Marlin_main.cpp 247 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  83. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  84. //Implemented Codes
  85. //-------------------
  86. // PRUSA CODES
  87. // P F - Returns FW versions
  88. // P R - Returns revision of printer
  89. // G0 -> G1
  90. // G1 - Coordinated Movement X Y Z E
  91. // G2 - CW ARC
  92. // G3 - CCW ARC
  93. // G4 - Dwell S<seconds> or P<milliseconds>
  94. // G10 - retract filament according to settings of M207
  95. // G11 - retract recover filament according to settings of M208
  96. // G28 - Home all Axis
  97. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  98. // G30 - Single Z Probe, probes bed at current XY location.
  99. // G31 - Dock sled (Z_PROBE_SLED only)
  100. // G32 - Undock sled (Z_PROBE_SLED only)
  101. // G80 - Automatic mesh bed leveling
  102. // G81 - Print bed profile
  103. // G90 - Use Absolute Coordinates
  104. // G91 - Use Relative Coordinates
  105. // G92 - Set current position to coordinates given
  106. // M Codes
  107. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  108. // M1 - Same as M0
  109. // M17 - Enable/Power all stepper motors
  110. // M18 - Disable all stepper motors; same as M84
  111. // M20 - List SD card
  112. // M21 - Init SD card
  113. // M22 - Release SD card
  114. // M23 - Select SD file (M23 filename.g)
  115. // M24 - Start/resume SD print
  116. // M25 - Pause SD print
  117. // M26 - Set SD position in bytes (M26 S12345)
  118. // M27 - Report SD print status
  119. // M28 - Start SD write (M28 filename.g)
  120. // M29 - Stop SD write
  121. // M30 - Delete file from SD (M30 filename.g)
  122. // M31 - Output time since last M109 or SD card start to serial
  123. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  124. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  125. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  126. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  127. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  128. // M80 - Turn on Power Supply
  129. // M81 - Turn off Power Supply
  130. // M82 - Set E codes absolute (default)
  131. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  132. // M84 - Disable steppers until next move,
  133. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  134. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  135. // M92 - Set axis_steps_per_unit - same syntax as G92
  136. // M104 - Set extruder target temp
  137. // M105 - Read current temp
  138. // M106 - Fan on
  139. // M107 - Fan off
  140. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  141. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  142. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  143. // M112 - Emergency stop
  144. // M114 - Output current position to serial port
  145. // M115 - Capabilities string
  146. // M117 - display message
  147. // M119 - Output Endstop status to serial port
  148. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  149. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  150. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  151. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  152. // M140 - Set bed target temp
  153. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  154. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  155. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  156. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  157. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  158. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  159. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  160. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  161. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  162. // M206 - set additional homing offset
  163. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  164. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  165. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  166. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  167. // M220 S<factor in percent>- set speed factor override percentage
  168. // M221 S<factor in percent>- set extrude factor override percentage
  169. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  170. // M240 - Trigger a camera to take a photograph
  171. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  172. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  173. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  174. // M301 - Set PID parameters P I and D
  175. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  176. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  177. // M304 - Set bed PID parameters P I and D
  178. // M400 - Finish all moves
  179. // M401 - Lower z-probe if present
  180. // M402 - Raise z-probe if present
  181. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  182. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  183. // M406 - Turn off Filament Sensor extrusion control
  184. // M407 - Displays measured filament diameter
  185. // M500 - stores parameters in EEPROM
  186. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  187. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  188. // M503 - print the current settings (from memory not from EEPROM)
  189. // M509 - force language selection on next restart
  190. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  191. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  192. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  193. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  194. // M907 - Set digital trimpot motor current using axis codes.
  195. // M908 - Control digital trimpot directly.
  196. // M350 - Set microstepping mode.
  197. // M351 - Toggle MS1 MS2 pins directly.
  198. // M928 - Start SD logging (M928 filename.g) - ended by M29
  199. // M999 - Restart after being stopped by error
  200. //Stepper Movement Variables
  201. //===========================================================================
  202. //=============================imported variables============================
  203. //===========================================================================
  204. //===========================================================================
  205. //=============================public variables=============================
  206. //===========================================================================
  207. #ifdef SDSUPPORT
  208. CardReader card;
  209. #endif
  210. unsigned long PingTime = millis();
  211. union Data
  212. {
  213. byte b[2];
  214. int value;
  215. };
  216. float homing_feedrate[] = HOMING_FEEDRATE;
  217. // Currently only the extruder axis may be switched to a relative mode.
  218. // Other axes are always absolute or relative based on the common relative_mode flag.
  219. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  220. int feedmultiply=100; //100->1 200->2
  221. int saved_feedmultiply;
  222. int extrudemultiply=100; //100->1 200->2
  223. int extruder_multiply[EXTRUDERS] = {100
  224. #if EXTRUDERS > 1
  225. , 100
  226. #if EXTRUDERS > 2
  227. , 100
  228. #endif
  229. #endif
  230. };
  231. int bowden_length[4];
  232. bool is_usb_printing = false;
  233. bool homing_flag = false;
  234. bool temp_cal_active = false;
  235. unsigned long kicktime = millis()+100000;
  236. unsigned int usb_printing_counter;
  237. int lcd_change_fil_state = 0;
  238. int feedmultiplyBckp = 100;
  239. float HotendTempBckp = 0;
  240. int fanSpeedBckp = 0;
  241. float pause_lastpos[4];
  242. unsigned long pause_time = 0;
  243. unsigned long start_pause_print = millis();
  244. unsigned long load_filament_time;
  245. bool mesh_bed_leveling_flag = false;
  246. bool mesh_bed_run_from_menu = false;
  247. unsigned char lang_selected = 0;
  248. int8_t FarmMode = 0;
  249. bool prusa_sd_card_upload = false;
  250. unsigned int status_number = 0;
  251. unsigned long total_filament_used;
  252. unsigned int heating_status;
  253. unsigned int heating_status_counter;
  254. bool custom_message;
  255. bool loading_flag = false;
  256. unsigned int custom_message_type;
  257. unsigned int custom_message_state;
  258. char snmm_filaments_used = 0;
  259. float distance_from_min[3];
  260. float angleDiff;
  261. bool fan_state[2];
  262. int fan_edge_counter[2];
  263. int fan_speed[2];
  264. bool volumetric_enabled = false;
  265. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  266. #if EXTRUDERS > 1
  267. , DEFAULT_NOMINAL_FILAMENT_DIA
  268. #if EXTRUDERS > 2
  269. , DEFAULT_NOMINAL_FILAMENT_DIA
  270. #endif
  271. #endif
  272. };
  273. float volumetric_multiplier[EXTRUDERS] = {1.0
  274. #if EXTRUDERS > 1
  275. , 1.0
  276. #if EXTRUDERS > 2
  277. , 1.0
  278. #endif
  279. #endif
  280. };
  281. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  282. float add_homing[3]={0,0,0};
  283. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  284. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  285. bool axis_known_position[3] = {false, false, false};
  286. float zprobe_zoffset;
  287. // Extruder offset
  288. #if EXTRUDERS > 1
  289. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  290. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  291. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  292. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  293. #endif
  294. };
  295. #endif
  296. uint8_t active_extruder = 0;
  297. int fanSpeed=0;
  298. #ifdef FWRETRACT
  299. bool autoretract_enabled=false;
  300. bool retracted[EXTRUDERS]={false
  301. #if EXTRUDERS > 1
  302. , false
  303. #if EXTRUDERS > 2
  304. , false
  305. #endif
  306. #endif
  307. };
  308. bool retracted_swap[EXTRUDERS]={false
  309. #if EXTRUDERS > 1
  310. , false
  311. #if EXTRUDERS > 2
  312. , false
  313. #endif
  314. #endif
  315. };
  316. float retract_length = RETRACT_LENGTH;
  317. float retract_length_swap = RETRACT_LENGTH_SWAP;
  318. float retract_feedrate = RETRACT_FEEDRATE;
  319. float retract_zlift = RETRACT_ZLIFT;
  320. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  321. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  322. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  323. #endif
  324. #ifdef ULTIPANEL
  325. #ifdef PS_DEFAULT_OFF
  326. bool powersupply = false;
  327. #else
  328. bool powersupply = true;
  329. #endif
  330. #endif
  331. bool cancel_heatup = false ;
  332. #ifdef FILAMENT_SENSOR
  333. //Variables for Filament Sensor input
  334. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  335. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  336. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  337. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  338. int delay_index1=0; //index into ring buffer
  339. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  340. float delay_dist=0; //delay distance counter
  341. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  342. #endif
  343. const char errormagic[] PROGMEM = "Error:";
  344. const char echomagic[] PROGMEM = "echo:";
  345. //===========================================================================
  346. //=============================Private Variables=============================
  347. //===========================================================================
  348. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  349. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  350. static float delta[3] = {0.0, 0.0, 0.0};
  351. // For tracing an arc
  352. static float offset[3] = {0.0, 0.0, 0.0};
  353. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  354. // Determines Absolute or Relative Coordinates.
  355. // Also there is bool axis_relative_modes[] per axis flag.
  356. static bool relative_mode = false;
  357. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  358. //static float tt = 0;
  359. //static float bt = 0;
  360. //Inactivity shutdown variables
  361. static unsigned long previous_millis_cmd = 0;
  362. unsigned long max_inactive_time = 0;
  363. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  364. unsigned long starttime=0;
  365. unsigned long stoptime=0;
  366. unsigned long _usb_timer = 0;
  367. static uint8_t tmp_extruder;
  368. bool extruder_under_pressure = true;
  369. bool Stopped=false;
  370. #if NUM_SERVOS > 0
  371. Servo servos[NUM_SERVOS];
  372. #endif
  373. bool CooldownNoWait = true;
  374. bool target_direction;
  375. //Insert variables if CHDK is defined
  376. #ifdef CHDK
  377. unsigned long chdkHigh = 0;
  378. boolean chdkActive = false;
  379. #endif
  380. //===========================================================================
  381. //=============================Routines======================================
  382. //===========================================================================
  383. void get_arc_coordinates();
  384. bool setTargetedHotend(int code);
  385. void serial_echopair_P(const char *s_P, float v)
  386. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  387. void serial_echopair_P(const char *s_P, double v)
  388. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  389. void serial_echopair_P(const char *s_P, unsigned long v)
  390. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  391. #ifdef SDSUPPORT
  392. #include "SdFatUtil.h"
  393. int freeMemory() { return SdFatUtil::FreeRam(); }
  394. #else
  395. extern "C" {
  396. extern unsigned int __bss_end;
  397. extern unsigned int __heap_start;
  398. extern void *__brkval;
  399. int freeMemory() {
  400. int free_memory;
  401. if ((int)__brkval == 0)
  402. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  403. else
  404. free_memory = ((int)&free_memory) - ((int)__brkval);
  405. return free_memory;
  406. }
  407. }
  408. #endif //!SDSUPPORT
  409. void setup_killpin()
  410. {
  411. #if defined(KILL_PIN) && KILL_PIN > -1
  412. SET_INPUT(KILL_PIN);
  413. WRITE(KILL_PIN,HIGH);
  414. #endif
  415. }
  416. // Set home pin
  417. void setup_homepin(void)
  418. {
  419. #if defined(HOME_PIN) && HOME_PIN > -1
  420. SET_INPUT(HOME_PIN);
  421. WRITE(HOME_PIN,HIGH);
  422. #endif
  423. }
  424. void setup_photpin()
  425. {
  426. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  427. SET_OUTPUT(PHOTOGRAPH_PIN);
  428. WRITE(PHOTOGRAPH_PIN, LOW);
  429. #endif
  430. }
  431. void setup_powerhold()
  432. {
  433. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  434. SET_OUTPUT(SUICIDE_PIN);
  435. WRITE(SUICIDE_PIN, HIGH);
  436. #endif
  437. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  438. SET_OUTPUT(PS_ON_PIN);
  439. #if defined(PS_DEFAULT_OFF)
  440. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  441. #else
  442. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  443. #endif
  444. #endif
  445. }
  446. void suicide()
  447. {
  448. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  449. SET_OUTPUT(SUICIDE_PIN);
  450. WRITE(SUICIDE_PIN, LOW);
  451. #endif
  452. }
  453. void servo_init()
  454. {
  455. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  456. servos[0].attach(SERVO0_PIN);
  457. #endif
  458. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  459. servos[1].attach(SERVO1_PIN);
  460. #endif
  461. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  462. servos[2].attach(SERVO2_PIN);
  463. #endif
  464. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  465. servos[3].attach(SERVO3_PIN);
  466. #endif
  467. #if (NUM_SERVOS >= 5)
  468. #error "TODO: enter initalisation code for more servos"
  469. #endif
  470. }
  471. static void lcd_language_menu();
  472. void stop_and_save_print_to_ram(float z_move, float e_move);
  473. void restore_print_from_ram_and_continue(float e_move);
  474. extern int8_t CrashDetectMenu;
  475. void crashdet_enable()
  476. {
  477. MYSERIAL.println("crashdet_enable");
  478. tmc2130_sg_stop_on_crash = true;
  479. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  480. CrashDetectMenu = 1;
  481. }
  482. void crashdet_disable()
  483. {
  484. MYSERIAL.println("crashdet_disable");
  485. tmc2130_sg_stop_on_crash = false;
  486. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  487. CrashDetectMenu = 0;
  488. }
  489. void crashdet_stop_and_save_print()
  490. {
  491. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  492. }
  493. void crashdet_restore_print_and_continue()
  494. {
  495. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  496. // babystep_apply();
  497. }
  498. void crashdet_stop_and_save_print2()
  499. {
  500. cli();
  501. planner_abort_hard(); //abort printing
  502. cmdqueue_reset(); //empty cmdqueue
  503. card.sdprinting = false;
  504. card.closefile();
  505. sei();
  506. }
  507. #ifdef MESH_BED_LEVELING
  508. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  509. #endif
  510. // Factory reset function
  511. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  512. // Level input parameter sets depth of reset
  513. // Quiet parameter masks all waitings for user interact.
  514. int er_progress = 0;
  515. void factory_reset(char level, bool quiet)
  516. {
  517. lcd_implementation_clear();
  518. int cursor_pos = 0;
  519. switch (level) {
  520. // Level 0: Language reset
  521. case 0:
  522. WRITE(BEEPER, HIGH);
  523. _delay_ms(100);
  524. WRITE(BEEPER, LOW);
  525. lcd_force_language_selection();
  526. break;
  527. //Level 1: Reset statistics
  528. case 1:
  529. WRITE(BEEPER, HIGH);
  530. _delay_ms(100);
  531. WRITE(BEEPER, LOW);
  532. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  533. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  534. lcd_menu_statistics();
  535. break;
  536. // Level 2: Prepare for shipping
  537. case 2:
  538. //lcd_printPGM(PSTR("Factory RESET"));
  539. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  540. // Force language selection at the next boot up.
  541. lcd_force_language_selection();
  542. // Force the "Follow calibration flow" message at the next boot up.
  543. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  544. farm_no = 0;
  545. farm_mode == false;
  546. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  547. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  548. WRITE(BEEPER, HIGH);
  549. _delay_ms(100);
  550. WRITE(BEEPER, LOW);
  551. //_delay_ms(2000);
  552. break;
  553. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  554. case 3:
  555. lcd_printPGM(PSTR("Factory RESET"));
  556. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  557. WRITE(BEEPER, HIGH);
  558. _delay_ms(100);
  559. WRITE(BEEPER, LOW);
  560. er_progress = 0;
  561. lcd_print_at_PGM(3, 3, PSTR(" "));
  562. lcd_implementation_print_at(3, 3, er_progress);
  563. // Erase EEPROM
  564. for (int i = 0; i < 4096; i++) {
  565. eeprom_write_byte((uint8_t*)i, 0xFF);
  566. if (i % 41 == 0) {
  567. er_progress++;
  568. lcd_print_at_PGM(3, 3, PSTR(" "));
  569. lcd_implementation_print_at(3, 3, er_progress);
  570. lcd_printPGM(PSTR("%"));
  571. }
  572. }
  573. break;
  574. case 4:
  575. bowden_menu();
  576. break;
  577. default:
  578. break;
  579. }
  580. }
  581. // "Setup" function is called by the Arduino framework on startup.
  582. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  583. // are initialized by the main() routine provided by the Arduino framework.
  584. void setup()
  585. {
  586. lcd_init();
  587. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  588. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  589. setup_killpin();
  590. setup_powerhold();
  591. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  592. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  593. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  594. if (farm_no == 0xFFFF) farm_no = 0;
  595. if (farm_mode)
  596. {
  597. prusa_statistics(8);
  598. selectedSerialPort = 1;
  599. }
  600. else
  601. selectedSerialPort = 0;
  602. MYSERIAL.begin(BAUDRATE);
  603. SERIAL_PROTOCOLLNPGM("start");
  604. SERIAL_ECHO_START;
  605. #if 0
  606. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  607. for (int i = 0; i < 4096; ++i) {
  608. int b = eeprom_read_byte((unsigned char*)i);
  609. if (b != 255) {
  610. SERIAL_ECHO(i);
  611. SERIAL_ECHO(":");
  612. SERIAL_ECHO(b);
  613. SERIAL_ECHOLN("");
  614. }
  615. }
  616. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  617. #endif
  618. // Check startup - does nothing if bootloader sets MCUSR to 0
  619. byte mcu = MCUSR;
  620. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  621. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  622. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  623. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  624. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  625. MCUSR = 0;
  626. //SERIAL_ECHORPGM(MSG_MARLIN);
  627. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  628. #ifdef STRING_VERSION_CONFIG_H
  629. #ifdef STRING_CONFIG_H_AUTHOR
  630. SERIAL_ECHO_START;
  631. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  632. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  633. SERIAL_ECHORPGM(MSG_AUTHOR);
  634. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  635. SERIAL_ECHOPGM("Compiled: ");
  636. SERIAL_ECHOLNPGM(__DATE__);
  637. #endif
  638. #endif
  639. SERIAL_ECHO_START;
  640. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  641. SERIAL_ECHO(freeMemory());
  642. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  643. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  644. //lcd_update_enable(false); // why do we need this?? - andre
  645. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  646. Config_RetrieveSettings(EEPROM_OFFSET);
  647. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  648. tp_init(); // Initialize temperature loop
  649. plan_init(); // Initialize planner;
  650. watchdog_init();
  651. #ifdef TMC2130
  652. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  653. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  654. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  655. if (crashdet)
  656. {
  657. crashdet_enable();
  658. MYSERIAL.println("CrashDetect ENABLED!");
  659. }
  660. else
  661. {
  662. crashdet_disable();
  663. MYSERIAL.println("CrashDetect DISABLED");
  664. }
  665. #endif //TMC2130
  666. #ifdef PAT9125
  667. MYSERIAL.print("PAT9125_init:");
  668. int pat9125 = pat9125_init(200, 200);
  669. MYSERIAL.println(pat9125);
  670. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  671. if (!pat9125) fsensor = 0; //disable sensor
  672. if (fsensor)
  673. {
  674. fsensor_enable();
  675. MYSERIAL.println("Filament Sensor ENABLED!");
  676. }
  677. else
  678. {
  679. fsensor_disable();
  680. MYSERIAL.println("Filament Sensor DISABLED");
  681. }
  682. #endif //PAT9125
  683. st_init(); // Initialize stepper, this enables interrupts!
  684. setup_photpin();
  685. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
  686. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  687. servo_init();
  688. // Reset the machine correction matrix.
  689. // It does not make sense to load the correction matrix until the machine is homed.
  690. world2machine_reset();
  691. if (!READ(BTN_ENC))
  692. {
  693. _delay_ms(1000);
  694. if (!READ(BTN_ENC))
  695. {
  696. lcd_implementation_clear();
  697. lcd_printPGM(PSTR("Factory RESET"));
  698. SET_OUTPUT(BEEPER);
  699. WRITE(BEEPER, HIGH);
  700. while (!READ(BTN_ENC));
  701. WRITE(BEEPER, LOW);
  702. _delay_ms(2000);
  703. char level = reset_menu();
  704. factory_reset(level, false);
  705. switch (level) {
  706. case 0: _delay_ms(0); break;
  707. case 1: _delay_ms(0); break;
  708. case 2: _delay_ms(0); break;
  709. case 3: _delay_ms(0); break;
  710. }
  711. // _delay_ms(100);
  712. /*
  713. #ifdef MESH_BED_LEVELING
  714. _delay_ms(2000);
  715. if (!READ(BTN_ENC))
  716. {
  717. WRITE(BEEPER, HIGH);
  718. _delay_ms(100);
  719. WRITE(BEEPER, LOW);
  720. _delay_ms(200);
  721. WRITE(BEEPER, HIGH);
  722. _delay_ms(100);
  723. WRITE(BEEPER, LOW);
  724. int _z = 0;
  725. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  726. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  727. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  728. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  729. }
  730. else
  731. {
  732. WRITE(BEEPER, HIGH);
  733. _delay_ms(100);
  734. WRITE(BEEPER, LOW);
  735. }
  736. #endif // mesh */
  737. }
  738. }
  739. else
  740. {
  741. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  742. }
  743. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  744. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  745. #endif
  746. #if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
  747. SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
  748. #endif
  749. #ifdef DIGIPOT_I2C
  750. digipot_i2c_init();
  751. #endif
  752. setup_homepin();
  753. if (1) {
  754. SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  755. // try to run to zero phase before powering the Z motor.
