_activity()
  449. {
  450. unsigned char x_active = 0;
  451. unsigned char y_active = 0;
  452. unsigned char z_active = 0;
  453. unsigned char e_active = 0;
  454. unsigned char tail_fan_speed = fanSpeed;
  455. block_t *block;
  456. if(block_buffer_tail != block_buffer_head)
  457. {
  458. uint8_t block_index = block_buffer_tail;
  459. tail_fan_speed = block_buffer[block_index].fan_speed;
  460. while(block_index != block_buffer_head)
  461. {
  462. block = &block_buffer[block_index];
  463. if(block->steps_x.wide != 0) x_active++;
  464. if(block->steps_y.wide != 0) y_active++;
  465. if(block->steps_z.wide != 0) z_active++;
  466. if(block->steps_e.wide != 0) e_active++;
  467. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  468. }
  469. }
  470. if((DISABLE_X) && (x_active == 0)) disable_x();
  471. if((DISABLE_Y) && (y_active == 0)) disable_y();
  472. if((DISABLE_Z) && (z_active == 0)) disable_z();
  473. if((DISABLE_E) && (e_active == 0))
  474. {
  475. disable_e0();
  476. disable_e1();
  477. disable_e2();
  478. }
  479. #if defined(FAN_PIN) && FAN_PIN > -1
  480. #ifdef FAN_KICKSTART_TIME
  481. static unsigned long fan_kick_end;
  482. if (tail_fan_speed) {
  483. if (fan_kick_end == 0) {
  484. // Just starting up fan - run at full power.
  485. fan_kick_end = _millis() + FAN_KICKSTART_TIME;
  486. tail_fan_speed = 255;
  487. } else if (fan_kick_end > _millis())
  488. // Fan still spinning up.
  489. tail_fan_speed = 255;
  490. } else {
  491. fan_kick_end = 0;
  492. }
  493. #endif//FAN_KICKSTART_TIME
  494. #ifdef FAN_SOFT_PWM
  495. if (fan_measuring) { //if measurement is currently in process, fanSpeedSoftPwm must remain set to 255, but we must update fanSpeedBckp value
  496. fanSpeedBckp = tail_fan_speed;
  497. }
  498. else {
  499. fanSpeedSoftPwm = tail_fan_speed;
  500. }
  501. //printf_P(PSTR("fanspeedsoftPWM %d \n"), fanSpeedSoftPwm);
  502. #else
  503. analogWrite(FAN_PIN,tail_fan_speed);
  504. #endif//!FAN_SOFT_PWM
  505. #endif//FAN_PIN > -1
  506. #ifdef AUTOTEMP
  507. getHighESpeed();
  508. #endif
  509. }
  510. bool waiting_inside_plan_buffer_line_print_aborted = false;
  511. /*
  512. void planner_abort_soft()
  513. {
  514. // Empty the queue.
  515. while (blocks_queued()) plan_discard_current_block();
  516. // Relay to planner wait routine, that the current line shall be canceled.
  517. waiting_inside_plan_buffer_line_print_aborted = true;
  518. //current_position[i]
  519. }
  520. */
  521. #ifdef PLANNER_DIAGNOSTICS
  522. static inline void planner_update_queue_min_counter()
  523. {
  524. uint8_t new_counter = moves_planned();
  525. if (new_counter < g_cntr_planner_queue_min)
  526. g_cntr_planner_queue_min = new_counter;
  527. }
  528. #endif /* PLANNER_DIAGNOSTICS */
  529. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  530. void planner_abort_hard()
  531. {
  532. // Abort the stepper routine and flush the planner queue.
  533. DISABLE_STEPPER_DRIVER_INTERRUPT();
  534. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  535. // First update the planner's current position in the physical motor steps.
  536. position[X_AXIS] = st_get_position(X_AXIS);
  537. position[Y_AXIS] = st_get_position(Y_AXIS);
  538. position[Z_AXIS] = st_get_position(Z_AXIS);
  539. position[E_AXIS] = st_get_position(E_AXIS);
  540. // Second update the current position of the front end.
  541. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  542. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  543. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  544. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  545. // Apply the mesh bed leveling correction to the Z axis.
