Marlin_main.cpp 248 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #endif //PAT9125
  58. #ifdef TMC2130
  59. #include "tmc2130.h"
  60. #endif //TMC2130
  61. #ifdef BLINKM
  62. #include "BlinkM.h"
  63. #include "Wire.h"
  64. #endif
  65. #ifdef ULTRALCD
  66. #include "ultralcd.h"
  67. #endif
  68. #if NUM_SERVOS > 0
  69. #include "Servo.h"
  70. #endif
  71. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  72. #include <SPI.h>
  73. #endif
  74. #define VERSION_STRING "1.0.2"
  75. #include "ultralcd.h"
  76. #include "cmdqueue.h"
  77. // Macros for bit masks
  78. #define BIT(b) (1<<(b))
  79. #define TEST(n,b) (((n)&BIT(b))!=0)
  80. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  81. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  82. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  83. //Implemented Codes
  84. //-------------------
  85. // PRUSA CODES
  86. // P F - Returns FW versions
  87. // P R - Returns revision of printer
  88. // G0 -> G1
  89. // G1 - Coordinated Movement X Y Z E
  90. // G2 - CW ARC
  91. // G3 - CCW ARC
  92. // G4 - Dwell S<seconds> or P<milliseconds>
  93. // G10 - retract filament according to settings of M207
  94. // G11 - retract recover filament according to settings of M208
  95. // G28 - Home all Axis
  96. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  97. // G30 - Single Z Probe, probes bed at current XY location.
  98. // G31 - Dock sled (Z_PROBE_SLED only)
  99. // G32 - Undock sled (Z_PROBE_SLED only)
  100. // G80 - Automatic mesh bed leveling
  101. // G81 - Print bed profile
  102. // G90 - Use Absolute Coordinates
  103. // G91 - Use Relative Coordinates
  104. // G92 - Set current position to coordinates given
  105. // M Codes
  106. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  107. // M1 - Same as M0
  108. // M17 - Enable/Power all stepper motors
  109. // M18 - Disable all stepper motors; same as M84
  110. // M20 - List SD card
  111. // M21 - Init SD card
  112. // M22 - Release SD card
  113. // M23 - Select SD file (M23 filename.g)
  114. // M24 - Start/resume SD print
  115. // M25 - Pause SD print
  116. // M26 - Set SD position in bytes (M26 S12345)
  117. // M27 - Report SD print status
  118. // M28 - Start SD write (M28 filename.g)
  119. // M29 - Stop SD write
  120. // M30 - Delete file from SD (M30 filename.g)
  121. // M31 - Output time since last M109 or SD card start to serial
  122. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  123. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  124. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  125. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  126. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  127. // M80 - Turn on Power Supply
  128. // M81 - Turn off Power Supply
  129. // M82 - Set E codes absolute (default)
  130. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  131. // M84 - Disable steppers until next move,
  132. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  133. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  134. // M92 - Set axis_steps_per_unit - same syntax as G92
  135. // M104 - Set extruder target temp
  136. // M105 - Read current temp
  137. // M106 - Fan on
  138. // M107 - Fan off
  139. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  140. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  141. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  142. // M112 - Emergency stop
  143. // M114 - Output current position to serial port
  144. // M115 - Capabilities string
  145. // M117 - display message
  146. // M119 - Output Endstop status to serial port
  147. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  148. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  149. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  150. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  151. // M140 - Set bed target temp
  152. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  153. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  154. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  155. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  156. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  157. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  158. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  159. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  160. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  161. // M206 - set additional homing offset
  162. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  163. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  164. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  165. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  166. // M220 S<factor in percent>- set speed factor override percentage
  167. // M221 S<factor in percent>- set extrude factor override percentage
  168. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  169. // M240 - Trigger a camera to take a photograph
  170. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  171. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  172. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  173. // M301 - Set PID parameters P I and D
  174. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  175. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  176. // M304 - Set bed PID parameters P I and D
  177. // M400 - Finish all moves
  178. // M401 - Lower z-probe if present
  179. // M402 - Raise z-probe if present
  180. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  181. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  182. // M406 - Turn off Filament Sensor extrusion control
  183. // M407 - Displays measured filament diameter
  184. // M500 - stores parameters in EEPROM
  185. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  186. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  187. // M503 - print the current settings (from memory not from EEPROM)
  188. // M509 - force language selection on next restart
  189. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  190. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  191. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  192. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  193. // M907 - Set digital trimpot motor current using axis codes.
  194. // M908 - Control digital trimpot directly.
  195. // M350 - Set microstepping mode.
  196. // M351 - Toggle MS1 MS2 pins directly.
  197. // M928 - Start SD logging (M928 filename.g) - ended by M29
  198. // M999 - Restart after being stopped by error
  199. //Stepper Movement Variables
  200. //===========================================================================
  201. //=============================imported variables============================
  202. //===========================================================================
  203. //===========================================================================
  204. //=============================public variables=============================
  205. //===========================================================================
  206. #ifdef SDSUPPORT
  207. CardReader card;
  208. #endif
  209. unsigned long PingTime = millis();
  210. union Data
  211. {
  212. byte b[2];
  213. int value;
  214. };
  215. float homing_feedrate[] = HOMING_FEEDRATE;
  216. // Currently only the extruder axis may be switched to a relative mode.
  217. // Other axes are always absolute or relative based on the common relative_mode flag.
  218. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  219. int feedmultiply=100; //100->1 200->2
  220. int saved_feedmultiply;
  221. int extrudemultiply=100; //100->1 200->2
  222. int extruder_multiply[EXTRUDERS] = {100
  223. #if EXTRUDERS > 1
  224. , 100
  225. #if EXTRUDERS > 2
  226. , 100
  227. #endif
  228. #endif
  229. };
  230. int bowden_length[4];
  231. bool is_usb_printing = false;
  232. bool homing_flag = false;
  233. bool temp_cal_active = false;
  234. unsigned long kicktime = millis()+100000;
  235. unsigned int usb_printing_counter;
  236. int lcd_change_fil_state = 0;
  237. int feedmultiplyBckp = 100;
  238. float HotendTempBckp = 0;
  239. int fanSpeedBckp = 0;
  240. float pause_lastpos[4];
  241. unsigned long pause_time = 0;
  242. unsigned long start_pause_print = millis();
  243. unsigned long load_filament_time;
  244. bool mesh_bed_leveling_flag = false;
  245. bool mesh_bed_run_from_menu = false;
  246. unsigned char lang_selected = 0;
  247. int8_t FarmMode = 0;
  248. bool prusa_sd_card_upload = false;
  249. unsigned int status_number = 0;
  250. unsigned long total_filament_used;
  251. unsigned int heating_status;
  252. unsigned int heating_status_counter;
  253. bool custom_message;
  254. bool loading_flag = false;
  255. unsigned int custom_message_type;
  256. unsigned int custom_message_state;
  257. char snmm_filaments_used = 0;
  258. float distance_from_min[3];
  259. float angleDiff;
  260. bool fan_state[2];
  261. int fan_edge_counter[2];
  262. int fan_speed[2];
  263. bool volumetric_enabled = false;
  264. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  265. #if EXTRUDERS > 1
  266. , DEFAULT_NOMINAL_FILAMENT_DIA
  267. #if EXTRUDERS > 2
  268. , DEFAULT_NOMINAL_FILAMENT_DIA
  269. #endif
  270. #endif
  271. };
  272. float volumetric_multiplier[EXTRUDERS] = {1.0
  273. #if EXTRUDERS > 1
  274. , 1.0
  275. #if EXTRUDERS > 2
  276. , 1.0
  277. #endif
  278. #endif
  279. };
  280. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  281. float add_homing[3]={0,0,0};
  282. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  283. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  284. bool axis_known_position[3] = {false, false, false};
  285. float zprobe_zoffset;
  286. // Extruder offset
  287. #if EXTRUDERS > 1
  288. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  289. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  290. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  291. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  292. #endif
  293. };
  294. #endif
  295. uint8_t active_extruder = 0;
  296. int fanSpeed=0;
  297. #ifdef FWRETRACT
  298. bool autoretract_enabled=false;
  299. bool retracted[EXTRUDERS]={false
  300. #if EXTRUDERS > 1
  301. , false
  302. #if EXTRUDERS > 2
  303. , false
  304. #endif
  305. #endif
  306. };
  307. bool retracted_swap[EXTRUDERS]={false
  308. #if EXTRUDERS > 1
  309. , false
  310. #if EXTRUDERS > 2
  311. , false
  312. #endif
  313. #endif
  314. };
  315. float retract_length = RETRACT_LENGTH;
  316. float retract_length_swap = RETRACT_LENGTH_SWAP;
  317. float retract_feedrate = RETRACT_FEEDRATE;
  318. float retract_zlift = RETRACT_ZLIFT;
  319. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  320. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  321. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  322. #endif
  323. #ifdef ULTIPANEL
  324. #ifdef PS_DEFAULT_OFF
  325. bool powersupply = false;
  326. #else
  327. bool powersupply = true;
  328. #endif
  329. #endif
  330. bool cancel_heatup = false ;
  331. #ifdef FILAMENT_SENSOR
  332. //Variables for Filament Sensor input
  333. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  334. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  335. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  336. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  337. int delay_index1=0; //index into ring buffer
  338. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  339. float delay_dist=0; //delay distance counter
  340. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  341. #endif
  342. const char errormagic[] PROGMEM = "Error:";
  343. const char echomagic[] PROGMEM = "echo:";
  344. //===========================================================================
  345. //=============================Private Variables=============================
  346. //===========================================================================
  347. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  348. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  349. static float delta[3] = {0.0, 0.0, 0.0};
  350. // For tracing an arc
  351. static float offset[3] = {0.0, 0.0, 0.0};
  352. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  353. // Determines Absolute or Relative Coordinates.
  354. // Also there is bool axis_relative_modes[] per axis flag.
  355. static bool relative_mode = false;
  356. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  357. //static float tt = 0;
  358. //static float bt = 0;
  359. //Inactivity shutdown variables
  360. static unsigned long previous_millis_cmd = 0;
  361. unsigned long max_inactive_time = 0;
  362. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  363. unsigned long starttime=0;
  364. unsigned long stoptime=0;
  365. unsigned long _usb_timer = 0;
  366. static uint8_t tmp_extruder;
  367. bool extruder_under_pressure = true;
  368. bool Stopped=false;
  369. #if NUM_SERVOS > 0
  370. Servo servos[NUM_SERVOS];
  371. #endif
  372. bool CooldownNoWait = true;
  373. bool target_direction;
  374. //Insert variables if CHDK is defined
  375. #ifdef CHDK
  376. unsigned long chdkHigh = 0;
  377. boolean chdkActive = false;
  378. #endif
  379. //===========================================================================
  380. //=============================Routines======================================
  381. //===========================================================================
  382. void get_arc_coordinates();
  383. bool setTargetedHotend(int code);
  384. void serial_echopair_P(const char *s_P, float v)
  385. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  386. void serial_echopair_P(const char *s_P, double v)
  387. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  388. void serial_echopair_P(const char *s_P, unsigned long v)
  389. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  390. #ifdef SDSUPPORT
  391. #include "SdFatUtil.h"
  392. int freeMemory() { return SdFatUtil::FreeRam(); }
  393. #else
  394. extern "C" {
  395. extern unsigned int __bss_end;
  396. extern unsigned int __heap_start;
  397. extern void *__brkval;
  398. int freeMemory() {
  399. int free_memory;
  400. if ((int)__brkval == 0)
  401. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  402. else
  403. free_memory = ((int)&free_memory) - ((int)__brkval);
  404. return free_memory;
  405. }
  406. }
  407. #endif //!SDSUPPORT
  408. void setup_killpin()
  409. {
  410. #if defined(KILL_PIN) && KILL_PIN > -1
  411. SET_INPUT(KILL_PIN);
  412. WRITE(KILL_PIN,HIGH);
  413. #endif
  414. }
  415. // Set home pin
  416. void setup_homepin(void)
  417. {
  418. #if defined(HOME_PIN) && HOME_PIN > -1
  419. SET_INPUT(HOME_PIN);
  420. WRITE(HOME_PIN,HIGH);
  421. #endif
  422. }
  423. void setup_photpin()
  424. {
  425. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  426. SET_OUTPUT(PHOTOGRAPH_PIN);
  427. WRITE(PHOTOGRAPH_PIN, LOW);
  428. #endif
  429. }
  430. void setup_powerhold()
  431. {
  432. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  433. SET_OUTPUT(SUICIDE_PIN);
  434. WRITE(SUICIDE_PIN, HIGH);
  435. #endif
  436. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  437. SET_OUTPUT(PS_ON_PIN);
  438. #if defined(PS_DEFAULT_OFF)
  439. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  440. #else
  441. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  442. #endif
  443. #endif
  444. }
  445. void suicide()
  446. {
  447. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  448. SET_OUTPUT(SUICIDE_PIN);
  449. WRITE(SUICIDE_PIN, LOW);
  450. #endif
  451. }
  452. void servo_init()
  453. {
  454. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  455. servos[0].attach(SERVO0_PIN);
  456. #endif
  457. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  458. servos[1].attach(SERVO1_PIN);
  459. #endif
  460. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  461. servos[2].attach(SERVO2_PIN);
  462. #endif
  463. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  464. servos[3].attach(SERVO3_PIN);
  465. #endif
  466. #if (NUM_SERVOS >= 5)
  467. #error "TODO: enter initalisation code for more servos"
  468. #endif
  469. }
  470. static void lcd_language_menu();
  471. void stop_and_save_print_to_ram(float z_move, float e_move);
  472. void restore_print_from_ram_and_continue(float e_move);
  473. extern int8_t CrashDetectMenu;
  474. void crashdet_enable()
  475. {
  476. MYSERIAL.println("crashdet_enable");
  477. tmc2130_sg_stop_on_crash = true;
  478. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  479. CrashDetectMenu = 1;
  480. }
  481. void crashdet_disable()
  482. {
  483. MYSERIAL.println("crashdet_disable");
  484. tmc2130_sg_stop_on_crash = false;
  485. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  486. CrashDetectMenu = 0;
  487. }
  488. void crashdet_stop_and_save_print()
  489. {
  490. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  491. }
  492. void crashdet_restore_print_and_continue()
  493. {
  494. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  495. // babystep_apply();
  496. }
  497. void crashdet_stop_and_save_print2()
  498. {
  499. cli();
  500. planner_abort_hard(); //abort printing
  501. cmdqueue_reset(); //empty cmdqueue
  502. card.sdprinting = false;
  503. card.closefile();
  504. sei();
  505. }
  506. #ifdef PAT9125
  507. void fsensor_stop_and_save_print()
  508. {
  509. // stop_and_save_print_to_ram(10, -0.8); //XY - no change, Z 10mm up, E 0.8mm in
  510. stop_and_save_print_to_ram(0, 0); //XYZE - no change
  511. }
  512. void fsensor_restore_print_and_continue()
  513. {
  514. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  515. }
  516. bool fsensor_enabled = true;
  517. bool fsensor_ignore_error = true;
  518. bool fsensor_M600 = false;
  519. long fsensor_prev_pos_e = 0;
  520. uint8_t fsensor_err_cnt = 0;
  521. #define FSENS_ESTEPS 280 //extruder resolution [steps/mm]
  522. //#define FSENS_MINDEL 560 //filament sensor min delta [steps] (3mm)
  523. #define FSENS_MINDEL 280 //filament sensor min delta [steps] (3mm)
  524. #define FSENS_MINFAC 3 //filament sensor minimum factor [count/mm]
  525. //#define FSENS_MAXFAC 50 //filament sensor maximum factor [count/mm]
  526. #define FSENS_MAXFAC 40 //filament sensor maximum factor [count/mm]
  527. //#define FSENS_MAXERR 2 //filament sensor max error count
  528. #define FSENS_MAXERR 5 //filament sensor max error count
  529. extern int8_t FSensorStateMenu;
  530. void fsensor_enable()
  531. {
  532. MYSERIAL.println("fsensor_enable");
  533. pat9125_y = 0;
  534. fsensor_prev_pos_e = st_get_position(E_AXIS);
  535. fsensor_err_cnt = 0;
  536. fsensor_enabled = true;
  537. fsensor_ignore_error = true;
  538. fsensor_M600 = false;
  539. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0xFF);
  540. FSensorStateMenu = 1;
  541. }
  542. void fsensor_disable()
  543. {
  544. MYSERIAL.println("fsensor_disable");
  545. fsensor_enabled = false;
  546. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  547. FSensorStateMenu = 0;
  548. }
  549. void fsensor_update()
  550. {
  551. if (!fsensor_enabled) return;
  552. long pos_e = st_get_position(E_AXIS); //current position
  553. pat9125_update();
  554. long del_e = pos_e - fsensor_prev_pos_e; //delta
  555. if (abs(del_e) < FSENS_MINDEL) return;
  556. float de = ((float)del_e / FSENS_ESTEPS);
  557. int cmin = de * FSENS_MINFAC;
  558. int cmax = de * FSENS_MAXFAC;
  559. int cnt = -pat9125_y;
  560. fsensor_prev_pos_e = pos_e;
  561. pat9125_y = 0;
  562. bool err = false;
  563. if ((del_e > 0) && ((cnt < cmin) || (cnt > cmax))) err = true;
  564. if ((del_e < 0) && ((cnt > cmin) || (cnt < cmax))) err = true;
  565. if (err)
  566. fsensor_err_cnt++;
  567. else
  568. fsensor_err_cnt = 0;
  569. /**/
  570. MYSERIAL.print("pos_e=");
  571. MYSERIAL.print(pos_e);
  572. MYSERIAL.print(" de=");
  573. MYSERIAL.print(de);
  574. MYSERIAL.print(" cmin=");
  575. MYSERIAL.print((int)cmin);
  576. MYSERIAL.print(" cmax=");
  577. MYSERIAL.print((int)cmax);
  578. MYSERIAL.print(" cnt=");
  579. MYSERIAL.print((int)cnt);
  580. MYSERIAL.print(" err=");
  581. MYSERIAL.println((int)fsensor_err_cnt);/**/
  582. // return;
  583. if (fsensor_err_cnt > FSENS_MAXERR)
  584. {
  585. MYSERIAL.println("fsensor_update (fsensor_err_cnt > FSENS_MAXERR)");
  586. if (fsensor_ignore_error)
  587. {
  588. MYSERIAL.println("fsensor_update - error ignored)");
  589. fsensor_ignore_error = false;
  590. }
  591. else
  592. {
  593. MYSERIAL.println("fsensor_update - ERROR!!!");
  594. fsensor_stop_and_save_print();
  595. enquecommand_front_P((PSTR("M600")));
  596. fsensor_M600 = true;
  597. fsensor_enabled = false;
  598. }
  599. }
  600. }
  601. #endif //PAT9125
  602. #ifdef MESH_BED_LEVELING
  603. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  604. #endif
  605. // Factory reset function
  606. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  607. // Level input parameter sets depth of reset
  608. // Quiet parameter masks all waitings for user interact.
  609. int er_progress = 0;
  610. void factory_reset(char level, bool quiet)
  611. {
  612. lcd_implementation_clear();
  613. int cursor_pos = 0;
  614. switch (level) {
  615. // Level 0: Language reset
  616. case 0:
  617. WRITE(BEEPER, HIGH);
  618. _delay_ms(100);
  619. WRITE(BEEPER, LOW);
  620. lcd_force_language_selection();
  621. break;
  622. //Level 1: Reset statistics
  623. case 1:
  624. WRITE(BEEPER, HIGH);
  625. _delay_ms(100);
  626. WRITE(BEEPER, LOW);
  627. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  628. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  629. lcd_menu_statistics();
  630. break;
  631. // Level 2: Prepare for shipping
  632. case 2:
  633. //lcd_printPGM(PSTR("Factory RESET"));
  634. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  635. // Force language selection at the next boot up.
  636. lcd_force_language_selection();
  637. // Force the "Follow calibration flow" message at the next boot up.
  638. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  639. farm_no = 0;
  640. farm_mode == false;
  641. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  642. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  643. WRITE(BEEPER, HIGH);
  644. _delay_ms(100);
  645. WRITE(BEEPER, LOW);
  646. //_delay_ms(2000);
  647. break;
  648. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  649. case 3:
  650. lcd_printPGM(PSTR("Factory RESET"));
  651. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  652. WRITE(BEEPER, HIGH);
  653. _delay_ms(100);
  654. WRITE(BEEPER, LOW);
  655. er_progress = 0;
  656. lcd_print_at_PGM(3, 3, PSTR(" "));
  657. lcd_implementation_print_at(3, 3, er_progress);
  658. // Erase EEPROM
  659. for (int i = 0; i < 4096; i++) {
  660. eeprom_write_byte((uint8_t*)i, 0xFF);
  661. if (i % 41 == 0) {
  662. er_progress++;
  663. lcd_print_at_PGM(3, 3, PSTR(" "));
  664. lcd_implementation_print_at(3, 3, er_progress);
  665. lcd_printPGM(PSTR("%"));
  666. }
  667. }
  668. break;
  669. case 4:
  670. bowden_menu();
  671. break;
  672. default:
  673. break;
  674. }
  675. }
  676. // "Setup" function is called by the Arduino framework on startup.
  677. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  678. // are initialized by the main() routine provided by the Arduino framework.
  679. void setup()
  680. {
  681. lcd_init();
  682. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  683. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  684. setup_killpin();
  685. setup_powerhold();
  686. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  687. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  688. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  689. if (farm_no == 0xFFFF) farm_no = 0;
  690. if (farm_mode)
  691. {
  692. prusa_statistics(8);
  693. selectedSerialPort = 1;
  694. }
  695. else
  696. selectedSerialPort = 0;
  697. MYSERIAL.begin(BAUDRATE);
  698. SERIAL_PROTOCOLLNPGM("start");
  699. SERIAL_ECHO_START;
  700. #if 0
  701. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  702. for (int i = 0; i < 4096; ++i) {
  703. int b = eeprom_read_byte((unsigned char*)i);
  704. if (b != 255) {
  705. SERIAL_ECHO(i);
  706. SERIAL_ECHO(":");
  707. SERIAL_ECHO(b);
  708. SERIAL_ECHOLN("");
  709. }
  710. }
  711. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  712. #endif
  713. // Check startup - does nothing if bootloader sets MCUSR to 0
  714. byte mcu = MCUSR;
  715. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  716. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  717. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  718. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  719. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  720. MCUSR = 0;
  721. //SERIAL_ECHORPGM(MSG_MARLIN);
  722. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  723. #ifdef STRING_VERSION_CONFIG_H
  724. #ifdef STRING_CONFIG_H_AUTHOR
  725. SERIAL_ECHO_START;
  726. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  727. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  728. SERIAL_ECHORPGM(MSG_AUTHOR);
  729. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  730. SERIAL_ECHOPGM("Compiled: ");
  731. SERIAL_ECHOLNPGM(__DATE__);
  732. #endif
  733. #endif
  734. SERIAL_ECHO_START;
  735. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  736. SERIAL_ECHO(freeMemory());
  737. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  738. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  739. //lcd_update_enable(false); // why do we need this?? - andre
  740. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  741. Config_RetrieveSettings(EEPROM_OFFSET);
  742. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  743. tp_init(); // Initialize temperature loop
  744. plan_init(); // Initialize planner;
  745. watchdog_init();
  746. #ifdef TMC2130
  747. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  748. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  749. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  750. if (crashdet)
  751. {
  752. crashdet_enable();
  753. MYSERIAL.println("CrashDetect ENABLED!");
  754. }
  755. else
  756. {
  757. crashdet_disable();
  758. MYSERIAL.println("CrashDetect DISABLED");
  759. }
  760. #endif //TMC2130
  761. #ifdef PAT9125
  762. MYSERIAL.print("PAT9125_init:");
  763. MYSERIAL.println(pat9125_init(200, 200));
  764. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  765. if (fsensor)
  766. {
  767. fsensor_enable();
  768. MYSERIAL.println("Filament Sensor ENABLED!");
  769. }
  770. else
  771. {
  772. fsensor_disable();
  773. MYSERIAL.println("Filament Sensor DISABLED");
  774. }
  775. #endif //PAT9125
  776. st_init(); // Initialize stepper, this enables interrupts!
  777. setup_photpin();
  778. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
  779. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  780. servo_init();
  781. // Reset the machine correction matrix.
  782. // It does not make sense to load the correction matrix until the machine is homed.
  783. world2machine_reset();
  784. if (!READ(BTN_ENC))
  785. {
  786. _delay_ms(1000);
  787. if (!READ(BTN_ENC))
  788. {
  789. lcd_implementation_clear();
  790. lcd_printPGM(PSTR("Factory RESET"));
  791. SET_OUTPUT(BEEPER);
  792. WRITE(BEEPER, HIGH);
  793. while (!READ(BTN_ENC));
  794. WRITE(BEEPER, LOW);
  795. _delay_ms(2000);
  796. char level = reset_menu();
  797. factory_reset(level, false);
  798. switch (level) {
  799. case 0: _delay_ms(0); break;
  800. case 1: _delay_ms(0); break;
  801. case 2: _delay_ms(0); break;
  802. case 3: _delay_ms(0); break;
  803. }
  804. // _delay_ms(100);
  805. /*
  806. #ifdef MESH_BED_LEVELING
  807. _delay_ms(2000);
  808. if (!READ(BTN_ENC))
  809. {
  810. WRITE(BEEPER, HIGH);
  811. _delay_ms(100);
  812. WRITE(BEEPER, LOW);
  813. _delay_ms(200);
  814. WRITE(BEEPER, HIGH);
  815. _delay_ms(100);
  816. WRITE(BEEPER, LOW);
  817. int _z = 0;
  818. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  819. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  820. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  821. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  822. }
  823. else
  824. {
  825. WRITE(BEEPER, HIGH);
  826. _delay_ms(100);
  827. WRITE(BEEPER, LOW);
  828. }
  829. #endif // mesh */
  830. }
  831. }
  832. else
  833. {
  834. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  835. }
  836. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  837. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  838. #endif
  839. #if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
  840. SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
  841. #endif
  842. #ifdef DIGIPOT_I2C
  843. digipot_i2c_init();
  844. #endif
  845. setup_homepin();
  846. if (1) {
  847. SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  848. // try to run to zero phase before powering the Z motor.