  756. // Move in negative direction
  757. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  758. // Round the current micro-micro steps to micro steps.
  759. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  760. // Until the phase counter is reset to zero.
  761. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  762. delay(2);
  763. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  764. delay(2);
  765. }
  766. SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  767. }
  768. #if defined(Z_AXIS_ALWAYS_ON)
  769. enable_z();
  770. #endif
  771. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  772. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  773. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  774. if (farm_no == 0xFFFF) farm_no = 0;
  775. if (farm_mode)
  776. {
  777. prusa_statistics(8);
  778. }
  779. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  780. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  781. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  782. // but this times out if a blocking dialog is shown in setup().
  783. card.initsd();
  784. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  785. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  786. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  787. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  788. // where all the EEPROM entries are set to 0x0ff.
  789. // Once a firmware boots up, it forces at least a language selection, which changes
  790. // EEPROM_LANG to number lower than 0x0ff.
  791. // 1) Set a high power mode.
  792. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  793. }
  794. #ifdef SNMM
  795. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  796. int _z = BOWDEN_LENGTH;
  797. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  798. }
  799. #endif
  800. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  801. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  802. // is being written into the EEPROM, so the update procedure will be triggered only once.
  803. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  804. if (lang_selected >= LANG_NUM){
  805. lcd_mylang();
  806. }
  807. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  808. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  809. temp_cal_active = false;
  810. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  811. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  812. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  813. }
  814. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  815. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  816. }
  817. check_babystep(); //checking if Z babystep is in allowed range
  818. setup_uvlo_interrupt();
  819. fsensor_setup_interrupt();
  820. #ifndef DEBUG_DISABLE_STARTMSGS
  821. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  822. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  823. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  824. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  825. // Show the message.
  826. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  827. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  828. // Show the message.
  829. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  830. lcd_update_enable(true);
  831. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  832. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  833. lcd_update_enable(true);
  834. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  835. // Show the message.
  836. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  837. }
  838. #endif //DEBUG_DISABLE_STARTMSGS
  839. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  840. lcd_update_enable(true);
  841. lcd_implementation_clear();
  842. lcd_update(2);
  843. // Store the currently running firmware into an eeprom,
  844. // so the next time the firmware gets updated, it will know from which version it has been updated.
  845. update_current_firmware_version_to_eeprom();
  846. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  847. /*
  848. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  849. else {
  850. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  851. lcd_update_enable(true);
  852. lcd_update(2);
  853. lcd_setstatuspgm(WELCOME_MSG);
  854. }
  855. */
  856. manage_heater(); // Update temperatures
  857. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  858. MYSERIAL.println("Power panic detected!");
  859. MYSERIAL.print("Current bed temp:");
  860. MYSERIAL.println(degBed());
  861. MYSERIAL.print("Saved bed temp:");
  862. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  863. #endif
  864. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  865. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  866. MYSERIAL.println("Automatic recovery!");
  867. #endif
  868. recover_print(1);
  869. }
  870. else{
  871. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  872. MYSERIAL.println("Normal recovery!");
  873. #endif
  874. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  875. else {
  876. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  877. lcd_update_enable(true);
  878. lcd_update(2);
  879. lcd_setstatuspgm(WELCOME_MSG);
  880. }
  881. }
  882. }
  883. }
  884. void trace();
  885. #define CHUNK_SIZE 64 // bytes
  886. #define SAFETY_MARGIN 1
  887. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  888. int chunkHead = 0;
  889. int serial_read_stream() {
  890. setTargetHotend(0, 0);
  891. setTargetBed(0);
  892. lcd_implementation_clear();
  893. lcd_printPGM(PSTR(" Upload in progress"));
  894. // first wait for how many bytes we will receive
  895. uint32_t bytesToReceive;
  896. // receive the four bytes
  897. char bytesToReceiveBuffer[4];
  898. for (int i=0; i<4; i++) {
  899. int data;
  900. while ((data = MYSERIAL.read()) == -1) {};
  901. bytesToReceiveBuffer[i] = data;
  902. }
  903. // make it a uint32
  904. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  905. // we're ready, notify the sender
  906. MYSERIAL.write('+');
  907. // lock in the routine
  908. uint32_t receivedBytes = 0;
  909. while (prusa_sd_card_upload) {
  910. int i;
  911. for (i=0; i<CHUNK_SIZE; i++) {
  912. int data;
  913. // check if we're not done
  914. if (receivedBytes == bytesToReceive) {
  915. break;
  916. }
  917. // read the next byte
  918. while ((data = MYSERIAL.read()) == -1) {};
  919. receivedBytes++;
  920. // save it to the chunk
  921. chunk[i] = data;
  922. }
  923. // write the chunk to SD
  924. card.write_command_no_newline(&chunk[0]);
  925. // notify the sender we're ready for more data
  926. MYSERIAL.write('+');
  927. // for safety
  928. manage_heater();
  929. // check if we're done
  930. if(receivedBytes == bytesToReceive) {
  931. trace(); // beep
  932. card.closefile();
  933. prusa_sd_card_upload = false;
  934. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  935. return 0;
  936. }
  937. }
  938. }
  939. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  940. // Before loop(), the setup() function is called by the main() routine.
  941. void loop()
  942. {
  943. bool stack_integrity = true;
  944. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  945. {
  946. is_usb_printing = true;
  947. usb_printing_counter--;
  948. _usb_timer = millis();
  949. }
  950. if (usb_printing_counter == 0)
  951. {
  952. is_usb_printing = false;
  953. }
  954. if (prusa_sd_card_upload)
  955. {
  956. //we read byte-by byte
  957. serial_read_stream();
  958. } else
  959. {
  960. get_command();
  961. #ifdef SDSUPPORT
  962. card.checkautostart(false);
  963. #endif
  964. if(buflen)
  965. {
  966. cmdbuffer_front_already_processed = false;
  967. #ifdef SDSUPPORT
  968. if(card.saving)
  969. {
  970. // Saving a G-code file onto an SD-card is in progress.
  971. // Saving starts with M28, saving until M29 is seen.
  972. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  973. card.write_command(CMDBUFFER_CURRENT_STRING);
  974. if(card.logging)
  975. process_commands();
  976. else
  977. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  978. } else {
  979. card.closefile();
  980. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  981. }
  982. } else {
  983. process_commands();
  984. }
  985. #else
  986. process_commands();
  987. #endif //SDSUPPORT
  988. if (! cmdbuffer_front_already_processed && buflen)
  989. {
  990. cli();
  991. union {
  992. struct {
  993. char lo;
  994. char hi;
  995. } lohi;
  996. uint16_t value;
  997. } sdlen;
  998. sdlen.value = 0;
  999. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1000. sdlen.lohi.lo = cmdbuffer[bufindr + 1];
  1001. sdlen.lohi.hi = cmdbuffer[bufindr + 2];
  1002. }
  1003. cmdqueue_pop_front();
  1004. planner_add_sd_length(sdlen.value);
  1005. sei();
  1006. }
  1007. }
  1008. }
  1009. //check heater every n milliseconds
  1010. manage_heater();
  1011. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1012. checkHitEndstops();
  1013. lcd_update();
  1014. #ifdef PAT9125
  1015. fsensor_update();
  1016. #endif //PAT9125
  1017. #ifdef TMC2130
  1018. tmc2130_check_overtemp();
  1019. if (tmc2130_sg_crash)
  1020. {
  1021. tmc2130_sg_crash = false;
  1022. // crashdet_stop_and_save_print();
  1023. enquecommand_P((PSTR("D999")));
  1024. }
  1025. #endif //TMC2130
  1026. }
  1027. #define DEFINE_PGM_READ_ANY(type, reader) \
  1028. static inline type pgm_read_any(const type *p) \
  1029. { return pgm_read_##reader##_near(p); }
  1030. DEFINE_PGM_READ_ANY(float, float);
  1031. DEFINE_PGM_READ_ANY(signed char, byte);
  1032. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1033. static const PROGMEM type array##_P[3] = \
  1034. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1035. static inline type array(int axis) \
  1036. { return pgm_read_any(&array##_P[axis]); } \
  1037. type array##_ext(int axis) \
  1038. { return pgm_read_any(&array##_P[axis]); }
  1039. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1040. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1041. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1042. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1043. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1044. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1045. static void axis_is_at_home(int axis) {
  1046. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1047. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1048. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1049. }
  1050. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1051. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1052. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1053. saved_feedrate = feedrate;
  1054. saved_feedmultiply = feedmultiply;
  1055. feedmultiply = 100;
  1056. previous_millis_cmd = millis();
  1057. enable_endstops(enable_endstops_now);
  1058. }
  1059. static void clean_up_after_endstop_move() {
  1060. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1061. enable_endstops(false);
  1062. #endif
  1063. feedrate = saved_feedrate;
  1064. feedmultiply = saved_feedmultiply;
  1065. previous_millis_cmd = millis();
  1066. }
  1067. #ifdef ENABLE_AUTO_BED_LEVELING
  1068. #ifdef AUTO_BED_LEVELING_GRID
  1069. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1070. {
  1071. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1072. planeNormal.debug("planeNormal");
  1073. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1074. //bedLevel.debug("bedLevel");
  1075. //plan_bed_level_matrix.debug("bed level before");
  1076. //vector_3 uncorrected_position = plan_get_position_mm();
  1077. //uncorrected_position.debug("position before");
  1078. vector_3 corrected_position = plan_get_position();
  1079. // corrected_position.debug("position after");
  1080. current_position[X_AXIS] = corrected_position.x;
  1081. current_position[Y_AXIS] = corrected_position.y;
  1082. current_position[Z_AXIS] = corrected_position.z;
  1083. // put the bed at 0 so we don't go below it.
  1084. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1085. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1086. }
  1087. #else // not AUTO_BED_LEVELING_GRID
  1088. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1089. plan_bed_level_matrix.set_to_identity();
  1090. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1091. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1092. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1093. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1094. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1095. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1096. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1097. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1098. vector_3 corrected_position = plan_get_position();
  1099. current_position[X_AXIS] = corrected_position.x;
  1100. current_position[Y_AXIS] = corrected_position.y;
  1101. current_position[Z_AXIS] = corrected_position.z;
  1102. // put the bed at 0 so we don't go below it.
  1103. current_position[Z_AXIS] = zprobe_zoffset;
  1104. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1105. }
  1106. #endif // AUTO_BED_LEVELING_GRID
  1107. static void run_z_probe() {
  1108. plan_bed_level_matrix.set_to_identity();
  1109. feedrate = homing_feedrate[Z_AXIS];
  1110. // move down until you find the bed
  1111. float zPosition = -10;
  1112. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1113. st_synchronize();
  1114. // we have to let the planner know where we are right now as it is not where we said to go.
  1115. zPosition = st_get_position_mm(Z_AXIS);
  1116. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1117. // move up the retract distance
  1118. zPosition += home_retract_mm(Z_AXIS);
  1119. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1120. st_synchronize();
  1121. // move back down slowly to find bed
  1122. feedrate = homing_feedrate[Z_AXIS]/4;
  1123. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1124. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1125. st_synchronize();
  1126. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1127. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1128. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1129. }
  1130. static void do_blocking_move_to(float x, float y, float z) {
  1131. float oldFeedRate = feedrate;
  1132. feedrate = homing_feedrate[Z_AXIS];
  1133. current_position[Z_AXIS] = z;
  1134. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1135. st_synchronize();
  1136. feedrate = XY_TRAVEL_SPEED;
  1137. current_position[X_AXIS] = x;
  1138. current_position[Y_AXIS] = y;
  1139. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1140. st_synchronize();
  1141. feedrate = oldFeedRate;
  1142. }
  1143. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1144. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1145. }
  1146. /// Probe bed height at position (x,y), returns the measured z value
  1147. static float probe_pt(float x, float y, float z_before) {
  1148. // move to right place
  1149. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1150. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1151. run_z_probe();
  1152. float measured_z = current_position[Z_AXIS];
  1153. SERIAL_PROTOCOLRPGM(MSG_BED);
  1154. SERIAL_PROTOCOLPGM(" x: ");
  1155. SERIAL_PROTOCOL(x);
  1156. SERIAL_PROTOCOLPGM(" y: ");
  1157. SERIAL_PROTOCOL(y);
  1158. SERIAL_PROTOCOLPGM(" z: ");
  1159. SERIAL_PROTOCOL(measured_z);
  1160. SERIAL_PROTOCOLPGM("\n");
  1161. return measured_z;
  1162. }
  1163. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1164. #ifdef LIN_ADVANCE
  1165. /**
  1166. * M900: Set and/or Get advance K factor and WH/D ratio
  1167. *
  1168. * K<factor> Set advance K factor
  1169. * R<ratio> Set ratio directly (overrides WH/D)
  1170. * W<width> H<height> D<diam> Set ratio from WH/D
  1171. */
  1172. inline void gcode_M900() {
  1173. st_synchronize();
  1174. const float newK = code_seen('K') ? code_value_float() : -1;
  1175. if (newK >= 0) extruder_advance_k = newK;
  1176. float newR = code_seen('R') ? code_value_float() : -1;
  1177. if (newR < 0) {
  1178. const float newD = code_seen('D') ? code_value_float() : -1,
  1179. newW = code_seen('W') ? code_value_float() : -1,
  1180. newH = code_seen('H') ? code_value_float() : -1;
  1181. if (newD >= 0 && newW >= 0 && newH >= 0)
  1182. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1183. }
  1184. if (newR >= 0) advance_ed_ratio = newR;
  1185. SERIAL_ECHO_START;
  1186. SERIAL_ECHOPGM("Advance K=");
  1187. SERIAL_ECHOLN(extruder_advance_k);
  1188. SERIAL_ECHOPGM(" E/D=");
  1189. const float ratio = advance_ed_ratio;
  1190. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1191. }
  1192. #endif // LIN_ADVANCE
  1193. #ifdef TMC2130
  1194. bool calibrate_z_auto()
  1195. {
  1196. lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1197. bool endstops_enabled = enable_endstops(true);
  1198. int axis_up_dir = -home_dir(Z_AXIS);
  1199. tmc2130_home_enter(Z_AXIS_MASK);
  1200. current_position[Z_AXIS] = 0;
  1201. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1202. set_destination_to_current();
  1203. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1204. feedrate = homing_feedrate[Z_AXIS];
  1205. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1206. tmc2130_home_restart(Z_AXIS);
  1207. st_synchronize();
  1208. // current_position[axis] = 0;
  1209. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1210. tmc2130_home_exit();
  1211. enable_endstops(false);
  1212. current_position[Z_AXIS] = 0;
  1213. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1214. set_destination_to_current();
  1215. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1216. feedrate = homing_feedrate[Z_AXIS] / 2;
  1217. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1218. st_synchronize();
  1219. enable_endstops(endstops_enabled);
  1220. current_position[Z_AXIS] = Z_MAX_POS-3.f;
  1221. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1222. return true;
  1223. }
  1224. #endif //TMC2130
  1225. void homeaxis(int axis)
  1226. {
  1227. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1228. #define HOMEAXIS_DO(LETTER) \
  1229. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1230. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1231. {
  1232. int axis_home_dir = home_dir(axis);
  1233. feedrate = homing_feedrate[axis];
  1234. #ifdef TMC2130
  1235. tmc2130_home_enter(X_AXIS_MASK << axis);
  1236. #endif
  1237. // Move right a bit, so that the print head does not touch the left end position,
  1238. // and the following left movement has a chance to achieve the required velocity
  1239. // for the stall guard to work.
  1240. current_position[axis] = 0;
  1241. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1242. // destination[axis] = 11.f;
  1243. destination[axis] = 3.f;
  1244. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1245. st_synchronize();
  1246. // Move left away from the possible collision with the collision detection disabled.
  1247. endstops_hit_on_purpose();
  1248. enable_endstops(false);
  1249. current_position[axis] = 0;
  1250. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1251. destination[axis] = - 1.;
  1252. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1253. st_synchronize();
  1254. // Now continue to move up to the left end stop with the collision detection enabled.
  1255. enable_endstops(true);
  1256. destination[axis] = - 1.1 * max_length(axis);
  1257. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1258. st_synchronize();
  1259. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1260. endstops_hit_on_purpose();
  1261. enable_endstops(false);
  1262. current_position[axis] = 0;
  1263. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1264. destination[axis] = 10.f;
  1265. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1266. st_synchronize();
  1267. endstops_hit_on_purpose();
  1268. // Now move left up to the collision, this time with a repeatable velocity.
  1269. enable_endstops(true);
  1270. destination[axis] = - 15.f;
  1271. feedrate = homing_feedrate[axis]/2;
  1272. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1273. st_synchronize();
  1274. axis_is_at_home(axis);
  1275. axis_known_position[axis] = true;
  1276. #ifdef TMC2130
  1277. tmc2130_home_exit();
  1278. #endif
  1279. // Move the X carriage away from the collision.
  1280. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1281. endstops_hit_on_purpose();
  1282. enable_endstops(false);
  1283. {
  1284. // Two full periods (4 full steps).