  546. #ifdef MESH_BED_LEVELING
  547. if (mbl.active) {
  548. #if 1
  549. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  550. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  551. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  552. #else
  553. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  554. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  555. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  556. else {
  557. float t = float(step_events_completed) / float(current_block->step_event_count);
  558. float vec[3] = {
  559. current_block->steps_x / cs.axis_steps_per_unit[X_AXIS],
  560. current_block->steps_y / cs.axis_steps_per_unit[Y_AXIS],
  561. current_block->steps_z / cs.axis_steps_per_unit[Z_AXIS]
  562. };
  563. float pos1[3], pos2[3];
  564. for (int8_t i = 0; i < 3; ++ i) {
  565. if (current_block->direction_bits & (1<<i))
  566. vec[i] = - vec[i];
  567. pos1[i] = current_position[i] - vec[i] * t;
  568. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  569. }
  570. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  571. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  572. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  573. }
  574. #endif
  575. }
  576. #endif
  577. // Clear the planner queue, reset and re-enable the stepper timer.
  578. quickStop();
  579. // Apply inverse world correction matrix.
  580. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  581. memcpy(destination, current_position, sizeof(destination));
  582. // Resets planner junction speeds. Assumes start from rest.
  583. previous_nominal_speed = 0.0;
  584. previous_speed[0] = 0.0;
  585. previous_speed[1] = 0.0;
  586. previous_speed[2] = 0.0;
  587. previous_speed[3] = 0.0;
  588. // Relay to planner wait routine, that the current line shall be canceled.
  589. waiting_inside_plan_buffer_line_print_aborted = true;
  590. }
  591. float junction_deviation = 0.1;
  592. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  593. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  594. // calculation the caller must also provide the physical length of the line in millimeters.
  595. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  596. {
  597. // Calculate the buffer head after we push this byte
  598. int next_buffer_head = next_block_index(block_buffer_head);
  599. // If the buffer is full: good! That means we are well ahead of the robot.
  600. // Rest here until there is room in the buffer.
  601. if (block_buffer_tail == next_buffer_head) {
  602. waiting_inside_plan_buffer_line_print_aborted = false;
  603. do {
  604. manage_heater();
  605. // Vojtech: Don't disable motors inside the planner!
  606. manage_inactivity(false);
  607. lcd_update(0);
  608. } while (block_buffer_tail == next_buffer_head);
  609. if (waiting_inside_plan_buffer_line_print_aborted) {
  610. // Inside the lcd_update(0) routine the print has been aborted.
  611. // Cancel the print, do not plan the current line this routine is waiting on.
  612. #ifdef PLANNER_DIAGNOSTICS
  613. planner_update_queue_min_counter();
  614. #endif /* PLANNER_DIAGNOSTICS */
  615. return;
  616. }
  617. }
  618. #ifdef PLANNER_DIAGNOSTICS
  619. planner_update_queue_min_counter();
  620. #endif /* PLANNER_DIAGNOSTICS */
  621. #ifdef ENABLE_AUTO_BED_LEVELING
  622. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  623. #endif // ENABLE_AUTO_BED_LEVELING
  624. // Apply the machine correction matrix.