  849. // Move in negative direction
  850. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  851. // Round the current micro-micro steps to micro steps.
  852. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  853. // Until the phase counter is reset to zero.
  854. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  855. delay(2);
  856. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  857. delay(2);
  858. }
  859. SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  860. }
  861. #if defined(Z_AXIS_ALWAYS_ON)
  862. enable_z();
  863. #endif
  864. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  865. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  866. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  867. if (farm_no == 0xFFFF) farm_no = 0;
  868. if (farm_mode)
  869. {
  870. prusa_statistics(8);
  871. }
  872. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  873. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  874. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  875. // but this times out if a blocking dialog is shown in setup().
  876. card.initsd();
  877. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  878. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  879. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  880. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  881. // where all the EEPROM entries are set to 0x0ff.
  882. // Once a firmware boots up, it forces at least a language selection, which changes
  883. // EEPROM_LANG to number lower than 0x0ff.
  884. // 1) Set a high power mode.
  885. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  886. }
  887. #ifdef SNMM
  888. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  889. int _z = BOWDEN_LENGTH;
  890. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  891. }
  892. #endif
  893. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  894. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  895. // is being written into the EEPROM, so the update procedure will be triggered only once.
  896. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  897. if (lang_selected >= LANG_NUM){
  898. lcd_mylang();
  899. }
  900. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  901. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  902. temp_cal_active = false;
  903. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  904. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  905. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  906. }
  907. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  908. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  909. }
  910. check_babystep(); //checking if Z babystep is in allowed range
  911. setup_uvlo_interrupt();
  912. #ifndef DEBUG_DISABLE_STARTMSGS
  913. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  914. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  915. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  916. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  917. // Show the message.
  918. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  919. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  920. // Show the message.
  921. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  922. lcd_update_enable(true);
  923. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  924. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  925. lcd_update_enable(true);
  926. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  927. // Show the message.
  928. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  929. }
  930. #endif //DEBUG_DISABLE_STARTMSGS
  931. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  932. lcd_update_enable(true);
  933. lcd_implementation_clear();
  934. lcd_update(2);
  935. // Store the currently running firmware into an eeprom,
  936. // so the next time the firmware gets updated, it will know from which version it has been updated.
  937. update_current_firmware_version_to_eeprom();
  938. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  939. /*
  940. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  941. else {
  942. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  943. lcd_update_enable(true);
  944. lcd_update(2);
  945. lcd_setstatuspgm(WELCOME_MSG);
  946. }
  947. */
  948. manage_heater(); // Update temperatures
  949. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  950. MYSERIAL.println("Power panic detected!");
  951. MYSERIAL.print("Current bed temp:");
  952. MYSERIAL.println(degBed());
  953. MYSERIAL.print("Saved bed temp:");
  954. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  955. #endif
  956. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  957. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  958. MYSERIAL.println("Automatic recovery!");
  959. #endif
  960. recover_print(1);
  961. }
  962. else{
  963. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  964. MYSERIAL.println("Normal recovery!");
  965. #endif
  966. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  967. else {
  968. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  969. lcd_update_enable(true);
  970. lcd_update(2);
  971. lcd_setstatuspgm(WELCOME_MSG);
  972. }
  973. }
  974. }
  975. }
  976. void trace();
  977. #define CHUNK_SIZE 64 // bytes
  978. #define SAFETY_MARGIN 1
  979. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  980. int chunkHead = 0;
  981. int serial_read_stream() {
  982. setTargetHotend(0, 0);
  983. setTargetBed(0);
  984. lcd_implementation_clear();
  985. lcd_printPGM(PSTR(" Upload in progress"));
  986. // first wait for how many bytes we will receive
  987. uint32_t bytesToReceive;
  988. // receive the four bytes
  989. char bytesToReceiveBuffer[4];
  990. for (int i=0; i<4; i++) {
  991. int data;
  992. while ((data = MYSERIAL.read()) == -1) {};
  993. bytesToReceiveBuffer[i] = data;
  994. }
  995. // make it a uint32
  996. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  997. // we're ready, notify the sender
  998. MYSERIAL.write('+');
  999. // lock in the routine
  1000. uint32_t receivedBytes = 0;
  1001. while (prusa_sd_card_upload) {
  1002. int i;
  1003. for (i=0; i<CHUNK_SIZE; i++) {
  1004. int data;
  1005. // check if we're not done
  1006. if (receivedBytes == bytesToReceive) {
  1007. break;
  1008. }
  1009. // read the next byte
  1010. while ((data = MYSERIAL.read()) == -1) {};
  1011. receivedBytes++;
  1012. // save it to the chunk
  1013. chunk[i] = data;
  1014. }
  1015. // write the chunk to SD
  1016. card.write_command_no_newline(&chunk[0]);
  1017. // notify the sender we're ready for more data
  1018. MYSERIAL.write('+');
  1019. // for safety
  1020. manage_heater();
  1021. // check if we're done
  1022. if(receivedBytes == bytesToReceive) {
  1023. trace(); // beep
  1024. card.closefile();
  1025. prusa_sd_card_upload = false;
  1026. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1027. return 0;
  1028. }
  1029. }
  1030. }
  1031. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1032. // Before loop(), the setup() function is called by the main() routine.
  1033. void loop()
  1034. {
  1035. bool stack_integrity = true;
  1036. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1037. {
  1038. is_usb_printing = true;
  1039. usb_printing_counter--;
  1040. _usb_timer = millis();
  1041. }
  1042. if (usb_printing_counter == 0)
  1043. {
  1044. is_usb_printing = false;
  1045. }
  1046. if (prusa_sd_card_upload)
  1047. {
  1048. //we read byte-by byte
  1049. serial_read_stream();
  1050. } else
  1051. {
  1052. get_command();
  1053. #ifdef SDSUPPORT
  1054. card.checkautostart(false);
  1055. #endif
  1056. if(buflen)
  1057. {
  1058. cmdbuffer_front_already_processed = false;
  1059. #ifdef SDSUPPORT
  1060. if(card.saving)
  1061. {
  1062. // Saving a G-code file onto an SD-card is in progress.
  1063. // Saving starts with M28, saving until M29 is seen.
  1064. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1065. card.write_command(CMDBUFFER_CURRENT_STRING);
  1066. if(card.logging)
  1067. process_commands();
  1068. else
  1069. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1070. } else {
  1071. card.closefile();
  1072. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1073. }
  1074. } else {
  1075. process_commands();
  1076. }
  1077. #else
  1078. process_commands();
  1079. #endif //SDSUPPORT
  1080. if (! cmdbuffer_front_already_processed && buflen)
  1081. {
  1082. cli();
  1083. union {
  1084. struct {
  1085. char lo;
  1086. char hi;
  1087. } lohi;
  1088. uint16_t value;
  1089. } sdlen;
  1090. sdlen.value = 0;
  1091. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1092. sdlen.lohi.lo = cmdbuffer[bufindr + 1];
  1093. sdlen.lohi.hi = cmdbuffer[bufindr + 2];
  1094. }
  1095. cmdqueue_pop_front();
  1096. planner_add_sd_length(sdlen.value);
  1097. sei();
  1098. }
  1099. }
  1100. }
  1101. //check heater every n milliseconds
  1102. manage_heater();
  1103. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1104. checkHitEndstops();
  1105. lcd_update();
  1106. #ifdef PAT9125
  1107. fsensor_update();
  1108. #endif //PAT9125
  1109. #ifdef TMC2130
  1110. tmc2130_check_overtemp();
  1111. if (tmc2130_sg_crash)
  1112. {
  1113. tmc2130_sg_crash = false;
  1114. // crashdet_stop_and_save_print();
  1115. enquecommand_P((PSTR("D999")));
  1116. }
  1117. #endif //TMC2130
  1118. }
  1119. #define DEFINE_PGM_READ_ANY(type, reader) \
  1120. static inline type pgm_read_any(const type *p) \
  1121. { return pgm_read_##reader##_near(p); }
  1122. DEFINE_PGM_READ_ANY(float, float);
  1123. DEFINE_PGM_READ_ANY(signed char, byte);
  1124. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1125. static const PROGMEM type array##_P[3] = \
  1126. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1127. static inline type array(int axis) \
  1128. { return pgm_read_any(&array##_P[axis]); } \
  1129. type array##_ext(int axis) \
  1130. { return pgm_read_any(&array##_P[axis]); }
  1131. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1132. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1133. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1134. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1135. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1136. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1137. static void axis_is_at_home(int axis) {
  1138. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1139. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1140. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1141. }
  1142. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1143. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1144. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1145. saved_feedrate = feedrate;
  1146. saved_feedmultiply = feedmultiply;
  1147. feedmultiply = 100;
  1148. previous_millis_cmd = millis();
  1149. enable_endstops(enable_endstops_now);
  1150. }
  1151. static void clean_up_after_endstop_move() {
  1152. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1153. enable_endstops(false);
  1154. #endif
  1155. feedrate = saved_feedrate;
  1156. feedmultiply = saved_feedmultiply;
  1157. previous_millis_cmd = millis();
  1158. }
  1159. #ifdef ENABLE_AUTO_BED_LEVELING
  1160. #ifdef AUTO_BED_LEVELING_GRID
  1161. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1162. {
  1163. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1164. planeNormal.debug("planeNormal");
  1165. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1166. //bedLevel.debug("bedLevel");
  1167. //plan_bed_level_matrix.debug("bed level before");
  1168. //vector_3 uncorrected_position = plan_get_position_mm();
  1169. //uncorrected_position.debug("position before");
  1170. vector_3 corrected_position = plan_get_position();
  1171. // corrected_position.debug("position after");
  1172. current_position[X_AXIS] = corrected_position.x;
  1173. current_position[Y_AXIS] = corrected_position.y;
  1174. current_position[Z_AXIS] = corrected_position.z;
  1175. // put the bed at 0 so we don't go below it.
  1176. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1177. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1178. }
  1179. #else // not AUTO_BED_LEVELING_GRID
  1180. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1181. plan_bed_level_matrix.set_to_identity();
  1182. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1183. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1184. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1185. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1186. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1187. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1188. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1189. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1190. vector_3 corrected_position = plan_get_position();
  1191. current_position[X_AXIS] = corrected_position.x;
  1192. current_position[Y_AXIS] = corrected_position.y;
  1193. current_position[Z_AXIS] = corrected_position.z;
  1194. // put the bed at 0 so we don't go below it.
  1195. current_position[Z_AXIS] = zprobe_zoffset;
  1196. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1197. }
  1198. #endif // AUTO_BED_LEVELING_GRID
  1199. static void run_z_probe() {
  1200. plan_bed_level_matrix.set_to_identity();
  1201. feedrate = homing_feedrate[Z_AXIS];
  1202. // move down until you find the bed
  1203. float zPosition = -10;
  1204. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1205. st_synchronize();
  1206. // we have to let the planner know where we are right now as it is not where we said to go.
  1207. zPosition = st_get_position_mm(Z_AXIS);
  1208. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1209. // move up the retract distance
  1210. zPosition += home_retract_mm(Z_AXIS);
  1211. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1212. st_synchronize();
  1213. // move back down slowly to find bed
  1214. feedrate = homing_feedrate[Z_AXIS]/4;
  1215. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1216. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1217. st_synchronize();
  1218. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1219. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1220. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1221. }
  1222. static void do_blocking_move_to(float x, float y, float z) {
  1223. float oldFeedRate = feedrate;
  1224. feedrate = homing_feedrate[Z_AXIS];
  1225. current_position[Z_AXIS] = z;
  1226. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1227. st_synchronize();
  1228. feedrate = XY_TRAVEL_SPEED;
  1229. current_position[X_AXIS] = x;
  1230. current_position[Y_AXIS] = y;
  1231. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1232. st_synchronize();
  1233. feedrate = oldFeedRate;
  1234. }
  1235. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1236. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1237. }
  1238. /// Probe bed height at position (x,y), returns the measured z value
  1239. static float probe_pt(float x, float y, float z_before) {
  1240. // move to right place
  1241. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1242. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1243. run_z_probe();
  1244. float measured_z = current_position[Z_AXIS];
  1245. SERIAL_PROTOCOLRPGM(MSG_BED);
  1246. SERIAL_PROTOCOLPGM(" x: ");
  1247. SERIAL_PROTOCOL(x);
  1248. SERIAL_PROTOCOLPGM(" y: ");
  1249. SERIAL_PROTOCOL(y);
  1250. SERIAL_PROTOCOLPGM(" z: ");
  1251. SERIAL_PROTOCOL(measured_z);
  1252. SERIAL_PROTOCOLPGM("\n");
  1253. return measured_z;
  1254. }
  1255. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1256. #ifdef LIN_ADVANCE
  1257. /**
  1258. * M900: Set and/or Get advance K factor and WH/D ratio
  1259. *
  1260. * K<factor> Set advance K factor
  1261. * R<ratio> Set ratio directly (overrides WH/D)
  1262. * W<width> H<height> D<diam> Set ratio from WH/D
  1263. */
  1264. inline void gcode_M900() {
  1265. st_synchronize();
  1266. const float newK = code_seen('K') ? code_value_float() : -1;
  1267. if (newK >= 0) extruder_advance_k = newK;
  1268. float newR = code_seen('R') ? code_value_float() : -1;
  1269. if (newR < 0) {
  1270. const float newD = code_seen('D') ? code_value_float() : -1,
  1271. newW = code_seen('W') ? code_value_float() : -1,
  1272. newH = code_seen('H') ? code_value_float() : -1;
  1273. if (newD >= 0 && newW >= 0 && newH >= 0)
  1274. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1275. }
  1276. if (newR >= 0) advance_ed_ratio = newR;
  1277. SERIAL_ECHO_START;
  1278. SERIAL_ECHOPGM("Advance K=");
  1279. SERIAL_ECHOLN(extruder_advance_k);
  1280. SERIAL_ECHOPGM(" E/D=");
  1281. const float ratio = advance_ed_ratio;
  1282. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1283. }
  1284. #endif // LIN_ADVANCE
  1285. #ifdef TMC2130
  1286. bool calibrate_z_auto()
  1287. {
  1288. lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1289. bool endstops_enabled = enable_endstops(true);
  1290. int axis_up_dir = -home_dir(Z_AXIS);
  1291. tmc2130_home_enter(Z_AXIS_MASK);
  1292. current_position[Z_AXIS] = 0;
  1293. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1294. set_destination_to_current();
  1295. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1296. feedrate = homing_feedrate[Z_AXIS];
  1297. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1298. tmc2130_home_restart(Z_AXIS);
  1299. st_synchronize();
  1300. // current_position[axis] = 0;
  1301. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1302. tmc2130_home_exit();
  1303. enable_endstops(false);
  1304. current_position[Z_AXIS] = 0;
  1305. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1306. set_destination_to_current();
  1307. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1308. feedrate = homing_feedrate[Z_AXIS] / 2;
  1309. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1310. st_synchronize();
  1311. enable_endstops(endstops_enabled);
  1312. current_position[Z_AXIS] = Z_MAX_POS-3.f;
  1313. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1314. return true;
  1315. }
  1316. #endif //TMC2130
  1317. void homeaxis(int axis)
  1318. {
  1319. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1320. #define HOMEAXIS_DO(LETTER) \
  1321. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1322. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1323. {
  1324. int axis_home_dir = home_dir(axis);
  1325. feedrate = homing_feedrate[axis];
  1326. #ifdef TMC2130
  1327. tmc2130_home_enter(X_AXIS_MASK << axis);
  1328. #endif
  1329. // Move right a bit, so that the print head does not touch the left end position,
  1330. // and the following left movement has a chance to achieve the required velocity
  1331. // for the stall guard to work.
  1332. current_position[axis] = 0;
  1333. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1334. // destination[axis] = 11.f;
  1335. destination[axis] = 3.f;
  1336. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1337. st_synchronize();
  1338. // Move left away from the possible collision with the collision detection disabled.
  1339. endstops_hit_on_purpose();
  1340. enable_endstops(false);
  1341. current_position[axis] = 0;
  1342. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1343. destination[axis] = - 1.;
  1344. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1345. st_synchronize();
  1346. // Now continue to move up to the left end stop with the collision detection enabled.
  1347. enable_endstops(true);
  1348. destination[axis] = - 1.1 * max_length(axis);
  1349. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1350. st_synchronize();
  1351. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1352. endstops_hit_on_purpose();
  1353. enable_endstops(false);
  1354. current_position[axis] = 0;
  1355. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1356. destination[axis] = 10.f;
  1357. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1358. st_synchronize();
  1359. endstops_hit_on_purpose();
  1360. // Now move left up to the collision, this time with a repeatable velocity.
  1361. enable_endstops(true);
  1362. destination[axis] = - 15.f;
  1363. feedrate = homing_feedrate[axis]/2;
  1364. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1365. st_synchronize();
  1366. axis_is_at_home(axis);
  1367. axis_known_position[axis] = true;
  1368. #ifdef TMC2130
  1369. tmc2130_home_exit();
  1370. #endif
  1371. // Move the X carriage away from the collision.
  1372. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1373. endstops_hit_on_purpose();
  1374. enable_endstops(false);
  1375. {
  1376. // Two full periods (4 full steps).
  1377. float gap = 0.32f * 2.f;
  1378. current_position[axis] -= gap;
  1379. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1380. current_position[axis] += gap;
  1381. }
  1382. destination[axis] = current_position[axis];
  1383. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1384. st_synchronize();
  1385. feedrate = 0.0;
  1386. }
  1387. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1388. {
  1389. int axis_home_dir = home_dir(axis);
  1390. current_position[axis] = 0;
  1391. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1392. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1393. feedrate = homing_feedrate[axis];
  1394. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1395. st_synchronize();
  1396. current_position[axis] = 0;
  1397. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1398. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1399. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1400. st_synchronize();
  1401. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1402. feedrate = homing_feedrate[axis]/2 ;
  1403. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1404. st_synchronize();
  1405. axis_is_at_home(axis);
  1406. destination[axis] = current_position[axis];
  1407. feedrate = 0.0;
  1408. endstops_hit_on_purpose();
  1409. axis_known_position[axis] = true;
  1410. }
  1411. enable_endstops(endstops_enabled);
  1412. }
  1413. /**/
  1414. void home_xy()
  1415. {
  1416. set_destination_to_current();
  1417. homeaxis(X_AXIS);
  1418. homeaxis(Y_AXIS);
  1419. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1420. endstops_hit_on_purpose();
  1421. }
  1422. void refresh_cmd_timeout(void)
  1423. {
  1424. previous_millis_cmd = millis();
  1425. }
  1426. #ifdef FWRETRACT
  1427. void retract(bool retracting, bool swapretract = false) {
  1428. if(retracting && !retracted[active_extruder]) {
  1429. destination[X_AXIS]=current_position[X_AXIS];
  1430. destination[Y_AXIS]=current_position[Y_AXIS];
  1431. destination[Z_AXIS]=current_position[Z_AXIS];
  1432. destination[E_AXIS]=current_position[E_AXIS];
  1433. if (swapretract) {
  1434. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1435. } else {
  1436. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1437. }
  1438. plan_set_e_position(current_position[E_AXIS]);
  1439. float oldFeedrate = feedrate;
  1440. feedrate=retract_feedrate*60;
  1441. retracted[active_extruder]=true;
  1442. prepare_move();
  1443. current_position[Z_AXIS]-=retract_zlift;
  1444. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1445. prepare_move();
  1446. feedrate = oldFeedrate;
  1447. } else if(!retracting && retracted[active_extruder]) {
  1448. destination[X_AXIS]=current_position[X_AXIS];
  1449. destination[Y_AXIS]=current_position[Y_AXIS];
  1450. destination[Z_AXIS]=current_position[Z_AXIS];
  1451. destination[E_AXIS]=current_position[E_AXIS];
  1452. current_position[Z_AXIS]+=retract_zlift;
  1453. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1454. //prepare_move();
  1455. if (swapretract) {
  1456. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1457. } else {
  1458. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1459. }
  1460. plan_set_e_position(current_position[E_AXIS]);
  1461. float oldFeedrate = feedrate;
  1462. feedrate=retract_recover_feedrate*60;
  1463. retracted[active_extruder]=false;
  1464. prepare_move();
  1465. feedrate = oldFeedrate;
  1466. }
  1467. } //retract
  1468. #endif //FWRETRACT
  1469. void trace() {
  1470. tone(BEEPER, 440);
  1471. delay(25);
  1472. noTone(BEEPER);
  1473. delay(20);
  1474. }
  1475. /*
  1476. void ramming() {
  1477. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1478. if (current_temperature[0] < 230) {
  1479. //PLA
  1480. max_feedrate[E_AXIS] = 50;
  1481. //current_position[E_AXIS] -= 8;
  1482. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1483. //current_position[E_AXIS] += 8;
  1484. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1485. current_position[E_AXIS] += 5.4;
  1486. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1487. current_position[E_AXIS] += 3.2;
  1488. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1489. current_position[E_AXIS] += 3;
  1490. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1491. st_synchronize();
  1492. max_feedrate[E_AXIS] = 80;
  1493. current_position[E_AXIS] -= 82;
  1494. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1495. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1496. current_position[E_AXIS] -= 20;
  1497. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1498. current_position[E_AXIS] += 5;
  1499. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1500. current_position[E_AXIS] += 5;
  1501. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1502. current_position[E_AXIS] -= 10;
  1503. st_synchronize();
  1504. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1505. current_position[E_AXIS] += 10;
  1506. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1507. current_position[E_AXIS] -= 10;
  1508. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1509. current_position[E_AXIS] += 10;
  1510. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1511. current_position[E_AXIS] -= 10;
  1512. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1513. st_synchronize();
  1514. }
  1515. else {
  1516. //ABS
  1517. max_feedrate[E_AXIS] = 50;
  1518. //current_position[E_AXIS] -= 8;
  1519. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1520. //current_position[E_AXIS] += 8;
  1521. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1522. current_position[E_AXIS] += 3.1;
  1523. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1524. current_position[E_AXIS] += 3.1;
  1525. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1526. current_position[E_AXIS] += 4;
  1527. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1528. st_synchronize();
  1529. //current_position[X_AXIS] += 23; //delay
  1530. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1531. //current_position[X_AXIS] -= 23; //delay
  1532. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1533. delay(4700);
  1534. max_feedrate[E_AXIS] = 80;
  1535. current_position[E_AXIS] -= 92;
  1536. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1537. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1538. current_position[E_AXIS] -= 5;
  1539. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1540. current_position[E_AXIS] += 5;
  1541. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1542. current_position[E_AXIS] -= 5;
  1543. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1544. st_synchronize();
  1545. current_position[E_AXIS] += 5;
  1546. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1547. current_position[E_AXIS] -= 5;
  1548. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1549. current_position[E_AXIS] += 5;
  1550. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1551. current_position[E_AXIS] -= 5;
  1552. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1553. st_synchronize();
  1554. }
  1555. }
  1556. */
  1557. void process_commands()
  1558. {
  1559. #ifdef FILAMENT_RUNOUT_SUPPORT
  1560. SET_INPUT(FR_SENS);
  1561. #endif
  1562. #ifdef CMDBUFFER_DEBUG
  1563. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1564. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1565. SERIAL_ECHOLNPGM("");
  1566. SERIAL_ECHOPGM("In cmdqueue: ");
  1567. SERIAL_ECHO(buflen);
  1568. SERIAL_ECHOLNPGM("");
  1569. #endif /* CMDBUFFER_DEBUG */
  1570. unsigned long codenum; //throw away variable
  1571. char *starpos = NULL;
  1572. #ifdef ENABLE_AUTO_BED_LEVELING
  1573. float x_tmp, y_tmp, z_tmp, real_z;
  1574. #endif
  1575. // PRUSA GCODES
  1576. #ifdef SNMM
  1577. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1578. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1579. int8_t SilentMode;
  1580. #endif
  1581. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1582. starpos = (strchr(strchr_pointer + 5, '*'));
  1583. if (starpos != NULL)
  1584. *(starpos) = '\0';
  1585. lcd_setstatus(strchr_pointer + 5);
  1586. }
  1587. else if(code_seen("PRUSA")){
  1588. if (code_seen("Ping")) { //PRUSA Ping
  1589. if (farm_mode) {
  1590. PingTime = millis();
  1591. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1592. }
  1593. }
  1594. else if (code_seen("PRN")) {
  1595. MYSERIAL.println(status_number);
  1596. }else if (code_seen("fn")) {
  1597. if (farm_mode) {
  1598. MYSERIAL.println(farm_no);
  1599. }
  1600. else {
  1601. MYSERIAL.println("Not in farm mode.");
  1602. }
  1603. }else if (code_seen("fv")) {
  1604. // get file version
  1605. #ifdef SDSUPPORT
  1606. card.openFile(strchr_pointer + 3,true);
  1607. while (true) {
  1608. uint16_t readByte = card.get();
  1609. MYSERIAL.write(readByte);
  1610. if (readByte=='\n') {
  1611. break;
  1612. }
  1613. }
  1614. card.closefile();
  1615. #endif // SDSUPPORT
  1616. } else if (code_seen("M28")) {
  1617. trace();
  1618. prusa_sd_card_upload = true;
  1619. card.openFile(strchr_pointer+4,false);
  1620. } else if (code_seen("SN")) {
  1621. if (farm_mode) {
  1622. selectedSerialPort = 0;
  1623. MSerial.write(";S");
  1624. // S/N is:CZPX0917X003XC13518
  1625. int numbersRead = 0;
  1626. while (numbersRead < 19) {
  1627. while (MSerial.available() > 0) {
  1628. uint8_t serial_char = MSerial.read();
  1629. selectedSerialPort = 1;
  1630. MSerial.write(serial_char);
  1631. numbersRead++;
  1632. selectedSerialPort = 0;
  1633. }
  1634. }
  1635. selectedSerialPort = 1;
  1636. MSerial.write('\n');
  1637. /*for (int b = 0; b < 3; b++) {
  1638. tone(BEEPER, 110);
  1639. delay(50);
  1640. noTone(BEEPER);
  1641. delay(50);
  1642. }*/
  1643. } else {
  1644. MYSERIAL.println("Not in farm mode.");
  1645. }
  1646. } else if(code_seen("Fir")){
  1647. SERIAL_PROTOCOLLN(FW_version);
  1648. } else if(code_seen("Rev")){
  1649. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1650. } else if(code_seen("Lang")) {
  1651. lcd_force_language_selection();
  1652. } else if(code_seen("Lz")) {
  1653. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1654. } else if (code_seen("SERIAL LOW")) {
  1655. MYSERIAL.println("SERIAL LOW");
  1656. MYSERIAL.begin(BAUDRATE);
  1657. return;
  1658. } else if (code_seen("SERIAL HIGH")) {
  1659. MYSERIAL.println("SERIAL HIGH");
  1660. MYSERIAL.begin(1152000);
  1661. return;
  1662. } else if(code_seen("Beat")) {
  1663. // Kick farm link timer
  1664. kicktime = millis();
  1665. } else if(code_seen("FR")) {
  1666. // Factory full reset
  1667. factory_reset(0,true);
  1668. }
  1669. //else if (code_seen('Cal')) {
  1670. // lcd_calibration();
  1671. // }
  1672. }
  1673. else if (code_seen('^')) {
  1674. // nothing, this is a version line
  1675. } else if(code_seen('G'))
  1676. {
  1677. switch((int)code_value())
  1678. {
  1679. case 0: // G0 -> G1
  1680. case 1: // G1
  1681. if(Stopped == false) {
  1682. #ifdef FILAMENT_RUNOUT_SUPPORT
  1683. if(READ(FR_SENS)){
  1684. feedmultiplyBckp=feedmultiply;
  1685. float target[4];
  1686. float lastpos[4];
  1687. target[X_AXIS]=current_position[X_AXIS];
  1688. target[Y_AXIS]=current_position[Y_AXIS];
  1689. target[Z_AXIS]=current_position[Z_AXIS];
  1690. target[E_AXIS]=current_position[E_AXIS];
  1691. lastpos[X_AXIS]=current_position[X_AXIS];
  1692. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1693. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1694. lastpos[E_AXIS]=current_position[E_AXIS];
  1695. //retract by E
  1696. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1697. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1698. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1699. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1700. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1701. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1702. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1703. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1704. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1705. //finish moves
  1706. st_synchronize();
  1707. //disable extruder steppers so filament can be removed
  1708. disable_e0();
  1709. disable_e1();
  1710. disable_e2();
  1711. delay(100);
  1712. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1713. uint8_t cnt=0;
  1714. int counterBeep = 0;
  1715. lcd_wait_interact();
  1716. while(!lcd_clicked()){
  1717. cnt++;
  1718. manage_heater();
  1719. manage_inactivity(true);
  1720. //lcd_update();
  1721. if(cnt==0)
  1722. {
  1723. #if BEEPER > 0
  1724. if (counterBeep== 500){
  1725. counterBeep = 0;
  1726. }
  1727. SET_OUTPUT(BEEPER);
  1728. if (counterBeep== 0){
  1729. WRITE(BEEPER,HIGH);
  1730. }
  1731. if (counterBeep== 20){
  1732. WRITE(BEEPER,LOW);
  1733. }
  1734. counterBeep++;
  1735. #else
  1736. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1737. lcd_buzz(1000/6,100);
  1738. #else
  1739. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1740. #endif
  1741. #endif
  1742. }
  1743. }
  1744. WRITE(BEEPER,LOW);
  1745. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1746. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1747. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1748. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1749. lcd_change_fil_state = 0;
  1750. lcd_loading_filament();
  1751. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1752. lcd_change_fil_state = 0;
  1753. lcd_alright();
  1754. switch(lcd_change_fil_state){
  1755. case 2:
  1756. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1757. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1758. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1759. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1760. lcd_loading_filament();
  1761. break;
  1762. case 3:
  1763. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1764. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1765. lcd_loading_color();
  1766. break;
  1767. default:
  1768. lcd_change_success();
  1769. break;
  1770. }
  1771. }
  1772. target[E_AXIS]+= 5;
  1773. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1774. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1775. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1776. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1777. //plan_set_e_position(current_position[E_AXIS]);
  1778. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1779. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1780. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1781. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1782. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1783. plan_set_e_position(lastpos[E_AXIS]);
  1784. feedmultiply=feedmultiplyBckp;
  1785. char cmd[9];
  1786. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1787. enquecommand(cmd);
  1788. }
  1789. #endif
  1790. get_coordinates(); // For X Y Z E F
  1791. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1792. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1793. }
  1794. #ifdef FWRETRACT
  1795. if(autoretract_enabled)
  1796. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1797. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1798. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1799. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1800. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1801. retract(!retracted);
  1802. return;
  1803. }
  1804. }
  1805. #endif //FWRETRACT
  1806. prepare_move();
  1807. //ClearToSend();
  1808. }
  1809. break;
  1810. case 2: // G2 - CW ARC
  1811. if(Stopped == false) {
  1812. get_arc_coordinates();
  1813. prepare_arc_move(true);
  1814. }
  1815. break;
  1816. case 3: // G3 - CCW ARC
  1817. if(Stopped == false) {
  1818. get_arc_coordinates();
  1819. prepare_arc_move(false);
  1820. }
  1821. break;
  1822. case 4: // G4 dwell
  1823. codenum = 0;
  1824. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1825. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1826. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  1827. st_synchronize();
  1828. codenum += millis(); // keep track of when we started waiting
  1829. previous_millis_cmd = millis();
  1830. while(millis() < codenum) {
  1831. manage_heater();
  1832. manage_inactivity();
  1833. lcd_update();
  1834. }
  1835. break;
  1836. #ifdef FWRETRACT
  1837. case 10: // G10 retract
  1838. #if EXTRUDERS > 1
  1839. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1840. retract(true,retracted_swap[active_extruder]);
  1841. #else
  1842. retract(true);
  1843. #endif
  1844. break;
  1845. case 11: // G11 retract_recover
  1846. #if EXTRUDERS > 1
  1847. retract(false,retracted_swap[active_extruder]);
  1848. #else
  1849. retract(false);
  1850. #endif
  1851. break;
  1852. #endif //FWRETRACT
  1853. case 28: //G28 Home all Axis one at a time
  1854. {
  1855. st_synchronize();
  1856. #if 1
  1857. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  1858. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  1859. #endif
  1860. // Flag for the display update routine and to disable the print cancelation during homing.