  1285. float gap = 0.32f * 2.f;
  1286. current_position[axis] -= gap;
  1287. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1288. current_position[axis] += gap;
  1289. }
  1290. destination[axis] = current_position[axis];
  1291. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1292. st_synchronize();
  1293. feedrate = 0.0;
  1294. }
  1295. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1296. {
  1297. int axis_home_dir = home_dir(axis);
  1298. current_position[axis] = 0;
  1299. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1300. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1301. feedrate = homing_feedrate[axis];
  1302. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1303. st_synchronize();
  1304. current_position[axis] = 0;
  1305. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1306. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1307. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1308. st_synchronize();
  1309. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1310. feedrate = homing_feedrate[axis]/2 ;
  1311. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1312. st_synchronize();
  1313. axis_is_at_home(axis);
  1314. destination[axis] = current_position[axis];
  1315. feedrate = 0.0;
  1316. endstops_hit_on_purpose();
  1317. axis_known_position[axis] = true;
  1318. }
  1319. enable_endstops(endstops_enabled);
  1320. }
  1321. /**/
  1322. void home_xy()
  1323. {
  1324. set_destination_to_current();
  1325. homeaxis(X_AXIS);
  1326. homeaxis(Y_AXIS);
  1327. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1328. endstops_hit_on_purpose();
  1329. }
  1330. void refresh_cmd_timeout(void)
  1331. {
  1332. previous_millis_cmd = millis();
  1333. }
  1334. #ifdef FWRETRACT
  1335. void retract(bool retracting, bool swapretract = false) {
  1336. if(retracting && !retracted[active_extruder]) {
  1337. destination[X_AXIS]=current_position[X_AXIS];
  1338. destination[Y_AXIS]=current_position[Y_AXIS];
  1339. destination[Z_AXIS]=current_position[Z_AXIS];
  1340. destination[E_AXIS]=current_position[E_AXIS];
  1341. if (swapretract) {
  1342. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1343. } else {
  1344. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1345. }
  1346. plan_set_e_position(current_position[E_AXIS]);
  1347. float oldFeedrate = feedrate;
  1348. feedrate=retract_feedrate*60;
  1349. retracted[active_extruder]=true;
  1350. prepare_move();
  1351. current_position[Z_AXIS]-=retract_zlift;
  1352. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1353. prepare_move();
  1354. feedrate = oldFeedrate;
  1355. } else if(!retracting && retracted[active_extruder]) {
  1356. destination[X_AXIS]=current_position[X_AXIS];
  1357. destination[Y_AXIS]=current_position[Y_AXIS];
  1358. destination[Z_AXIS]=current_position[Z_AXIS];
  1359. destination[E_AXIS]=current_position[E_AXIS];
  1360. current_position[Z_AXIS]+=retract_zlift;
  1361. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1362. //prepare_move();
  1363. if (swapretract) {
  1364. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1365. } else {
  1366. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1367. }
  1368. plan_set_e_position(current_position[E_AXIS]);
  1369. float oldFeedrate = feedrate;
  1370. feedrate=retract_recover_feedrate*60;
  1371. retracted[active_extruder]=false;
  1372. prepare_move();
  1373. feedrate = oldFeedrate;
  1374. }
  1375. } //retract
  1376. #endif //FWRETRACT
  1377. void trace() {
  1378. tone(BEEPER, 440);
  1379. delay(25);
  1380. noTone(BEEPER);
  1381. delay(20);
  1382. }
  1383. /*
  1384. void ramming() {
  1385. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1386. if (current_temperature[0] < 230) {
  1387. //PLA
  1388. max_feedrate[E_AXIS] = 50;
  1389. //current_position[E_AXIS] -= 8;
  1390. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1391. //current_position[E_AXIS] += 8;
  1392. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1393. current_position[E_AXIS] += 5.4;
  1394. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1395. current_position[E_AXIS] += 3.2;
  1396. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1397. current_position[E_AXIS] += 3;
  1398. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1399. st_synchronize();
  1400. max_feedrate[E_AXIS] = 80;
  1401. current_position[E_AXIS] -= 82;
  1402. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1403. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1404. current_position[E_AXIS] -= 20;
  1405. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1406. current_position[E_AXIS] += 5;
  1407. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1408. current_position[E_AXIS] += 5;
  1409. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1410. current_position[E_AXIS] -= 10;
  1411. st_synchronize();
  1412. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1413. current_position[E_AXIS] += 10;
  1414. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1415. current_position[E_AXIS] -= 10;
  1416. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1417. current_position[E_AXIS] += 10;
  1418. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1419. current_position[E_AXIS] -= 10;
  1420. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1421. st_synchronize();
  1422. }
  1423. else {
  1424. //ABS
  1425. max_feedrate[E_AXIS] = 50;
  1426. //current_position[E_AXIS] -= 8;
  1427. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1428. //current_position[E_AXIS] += 8;
  1429. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1430. current_position[E_AXIS] += 3.1;
  1431. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1432. current_position[E_AXIS] += 3.1;
  1433. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1434. current_position[E_AXIS] += 4;
  1435. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1436. st_synchronize();
  1437. //current_position[X_AXIS] += 23; //delay
  1438. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1439. //current_position[X_AXIS] -= 23; //delay
  1440. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1441. delay(4700);
  1442. max_feedrate[E_AXIS] = 80;
  1443. current_position[E_AXIS] -= 92;
  1444. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1445. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1446. current_position[E_AXIS] -= 5;
  1447. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1448. current_position[E_AXIS] += 5;
  1449. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1450. current_position[E_AXIS] -= 5;
  1451. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1452. st_synchronize();
  1453. current_position[E_AXIS] += 5;
  1454. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1455. current_position[E_AXIS] -= 5;
  1456. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1457. current_position[E_AXIS] += 5;
  1458. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1459. current_position[E_AXIS] -= 5;
  1460. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1461. st_synchronize();
  1462. }
  1463. }
  1464. */
  1465. void process_commands()
  1466. {
  1467. #ifdef FILAMENT_RUNOUT_SUPPORT
  1468. SET_INPUT(FR_SENS);
  1469. #endif
  1470. #ifdef CMDBUFFER_DEBUG
  1471. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1472. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1473. SERIAL_ECHOLNPGM("");
  1474. SERIAL_ECHOPGM("In cmdqueue: ");
  1475. SERIAL_ECHO(buflen);
  1476. SERIAL_ECHOLNPGM("");
  1477. #endif /* CMDBUFFER_DEBUG */
  1478. unsigned long codenum; //throw away variable
  1479. char *starpos = NULL;
  1480. #ifdef ENABLE_AUTO_BED_LEVELING
  1481. float x_tmp, y_tmp, z_tmp, real_z;
  1482. #endif
  1483. // PRUSA GCODES
  1484. #ifdef SNMM
  1485. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1486. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1487. int8_t SilentMode;
  1488. #endif
  1489. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1490. starpos = (strchr(strchr_pointer + 5, '*'));
  1491. if (starpos != NULL)
  1492. *(starpos) = '\0';
  1493. lcd_setstatus(strchr_pointer + 5);
  1494. }
  1495. else if(code_seen("PRUSA")){
  1496. if (code_seen("Ping")) { //PRUSA Ping
  1497. if (farm_mode) {
  1498. PingTime = millis();
  1499. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1500. }
  1501. }
  1502. else if (code_seen("PRN")) {
  1503. MYSERIAL.println(status_number);
  1504. }else if (code_seen("fn")) {
  1505. if (farm_mode) {
  1506. MYSERIAL.println(farm_no);
  1507. }
  1508. else {
  1509. MYSERIAL.println("Not in farm mode.");
  1510. }
  1511. }else if (code_seen("fv")) {
  1512. // get file version
  1513. #ifdef SDSUPPORT
  1514. card.openFile(strchr_pointer + 3,true);
  1515. while (true) {
  1516. uint16_t readByte = card.get();
  1517. MYSERIAL.write(readByte);
  1518. if (readByte=='\n') {
  1519. break;
  1520. }
  1521. }
  1522. card.closefile();
  1523. #endif // SDSUPPORT
  1524. } else if (code_seen("M28")) {
  1525. trace();
  1526. prusa_sd_card_upload = true;
  1527. card.openFile(strchr_pointer+4,false);
  1528. } else if (code_seen("SN")) {
  1529. if (farm_mode) {
  1530. selectedSerialPort = 0;
  1531. MSerial.write(";S");
  1532. // S/N is:CZPX0917X003XC13518
  1533. int numbersRead = 0;
  1534. while (numbersRead < 19) {
  1535. while (MSerial.available() > 0) {
  1536. uint8_t serial_char = MSerial.read();
  1537. selectedSerialPort = 1;
  1538. MSerial.write(serial_char);
  1539. numbersRead++;
  1540. selectedSerialPort = 0;
  1541. }
  1542. }
  1543. selectedSerialPort = 1;
  1544. MSerial.write('\n');
  1545. /*for (int b = 0; b < 3; b++) {
  1546. tone(BEEPER, 110);
  1547. delay(50);
  1548. noTone(BEEPER);
  1549. delay(50);
  1550. }*/
  1551. } else {
  1552. MYSERIAL.println("Not in farm mode.");
  1553. }
  1554. } else if(code_seen("Fir")){
  1555. SERIAL_PROTOCOLLN(FW_version);
  1556. } else if(code_seen("Rev")){
  1557. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1558. } else if(code_seen("Lang")) {
  1559. lcd_force_language_selection();
  1560. } else if(code_seen("Lz")) {
  1561. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1562. } else if (code_seen("SERIAL LOW")) {
  1563. MYSERIAL.println("SERIAL LOW");
  1564. MYSERIAL.begin(BAUDRATE);
  1565. return;
  1566. } else if (code_seen("SERIAL HIGH")) {
  1567. MYSERIAL.println("SERIAL HIGH");
  1568. MYSERIAL.begin(1152000);
  1569. return;
  1570. } else if(code_seen("Beat")) {
  1571. // Kick farm link timer
  1572. kicktime = millis();
  1573. } else if(code_seen("FR")) {
  1574. // Factory full reset
  1575. factory_reset(0,true);
  1576. }
  1577. //else if (code_seen('Cal')) {
  1578. // lcd_calibration();
  1579. // }
  1580. }
  1581. else if (code_seen('^')) {
  1582. // nothing, this is a version line
  1583. } else if(code_seen('G'))
  1584. {
  1585. switch((int)code_value())
  1586. {
  1587. case 0: // G0 -> G1
  1588. case 1: // G1
  1589. if(Stopped == false) {
  1590. #ifdef FILAMENT_RUNOUT_SUPPORT
  1591. if(READ(FR_SENS)){
  1592. feedmultiplyBckp=feedmultiply;
  1593. float target[4];
  1594. float lastpos[4];
  1595. target[X_AXIS]=current_position[X_AXIS];
  1596. target[Y_AXIS]=current_position[Y_AXIS];
  1597. target[Z_AXIS]=current_position[Z_AXIS];
  1598. target[E_AXIS]=current_position[E_AXIS];
  1599. lastpos[X_AXIS]=current_position[X_AXIS];
  1600. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1601. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1602. lastpos[E_AXIS]=current_position[E_AXIS];
  1603. //retract by E
  1604. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1605. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1606. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1607. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1608. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1609. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1610. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1611. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1612. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1613. //finish moves
  1614. st_synchronize();
  1615. //disable extruder steppers so filament can be removed
  1616. disable_e0();
  1617. disable_e1();
  1618. disable_e2();
  1619. delay(100);
  1620. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1621. uint8_t cnt=0;
  1622. int counterBeep = 0;
  1623. lcd_wait_interact();
  1624. while(!lcd_clicked()){
  1625. cnt++;
  1626. manage_heater();
  1627. manage_inactivity(true);
  1628. //lcd_update();
  1629. if(cnt==0)
  1630. {
  1631. #if BEEPER > 0
  1632. if (counterBeep== 500){
  1633. counterBeep = 0;
  1634. }
  1635. SET_OUTPUT(BEEPER);
  1636. if (counterBeep== 0){
  1637. WRITE(BEEPER,HIGH);
  1638. }
  1639. if (counterBeep== 20){
  1640. WRITE(BEEPER,LOW);
  1641. }
  1642. counterBeep++;
  1643. #else
  1644. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1645. lcd_buzz(1000/6,100);
  1646. #else
  1647. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1648. #endif
  1649. #endif
  1650. }
  1651. }
  1652. WRITE(BEEPER,LOW);
  1653. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1654. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1655. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1656. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1657. lcd_change_fil_state = 0;
  1658. lcd_loading_filament();
  1659. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1660. lcd_change_fil_state = 0;
  1661. lcd_alright();
  1662. switch(lcd_change_fil_state){
  1663. case 2:
  1664. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1665. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1666. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1667. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1668. lcd_loading_filament();
  1669. break;
  1670. case 3:
  1671. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1672. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1673. lcd_loading_color();
  1674. break;
  1675. default:
  1676. lcd_change_success();
  1677. break;
  1678. }
  1679. }
  1680. target[E_AXIS]+= 5;
  1681. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1682. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1683. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1684. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1685. //plan_set_e_position(current_position[E_AXIS]);
  1686. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1687. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1688. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1689. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1690. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1691. plan_set_e_position(lastpos[E_AXIS]);
  1692. feedmultiply=feedmultiplyBckp;
  1693. char cmd[9];
  1694. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1695. enquecommand(cmd);
  1696. }
  1697. #endif
  1698. get_coordinates(); // For X Y Z E F
  1699. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1700. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1701. }
  1702. #ifdef FWRETRACT
  1703. if(autoretract_enabled)
  1704. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1705. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1706. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1707. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1708. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1709. retract(!retracted);
  1710. return;
  1711. }
  1712. }
  1713. #endif //FWRETRACT
  1714. prepare_move();
  1715. //ClearToSend();
  1716. }
  1717. break;
  1718. case 2: // G2 - CW ARC
  1719. if(Stopped == false) {
  1720. get_arc_coordinates();
  1721. prepare_arc_move(true);
  1722. }
  1723. break;
  1724. case 3: // G3 - CCW ARC
  1725. if(Stopped == false) {
  1726. get_arc_coordinates();
  1727. prepare_arc_move(false);
  1728. }
  1729. break;
  1730. case 4: // G4 dwell
  1731. codenum = 0;
  1732. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1733. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1734. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  1735. st_synchronize();
  1736. codenum += millis(); // keep track of when we started waiting
  1737. previous_millis_cmd = millis();
  1738. while(millis() < codenum) {
  1739. manage_heater();
  1740. manage_inactivity();
  1741. lcd_update();
  1742. }
  1743. break;
  1744. #ifdef FWRETRACT
  1745. case 10: // G10 retract
  1746. #if EXTRUDERS > 1
  1747. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1748. retract(true,retracted_swap[active_extruder]);
  1749. #else
  1750. retract(true);
  1751. #endif
  1752. break;
  1753. case 11: // G11 retract_recover
  1754. #if EXTRUDERS > 1
  1755. retract(false,retracted_swap[active_extruder]);
  1756. #else
  1757. retract(false);
  1758. #endif
  1759. break;
  1760. #endif //FWRETRACT
  1761. case 28: //G28 Home all Axis one at a time
  1762. {
  1763. st_synchronize();
  1764. #if 1
  1765. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  1766. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  1767. #endif
  1768. // Flag for the display update routine and to disable the print cancelation during homing.
  1769. homing_flag = true;
  1770. // Which axes should be homed?
  1771. bool home_x = code_seen(axis_codes[X_AXIS]);
  1772. bool home_y = code_seen(axis_codes[Y_AXIS]);
  1773. bool home_z = code_seen(axis_codes[Z_AXIS]);
  1774. // Either all X,Y,Z codes are present, or none of them.
  1775. bool home_all_axes = home_x == home_y && home_x == home_z;
  1776. if (home_all_axes)
  1777. // No X/Y/Z code provided means to home all axes.
  1778. home_x = home_y = home_z = true;
  1779. #ifdef ENABLE_AUTO_BED_LEVELING
  1780. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1781. #endif //ENABLE_AUTO_BED_LEVELING
  1782. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1783. // the planner will not perform any adjustments in the XY plane.
  1784. // Wait for the motors to stop and update the current position with the absolute values.
  1785. world2machine_revert_to_uncorrected();
  1786. // For mesh bed leveling deactivate the matrix temporarily.
  1787. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  1788. // in a single axis only.
  1789. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  1790. #ifdef MESH_BED_LEVELING
  1791. uint8_t mbl_was_active = mbl.active;
  1792. mbl.active = 0;
  1793. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1794. #endif
  1795. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1796. // consumed during the first movements following this statement.
  1797. if (home_z)
  1798. babystep_undo();
  1799. saved_feedrate = feedrate;
  1800. saved_feedmultiply = feedmultiply;
  1801. feedmultiply = 100;
  1802. previous_millis_cmd = millis();
  1803. enable_endstops(true);
  1804. memcpy(destination, current_position, sizeof(destination));
  1805. feedrate = 0.0;
  1806. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1807. if(home_z)
  1808. homeaxis(Z_AXIS);
  1809. #endif
  1810. #ifdef QUICK_HOME
  1811. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1812. if(home_x && home_y) //first diagonal move
  1813. {
  1814. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1815. int x_axis_home_dir = home_dir(X_AXIS);
  1816. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1817. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1818. feedrate = homing_feedrate[X_AXIS];
  1819. if(homing_feedrate[Y_AXIS]<feedrate)
  1820. feedrate = homing_feedrate[Y_AXIS];
  1821. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1822. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1823. } else {
  1824. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1825. }
  1826. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1827. st_synchronize();
  1828. axis_is_at_home(X_AXIS);
  1829. axis_is_at_home(Y_AXIS);
  1830. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1831. destination[X_AXIS] = current_position[X_AXIS];
  1832. destination[Y_AXIS] = current_position[Y_AXIS];
  1833. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1834. feedrate = 0.0;
  1835. st_synchronize();
  1836. endstops_hit_on_purpose();
  1837. current_position[X_AXIS] = destination[X_AXIS];
  1838. current_position[Y_AXIS] = destination[Y_AXIS];
  1839. current_position[Z_AXIS] = destination[Z_AXIS];
  1840. }
  1841. #endif /* QUICK_HOME */
  1842. if(home_x)
  1843. homeaxis(X_AXIS);
  1844. if(home_y)
  1845. homeaxis(Y_AXIS);
  1846. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  1847. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1848. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  1849. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1850. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1851. #ifndef Z_SAFE_HOMING
  1852. if(home_z) {
  1853. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1854. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1855. feedrate = max_feedrate[Z_AXIS];
  1856. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1857. st_synchronize();
  1858. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1859. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  1860. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1861. {
  1862. homeaxis(X_AXIS);
  1863. homeaxis(Y_AXIS);
  1864. }
  1865. // 1st mesh bed leveling measurement point, corrected.
  1866. world2machine_initialize();
  1867. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1868. world2machine_reset();
  1869. if (destination[Y_AXIS] < Y_MIN_POS)
  1870. destination[Y_AXIS] = Y_MIN_POS;
  1871. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1872. feedrate = homing_feedrate[Z_AXIS]/10;
  1873. current_position[Z_AXIS] = 0;
  1874. enable_endstops(false);
  1875. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1876. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1877. st_synchronize();
  1878. current_position[X_AXIS] = destination[X_AXIS];
  1879. current_position[Y_AXIS] = destination[Y_AXIS];
  1880. enable_endstops(true);
  1881. endstops_hit_on_purpose();
  1882. homeaxis(Z_AXIS);
  1883. #else // MESH_BED_LEVELING
  1884. homeaxis(Z_AXIS);
  1885. #endif // MESH_BED_LEVELING
  1886. }
  1887. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1888. if(home_all_axes) {
  1889. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1890. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1891. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1892. feedrate = XY_TRAVEL_SPEED/60;
  1893. current_position[Z_AXIS] = 0;
  1894. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1895. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1896. st_synchronize();
  1897. current_position[X_AXIS] = destination[X_AXIS];
  1898. current_position[Y_AXIS] = destination[Y_AXIS];
  1899. homeaxis(Z_AXIS);
  1900. }
  1901. // Let's see if X and Y are homed and probe is inside bed area.
  1902. if(home_z) {
  1903. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1904. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1905. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1906. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1907. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1908. current_position[Z_AXIS] = 0;
  1909. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1910. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1911. feedrate = max_feedrate[Z_AXIS];
  1912. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1913. st_synchronize();
  1914. homeaxis(Z_AXIS);
  1915. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1916. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1917. SERIAL_ECHO_START;
  1918. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1919. } else {
  1920. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1921. SERIAL_ECHO_START;
  1922. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1923. }
  1924. }
  1925. #endif // Z_SAFE_HOMING
  1926. #endif // Z_HOME_DIR < 0
  1927. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1928. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1929. #ifdef ENABLE_AUTO_BED_LEVELING
  1930. if(home_z)
  1931. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1932. #endif
  1933. // Set the planner and stepper routine positions.
  1934. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  1935. // contains the machine coordinates.
  1936. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1937. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1938. enable_endstops(false);
  1939. #endif
  1940. feedrate = saved_feedrate;
  1941. feedmultiply = saved_feedmultiply;
  1942. previous_millis_cmd = millis();
  1943. endstops_hit_on_purpose();
  1944. #ifndef MESH_BED_LEVELING
  1945. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  1946. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  1947. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  1948. lcd_adjust_z();
  1949. #endif
  1950. // Load the machine correction matrix
  1951. world2machine_initialize();
  1952. // and correct the current_position XY axes to match the transformed coordinate system.
  1953. world2machine_update_current();
  1954. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  1955. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  1956. {
  1957. if (! home_z && mbl_was_active) {
  1958. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  1959. mbl.active = true;
  1960. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  1961. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  1962. }
  1963. }
  1964. else
  1965. {
  1966. st_synchronize();
  1967. homing_flag = false;
  1968. // Push the commands to the front of the message queue in the reverse order!
  1969. // There shall be always enough space reserved for these commands.
  1970. // enquecommand_front_P((PSTR("G80")));
  1971. goto case_G80;
  1972. }
  1973. #endif
  1974. if (farm_mode) { prusa_statistics(20); };
  1975. homing_flag = false;
  1976. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  1977. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  1978. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  1979. break;
  1980. }
  1981. #ifdef ENABLE_AUTO_BED_LEVELING
  1982. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1983. {
  1984. #if Z_MIN_PIN == -1
  1985. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  1986. #endif
  1987. // Prevent user from running a G29 without first homing in X and Y
  1988. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1989. {
  1990. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1991. SERIAL_ECHO_START;
  1992. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1993. break; // abort G29, since we don't know where we are
  1994. }
  1995. st_synchronize();
  1996. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1997. //vector_3 corrected_position = plan_get_position_mm();
  1998. //corrected_position.debug("position before G29");
  1999. plan_bed_level_matrix.set_to_identity();
  2000. vector_3 uncorrected_position = plan_get_position();
  2001. //uncorrected_position.debug("position durring G29");
  2002. current_position[X_AXIS] = uncorrected_position.x;
  2003. current_position[Y_AXIS] = uncorrected_position.y;
  2004. current_position[Z_AXIS] = uncorrected_position.z;
  2005. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2006. setup_for_endstop_move();
  2007. feedrate = homing_feedrate[Z_AXIS];
  2008. #ifdef AUTO_BED_LEVELING_GRID
  2009. // probe at the points of a lattice grid
  2010. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2011. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2012. // solve the plane equation ax + by + d = z
  2013. // A is the matrix with rows [x y 1] for all the probed points
  2014. // B is the vector of the Z positions
  2015. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2016. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2017. // "A" matrix of the linear system of equations
  2018. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2019. // "B" vector of Z points
  2020. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2021. int probePointCounter = 0;
  2022. bool zig = true;
  2023. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2024. {
  2025. int xProbe, xInc;
  2026. if (zig)
  2027. {
  2028. xProbe = LEFT_PROBE_BED_POSITION;
  2029. //xEnd = RIGHT_PROBE_BED_POSITION;
  2030. xInc = xGridSpacing;
  2031. zig = false;
  2032. } else // zag
  2033. {
  2034. xProbe = RIGHT_PROBE_BED_POSITION;
  2035. //xEnd = LEFT_PROBE_BED_POSITION;
  2036. xInc = -xGridSpacing;
  2037. zig = true;
  2038. }
  2039. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2040. {
  2041. float z_before;
  2042. if (probePointCounter == 0)
  2043. {
  2044. // raise before probing
  2045. z_before = Z_RAISE_BEFORE_PROBING;
  2046. } else
  2047. {
  2048. // raise extruder
  2049. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2050. }
  2051. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2052. eqnBVector[probePointCounter] = measured_z;
  2053. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2054. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2055. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2056. probePointCounter++;
  2057. xProbe += xInc;
  2058. }
  2059. }
  2060. clean_up_after_endstop_move();
  2061. // solve lsq problem
  2062. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2063. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2064. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2065. SERIAL_PROTOCOLPGM(" b: ");
  2066. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2067. SERIAL_PROTOCOLPGM(" d: ");
  2068. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2069. set_bed_level_equation_lsq(plane_equation_coefficients);
  2070. free(plane_equation_coefficients);
  2071. #else // AUTO_BED_LEVELING_GRID not defined
  2072. // Probe at 3 arbitrary points
  2073. // probe 1
  2074. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2075. // probe 2
  2076. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2077. // probe 3
  2078. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2079. clean_up_after_endstop_move();
  2080. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2081. #endif // AUTO_BED_LEVELING_GRID
  2082. st_synchronize();
  2083. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2084. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2085. // When the bed is uneven, this height must be corrected.