  625. {
  626. #if 0
  627. SERIAL_ECHOPGM("Planner, current position - servos: ");
  628. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  629. SERIAL_ECHOPGM(", ");
  630. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  631. SERIAL_ECHOPGM(", ");
  632. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  633. SERIAL_ECHOLNPGM("");
  634. SERIAL_ECHOPGM("Planner, target position, initial: ");
  635. MYSERIAL.print(x, 5);
  636. SERIAL_ECHOPGM(", ");
  637. MYSERIAL.print(y, 5);
  638. SERIAL_ECHOLNPGM("");
  639. SERIAL_ECHOPGM("Planner, world2machine: ");
  640. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  641. SERIAL_ECHOPGM(", ");
  642. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  643. SERIAL_ECHOPGM(", ");
  644. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  645. SERIAL_ECHOPGM(", ");
  646. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  647. SERIAL_ECHOLNPGM("");
  648. SERIAL_ECHOPGM("Planner, offset: ");
  649. MYSERIAL.print(world2machine_shift[0], 5);
  650. SERIAL_ECHOPGM(", ");
  651. MYSERIAL.print(world2machine_shift[1], 5);
  652. SERIAL_ECHOLNPGM("");
  653. #endif
  654. world2machine(x, y);
  655. #if 0
  656. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  657. MYSERIAL.print(x, 5);
  658. SERIAL_ECHOPGM(", ");
  659. MYSERIAL.print(y, 5);
  660. SERIAL_ECHOLNPGM("");
  661. #endif
  662. }
  663. // The target position of the tool in absolute steps
  664. // Calculate target position in absolute steps
  665. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  666. long target[4];
  667. target[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  668. target[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  669. #ifdef MESH_BED_LEVELING
  670. if (mbl.active){
  671. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]);
  672. }else{
  673. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  674. }
  675. #else
  676. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  677. #endif // ENABLE_MESH_BED_LEVELING
  678. target[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  679. #ifdef PREVENT_DANGEROUS_EXTRUDE
  680. if(target[E_AXIS]!=position[E_AXIS])
  681. {
  682. if(degHotend(active_extruder)<extrude_min_temp)
  683. {
  684. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  685. #ifdef LIN_ADVANCE
  686. position_float[E_AXIS] = e;
  687. #endif
  688. SERIAL_ECHO_START;
  689. SERIAL_ECHOLNRPGM(_n(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP
  690. }
  691. #ifdef PREVENT_LENGTHY_EXTRUDE
  692. if(labs(target[E_AXIS]-position[E_AXIS])>cs.axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  693. {
  694. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  695. #ifdef LIN_ADVANCE
  696. position_float[E_AXIS] = e;
  697. #endif
  698. SERIAL_ECHO_START;
  699. SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP
  700. }
  701. #endif
  702. }
  703. #endif
  704. // Prepare to set up new block
  705. block_t *block = &block_buffer[block_buffer_head];
  706. // Set sdlen for calculating sd position
  707. block->sdlen = 0;
  708. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  709. block->busy = false;
  710. // Number of steps for each axis
  711. #ifndef COREXY
  712. // default non-h-bot planning
  713. block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
  714. block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
  715. #else
  716. // corexy planning
  717. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  718. block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  719. block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  720. #endif
  721. block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
  722. block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
  723. block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
  724. // Bail if this is a zero-length block
  725. if (block->step_event_count.wide <= dropsegments)
  726. {
  727. #ifdef PLANNER_DIAGNOSTICS
  728. planner_update_queue_min_counter();
  729. #endif /* PLANNER_DIAGNOSTICS */
  730. return;
  731. }
  732. block->fan_speed = fanSpeed;
  733. // Compute direction bits for this block
  734. block->direction_bits = 0;
  735. #ifndef COREXY
  736. if (target[X_AXIS] < position[X_AXIS])
  737. {
  738. block->direction_bits |= (1<<X_AXIS);
  739. }
  740. if (target[Y_AXIS] < position[Y_AXIS])
  741. {
  742. block->direction_bits |= (1<<Y_AXIS);
  743. }
  744. #else
  745. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  746. {
  747. block->direction_bits |= (1<<X_AXIS);
  748. }
  749. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  750. {
  751. block->direction_bits |= (1<<Y_AXIS);
  752. }
  753. #endif
  754. if (target[Z_AXIS] < position[Z_AXIS])
  755. {
  756. block->direction_bits |= (1<<Z_AXIS);
  757. }
  758. if (target[E_AXIS] < position[E_AXIS])
  759. {
  760. block->direction_bits |= (1<<E_AXIS);
  761. }
  762. block->active_extruder = extruder;
  763. //enable active axes
  764. #ifdef COREXY
  765. if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
  766. {
  767. enable_x();
  768. enable_y();
  769. }
  770. #else
  771. if(block->steps_x.wide != 0) enable_x();
  772. if(block->steps_y.wide != 0) enable_y();
  773. #endif
  774. if(block->steps_z.wide != 0) enable_z();
  775. // Enable extruder(s)
  776. if(block->steps_e.wide != 0)
  777. {
  778. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  779. {
  780. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  781. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  782. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  783. switch(extruder)
  784. {
  785. case 0:
  786. enable_e0();
  787. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  788. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  789. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  790. break;
  791. case 1:
  792. enable_e1();
  793. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  794. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  795. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  796. break;
  797. case 2:
  798. enable_e2();
  799. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  800. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  801. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  802. break;
  803. }
  804. }
  805. else //enable all
  806. {
  807. enable_e0();
  808. enable_e1();
  809. enable_e2();
  810. }
  811. }
  812. if (block->steps_e.wide == 0)
  813. {
  814. if(feed_rate<cs.mintravelfeedrate) feed_rate=cs.mintravelfeedrate;
  815. }
  816. else
  817. {
  818. if(feed_rate<cs.minimumfeedrate) feed_rate=cs.minimumfeedrate;
  819. }
  820. /* This part of the code calculates the total length of the movement.