  1861. homing_flag = true;
  1862. // Which axes should be homed?
  1863. bool home_x = code_seen(axis_codes[X_AXIS]);
  1864. bool home_y = code_seen(axis_codes[Y_AXIS]);
  1865. bool home_z = code_seen(axis_codes[Z_AXIS]);
  1866. // Either all X,Y,Z codes are present, or none of them.
  1867. bool home_all_axes = home_x == home_y && home_x == home_z;
  1868. if (home_all_axes)
  1869. // No X/Y/Z code provided means to home all axes.
  1870. home_x = home_y = home_z = true;
  1871. #ifdef ENABLE_AUTO_BED_LEVELING
  1872. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1873. #endif //ENABLE_AUTO_BED_LEVELING
  1874. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1875. // the planner will not perform any adjustments in the XY plane.
  1876. // Wait for the motors to stop and update the current position with the absolute values.
  1877. world2machine_revert_to_uncorrected();
  1878. // For mesh bed leveling deactivate the matrix temporarily.
  1879. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  1880. // in a single axis only.
  1881. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  1882. #ifdef MESH_BED_LEVELING
  1883. uint8_t mbl_was_active = mbl.active;
  1884. mbl.active = 0;
  1885. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1886. #endif
  1887. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1888. // consumed during the first movements following this statement.
  1889. if (home_z)
  1890. babystep_undo();
  1891. saved_feedrate = feedrate;
  1892. saved_feedmultiply = feedmultiply;
  1893. feedmultiply = 100;
  1894. previous_millis_cmd = millis();
  1895. enable_endstops(true);
  1896. memcpy(destination, current_position, sizeof(destination));
  1897. feedrate = 0.0;
  1898. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1899. if(home_z)
  1900. homeaxis(Z_AXIS);
  1901. #endif
  1902. #ifdef QUICK_HOME
  1903. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1904. if(home_x && home_y) //first diagonal move
  1905. {
  1906. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1907. int x_axis_home_dir = home_dir(X_AXIS);
  1908. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1909. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1910. feedrate = homing_feedrate[X_AXIS];
  1911. if(homing_feedrate[Y_AXIS]<feedrate)
  1912. feedrate = homing_feedrate[Y_AXIS];
  1913. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1914. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1915. } else {
  1916. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1917. }
  1918. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1919. st_synchronize();
  1920. axis_is_at_home(X_AXIS);
  1921. axis_is_at_home(Y_AXIS);
  1922. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1923. destination[X_AXIS] = current_position[X_AXIS];
  1924. destination[Y_AXIS] = current_position[Y_AXIS];
  1925. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1926. feedrate = 0.0;
  1927. st_synchronize();
  1928. endstops_hit_on_purpose();
  1929. current_position[X_AXIS] = destination[X_AXIS];
  1930. current_position[Y_AXIS] = destination[Y_AXIS];
  1931. current_position[Z_AXIS] = destination[Z_AXIS];
  1932. }
  1933. #endif /* QUICK_HOME */
  1934. if(home_x)
  1935. homeaxis(X_AXIS);
  1936. if(home_y)
  1937. homeaxis(Y_AXIS);
  1938. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  1939. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1940. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  1941. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1942. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1943. #ifndef Z_SAFE_HOMING
  1944. if(home_z) {
  1945. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1946. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1947. feedrate = max_feedrate[Z_AXIS];
  1948. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1949. st_synchronize();
  1950. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1951. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  1952. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1953. {
  1954. homeaxis(X_AXIS);
  1955. homeaxis(Y_AXIS);
  1956. }
  1957. // 1st mesh bed leveling measurement point, corrected.
  1958. world2machine_initialize();
  1959. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1960. world2machine_reset();
  1961. if (destination[Y_AXIS] < Y_MIN_POS)
  1962. destination[Y_AXIS] = Y_MIN_POS;
  1963. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1964. feedrate = homing_feedrate[Z_AXIS]/10;
  1965. current_position[Z_AXIS] = 0;
  1966. enable_endstops(false);
  1967. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1968. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1969. st_synchronize();
  1970. current_position[X_AXIS] = destination[X_AXIS];
  1971. current_position[Y_AXIS] = destination[Y_AXIS];
  1972. enable_endstops(true);
  1973. endstops_hit_on_purpose();
  1974. homeaxis(Z_AXIS);
  1975. #else // MESH_BED_LEVELING
  1976. homeaxis(Z_AXIS);
  1977. #endif // MESH_BED_LEVELING
  1978. }
  1979. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1980. if(home_all_axes) {
  1981. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1982. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1983. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1984. feedrate = XY_TRAVEL_SPEED/60;
  1985. current_position[Z_AXIS] = 0;
  1986. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1987. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1988. st_synchronize();
  1989. current_position[X_AXIS] = destination[X_AXIS];
  1990. current_position[Y_AXIS] = destination[Y_AXIS];
  1991. homeaxis(Z_AXIS);
  1992. }
  1993. // Let's see if X and Y are homed and probe is inside bed area.
  1994. if(home_z) {
  1995. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1996. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1997. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1998. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1999. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2000. current_position[Z_AXIS] = 0;
  2001. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2002. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2003. feedrate = max_feedrate[Z_AXIS];
  2004. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2005. st_synchronize();
  2006. homeaxis(Z_AXIS);
  2007. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2008. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2009. SERIAL_ECHO_START;
  2010. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2011. } else {
  2012. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2013. SERIAL_ECHO_START;
  2014. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2015. }
  2016. }
  2017. #endif // Z_SAFE_HOMING
  2018. #endif // Z_HOME_DIR < 0
  2019. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2020. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2021. #ifdef ENABLE_AUTO_BED_LEVELING
  2022. if(home_z)
  2023. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2024. #endif
  2025. // Set the planner and stepper routine positions.
  2026. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2027. // contains the machine coordinates.
  2028. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2029. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2030. enable_endstops(false);
  2031. #endif
  2032. feedrate = saved_feedrate;
  2033. feedmultiply = saved_feedmultiply;
  2034. previous_millis_cmd = millis();
  2035. endstops_hit_on_purpose();
  2036. #ifndef MESH_BED_LEVELING
  2037. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2038. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2039. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2040. lcd_adjust_z();
  2041. #endif
  2042. // Load the machine correction matrix
  2043. world2machine_initialize();
  2044. // and correct the current_position XY axes to match the transformed coordinate system.
  2045. world2machine_update_current();
  2046. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2047. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2048. {
  2049. if (! home_z && mbl_was_active) {
  2050. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2051. mbl.active = true;
  2052. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2053. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2054. }
  2055. }
  2056. else
  2057. {
  2058. st_synchronize();
  2059. homing_flag = false;
  2060. // Push the commands to the front of the message queue in the reverse order!
  2061. // There shall be always enough space reserved for these commands.
  2062. // enquecommand_front_P((PSTR("G80")));
  2063. goto case_G80;
  2064. }
  2065. #endif
  2066. if (farm_mode) { prusa_statistics(20); };
  2067. homing_flag = false;
  2068. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2069. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2070. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2071. break;
  2072. }
  2073. #ifdef ENABLE_AUTO_BED_LEVELING
  2074. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2075. {
  2076. #if Z_MIN_PIN == -1
  2077. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2078. #endif
  2079. // Prevent user from running a G29 without first homing in X and Y
  2080. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2081. {
  2082. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2083. SERIAL_ECHO_START;
  2084. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2085. break; // abort G29, since we don't know where we are
  2086. }
  2087. st_synchronize();
  2088. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2089. //vector_3 corrected_position = plan_get_position_mm();
  2090. //corrected_position.debug("position before G29");
  2091. plan_bed_level_matrix.set_to_identity();
  2092. vector_3 uncorrected_position = plan_get_position();
  2093. //uncorrected_position.debug("position durring G29");
  2094. current_position[X_AXIS] = uncorrected_position.x;
  2095. current_position[Y_AXIS] = uncorrected_position.y;
  2096. current_position[Z_AXIS] = uncorrected_position.z;
  2097. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2098. setup_for_endstop_move();
  2099. feedrate = homing_feedrate[Z_AXIS];
  2100. #ifdef AUTO_BED_LEVELING_GRID
  2101. // probe at the points of a lattice grid
  2102. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2103. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2104. // solve the plane equation ax + by + d = z
  2105. // A is the matrix with rows [x y 1] for all the probed points
  2106. // B is the vector of the Z positions
  2107. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2108. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2109. // "A" matrix of the linear system of equations
  2110. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2111. // "B" vector of Z points
  2112. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2113. int probePointCounter = 0;
  2114. bool zig = true;
  2115. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2116. {
  2117. int xProbe, xInc;
  2118. if (zig)
  2119. {
  2120. xProbe = LEFT_PROBE_BED_POSITION;
  2121. //xEnd = RIGHT_PROBE_BED_POSITION;
  2122. xInc = xGridSpacing;
  2123. zig = false;
  2124. } else // zag
  2125. {
  2126. xProbe = RIGHT_PROBE_BED_POSITION;
  2127. //xEnd = LEFT_PROBE_BED_POSITION;
  2128. xInc = -xGridSpacing;
  2129. zig = true;
  2130. }
  2131. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2132. {
  2133. float z_before;
  2134. if (probePointCounter == 0)
  2135. {
  2136. // raise before probing
  2137. z_before = Z_RAISE_BEFORE_PROBING;
  2138. } else
  2139. {
  2140. // raise extruder
  2141. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2142. }
  2143. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2144. eqnBVector[probePointCounter] = measured_z;
  2145. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2146. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2147. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2148. probePointCounter++;
  2149. xProbe += xInc;
  2150. }
  2151. }
  2152. clean_up_after_endstop_move();
  2153. // solve lsq problem
  2154. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2155. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2156. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2157. SERIAL_PROTOCOLPGM(" b: ");
  2158. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2159. SERIAL_PROTOCOLPGM(" d: ");
  2160. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2161. set_bed_level_equation_lsq(plane_equation_coefficients);
  2162. free(plane_equation_coefficients);
  2163. #else // AUTO_BED_LEVELING_GRID not defined
  2164. // Probe at 3 arbitrary points
  2165. // probe 1
  2166. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2167. // probe 2
  2168. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2169. // probe 3
  2170. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2171. clean_up_after_endstop_move();
  2172. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2173. #endif // AUTO_BED_LEVELING_GRID
  2174. st_synchronize();
  2175. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2176. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2177. // When the bed is uneven, this height must be corrected.
  2178. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2179. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2180. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2181. z_tmp = current_position[Z_AXIS];
  2182. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2183. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2184. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2185. }
  2186. break;
  2187. #ifndef Z_PROBE_SLED
  2188. case 30: // G30 Single Z Probe
  2189. {
  2190. st_synchronize();
  2191. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2192. setup_for_endstop_move();
  2193. feedrate = homing_feedrate[Z_AXIS];
  2194. run_z_probe();
  2195. SERIAL_PROTOCOLPGM(MSG_BED);
  2196. SERIAL_PROTOCOLPGM(" X: ");
  2197. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2198. SERIAL_PROTOCOLPGM(" Y: ");
  2199. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2200. SERIAL_PROTOCOLPGM(" Z: ");
  2201. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2202. SERIAL_PROTOCOLPGM("\n");
  2203. clean_up_after_endstop_move();
  2204. }
  2205. break;
  2206. #else
  2207. case 31: // dock the sled
  2208. dock_sled(true);
  2209. break;
  2210. case 32: // undock the sled
  2211. dock_sled(false);
  2212. break;
  2213. #endif // Z_PROBE_SLED
  2214. #endif // ENABLE_AUTO_BED_LEVELING
  2215. #ifdef MESH_BED_LEVELING
  2216. case 30: // G30 Single Z Probe
  2217. {
  2218. st_synchronize();
  2219. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2220. setup_for_endstop_move();
  2221. feedrate = homing_feedrate[Z_AXIS];
  2222. find_bed_induction_sensor_point_z(-10.f, 3);
  2223. SERIAL_PROTOCOLRPGM(MSG_BED);
  2224. SERIAL_PROTOCOLPGM(" X: ");
  2225. MYSERIAL.print(current_position[X_AXIS], 5);
  2226. SERIAL_PROTOCOLPGM(" Y: ");
  2227. MYSERIAL.print(current_position[Y_AXIS], 5);
  2228. SERIAL_PROTOCOLPGM(" Z: ");
  2229. MYSERIAL.print(current_position[Z_AXIS], 5);
  2230. SERIAL_PROTOCOLPGM("\n");
  2231. clean_up_after_endstop_move();
  2232. }
  2233. break;
  2234. case 75:
  2235. {
  2236. for (int i = 40; i <= 110; i++) {
  2237. MYSERIAL.print(i);
  2238. MYSERIAL.print(" ");
  2239. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2240. }
  2241. }
  2242. break;
  2243. case 76: //PINDA probe temperature calibration
  2244. {
  2245. #ifdef PINDA_THERMISTOR
  2246. if (true)
  2247. {
  2248. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2249. // We don't know where we are! HOME!
  2250. // Push the commands to the front of the message queue in the reverse order!
  2251. // There shall be always enough space reserved for these commands.
  2252. repeatcommand_front(); // repeat G76 with all its parameters
  2253. enquecommand_front_P((PSTR("G28 W0")));
  2254. break;
  2255. }
  2256. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2257. float zero_z;
  2258. int z_shift = 0; //unit: steps
  2259. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2260. if (start_temp < 35) start_temp = 35;
  2261. if (start_temp < current_temperature_pinda) start_temp += 5;
  2262. SERIAL_ECHOPGM("start temperature: ");
  2263. MYSERIAL.println(start_temp);
  2264. // setTargetHotend(200, 0);
  2265. setTargetBed(50 + 10 * (start_temp - 30) / 5);
  2266. custom_message = true;
  2267. custom_message_type = 4;
  2268. custom_message_state = 1;
  2269. custom_message = MSG_TEMP_CALIBRATION;
  2270. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2271. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2272. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2273. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2274. st_synchronize();
  2275. while (current_temperature_pinda < start_temp)
  2276. {
  2277. delay_keep_alive(1000);
  2278. serialecho_temperatures();
  2279. }
  2280. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2281. current_position[Z_AXIS] = 5;
  2282. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2283. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2284. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2285. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2286. st_synchronize();
  2287. find_bed_induction_sensor_point_z(-1.f);
  2288. zero_z = current_position[Z_AXIS];
  2289. //current_position[Z_AXIS]
  2290. SERIAL_ECHOLNPGM("");
  2291. SERIAL_ECHOPGM("ZERO: ");
  2292. MYSERIAL.print(current_position[Z_AXIS]);
  2293. SERIAL_ECHOLNPGM("");
  2294. int i = -1; for (; i < 5; i++)
  2295. {
  2296. float temp = (40 + i * 5);
  2297. SERIAL_ECHOPGM("Step: ");
  2298. MYSERIAL.print(i + 2);
  2299. SERIAL_ECHOLNPGM("/6 (skipped)");
  2300. SERIAL_ECHOPGM("PINDA temperature: ");
  2301. MYSERIAL.print((40 + i*5));
  2302. SERIAL_ECHOPGM(" Z shift (mm):");
  2303. MYSERIAL.print(0);
  2304. SERIAL_ECHOLNPGM("");
  2305. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2306. if (start_temp <= temp) break;
  2307. }
  2308. for (i++; i < 5; i++)
  2309. {
  2310. float temp = (40 + i * 5);
  2311. SERIAL_ECHOPGM("Step: ");
  2312. MYSERIAL.print(i + 2);
  2313. SERIAL_ECHOLNPGM("/6");
  2314. custom_message_state = i + 2;
  2315. setTargetBed(50 + 10 * (temp - 30) / 5);
  2316. // setTargetHotend(255, 0);
  2317. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2318. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2319. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2320. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2321. st_synchronize();
  2322. while (current_temperature_pinda < temp)
  2323. {
  2324. delay_keep_alive(1000);
  2325. serialecho_temperatures();
  2326. }
  2327. current_position[Z_AXIS] = 5;
  2328. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2329. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2330. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2331. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2332. st_synchronize();
  2333. find_bed_induction_sensor_point_z(-1.f);
  2334. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2335. SERIAL_ECHOLNPGM("");
  2336. SERIAL_ECHOPGM("PINDA temperature: ");
  2337. MYSERIAL.print(current_temperature_pinda);
  2338. SERIAL_ECHOPGM(" Z shift (mm):");
  2339. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2340. SERIAL_ECHOLNPGM("");
  2341. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2342. }
  2343. custom_message_type = 0;
  2344. custom_message = false;
  2345. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2346. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2347. disable_x();
  2348. disable_y();
  2349. disable_z();
  2350. disable_e0();
  2351. disable_e1();
  2352. disable_e2();
  2353. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2354. lcd_update_enable(true);
  2355. lcd_update(2);
  2356. setTargetBed(0); //set bed target temperature back to 0
  2357. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2358. break;
  2359. }
  2360. #endif //PINDA_THERMISTOR
  2361. setTargetBed(PINDA_MIN_T);
  2362. float zero_z;
  2363. int z_shift = 0; //unit: steps
  2364. int t_c; // temperature
  2365. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2366. // We don't know where we are! HOME!
  2367. // Push the commands to the front of the message queue in the reverse order!
  2368. // There shall be always enough space reserved for these commands.