  2086. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2087. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2088. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2089. z_tmp = current_position[Z_AXIS];
  2090. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2091. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2092. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2093. }
  2094. break;
  2095. #ifndef Z_PROBE_SLED
  2096. case 30: // G30 Single Z Probe
  2097. {
  2098. st_synchronize();
  2099. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2100. setup_for_endstop_move();
  2101. feedrate = homing_feedrate[Z_AXIS];
  2102. run_z_probe();
  2103. SERIAL_PROTOCOLPGM(MSG_BED);
  2104. SERIAL_PROTOCOLPGM(" X: ");
  2105. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2106. SERIAL_PROTOCOLPGM(" Y: ");
  2107. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2108. SERIAL_PROTOCOLPGM(" Z: ");
  2109. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2110. SERIAL_PROTOCOLPGM("\n");
  2111. clean_up_after_endstop_move();
  2112. }
  2113. break;
  2114. #else
  2115. case 31: // dock the sled
  2116. dock_sled(true);
  2117. break;
  2118. case 32: // undock the sled
  2119. dock_sled(false);
  2120. break;
  2121. #endif // Z_PROBE_SLED
  2122. #endif // ENABLE_AUTO_BED_LEVELING
  2123. #ifdef MESH_BED_LEVELING
  2124. case 30: // G30 Single Z Probe
  2125. {
  2126. st_synchronize();
  2127. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2128. setup_for_endstop_move();
  2129. feedrate = homing_feedrate[Z_AXIS];
  2130. find_bed_induction_sensor_point_z(-10.f, 3);
  2131. SERIAL_PROTOCOLRPGM(MSG_BED);
  2132. SERIAL_PROTOCOLPGM(" X: ");
  2133. MYSERIAL.print(current_position[X_AXIS], 5);
  2134. SERIAL_PROTOCOLPGM(" Y: ");
  2135. MYSERIAL.print(current_position[Y_AXIS], 5);
  2136. SERIAL_PROTOCOLPGM(" Z: ");
  2137. MYSERIAL.print(current_position[Z_AXIS], 5);
  2138. SERIAL_PROTOCOLPGM("\n");
  2139. clean_up_after_endstop_move();
  2140. }
  2141. break;
  2142. case 75:
  2143. {
  2144. for (int i = 40; i <= 110; i++) {
  2145. MYSERIAL.print(i);
  2146. MYSERIAL.print(" ");
  2147. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2148. }
  2149. }
  2150. break;
  2151. case 76: //PINDA probe temperature calibration
  2152. {
  2153. #ifdef PINDA_THERMISTOR
  2154. if (true)
  2155. {
  2156. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2157. // We don't know where we are! HOME!
  2158. // Push the commands to the front of the message queue in the reverse order!
  2159. // There shall be always enough space reserved for these commands.
  2160. repeatcommand_front(); // repeat G76 with all its parameters
  2161. enquecommand_front_P((PSTR("G28 W0")));
  2162. break;
  2163. }
  2164. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2165. float zero_z;
  2166. int z_shift = 0; //unit: steps
  2167. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2168. if (start_temp < 35) start_temp = 35;
  2169. if (start_temp < current_temperature_pinda) start_temp += 5;
  2170. SERIAL_ECHOPGM("start temperature: ");
  2171. MYSERIAL.println(start_temp);
  2172. // setTargetHotend(200, 0);
  2173. setTargetBed(50 + 10 * (start_temp - 30) / 5);
  2174. custom_message = true;
  2175. custom_message_type = 4;
  2176. custom_message_state = 1;
  2177. custom_message = MSG_TEMP_CALIBRATION;
  2178. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2179. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2180. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2181. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2182. st_synchronize();
  2183. while (current_temperature_pinda < start_temp)
  2184. {
  2185. delay_keep_alive(1000);
  2186. serialecho_temperatures();
  2187. }
  2188. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2189. current_position[Z_AXIS] = 5;
  2190. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2191. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2192. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2193. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2194. st_synchronize();
  2195. find_bed_induction_sensor_point_z(-1.f);
  2196. zero_z = current_position[Z_AXIS];
  2197. //current_position[Z_AXIS]
  2198. SERIAL_ECHOLNPGM("");
  2199. SERIAL_ECHOPGM("ZERO: ");
  2200. MYSERIAL.print(current_position[Z_AXIS]);
  2201. SERIAL_ECHOLNPGM("");
  2202. int i = -1; for (; i < 5; i++)
  2203. {
  2204. float temp = (40 + i * 5);
  2205. SERIAL_ECHOPGM("Step: ");
  2206. MYSERIAL.print(i + 2);
  2207. SERIAL_ECHOLNPGM("/6 (skipped)");
  2208. SERIAL_ECHOPGM("PINDA temperature: ");
  2209. MYSERIAL.print((40 + i*5));
  2210. SERIAL_ECHOPGM(" Z shift (mm):");
  2211. MYSERIAL.print(0);
  2212. SERIAL_ECHOLNPGM("");
  2213. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2214. if (start_temp <= temp) break;
  2215. }
  2216. for (i++; i < 5; i++)
  2217. {
  2218. float temp = (40 + i * 5);
  2219. SERIAL_ECHOPGM("Step: ");
  2220. MYSERIAL.print(i + 2);
  2221. SERIAL_ECHOLNPGM("/6");
  2222. custom_message_state = i + 2;
  2223. setTargetBed(50 + 10 * (temp - 30) / 5);
  2224. // setTargetHotend(255, 0);
  2225. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2226. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2227. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2228. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2229. st_synchronize();
  2230. while (current_temperature_pinda < temp)
  2231. {
  2232. delay_keep_alive(1000);
  2233. serialecho_temperatures();
  2234. }
  2235. current_position[Z_AXIS] = 5;
  2236. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2237. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2238. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2239. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2240. st_synchronize();
  2241. find_bed_induction_sensor_point_z(-1.f);
  2242. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2243. SERIAL_ECHOLNPGM("");
  2244. SERIAL_ECHOPGM("PINDA temperature: ");
  2245. MYSERIAL.print(current_temperature_pinda);
  2246. SERIAL_ECHOPGM(" Z shift (mm):");
  2247. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2248. SERIAL_ECHOLNPGM("");
  2249. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2250. }
  2251. custom_message_type = 0;
  2252. custom_message = false;
  2253. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2254. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2255. disable_x();
  2256. disable_y();
  2257. disable_z();
  2258. disable_e0();
  2259. disable_e1();
  2260. disable_e2();
  2261. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2262. lcd_update_enable(true);
  2263. lcd_update(2);
  2264. setTargetBed(0); //set bed target temperature back to 0
  2265. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2266. break;
  2267. }
  2268. #endif //PINDA_THERMISTOR
  2269. setTargetBed(PINDA_MIN_T);
  2270. float zero_z;
  2271. int z_shift = 0; //unit: steps
  2272. int t_c; // temperature
  2273. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2274. // We don't know where we are! HOME!
  2275. // Push the commands to the front of the message queue in the reverse order!
  2276. // There shall be always enough space reserved for these commands.
  2277. repeatcommand_front(); // repeat G76 with all its parameters
  2278. enquecommand_front_P((PSTR("G28 W0")));
  2279. break;
  2280. }
  2281. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2282. custom_message = true;
  2283. custom_message_type = 4;
  2284. custom_message_state = 1;
  2285. custom_message = MSG_TEMP_CALIBRATION;
  2286. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2287. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2288. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2289. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2290. st_synchronize();
  2291. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2292. delay_keep_alive(1000);
  2293. serialecho_temperatures();
  2294. }
  2295. //enquecommand_P(PSTR("M190 S50"));
  2296. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2297. delay_keep_alive(1000);
  2298. serialecho_temperatures();
  2299. }
  2300. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2301. current_position[Z_AXIS] = 5;
  2302. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2303. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2304. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2305. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2306. st_synchronize();
  2307. find_bed_induction_sensor_point_z(-1.f);
  2308. zero_z = current_position[Z_AXIS];
  2309. //current_position[Z_AXIS]
  2310. SERIAL_ECHOLNPGM("");
  2311. SERIAL_ECHOPGM("ZERO: ");
  2312. MYSERIAL.print(current_position[Z_AXIS]);
  2313. SERIAL_ECHOLNPGM("");
  2314. for (int i = 0; i<5; i++) {
  2315. SERIAL_ECHOPGM("Step: ");
  2316. MYSERIAL.print(i+2);
  2317. SERIAL_ECHOLNPGM("/6");
  2318. custom_message_state = i + 2;
  2319. t_c = 60 + i * 10;
  2320. setTargetBed(t_c);
  2321. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2322. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2323. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2324. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2325. st_synchronize();
  2326. while (degBed() < t_c) {
  2327. delay_keep_alive(1000);
  2328. serialecho_temperatures();
  2329. }
  2330. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2331. delay_keep_alive(1000);
  2332. serialecho_temperatures();
  2333. }
  2334. current_position[Z_AXIS] = 5;
  2335. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2336. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2337. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2338. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2339. st_synchronize();
  2340. find_bed_induction_sensor_point_z(-1.f);
  2341. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2342. SERIAL_ECHOLNPGM("");
  2343. SERIAL_ECHOPGM("Temperature: ");
  2344. MYSERIAL.print(t_c);
  2345. SERIAL_ECHOPGM(" Z shift (mm):");
  2346. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2347. SERIAL_ECHOLNPGM("");
  2348. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2349. }
  2350. custom_message_type = 0;
  2351. custom_message = false;
  2352. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2353. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2354. disable_x();
  2355. disable_y();
  2356. disable_z();
  2357. disable_e0();
  2358. disable_e1();
  2359. disable_e2();
  2360. setTargetBed(0); //set bed target temperature back to 0
  2361. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2362. lcd_update_enable(true);
  2363. lcd_update(2);
  2364. }
  2365. break;
  2366. #ifdef DIS
  2367. case 77:
  2368. {
  2369. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2370. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2371. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2372. float dimension_x = 40;
  2373. float dimension_y = 40;
  2374. int points_x = 40;
  2375. int points_y = 40;
  2376. float offset_x = 74;
  2377. float offset_y = 33;
  2378. if (code_seen('X')) dimension_x = code_value();
  2379. if (code_seen('Y')) dimension_y = code_value();
  2380. if (code_seen('XP')) points_x = code_value();
  2381. if (code_seen('YP')) points_y = code_value();
  2382. if (code_seen('XO')) offset_x = code_value();
  2383. if (code_seen('YO')) offset_y = code_value();
  2384. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2385. } break;
  2386. #endif
  2387. case 79: {
  2388. for (int i = 255; i > 0; i = i - 5) {
  2389. fanSpeed = i;
  2390. //delay_keep_alive(2000);
  2391. for (int j = 0; j < 100; j++) {
  2392. delay_keep_alive(100);
  2393. }
  2394. fan_speed[1];
  2395. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2396. }
  2397. }break;
  2398. /**
  2399. * G80: Mesh-based Z probe, probes a grid and produces a
  2400. * mesh to compensate for variable bed height
  2401. *
  2402. * The S0 report the points as below
  2403. *
  2404. * +----> X-axis
  2405. * |
  2406. * |
  2407. * v Y-axis
  2408. *
  2409. */
  2410. case 80:
  2411. #ifdef MK1BP
  2412. break;
  2413. #endif //MK1BP
  2414. case_G80:
  2415. {
  2416. mesh_bed_leveling_flag = true;
  2417. int8_t verbosity_level = 0;
  2418. static bool run = false;
  2419. if (code_seen('V')) {
  2420. // Just 'V' without a number counts as V1.
  2421. char c = strchr_pointer[1];
  2422. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2423. }
  2424. // Firstly check if we know where we are
  2425. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2426. // We don't know where we are! HOME!
  2427. // Push the commands to the front of the message queue in the reverse order!
  2428. // There shall be always enough space reserved for these commands.
  2429. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2430. repeatcommand_front(); // repeat G80 with all its parameters
  2431. enquecommand_front_P((PSTR("G28 W0")));
  2432. }
  2433. else {
  2434. mesh_bed_leveling_flag = false;
  2435. }
  2436. break;
  2437. }
  2438. bool temp_comp_start = true;
  2439. #ifdef PINDA_THERMISTOR
  2440. temp_comp_start = false;
  2441. #endif //PINDA_THERMISTOR
  2442. if (temp_comp_start)
  2443. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2444. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2445. temp_compensation_start();
  2446. run = true;
  2447. repeatcommand_front(); // repeat G80 with all its parameters
  2448. enquecommand_front_P((PSTR("G28 W0")));
  2449. }
  2450. else {
  2451. mesh_bed_leveling_flag = false;
  2452. }
  2453. break;
  2454. }
  2455. run = false;
  2456. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2457. mesh_bed_leveling_flag = false;
  2458. break;
  2459. }
  2460. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2461. bool custom_message_old = custom_message;
  2462. unsigned int custom_message_type_old = custom_message_type;
  2463. unsigned int custom_message_state_old = custom_message_state;
  2464. custom_message = true;
  2465. custom_message_type = 1;
  2466. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2467. lcd_update(1);
  2468. mbl.reset(); //reset mesh bed leveling
  2469. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2470. // consumed during the first movements following this statement.
  2471. babystep_undo();
  2472. // Cycle through all points and probe them
  2473. // First move up. During this first movement, the babystepping will be reverted.
  2474. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2475. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2476. // The move to the first calibration point.
  2477. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2478. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2479. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2480. if (verbosity_level >= 1) {
  2481. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2482. }
  2483. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2484. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2485. // Wait until the move is finished.
  2486. st_synchronize();
  2487. int mesh_point = 0; //index number of calibration point
  2488. int ix = 0;
  2489. int iy = 0;
  2490. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2491. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2492. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2493. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2494. if (verbosity_level >= 1) {
  2495. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2496. }
  2497. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2498. const char *kill_message = NULL;
  2499. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2500. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2501. // Get coords of a measuring point.
  2502. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2503. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2504. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2505. float z0 = 0.f;
  2506. if (has_z && mesh_point > 0) {
  2507. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2508. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2509. //#if 0
  2510. if (verbosity_level >= 1) {
  2511. SERIAL_ECHOPGM("Bed leveling, point: ");
  2512. MYSERIAL.print(mesh_point);
  2513. SERIAL_ECHOPGM(", calibration z: ");
  2514. MYSERIAL.print(z0, 5);
  2515. SERIAL_ECHOLNPGM("");
  2516. }
  2517. //#endif
  2518. }
  2519. // Move Z up to MESH_HOME_Z_SEARCH.
  2520. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2521. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2522. st_synchronize();
  2523. // Move to XY position of the sensor point.
  2524. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2525. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2526. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2527. if (verbosity_level >= 1) {
  2528. SERIAL_PROTOCOL(mesh_point);
  2529. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2530. }
  2531. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2532. st_synchronize();
  2533. // Go down until endstop is hit
  2534. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2535. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2536. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2537. break;
  2538. }
  2539. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2540. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2541. break;
  2542. }
  2543. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2544. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2545. break;
  2546. }
  2547. if (verbosity_level >= 10) {
  2548. SERIAL_ECHOPGM("X: ");
  2549. MYSERIAL.print(current_position[X_AXIS], 5);
  2550. SERIAL_ECHOLNPGM("");
  2551. SERIAL_ECHOPGM("Y: ");
  2552. MYSERIAL.print(current_position[Y_AXIS], 5);
  2553. SERIAL_PROTOCOLPGM("\n");
  2554. }
  2555. float offset_z = 0;
  2556. #ifdef PINDA_THERMISTOR
  2557. offset_z = temp_compensation_pinda_thermistor_offset();
  2558. #endif //PINDA_THERMISTOR
  2559. if (verbosity_level >= 1) {
  2560. SERIAL_ECHOPGM("mesh bed leveling: ");
  2561. MYSERIAL.print(current_position[Z_AXIS], 5);
  2562. SERIAL_ECHOPGM(" offset: ");
  2563. MYSERIAL.print(offset_z, 5);
  2564. SERIAL_ECHOLNPGM("");
  2565. }
  2566. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2567. custom_message_state--;
  2568. mesh_point++;
  2569. lcd_update(1);
  2570. }
  2571. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2572. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2573. if (verbosity_level >= 20) {
  2574. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2575. MYSERIAL.print(current_position[Z_AXIS], 5);
  2576. }
  2577. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2578. st_synchronize();
  2579. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2580. kill(kill_message);
  2581. SERIAL_ECHOLNPGM("killed");
  2582. }
  2583. clean_up_after_endstop_move();
  2584. SERIAL_ECHOLNPGM("clean up finished ");
  2585. bool apply_temp_comp = true;
  2586. #ifdef PINDA_THERMISTOR
  2587. apply_temp_comp = false;
  2588. #endif
  2589. if (apply_temp_comp)
  2590. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2591. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2592. SERIAL_ECHOLNPGM("babystep applied");
  2593. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2594. if (verbosity_level >= 1) {
  2595. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2596. }
  2597. for (uint8_t i = 0; i < 4; ++i) {
  2598. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2599. long correction = 0;
  2600. if (code_seen(codes[i]))
  2601. correction = code_value_long();
  2602. else if (eeprom_bed_correction_valid) {
  2603. unsigned char *addr = (i < 2) ?
  2604. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2605. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2606. correction = eeprom_read_int8(addr);
  2607. }
  2608. if (correction == 0)
  2609. continue;
  2610. float offset = float(correction) * 0.001f;
  2611. if (fabs(offset) > 0.101f) {
  2612. SERIAL_ERROR_START;
  2613. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2614. SERIAL_ECHO(offset);
  2615. SERIAL_ECHOLNPGM(" microns");
  2616. }
  2617. else {
  2618. switch (i) {
  2619. case 0:
  2620. for (uint8_t row = 0; row < 3; ++row) {
  2621. mbl.z_values[row][1] += 0.5f * offset;
  2622. mbl.z_values[row][0] += offset;
  2623. }
  2624. break;
  2625. case 1:
  2626. for (uint8_t row = 0; row < 3; ++row) {
  2627. mbl.z_values[row][1] += 0.5f * offset;
  2628. mbl.z_values[row][2] += offset;
  2629. }
  2630. break;
  2631. case 2:
  2632. for (uint8_t col = 0; col < 3; ++col) {
  2633. mbl.z_values[1][col] += 0.5f * offset;
  2634. mbl.z_values[0][col] += offset;
  2635. }
  2636. break;
  2637. case 3:
  2638. for (uint8_t col = 0; col < 3; ++col) {
  2639. mbl.z_values[1][col] += 0.5f * offset;
  2640. mbl.z_values[2][col] += offset;
  2641. }
  2642. break;
  2643. }
  2644. }
  2645. }
  2646. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2647. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2648. SERIAL_ECHOLNPGM("Upsample finished");
  2649. mbl.active = 1; //activate mesh bed leveling
  2650. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2651. go_home_with_z_lift();
  2652. SERIAL_ECHOLNPGM("Go home finished");
  2653. //unretract (after PINDA preheat retraction)
  2654. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2655. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2656. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2657. }
  2658. // Restore custom message state
  2659. custom_message = custom_message_old;
  2660. custom_message_type = custom_message_type_old;
  2661. custom_message_state = custom_message_state_old;
  2662. mesh_bed_leveling_flag = false;
  2663. mesh_bed_run_from_menu = false;
  2664. lcd_update(2);
  2665. }
  2666. break;
  2667. /**
  2668. * G81: Print mesh bed leveling status and bed profile if activated
  2669. */
  2670. case 81:
  2671. if (mbl.active) {
  2672. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2673. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2674. SERIAL_PROTOCOLPGM(",");
  2675. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2676. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2677. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2678. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2679. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2680. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2681. SERIAL_PROTOCOLPGM(" ");
  2682. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2683. }
  2684. SERIAL_PROTOCOLPGM("\n");
  2685. }
  2686. }
  2687. else
  2688. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2689. break;
  2690. #if 0
  2691. /**
  2692. * G82: Single Z probe at current location
  2693. *
  2694. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2695. *
  2696. */
  2697. case 82:
  2698. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2699. setup_for_endstop_move();
  2700. find_bed_induction_sensor_point_z();
  2701. clean_up_after_endstop_move();
  2702. SERIAL_PROTOCOLPGM("Bed found at: ");
  2703. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2704. SERIAL_PROTOCOLPGM("\n");
  2705. break;
  2706. /**
  2707. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2708. */
  2709. case 83:
  2710. {
  2711. int babystepz = code_seen('S') ? code_value() : 0;
  2712. int BabyPosition = code_seen('P') ? code_value() : 0;
  2713. if (babystepz != 0) {
  2714. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2715. // Is the axis indexed starting with zero or one?