  821. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  822. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  823. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  824. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  825. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  826. */
  827. #ifndef COREXY
  828. float delta_mm[4];
  829. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  830. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  831. #else
  832. float delta_mm[6];
  833. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  834. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  835. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[X_AXIS];
  836. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[Y_AXIS];
  837. #endif
  838. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/cs.axis_steps_per_unit[Z_AXIS];
  839. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/cs.axis_steps_per_unit[E_AXIS];
  840. if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
  841. {
  842. block->millimeters = fabs(delta_mm[E_AXIS]);
  843. }
  844. else
  845. {
  846. #ifndef COREXY
  847. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  848. #else
  849. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  850. #endif
  851. }
  852. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  853. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  854. float inverse_second = feed_rate * inverse_millimeters;
  855. int moves_queued = moves_planned();
  856. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  857. #ifdef SLOWDOWN
  858. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  859. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  860. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  861. // segment time in micro seconds
  862. unsigned long segment_time = lround(1000000.0/inverse_second);
  863. if (segment_time < cs.minsegmenttime)
  864. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  865. inverse_second=1000000.0/(segment_time+lround(2*(cs.minsegmenttime-segment_time)/moves_queued));
  866. }
  867. #endif // SLOWDOWN
  868. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  869. block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
  870. // Calculate and limit speed in mm/sec for each axis
  871. float current_speed[4];
  872. float speed_factor = 1.0; //factor <=1 do decrease speed
  873. // maxlimit_status &= ~0xf;
  874. for(int i=0; i < 4; i++)
  875. {
  876. current_speed[i] = delta_mm[i] * inverse_second;
  877. if(fabs(current_speed[i]) > max_feedrate[i])
  878. {
  879. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  880. maxlimit_status |= (1 << i);
  881. }
  882. }
  883. // Correct the speed
  884. if( speed_factor < 1.0)
  885. {
  886. for(unsigned char i=0; i < 4; i++)
  887. {
  888. current_speed[i] *= speed_factor;
  889. }
  890. block->nominal_speed *= speed_factor;
  891. block->nominal_rate *= speed_factor;
  892. }
  893. // Compute and limit the acceleration rate for the trapezoid generator.
  894. // block->step_event_count ... event count of the fastest axis
  895. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  896. float steps_per_mm = block->step_event_count.wide/block->millimeters;
  897. if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
  898. {
  899. block->acceleration_st = ceil(cs.retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  900. #ifdef LIN_ADVANCE
  901. block->use_advance_lead = false;
  902. #endif
  903. }
  904. else
  905. {
  906. block->acceleration_st = ceil(cs.acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  907. #ifdef LIN_ADVANCE
  908. /**
  909. * Use LIN_ADVANCE for blocks if all these are true:
  910. *
  911. * block->steps_e : This is a print move, because we checked for X, Y, Z steps before.
  912. * extruder_advance_K : There is an advance factor set.