  2369. repeatcommand_front(); // repeat G76 with all its parameters
  2370. enquecommand_front_P((PSTR("G28 W0")));
  2371. break;
  2372. }
  2373. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2374. custom_message = true;
  2375. custom_message_type = 4;
  2376. custom_message_state = 1;
  2377. custom_message = MSG_TEMP_CALIBRATION;
  2378. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2379. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2380. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2381. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2382. st_synchronize();
  2383. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2384. delay_keep_alive(1000);
  2385. serialecho_temperatures();
  2386. }
  2387. //enquecommand_P(PSTR("M190 S50"));
  2388. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2389. delay_keep_alive(1000);
  2390. serialecho_temperatures();
  2391. }
  2392. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2393. current_position[Z_AXIS] = 5;
  2394. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2395. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2396. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2397. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2398. st_synchronize();
  2399. find_bed_induction_sensor_point_z(-1.f);
  2400. zero_z = current_position[Z_AXIS];
  2401. //current_position[Z_AXIS]
  2402. SERIAL_ECHOLNPGM("");
  2403. SERIAL_ECHOPGM("ZERO: ");
  2404. MYSERIAL.print(current_position[Z_AXIS]);
  2405. SERIAL_ECHOLNPGM("");
  2406. for (int i = 0; i<5; i++) {
  2407. SERIAL_ECHOPGM("Step: ");
  2408. MYSERIAL.print(i+2);
  2409. SERIAL_ECHOLNPGM("/6");
  2410. custom_message_state = i + 2;
  2411. t_c = 60 + i * 10;
  2412. setTargetBed(t_c);
  2413. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2414. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2415. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2416. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2417. st_synchronize();
  2418. while (degBed() < t_c) {
  2419. delay_keep_alive(1000);
  2420. serialecho_temperatures();
  2421. }
  2422. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2423. delay_keep_alive(1000);
  2424. serialecho_temperatures();
  2425. }
  2426. current_position[Z_AXIS] = 5;
  2427. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2428. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2429. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2430. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2431. st_synchronize();
  2432. find_bed_induction_sensor_point_z(-1.f);
  2433. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2434. SERIAL_ECHOLNPGM("");
  2435. SERIAL_ECHOPGM("Temperature: ");
  2436. MYSERIAL.print(t_c);
  2437. SERIAL_ECHOPGM(" Z shift (mm):");
  2438. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2439. SERIAL_ECHOLNPGM("");
  2440. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2441. }
  2442. custom_message_type = 0;
  2443. custom_message = false;
  2444. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2445. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2446. disable_x();
  2447. disable_y();
  2448. disable_z();
  2449. disable_e0();
  2450. disable_e1();
  2451. disable_e2();
  2452. setTargetBed(0); //set bed target temperature back to 0
  2453. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2454. lcd_update_enable(true);
  2455. lcd_update(2);
  2456. }
  2457. break;
  2458. #ifdef DIS
  2459. case 77:
  2460. {
  2461. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2462. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2463. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2464. float dimension_x = 40;
  2465. float dimension_y = 40;
  2466. int points_x = 40;
  2467. int points_y = 40;
  2468. float offset_x = 74;
  2469. float offset_y = 33;
  2470. if (code_seen('X')) dimension_x = code_value();
  2471. if (code_seen('Y')) dimension_y = code_value();
  2472. if (code_seen('XP')) points_x = code_value();
  2473. if (code_seen('YP')) points_y = code_value();
  2474. if (code_seen('XO')) offset_x = code_value();
  2475. if (code_seen('YO')) offset_y = code_value();
  2476. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2477. } break;
  2478. #endif
  2479. case 79: {
  2480. for (int i = 255; i > 0; i = i - 5) {
  2481. fanSpeed = i;
  2482. //delay_keep_alive(2000);
  2483. for (int j = 0; j < 100; j++) {
  2484. delay_keep_alive(100);
  2485. }
  2486. fan_speed[1];
  2487. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2488. }
  2489. }break;
  2490. /**
  2491. * G80: Mesh-based Z probe, probes a grid and produces a
  2492. * mesh to compensate for variable bed height
  2493. *
  2494. * The S0 report the points as below
  2495. *
  2496. * +----> X-axis
  2497. * |
  2498. * |
  2499. * v Y-axis
  2500. *
  2501. */
  2502. case 80:
  2503. #ifdef MK1BP
  2504. break;
  2505. #endif //MK1BP
  2506. case_G80:
  2507. {
  2508. mesh_bed_leveling_flag = true;
  2509. int8_t verbosity_level = 0;
  2510. static bool run = false;
  2511. if (code_seen('V')) {
  2512. // Just 'V' without a number counts as V1.
  2513. char c = strchr_pointer[1];
  2514. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2515. }
  2516. // Firstly check if we know where we are
  2517. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2518. // We don't know where we are! HOME!
  2519. // Push the commands to the front of the message queue in the reverse order!
  2520. // There shall be always enough space reserved for these commands.
  2521. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2522. repeatcommand_front(); // repeat G80 with all its parameters
  2523. enquecommand_front_P((PSTR("G28 W0")));
  2524. }
  2525. else {
  2526. mesh_bed_leveling_flag = false;
  2527. }
  2528. break;
  2529. }
  2530. bool temp_comp_start = true;
  2531. #ifdef PINDA_THERMISTOR
  2532. temp_comp_start = false;
  2533. #endif //PINDA_THERMISTOR
  2534. if (temp_comp_start)
  2535. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2536. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2537. temp_compensation_start();
  2538. run = true;
  2539. repeatcommand_front(); // repeat G80 with all its parameters
  2540. enquecommand_front_P((PSTR("G28 W0")));
  2541. }
  2542. else {
  2543. mesh_bed_leveling_flag = false;
  2544. }
  2545. break;
  2546. }
  2547. run = false;
  2548. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2549. mesh_bed_leveling_flag = false;
  2550. break;
  2551. }
  2552. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2553. bool custom_message_old = custom_message;
  2554. unsigned int custom_message_type_old = custom_message_type;
  2555. unsigned int custom_message_state_old = custom_message_state;
  2556. custom_message = true;
  2557. custom_message_type = 1;
  2558. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2559. lcd_update(1);
  2560. mbl.reset(); //reset mesh bed leveling
  2561. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2562. // consumed during the first movements following this statement.
  2563. babystep_undo();
  2564. // Cycle through all points and probe them
  2565. // First move up. During this first movement, the babystepping will be reverted.
  2566. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2567. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2568. // The move to the first calibration point.
  2569. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2570. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2571. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2572. if (verbosity_level >= 1) {
  2573. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2574. }
  2575. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2576. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2577. // Wait until the move is finished.
  2578. st_synchronize();
  2579. int mesh_point = 0; //index number of calibration point
  2580. int ix = 0;
  2581. int iy = 0;
  2582. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2583. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2584. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2585. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2586. if (verbosity_level >= 1) {
  2587. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2588. }
  2589. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2590. const char *kill_message = NULL;
  2591. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2592. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2593. // Get coords of a measuring point.
  2594. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2595. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2596. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2597. float z0 = 0.f;
  2598. if (has_z && mesh_point > 0) {
  2599. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2600. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2601. //#if 0
  2602. if (verbosity_level >= 1) {
  2603. SERIAL_ECHOPGM("Bed leveling, point: ");
  2604. MYSERIAL.print(mesh_point);
  2605. SERIAL_ECHOPGM(", calibration z: ");
  2606. MYSERIAL.print(z0, 5);
  2607. SERIAL_ECHOLNPGM("");
  2608. }
  2609. //#endif
  2610. }
  2611. // Move Z up to MESH_HOME_Z_SEARCH.
  2612. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2613. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2614. st_synchronize();
  2615. // Move to XY position of the sensor point.
  2616. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2617. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2618. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2619. if (verbosity_level >= 1) {
  2620. SERIAL_PROTOCOL(mesh_point);
  2621. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2622. }
  2623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2624. st_synchronize();
  2625. // Go down until endstop is hit
  2626. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2627. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2628. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2629. break;
  2630. }
  2631. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2632. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2633. break;
  2634. }
  2635. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2636. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2637. break;
  2638. }
  2639. if (verbosity_level >= 10) {
  2640. SERIAL_ECHOPGM("X: ");
  2641. MYSERIAL.print(current_position[X_AXIS], 5);
  2642. SERIAL_ECHOLNPGM("");
  2643. SERIAL_ECHOPGM("Y: ");
  2644. MYSERIAL.print(current_position[Y_AXIS], 5);
  2645. SERIAL_PROTOCOLPGM("\n");
  2646. }
  2647. float offset_z = 0;
  2648. #ifdef PINDA_THERMISTOR
  2649. offset_z = temp_compensation_pinda_thermistor_offset();
  2650. #endif //PINDA_THERMISTOR
  2651. if (verbosity_level >= 1) {
  2652. SERIAL_ECHOPGM("mesh bed leveling: ");
  2653. MYSERIAL.print(current_position[Z_AXIS], 5);
  2654. SERIAL_ECHOPGM(" offset: ");
  2655. MYSERIAL.print(offset_z, 5);
  2656. SERIAL_ECHOLNPGM("");
  2657. }
  2658. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2659. custom_message_state--;
  2660. mesh_point++;
  2661. lcd_update(1);
  2662. }
  2663. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2664. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2665. if (verbosity_level >= 20) {
  2666. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2667. MYSERIAL.print(current_position[Z_AXIS], 5);
  2668. }
  2669. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2670. st_synchronize();
  2671. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2672. kill(kill_message);
  2673. SERIAL_ECHOLNPGM("killed");
  2674. }
  2675. clean_up_after_endstop_move();
  2676. SERIAL_ECHOLNPGM("clean up finished ");
  2677. bool apply_temp_comp = true;
  2678. #ifdef PINDA_THERMISTOR
  2679. apply_temp_comp = false;
  2680. #endif
  2681. if (apply_temp_comp)
  2682. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2683. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2684. SERIAL_ECHOLNPGM("babystep applied");
  2685. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2686. if (verbosity_level >= 1) {
  2687. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2688. }
  2689. for (uint8_t i = 0; i < 4; ++i) {
  2690. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2691. long correction = 0;
  2692. if (code_seen(codes[i]))
  2693. correction = code_value_long();
  2694. else if (eeprom_bed_correction_valid) {
  2695. unsigned char *addr = (i < 2) ?
  2696. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2697. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2698. correction = eeprom_read_int8(addr);
  2699. }
  2700. if (correction == 0)
  2701. continue;
  2702. float offset = float(correction) * 0.001f;
  2703. if (fabs(offset) > 0.101f) {
  2704. SERIAL_ERROR_START;
  2705. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2706. SERIAL_ECHO(offset);
  2707. SERIAL_ECHOLNPGM(" microns");
  2708. }
  2709. else {
  2710. switch (i) {
  2711. case 0:
  2712. for (uint8_t row = 0; row < 3; ++row) {
  2713. mbl.z_values[row][1] += 0.5f * offset;
  2714. mbl.z_values[row][0] += offset;
  2715. }
  2716. break;
  2717. case 1:
  2718. for (uint8_t row = 0; row < 3; ++row) {
  2719. mbl.z_values[row][1] += 0.5f * offset;
  2720. mbl.z_values[row][2] += offset;
  2721. }
  2722. break;
  2723. case 2:
  2724. for (uint8_t col = 0; col < 3; ++col) {
  2725. mbl.z_values[1][col] += 0.5f * offset;
  2726. mbl.z_values[0][col] += offset;
  2727. }
  2728. break;
  2729. case 3:
  2730. for (uint8_t col = 0; col < 3; ++col) {
  2731. mbl.z_values[1][col] += 0.5f * offset;
  2732. mbl.z_values[2][col] += offset;
  2733. }
  2734. break;
  2735. }
  2736. }
  2737. }
  2738. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2739. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2740. SERIAL_ECHOLNPGM("Upsample finished");
  2741. mbl.active = 1; //activate mesh bed leveling
  2742. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2743. go_home_with_z_lift();
  2744. SERIAL_ECHOLNPGM("Go home finished");
  2745. //unretract (after PINDA preheat retraction)
  2746. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2747. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2748. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2749. }
  2750. // Restore custom message state
  2751. custom_message = custom_message_old;
  2752. custom_message_type = custom_message_type_old;
  2753. custom_message_state = custom_message_state_old;
  2754. mesh_bed_leveling_flag = false;
  2755. mesh_bed_run_from_menu = false;
  2756. lcd_update(2);
  2757. }
  2758. break;
  2759. /**
  2760. * G81: Print mesh bed leveling status and bed profile if activated
  2761. */
  2762. case 81:
  2763. if (mbl.active) {
  2764. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2765. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2766. SERIAL_PROTOCOLPGM(",");
  2767. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2768. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2769. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2770. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2771. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2772. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2773. SERIAL_PROTOCOLPGM(" ");
  2774. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2775. }
  2776. SERIAL_PROTOCOLPGM("\n");
  2777. }
  2778. }
  2779. else
  2780. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2781. break;
  2782. #if 0
  2783. /**
  2784. * G82: Single Z probe at current location
  2785. *
  2786. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2787. *
  2788. */
  2789. case 82:
  2790. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2791. setup_for_endstop_move();
  2792. find_bed_induction_sensor_point_z();
  2793. clean_up_after_endstop_move();
  2794. SERIAL_PROTOCOLPGM("Bed found at: ");
  2795. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2796. SERIAL_PROTOCOLPGM("\n");
  2797. break;
  2798. /**
  2799. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2800. */
  2801. case 83:
  2802. {
  2803. int babystepz = code_seen('S') ? code_value() : 0;
  2804. int BabyPosition = code_seen('P') ? code_value() : 0;
  2805. if (babystepz != 0) {
  2806. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2807. // Is the axis indexed starting with zero or one?
  2808. if (BabyPosition > 4) {
  2809. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2810. }else{
  2811. // Save it to the eeprom
  2812. babystepLoadZ = babystepz;
  2813. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2814. // adjust the Z
  2815. babystepsTodoZadd(babystepLoadZ);
  2816. }
  2817. }
  2818. }
  2819. break;
  2820. /**
  2821. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2822. */
  2823. case 84:
  2824. babystepsTodoZsubtract(babystepLoadZ);
  2825. // babystepLoadZ = 0;
  2826. break;
  2827. /**
  2828. * G85: Prusa3D specific: Pick best babystep
  2829. */
  2830. case 85:
  2831. lcd_pick_babystep();
  2832. break;
  2833. #endif
  2834. /**
  2835. * G86: Prusa3D specific: Disable babystep correction after home.
  2836. * This G-code will be performed at the start of a calibration script.
  2837. */
  2838. case 86:
  2839. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2840. break;
  2841. /**
  2842. * G87: Prusa3D specific: Enable babystep correction after home
  2843. * This G-code will be performed at the end of a calibration script.
  2844. */
  2845. case 87:
  2846. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2847. break;
  2848. /**
  2849. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2850. */
  2851. case 88:
  2852. break;
  2853. #endif // ENABLE_MESH_BED_LEVELING
  2854. case 90: // G90
  2855. relative_mode = false;
  2856. break;
  2857. case 91: // G91
  2858. relative_mode = true;
  2859. break;
  2860. case 92: // G92
  2861. if(!code_seen(axis_codes[E_AXIS]))
  2862. st_synchronize();
  2863. for(int8_t i=0; i < NUM_AXIS; i++) {
  2864. if(code_seen(axis_codes[i])) {
  2865. if(i == E_AXIS) {
  2866. current_position[i] = code_value();
  2867. plan_set_e_position(current_position[E_AXIS]);
  2868. }
  2869. else {
  2870. current_position[i] = code_value()+add_homing[i];
  2871. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2872. }
  2873. }
  2874. }
  2875. break;
  2876. case 98: //activate farm mode
  2877. farm_mode = 1;
  2878. PingTime = millis();
  2879. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2880. break;
  2881. case 99: //deactivate farm mode
  2882. farm_mode = 0;
  2883. lcd_printer_connected();
  2884. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2885. lcd_update(2);
  2886. break;
  2887. }
  2888. } // end if(code_seen('G'))
  2889. else if(code_seen('M'))
  2890. {
  2891. int index;
  2892. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2893. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2894. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2895. SERIAL_ECHOLNPGM("Invalid M code");
  2896. } else
  2897. switch((int)code_value())
  2898. {
  2899. #ifdef ULTIPANEL
  2900. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2901. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2902. {
  2903. char *src = strchr_pointer + 2;
  2904. codenum = 0;
  2905. bool hasP = false, hasS = false;
  2906. if (code_seen('P')) {
  2907. codenum = code_value(); // milliseconds to wait
  2908. hasP = codenum > 0;
  2909. }
  2910. if (code_seen('S')) {
  2911. codenum = code_value() * 1000; // seconds to wait
  2912. hasS = codenum > 0;
  2913. }
  2914. starpos = strchr(src, '*');
  2915. if (starpos != NULL) *(starpos) = '\0';
  2916. while (*src == ' ') ++src;
  2917. if (!hasP && !hasS && *src != '\0') {
  2918. lcd_setstatus(src);
  2919. } else {
  2920. LCD_MESSAGERPGM(MSG_USERWAIT);
  2921. }
  2922. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2923. st_synchronize();
  2924. previous_millis_cmd = millis();
  2925. if (codenum > 0){
  2926. codenum += millis(); // keep track of when we started waiting
  2927. while(millis() < codenum && !lcd_clicked()){
  2928. manage_heater();
  2929. manage_inactivity(true);
  2930. lcd_update();
  2931. }
  2932. lcd_ignore_click(false);
  2933. }else{
  2934. if (!lcd_detected())
  2935. break;
  2936. while(!lcd_clicked()){
  2937. manage_heater();
  2938. manage_inactivity(true);
  2939. lcd_update();
  2940. }
  2941. }
  2942. if (IS_SD_PRINTING)
  2943. LCD_MESSAGERPGM(MSG_RESUMING);
  2944. else
  2945. LCD_MESSAGERPGM(WELCOME_MSG);
  2946. }
  2947. break;
  2948. #endif
  2949. case 17:
  2950. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2951. enable_x();
  2952. enable_y();
  2953. enable_z();
  2954. enable_e0();
  2955. enable_e1();
  2956. enable_e2();
  2957. break;
  2958. #ifdef SDSUPPORT
  2959. case 20: // M20 - list SD card
  2960. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2961. card.ls();
  2962. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2963. break;
  2964. case 21: // M21 - init SD card
  2965. card.initsd();
  2966. break;
  2967. case 22: //M22 - release SD card
  2968. card.release();
  2969. break;
  2970. case 23: //M23 - Select file
  2971. starpos = (strchr(strchr_pointer + 4,'*'));
  2972. if(starpos!=NULL)
  2973. *(starpos)='\0';
  2974. card.openFile(strchr_pointer + 4,true);
  2975. break;
  2976. case 24: //M24 - Start SD print
  2977. card.startFileprint();
  2978. starttime=millis();
  2979. break;
  2980. case 25: //M25 - Pause SD print
  2981. card.pauseSDPrint();
  2982. break;
  2983. case 26: //M26 - Set SD index
  2984. if(card.cardOK && code_seen('S')) {
  2985. card.setIndex(code_value_long());
  2986. }
  2987. break;
  2988. case 27: //M27 - Get SD status
  2989. card.getStatus();
  2990. break;
  2991. case 28: //M28 - Start SD write
  2992. starpos = (strchr(strchr_pointer + 4,'*'));
  2993. if(starpos != NULL){
  2994. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2995. strchr_pointer = strchr(npos,' ') + 1;
  2996. *(starpos) = '\0';
  2997. }
  2998. card.openFile(strchr_pointer+4,false);
  2999. break;
  3000. case 29: //M29 - Stop SD write
  3001. //processed in write to file routine above
  3002. //card,saving = false;
  3003. break;
  3004. case 30: //M30 <filename> Delete File
  3005. if (card.cardOK){
  3006. card.closefile();
  3007. starpos = (strchr(strchr_pointer + 4,'*'));
  3008. if(starpos != NULL){
  3009. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3010. strchr_pointer = strchr(npos,' ') + 1;
  3011. *(starpos) = '\0';
  3012. }
  3013. card.removeFile(strchr_pointer + 4);
  3014. }
  3015. break;
  3016. case 32: //M32 - Select file and start SD print
  3017. {
  3018. if(card.sdprinting) {
  3019. st_synchronize();
  3020. }
  3021. starpos = (strchr(strchr_pointer + 4,'*'));
  3022. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3023. if(namestartpos==NULL)
  3024. {
  3025. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3026. }
  3027. else
  3028. namestartpos++; //to skip the '!'
  3029. if(starpos!=NULL)
  3030. *(starpos)='\0';
  3031. bool call_procedure=(code_seen('P'));
  3032. if(strchr_pointer>namestartpos)
  3033. call_procedure=false; //false alert, 'P' found within filename
  3034. if( card.cardOK )
  3035. {
  3036. card.openFile(namestartpos,true,!call_procedure);
  3037. if(code_seen('S'))
  3038. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3039. card.setIndex(code_value_long());
  3040. card.startFileprint();
  3041. if(!call_procedure)
  3042. starttime=millis(); //procedure calls count as normal print time.
  3043. }
  3044. } break;
  3045. case 928: //M928 - Start SD write
  3046. starpos = (strchr(strchr_pointer + 5,'*'));
  3047. if(starpos != NULL){
  3048. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3049. strchr_pointer = strchr(npos,' ') + 1;
  3050. *(starpos) = '\0';
  3051. }
  3052. card.openLogFile(strchr_pointer+5);
  3053. break;
  3054. #endif //SDSUPPORT
  3055. case 31: //M31 take time since the start of the SD print or an M109 command
  3056. {
  3057. stoptime=millis();
  3058. char time[30];
  3059. unsigned long t=(stoptime-starttime)/1000;
  3060. int sec,min;
  3061. min=t/60;
  3062. sec=t%60;
  3063. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3064. SERIAL_ECHO_START;
  3065. SERIAL_ECHOLN(time);
  3066. lcd_setstatus(time);
  3067. autotempShutdown();
  3068. }
  3069. break;
  3070. case 42: //M42 -Change pin status via gcode
  3071. if (code_seen('S'))
  3072. {
  3073. int pin_status = code_value();
  3074. int pin_number = LED_PIN;
  3075. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3076. pin_number = code_value();
  3077. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3078. {
  3079. if (sensitive_pins[i] == pin_number)
  3080. {
  3081. pin_number = -1;
  3082. break;
  3083. }
  3084. }
  3085. #if defined(FAN_PIN) && FAN_PIN > -1
  3086. if (pin_number == FAN_PIN)
  3087. fanSpeed = pin_status;
  3088. #endif
  3089. if (pin_number > -1)
  3090. {
  3091. pinMode(pin_number, OUTPUT);
  3092. digitalWrite(pin_number, pin_status);
  3093. analogWrite(pin_number, pin_status);
  3094. }
  3095. }
  3096. break;
  3097. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3098. // Reset the baby step value and the baby step applied flag.
  3099. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3100. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3101. // Reset the skew and offset in both RAM and EEPROM.
  3102. reset_bed_offset_and_skew();
  3103. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3104. // the planner will not perform any adjustments in the XY plane.
  3105. // Wait for the motors to stop and update the current position with the absolute values.
  3106. world2machine_revert_to_uncorrected();
  3107. break;
  3108. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3109. {
  3110. // Only Z calibration?
  3111. bool onlyZ = code_seen('Z');
  3112. if (!onlyZ) {
  3113. setTargetBed(0);
  3114. setTargetHotend(0, 0);
  3115. setTargetHotend(0, 1);
  3116. setTargetHotend(0, 2);
  3117. adjust_bed_reset(); //reset bed level correction
  3118. }
  3119. // Disable the default update procedure of the display. We will do a modal dialog.
  3120. lcd_update_enable(false);
  3121. // Let the planner use the uncorrected coordinates.
  3122. mbl.reset();
  3123. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3124. // the planner will not perform any adjustments in the XY plane.
  3125. // Wait for the motors to stop and update the current position with the absolute values.
  3126. world2machine_revert_to_uncorrected();
  3127. // Reset the baby step value applied without moving the axes.
  3128. babystep_reset();
  3129. // Mark all axes as in a need for homing.
  3130. memset(axis_known_position, 0, sizeof(axis_known_position));
  3131. // Home in the XY plane.
  3132. //set_destination_to_current();
  3133. setup_for_endstop_move();
  3134. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  3135. home_xy();
  3136. // Let the user move the Z axes up to the end stoppers.
  3137. #ifdef TMC2130
  3138. if (calibrate_z_auto()) {
  3139. #else //TMC2130
  3140. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3141. #endif //TMC2130
  3142. refresh_cmd_timeout();
  3143. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3144. lcd_wait_for_cool_down();
  3145. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3146. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3147. lcd_implementation_print_at(0, 2, 1);
  3148. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3149. }
  3150. // Move the print head close to the bed.
  3151. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3152. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3153. st_synchronize();
  3154. //#ifdef TMC2130
  3155. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  3156. //#endif
  3157. int8_t verbosity_level = 0;
  3158. if (code_seen('V')) {
  3159. // Just 'V' without a number counts as V1.
  3160. char c = strchr_pointer[1];
  3161. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3162. }
  3163. if (onlyZ) {
  3164. clean_up_after_endstop_move();
  3165. // Z only calibration.
  3166. // Load the machine correction matrix
  3167. world2machine_initialize();
  3168. // and correct the current_position to match the transformed coordinate system.
  3169. world2machine_update_current();
  3170. //FIXME
  3171. bool result = sample_mesh_and_store_reference();
  3172. if (result) {
  3173. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3174. // Shipped, the nozzle height has been set already. The user can start printing now.
  3175. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3176. // babystep_apply();
  3177. }
  3178. } else {
  3179. // Reset the baby step value and the baby step applied flag.
  3180. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3181. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3182. // Complete XYZ calibration.
  3183. uint8_t point_too_far_mask = 0;
  3184. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3185. clean_up_after_endstop_move();
  3186. // Print head up.
  3187. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3188. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3189. st_synchronize();
  3190. if (result >= 0) {
  3191. point_too_far_mask = 0;
  3192. // Second half: The fine adjustment.
  3193. // Let the planner use the uncorrected coordinates.