  2716. if (BabyPosition > 4) {
  2717. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2718. }else{
  2719. // Save it to the eeprom
  2720. babystepLoadZ = babystepz;
  2721. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2722. // adjust the Z
  2723. babystepsTodoZadd(babystepLoadZ);
  2724. }
  2725. }
  2726. }
  2727. break;
  2728. /**
  2729. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2730. */
  2731. case 84:
  2732. babystepsTodoZsubtract(babystepLoadZ);
  2733. // babystepLoadZ = 0;
  2734. break;
  2735. /**
  2736. * G85: Prusa3D specific: Pick best babystep
  2737. */
  2738. case 85:
  2739. lcd_pick_babystep();
  2740. break;
  2741. #endif
  2742. /**
  2743. * G86: Prusa3D specific: Disable babystep correction after home.
  2744. * This G-code will be performed at the start of a calibration script.
  2745. */
  2746. case 86:
  2747. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2748. break;
  2749. /**
  2750. * G87: Prusa3D specific: Enable babystep correction after home
  2751. * This G-code will be performed at the end of a calibration script.
  2752. */
  2753. case 87:
  2754. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2755. break;
  2756. /**
  2757. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2758. */
  2759. case 88:
  2760. break;
  2761. #endif // ENABLE_MESH_BED_LEVELING
  2762. case 90: // G90
  2763. relative_mode = false;
  2764. break;
  2765. case 91: // G91
  2766. relative_mode = true;
  2767. break;
  2768. case 92: // G92
  2769. if(!code_seen(axis_codes[E_AXIS]))
  2770. st_synchronize();
  2771. for(int8_t i=0; i < NUM_AXIS; i++) {
  2772. if(code_seen(axis_codes[i])) {
  2773. if(i == E_AXIS) {
  2774. current_position[i] = code_value();
  2775. plan_set_e_position(current_position[E_AXIS]);
  2776. }
  2777. else {
  2778. current_position[i] = code_value()+add_homing[i];
  2779. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2780. }
  2781. }
  2782. }
  2783. break;
  2784. case 98: //activate farm mode
  2785. farm_mode = 1;
  2786. PingTime = millis();
  2787. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2788. break;
  2789. case 99: //deactivate farm mode
  2790. farm_mode = 0;
  2791. lcd_printer_connected();
  2792. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2793. lcd_update(2);
  2794. break;
  2795. }
  2796. } // end if(code_seen('G'))
  2797. else if(code_seen('M'))
  2798. {
  2799. int index;
  2800. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2801. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2802. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2803. SERIAL_ECHOLNPGM("Invalid M code");
  2804. } else
  2805. switch((int)code_value())
  2806. {
  2807. #ifdef ULTIPANEL
  2808. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2809. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2810. {
  2811. char *src = strchr_pointer + 2;
  2812. codenum = 0;
  2813. bool hasP = false, hasS = false;
  2814. if (code_seen('P')) {
  2815. codenum = code_value(); // milliseconds to wait
  2816. hasP = codenum > 0;
  2817. }
  2818. if (code_seen('S')) {
  2819. codenum = code_value() * 1000; // seconds to wait
  2820. hasS = codenum > 0;
  2821. }
  2822. starpos = strchr(src, '*');
  2823. if (starpos != NULL) *(starpos) = '\0';
  2824. while (*src == ' ') ++src;
  2825. if (!hasP && !hasS && *src != '\0') {
  2826. lcd_setstatus(src);
  2827. } else {
  2828. LCD_MESSAGERPGM(MSG_USERWAIT);
  2829. }
  2830. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2831. st_synchronize();
  2832. previous_millis_cmd = millis();
  2833. if (codenum > 0){
  2834. codenum += millis(); // keep track of when we started waiting
  2835. while(millis() < codenum && !lcd_clicked()){
  2836. manage_heater();
  2837. manage_inactivity(true);
  2838. lcd_update();
  2839. }
  2840. lcd_ignore_click(false);
  2841. }else{
  2842. if (!lcd_detected())
  2843. break;
  2844. while(!lcd_clicked()){
  2845. manage_heater();
  2846. manage_inactivity(true);
  2847. lcd_update();
  2848. }
  2849. }
  2850. if (IS_SD_PRINTING)
  2851. LCD_MESSAGERPGM(MSG_RESUMING);
  2852. else
  2853. LCD_MESSAGERPGM(WELCOME_MSG);
  2854. }
  2855. break;
  2856. #endif
  2857. case 17:
  2858. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2859. enable_x();
  2860. enable_y();
  2861. enable_z();
  2862. enable_e0();
  2863. enable_e1();
  2864. enable_e2();
  2865. break;
  2866. #ifdef SDSUPPORT
  2867. case 20: // M20 - list SD card
  2868. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2869. card.ls();
  2870. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2871. break;
  2872. case 21: // M21 - init SD card
  2873. card.initsd();
  2874. break;
  2875. case 22: //M22 - release SD card
  2876. card.release();
  2877. break;
  2878. case 23: //M23 - Select file
  2879. starpos = (strchr(strchr_pointer + 4,'*'));
  2880. if(starpos!=NULL)
  2881. *(starpos)='\0';
  2882. card.openFile(strchr_pointer + 4,true);
  2883. break;
  2884. case 24: //M24 - Start SD print
  2885. card.startFileprint();
  2886. starttime=millis();
  2887. break;
  2888. case 25: //M25 - Pause SD print
  2889. card.pauseSDPrint();
  2890. break;
  2891. case 26: //M26 - Set SD index
  2892. if(card.cardOK && code_seen('S')) {
  2893. card.setIndex(code_value_long());
  2894. }
  2895. break;
  2896. case 27: //M27 - Get SD status
  2897. card.getStatus();
  2898. break;
  2899. case 28: //M28 - Start SD write
  2900. starpos = (strchr(strchr_pointer + 4,'*'));
  2901. if(starpos != NULL){
  2902. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2903. strchr_pointer = strchr(npos,' ') + 1;
  2904. *(starpos) = '\0';
  2905. }
  2906. card.openFile(strchr_pointer+4,false);
  2907. break;
  2908. case 29: //M29 - Stop SD write
  2909. //processed in write to file routine above
  2910. //card,saving = false;
  2911. break;
  2912. case 30: //M30 <filename> Delete File
  2913. if (card.cardOK){
  2914. card.closefile();
  2915. starpos = (strchr(strchr_pointer + 4,'*'));
  2916. if(starpos != NULL){
  2917. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2918. strchr_pointer = strchr(npos,' ') + 1;
  2919. *(starpos) = '\0';
  2920. }
  2921. card.removeFile(strchr_pointer + 4);
  2922. }
  2923. break;
  2924. case 32: //M32 - Select file and start SD print
  2925. {
  2926. if(card.sdprinting) {
  2927. st_synchronize();
  2928. }
  2929. starpos = (strchr(strchr_pointer + 4,'*'));
  2930. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2931. if(namestartpos==NULL)
  2932. {
  2933. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2934. }
  2935. else
  2936. namestartpos++; //to skip the '!'
  2937. if(starpos!=NULL)
  2938. *(starpos)='\0';
  2939. bool call_procedure=(code_seen('P'));
  2940. if(strchr_pointer>namestartpos)
  2941. call_procedure=false; //false alert, 'P' found within filename
  2942. if( card.cardOK )
  2943. {
  2944. card.openFile(namestartpos,true,!call_procedure);
  2945. if(code_seen('S'))
  2946. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2947. card.setIndex(code_value_long());
  2948. card.startFileprint();
  2949. if(!call_procedure)
  2950. starttime=millis(); //procedure calls count as normal print time.
  2951. }
  2952. } break;
  2953. case 928: //M928 - Start SD write
  2954. starpos = (strchr(strchr_pointer + 5,'*'));
  2955. if(starpos != NULL){
  2956. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2957. strchr_pointer = strchr(npos,' ') + 1;
  2958. *(starpos) = '\0';
  2959. }
  2960. card.openLogFile(strchr_pointer+5);
  2961. break;
  2962. #endif //SDSUPPORT
  2963. case 31: //M31 take time since the start of the SD print or an M109 command
  2964. {
  2965. stoptime=millis();
  2966. char time[30];
  2967. unsigned long t=(stoptime-starttime)/1000;
  2968. int sec,min;
  2969. min=t/60;
  2970. sec=t%60;
  2971. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2972. SERIAL_ECHO_START;
  2973. SERIAL_ECHOLN(time);
  2974. lcd_setstatus(time);
  2975. autotempShutdown();
  2976. }
  2977. break;
  2978. case 42: //M42 -Change pin status via gcode
  2979. if (code_seen('S'))
  2980. {
  2981. int pin_status = code_value();
  2982. int pin_number = LED_PIN;
  2983. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2984. pin_number = code_value();
  2985. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2986. {
  2987. if (sensitive_pins[i] == pin_number)
  2988. {
  2989. pin_number = -1;
  2990. break;
  2991. }
  2992. }
  2993. #if defined(FAN_PIN) && FAN_PIN > -1
  2994. if (pin_number == FAN_PIN)
  2995. fanSpeed = pin_status;
  2996. #endif
  2997. if (pin_number > -1)
  2998. {
  2999. pinMode(pin_number, OUTPUT);
  3000. digitalWrite(pin_number, pin_status);
  3001. analogWrite(pin_number, pin_status);
  3002. }
  3003. }
  3004. break;
  3005. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3006. // Reset the baby step value and the baby step applied flag.
  3007. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3008. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3009. // Reset the skew and offset in both RAM and EEPROM.
  3010. reset_bed_offset_and_skew();
  3011. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3012. // the planner will not perform any adjustments in the XY plane.
  3013. // Wait for the motors to stop and update the current position with the absolute values.
  3014. world2machine_revert_to_uncorrected();
  3015. break;
  3016. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3017. {
  3018. // Only Z calibration?
  3019. bool onlyZ = code_seen('Z');
  3020. if (!onlyZ) {
  3021. setTargetBed(0);
  3022. setTargetHotend(0, 0);
  3023. setTargetHotend(0, 1);
  3024. setTargetHotend(0, 2);
  3025. adjust_bed_reset(); //reset bed level correction
  3026. }
  3027. // Disable the default update procedure of the display. We will do a modal dialog.
  3028. lcd_update_enable(false);
  3029. // Let the planner use the uncorrected coordinates.
  3030. mbl.reset();
  3031. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3032. // the planner will not perform any adjustments in the XY plane.
  3033. // Wait for the motors to stop and update the current position with the absolute values.
  3034. world2machine_revert_to_uncorrected();
  3035. // Reset the baby step value applied without moving the axes.
  3036. babystep_reset();
  3037. // Mark all axes as in a need for homing.
  3038. memset(axis_known_position, 0, sizeof(axis_known_position));
  3039. // Home in the XY plane.
  3040. //set_destination_to_current();
  3041. setup_for_endstop_move();
  3042. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  3043. home_xy();
  3044. // Let the user move the Z axes up to the end stoppers.
  3045. #ifdef TMC2130
  3046. if (calibrate_z_auto()) {
  3047. #else //TMC2130
  3048. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3049. #endif //TMC2130
  3050. refresh_cmd_timeout();
  3051. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3052. lcd_wait_for_cool_down();
  3053. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3054. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3055. lcd_implementation_print_at(0, 2, 1);
  3056. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3057. }
  3058. // Move the print head close to the bed.
  3059. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3060. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3061. st_synchronize();
  3062. //#ifdef TMC2130
  3063. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  3064. //#endif
  3065. int8_t verbosity_level = 0;
  3066. if (code_seen('V')) {
  3067. // Just 'V' without a number counts as V1.
  3068. char c = strchr_pointer[1];
  3069. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3070. }
  3071. if (onlyZ) {
  3072. clean_up_after_endstop_move();
  3073. // Z only calibration.
  3074. // Load the machine correction matrix
  3075. world2machine_initialize();
  3076. // and correct the current_position to match the transformed coordinate system.
  3077. world2machine_update_current();
  3078. //FIXME
  3079. bool result = sample_mesh_and_store_reference();
  3080. if (result) {
  3081. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3082. // Shipped, the nozzle height has been set already. The user can start printing now.
  3083. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3084. // babystep_apply();
  3085. }
  3086. } else {
  3087. // Reset the baby step value and the baby step applied flag.
  3088. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3089. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3090. // Complete XYZ calibration.
  3091. uint8_t point_too_far_mask = 0;
  3092. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3093. clean_up_after_endstop_move();
  3094. // Print head up.
  3095. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3096. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3097. st_synchronize();
  3098. if (result >= 0) {
  3099. point_too_far_mask = 0;
  3100. // Second half: The fine adjustment.
  3101. // Let the planner use the uncorrected coordinates.
  3102. mbl.reset();
  3103. world2machine_reset();
  3104. // Home in the XY plane.
  3105. setup_for_endstop_move();
  3106. home_xy();
  3107. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3108. clean_up_after_endstop_move();
  3109. // Print head up.
  3110. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3111. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3112. st_synchronize();
  3113. // if (result >= 0) babystep_apply();
  3114. }
  3115. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3116. if (result >= 0) {
  3117. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3118. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3119. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3120. }
  3121. }
  3122. #ifdef TMC2130
  3123. tmc2130_home_exit();
  3124. #endif
  3125. } else {
  3126. // Timeouted.
  3127. }
  3128. lcd_update_enable(true);
  3129. break;
  3130. }
  3131. /*
  3132. case 46:
  3133. {
  3134. // M46: Prusa3D: Show the assigned IP address.
  3135. uint8_t ip[4];
  3136. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3137. if (hasIP) {
  3138. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3139. SERIAL_ECHO(int(ip[0]));
  3140. SERIAL_ECHOPGM(".");
  3141. SERIAL_ECHO(int(ip[1]));
  3142. SERIAL_ECHOPGM(".");
  3143. SERIAL_ECHO(int(ip[2]));
  3144. SERIAL_ECHOPGM(".");
  3145. SERIAL_ECHO(int(ip[3]));
  3146. SERIAL_ECHOLNPGM("");
  3147. } else {
  3148. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3149. }
  3150. break;
  3151. }
  3152. */
  3153. case 47:
  3154. // M47: Prusa3D: Show end stops dialog on the display.
  3155. lcd_diag_show_end_stops();
  3156. break;
  3157. #if 0
  3158. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3159. {
  3160. // Disable the default update procedure of the display. We will do a modal dialog.
  3161. lcd_update_enable(false);
  3162. // Let the planner use the uncorrected coordinates.
  3163. mbl.reset();
  3164. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3165. // the planner will not perform any adjustments in the XY plane.
  3166. // Wait for the motors to stop and update the current position with the absolute values.
  3167. world2machine_revert_to_uncorrected();
  3168. // Move the print head close to the bed.
  3169. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3170. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3171. st_synchronize();
  3172. // Home in the XY plane.
  3173. set_destination_to_current();
  3174. setup_for_endstop_move();
  3175. home_xy();
  3176. int8_t verbosity_level = 0;
  3177. if (code_seen('V')) {
  3178. // Just 'V' without a number counts as V1.
  3179. char c = strchr_pointer[1];
  3180. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3181. }
  3182. bool success = scan_bed_induction_points(verbosity_level);
  3183. clean_up_after_endstop_move();
  3184. // Print head up.
  3185. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3186. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3187. st_synchronize();
  3188. lcd_update_enable(true);
  3189. break;
  3190. }
  3191. #endif
  3192. // M48 Z-Probe repeatability measurement function.
  3193. //
  3194. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3195. //
  3196. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3197. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3198. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3199. // regenerated.
  3200. //
  3201. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3202. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3203. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3204. //
  3205. #ifdef ENABLE_AUTO_BED_LEVELING
  3206. #ifdef Z_PROBE_REPEATABILITY_TEST
  3207. case 48: // M48 Z-Probe repeatability
  3208. {
  3209. #if Z_MIN_PIN == -1
  3210. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3211. #endif
  3212. double sum=0.0;
  3213. double mean=0.0;
  3214. double sigma=0.0;
  3215. double sample_set[50];
  3216. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3217. double X_current, Y_current, Z_current;
  3218. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3219. if (code_seen('V') || code_seen('v')) {
  3220. verbose_level = code_value();
  3221. if (verbose_level<0 || verbose_level>4 ) {
  3222. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3223. goto Sigma_Exit;
  3224. }
  3225. }
  3226. if (verbose_level > 0) {
  3227. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3228. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3229. }
  3230. if (code_seen('n')) {
  3231. n_samples = code_value();
  3232. if (n_samples<4 || n_samples>50 ) {
  3233. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3234. goto Sigma_Exit;
  3235. }
  3236. }
  3237. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3238. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3239. Z_current = st_get_position_mm(Z_AXIS);
  3240. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3241. ext_position = st_get_position_mm(E_AXIS);
  3242. if (code_seen('X') || code_seen('x') ) {
  3243. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3244. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3245. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3246. goto Sigma_Exit;
  3247. }
  3248. }
  3249. if (code_seen('Y') || code_seen('y') ) {
  3250. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3251. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3252. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3253. goto Sigma_Exit;
  3254. }
  3255. }
  3256. if (code_seen('L') || code_seen('l') ) {
  3257. n_legs = code_value();
  3258. if ( n_legs==1 )
  3259. n_legs = 2;
  3260. if ( n_legs<0 || n_legs>15 ) {
  3261. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3262. goto Sigma_Exit;
  3263. }
  3264. }
  3265. //
  3266. // Do all the preliminary setup work. First raise the probe.
  3267. //
  3268. st_synchronize();
  3269. plan_bed_level_matrix.set_to_identity();
  3270. plan_buffer_line( X_current, Y_current, Z_start_location,
  3271. ext_position,
  3272. homing_feedrate[Z_AXIS]/60,
  3273. active_extruder);
  3274. st_synchronize();
  3275. //
  3276. // Now get everything to the specified probe point So we can safely do a probe to
  3277. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3278. // use that as a starting point for each probe.
  3279. //
  3280. if (verbose_level > 2)
  3281. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3282. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3283. ext_position,
  3284. homing_feedrate[X_AXIS]/60,
  3285. active_extruder);
  3286. st_synchronize();
  3287. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3288. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3289. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3290. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3291. //
  3292. // OK, do the inital probe to get us close to the bed.