  913. * delta_mm[E_AXIS] > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  914. */
  915. block->use_advance_lead = block->steps_e.wide
  916. && extruder_advance_K
  917. && delta_mm[E_AXIS] > 0;
  918. if (block->use_advance_lead) {
  919. block->e_D_ratio = (e - position_float[E_AXIS]) /
  920. sqrt(sq(x - position_float[X_AXIS])
  921. + sq(y - position_float[Y_AXIS])
  922. + sq(z - position_float[Z_AXIS]));
  923. // Check for unusual high e_D ratio to detect if a retract move was combined with the last print move due to min. steps per segment. Never execute this with advance!
  924. // This assumes no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
  925. if (block->e_D_ratio > 3.0)
  926. block->use_advance_lead = false;
  927. else {
  928. const uint32_t max_accel_steps_per_s2 = cs.max_jerk[E_AXIS] / (extruder_advance_K * block->e_D_ratio) * steps_per_mm;
  929. if (block->acceleration_st > max_accel_steps_per_s2) {
  930. block->acceleration_st = max_accel_steps_per_s2;
  931. #ifdef LA_DEBUG
  932. SERIAL_ECHOLNPGM("Acceleration limited.");
  933. #endif
  934. }
  935. }
  936. }
  937. #endif
  938. // Limit acceleration per axis
  939. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  940. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  941. { block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; maxlimit_status |= (X_AXIS_MASK << 4); }
  942. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  943. { block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; maxlimit_status |= (Y_AXIS_MASK << 4); }
  944. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  945. { block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; maxlimit_status |= (Z_AXIS_MASK << 4); }
  946. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
  947. { block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; maxlimit_status |= (E_AXIS_MASK << 4); }
  948. }
  949. // Acceleration of the segment, in mm/sec^2
  950. block->acceleration = block->acceleration_st / steps_per_mm;
  951. #if 0
  952. // Oversample diagonal movements by a power of 2 up to 8x
  953. // to achieve more accurate diagonal movements.
  954. uint8_t bresenham_oversample = 1;
  955. for (uint8_t i = 0; i < 3; ++ i) {
  956. if (block->nominal_rate >= 5000) // 5kHz
  957. break;
  958. block->nominal_rate << 1;
  959. bresenham_oversample << 1;
  960. block->step_event_count << 1;
  961. }
  962. if (bresenham_oversample > 1)
  963. // Lower the acceleration steps/sec^2 to account for the oversampling.
  964. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  965. #endif
  966. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  967. #ifdef LIN_ADVANCE
  968. if (block->use_advance_lead) {
  969. block->advance_speed = (F_CPU / 8.0) / (extruder_advance_K * block->e_D_ratio * block->acceleration * cs.axis_steps_per_unit[E_AXIS]);
  970. #ifdef LA_DEBUG
  971. if (extruder_advance_K * block->e_D_ratio * block->acceleration * 2 < block->nominal_speed * block->e_D_ratio)
  972. SERIAL_ECHOLNPGM("More than 2 steps per eISR loop executed.");
  973. if (block->advance_speed < 200)
  974. SERIAL_ECHOLNPGM("eISR running at > 10kHz.");
  975. #endif
  976. }
  977. #endif
  978. // Start with a safe speed.
  979. // Safe speed is the speed, from which the machine may halt to stop immediately.
  980. float safe_speed = block->nominal_speed;
  981. bool limited = false;
  982. for (uint8_t axis = 0; axis < 4; ++ axis) {
  983. float jerk = fabs(current_speed[axis]);
  984. if (jerk > cs.max_jerk[axis]) {
  985. // The actual jerk is lower, if it has been limited by the XY jerk.
  986. if (limited) {
  987. // Spare one division by a following gymnastics:
  988. // Instead of jerk *= safe_speed / block->nominal_speed,
  989. // multiply max_jerk[axis] by the divisor.
  990. jerk *= safe_speed;
  991. float mjerk = cs.max_jerk[axis] * block->nominal_speed;
  992. if (jerk > mjerk) {
  993. safe_speed *= mjerk / jerk;
  994. limited = true;
  995. }
  996. } else {
  997. safe_speed = cs.max_jerk[axis];
  998. limited = true;
  999. }
  1000. }
  1001. }
  1002. // Reset the block flag.
  1003. block->flag = 0;
  1004. // Initial limit on the segment entry velocity.