  3194. mbl.reset();
  3195. world2machine_reset();
  3196. // Home in the XY plane.
  3197. setup_for_endstop_move();
  3198. home_xy();
  3199. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3200. clean_up_after_endstop_move();
  3201. // Print head up.
  3202. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3203. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3204. st_synchronize();
  3205. // if (result >= 0) babystep_apply();
  3206. }
  3207. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3208. if (result >= 0) {
  3209. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3210. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3211. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3212. }
  3213. }
  3214. #ifdef TMC2130
  3215. tmc2130_home_exit();
  3216. #endif
  3217. } else {
  3218. // Timeouted.
  3219. }
  3220. lcd_update_enable(true);
  3221. break;
  3222. }
  3223. /*
  3224. case 46:
  3225. {
  3226. // M46: Prusa3D: Show the assigned IP address.
  3227. uint8_t ip[4];
  3228. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3229. if (hasIP) {
  3230. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3231. SERIAL_ECHO(int(ip[0]));
  3232. SERIAL_ECHOPGM(".");
  3233. SERIAL_ECHO(int(ip[1]));
  3234. SERIAL_ECHOPGM(".");
  3235. SERIAL_ECHO(int(ip[2]));
  3236. SERIAL_ECHOPGM(".");
  3237. SERIAL_ECHO(int(ip[3]));
  3238. SERIAL_ECHOLNPGM("");
  3239. } else {
  3240. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3241. }
  3242. break;
  3243. }
  3244. */
  3245. case 47:
  3246. // M47: Prusa3D: Show end stops dialog on the display.
  3247. lcd_diag_show_end_stops();
  3248. break;
  3249. #if 0
  3250. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3251. {
  3252. // Disable the default update procedure of the display. We will do a modal dialog.
  3253. lcd_update_enable(false);
  3254. // Let the planner use the uncorrected coordinates.
  3255. mbl.reset();
  3256. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3257. // the planner will not perform any adjustments in the XY plane.
  3258. // Wait for the motors to stop and update the current position with the absolute values.
  3259. world2machine_revert_to_uncorrected();
  3260. // Move the print head close to the bed.
  3261. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3262. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3263. st_synchronize();
  3264. // Home in the XY plane.
  3265. set_destination_to_current();
  3266. setup_for_endstop_move();
  3267. home_xy();
  3268. int8_t verbosity_level = 0;
  3269. if (code_seen('V')) {
  3270. // Just 'V' without a number counts as V1.
  3271. char c = strchr_pointer[1];
  3272. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3273. }
  3274. bool success = scan_bed_induction_points(verbosity_level);
  3275. clean_up_after_endstop_move();
  3276. // Print head up.
  3277. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3278. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3279. st_synchronize();
  3280. lcd_update_enable(true);
  3281. break;
  3282. }
  3283. #endif
  3284. // M48 Z-Probe repeatability measurement function.
  3285. //
  3286. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3287. //
  3288. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3289. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3290. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3291. // regenerated.
  3292. //
  3293. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3294. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3295. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3296. //
  3297. #ifdef ENABLE_AUTO_BED_LEVELING
  3298. #ifdef Z_PROBE_REPEATABILITY_TEST
  3299. case 48: // M48 Z-Probe repeatability
  3300. {
  3301. #if Z_MIN_PIN == -1
  3302. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3303. #endif
  3304. double sum=0.0;
  3305. double mean=0.0;
  3306. double sigma=0.0;
  3307. double sample_set[50];
  3308. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3309. double X_current, Y_current, Z_current;
  3310. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3311. if (code_seen('V') || code_seen('v')) {
  3312. verbose_level = code_value();
  3313. if (verbose_level<0 || verbose_level>4 ) {
  3314. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3315. goto Sigma_Exit;
  3316. }
  3317. }
  3318. if (verbose_level > 0) {
  3319. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3320. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3321. }
  3322. if (code_seen('n')) {
  3323. n_samples = code_value();
  3324. if (n_samples<4 || n_samples>50 ) {
  3325. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3326. goto Sigma_Exit;
  3327. }
  3328. }
  3329. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3330. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3331. Z_current = st_get_position_mm(Z_AXIS);
  3332. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3333. ext_position = st_get_position_mm(E_AXIS);
  3334. if (code_seen('X') || code_seen('x') ) {
  3335. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3336. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3337. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3338. goto Sigma_Exit;
  3339. }
  3340. }
  3341. if (code_seen('Y') || code_seen('y') ) {
  3342. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3343. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3344. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3345. goto Sigma_Exit;
  3346. }
  3347. }
  3348. if (code_seen('L') || code_seen('l') ) {
  3349. n_legs = code_value();
  3350. if ( n_legs==1 )
  3351. n_legs = 2;
  3352. if ( n_legs<0 || n_legs>15 ) {
  3353. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3354. goto Sigma_Exit;
  3355. }
  3356. }
  3357. //
  3358. // Do all the preliminary setup work. First raise the probe.
  3359. //
  3360. st_synchronize();
  3361. plan_bed_level_matrix.set_to_identity();
  3362. plan_buffer_line( X_current, Y_current, Z_start_location,
  3363. ext_position,
  3364. homing_feedrate[Z_AXIS]/60,
  3365. active_extruder);
  3366. st_synchronize();
  3367. //
  3368. // Now get everything to the specified probe point So we can safely do a probe to
  3369. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3370. // use that as a starting point for each probe.
  3371. //
  3372. if (verbose_level > 2)
  3373. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3374. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3375. ext_position,
  3376. homing_feedrate[X_AXIS]/60,
  3377. active_extruder);
  3378. st_synchronize();
  3379. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3380. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3381. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3382. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3383. //
  3384. // OK, do the inital probe to get us close to the bed.
  3385. // Then retrace the right amount and use that in subsequent probes
  3386. //
  3387. setup_for_endstop_move();
  3388. run_z_probe();
  3389. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3390. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3391. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3392. ext_position,
  3393. homing_feedrate[X_AXIS]/60,
  3394. active_extruder);
  3395. st_synchronize();
  3396. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3397. for( n=0; n<n_samples; n++) {
  3398. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3399. if ( n_legs) {
  3400. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3401. int rotational_direction, l;
  3402. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3403. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3404. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3405. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3406. //SERIAL_ECHOPAIR(" theta: ",theta);
  3407. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3408. //SERIAL_PROTOCOLLNPGM("");
  3409. for( l=0; l<n_legs-1; l++) {
  3410. if (rotational_direction==1)
  3411. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3412. else
  3413. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3414. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3415. if ( radius<0.0 )
  3416. radius = -radius;
  3417. X_current = X_probe_location + cos(theta) * radius;
  3418. Y_current = Y_probe_location + sin(theta) * radius;
  3419. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3420. X_current = X_MIN_POS;
  3421. if ( X_current>X_MAX_POS)
  3422. X_current = X_MAX_POS;
  3423. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3424. Y_current = Y_MIN_POS;
  3425. if ( Y_current>Y_MAX_POS)
  3426. Y_current = Y_MAX_POS;
  3427. if (verbose_level>3 ) {
  3428. SERIAL_ECHOPAIR("x: ", X_current);
  3429. SERIAL_ECHOPAIR("y: ", Y_current);
  3430. SERIAL_PROTOCOLLNPGM("");
  3431. }
  3432. do_blocking_move_to( X_current, Y_current, Z_current );
  3433. }
  3434. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3435. }
  3436. setup_for_endstop_move();
  3437. run_z_probe();
  3438. sample_set[n] = current_position[Z_AXIS];
  3439. //
  3440. // Get the current mean for the data points we have so far
  3441. //
  3442. sum=0.0;
  3443. for( j=0; j<=n; j++) {
  3444. sum = sum + sample_set[j];
  3445. }
  3446. mean = sum / (double (n+1));
  3447. //
  3448. // Now, use that mean to calculate the standard deviation for the
  3449. // data points we have so far
  3450. //
  3451. sum=0.0;
  3452. for( j=0; j<=n; j++) {
  3453. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3454. }
  3455. sigma = sqrt( sum / (double (n+1)) );
  3456. if (verbose_level > 1) {
  3457. SERIAL_PROTOCOL(n+1);
  3458. SERIAL_PROTOCOL(" of ");
  3459. SERIAL_PROTOCOL(n_samples);
  3460. SERIAL_PROTOCOLPGM(" z: ");
  3461. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3462. }
  3463. if (verbose_level > 2) {
  3464. SERIAL_PROTOCOL(" mean: ");
  3465. SERIAL_PROTOCOL_F(mean,6);
  3466. SERIAL_PROTOCOL(" sigma: ");
  3467. SERIAL_PROTOCOL_F(sigma,6);
  3468. }
  3469. if (verbose_level > 0)
  3470. SERIAL_PROTOCOLPGM("\n");
  3471. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3472. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3473. st_synchronize();
  3474. }
  3475. delay(1000);
  3476. clean_up_after_endstop_move();
  3477. // enable_endstops(true);
  3478. if (verbose_level > 0) {
  3479. SERIAL_PROTOCOLPGM("Mean: ");
  3480. SERIAL_PROTOCOL_F(mean, 6);
  3481. SERIAL_PROTOCOLPGM("\n");
  3482. }
  3483. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3484. SERIAL_PROTOCOL_F(sigma, 6);
  3485. SERIAL_PROTOCOLPGM("\n\n");
  3486. Sigma_Exit:
  3487. break;
  3488. }
  3489. #endif // Z_PROBE_REPEATABILITY_TEST
  3490. #endif // ENABLE_AUTO_BED_LEVELING
  3491. case 104: // M104
  3492. if(setTargetedHotend(104)){
  3493. break;
  3494. }
  3495. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3496. setWatch();
  3497. break;
  3498. case 112: // M112 -Emergency Stop
  3499. kill("", 3);
  3500. break;
  3501. case 140: // M140 set bed temp
  3502. if (code_seen('S')) setTargetBed(code_value());
  3503. break;
  3504. case 105 : // M105
  3505. if(setTargetedHotend(105)){
  3506. break;
  3507. }
  3508. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3509. SERIAL_PROTOCOLPGM("ok T:");
  3510. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3511. SERIAL_PROTOCOLPGM(" /");
  3512. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3513. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3514. SERIAL_PROTOCOLPGM(" B:");
  3515. SERIAL_PROTOCOL_F(degBed(),1);
  3516. SERIAL_PROTOCOLPGM(" /");
  3517. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3518. #endif //TEMP_BED_PIN
  3519. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3520. SERIAL_PROTOCOLPGM(" T");
  3521. SERIAL_PROTOCOL(cur_extruder);
  3522. SERIAL_PROTOCOLPGM(":");
  3523. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3524. SERIAL_PROTOCOLPGM(" /");
  3525. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3526. }
  3527. #else
  3528. SERIAL_ERROR_START;
  3529. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3530. #endif
  3531. SERIAL_PROTOCOLPGM(" @:");
  3532. #ifdef EXTRUDER_WATTS
  3533. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3534. SERIAL_PROTOCOLPGM("W");
  3535. #else
  3536. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3537. #endif
  3538. SERIAL_PROTOCOLPGM(" B@:");
  3539. #ifdef BED_WATTS
  3540. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3541. SERIAL_PROTOCOLPGM("W");
  3542. #else
  3543. SERIAL_PROTOCOL(getHeaterPower(-1));
  3544. #endif
  3545. #ifdef PINDA_THERMISTOR
  3546. SERIAL_PROTOCOLPGM(" P:");
  3547. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3548. #endif //PINDA_THERMISTOR
  3549. #ifdef AMBIENT_THERMISTOR
  3550. SERIAL_PROTOCOLPGM(" A:");
  3551. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3552. #endif //AMBIENT_THERMISTOR
  3553. #ifdef SHOW_TEMP_ADC_VALUES
  3554. {float raw = 0.0;
  3555. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3556. SERIAL_PROTOCOLPGM(" ADC B:");
  3557. SERIAL_PROTOCOL_F(degBed(),1);
  3558. SERIAL_PROTOCOLPGM("C->");
  3559. raw = rawBedTemp();
  3560. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3561. SERIAL_PROTOCOLPGM(" Rb->");
  3562. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3563. SERIAL_PROTOCOLPGM(" Rxb->");
  3564. SERIAL_PROTOCOL_F(raw, 5);
  3565. #endif
  3566. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3567. SERIAL_PROTOCOLPGM(" T");
  3568. SERIAL_PROTOCOL(cur_extruder);
  3569. SERIAL_PROTOCOLPGM(":");
  3570. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3571. SERIAL_PROTOCOLPGM("C->");
  3572. raw = rawHotendTemp(cur_extruder);
  3573. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3574. SERIAL_PROTOCOLPGM(" Rt");
  3575. SERIAL_PROTOCOL(cur_extruder);
  3576. SERIAL_PROTOCOLPGM("->");
  3577. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3578. SERIAL_PROTOCOLPGM(" Rx");
  3579. SERIAL_PROTOCOL(cur_extruder);
  3580. SERIAL_PROTOCOLPGM("->");
  3581. SERIAL_PROTOCOL_F(raw, 5);
  3582. }}
  3583. #endif
  3584. SERIAL_PROTOCOLLN("");
  3585. return;
  3586. break;
  3587. case 109:
  3588. {// M109 - Wait for extruder heater to reach target.
  3589. if(setTargetedHotend(109)){
  3590. break;
  3591. }
  3592. LCD_MESSAGERPGM(MSG_HEATING);
  3593. heating_status = 1;
  3594. if (farm_mode) { prusa_statistics(1); };
  3595. #ifdef AUTOTEMP
  3596. autotemp_enabled=false;
  3597. #endif
  3598. if (code_seen('S')) {
  3599. setTargetHotend(code_value(), tmp_extruder);
  3600. CooldownNoWait = true;
  3601. } else if (code_seen('R')) {
  3602. setTargetHotend(code_value(), tmp_extruder);
  3603. CooldownNoWait = false;
  3604. }
  3605. #ifdef AUTOTEMP
  3606. if (code_seen('S')) autotemp_min=code_value();
  3607. if (code_seen('B')) autotemp_max=code_value();
  3608. if (code_seen('F'))
  3609. {
  3610. autotemp_factor=code_value();
  3611. autotemp_enabled=true;
  3612. }
  3613. #endif
  3614. setWatch();
  3615. codenum = millis();
  3616. /* See if we are heating up or cooling down */
  3617. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3618. cancel_heatup = false;
  3619. wait_for_heater(codenum); //loops until target temperature is reached
  3620. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3621. heating_status = 2;
  3622. if (farm_mode) { prusa_statistics(2); };
  3623. //starttime=millis();
  3624. previous_millis_cmd = millis();
  3625. }
  3626. break;
  3627. case 190: // M190 - Wait for bed heater to reach target.
  3628. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3629. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3630. heating_status = 3;
  3631. if (farm_mode) { prusa_statistics(1); };
  3632. if (code_seen('S'))
  3633. {
  3634. setTargetBed(code_value());
  3635. CooldownNoWait = true;
  3636. }
  3637. else if (code_seen('R'))
  3638. {
  3639. setTargetBed(code_value());
  3640. CooldownNoWait = false;
  3641. }
  3642. codenum = millis();
  3643. cancel_heatup = false;
  3644. target_direction = isHeatingBed(); // true if heating, false if cooling
  3645. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3646. {
  3647. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3648. {
  3649. if (!farm_mode) {
  3650. float tt = degHotend(active_extruder);
  3651. SERIAL_PROTOCOLPGM("T:");
  3652. SERIAL_PROTOCOL(tt);
  3653. SERIAL_PROTOCOLPGM(" E:");
  3654. SERIAL_PROTOCOL((int)active_extruder);
  3655. SERIAL_PROTOCOLPGM(" B:");
  3656. SERIAL_PROTOCOL_F(degBed(), 1);
  3657. SERIAL_PROTOCOLLN("");
  3658. }
  3659. codenum = millis();
  3660. }
  3661. manage_heater();
  3662. manage_inactivity();
  3663. lcd_update();
  3664. }
  3665. LCD_MESSAGERPGM(MSG_BED_DONE);
  3666. heating_status = 4;
  3667. previous_millis_cmd = millis();
  3668. #endif
  3669. break;
  3670. #if defined(FAN_PIN) && FAN_PIN > -1
  3671. case 106: //M106 Fan On
  3672. if (code_seen('S')){
  3673. fanSpeed=constrain(code_value(),0,255);
  3674. }
  3675. else {
  3676. fanSpeed=255;
  3677. }
  3678. break;
  3679. case 107: //M107 Fan Off
  3680. fanSpeed = 0;
  3681. break;
  3682. #endif //FAN_PIN
  3683. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3684. case 80: // M80 - Turn on Power Supply
  3685. SET_OUTPUT(PS_ON_PIN); //GND
  3686. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3687. // If you have a switch on suicide pin, this is useful
  3688. // if you want to start another print with suicide feature after
  3689. // a print without suicide...
  3690. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3691. SET_OUTPUT(SUICIDE_PIN);
  3692. WRITE(SUICIDE_PIN, HIGH);
  3693. #endif
  3694. #ifdef ULTIPANEL
  3695. powersupply = true;
  3696. LCD_MESSAGERPGM(WELCOME_MSG);
  3697. lcd_update();
  3698. #endif
  3699. break;
  3700. #endif
  3701. case 81: // M81 - Turn off Power Supply
  3702. disable_heater();
  3703. st_synchronize();
  3704. disable_e0();
  3705. disable_e1();
  3706. disable_e2();
  3707. finishAndDisableSteppers();
  3708. fanSpeed = 0;
  3709. delay(1000); // Wait a little before to switch off
  3710. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3711. st_synchronize();
  3712. suicide();
  3713. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3714. SET_OUTPUT(PS_ON_PIN);
  3715. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3716. #endif
  3717. #ifdef ULTIPANEL
  3718. powersupply = false;
  3719. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3720. /*
  3721. MACHNAME = "Prusa i3"
  3722. MSGOFF = "Vypnuto"
  3723. "Prusai3"" ""vypnuto""."
  3724. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3725. */
  3726. lcd_update();
  3727. #endif
  3728. break;
  3729. case 82:
  3730. axis_relative_modes[3] = false;
  3731. break;
  3732. case 83:
  3733. axis_relative_modes[3] = true;
  3734. break;
  3735. case 18: //compatibility
  3736. case 84: // M84
  3737. if(code_seen('S')){
  3738. stepper_inactive_time = code_value() * 1000;
  3739. }
  3740. else
  3741. {
  3742. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3743. if(all_axis)
  3744. {
  3745. st_synchronize();
  3746. disable_e0();
  3747. disable_e1();
  3748. disable_e2();
  3749. finishAndDisableSteppers();
  3750. }
  3751. else
  3752. {
  3753. st_synchronize();
  3754. if (code_seen('X')) disable_x();
  3755. if (code_seen('Y')) disable_y();
  3756. if (code_seen('Z')) disable_z();
  3757. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3758. if (code_seen('E')) {
  3759. disable_e0();
  3760. disable_e1();
  3761. disable_e2();
  3762. }
  3763. #endif
  3764. }
  3765. }
  3766. snmm_filaments_used = 0;
  3767. break;
  3768. case 85: // M85
  3769. if(code_seen('S')) {
  3770. max_inactive_time = code_value() * 1000;
  3771. }
  3772. break;
  3773. case 92: // M92
  3774. for(int8_t i=0; i < NUM_AXIS; i++)
  3775. {
  3776. if(code_seen(axis_codes[i]))
  3777. {
  3778. if(i == 3) { // E
  3779. float value = code_value();
  3780. if(value < 20.0) {
  3781. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3782. max_jerk[E_AXIS] *= factor;
  3783. max_feedrate[i] *= factor;
  3784. axis_steps_per_sqr_second[i] *= factor;
  3785. }
  3786. axis_steps_per_unit[i] = value;
  3787. }
  3788. else {
  3789. axis_steps_per_unit[i] = code_value();
  3790. }
  3791. }
  3792. }
  3793. break;
  3794. case 115: // M115
  3795. if (code_seen('V')) {
  3796. // Report the Prusa version number.
  3797. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3798. } else if (code_seen('U')) {
  3799. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3800. // pause the print and ask the user to upgrade the firmware.