  3293. // Then retrace the right amount and use that in subsequent probes
  3294. //
  3295. setup_for_endstop_move();
  3296. run_z_probe();
  3297. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3298. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3299. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3300. ext_position,
  3301. homing_feedrate[X_AXIS]/60,
  3302. active_extruder);
  3303. st_synchronize();
  3304. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3305. for( n=0; n<n_samples; n++) {
  3306. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3307. if ( n_legs) {
  3308. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3309. int rotational_direction, l;
  3310. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3311. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3312. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3313. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3314. //SERIAL_ECHOPAIR(" theta: ",theta);
  3315. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3316. //SERIAL_PROTOCOLLNPGM("");
  3317. for( l=0; l<n_legs-1; l++) {
  3318. if (rotational_direction==1)
  3319. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3320. else
  3321. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3322. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3323. if ( radius<0.0 )
  3324. radius = -radius;
  3325. X_current = X_probe_location + cos(theta) * radius;
  3326. Y_current = Y_probe_location + sin(theta) * radius;
  3327. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3328. X_current = X_MIN_POS;
  3329. if ( X_current>X_MAX_POS)
  3330. X_current = X_MAX_POS;
  3331. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3332. Y_current = Y_MIN_POS;
  3333. if ( Y_current>Y_MAX_POS)
  3334. Y_current = Y_MAX_POS;
  3335. if (verbose_level>3 ) {
  3336. SERIAL_ECHOPAIR("x: ", X_current);
  3337. SERIAL_ECHOPAIR("y: ", Y_current);
  3338. SERIAL_PROTOCOLLNPGM("");
  3339. }
  3340. do_blocking_move_to( X_current, Y_current, Z_current );
  3341. }
  3342. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3343. }
  3344. setup_for_endstop_move();
  3345. run_z_probe();
  3346. sample_set[n] = current_position[Z_AXIS];
  3347. //
  3348. // Get the current mean for the data points we have so far
  3349. //
  3350. sum=0.0;
  3351. for( j=0; j<=n; j++) {
  3352. sum = sum + sample_set[j];
  3353. }
  3354. mean = sum / (double (n+1));
  3355. //
  3356. // Now, use that mean to calculate the standard deviation for the
  3357. // data points we have so far
  3358. //
  3359. sum=0.0;
  3360. for( j=0; j<=n; j++) {
  3361. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3362. }
  3363. sigma = sqrt( sum / (double (n+1)) );
  3364. if (verbose_level > 1) {
  3365. SERIAL_PROTOCOL(n+1);
  3366. SERIAL_PROTOCOL(" of ");
  3367. SERIAL_PROTOCOL(n_samples);
  3368. SERIAL_PROTOCOLPGM(" z: ");
  3369. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3370. }
  3371. if (verbose_level > 2) {
  3372. SERIAL_PROTOCOL(" mean: ");
  3373. SERIAL_PROTOCOL_F(mean,6);
  3374. SERIAL_PROTOCOL(" sigma: ");
  3375. SERIAL_PROTOCOL_F(sigma,6);
  3376. }
  3377. if (verbose_level > 0)
  3378. SERIAL_PROTOCOLPGM("\n");
  3379. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3380. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3381. st_synchronize();
  3382. }
  3383. delay(1000);
  3384. clean_up_after_endstop_move();
  3385. // enable_endstops(true);
  3386. if (verbose_level > 0) {
  3387. SERIAL_PROTOCOLPGM("Mean: ");
  3388. SERIAL_PROTOCOL_F(mean, 6);
  3389. SERIAL_PROTOCOLPGM("\n");
  3390. }
  3391. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3392. SERIAL_PROTOCOL_F(sigma, 6);
  3393. SERIAL_PROTOCOLPGM("\n\n");
  3394. Sigma_Exit:
  3395. break;
  3396. }
  3397. #endif // Z_PROBE_REPEATABILITY_TEST
  3398. #endif // ENABLE_AUTO_BED_LEVELING
  3399. case 104: // M104
  3400. if(setTargetedHotend(104)){
  3401. break;
  3402. }
  3403. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3404. setWatch();
  3405. break;
  3406. case 112: // M112 -Emergency Stop
  3407. kill("", 3);
  3408. break;
  3409. case 140: // M140 set bed temp
  3410. if (code_seen('S')) setTargetBed(code_value());
  3411. break;
  3412. case 105 : // M105
  3413. if(setTargetedHotend(105)){
  3414. break;
  3415. }
  3416. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3417. SERIAL_PROTOCOLPGM("ok T:");
  3418. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3419. SERIAL_PROTOCOLPGM(" /");
  3420. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3421. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3422. SERIAL_PROTOCOLPGM(" B:");
  3423. SERIAL_PROTOCOL_F(degBed(),1);
  3424. SERIAL_PROTOCOLPGM(" /");
  3425. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3426. #endif //TEMP_BED_PIN
  3427. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3428. SERIAL_PROTOCOLPGM(" T");
  3429. SERIAL_PROTOCOL(cur_extruder);
  3430. SERIAL_PROTOCOLPGM(":");
  3431. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3432. SERIAL_PROTOCOLPGM(" /");
  3433. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3434. }
  3435. #else
  3436. SERIAL_ERROR_START;
  3437. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3438. #endif
  3439. SERIAL_PROTOCOLPGM(" @:");
  3440. #ifdef EXTRUDER_WATTS
  3441. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3442. SERIAL_PROTOCOLPGM("W");
  3443. #else
  3444. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3445. #endif
  3446. SERIAL_PROTOCOLPGM(" B@:");
  3447. #ifdef BED_WATTS
  3448. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3449. SERIAL_PROTOCOLPGM("W");
  3450. #else
  3451. SERIAL_PROTOCOL(getHeaterPower(-1));
  3452. #endif
  3453. #ifdef PINDA_THERMISTOR
  3454. SERIAL_PROTOCOLPGM(" P:");
  3455. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3456. #endif //PINDA_THERMISTOR
  3457. #ifdef AMBIENT_THERMISTOR
  3458. SERIAL_PROTOCOLPGM(" A:");
  3459. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3460. #endif //AMBIENT_THERMISTOR
  3461. #ifdef SHOW_TEMP_ADC_VALUES
  3462. {float raw = 0.0;
  3463. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3464. SERIAL_PROTOCOLPGM(" ADC B:");
  3465. SERIAL_PROTOCOL_F(degBed(),1);
  3466. SERIAL_PROTOCOLPGM("C->");
  3467. raw = rawBedTemp();
  3468. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3469. SERIAL_PROTOCOLPGM(" Rb->");
  3470. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3471. SERIAL_PROTOCOLPGM(" Rxb->");
  3472. SERIAL_PROTOCOL_F(raw, 5);
  3473. #endif
  3474. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3475. SERIAL_PROTOCOLPGM(" T");
  3476. SERIAL_PROTOCOL(cur_extruder);
  3477. SERIAL_PROTOCOLPGM(":");
  3478. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3479. SERIAL_PROTOCOLPGM("C->");
  3480. raw = rawHotendTemp(cur_extruder);
  3481. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3482. SERIAL_PROTOCOLPGM(" Rt");
  3483. SERIAL_PROTOCOL(cur_extruder);
  3484. SERIAL_PROTOCOLPGM("->");
  3485. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3486. SERIAL_PROTOCOLPGM(" Rx");
  3487. SERIAL_PROTOCOL(cur_extruder);
  3488. SERIAL_PROTOCOLPGM("->");
  3489. SERIAL_PROTOCOL_F(raw, 5);
  3490. }}
  3491. #endif
  3492. SERIAL_PROTOCOLLN("");
  3493. return;
  3494. break;
  3495. case 109:
  3496. {// M109 - Wait for extruder heater to reach target.
  3497. if(setTargetedHotend(109)){
  3498. break;
  3499. }
  3500. LCD_MESSAGERPGM(MSG_HEATING);
  3501. heating_status = 1;
  3502. if (farm_mode) { prusa_statistics(1); };
  3503. #ifdef AUTOTEMP
  3504. autotemp_enabled=false;
  3505. #endif
  3506. if (code_seen('S')) {
  3507. setTargetHotend(code_value(), tmp_extruder);
  3508. CooldownNoWait = true;
  3509. } else if (code_seen('R')) {
  3510. setTargetHotend(code_value(), tmp_extruder);
  3511. CooldownNoWait = false;
  3512. }
  3513. #ifdef AUTOTEMP
  3514. if (code_seen('S')) autotemp_min=code_value();
  3515. if (code_seen('B')) autotemp_max=code_value();
  3516. if (code_seen('F'))
  3517. {
  3518. autotemp_factor=code_value();
  3519. autotemp_enabled=true;
  3520. }
  3521. #endif
  3522. setWatch();
  3523. codenum = millis();
  3524. /* See if we are heating up or cooling down */
  3525. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3526. cancel_heatup = false;
  3527. wait_for_heater(codenum); //loops until target temperature is reached
  3528. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3529. heating_status = 2;
  3530. if (farm_mode) { prusa_statistics(2); };
  3531. //starttime=millis();
  3532. previous_millis_cmd = millis();
  3533. }
  3534. break;
  3535. case 190: // M190 - Wait for bed heater to reach target.
  3536. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3537. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3538. heating_status = 3;
  3539. if (farm_mode) { prusa_statistics(1); };
  3540. if (code_seen('S'))
  3541. {
  3542. setTargetBed(code_value());
  3543. CooldownNoWait = true;
  3544. }
  3545. else if (code_seen('R'))
  3546. {
  3547. setTargetBed(code_value());
  3548. CooldownNoWait = false;
  3549. }
  3550. codenum = millis();
  3551. cancel_heatup = false;
  3552. target_direction = isHeatingBed(); // true if heating, false if cooling
  3553. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3554. {
  3555. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3556. {
  3557. if (!farm_mode) {
  3558. float tt = degHotend(active_extruder);
  3559. SERIAL_PROTOCOLPGM("T:");
  3560. SERIAL_PROTOCOL(tt);
  3561. SERIAL_PROTOCOLPGM(" E:");
  3562. SERIAL_PROTOCOL((int)active_extruder);
  3563. SERIAL_PROTOCOLPGM(" B:");
  3564. SERIAL_PROTOCOL_F(degBed(), 1);
  3565. SERIAL_PROTOCOLLN("");
  3566. }
  3567. codenum = millis();
  3568. }
  3569. manage_heater();
  3570. manage_inactivity();
  3571. lcd_update();
  3572. }
  3573. LCD_MESSAGERPGM(MSG_BED_DONE);
  3574. heating_status = 4;
  3575. previous_millis_cmd = millis();
  3576. #endif
  3577. break;
  3578. #if defined(FAN_PIN) && FAN_PIN > -1
  3579. case 106: //M106 Fan On
  3580. if (code_seen('S')){
  3581. fanSpeed=constrain(code_value(),0,255);
  3582. }
  3583. else {
  3584. fanSpeed=255;
  3585. }
  3586. break;
  3587. case 107: //M107 Fan Off
  3588. fanSpeed = 0;
  3589. break;
  3590. #endif //FAN_PIN
  3591. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3592. case 80: // M80 - Turn on Power Supply
  3593. SET_OUTPUT(PS_ON_PIN); //GND
  3594. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3595. // If you have a switch on suicide pin, this is useful
  3596. // if you want to start another print with suicide feature after
  3597. // a print without suicide...
  3598. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3599. SET_OUTPUT(SUICIDE_PIN);
  3600. WRITE(SUICIDE_PIN, HIGH);
  3601. #endif
  3602. #ifdef ULTIPANEL
  3603. powersupply = true;
  3604. LCD_MESSAGERPGM(WELCOME_MSG);
  3605. lcd_update();
  3606. #endif
  3607. break;
  3608. #endif
  3609. case 81: // M81 - Turn off Power Supply
  3610. disable_heater();
  3611. st_synchronize();
  3612. disable_e0();
  3613. disable_e1();
  3614. disable_e2();
  3615. finishAndDisableSteppers();
  3616. fanSpeed = 0;
  3617. delay(1000); // Wait a little before to switch off
  3618. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3619. st_synchronize();
  3620. suicide();
  3621. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3622. SET_OUTPUT(PS_ON_PIN);
  3623. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3624. #endif
  3625. #ifdef ULTIPANEL
  3626. powersupply = false;
  3627. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3628. /*
  3629. MACHNAME = "Prusa i3"
  3630. MSGOFF = "Vypnuto"
  3631. "Prusai3"" ""vypnuto""."
  3632. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3633. */
  3634. lcd_update();
  3635. #endif
  3636. break;
  3637. case 82:
  3638. axis_relative_modes[3] = false;
  3639. break;
  3640. case 83:
  3641. axis_relative_modes[3] = true;
  3642. break;
  3643. case 18: //compatibility
  3644. case 84: // M84
  3645. if(code_seen('S')){
  3646. stepper_inactive_time = code_value() * 1000;
  3647. }
  3648. else
  3649. {
  3650. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3651. if(all_axis)
  3652. {
  3653. st_synchronize();
  3654. disable_e0();
  3655. disable_e1();
  3656. disable_e2();
  3657. finishAndDisableSteppers();
  3658. }
  3659. else
  3660. {
  3661. st_synchronize();
  3662. if (code_seen('X')) disable_x();
  3663. if (code_seen('Y')) disable_y();
  3664. if (code_seen('Z')) disable_z();
  3665. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3666. if (code_seen('E')) {
  3667. disable_e0();
  3668. disable_e1();
  3669. disable_e2();
  3670. }
  3671. #endif
  3672. }
  3673. }
  3674. snmm_filaments_used = 0;
  3675. break;
  3676. case 85: // M85
  3677. if(code_seen('S')) {
  3678. max_inactive_time = code_value() * 1000;
  3679. }
  3680. break;
  3681. case 92: // M92
  3682. for(int8_t i=0; i < NUM_AXIS; i++)
  3683. {
  3684. if(code_seen(axis_codes[i]))
  3685. {
  3686. if(i == 3) { // E
  3687. float value = code_value();
  3688. if(value < 20.0) {
  3689. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3690. max_jerk[E_AXIS] *= factor;
  3691. max_feedrate[i] *= factor;
  3692. axis_steps_per_sqr_second[i] *= factor;
  3693. }
  3694. axis_steps_per_unit[i] = value;
  3695. }
  3696. else {
  3697. axis_steps_per_unit[i] = code_value();
  3698. }
  3699. }
  3700. }
  3701. break;
  3702. case 115: // M115
  3703. if (code_seen('V')) {
  3704. // Report the Prusa version number.
  3705. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3706. } else if (code_seen('U')) {
  3707. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3708. // pause the print and ask the user to upgrade the firmware.
  3709. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3710. } else {
  3711. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3712. }
  3713. break;
  3714. /* case 117: // M117 display message
  3715. starpos = (strchr(strchr_pointer + 5,'*'));
  3716. if(starpos!=NULL)
  3717. *(starpos)='\0';
  3718. lcd_setstatus(strchr_pointer + 5);
  3719. break;*/
  3720. case 114: // M114
  3721. SERIAL_PROTOCOLPGM("X:");
  3722. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3723. SERIAL_PROTOCOLPGM(" Y:");
  3724. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3725. SERIAL_PROTOCOLPGM(" Z:");
  3726. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3727. SERIAL_PROTOCOLPGM(" E:");
  3728. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3729. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3730. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3731. SERIAL_PROTOCOLPGM(" Y:");
  3732. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3733. SERIAL_PROTOCOLPGM(" Z:");
  3734. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3735. SERIAL_PROTOCOLPGM(" E:");
  3736. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  3737. SERIAL_PROTOCOLLN("");
  3738. break;
  3739. case 120: // M120
  3740. enable_endstops(false) ;
  3741. break;
  3742. case 121: // M121
  3743. enable_endstops(true) ;
  3744. break;
  3745. case 119: // M119
  3746. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3747. SERIAL_PROTOCOLLN("");
  3748. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3749. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3750. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3751. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3752. }else{
  3753. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3754. }
  3755. SERIAL_PROTOCOLLN("");
  3756. #endif
  3757. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3758. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3759. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3760. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3761. }else{
  3762. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3763. }
  3764. SERIAL_PROTOCOLLN("");
  3765. #endif
  3766. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3767. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3768. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3769. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3770. }else{
  3771. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3772. }
  3773. SERIAL_PROTOCOLLN("");
  3774. #endif
  3775. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3776. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3777. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3778. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3779. }else{
  3780. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3781. }
  3782. SERIAL_PROTOCOLLN("");
  3783. #endif
  3784. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3785. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3786. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3787. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3788. }else{
  3789. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3790. }
  3791. SERIAL_PROTOCOLLN("");
  3792. #endif
  3793. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3794. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3795. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3796. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3797. }else{
  3798. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3799. }
  3800. SERIAL_PROTOCOLLN("");
  3801. #endif
  3802. break;
  3803. //TODO: update for all axis, use for loop
  3804. #ifdef BLINKM
  3805. case 150: // M150
  3806. {
  3807. byte red;
  3808. byte grn;
  3809. byte blu;
  3810. if(code_seen('R')) red = code_value();
  3811. if(code_seen('U')) grn = code_value();
  3812. if(code_seen('B')) blu = code_value();
  3813. SendColors(red,grn,blu);
  3814. }
  3815. break;
  3816. #endif //BLINKM
  3817. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3818. {
  3819. tmp_extruder = active_extruder;
  3820. if(code_seen('T')) {
  3821. tmp_extruder = code_value();
  3822. if(tmp_extruder >= EXTRUDERS) {
  3823. SERIAL_ECHO_START;
  3824. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3825. break;
  3826. }
  3827. }
  3828. float area = .0;
  3829. if(code_seen('D')) {
  3830. float diameter = (float)code_value();
  3831. if (diameter == 0.0) {
  3832. // setting any extruder filament size disables volumetric on the assumption that
  3833. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3834. // for all extruders
  3835. volumetric_enabled = false;
  3836. } else {
  3837. filament_size[tmp_extruder] = (float)code_value();
  3838. // make sure all extruders have some sane value for the filament size
  3839. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3840. #if EXTRUDERS > 1
  3841. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3842. #if EXTRUDERS > 2
  3843. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3844. #endif
  3845. #endif
  3846. volumetric_enabled = true;
  3847. }
  3848. } else {
  3849. //reserved for setting filament diameter via UFID or filament measuring device
  3850. break;
  3851. }
  3852. calculate_volumetric_multipliers();
  3853. }
  3854. break;
  3855. case 201: // M201
  3856. for(int8_t i=0; i < NUM_AXIS; i++)
  3857. {
  3858. if(code_seen(axis_codes[i]))
  3859. {
  3860. max_acceleration_units_per_sq_second[i] = code_value();
  3861. }
  3862. }
  3863. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3864. reset_acceleration_rates();
  3865. break;
  3866. #if 0 // Not used for Sprinter/grbl gen6
  3867. case 202: // M202
  3868. for(int8_t i=0; i < NUM_AXIS; i++) {
  3869. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3870. }
  3871. break;
  3872. #endif
  3873. case 203: // M203 max feedrate mm/sec
  3874. for(int8_t i=0; i < NUM_AXIS; i++) {
  3875. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3876. }
  3877. break;
  3878. case 204: // M204 acclereration S normal moves T filmanent only moves
  3879. {
  3880. if(code_seen('S')) acceleration = code_value() ;
  3881. if(code_seen('T')) retract_acceleration = code_value() ;
  3882. }
  3883. break;
  3884. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3885. {
  3886. if(code_seen('S')) minimumfeedrate = code_value();
  3887. if(code_seen('T')) mintravelfeedrate = code_value();
  3888. if(code_seen('B')) minsegmenttime = code_value() ;
  3889. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3890. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3891. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3892. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3893. }
  3894. break;
  3895. case 206: // M206 additional homing offset
  3896. for(int8_t i=0; i < 3; i++)
  3897. {
  3898. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3899. }
  3900. break;
  3901. #ifdef FWRETRACT
  3902. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3903. {
  3904. if(code_seen('S'))
  3905. {
  3906. retract_length = code_value() ;
  3907. }
  3908. if(code_seen('F'))
  3909. {
  3910. retract_feedrate = code_value()/60 ;
  3911. }
  3912. if(code_seen('Z'))
  3913. {
  3914. retract_zlift = code_value() ;
  3915. }
  3916. }break;
  3917. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3918. {
  3919. if(code_seen('S'))
  3920. {
  3921. retract_recover_length = code_value() ;
  3922. }
  3923. if(code_seen('F'))
  3924. {
  3925. retract_recover_feedrate = code_value()/60 ;
  3926. }
  3927. }break;
  3928. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3929. {
  3930. if(code_seen('S'))
  3931. {
  3932. int t= code_value() ;
  3933. switch(t)
  3934. {
  3935. case 0:
  3936. {
  3937. autoretract_enabled=false;
  3938. retracted[0]=false;
  3939. #if EXTRUDERS > 1
  3940. retracted[1]=false;
  3941. #endif
  3942. #if EXTRUDERS > 2
  3943. retracted[2]=false;
  3944. #endif