  1005. float vmax_junction;
  1006. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  1007. // Is it because we don't want to tinker with the first buffer line, which
  1008. // is likely to be executed by the stepper interrupt routine soon?
  1009. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  1010. // Estimate a maximum velocity allowed at a joint of two successive segments.
  1011. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  1012. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  1013. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  1014. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  1015. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  1016. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  1017. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  1018. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  1019. float v_factor = 1.f;
  1020. limited = false;
  1021. // Now limit the jerk in all axes.
  1022. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1023. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  1024. float v_exit = previous_speed[axis];
  1025. float v_entry = current_speed [axis];
  1026. if (prev_speed_larger)
  1027. v_exit *= smaller_speed_factor;
  1028. if (limited) {
  1029. v_exit *= v_factor;
  1030. v_entry *= v_factor;
  1031. }
  1032. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  1033. float jerk =
  1034. (v_exit > v_entry) ?
  1035. ((v_entry > 0.f || v_exit < 0.f) ?
  1036. // coasting
  1037. (v_exit - v_entry) :
  1038. // axis reversal
  1039. max(v_exit, - v_entry)) :
  1040. // v_exit <= v_entry
  1041. ((v_entry < 0.f || v_exit > 0.f) ?
  1042. // coasting
  1043. (v_entry - v_exit) :
  1044. // axis reversal
  1045. max(- v_exit, v_entry));
  1046. if (jerk > cs.max_jerk[axis]) {
  1047. v_factor *= cs.max_jerk[axis] / jerk;
  1048. limited = true;
  1049. }
  1050. }
  1051. if (limited)
  1052. vmax_junction *= v_factor;
  1053. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1054. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1055. float vmax_junction_threshold = vmax_junction * 0.99f;
  1056. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1057. // Not coasting. The machine will stop and start the movements anyway,
  1058. // better to start the segment from start.
  1059. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1060. vmax_junction = safe_speed;
  1061. }
  1062. } else {
  1063. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1064. vmax_junction = safe_speed;
  1065. }
  1066. // Max entry speed of this block equals the max exit speed of the previous block.
  1067. block->max_entry_speed = vmax_junction;
  1068. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1069. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1070. block->entry_speed = min(vmax_junction, v_allowable);
  1071. // Initialize planner efficiency flags
  1072. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1073. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1074. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1075. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1076. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1077. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1078. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1079. // Always calculate trapezoid for new block
  1080. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1081. // Update previous path unit_vector and nominal speed
  1082. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1083. previous_nominal_speed = block->nominal_speed;
  1084. previous_safe_speed = safe_speed;
  1085. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1086. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1087. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1088. if (block->step_event_count.wide <= 32767)
  1089. block->flag |= BLOCK_FLAG_DDA_LOWRES;
  1090. // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
  1091. block_buffer_head = next_buffer_head;
  1092. // Update position
  1093. memcpy(position, target, sizeof(target)); // position[] = target[]
  1094. #ifdef LIN_ADVANCE
  1095. position_float[X_AXIS] = x;
  1096. position_float[Y_AXIS] = y;
  1097. position_float[Z_AXIS] = z;
  1098. position_float[E_AXIS] = e;
  1099. #endif
  1100. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1101. // the machine limits (maximum acceleration and maximum jerk).
  1102. // This runs asynchronously with the stepper interrupt controller, which may
  1103. // interfere with the process.
  1104. planner_recalculate(safe_speed);
  1105. // SERIAL_ECHOPGM("Q");
  1106. // SERIAL_ECHO(int(moves_planned()));
  1107. // SERIAL_ECHOLNPGM("");
  1108. #ifdef PLANNER_DIAGNOSTICS
  1109. planner_update_queue_min_counter();
  1110. #endif /* PLANNER_DIAGNOSTIC */
  1111. // The stepper timer interrupt will run continuously from now on.
  1112. // If there are no planner blocks to be executed by the stepper routine,
  1113. // the stepper interrupt ticks at 1kHz to wake up and pick a block
  1114. // from the planner queue if available.