  3801. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3802. } else {
  3803. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3804. }
  3805. break;
  3806. /* case 117: // M117 display message
  3807. starpos = (strchr(strchr_pointer + 5,'*'));
  3808. if(starpos!=NULL)
  3809. *(starpos)='\0';
  3810. lcd_setstatus(strchr_pointer + 5);
  3811. break;*/
  3812. case 114: // M114
  3813. SERIAL_PROTOCOLPGM("X:");
  3814. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3815. SERIAL_PROTOCOLPGM(" Y:");
  3816. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3817. SERIAL_PROTOCOLPGM(" Z:");
  3818. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3819. SERIAL_PROTOCOLPGM(" E:");
  3820. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3821. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3822. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3823. SERIAL_PROTOCOLPGM(" Y:");
  3824. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3825. SERIAL_PROTOCOLPGM(" Z:");
  3826. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3827. SERIAL_PROTOCOLLN("");
  3828. break;
  3829. case 120: // M120
  3830. enable_endstops(false) ;
  3831. break;
  3832. case 121: // M121
  3833. enable_endstops(true) ;
  3834. break;
  3835. case 119: // M119
  3836. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3837. SERIAL_PROTOCOLLN("");
  3838. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3839. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3840. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3841. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3842. }else{
  3843. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3844. }
  3845. SERIAL_PROTOCOLLN("");
  3846. #endif
  3847. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3848. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3849. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3850. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3851. }else{
  3852. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3853. }
  3854. SERIAL_PROTOCOLLN("");
  3855. #endif
  3856. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3857. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3858. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3859. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3860. }else{
  3861. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3862. }
  3863. SERIAL_PROTOCOLLN("");
  3864. #endif
  3865. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3866. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3867. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3868. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3869. }else{
  3870. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3871. }
  3872. SERIAL_PROTOCOLLN("");
  3873. #endif
  3874. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3875. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3876. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3877. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3878. }else{
  3879. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3880. }
  3881. SERIAL_PROTOCOLLN("");
  3882. #endif
  3883. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3884. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3885. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3886. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3887. }else{
  3888. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3889. }
  3890. SERIAL_PROTOCOLLN("");
  3891. #endif
  3892. break;
  3893. //TODO: update for all axis, use for loop
  3894. #ifdef BLINKM
  3895. case 150: // M150
  3896. {
  3897. byte red;
  3898. byte grn;
  3899. byte blu;
  3900. if(code_seen('R')) red = code_value();
  3901. if(code_seen('U')) grn = code_value();
  3902. if(code_seen('B')) blu = code_value();
  3903. SendColors(red,grn,blu);
  3904. }
  3905. break;
  3906. #endif //BLINKM
  3907. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3908. {
  3909. tmp_extruder = active_extruder;
  3910. if(code_seen('T')) {
  3911. tmp_extruder = code_value();
  3912. if(tmp_extruder >= EXTRUDERS) {
  3913. SERIAL_ECHO_START;
  3914. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3915. break;
  3916. }
  3917. }
  3918. float area = .0;
  3919. if(code_seen('D')) {
  3920. float diameter = (float)code_value();
  3921. if (diameter == 0.0) {
  3922. // setting any extruder filament size disables volumetric on the assumption that
  3923. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3924. // for all extruders
  3925. volumetric_enabled = false;
  3926. } else {
  3927. filament_size[tmp_extruder] = (float)code_value();
  3928. // make sure all extruders have some sane value for the filament size
  3929. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3930. #if EXTRUDERS > 1
  3931. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3932. #if EXTRUDERS > 2
  3933. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3934. #endif
  3935. #endif
  3936. volumetric_enabled = true;
  3937. }
  3938. } else {
  3939. //reserved for setting filament diameter via UFID or filament measuring device
  3940. break;
  3941. }
  3942. calculate_volumetric_multipliers();
  3943. }
  3944. break;
  3945. case 201: // M201
  3946. for(int8_t i=0; i < NUM_AXIS; i++)
  3947. {
  3948. if(code_seen(axis_codes[i]))
  3949. {
  3950. max_acceleration_units_per_sq_second[i] = code_value();
  3951. }
  3952. }
  3953. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3954. reset_acceleration_rates();
  3955. break;
  3956. #if 0 // Not used for Sprinter/grbl gen6
  3957. case 202: // M202
  3958. for(int8_t i=0; i < NUM_AXIS; i++) {
  3959. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3960. }
  3961. break;
  3962. #endif
  3963. case 203: // M203 max feedrate mm/sec
  3964. for(int8_t i=0; i < NUM_AXIS; i++) {
  3965. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3966. }
  3967. break;
  3968. case 204: // M204 acclereration S normal moves T filmanent only moves
  3969. {
  3970. if(code_seen('S')) acceleration = code_value() ;
  3971. if(code_seen('T')) retract_acceleration = code_value() ;
  3972. }
  3973. break;
  3974. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3975. {
  3976. if(code_seen('S')) minimumfeedrate = code_value();
  3977. if(code_seen('T')) mintravelfeedrate = code_value();
  3978. if(code_seen('B')) minsegmenttime = code_value() ;
  3979. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3980. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3981. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3982. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3983. }
  3984. break;
  3985. case 206: // M206 additional homing offset
  3986. for(int8_t i=0; i < 3; i++)
  3987. {
  3988. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3989. }
  3990. break;
  3991. #ifdef FWRETRACT
  3992. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3993. {
  3994. if(code_seen('S'))
  3995. {
  3996. retract_length = code_value() ;
  3997. }
  3998. if(code_seen('F'))
  3999. {
  4000. retract_feedrate = code_value()/60 ;
  4001. }
  4002. if(code_seen('Z'))
  4003. {
  4004. retract_zlift = code_value() ;
  4005. }
  4006. }break;
  4007. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4008. {
  4009. if(code_seen('S'))
  4010. {
  4011. retract_recover_length = code_value() ;
  4012. }
  4013. if(code_seen('F'))
  4014. {
  4015. retract_recover_feedrate = code_value()/60 ;
  4016. }
  4017. }break;
  4018. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4019. {
  4020. if(code_seen('S'))
  4021. {
  4022. int t= code_value() ;
  4023. switch(t)
  4024. {
  4025. case 0:
  4026. {
  4027. autoretract_enabled=false;
  4028. retracted[0]=false;
  4029. #if EXTRUDERS > 1
  4030. retracted[1]=false;
  4031. #endif
  4032. #if EXTRUDERS > 2
  4033. retracted[2]=false;
  4034. #endif
  4035. }break;
  4036. case 1:
  4037. {
  4038. autoretract_enabled=true;
  4039. retracted[0]=false;
  4040. #if EXTRUDERS > 1
  4041. retracted[1]=false;
  4042. #endif
  4043. #if EXTRUDERS > 2
  4044. retracted[2]=false;
  4045. #endif
  4046. }break;
  4047. default:
  4048. SERIAL_ECHO_START;
  4049. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4050. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4051. SERIAL_ECHOLNPGM("\"(1)");
  4052. }
  4053. }
  4054. }break;
  4055. #endif // FWRETRACT
  4056. #if EXTRUDERS > 1
  4057. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4058. {
  4059. if(setTargetedHotend(218)){
  4060. break;
  4061. }
  4062. if(code_seen('X'))
  4063. {
  4064. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4065. }
  4066. if(code_seen('Y'))
  4067. {
  4068. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4069. }
  4070. SERIAL_ECHO_START;
  4071. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4072. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4073. {
  4074. SERIAL_ECHO(" ");
  4075. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4076. SERIAL_ECHO(",");
  4077. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4078. }
  4079. SERIAL_ECHOLN("");
  4080. }break;
  4081. #endif
  4082. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4083. {
  4084. if(code_seen('S'))
  4085. {
  4086. feedmultiply = code_value() ;
  4087. }
  4088. }
  4089. break;
  4090. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4091. {
  4092. if(code_seen('S'))
  4093. {
  4094. int tmp_code = code_value();
  4095. if (code_seen('T'))
  4096. {
  4097. if(setTargetedHotend(221)){
  4098. break;
  4099. }
  4100. extruder_multiply[tmp_extruder] = tmp_code;
  4101. }
  4102. else
  4103. {
  4104. extrudemultiply = tmp_code ;
  4105. }
  4106. }
  4107. }
  4108. break;
  4109. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4110. {
  4111. if(code_seen('P')){
  4112. int pin_number = code_value(); // pin number
  4113. int pin_state = -1; // required pin state - default is inverted
  4114. if(code_seen('S')) pin_state = code_value(); // required pin state
  4115. if(pin_state >= -1 && pin_state <= 1){
  4116. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4117. {
  4118. if (sensitive_pins[i] == pin_number)
  4119. {
  4120. pin_number = -1;
  4121. break;
  4122. }
  4123. }
  4124. if (pin_number > -1)
  4125. {
  4126. int target = LOW;
  4127. st_synchronize();
  4128. pinMode(pin_number, INPUT);
  4129. switch(pin_state){
  4130. case 1:
  4131. target = HIGH;
  4132. break;
  4133. case 0:
  4134. target = LOW;
  4135. break;
  4136. case -1:
  4137. target = !digitalRead(pin_number);
  4138. break;
  4139. }
  4140. while(digitalRead(pin_number) != target){
  4141. manage_heater();
  4142. manage_inactivity();
  4143. lcd_update();
  4144. }
  4145. }
  4146. }
  4147. }
  4148. }
  4149. break;
  4150. #if NUM_SERVOS > 0
  4151. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4152. {
  4153. int servo_index = -1;
  4154. int servo_position = 0;
  4155. if (code_seen('P'))
  4156. servo_index = code_value();
  4157. if (code_seen('S')) {
  4158. servo_position = code_value();
  4159. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4160. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4161. servos[servo_index].attach(0);
  4162. #endif
  4163. servos[servo_index].write(servo_position);
  4164. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4165. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4166. servos[servo_index].detach();
  4167. #endif
  4168. }
  4169. else {
  4170. SERIAL_ECHO_START;
  4171. SERIAL_ECHO("Servo ");
  4172. SERIAL_ECHO(servo_index);
  4173. SERIAL_ECHOLN(" out of range");
  4174. }
  4175. }
  4176. else if (servo_index >= 0) {
  4177. SERIAL_PROTOCOL(MSG_OK);
  4178. SERIAL_PROTOCOL(" Servo ");
  4179. SERIAL_PROTOCOL(servo_index);
  4180. SERIAL_PROTOCOL(": ");
  4181. SERIAL_PROTOCOL(servos[servo_index].read());
  4182. SERIAL_PROTOCOLLN("");
  4183. }
  4184. }
  4185. break;
  4186. #endif // NUM_SERVOS > 0
  4187. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4188. case 300: // M300
  4189. {
  4190. int beepS = code_seen('S') ? code_value() : 110;
  4191. int beepP = code_seen('P') ? code_value() : 1000;
  4192. if (beepS > 0)
  4193. {
  4194. #if BEEPER > 0
  4195. tone(BEEPER, beepS);
  4196. delay(beepP);
  4197. noTone(BEEPER);
  4198. #elif defined(ULTRALCD)
  4199. lcd_buzz(beepS, beepP);
  4200. #elif defined(LCD_USE_I2C_BUZZER)
  4201. lcd_buzz(beepP, beepS);
  4202. #endif
  4203. }
  4204. else
  4205. {
  4206. delay(beepP);
  4207. }
  4208. }
  4209. break;
  4210. #endif // M300
  4211. #ifdef PIDTEMP
  4212. case 301: // M301
  4213. {
  4214. if(code_seen('P')) Kp = code_value();
  4215. if(code_seen('I')) Ki = scalePID_i(code_value());
  4216. if(code_seen('D')) Kd = scalePID_d(code_value());
  4217. #ifdef PID_ADD_EXTRUSION_RATE
  4218. if(code_seen('C')) Kc = code_value();
  4219. #endif
  4220. updatePID();
  4221. SERIAL_PROTOCOLRPGM(MSG_OK);
  4222. SERIAL_PROTOCOL(" p:");
  4223. SERIAL_PROTOCOL(Kp);
  4224. SERIAL_PROTOCOL(" i:");
  4225. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4226. SERIAL_PROTOCOL(" d:");
  4227. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4228. #ifdef PID_ADD_EXTRUSION_RATE
  4229. SERIAL_PROTOCOL(" c:");
  4230. //Kc does not have scaling applied above, or in resetting defaults
  4231. SERIAL_PROTOCOL(Kc);
  4232. #endif
  4233. SERIAL_PROTOCOLLN("");
  4234. }
  4235. break;
  4236. #endif //PIDTEMP
  4237. #ifdef PIDTEMPBED
  4238. case 304: // M304
  4239. {
  4240. if(code_seen('P')) bedKp = code_value();
  4241. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4242. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4243. updatePID();
  4244. SERIAL_PROTOCOLRPGM(MSG_OK);
  4245. SERIAL_PROTOCOL(" p:");
  4246. SERIAL_PROTOCOL(bedKp);
  4247. SERIAL_PROTOCOL(" i:");
  4248. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4249. SERIAL_PROTOCOL(" d:");
  4250. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4251. SERIAL_PROTOCOLLN("");
  4252. }
  4253. break;
  4254. #endif //PIDTEMP
  4255. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4256. {
  4257. #ifdef CHDK
  4258. SET_OUTPUT(CHDK);
  4259. WRITE(CHDK, HIGH);
  4260. chdkHigh = millis();
  4261. chdkActive = true;
  4262. #else
  4263. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4264. const uint8_t NUM_PULSES=16;
  4265. const float PULSE_LENGTH=0.01524;
  4266. for(int i=0; i < NUM_PULSES; i++) {
  4267. WRITE(PHOTOGRAPH_PIN, HIGH);
  4268. _delay_ms(PULSE_LENGTH);
  4269. WRITE(PHOTOGRAPH_PIN, LOW);
  4270. _delay_ms(PULSE_LENGTH);
  4271. }
  4272. delay(7.33);
  4273. for(int i=0; i < NUM_PULSES; i++) {
  4274. WRITE(PHOTOGRAPH_PIN, HIGH);
  4275. _delay_ms(PULSE_LENGTH);
  4276. WRITE(PHOTOGRAPH_PIN, LOW);
  4277. _delay_ms(PULSE_LENGTH);
  4278. }
  4279. #endif
  4280. #endif //chdk end if
  4281. }
  4282. break;
  4283. #ifdef DOGLCD
  4284. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4285. {
  4286. if (code_seen('C')) {
  4287. lcd_setcontrast( ((int)code_value())&63 );
  4288. }
  4289. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4290. SERIAL_PROTOCOL(lcd_contrast);
  4291. SERIAL_PROTOCOLLN("");
  4292. }
  4293. break;
  4294. #endif
  4295. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4296. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4297. {
  4298. float temp = .0;
  4299. if (code_seen('S')) temp=code_value();
  4300. set_extrude_min_temp(temp);
  4301. }
  4302. break;
  4303. #endif
  4304. case 303: // M303 PID autotune
  4305. {
  4306. float temp = 150.0;
  4307. int e=0;
  4308. int c=5;
  4309. if (code_seen('E')) e=code_value();
  4310. if (e<0)
  4311. temp=70;
  4312. if (code_seen('S')) temp=code_value();
  4313. if (code_seen('C')) c=code_value();
  4314. PID_autotune(temp, e, c);
  4315. }
  4316. break;
  4317. case 400: // M400 finish all moves
  4318. {
  4319. st_synchronize();
  4320. }
  4321. break;
  4322. #ifdef FILAMENT_SENSOR
  4323. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4324. {
  4325. #if (FILWIDTH_PIN > -1)
  4326. if(code_seen('N')) filament_width_nominal=code_value();
  4327. else{
  4328. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4329. SERIAL_PROTOCOLLN(filament_width_nominal);
  4330. }
  4331. #endif
  4332. }
  4333. break;
  4334. case 405: //M405 Turn on filament sensor for control
  4335. {
  4336. if(code_seen('D')) meas_delay_cm=code_value();
  4337. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4338. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4339. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4340. {
  4341. int temp_ratio = widthFil_to_size_ratio();
  4342. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4343. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4344. }
  4345. delay_index1=0;
  4346. delay_index2=0;
  4347. }
  4348. filament_sensor = true ;
  4349. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4350. //SERIAL_PROTOCOL(filament_width_meas);
  4351. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4352. //SERIAL_PROTOCOL(extrudemultiply);
  4353. }
  4354. break;
  4355. case 406: //M406 Turn off filament sensor for control
  4356. {
  4357. filament_sensor = false ;
  4358. }
  4359. break;
  4360. case 407: //M407 Display measured filament diameter
  4361. {
  4362. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4363. SERIAL_PROTOCOLLN(filament_width_meas);
  4364. }
  4365. break;
  4366. #endif
  4367. case 500: // M500 Store settings in EEPROM
  4368. {
  4369. Config_StoreSettings(EEPROM_OFFSET);
  4370. }
  4371. break;
  4372. case 501: // M501 Read settings from EEPROM
  4373. {
  4374. Config_RetrieveSettings(EEPROM_OFFSET);
  4375. }
  4376. break;
  4377. case 502: // M502 Revert to default settings
  4378. {
  4379. Config_ResetDefault();
  4380. }
  4381. break;
  4382. case 503: // M503 print settings currently in memory
  4383. {
  4384. Config_PrintSettings();
  4385. }
  4386. break;
  4387. case 509: //M509 Force language selection
  4388. {
  4389. lcd_force_language_selection();
  4390. SERIAL_ECHO_START;
  4391. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4392. }
  4393. break;
  4394. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4395. case 540:
  4396. {
  4397. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4398. }
  4399. break;
  4400. #endif
  4401. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4402. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4403. {
  4404. float value;
  4405. if (code_seen('Z'))
  4406. {
  4407. value = code_value();
  4408. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4409. {
  4410. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4411. SERIAL_ECHO_START;
  4412. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4413. SERIAL_PROTOCOLLN("");
  4414. }
  4415. else
  4416. {
  4417. SERIAL_ECHO_START;
  4418. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4419. SERIAL_ECHORPGM(MSG_Z_MIN);
  4420. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4421. SERIAL_ECHORPGM(MSG_Z_MAX);
  4422. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4423. SERIAL_PROTOCOLLN("");
  4424. }
  4425. }
  4426. else
  4427. {
  4428. SERIAL_ECHO_START;
  4429. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4430. SERIAL_ECHO(-zprobe_zoffset);
  4431. SERIAL_PROTOCOLLN("");
  4432. }
  4433. break;
  4434. }
  4435. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4436. #ifdef FILAMENTCHANGEENABLE
  4437. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4438. {
  4439. MYSERIAL.println("!!!!M600!!!!");
  4440. st_synchronize();
  4441. float target[4];
  4442. float lastpos[4];
  4443. if (farm_mode)
  4444. {
  4445. prusa_statistics(22);
  4446. }
  4447. feedmultiplyBckp=feedmultiply;
  4448. int8_t TooLowZ = 0;
  4449. target[X_AXIS]=current_position[X_AXIS];
  4450. target[Y_AXIS]=current_position[Y_AXIS];
  4451. target[Z_AXIS]=current_position[Z_AXIS];
  4452. target[E_AXIS]=current_position[E_AXIS];
  4453. lastpos[X_AXIS]=current_position[X_AXIS];
  4454. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4455. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4456. lastpos[E_AXIS]=current_position[E_AXIS];
  4457. //Restract extruder
  4458. if(code_seen('E'))
  4459. {
  4460. target[E_AXIS]+= code_value();
  4461. }
  4462. else
  4463. {
  4464. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4465. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4466. #endif
  4467. }
  4468. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4469. //Lift Z
  4470. if(code_seen('Z'))
  4471. {
  4472. target[Z_AXIS]+= code_value();
  4473. }
  4474. else
  4475. {
  4476. #ifdef FILAMENTCHANGE_ZADD
  4477. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4478. if(target[Z_AXIS] < 10){
  4479. target[Z_AXIS]+= 10 ;
  4480. TooLowZ = 1;
  4481. }else{
  4482. TooLowZ = 0;
  4483. }
  4484. #endif
  4485. }
  4486. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4487. //Move XY to side
  4488. if(code_seen('X'))
  4489. {
  4490. target[X_AXIS]+= code_value();
  4491. }
  4492. else
  4493. {
  4494. #ifdef FILAMENTCHANGE_XPOS
  4495. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4496. #endif
  4497. }
  4498. if(code_seen('Y'))
  4499. {
  4500. target[Y_AXIS]= code_value();
  4501. }
  4502. else
  4503. {
  4504. #ifdef FILAMENTCHANGE_YPOS
  4505. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4506. #endif
  4507. }
  4508. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4509. st_synchronize();
  4510. custom_message = true;
  4511. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4512. // Unload filament
  4513. if(code_seen('L'))
  4514. {
  4515. target[E_AXIS]+= code_value();
  4516. }
  4517. else
  4518. {
  4519. #ifdef SNMM
  4520. #else
  4521. #ifdef FILAMENTCHANGE_FINALRETRACT
  4522. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4523. #endif
  4524. #endif // SNMM
  4525. }
  4526. #ifdef SNMM
  4527. target[E_AXIS] += 12;
  4528. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4529. target[E_AXIS] += 6;
  4530. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4531. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4532. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4533. st_synchronize();
  4534. target[E_AXIS] += (FIL_COOLING);
  4535. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4536. target[E_AXIS] += (FIL_COOLING*-1);
  4537. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4538. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4539. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4540. st_synchronize();
  4541. #else
  4542. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4543. #endif // SNMM
  4544. //finish moves
  4545. st_synchronize();
  4546. //disable extruder steppers so filament can be removed
  4547. disable_e0();
  4548. disable_e1();
  4549. disable_e2();
  4550. delay(100);
  4551. //Wait for user to insert filament
  4552. uint8_t cnt=0;
  4553. int counterBeep = 0;
  4554. lcd_wait_interact();
  4555. load_filament_time = millis();
  4556. while(!lcd_clicked()){
  4557. cnt++;
  4558. manage_heater();
  4559. manage_inactivity(true);
  4560. /*#ifdef SNMM
  4561. target[E_AXIS] += 0.002;
  4562. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4563. #endif // SNMM*/
  4564. if(cnt==0)
  4565. {
  4566. #if BEEPER > 0
  4567. if (counterBeep== 500){
  4568. counterBeep = 0;
  4569. }
  4570. SET_OUTPUT(BEEPER);
  4571. if (counterBeep== 0){
  4572. WRITE(BEEPER,HIGH);
  4573. }
  4574. if (counterBeep== 20){
  4575. WRITE(BEEPER,LOW);
  4576. }
  4577. counterBeep++;
  4578. #else
  4579. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4580. lcd_buzz(1000/6,100);
  4581. #else
  4582. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4583. #endif
  4584. #endif
  4585. }
  4586. }
  4587. #ifdef SNMM
  4588. display_loading();
  4589. do {
  4590. target[E_AXIS] += 0.002;
  4591. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4592. delay_keep_alive(2);
  4593. } while (!lcd_clicked());
  4594. /*if (millis() - load_filament_time > 2) {
  4595. load_filament_time = millis();
  4596. target[E_AXIS] += 0.001;
  4597. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4598. }*/
  4599. #endif
  4600. //Filament inserted
  4601. WRITE(BEEPER,LOW);
  4602. //Feed the filament to the end of nozzle quickly
  4603. #ifdef SNMM
  4604. st_synchronize();
  4605. target[E_AXIS] += bowden_length[snmm_extruder];
  4606. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4607. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4608. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4609. target[E_AXIS] += 40;
  4610. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4611. target[E_AXIS] += 10;
  4612. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4613. #else
  4614. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4615. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4616. #endif // SNMM
  4617. //Extrude some filament
  4618. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4619. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4620. //Wait for user to check the state
  4621. lcd_change_fil_state = 0;
  4622. lcd_loading_filament();
  4623. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4624. lcd_change_fil_state = 0;
  4625. lcd_alright();
  4626. switch(lcd_change_fil_state){
  4627. // Filament failed to load so load it again
  4628. case 2:
  4629. #ifdef SNMM
  4630. display_loading();
  4631. do {
  4632. target[E_AXIS] += 0.002;
  4633. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4634. delay_keep_alive(2);
  4635. } while (!lcd_clicked());
  4636. st_synchronize();
  4637. target[E_AXIS] += bowden_length[snmm_extruder];
  4638. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4639. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4640. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4641. target[E_AXIS] += 40;
  4642. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4643. target[E_AXIS] += 10;
  4644. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4645. #else
  4646. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4647. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4648. #endif
  4649. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4650. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4651. lcd_loading_filament();
  4652. break;
  4653. // Filament loaded properly but color is not clear
  4654. case 3:
  4655. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4656. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4657. lcd_loading_color();
  4658. break;
  4659. // Everything good
  4660. default:
  4661. lcd_change_success();
  4662. lcd_update_enable(true);
  4663. break;
  4664. }
  4665. }
  4666. //Not let's go back to print
  4667. //Feed a little of filament to stabilize pressure
  4668. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4669. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4670. //Retract
  4671. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4672. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4673. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4674. //Move XY back
  4675. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4676. //Move Z back
  4677. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4678. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4679. //Unretract
  4680. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4681. //Set E position to original
  4682. plan_set_e_position(lastpos[E_AXIS]);
  4683. //Recover feed rate
  4684. feedmultiply=feedmultiplyBckp;
  4685. char cmd[9];
  4686. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4687. enquecommand(cmd);
  4688. lcd_setstatuspgm(WELCOME_MSG);
  4689. custom_message = false;
  4690. custom_message_type = 0;
  4691. #ifdef PAT9125
  4692. if (fsensor_M600)
  4693. {
  4694. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  4695. st_synchronize();
  4696. while (!is_buffer_empty())
  4697. {
  4698. process_commands();
  4699. cmdqueue_pop_front();
  4700. }
  4701. fsensor_enable();
  4702. fsensor_restore_print_and_continue();
  4703. }
  4704. #endif //PAT9125
  4705. }
  4706. break;
  4707. #endif //FILAMENTCHANGEENABLE
  4708. case 601: {
  4709. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4710. }
  4711. break;
  4712. case 602: {
  4713. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4714. }
  4715. break;
  4716. #ifdef LIN_ADVANCE
  4717. case 900: // M900: Set LIN_ADVANCE options.
  4718. gcode_M900();
  4719. break;
  4720. #endif
  4721. case 907: // M907 Set digital trimpot motor current using axis codes.
  4722. {
  4723. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4724. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4725. if(code_seen('B')) digipot_current(4,code_value());
  4726. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4727. #endif
  4728. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4729. if(code_seen('X')) digipot_current(0, code_value());
  4730. #endif
  4731. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4732. if(code_seen('Z')) digipot_current(1, code_value());
  4733. #endif
  4734. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4735. if(code_seen('E')) digipot_current(2, code_value());
  4736. #endif
  4737. #ifdef DIGIPOT_I2C
  4738. // this one uses actual amps in floating point
  4739. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4740. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4741. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4742. #endif
  4743. }
  4744. break;
  4745. case 908: // M908 Control digital trimpot directly.