  3945. }break;
  3946. case 1:
  3947. {
  3948. autoretract_enabled=true;
  3949. retracted[0]=false;
  3950. #if EXTRUDERS > 1
  3951. retracted[1]=false;
  3952. #endif
  3953. #if EXTRUDERS > 2
  3954. retracted[2]=false;
  3955. #endif
  3956. }break;
  3957. default:
  3958. SERIAL_ECHO_START;
  3959. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3960. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3961. SERIAL_ECHOLNPGM("\"(1)");
  3962. }
  3963. }
  3964. }break;
  3965. #endif // FWRETRACT
  3966. #if EXTRUDERS > 1
  3967. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3968. {
  3969. if(setTargetedHotend(218)){
  3970. break;
  3971. }
  3972. if(code_seen('X'))
  3973. {
  3974. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3975. }
  3976. if(code_seen('Y'))
  3977. {
  3978. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3979. }
  3980. SERIAL_ECHO_START;
  3981. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3982. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3983. {
  3984. SERIAL_ECHO(" ");
  3985. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3986. SERIAL_ECHO(",");
  3987. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3988. }
  3989. SERIAL_ECHOLN("");
  3990. }break;
  3991. #endif
  3992. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3993. {
  3994. if(code_seen('S'))
  3995. {
  3996. feedmultiply = code_value() ;
  3997. }
  3998. }
  3999. break;
  4000. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4001. {
  4002. if(code_seen('S'))
  4003. {
  4004. int tmp_code = code_value();
  4005. if (code_seen('T'))
  4006. {
  4007. if(setTargetedHotend(221)){
  4008. break;
  4009. }
  4010. extruder_multiply[tmp_extruder] = tmp_code;
  4011. }
  4012. else
  4013. {
  4014. extrudemultiply = tmp_code ;
  4015. }
  4016. }
  4017. }
  4018. break;
  4019. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4020. {
  4021. if(code_seen('P')){
  4022. int pin_number = code_value(); // pin number
  4023. int pin_state = -1; // required pin state - default is inverted
  4024. if(code_seen('S')) pin_state = code_value(); // required pin state
  4025. if(pin_state >= -1 && pin_state <= 1){
  4026. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4027. {
  4028. if (sensitive_pins[i] == pin_number)
  4029. {
  4030. pin_number = -1;
  4031. break;
  4032. }
  4033. }
  4034. if (pin_number > -1)
  4035. {
  4036. int target = LOW;
  4037. st_synchronize();
  4038. pinMode(pin_number, INPUT);
  4039. switch(pin_state){
  4040. case 1:
  4041. target = HIGH;
  4042. break;
  4043. case 0:
  4044. target = LOW;
  4045. break;
  4046. case -1:
  4047. target = !digitalRead(pin_number);
  4048. break;
  4049. }
  4050. while(digitalRead(pin_number) != target){
  4051. manage_heater();
  4052. manage_inactivity();
  4053. lcd_update();
  4054. }
  4055. }
  4056. }
  4057. }
  4058. }
  4059. break;
  4060. #if NUM_SERVOS > 0
  4061. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4062. {
  4063. int servo_index = -1;
  4064. int servo_position = 0;
  4065. if (code_seen('P'))
  4066. servo_index = code_value();
  4067. if (code_seen('S')) {
  4068. servo_position = code_value();
  4069. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4070. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4071. servos[servo_index].attach(0);
  4072. #endif
  4073. servos[servo_index].write(servo_position);
  4074. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4075. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4076. servos[servo_index].detach();
  4077. #endif
  4078. }
  4079. else {
  4080. SERIAL_ECHO_START;
  4081. SERIAL_ECHO("Servo ");
  4082. SERIAL_ECHO(servo_index);
  4083. SERIAL_ECHOLN(" out of range");
  4084. }
  4085. }
  4086. else if (servo_index >= 0) {
  4087. SERIAL_PROTOCOL(MSG_OK);
  4088. SERIAL_PROTOCOL(" Servo ");
  4089. SERIAL_PROTOCOL(servo_index);
  4090. SERIAL_PROTOCOL(": ");
  4091. SERIAL_PROTOCOL(servos[servo_index].read());
  4092. SERIAL_PROTOCOLLN("");
  4093. }
  4094. }
  4095. break;
  4096. #endif // NUM_SERVOS > 0
  4097. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4098. case 300: // M300
  4099. {
  4100. int beepS = code_seen('S') ? code_value() : 110;
  4101. int beepP = code_seen('P') ? code_value() : 1000;
  4102. if (beepS > 0)
  4103. {
  4104. #if BEEPER > 0
  4105. tone(BEEPER, beepS);
  4106. delay(beepP);
  4107. noTone(BEEPER);
  4108. #elif defined(ULTRALCD)
  4109. lcd_buzz(beepS, beepP);
  4110. #elif defined(LCD_USE_I2C_BUZZER)
  4111. lcd_buzz(beepP, beepS);
  4112. #endif
  4113. }
  4114. else
  4115. {
  4116. delay(beepP);
  4117. }
  4118. }
  4119. break;
  4120. #endif // M300
  4121. #ifdef PIDTEMP
  4122. case 301: // M301
  4123. {
  4124. if(code_seen('P')) Kp = code_value();
  4125. if(code_seen('I')) Ki = scalePID_i(code_value());
  4126. if(code_seen('D')) Kd = scalePID_d(code_value());
  4127. #ifdef PID_ADD_EXTRUSION_RATE
  4128. if(code_seen('C')) Kc = code_value();
  4129. #endif
  4130. updatePID();
  4131. SERIAL_PROTOCOLRPGM(MSG_OK);
  4132. SERIAL_PROTOCOL(" p:");
  4133. SERIAL_PROTOCOL(Kp);
  4134. SERIAL_PROTOCOL(" i:");
  4135. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4136. SERIAL_PROTOCOL(" d:");
  4137. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4138. #ifdef PID_ADD_EXTRUSION_RATE
  4139. SERIAL_PROTOCOL(" c:");
  4140. //Kc does not have scaling applied above, or in resetting defaults
  4141. SERIAL_PROTOCOL(Kc);
  4142. #endif
  4143. SERIAL_PROTOCOLLN("");
  4144. }
  4145. break;
  4146. #endif //PIDTEMP
  4147. #ifdef PIDTEMPBED
  4148. case 304: // M304
  4149. {
  4150. if(code_seen('P')) bedKp = code_value();
  4151. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4152. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4153. updatePID();
  4154. SERIAL_PROTOCOLRPGM(MSG_OK);
  4155. SERIAL_PROTOCOL(" p:");
  4156. SERIAL_PROTOCOL(bedKp);
  4157. SERIAL_PROTOCOL(" i:");
  4158. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4159. SERIAL_PROTOCOL(" d:");
  4160. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4161. SERIAL_PROTOCOLLN("");
  4162. }
  4163. break;
  4164. #endif //PIDTEMP
  4165. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4166. {
  4167. #ifdef CHDK
  4168. SET_OUTPUT(CHDK);
  4169. WRITE(CHDK, HIGH);
  4170. chdkHigh = millis();
  4171. chdkActive = true;
  4172. #else
  4173. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4174. const uint8_t NUM_PULSES=16;
  4175. const float PULSE_LENGTH=0.01524;
  4176. for(int i=0; i < NUM_PULSES; i++) {
  4177. WRITE(PHOTOGRAPH_PIN, HIGH);
  4178. _delay_ms(PULSE_LENGTH);
  4179. WRITE(PHOTOGRAPH_PIN, LOW);
  4180. _delay_ms(PULSE_LENGTH);
  4181. }
  4182. delay(7.33);
  4183. for(int i=0; i < NUM_PULSES; i++) {
  4184. WRITE(PHOTOGRAPH_PIN, HIGH);
  4185. _delay_ms(PULSE_LENGTH);
  4186. WRITE(PHOTOGRAPH_PIN, LOW);
  4187. _delay_ms(PULSE_LENGTH);
  4188. }
  4189. #endif
  4190. #endif //chdk end if
  4191. }
  4192. break;
  4193. #ifdef DOGLCD
  4194. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4195. {
  4196. if (code_seen('C')) {
  4197. lcd_setcontrast( ((int)code_value())&63 );
  4198. }
  4199. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4200. SERIAL_PROTOCOL(lcd_contrast);
  4201. SERIAL_PROTOCOLLN("");
  4202. }
  4203. break;
  4204. #endif
  4205. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4206. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4207. {
  4208. float temp = .0;
  4209. if (code_seen('S')) temp=code_value();
  4210. set_extrude_min_temp(temp);
  4211. }
  4212. break;
  4213. #endif
  4214. case 303: // M303 PID autotune
  4215. {
  4216. float temp = 150.0;
  4217. int e=0;
  4218. int c=5;
  4219. if (code_seen('E')) e=code_value();
  4220. if (e<0)
  4221. temp=70;
  4222. if (code_seen('S')) temp=code_value();
  4223. if (code_seen('C')) c=code_value();
  4224. PID_autotune(temp, e, c);
  4225. }
  4226. break;
  4227. case 400: // M400 finish all moves
  4228. {
  4229. st_synchronize();
  4230. }
  4231. break;
  4232. #ifdef FILAMENT_SENSOR
  4233. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4234. {
  4235. #if (FILWIDTH_PIN > -1)
  4236. if(code_seen('N')) filament_width_nominal=code_value();
  4237. else{
  4238. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4239. SERIAL_PROTOCOLLN(filament_width_nominal);
  4240. }
  4241. #endif
  4242. }
  4243. break;
  4244. case 405: //M405 Turn on filament sensor for control
  4245. {
  4246. if(code_seen('D')) meas_delay_cm=code_value();
  4247. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4248. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4249. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4250. {
  4251. int temp_ratio = widthFil_to_size_ratio();
  4252. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4253. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4254. }
  4255. delay_index1=0;
  4256. delay_index2=0;
  4257. }
  4258. filament_sensor = true ;
  4259. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4260. //SERIAL_PROTOCOL(filament_width_meas);
  4261. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4262. //SERIAL_PROTOCOL(extrudemultiply);
  4263. }
  4264. break;
  4265. case 406: //M406 Turn off filament sensor for control
  4266. {
  4267. filament_sensor = false ;
  4268. }
  4269. break;
  4270. case 407: //M407 Display measured filament diameter
  4271. {
  4272. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4273. SERIAL_PROTOCOLLN(filament_width_meas);
  4274. }
  4275. break;
  4276. #endif
  4277. case 500: // M500 Store settings in EEPROM
  4278. {
  4279. Config_StoreSettings(EEPROM_OFFSET);
  4280. }
  4281. break;
  4282. case 501: // M501 Read settings from EEPROM
  4283. {
  4284. Config_RetrieveSettings(EEPROM_OFFSET);
  4285. }
  4286. break;
  4287. case 502: // M502 Revert to default settings
  4288. {
  4289. Config_ResetDefault();
  4290. }
  4291. break;
  4292. case 503: // M503 print settings currently in memory
  4293. {
  4294. Config_PrintSettings();
  4295. }
  4296. break;
  4297. case 509: //M509 Force language selection
  4298. {
  4299. lcd_force_language_selection();
  4300. SERIAL_ECHO_START;
  4301. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4302. }
  4303. break;
  4304. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4305. case 540:
  4306. {
  4307. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4308. }
  4309. break;
  4310. #endif
  4311. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4312. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4313. {
  4314. float value;
  4315. if (code_seen('Z'))
  4316. {
  4317. value = code_value();
  4318. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4319. {
  4320. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4321. SERIAL_ECHO_START;
  4322. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4323. SERIAL_PROTOCOLLN("");
  4324. }
  4325. else
  4326. {
  4327. SERIAL_ECHO_START;
  4328. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4329. SERIAL_ECHORPGM(MSG_Z_MIN);
  4330. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4331. SERIAL_ECHORPGM(MSG_Z_MAX);
  4332. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4333. SERIAL_PROTOCOLLN("");
  4334. }
  4335. }
  4336. else
  4337. {
  4338. SERIAL_ECHO_START;
  4339. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4340. SERIAL_ECHO(-zprobe_zoffset);
  4341. SERIAL_PROTOCOLLN("");
  4342. }
  4343. break;
  4344. }
  4345. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4346. #ifdef FILAMENTCHANGEENABLE
  4347. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4348. {
  4349. MYSERIAL.println("!!!!M600!!!!");
  4350. st_synchronize();
  4351. float target[4];
  4352. float lastpos[4];
  4353. if (farm_mode)
  4354. {
  4355. prusa_statistics(22);
  4356. }
  4357. feedmultiplyBckp=feedmultiply;
  4358. int8_t TooLowZ = 0;
  4359. target[X_AXIS]=current_position[X_AXIS];
  4360. target[Y_AXIS]=current_position[Y_AXIS];
  4361. target[Z_AXIS]=current_position[Z_AXIS];
  4362. target[E_AXIS]=current_position[E_AXIS];
  4363. lastpos[X_AXIS]=current_position[X_AXIS];
  4364. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4365. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4366. lastpos[E_AXIS]=current_position[E_AXIS];
  4367. //Restract extruder
  4368. if(code_seen('E'))
  4369. {
  4370. target[E_AXIS]+= code_value();
  4371. }
  4372. else
  4373. {
  4374. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4375. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4376. #endif
  4377. }
  4378. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4379. //Lift Z
  4380. if(code_seen('Z'))
  4381. {
  4382. target[Z_AXIS]+= code_value();
  4383. }
  4384. else
  4385. {
  4386. #ifdef FILAMENTCHANGE_ZADD
  4387. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4388. if(target[Z_AXIS] < 10){
  4389. target[Z_AXIS]+= 10 ;
  4390. TooLowZ = 1;
  4391. }else{
  4392. TooLowZ = 0;
  4393. }
  4394. #endif
  4395. }
  4396. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4397. //Move XY to side
  4398. if(code_seen('X'))
  4399. {
  4400. target[X_AXIS]+= code_value();
  4401. }
  4402. else
  4403. {
  4404. #ifdef FILAMENTCHANGE_XPOS
  4405. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4406. #endif
  4407. }
  4408. if(code_seen('Y'))
  4409. {
  4410. target[Y_AXIS]= code_value();
  4411. }
  4412. else
  4413. {
  4414. #ifdef FILAMENTCHANGE_YPOS
  4415. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4416. #endif
  4417. }
  4418. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4419. st_synchronize();
  4420. custom_message = true;
  4421. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4422. // Unload filament
  4423. if(code_seen('L'))
  4424. {
  4425. target[E_AXIS]+= code_value();
  4426. }
  4427. else
  4428. {
  4429. #ifdef SNMM
  4430. #else
  4431. #ifdef FILAMENTCHANGE_FINALRETRACT
  4432. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4433. #endif
  4434. #endif // SNMM
  4435. }
  4436. #ifdef SNMM
  4437. target[E_AXIS] += 12;
  4438. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4439. target[E_AXIS] += 6;
  4440. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4441. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4442. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4443. st_synchronize();
  4444. target[E_AXIS] += (FIL_COOLING);
  4445. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4446. target[E_AXIS] += (FIL_COOLING*-1);
  4447. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4448. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4449. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4450. st_synchronize();
  4451. #else
  4452. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4453. #endif // SNMM
  4454. //finish moves
  4455. st_synchronize();
  4456. //disable extruder steppers so filament can be removed
  4457. disable_e0();
  4458. disable_e1();
  4459. disable_e2();
  4460. delay(100);
  4461. //Wait for user to insert filament
  4462. uint8_t cnt=0;
  4463. int counterBeep = 0;
  4464. lcd_wait_interact();
  4465. load_filament_time = millis();
  4466. while(!lcd_clicked()){
  4467. cnt++;
  4468. manage_heater();
  4469. manage_inactivity(true);
  4470. /*#ifdef SNMM
  4471. target[E_AXIS] += 0.002;
  4472. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4473. #endif // SNMM*/
  4474. if(cnt==0)
  4475. {
  4476. #if BEEPER > 0
  4477. if (counterBeep== 500){
  4478. counterBeep = 0;
  4479. }
  4480. SET_OUTPUT(BEEPER);
  4481. if (counterBeep== 0){
  4482. WRITE(BEEPER,HIGH);
  4483. }
  4484. if (counterBeep== 20){
  4485. WRITE(BEEPER,LOW);
  4486. }
  4487. counterBeep++;
  4488. #else
  4489. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4490. lcd_buzz(1000/6,100);
  4491. #else
  4492. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4493. #endif
  4494. #endif
  4495. }
  4496. }
  4497. #ifdef SNMM
  4498. display_loading();
  4499. do {
  4500. target[E_AXIS] += 0.002;
  4501. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4502. delay_keep_alive(2);
  4503. } while (!lcd_clicked());
  4504. /*if (millis() - load_filament_time > 2) {
  4505. load_filament_time = millis();
  4506. target[E_AXIS] += 0.001;
  4507. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4508. }*/
  4509. #endif
  4510. //Filament inserted
  4511. WRITE(BEEPER,LOW);
  4512. //Feed the filament to the end of nozzle quickly
  4513. #ifdef SNMM
  4514. st_synchronize();
  4515. target[E_AXIS] += bowden_length[snmm_extruder];
  4516. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4517. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4518. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4519. target[E_AXIS] += 40;
  4520. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4521. target[E_AXIS] += 10;
  4522. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4523. #else
  4524. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4525. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4526. #endif // SNMM
  4527. //Extrude some filament
  4528. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4529. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4530. //Wait for user to check the state
  4531. lcd_change_fil_state = 0;
  4532. lcd_loading_filament();
  4533. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4534. lcd_change_fil_state = 0;
  4535. lcd_alright();
  4536. switch(lcd_change_fil_state){
  4537. // Filament failed to load so load it again
  4538. case 2:
  4539. #ifdef SNMM
  4540. display_loading();
  4541. do {
  4542. target[E_AXIS] += 0.002;
  4543. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4544. delay_keep_alive(2);
  4545. } while (!lcd_clicked());
  4546. st_synchronize();
  4547. target[E_AXIS] += bowden_length[snmm_extruder];
  4548. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4549. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4550. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4551. target[E_AXIS] += 40;
  4552. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4553. target[E_AXIS] += 10;
  4554. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4555. #else
  4556. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4557. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4558. #endif
  4559. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4560. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4561. lcd_loading_filament();
  4562. break;
  4563. // Filament loaded properly but color is not clear
  4564. case 3:
  4565. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4566. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4567. lcd_loading_color();
  4568. break;
  4569. // Everything good
  4570. default:
  4571. lcd_change_success();
  4572. lcd_update_enable(true);
  4573. break;
  4574. }
  4575. }
  4576. //Not let's go back to print
  4577. //Feed a little of filament to stabilize pressure
  4578. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4579. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4580. //Retract
  4581. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4582. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4583. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4584. //Move XY back
  4585. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4586. //Move Z back
  4587. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4588. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4589. //Unretract
  4590. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4591. //Set E position to original
  4592. plan_set_e_position(lastpos[E_AXIS]);
  4593. //Recover feed rate
  4594. feedmultiply=feedmultiplyBckp;
  4595. char cmd[9];
  4596. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4597. enquecommand(cmd);
  4598. lcd_setstatuspgm(WELCOME_MSG);
  4599. custom_message = false;
  4600. custom_message_type = 0;
  4601. #ifdef PAT9125
  4602. if (fsensor_M600)
  4603. {
  4604. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  4605. st_synchronize();
  4606. while (!is_buffer_empty())
  4607. {
  4608. process_commands();
  4609. cmdqueue_pop_front();
  4610. }
  4611. fsensor_enable();
  4612. fsensor_restore_print_and_continue();
  4613. }
  4614. #endif //PAT9125
  4615. }
  4616. break;
  4617. #endif //FILAMENTCHANGEENABLE
  4618. case 601: {
  4619. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4620. }
  4621. break;
  4622. case 602: {
  4623. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4624. }
  4625. break;
  4626. #ifdef LIN_ADVANCE
  4627. case 900: // M900: Set LIN_ADVANCE options.
  4628. gcode_M900();
  4629. break;
  4630. #endif
  4631. case 907: // M907 Set digital trimpot motor current using axis codes.
  4632. {
  4633. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4634. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4635. if(code_seen('B')) digipot_current(4,code_value());
  4636. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4637. #endif
  4638. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4639. if(code_seen('X')) digipot_current(0, code_value());
  4640. #endif
  4641. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4642. if(code_seen('Z')) digipot_current(1, code_value());
  4643. #endif
  4644. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4645. if(code_seen('E')) digipot_current(2, code_value());
  4646. #endif
  4647. #ifdef DIGIPOT_I2C
  4648. // this one uses actual amps in floating point
  4649. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4650. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4651. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4652. #endif
  4653. }
  4654. break;
  4655. case 908: // M908 Control digital trimpot directly.