  1115. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1116. }
  1117. #ifdef ENABLE_AUTO_BED_LEVELING
  1118. vector_3 plan_get_position() {
  1119. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1120. //position.debug("in plan_get position");
  1121. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1122. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1123. //inverse.debug("in plan_get inverse");
  1124. position.apply_rotation(inverse);
  1125. //position.debug("after rotation");
  1126. return position;
  1127. }
  1128. #endif // ENABLE_AUTO_BED_LEVELING
  1129. void plan_set_position(float x, float y, float z, const float &e)
  1130. {
  1131. #ifdef ENABLE_AUTO_BED_LEVELING
  1132. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1133. #endif // ENABLE_AUTO_BED_LEVELING
  1134. // Apply the machine correction matrix.
  1135. if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE)
  1136. {
  1137. float tmpx = x;
  1138. float tmpy = y;
  1139. x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
  1140. y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
  1141. }
  1142. position[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  1143. position[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  1144. #ifdef MESH_BED_LEVELING
  1145. position[Z_AXIS] = mbl.active ?
  1146. lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]) :
  1147. lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1148. #else
  1149. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1150. #endif // ENABLE_MESH_BED_LEVELING
  1151. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1152. #ifdef LIN_ADVANCE
  1153. position_float[X_AXIS] = x;
  1154. position_float[Y_AXIS] = y;
  1155. position_float[Z_AXIS] = z;
  1156. position_float[E_AXIS] = e;
  1157. #endif
  1158. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1159. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1160. previous_speed[0] = 0.0;
  1161. previous_speed[1] = 0.0;
  1162. previous_speed[2] = 0.0;
  1163. previous_speed[3] = 0.0;
  1164. }
  1165. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1166. void plan_set_z_position(const float &z)
  1167. {
  1168. #ifdef LIN_ADVANCE
  1169. position_float[Z_AXIS] = z;
  1170. #endif
  1171. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1172. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1173. }
  1174. void plan_set_e_position(const float &e)
  1175. {
  1176. #ifdef LIN_ADVANCE
  1177. position_float[E_AXIS] = e;
  1178. #endif
  1179. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1180. st_set_e_position(position[E_AXIS]);
  1181. }
  1182. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1183. void set_extrude_min_temp(float temp)
  1184. {
  1185. extrude_min_temp=temp;
  1186. }
  1187. #endif
  1188. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1189. void reset_acceleration_rates()
  1190. {
  1191. for(int8_t i=0; i < NUM_AXIS; i++)
  1192. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * cs.axis_steps_per_unit[i];
  1193. }
  1194. #ifdef TMC2130
  1195. void update_mode_profile()
  1196. {
  1197. if (tmc2130_mode == TMC2130_MODE_NORMAL)
  1198. {
  1199. max_feedrate = cs.max_feedrate_normal;
  1200. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  1201. }
  1202. else if (tmc2130_mode == TMC2130_MODE_SILENT)
  1203. {
  1204. max_feedrate = cs.max_feedrate_silent;
  1205. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_silent;
  1206. }
  1207. reset_acceleration_rates();
  1208. }
  1209. #endif //TMC2130
  1210. unsigned char number_of_blocks()
  1211. {
  1212. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1213. }
  1214. #ifdef PLANNER_DIAGNOSTICS
  1215. uint8_t planner_queue_min()
  1216. {
  1217. return g_cntr_planner_queue_min;
  1218. }
  1219. void planner_queue_min_reset()
  1220. {
  1221. g_cntr_planner_queue_min = moves_planned();
  1222. }
  1223. #endif /* PLANNER_DIAGNOSTICS */
  1224. void planner_add_sd_length(uint16_t sdlen)
  1225. {
  1226. if (block_buffer_head != block_buffer_tail) {
  1227. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1228. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1229. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1230. } else {
  1231. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1232. // at a power panic, so the length of this command may be forgotten.
  1233. }
  1234. }
  1235. uint16_t planner_calc_sd_length()
  1236. {
  1237. unsigned char _block_buffer_head = block_buffer_head;
  1238. unsigned char _block_buffer_tail = block_buffer_tail;
  1239. uint16_t sdlen = 0;
  1240. while (_block_buffer_head != _block_buffer_tail)
  1241. {
  1242. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1243. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1244. }
  1245. return sdlen;
  1246. }