  4746. {
  4747. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4748. uint8_t channel,current;
  4749. if(code_seen('P')) channel=code_value();
  4750. if(code_seen('S')) current=code_value();
  4751. digitalPotWrite(channel, current);
  4752. #endif
  4753. }
  4754. break;
  4755. case 910: // M910 TMC2130 init
  4756. {
  4757. tmc2130_init();
  4758. }
  4759. break;
  4760. case 911: // M911 Set TMC2130 holding currents
  4761. {
  4762. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  4763. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  4764. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  4765. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  4766. }
  4767. break;
  4768. case 912: // M912 Set TMC2130 running currents
  4769. {
  4770. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  4771. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  4772. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  4773. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  4774. }
  4775. break;
  4776. case 913: // M913 Print TMC2130 currents
  4777. {
  4778. tmc2130_print_currents();
  4779. }
  4780. break;
  4781. case 914: // M914 Set normal mode
  4782. {
  4783. tmc2130_mode = TMC2130_MODE_NORMAL;
  4784. tmc2130_init();
  4785. }
  4786. break;
  4787. case 915: // M915 Set silent mode
  4788. {
  4789. tmc2130_mode = TMC2130_MODE_SILENT;
  4790. tmc2130_init();
  4791. }
  4792. break;
  4793. case 916: // M916 Set sg_thrs
  4794. {
  4795. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  4796. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  4797. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  4798. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  4799. MYSERIAL.print("tmc2130_sg_thr[X]=");
  4800. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  4801. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  4802. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  4803. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  4804. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  4805. MYSERIAL.print("tmc2130_sg_thr[E]=");
  4806. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  4807. }
  4808. break;
  4809. case 917: // M917 Set TMC2130 pwm_ampl
  4810. {
  4811. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  4812. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  4813. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  4814. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  4815. }
  4816. break;
  4817. case 918: // M918 Set TMC2130 pwm_grad
  4818. {
  4819. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  4820. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  4821. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  4822. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  4823. }
  4824. break;
  4825. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4826. {
  4827. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4828. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4829. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4830. if(code_seen('B')) microstep_mode(4,code_value());
  4831. microstep_readings();
  4832. #endif
  4833. }
  4834. break;
  4835. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4836. {
  4837. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4838. if(code_seen('S')) switch((int)code_value())
  4839. {
  4840. case 1:
  4841. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4842. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4843. break;
  4844. case 2:
  4845. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4846. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4847. break;
  4848. }
  4849. microstep_readings();
  4850. #endif
  4851. }
  4852. break;
  4853. case 701: //M701: load filament
  4854. {
  4855. enable_z();
  4856. custom_message = true;
  4857. custom_message_type = 2;
  4858. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4859. current_position[E_AXIS] += 70;
  4860. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4861. current_position[E_AXIS] += 25;
  4862. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4863. st_synchronize();
  4864. if (!farm_mode && loading_flag) {
  4865. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4866. while (!clean) {
  4867. lcd_update_enable(true);
  4868. lcd_update(2);
  4869. current_position[E_AXIS] += 25;
  4870. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4871. st_synchronize();
  4872. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4873. }
  4874. }
  4875. lcd_update_enable(true);
  4876. lcd_update(2);
  4877. lcd_setstatuspgm(WELCOME_MSG);
  4878. disable_z();
  4879. loading_flag = false;
  4880. custom_message = false;
  4881. custom_message_type = 0;
  4882. }
  4883. break;
  4884. case 702:
  4885. {
  4886. #ifdef SNMM
  4887. if (code_seen('U')) {
  4888. extr_unload_used(); //unload all filaments which were used in current print
  4889. }
  4890. else if (code_seen('C')) {
  4891. extr_unload(); //unload just current filament
  4892. }
  4893. else {
  4894. extr_unload_all(); //unload all filaments
  4895. }
  4896. #else
  4897. custom_message = true;
  4898. custom_message_type = 2;
  4899. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4900. current_position[E_AXIS] -= 80;
  4901. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4902. st_synchronize();
  4903. lcd_setstatuspgm(WELCOME_MSG);
  4904. custom_message = false;
  4905. custom_message_type = 0;
  4906. #endif
  4907. }
  4908. break;
  4909. case 999: // M999: Restart after being stopped
  4910. Stopped = false;
  4911. lcd_reset_alert_level();
  4912. gcode_LastN = Stopped_gcode_LastN;
  4913. FlushSerialRequestResend();
  4914. break;
  4915. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4916. }
  4917. } // end if(code_seen('M')) (end of M codes)
  4918. else if(code_seen('T'))
  4919. {
  4920. int index;
  4921. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4922. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  4923. SERIAL_ECHOLNPGM("Invalid T code.");
  4924. }
  4925. else {
  4926. if (*(strchr_pointer + index) == '?') {
  4927. tmp_extruder = choose_extruder_menu();
  4928. }
  4929. else {
  4930. tmp_extruder = code_value();
  4931. }
  4932. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  4933. #ifdef SNMM
  4934. #ifdef LIN_ADVANCE
  4935. if (snmm_extruder != tmp_extruder)
  4936. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  4937. #endif
  4938. snmm_extruder = tmp_extruder;
  4939. st_synchronize();
  4940. delay(100);
  4941. disable_e0();
  4942. disable_e1();
  4943. disable_e2();
  4944. pinMode(E_MUX0_PIN, OUTPUT);
  4945. pinMode(E_MUX1_PIN, OUTPUT);
  4946. pinMode(E_MUX2_PIN, OUTPUT);
  4947. delay(100);
  4948. SERIAL_ECHO_START;
  4949. SERIAL_ECHO("T:");
  4950. SERIAL_ECHOLN((int)tmp_extruder);
  4951. switch (tmp_extruder) {
  4952. case 1:
  4953. WRITE(E_MUX0_PIN, HIGH);
  4954. WRITE(E_MUX1_PIN, LOW);
  4955. WRITE(E_MUX2_PIN, LOW);
  4956. break;
  4957. case 2:
  4958. WRITE(E_MUX0_PIN, LOW);
  4959. WRITE(E_MUX1_PIN, HIGH);
  4960. WRITE(E_MUX2_PIN, LOW);
  4961. break;
  4962. case 3:
  4963. WRITE(E_MUX0_PIN, HIGH);
  4964. WRITE(E_MUX1_PIN, HIGH);
  4965. WRITE(E_MUX2_PIN, LOW);
  4966. break;
  4967. default:
  4968. WRITE(E_MUX0_PIN, LOW);
  4969. WRITE(E_MUX1_PIN, LOW);
  4970. WRITE(E_MUX2_PIN, LOW);
  4971. break;
  4972. }
  4973. delay(100);
  4974. #else
  4975. if (tmp_extruder >= EXTRUDERS) {
  4976. SERIAL_ECHO_START;
  4977. SERIAL_ECHOPGM("T");
  4978. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4979. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4980. }
  4981. else {
  4982. boolean make_move = false;
  4983. if (code_seen('F')) {
  4984. make_move = true;
  4985. next_feedrate = code_value();
  4986. if (next_feedrate > 0.0) {
  4987. feedrate = next_feedrate;
  4988. }
  4989. }
  4990. #if EXTRUDERS > 1
  4991. if (tmp_extruder != active_extruder) {
  4992. // Save current position to return to after applying extruder offset
  4993. memcpy(destination, current_position, sizeof(destination));
  4994. // Offset extruder (only by XY)
  4995. int i;
  4996. for (i = 0; i < 2; i++) {
  4997. current_position[i] = current_position[i] -
  4998. extruder_offset[i][active_extruder] +
  4999. extruder_offset[i][tmp_extruder];
  5000. }
  5001. // Set the new active extruder and position
  5002. active_extruder = tmp_extruder;
  5003. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5004. // Move to the old position if 'F' was in the parameters
  5005. if (make_move && Stopped == false) {
  5006. prepare_move();
  5007. }
  5008. }
  5009. #endif
  5010. SERIAL_ECHO_START;
  5011. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5012. SERIAL_PROTOCOLLN((int)active_extruder);
  5013. }
  5014. #endif
  5015. }
  5016. } // end if(code_seen('T')) (end of T codes)
  5017. #ifdef DEBUG_DCODES
  5018. else if (code_seen('D')) // D codes (debug)
  5019. {
  5020. switch((int)code_value())
  5021. {
  5022. case 0: // D0 - Reset
  5023. dcode_0(); break;
  5024. case 1: // D1 - Clear EEPROM
  5025. dcode_1(); break;
  5026. case 2: // D2 - Read/Write RAM
  5027. dcode_2(); break;
  5028. case 3: // D3 - Read/Write EEPROM
  5029. dcode_3(); break;
  5030. case 4: // D4 - Read/Write PIN
  5031. dcode_4(); break;
  5032. case 5:
  5033. MYSERIAL.println("D5 - Test");
  5034. if (code_seen('P'))
  5035. selectedSerialPort = (int)code_value();
  5036. MYSERIAL.print("selectedSerialPort = ");
  5037. MYSERIAL.println(selectedSerialPort, DEC);
  5038. break;
  5039. case 10: // D10 - Tell the printer that XYZ calibration went OK
  5040. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  5041. break;
  5042. case 999:
  5043. {
  5044. MYSERIAL.println("D999 - crash");
  5045. /* while (!is_buffer_empty())
  5046. {
  5047. process_commands();
  5048. cmdqueue_pop_front();
  5049. }*/
  5050. st_synchronize();
  5051. lcd_update_enable(true);
  5052. lcd_implementation_clear();
  5053. lcd_update(2);
  5054. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  5055. lcd_update_enable(true);
  5056. lcd_update(2);
  5057. lcd_setstatuspgm(WELCOME_MSG);
  5058. if (yesno)
  5059. {
  5060. enquecommand_P(PSTR("G28 X"));
  5061. enquecommand_P(PSTR("G28 Y"));
  5062. enquecommand_P(PSTR("D1000"));
  5063. }
  5064. else
  5065. {
  5066. enquecommand_P(PSTR("D1001"));
  5067. }
  5068. }
  5069. break;
  5070. case 1000:
  5071. crashdet_restore_print_and_continue();
  5072. tmc2130_sg_stop_on_crash = true;
  5073. break;
  5074. case 1001:
  5075. card.sdprinting = false;
  5076. card.closefile();
  5077. tmc2130_sg_stop_on_crash = true;
  5078. break;
  5079. /* case 4:
  5080. {
  5081. MYSERIAL.println("D4 - Test");
  5082. uint8_t data[16];
  5083. int cnt = parse_hex(strchr_pointer + 2, data, 16);
  5084. MYSERIAL.println(cnt, DEC);
  5085. for (int i = 0; i < cnt; i++)
  5086. {
  5087. serial_print_hex_byte(data[i]);
  5088. MYSERIAL.write(' ');
  5089. }
  5090. MYSERIAL.write('\n');
  5091. }
  5092. break;
  5093. /* case 3:
  5094. if (code_seen('L')) // lcd pwm (0-255)
  5095. {
  5096. lcdSoftPwm = (int)code_value();
  5097. }
  5098. if (code_seen('B')) // lcd blink delay (0-255)
  5099. {
  5100. lcdBlinkDelay = (int)code_value();
  5101. }
  5102. // calibrate_z_auto();
  5103. /* MYSERIAL.print("fsensor_enable()");
  5104. #ifdef PAT9125
  5105. fsensor_enable();
  5106. #endif*/
  5107. break;
  5108. // case 4:
  5109. // lcdBlinkDelay = 10;
  5110. /* MYSERIAL.print("fsensor_disable()");
  5111. #ifdef PAT9125
  5112. fsensor_disable();
  5113. #endif
  5114. break;*/
  5115. // break;
  5116. /* case 5:
  5117. {
  5118. MYSERIAL.print("tmc2130_rd_MSCNT(0)=");
  5119. int val = tmc2130_rd_MSCNT(tmc2130_cs[0]);
  5120. MYSERIAL.println(val);
  5121. homeaxis(0);
  5122. }
  5123. break;*/
  5124. case 6:
  5125. {
  5126. /* MYSERIAL.print("tmc2130_rd_MSCNT(1)=");
  5127. int val = tmc2130_rd_MSCNT(tmc2130_cs[1]);
  5128. MYSERIAL.println(val);*/
  5129. homeaxis(1);
  5130. }
  5131. break;
  5132. case 7:
  5133. {
  5134. MYSERIAL.print("pat9125_init=");
  5135. MYSERIAL.println(pat9125_init(200, 200));
  5136. }
  5137. break;
  5138. case 8:
  5139. {
  5140. MYSERIAL.print("swi2c_check=");
  5141. MYSERIAL.println(swi2c_check(0x75));
  5142. }
  5143. break;
  5144. }
  5145. }
  5146. #endif //DEBUG_DCODES
  5147. else
  5148. {
  5149. SERIAL_ECHO_START;
  5150. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5151. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5152. SERIAL_ECHOLNPGM("\"(2)");
  5153. }
  5154. ClearToSend();
  5155. }
  5156. void FlushSerialRequestResend()
  5157. {
  5158. //char cmdbuffer[bufindr][100]="Resend:";
  5159. MYSERIAL.flush();
  5160. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5161. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5162. ClearToSend();
  5163. }
  5164. // Confirm the execution of a command, if sent from a serial line.
  5165. // Execution of a command from a SD card will not be confirmed.
  5166. void ClearToSend()
  5167. {
  5168. previous_millis_cmd = millis();
  5169. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5170. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5171. }
  5172. void get_coordinates()
  5173. {
  5174. bool seen[4]={false,false,false,false};
  5175. for(int8_t i=0; i < NUM_AXIS; i++) {
  5176. if(code_seen(axis_codes[i]))
  5177. {
  5178. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5179. seen[i]=true;
  5180. }
  5181. else destination[i] = current_position[i]; //Are these else lines really needed?
  5182. }
  5183. if(code_seen('F')) {
  5184. next_feedrate = code_value();
  5185. #ifdef MAX_SILENT_FEEDRATE
  5186. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5187. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5188. #endif //MAX_SILENT_FEEDRATE
  5189. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5190. }
  5191. }
  5192. void get_arc_coordinates()
  5193. {
  5194. #ifdef SF_ARC_FIX
  5195. bool relative_mode_backup = relative_mode;
  5196. relative_mode = true;
  5197. #endif
  5198. get_coordinates();
  5199. #ifdef SF_ARC_FIX
  5200. relative_mode=relative_mode_backup;
  5201. #endif
  5202. if(code_seen('I')) {
  5203. offset[0] = code_value();
  5204. }
  5205. else {
  5206. offset[0] = 0.0;
  5207. }
  5208. if(code_seen('J')) {
  5209. offset[1] = code_value();
  5210. }
  5211. else {
  5212. offset[1] = 0.0;
  5213. }
  5214. }
  5215. void clamp_to_software_endstops(float target[3])
  5216. {
  5217. #ifdef DEBUG_DISABLE_SWLIMITS
  5218. return;
  5219. #endif //DEBUG_DISABLE_SWLIMITS
  5220. world2machine_clamp(target[0], target[1]);
  5221. // Clamp the Z coordinate.
  5222. if (min_software_endstops) {
  5223. float negative_z_offset = 0;
  5224. #ifdef ENABLE_AUTO_BED_LEVELING
  5225. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5226. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5227. #endif
  5228. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5229. }
  5230. if (max_software_endstops) {
  5231. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5232. }
  5233. }
  5234. #ifdef MESH_BED_LEVELING
  5235. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5236. float dx = x - current_position[X_AXIS];
  5237. float dy = y - current_position[Y_AXIS];
  5238. float dz = z - current_position[Z_AXIS];
  5239. int n_segments = 0;
  5240. if (mbl.active) {
  5241. float len = abs(dx) + abs(dy);
  5242. if (len > 0)
  5243. // Split to 3cm segments or shorter.
  5244. n_segments = int(ceil(len / 30.f));
  5245. }
  5246. if (n_segments > 1) {
  5247. float de = e - current_position[E_AXIS];
  5248. for (int i = 1; i < n_segments; ++ i) {
  5249. float t = float(i) / float(n_segments);
  5250. plan_buffer_line(
  5251. current_position[X_AXIS] + t * dx,
  5252. current_position[Y_AXIS] + t * dy,
  5253. current_position[Z_AXIS] + t * dz,
  5254. current_position[E_AXIS] + t * de,
  5255. feed_rate, extruder);
  5256. }
  5257. }
  5258. // The rest of the path.
  5259. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5260. current_position[X_AXIS] = x;
  5261. current_position[Y_AXIS] = y;
  5262. current_position[Z_AXIS] = z;
  5263. current_position[E_AXIS] = e;
  5264. }
  5265. #endif // MESH_BED_LEVELING
  5266. void prepare_move()
  5267. {
  5268. clamp_to_software_endstops(destination);
  5269. previous_millis_cmd = millis();
  5270. // Do not use feedmultiply for E or Z only moves
  5271. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5272. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5273. }
  5274. else {
  5275. #ifdef MESH_BED_LEVELING
  5276. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5277. #else
  5278. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5279. #endif
  5280. }
  5281. for(int8_t i=0; i < NUM_AXIS; i++) {
  5282. current_position[i] = destination[i];
  5283. }
  5284. }
  5285. void prepare_arc_move(char isclockwise) {
  5286. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5287. // Trace the arc
  5288. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5289. // As far as the parser is concerned, the position is now == target. In reality the
  5290. // motion control system might still be processing the action and the real tool position
  5291. // in any intermediate location.
  5292. for(int8_t i=0; i < NUM_AXIS; i++) {
  5293. current_position[i] = destination[i];
  5294. }
  5295. previous_millis_cmd = millis();
  5296. }
  5297. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5298. #if defined(FAN_PIN)
  5299. #if CONTROLLERFAN_PIN == FAN_PIN
  5300. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5301. #endif
  5302. #endif
  5303. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5304. unsigned long lastMotorCheck = 0;
  5305. void controllerFan()
  5306. {
  5307. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5308. {
  5309. lastMotorCheck = millis();
  5310. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5311. #if EXTRUDERS > 2
  5312. || !READ(E2_ENABLE_PIN)
  5313. #endif
  5314. #if EXTRUDER > 1
  5315. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5316. || !READ(X2_ENABLE_PIN)
  5317. #endif
  5318. || !READ(E1_ENABLE_PIN)
  5319. #endif
  5320. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5321. {
  5322. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5323. }
  5324. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5325. {
  5326. digitalWrite(CONTROLLERFAN_PIN, 0);
  5327. analogWrite(CONTROLLERFAN_PIN, 0);
  5328. }
  5329. else
  5330. {
  5331. // allows digital or PWM fan output to be used (see M42 handling)
  5332. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5333. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5334. }
  5335. }
  5336. }
  5337. #endif
  5338. #ifdef TEMP_STAT_LEDS
  5339. static bool blue_led = false;
  5340. static bool red_led = false;
  5341. static uint32_t stat_update = 0;
  5342. void handle_status_leds(void) {
  5343. float max_temp = 0.0;
  5344. if(millis() > stat_update) {
  5345. stat_update += 500; // Update every 0.5s
  5346. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5347. max_temp = max(max_temp, degHotend(cur_extruder));
  5348. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5349. }
  5350. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5351. max_temp = max(max_temp, degTargetBed());
  5352. max_temp = max(max_temp, degBed());
  5353. #endif
  5354. if((max_temp > 55.0) && (red_led == false)) {
  5355. digitalWrite(STAT_LED_RED, 1);
  5356. digitalWrite(STAT_LED_BLUE, 0);
  5357. red_led = true;
  5358. blue_led = false;
  5359. }
  5360. if((max_temp < 54.0) && (blue_led == false)) {
  5361. digitalWrite(STAT_LED_RED, 0);
  5362. digitalWrite(STAT_LED_BLUE, 1);
  5363. red_led = false;
  5364. blue_led = true;
  5365. }
  5366. }
  5367. }
  5368. #endif
  5369. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5370. {
  5371. #if defined(KILL_PIN) && KILL_PIN > -1
  5372. static int killCount = 0; // make the inactivity button a bit less responsive
  5373. const int KILL_DELAY = 10000;
  5374. #endif
  5375. if(buflen < (BUFSIZE-1)){
  5376. get_command();
  5377. }
  5378. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5379. if(max_inactive_time)
  5380. kill("", 4);
  5381. if(stepper_inactive_time) {
  5382. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5383. {
  5384. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5385. disable_x();
  5386. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5387. disable_y();
  5388. disable_z();
  5389. disable_e0();
  5390. disable_e1();
  5391. disable_e2();
  5392. }
  5393. }
  5394. }
  5395. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5396. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5397. {
  5398. chdkActive = false;
  5399. WRITE(CHDK, LOW);
  5400. }
  5401. #endif
  5402. #if defined(KILL_PIN) && KILL_PIN > -1
  5403. // Check if the kill button was pressed and wait just in case it was an accidental
  5404. // key kill key press
  5405. // -------------------------------------------------------------------------------
  5406. if( 0 == READ(KILL_PIN) )
  5407. {
  5408. killCount++;
  5409. }
  5410. else if (killCount > 0)
  5411. {
  5412. killCount--;
  5413. }
  5414. // Exceeded threshold and we can confirm that it was not accidental
  5415. // KILL the machine
  5416. // ----------------------------------------------------------------
  5417. if ( killCount >= KILL_DELAY)
  5418. {
  5419. kill("", 5);
  5420. }
  5421. #endif
  5422. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5423. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5424. #endif
  5425. #ifdef EXTRUDER_RUNOUT_PREVENT
  5426. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5427. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5428. {
  5429. bool oldstatus=READ(E0_ENABLE_PIN);
  5430. enable_e0();
  5431. float oldepos=current_position[E_AXIS];
  5432. float oldedes=destination[E_AXIS];
  5433. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5434. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5435. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5436. current_position[E_AXIS]=oldepos;
  5437. destination[E_AXIS]=oldedes;
  5438. plan_set_e_position(oldepos);
  5439. previous_millis_cmd=millis();
  5440. st_synchronize();
  5441. WRITE(E0_ENABLE_PIN,oldstatus);
  5442. }
  5443. #endif
  5444. #ifdef TEMP_STAT_LEDS
  5445. handle_status_leds();
  5446. #endif
  5447. check_axes_activity();
  5448. }
  5449. void kill(const char *full_screen_message, unsigned char id)
  5450. {
  5451. SERIAL_ECHOPGM("KILL: ");
  5452. MYSERIAL.println(int(id));
  5453. //return;
  5454. cli(); // Stop interrupts
  5455. disable_heater();
  5456. disable_x();
  5457. // SERIAL_ECHOLNPGM("kill - disable Y");
  5458. disable_y();
  5459. disable_z();
  5460. disable_e0();
  5461. disable_e1();
  5462. disable_e2();
  5463. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5464. pinMode(PS_ON_PIN,INPUT);
  5465. #endif
  5466. SERIAL_ERROR_START;
  5467. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5468. if (full_screen_message != NULL) {
  5469. SERIAL_ERRORLNRPGM(full_screen_message);
  5470. lcd_display_message_fullscreen_P(full_screen_message);
  5471. } else {
  5472. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5473. }
  5474. // FMC small patch to update the LCD before ending
  5475. sei(); // enable interrupts
  5476. for ( int i=5; i--; lcd_update())
  5477. {
  5478. delay(200);
  5479. }
  5480. cli(); // disable interrupts
  5481. suicide();
  5482. while(1) { /* Intentionally left empty */ } // Wait for reset
  5483. }
  5484. void Stop()
  5485. {
  5486. disable_heater();
  5487. if(Stopped == false) {
  5488. Stopped = true;
  5489. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5490. SERIAL_ERROR_START;
  5491. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5492. LCD_MESSAGERPGM(MSG_STOPPED);
  5493. }
  5494. }
  5495. bool IsStopped() { return Stopped; };
  5496. #ifdef FAST_PWM_FAN
  5497. void setPwmFrequency(uint8_t pin, int val)
  5498. {
  5499. val &= 0x07;
  5500. switch(digitalPinToTimer(pin))
  5501. {
  5502. #if defined(TCCR0A)
  5503. case TIMER0A:
  5504. case TIMER0B:
  5505. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5506. // TCCR0B |= val;
  5507. break;
  5508. #endif
  5509. #if defined(TCCR1A)
  5510. case TIMER1A:
  5511. case TIMER1B:
  5512. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5513. // TCCR1B |= val;
  5514. break;
  5515. #endif
  5516. #if defined(TCCR2)
  5517. case TIMER2:
  5518. case TIMER2:
  5519. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5520. TCCR2 |= val;
  5521. break;
  5522. #endif
  5523. #if defined(TCCR2A)
  5524. case TIMER2A:
  5525. case TIMER2B:
  5526. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5527. TCCR2B |= val;
  5528. break;
  5529. #endif
  5530. #if defined(TCCR3A)
  5531. case TIMER3A:
  5532. case TIMER3B:
  5533. case TIMER3C:
  5534. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5535. TCCR3B |= val;
  5536. break;
  5537. #endif
  5538. #if defined(TCCR4A)
  5539. case TIMER4A:
  5540. case TIMER4B:
  5541. case TIMER4C:
  5542. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5543. TCCR4B |= val;
  5544. break;
  5545. #endif
  5546. #if defined(TCCR5A)
  5547. case TIMER5A:
  5548. case TIMER5B:
  5549. case TIMER5C:
  5550. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5551. TCCR5B |= val;
  5552. break;
  5553. #endif
  5554. }
  5555. }
  5556. #endif //FAST_PWM_FAN
  5557. bool setTargetedHotend(int code){
  5558. tmp_extruder = active_extruder;
  5559. if(code_seen('T')) {
  5560. tmp_extruder = code_value();
  5561. if(tmp_extruder >= EXTRUDERS) {
  5562. SERIAL_ECHO_START;
  5563. switch(code){
  5564. case 104:
  5565. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5566. break;
  5567. case 105:
  5568. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5569. break;
  5570. case 109:
  5571. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5572. break;
  5573. case 218:
  5574. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5575. break;
  5576. case 221:
  5577. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5578. break;
  5579. }
  5580. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5581. return true;
  5582. }
  5583. }
  5584. return false;
  5585. }
  5586. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5587. {
  5588. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5589. {
  5590. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5591. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5592. }
  5593. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5594. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5595. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5596. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5597. total_filament_used = 0;
  5598. }
  5599. float calculate_volumetric_multiplier(float diameter) {
  5600. float area = .0;
  5601. float radius = .0;
  5602. radius = diameter * .5;
  5603. if (! volumetric_enabled || radius == 0) {
  5604. area = 1;
  5605. }
  5606. else {
  5607. area = M_PI * pow(radius, 2);
  5608. }
  5609. return 1.0 / area;
  5610. }
  5611. void calculate_volumetric_multipliers() {
  5612. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5613. #if EXTRUDERS > 1
  5614. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5615. #if EXTRUDERS > 2
  5616. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5617. #endif
  5618. #endif
  5619. }
  5620. void delay_keep_alive(unsigned int ms)
  5621. {
  5622. for (;;) {
  5623. manage_heater();
  5624. // Manage inactivity, but don't disable steppers on timeout.
  5625. manage_inactivity(true);
  5626. lcd_update();
  5627. if (ms == 0)
  5628. break;
  5629. else if (ms >= 50) {
  5630. delay(50);
  5631. ms -= 50;
  5632. } else {
  5633. delay(ms);
  5634. ms = 0;
  5635. }
  5636. }
  5637. }
  5638. void wait_for_heater(long codenum) {
  5639. #ifdef TEMP_RESIDENCY_TIME
  5640. long residencyStart;
  5641. residencyStart = -1;
  5642. /* continue to loop until we have reached the target temp
  5643. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5644. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5645. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5646. #else
  5647. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5648. #endif //TEMP_RESIDENCY_TIME
  5649. if ((millis() - codenum) > 1000UL)
  5650. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5651. if (!farm_mode) {
  5652. SERIAL_PROTOCOLPGM("T:");
  5653. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5654. SERIAL_PROTOCOLPGM(" E:");
  5655. SERIAL_PROTOCOL((int)tmp_extruder);
  5656. #ifdef TEMP_RESIDENCY_TIME
  5657. SERIAL_PROTOCOLPGM(" W:");
  5658. if (residencyStart > -1)
  5659. {
  5660. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5661. SERIAL_PROTOCOLLN(codenum);
  5662. }
  5663. else
  5664. {
  5665. SERIAL_PROTOCOLLN("?");
  5666. }
  5667. }
  5668. #else
  5669. SERIAL_PROTOCOLLN("");
  5670. #endif
  5671. codenum = millis();
  5672. }
  5673. manage_heater();
  5674. manage_inactivity();
  5675. lcd_update();
  5676. #ifdef TEMP_RESIDENCY_TIME
  5677. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5678. or when current temp falls outside the hysteresis after target temp was reached */
  5679. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5680. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5681. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5682. {
  5683. residencyStart = millis();
  5684. }
  5685. #endif //TEMP_RESIDENCY_TIME
  5686. }
  5687. }
  5688. void check_babystep() {
  5689. int babystep_z;
  5690. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5691. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5692. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5693. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5694. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5695. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5696. lcd_update_enable(true);
  5697. }
  5698. }
  5699. #ifdef DIS
  5700. void d_setup()
  5701. {
  5702. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5703. pinMode(D_DATA, INPUT_PULLUP);
  5704. pinMode(D_REQUIRE, OUTPUT);
  5705. digitalWrite(D_REQUIRE, HIGH);
  5706. }
  5707. float d_ReadData()
  5708. {
  5709. int digit[13];
  5710. String mergeOutput;
  5711. float output;
  5712. digitalWrite(D_REQUIRE, HIGH);
  5713. for (int i = 0; i<13; i++)
  5714. {
  5715. for (int j = 0; j < 4; j++)
  5716. {
  5717. while (digitalRead(D_DATACLOCK) == LOW) {}
  5718. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5719. bitWrite(digit[i], j, digitalRead(D_DATA));
  5720. }
  5721. }
  5722. digitalWrite(D_REQUIRE, LOW);
  5723. mergeOutput = "";
  5724. output = 0;
  5725. for (int r = 5; r <= 10; r++) //Merge digits
  5726. {
  5727. mergeOutput += digit[r];
  5728. }
  5729. output = mergeOutput.toFloat();
  5730. if (digit[4] == 8) //Handle sign
  5731. {
  5732. output *= -1;
  5733. }
  5734. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5735. {
  5736. output /= 10;
  5737. }
  5738. return output;
  5739. }
  5740. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5741. int t1 = 0;
  5742. int t_delay = 0;
  5743. int digit[13];
  5744. int m;
  5745. char str[3];
  5746. //String mergeOutput;
  5747. char mergeOutput[15];
  5748. float output;
  5749. int mesh_point = 0; //index number of calibration point
  5750. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5751. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5752. float mesh_home_z_search = 4;
  5753. float row[x_points_num];
  5754. int ix = 0;
  5755. int iy = 0;
  5756. char* filename_wldsd = "wldsd.txt";
  5757. char data_wldsd[70];
  5758. char numb_wldsd[10];
  5759. d_setup();
  5760. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5761. // We don't know where we are! HOME!
  5762. // Push the commands to the front of the message queue in the reverse order!
  5763. // There shall be always enough space reserved for these commands.
  5764. repeatcommand_front(); // repeat G80 with all its parameters
  5765. enquecommand_front_P((PSTR("G28 W0")));
  5766. enquecommand_front_P((PSTR("G1 Z5")));
  5767. return;
  5768. }
  5769. bool custom_message_old = custom_message;
  5770. unsigned int custom_message_type_old = custom_message_type;
  5771. unsigned int custom_message_state_old = custom_message_state;
  5772. custom_message = true;
  5773. custom_message_type = 1;
  5774. custom_message_state = (x_points_num * y_points_num) + 10;
  5775. lcd_update(1);
  5776. mbl.reset();
  5777. babystep_undo();
  5778. card.openFile(filename_wldsd, false);
  5779. current_position[Z_AXIS] = mesh_home_z_search;
  5780. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5781. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5782. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5783. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5784. setup_for_endstop_move(false);
  5785. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5786. SERIAL_PROTOCOL(x_points_num);
  5787. SERIAL_PROTOCOLPGM(",");
  5788. SERIAL_PROTOCOL(y_points_num);
  5789. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5790. SERIAL_PROTOCOL(mesh_home_z_search);
  5791. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5792. SERIAL_PROTOCOL(x_dimension);
  5793. SERIAL_PROTOCOLPGM(",");
  5794. SERIAL_PROTOCOL(y_dimension);
  5795. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5796. while (mesh_point != x_points_num * y_points_num) {
  5797. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5798. iy = mesh_point / x_points_num;
  5799. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5800. float z0 = 0.f;
  5801. current_position[Z_AXIS] = mesh_home_z_search;
  5802. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5803. st_synchronize();
  5804. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5805. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5806. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5807. st_synchronize();
  5808. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5809. break;
  5810. card.closefile();
  5811. }
  5812. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5813. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5814. //strcat(data_wldsd, numb_wldsd);
  5815. //MYSERIAL.println(data_wldsd);
  5816. //delay(1000);
  5817. //delay(3000);
  5818. //t1 = millis();
  5819. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5820. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5821. memset(digit, 0, sizeof(digit));
  5822. //cli();
  5823. digitalWrite(D_REQUIRE, LOW);
  5824. for (int i = 0; i<13; i++)
  5825. {
  5826. //t1 = millis();
  5827. for (int j = 0; j < 4; j++)
  5828. {
  5829. while (digitalRead(D_DATACLOCK) == LOW) {}
  5830. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5831. bitWrite(digit[i], j, digitalRead(D_DATA));
  5832. }
  5833. //t_delay = (millis() - t1);
  5834. //SERIAL_PROTOCOLPGM(" ");
  5835. //SERIAL_PROTOCOL_F(t_delay, 5);
  5836. //SERIAL_PROTOCOLPGM(" ");
  5837. }
  5838. //sei();
  5839. digitalWrite(D_REQUIRE, HIGH);
  5840. mergeOutput[0] = '\0';
  5841. output = 0;
  5842. for (int r = 5; r <= 10; r++) //Merge digits
  5843. {
  5844. sprintf(str, "%d", digit[r]);
  5845. strcat(mergeOutput, str);
  5846. }
  5847. output = atof(mergeOutput);
  5848. if (digit[4] == 8) //Handle sign
  5849. {
  5850. output *= -1;
  5851. }
  5852. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5853. {
  5854. output *= 0.1;
  5855. }
  5856. //output = d_ReadData();
  5857. //row[ix] = current_position[Z_AXIS];
  5858. memset(data_wldsd, 0, sizeof(data_wldsd));
  5859. for (int i = 0; i <3; i++) {
  5860. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5861. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5862. strcat(data_wldsd, numb_wldsd);
  5863. strcat(data_wldsd, ";");
  5864. }
  5865. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5866. dtostrf(output, 8, 5, numb_wldsd);
  5867. strcat(data_wldsd, numb_wldsd);
  5868. //strcat(data_wldsd, ";");
  5869. card.write_command(data_wldsd);
  5870. //row[ix] = d_ReadData();
  5871. row[ix] = output; // current_position[Z_AXIS];
  5872. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5873. for (int i = 0; i < x_points_num; i++) {
  5874. SERIAL_PROTOCOLPGM(" ");
  5875. SERIAL_PROTOCOL_F(row[i], 5);
  5876. }
  5877. SERIAL_PROTOCOLPGM("\n");
  5878. }
  5879. custom_message_state--;
  5880. mesh_point++;
  5881. lcd_update(1);
  5882. }
  5883. card.closefile();
  5884. }
  5885. #endif
  5886. void temp_compensation_start() {
  5887. custom_message = true;
  5888. custom_message_type = 5;
  5889. custom_message_state = PINDA_HEAT_T + 1;
  5890. lcd_update(2);
  5891. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5892. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5893. }
  5894. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5895. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5896. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5897. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5898. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5899. st_synchronize();
  5900. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5901. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5902. delay_keep_alive(1000);
  5903. custom_message_state = PINDA_HEAT_T - i;
  5904. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5905. else lcd_update(1);
  5906. }
  5907. custom_message_type = 0;
  5908. custom_message_state = 0;
  5909. custom_message = false;
  5910. }
  5911. void temp_compensation_apply() {
  5912. int i_add;
  5913. int compensation_value;
  5914. int z_shift = 0;
  5915. float z_shift_mm;
  5916. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5917. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5918. i_add = (target_temperature_bed - 60) / 10;
  5919. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5920. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5921. }else {
  5922. //interpolation
  5923. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5924. }
  5925. SERIAL_PROTOCOLPGM("\n");
  5926. SERIAL_PROTOCOLPGM("Z shift applied:");
  5927. MYSERIAL.print(z_shift_mm);
  5928. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5929. st_synchronize();
  5930. plan_set_z_position(current_position[Z_AXIS]);
  5931. }
  5932. else {
  5933. //we have no temp compensation data
  5934. }
  5935. }
  5936. float temp_comp_interpolation(float inp_temperature) {
  5937. //cubic spline interpolation
  5938. int n, i, j, k;
  5939. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5940. int shift[10];
  5941. int temp_C[10];
  5942. n = 6; //number of measured points
  5943. shift[0] = 0;
  5944. for (i = 0; i < n; i++) {
  5945. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5946. temp_C[i] = 50 + i * 10; //temperature in C
  5947. #ifdef PINDA_THERMISTOR
  5948. temp_C[i] = 35 + i * 5; //temperature in C
  5949. #else
  5950. temp_C[i] = 50 + i * 10; //temperature in C
  5951. #endif
  5952. x[i] = (float)temp_C[i];
  5953. f[i] = (float)shift[i];
  5954. }
  5955. if (inp_temperature < x[0]) return 0;
  5956. for (i = n - 1; i>0; i--) {
  5957. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5958. h[i - 1] = x[i] - x[i - 1];
  5959. }
  5960. //*********** formation of h, s , f matrix **************
  5961. for (i = 1; i<n - 1; i++) {
  5962. m[i][i] = 2 * (h[i - 1] + h[i]);
  5963. if (i != 1) {
  5964. m[i][i - 1] = h[i - 1];
  5965. m[i - 1][i] = h[i - 1];
  5966. }
  5967. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5968. }
  5969. //*********** forward elimination **************
  5970. for (i = 1; i<n - 2; i++) {
  5971. temp = (m[i + 1][i] / m[i][i]);
  5972. for (j = 1; j <= n - 1; j++)
  5973. m[i + 1][j] -= temp*m[i][j];
  5974. }
  5975. //*********** backward substitution *********
  5976. for (i = n - 2; i>0; i--) {
  5977. sum = 0;
  5978. for (j = i; j <= n - 2; j++)
  5979. sum += m[i][j] * s[j];
  5980. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5981. }
  5982. for (i = 0; i<n - 1; i++)
  5983. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5984. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5985. b = s[i] / 2;
  5986. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5987. d = f[i];
  5988. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5989. }
  5990. return sum;
  5991. }
  5992. #ifdef PINDA_THERMISTOR
  5993. float temp_compensation_pinda_thermistor_offset()
  5994. {
  5995. if (!temp_cal_active) return 0;
  5996. if (!calibration_status_pinda()) return 0;
  5997. return temp_comp_interpolation(current_temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  5998. }
  5999. #endif //PINDA_THERMISTOR
  6000. void long_pause() //long pause print
  6001. {
  6002. st_synchronize();
  6003. //save currently set parameters to global variables
  6004. saved_feedmultiply = feedmultiply;
  6005. HotendTempBckp = degTargetHotend(active_extruder);
  6006. fanSpeedBckp = fanSpeed;
  6007. start_pause_print = millis();
  6008. //save position
  6009. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6010. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6011. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6012. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6013. //retract
  6014. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6016. //lift z
  6017. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6018. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6019. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6020. //set nozzle target temperature to 0
  6021. setTargetHotend(0, 0);
  6022. setTargetHotend(0, 1);
  6023. setTargetHotend(0, 2);
  6024. //Move XY to side
  6025. current_position[X_AXIS] = X_PAUSE_POS;
  6026. current_position[Y_AXIS] = Y_PAUSE_POS;
  6027. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6028. // Turn off the print fan
  6029. fanSpeed = 0;
  6030. st_synchronize();
  6031. }
  6032. void serialecho_temperatures() {
  6033. float tt = degHotend(active_extruder);
  6034. SERIAL_PROTOCOLPGM("T:");
  6035. SERIAL_PROTOCOL(tt);
  6036. SERIAL_PROTOCOLPGM(" E:");
  6037. SERIAL_PROTOCOL((int)active_extruder);
  6038. SERIAL_PROTOCOLPGM(" B:");
  6039. SERIAL_PROTOCOL_F(degBed(), 1);
  6040. SERIAL_PROTOCOLLN("");
  6041. }
  6042. extern uint32_t sdpos_atomic;
  6043. void uvlo_()
  6044. {
  6045. // Conserve power as soon as possible.
  6046. disable_x();
  6047. disable_y();
  6048. // Indicate that the interrupt has been triggered.
  6049. SERIAL_ECHOLNPGM("UVLO");
  6050. // Read out the current Z motor microstep counter. This will be later used
  6051. // for reaching the zero full step before powering off.
  6052. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6053. // Calculate the file position, from which to resume this print.
  6054. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6055. {
  6056. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6057. sd_position -= sdlen_planner;
  6058. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6059. sd_position -= sdlen_cmdqueue;
  6060. if (sd_position < 0) sd_position = 0;
  6061. }
  6062. // Backup the feedrate in mm/min.
  6063. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6064. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6065. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6066. // are in action.
  6067. planner_abort_hard();
  6068. // Clean the input command queue.
  6069. cmdqueue_reset();
  6070. card.sdprinting = false;
  6071. // card.closefile();
  6072. // Enable stepper driver interrupt to move Z axis.
  6073. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6074. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6075. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6076. sei();
  6077. plan_buffer_line(
  6078. current_position[X_AXIS],
  6079. current_position[Y_AXIS],
  6080. current_position[Z_AXIS],
  6081. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6082. 400, active_extruder);
  6083. plan_buffer_line(
  6084. current_position[X_AXIS],
  6085. current_position[Y_AXIS],
  6086. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6087. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6088. 40, active_extruder);
  6089. // Move Z up to the next 0th full step.
  6090. // Write the file position.
  6091. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6092. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6093. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6094. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6095. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6096. // Scale the z value to 1u resolution.
  6097. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6098. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6099. }
  6100. // Read out the current Z motor microstep counter. This will be later used
  6101. // for reaching the zero full step before powering off.
  6102. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6103. // Store the current position.
  6104. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6105. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6106. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6107. // Store the current feed rate, temperatures and fan speed.
  6108. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6109. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6110. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6111. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6112. // Finaly store the "power outage" flag.
  6113. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6114. st_synchronize();
  6115. SERIAL_ECHOPGM("stps");
  6116. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6117. #if 0
  6118. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6119. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6120. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6121. st_synchronize();
  6122. #endif
  6123. disable_z();
  6124. SERIAL_ECHOLNPGM("UVLO - end");
  6125. cli();
  6126. while(1);
  6127. }
  6128. void setup_uvlo_interrupt() {
  6129. DDRE &= ~(1 << 4); //input pin
  6130. PORTE &= ~(1 << 4); //no internal pull-up
  6131. //sensing falling edge
  6132. EICRB |= (1 << 0);
  6133. EICRB &= ~(1 << 1);
  6134. //enable INT4 interrupt
  6135. EIMSK |= (1 << 4);
  6136. }
  6137. ISR(INT4_vect) {
  6138. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6139. SERIAL_ECHOLNPGM("INT4");
  6140. if (IS_SD_PRINTING) uvlo_();
  6141. }
  6142. void recover_print(uint8_t automatic) {
  6143. char cmd[30];
  6144. lcd_update_enable(true);
  6145. lcd_update(2);
  6146. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6147. recover_machine_state_after_power_panic();
  6148. // Set the target bed and nozzle temperatures.
  6149. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6150. enquecommand(cmd);
  6151. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6152. enquecommand(cmd);
  6153. // Lift the print head, so one may remove the excess priming material.
  6154. if (current_position[Z_AXIS] < 25)
  6155. enquecommand_P(PSTR("G1 Z25 F800"));
  6156. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6157. enquecommand_P(PSTR("G28 X Y"));
  6158. // Set the target bed and nozzle temperatures and wait.
  6159. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6160. enquecommand(cmd);
  6161. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6162. enquecommand(cmd);
  6163. enquecommand_P(PSTR("M83")); //E axis relative mode
  6164. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6165. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6166. if(automatic == 0){
  6167. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6168. }
  6169. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6170. // Mark the power panic status as inactive.
  6171. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6172. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6173. delay_keep_alive(1000);
  6174. }*/
  6175. SERIAL_ECHOPGM("After waiting for temp:");
  6176. SERIAL_ECHOPGM("Current position X_AXIS:");
  6177. MYSERIAL.println(current_position[X_AXIS]);
  6178. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6179. MYSERIAL.println(current_position[Y_AXIS]);
  6180. // Restart the print.
  6181. restore_print_from_eeprom();
  6182. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6183. MYSERIAL.print(current_position[Z_AXIS]);
  6184. }
  6185. void recover_machine_state_after_power_panic()
  6186. {
  6187. // 1) Recover the logical cordinates at the time of the power panic.
  6188. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6189. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6190. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6191. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6192. // The current position after power panic is moved to the next closest 0th full step.
  6193. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6194. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6195. memcpy(destination, current_position, sizeof(destination));
  6196. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6197. print_world_coordinates();
  6198. // 2) Initialize the logical to physical coordinate system transformation.
  6199. world2machine_initialize();
  6200. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6201. mbl.active = false;
  6202. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6203. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6204. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6205. // Scale the z value to 10u resolution.
  6206. int16_t v;
  6207. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6208. if (v != 0)
  6209. mbl.active = true;
  6210. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6211. }
  6212. if (mbl.active)
  6213. mbl.upsample_3x3();
  6214. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6215. print_mesh_bed_leveling_table();
  6216. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6217. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6218. babystep_load();
  6219. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6220. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6221. // 6) Power up the motors, mark their positions as known.
  6222. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6223. axis_known_position[X_AXIS] = true; enable_x();
  6224. axis_known_position[Y_AXIS] = true; enable_y();
  6225. axis_known_position[Z_AXIS] = true; enable_z();
  6226. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6227. print_physical_coordinates();
  6228. // 7) Recover the target temperatures.
  6229. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6230. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6231. }
  6232. void restore_print_from_eeprom() {
  6233. float x_rec, y_rec, z_pos;
  6234. int feedrate_rec;
  6235. uint8_t fan_speed_rec;
  6236. char cmd[30];
  6237. char* c;
  6238. char filename[13];
  6239. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6240. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6241. SERIAL_ECHOPGM("Feedrate:");
  6242. MYSERIAL.println(feedrate_rec);
  6243. for (int i = 0; i < 8; i++) {
  6244. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6245. }
  6246. filename[8] = '\0';
  6247. MYSERIAL.print(filename);
  6248. strcat_P(filename, PSTR(".gco"));
  6249. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6250. for (c = &cmd[4]; *c; c++)
  6251. *c = tolower(*c);
  6252. enquecommand(cmd);
  6253. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6254. SERIAL_ECHOPGM("Position read from eeprom:");
  6255. MYSERIAL.println(position);
  6256. // E axis relative mode.
  6257. enquecommand_P(PSTR("M83"));
  6258. // Move to the XY print position in logical coordinates, where the print has been killed.
  6259. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6260. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6261. strcat_P(cmd, PSTR(" F2000"));
  6262. enquecommand(cmd);
  6263. // Move the Z axis down to the print, in logical coordinates.
  6264. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6265. enquecommand(cmd);
  6266. // Unretract.
  6267. enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
  6268. // Set the feedrate saved at the power panic.
  6269. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6270. enquecommand(cmd);
  6271. // Set the fan speed saved at the power panic.
  6272. strcpy_P(cmd, PSTR("M106 S"));
  6273. strcat(cmd, itostr3(int(fan_speed_rec)));
  6274. enquecommand(cmd);
  6275. // Set a position in the file.
  6276. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6277. enquecommand(cmd);
  6278. // Start SD print.
  6279. enquecommand_P(PSTR("M24"));
  6280. }
  6281. ////////////////////////////////////////////////////////////////////////////////
  6282. // new save/restore printing
  6283. //extern uint32_t sdpos_atomic;
  6284. bool saved_printing = false;
  6285. uint32_t saved_sdpos = 0;
  6286. float saved_pos[4] = {0, 0, 0, 0};
  6287. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6288. float saved_feedrate2 = 0;
  6289. uint8_t saved_active_extruder = 0;
  6290. bool saved_extruder_under_pressure = false;
  6291. void stop_and_save_print_to_ram(float z_move, float e_move)
  6292. {
  6293. if (saved_printing) return;
  6294. cli();
  6295. unsigned char nplanner_blocks = number_of_blocks();
  6296. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6297. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6298. saved_sdpos -= sdlen_planner;
  6299. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6300. saved_sdpos -= sdlen_cmdqueue;
  6301. #if 0
  6302. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6303. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6304. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6305. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6306. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6307. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6308. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6309. {
  6310. card.setIndex(saved_sdpos);
  6311. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6312. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6313. MYSERIAL.print(char(card.get()));
  6314. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6315. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6316. MYSERIAL.print(char(card.get()));
  6317. SERIAL_ECHOLNPGM("End of command buffer");
  6318. }
  6319. {
  6320. // Print the content of the planner buffer, line by line:
  6321. card.setIndex(saved_sdpos);
  6322. int8_t iline = 0;
  6323. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6324. SERIAL_ECHOPGM("Planner line (from file): ");
  6325. MYSERIAL.print(int(iline), DEC);
  6326. SERIAL_ECHOPGM(", length: ");
  6327. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6328. SERIAL_ECHOPGM(", steps: (");
  6329. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6330. SERIAL_ECHOPGM(",");
  6331. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6332. SERIAL_ECHOPGM(",");
  6333. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6334. SERIAL_ECHOPGM(",");
  6335. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6336. SERIAL_ECHOPGM("), events: ");
  6337. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6338. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6339. MYSERIAL.print(char(card.get()));
  6340. }
  6341. }
  6342. {
  6343. // Print the content of the command buffer, line by line:
  6344. int8_t iline = 0;
  6345. union {
  6346. struct {
  6347. char lo;
  6348. char hi;
  6349. } lohi;
  6350. uint16_t value;
  6351. } sdlen_single;
  6352. int _bufindr = bufindr;
  6353. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6354. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6355. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6356. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6357. }
  6358. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6359. MYSERIAL.print(int(iline), DEC);
  6360. SERIAL_ECHOPGM(", type: ");
  6361. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6362. SERIAL_ECHOPGM(", len: ");
  6363. MYSERIAL.println(sdlen_single.value, DEC);
  6364. // Print the content of the buffer line.
  6365. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6366. SERIAL_ECHOPGM("Buffer line (from file): ");
  6367. MYSERIAL.print(int(iline), DEC);
  6368. MYSERIAL.println(int(iline), DEC);
  6369. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6370. MYSERIAL.print(char(card.get()));
  6371. if (-- _buflen == 0)
  6372. break;
  6373. // First skip the current command ID and iterate up to the end of the string.
  6374. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6375. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6376. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6377. // If the end of the buffer was empty,
  6378. if (_bufindr == sizeof(cmdbuffer)) {
  6379. // skip to the start and find the nonzero command.
  6380. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6381. }
  6382. }
  6383. }
  6384. #endif
  6385. #if 0
  6386. saved_feedrate2 = feedrate; //save feedrate
  6387. #else
  6388. // Try to deduce the feedrate from the first block of the planner.
  6389. // Speed is in mm/min.
  6390. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6391. #endif
  6392. planner_abort_hard(); //abort printing
  6393. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6394. saved_active_extruder = active_extruder; //save active_extruder
  6395. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6396. cmdqueue_reset(); //empty cmdqueue
  6397. card.sdprinting = false;
  6398. // card.closefile();
  6399. saved_printing = true;
  6400. sei();
  6401. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6402. #if 1
  6403. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6404. char buf[48];
  6405. strcpy_P(buf, PSTR("G1 Z"));
  6406. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6407. strcat_P(buf, PSTR(" E"));
  6408. // Relative extrusion
  6409. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6410. strcat_P(buf, PSTR(" F"));
  6411. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6412. // At this point the command queue is empty.
  6413. enquecommand(buf, false);
  6414. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6415. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6416. repeatcommand_front();
  6417. #else
  6418. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6419. st_synchronize(); //wait moving
  6420. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6421. memcpy(destination, current_position, sizeof(destination));
  6422. #endif
  6423. }
  6424. }
  6425. void restore_print_from_ram_and_continue(float e_move)
  6426. {
  6427. if (!saved_printing) return;
  6428. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6429. // current_position[axis] = st_get_position_mm(axis);
  6430. active_extruder = saved_active_extruder; //restore active_extruder
  6431. feedrate = saved_feedrate2; //restore feedrate
  6432. float e = saved_pos[E_AXIS] - e_move;
  6433. plan_set_e_position(e);
  6434. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6435. st_synchronize();
  6436. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6437. memcpy(destination, current_position, sizeof(destination));
  6438. card.setIndex(saved_sdpos);
  6439. sdpos_atomic = saved_sdpos;
  6440. card.sdprinting = true;
  6441. saved_printing = false;
  6442. }
  6443. void print_world_coordinates()
  6444. {
  6445. SERIAL_ECHOPGM("world coordinates: (");
  6446. MYSERIAL.print(current_position[X_AXIS], 3);
  6447. SERIAL_ECHOPGM(", ");
  6448. MYSERIAL.print(current_position[Y_AXIS], 3);
  6449. SERIAL_ECHOPGM(", ");
  6450. MYSERIAL.print(current_position[Z_AXIS], 3);
  6451. SERIAL_ECHOLNPGM(")");
  6452. }
  6453. void print_physical_coordinates()
  6454. {
  6455. SERIAL_ECHOPGM("physical coordinates: (");
  6456. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6457. SERIAL_ECHOPGM(", ");
  6458. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6459. SERIAL_ECHOPGM(", ");
  6460. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6461. SERIAL_ECHOLNPGM(")");
  6462. }
  6463. void print_mesh_bed_leveling_table()
  6464. {
  6465. SERIAL_ECHOPGM("mesh bed leveling: ");
  6466. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6467. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6468. MYSERIAL.print(mbl.z_values[y][x], 3);
  6469. SERIAL_ECHOPGM(" ");
  6470. }
  6471. SERIAL_ECHOLNPGM("");
  6472. }