  4656. {
  4657. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4658. uint8_t channel,current;
  4659. if(code_seen('P')) channel=code_value();
  4660. if(code_seen('S')) current=code_value();
  4661. digitalPotWrite(channel, current);
  4662. #endif
  4663. }
  4664. break;
  4665. case 910: // M910 TMC2130 init
  4666. {
  4667. tmc2130_init();
  4668. }
  4669. break;
  4670. case 911: // M911 Set TMC2130 holding currents
  4671. {
  4672. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  4673. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  4674. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  4675. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  4676. }
  4677. break;
  4678. case 912: // M912 Set TMC2130 running currents
  4679. {
  4680. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  4681. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  4682. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  4683. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  4684. }
  4685. break;
  4686. case 913: // M913 Print TMC2130 currents
  4687. {
  4688. tmc2130_print_currents();
  4689. }
  4690. break;
  4691. case 914: // M914 Set normal mode
  4692. {
  4693. tmc2130_mode = TMC2130_MODE_NORMAL;
  4694. tmc2130_init();
  4695. }
  4696. break;
  4697. case 915: // M915 Set silent mode
  4698. {
  4699. tmc2130_mode = TMC2130_MODE_SILENT;
  4700. tmc2130_init();
  4701. }
  4702. break;
  4703. case 916: // M916 Set sg_thrs
  4704. {
  4705. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  4706. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  4707. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  4708. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  4709. MYSERIAL.print("tmc2130_sg_thr[X]=");
  4710. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  4711. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  4712. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  4713. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  4714. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  4715. MYSERIAL.print("tmc2130_sg_thr[E]=");
  4716. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  4717. }
  4718. break;
  4719. case 917: // M917 Set TMC2130 pwm_ampl
  4720. {
  4721. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  4722. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  4723. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  4724. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  4725. }
  4726. break;
  4727. case 918: // M918 Set TMC2130 pwm_grad
  4728. {
  4729. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  4730. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  4731. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  4732. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  4733. }
  4734. break;
  4735. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4736. {
  4737. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4738. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4739. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4740. if(code_seen('B')) microstep_mode(4,code_value());
  4741. microstep_readings();
  4742. #endif
  4743. }
  4744. break;
  4745. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4746. {
  4747. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4748. if(code_seen('S')) switch((int)code_value())
  4749. {
  4750. case 1:
  4751. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4752. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4753. break;
  4754. case 2:
  4755. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4756. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4757. break;
  4758. }
  4759. microstep_readings();
  4760. #endif
  4761. }
  4762. break;
  4763. case 701: //M701: load filament
  4764. {
  4765. enable_z();
  4766. custom_message = true;
  4767. custom_message_type = 2;
  4768. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4769. current_position[E_AXIS] += 70;
  4770. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4771. current_position[E_AXIS] += 25;
  4772. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4773. st_synchronize();
  4774. if (!farm_mode && loading_flag) {
  4775. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4776. while (!clean) {
  4777. lcd_update_enable(true);
  4778. lcd_update(2);
  4779. current_position[E_AXIS] += 25;
  4780. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4781. st_synchronize();
  4782. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4783. }
  4784. }
  4785. lcd_update_enable(true);
  4786. lcd_update(2);
  4787. lcd_setstatuspgm(WELCOME_MSG);
  4788. disable_z();
  4789. loading_flag = false;
  4790. custom_message = false;
  4791. custom_message_type = 0;
  4792. }
  4793. break;
  4794. case 702:
  4795. {
  4796. #ifdef SNMM
  4797. if (code_seen('U')) {
  4798. extr_unload_used(); //unload all filaments which were used in current print
  4799. }
  4800. else if (code_seen('C')) {
  4801. extr_unload(); //unload just current filament
  4802. }
  4803. else {
  4804. extr_unload_all(); //unload all filaments
  4805. }
  4806. #else
  4807. custom_message = true;
  4808. custom_message_type = 2;
  4809. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4810. current_position[E_AXIS] -= 80;
  4811. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4812. st_synchronize();
  4813. lcd_setstatuspgm(WELCOME_MSG);
  4814. custom_message = false;
  4815. custom_message_type = 0;
  4816. #endif
  4817. }
  4818. break;
  4819. case 999: // M999: Restart after being stopped
  4820. Stopped = false;
  4821. lcd_reset_alert_level();
  4822. gcode_LastN = Stopped_gcode_LastN;
  4823. FlushSerialRequestResend();
  4824. break;
  4825. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4826. }
  4827. } // end if(code_seen('M')) (end of M codes)
  4828. else if(code_seen('T'))
  4829. {
  4830. int index;
  4831. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4832. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  4833. SERIAL_ECHOLNPGM("Invalid T code.");
  4834. }
  4835. else {
  4836. if (*(strchr_pointer + index) == '?') {
  4837. tmp_extruder = choose_extruder_menu();
  4838. }
  4839. else {
  4840. tmp_extruder = code_value();
  4841. }
  4842. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  4843. #ifdef SNMM
  4844. #ifdef LIN_ADVANCE
  4845. if (snmm_extruder != tmp_extruder)
  4846. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  4847. #endif
  4848. snmm_extruder = tmp_extruder;
  4849. st_synchronize();
  4850. delay(100);
  4851. disable_e0();
  4852. disable_e1();
  4853. disable_e2();
  4854. pinMode(E_MUX0_PIN, OUTPUT);
  4855. pinMode(E_MUX1_PIN, OUTPUT);
  4856. pinMode(E_MUX2_PIN, OUTPUT);
  4857. delay(100);
  4858. SERIAL_ECHO_START;
  4859. SERIAL_ECHO("T:");
  4860. SERIAL_ECHOLN((int)tmp_extruder);
  4861. switch (tmp_extruder) {
  4862. case 1:
  4863. WRITE(E_MUX0_PIN, HIGH);
  4864. WRITE(E_MUX1_PIN, LOW);
  4865. WRITE(E_MUX2_PIN, LOW);
  4866. break;
  4867. case 2:
  4868. WRITE(E_MUX0_PIN, LOW);
  4869. WRITE(E_MUX1_PIN, HIGH);
  4870. WRITE(E_MUX2_PIN, LOW);
  4871. break;
  4872. case 3:
  4873. WRITE(E_MUX0_PIN, HIGH);
  4874. WRITE(E_MUX1_PIN, HIGH);
  4875. WRITE(E_MUX2_PIN, LOW);
  4876. break;
  4877. default:
  4878. WRITE(E_MUX0_PIN, LOW);
  4879. WRITE(E_MUX1_PIN, LOW);
  4880. WRITE(E_MUX2_PIN, LOW);
  4881. break;
  4882. }
  4883. delay(100);
  4884. #else
  4885. if (tmp_extruder >= EXTRUDERS) {
  4886. SERIAL_ECHO_START;
  4887. SERIAL_ECHOPGM("T");
  4888. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4889. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4890. }
  4891. else {
  4892. boolean make_move = false;
  4893. if (code_seen('F')) {
  4894. make_move = true;
  4895. next_feedrate = code_value();
  4896. if (next_feedrate > 0.0) {
  4897. feedrate = next_feedrate;
  4898. }
  4899. }
  4900. #if EXTRUDERS > 1
  4901. if (tmp_extruder != active_extruder) {
  4902. // Save current position to return to after applying extruder offset
  4903. memcpy(destination, current_position, sizeof(destination));
  4904. // Offset extruder (only by XY)
  4905. int i;
  4906. for (i = 0; i < 2; i++) {
  4907. current_position[i] = current_position[i] -
  4908. extruder_offset[i][active_extruder] +
  4909. extruder_offset[i][tmp_extruder];
  4910. }
  4911. // Set the new active extruder and position
  4912. active_extruder = tmp_extruder;
  4913. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4914. // Move to the old position if 'F' was in the parameters
  4915. if (make_move && Stopped == false) {
  4916. prepare_move();
  4917. }
  4918. }
  4919. #endif
  4920. SERIAL_ECHO_START;
  4921. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4922. SERIAL_PROTOCOLLN((int)active_extruder);
  4923. }
  4924. #endif
  4925. }
  4926. } // end if(code_seen('T')) (end of T codes)
  4927. #ifdef DEBUG_DCODES
  4928. else if (code_seen('D')) // D codes (debug)
  4929. {
  4930. switch((int)code_value())
  4931. {
  4932. case 0: // D0 - Reset
  4933. dcode_0(); break;
  4934. case 1: // D1 - Clear EEPROM
  4935. dcode_1(); break;
  4936. case 2: // D2 - Read/Write RAM
  4937. dcode_2(); break;
  4938. case 3: // D3 - Read/Write EEPROM
  4939. dcode_3(); break;
  4940. case 4: // D4 - Read/Write PIN
  4941. dcode_4(); break;
  4942. case 9125: // D9125 - PAT9125
  4943. dcode_9125(); break;
  4944. case 5:
  4945. MYSERIAL.println("D5 - Test");
  4946. if (code_seen('P'))
  4947. selectedSerialPort = (int)code_value();
  4948. MYSERIAL.print("selectedSerialPort = ");
  4949. MYSERIAL.println(selectedSerialPort, DEC);
  4950. break;
  4951. case 10: // D10 - Tell the printer that XYZ calibration went OK
  4952. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4953. break;
  4954. case 12: //D12 - Reset Filament error, Power loss and crash counter ( Do it before every print and you can get stats for the print )
  4955. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, 0x00);
  4956. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, 0x00);
  4957. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, 0x00);
  4958. case 999:
  4959. {
  4960. MYSERIAL.println("D999 - crash");
  4961. /* while (!is_buffer_empty())
  4962. {
  4963. process_commands();
  4964. cmdqueue_pop_front();
  4965. }*/
  4966. st_synchronize();
  4967. lcd_update_enable(true);
  4968. lcd_implementation_clear();
  4969. lcd_update(2);
  4970. // Increment crash counter
  4971. uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
  4972. crash_count++;
  4973. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
  4974. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  4975. bool yesno = true;
  4976. #else
  4977. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  4978. #endif
  4979. lcd_update_enable(true);
  4980. lcd_update(2);
  4981. lcd_setstatuspgm(WELCOME_MSG);
  4982. if (yesno)
  4983. {
  4984. enquecommand_P(PSTR("G28 X"));
  4985. enquecommand_P(PSTR("G28 Y"));
  4986. enquecommand_P(PSTR("D1000"));
  4987. }
  4988. else
  4989. {
  4990. enquecommand_P(PSTR("D1001"));
  4991. }
  4992. }
  4993. break;
  4994. case 1000:
  4995. crashdet_restore_print_and_continue();
  4996. tmc2130_sg_stop_on_crash = true;
  4997. break;
  4998. case 1001:
  4999. card.sdprinting = false;
  5000. card.closefile();
  5001. tmc2130_sg_stop_on_crash = true;
  5002. break;
  5003. /* case 4:
  5004. {
  5005. MYSERIAL.println("D4 - Test");
  5006. uint8_t data[16];
  5007. int cnt = parse_hex(strchr_pointer + 2, data, 16);
  5008. MYSERIAL.println(cnt, DEC);
  5009. for (int i = 0; i < cnt; i++)
  5010. {
  5011. serial_print_hex_byte(data[i]);
  5012. MYSERIAL.write(' ');
  5013. }
  5014. MYSERIAL.write('\n');
  5015. }
  5016. break;
  5017. /* case 3:
  5018. if (code_seen('L')) // lcd pwm (0-255)
  5019. {
  5020. lcdSoftPwm = (int)code_value();
  5021. }
  5022. if (code_seen('B')) // lcd blink delay (0-255)
  5023. {
  5024. lcdBlinkDelay = (int)code_value();
  5025. }
  5026. // calibrate_z_auto();
  5027. /* MYSERIAL.print("fsensor_enable()");
  5028. #ifdef PAT9125
  5029. fsensor_enable();
  5030. #endif*/
  5031. break;
  5032. // case 4:
  5033. // lcdBlinkDelay = 10;
  5034. /* MYSERIAL.print("fsensor_disable()");
  5035. #ifdef PAT9125
  5036. fsensor_disable();
  5037. #endif
  5038. break;*/
  5039. // break;
  5040. /* case 5:
  5041. {
  5042. MYSERIAL.print("tmc2130_rd_MSCNT(0)=");
  5043. int val = tmc2130_rd_MSCNT(tmc2130_cs[0]);
  5044. MYSERIAL.println(val);
  5045. homeaxis(0);
  5046. }
  5047. break;*/
  5048. case 6:
  5049. {
  5050. /* MYSERIAL.print("tmc2130_rd_MSCNT(1)=");
  5051. int val = tmc2130_rd_MSCNT(tmc2130_cs[1]);
  5052. MYSERIAL.println(val);*/
  5053. homeaxis(1);
  5054. }
  5055. break;
  5056. case 7:
  5057. {
  5058. MYSERIAL.print("pat9125_init=");
  5059. MYSERIAL.println(pat9125_init(200, 200));
  5060. }
  5061. break;
  5062. case 8:
  5063. {
  5064. MYSERIAL.print("swi2c_check=");
  5065. MYSERIAL.println(swi2c_check(0x75));
  5066. }
  5067. break;
  5068. }
  5069. }
  5070. #endif //DEBUG_DCODES
  5071. else
  5072. {
  5073. SERIAL_ECHO_START;
  5074. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5075. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5076. SERIAL_ECHOLNPGM("\"(2)");
  5077. }
  5078. ClearToSend();
  5079. }
  5080. void FlushSerialRequestResend()
  5081. {
  5082. //char cmdbuffer[bufindr][100]="Resend:";
  5083. MYSERIAL.flush();
  5084. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5085. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5086. ClearToSend();
  5087. }
  5088. // Confirm the execution of a command, if sent from a serial line.
  5089. // Execution of a command from a SD card will not be confirmed.
  5090. void ClearToSend()
  5091. {
  5092. previous_millis_cmd = millis();
  5093. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5094. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5095. }
  5096. void get_coordinates()
  5097. {
  5098. bool seen[4]={false,false,false,false};
  5099. for(int8_t i=0; i < NUM_AXIS; i++) {
  5100. if(code_seen(axis_codes[i]))
  5101. {
  5102. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5103. seen[i]=true;
  5104. }
  5105. else destination[i] = current_position[i]; //Are these else lines really needed?
  5106. }
  5107. if(code_seen('F')) {
  5108. next_feedrate = code_value();
  5109. #ifdef MAX_SILENT_FEEDRATE
  5110. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5111. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5112. #endif //MAX_SILENT_FEEDRATE
  5113. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5114. }
  5115. }
  5116. void get_arc_coordinates()
  5117. {
  5118. #ifdef SF_ARC_FIX
  5119. bool relative_mode_backup = relative_mode;
  5120. relative_mode = true;
  5121. #endif
  5122. get_coordinates();
  5123. #ifdef SF_ARC_FIX
  5124. relative_mode=relative_mode_backup;
  5125. #endif
  5126. if(code_seen('I')) {
  5127. offset[0] = code_value();
  5128. }
  5129. else {
  5130. offset[0] = 0.0;
  5131. }
  5132. if(code_seen('J')) {
  5133. offset[1] = code_value();
  5134. }
  5135. else {
  5136. offset[1] = 0.0;
  5137. }
  5138. }
  5139. void clamp_to_software_endstops(float target[3])
  5140. {
  5141. #ifdef DEBUG_DISABLE_SWLIMITS
  5142. return;
  5143. #endif //DEBUG_DISABLE_SWLIMITS
  5144. world2machine_clamp(target[0], target[1]);
  5145. // Clamp the Z coordinate.
  5146. if (min_software_endstops) {
  5147. float negative_z_offset = 0;
  5148. #ifdef ENABLE_AUTO_BED_LEVELING
  5149. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5150. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5151. #endif
  5152. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5153. }
  5154. if (max_software_endstops) {
  5155. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5156. }
  5157. }
  5158. #ifdef MESH_BED_LEVELING
  5159. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5160. float dx = x - current_position[X_AXIS];
  5161. float dy = y - current_position[Y_AXIS];
  5162. float dz = z - current_position[Z_AXIS];
  5163. int n_segments = 0;
  5164. if (mbl.active) {
  5165. float len = abs(dx) + abs(dy);
  5166. if (len > 0)
  5167. // Split to 3cm segments or shorter.
  5168. n_segments = int(ceil(len / 30.f));
  5169. }
  5170. if (n_segments > 1) {
  5171. float de = e - current_position[E_AXIS];
  5172. for (int i = 1; i < n_segments; ++ i) {
  5173. float t = float(i) / float(n_segments);
  5174. plan_buffer_line(
  5175. current_position[X_AXIS] + t * dx,
  5176. current_position[Y_AXIS] + t * dy,
  5177. current_position[Z_AXIS] + t * dz,
  5178. current_position[E_AXIS] + t * de,
  5179. feed_rate, extruder);
  5180. }
  5181. }
  5182. // The rest of the path.
  5183. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5184. current_position[X_AXIS] = x;
  5185. current_position[Y_AXIS] = y;
  5186. current_position[Z_AXIS] = z;
  5187. current_position[E_AXIS] = e;
  5188. }
  5189. #endif // MESH_BED_LEVELING
  5190. void prepare_move()
  5191. {
  5192. clamp_to_software_endstops(destination);
  5193. previous_millis_cmd = millis();
  5194. // Do not use feedmultiply for E or Z only moves
  5195. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5196. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5197. }
  5198. else {
  5199. #ifdef MESH_BED_LEVELING
  5200. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5201. #else
  5202. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5203. #endif
  5204. }
  5205. for(int8_t i=0; i < NUM_AXIS; i++) {
  5206. current_position[i] = destination[i];
  5207. }
  5208. }
  5209. void prepare_arc_move(char isclockwise) {
  5210. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5211. // Trace the arc
  5212. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5213. // As far as the parser is concerned, the position is now == target. In reality the
  5214. // motion control system might still be processing the action and the real tool position
  5215. // in any intermediate location.
  5216. for(int8_t i=0; i < NUM_AXIS; i++) {
  5217. current_position[i] = destination[i];
  5218. }
  5219. previous_millis_cmd = millis();
  5220. }
  5221. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5222. #if defined(FAN_PIN)
  5223. #if CONTROLLERFAN_PIN == FAN_PIN
  5224. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5225. #endif
  5226. #endif
  5227. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5228. unsigned long lastMotorCheck = 0;
  5229. void controllerFan()
  5230. {
  5231. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5232. {
  5233. lastMotorCheck = millis();
  5234. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5235. #if EXTRUDERS > 2
  5236. || !READ(E2_ENABLE_PIN)
  5237. #endif
  5238. #if EXTRUDER > 1
  5239. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5240. || !READ(X2_ENABLE_PIN)
  5241. #endif
  5242. || !READ(E1_ENABLE_PIN)
  5243. #endif
  5244. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5245. {
  5246. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5247. }
  5248. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5249. {
  5250. digitalWrite(CONTROLLERFAN_PIN, 0);
  5251. analogWrite(CONTROLLERFAN_PIN, 0);
  5252. }
  5253. else
  5254. {
  5255. // allows digital or PWM fan output to be used (see M42 handling)
  5256. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5257. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5258. }
  5259. }
  5260. }
  5261. #endif
  5262. #ifdef TEMP_STAT_LEDS
  5263. static bool blue_led = false;
  5264. static bool red_led = false;
  5265. static uint32_t stat_update = 0;
  5266. void handle_status_leds(void) {
  5267. float max_temp = 0.0;
  5268. if(millis() > stat_update) {
  5269. stat_update += 500; // Update every 0.5s
  5270. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5271. max_temp = max(max_temp, degHotend(cur_extruder));
  5272. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5273. }
  5274. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5275. max_temp = max(max_temp, degTargetBed());
  5276. max_temp = max(max_temp, degBed());
  5277. #endif
  5278. if((max_temp > 55.0) && (red_led == false)) {
  5279. digitalWrite(STAT_LED_RED, 1);
  5280. digitalWrite(STAT_LED_BLUE, 0);
  5281. red_led = true;
  5282. blue_led = false;
  5283. }
  5284. if((max_temp < 54.0) && (blue_led == false)) {
  5285. digitalWrite(STAT_LED_RED, 0);
  5286. digitalWrite(STAT_LED_BLUE, 1);
  5287. red_led = false;
  5288. blue_led = true;
  5289. }
  5290. }
  5291. }
  5292. #endif
  5293. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5294. {
  5295. #if defined(KILL_PIN) && KILL_PIN > -1
  5296. static int killCount = 0; // make the inactivity button a bit less responsive
  5297. const int KILL_DELAY = 10000;
  5298. #endif
  5299. if(buflen < (BUFSIZE-1)){
  5300. get_command();
  5301. }
  5302. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5303. if(max_inactive_time)
  5304. kill("", 4);
  5305. if(stepper_inactive_time) {
  5306. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5307. {
  5308. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5309. disable_x();
  5310. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5311. disable_y();
  5312. disable_z();
  5313. disable_e0();
  5314. disable_e1();
  5315. disable_e2();
  5316. }
  5317. }
  5318. }
  5319. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5320. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5321. {
  5322. chdkActive = false;
  5323. WRITE(CHDK, LOW);
  5324. }
  5325. #endif
  5326. #if defined(KILL_PIN) && KILL_PIN > -1
  5327. // Check if the kill button was pressed and wait just in case it was an accidental
  5328. // key kill key press
  5329. // -------------------------------------------------------------------------------
  5330. if( 0 == READ(KILL_PIN) )
  5331. {
  5332. killCount++;
  5333. }
  5334. else if (killCount > 0)
  5335. {
  5336. killCount--;
  5337. }
  5338. // Exceeded threshold and we can confirm that it was not accidental
  5339. // KILL the machine
  5340. // ----------------------------------------------------------------
  5341. if ( killCount >= KILL_DELAY)
  5342. {
  5343. kill("", 5);
  5344. }
  5345. #endif
  5346. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5347. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5348. #endif
  5349. #ifdef EXTRUDER_RUNOUT_PREVENT
  5350. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5351. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5352. {
  5353. bool oldstatus=READ(E0_ENABLE_PIN);
  5354. enable_e0();
  5355. float oldepos=current_position[E_AXIS];
  5356. float oldedes=destination[E_AXIS];
  5357. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5358. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5359. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5360. current_position[E_AXIS]=oldepos;
  5361. destination[E_AXIS]=oldedes;
  5362. plan_set_e_position(oldepos);
  5363. previous_millis_cmd=millis();
  5364. st_synchronize();
  5365. WRITE(E0_ENABLE_PIN,oldstatus);
  5366. }
  5367. #endif
  5368. #ifdef TEMP_STAT_LEDS
  5369. handle_status_leds();
  5370. #endif
  5371. check_axes_activity();
  5372. }
  5373. void kill(const char *full_screen_message, unsigned char id)
  5374. {
  5375. SERIAL_ECHOPGM("KILL: ");
  5376. MYSERIAL.println(int(id));
  5377. //return;
  5378. cli(); // Stop interrupts
  5379. disable_heater();
  5380. disable_x();
  5381. // SERIAL_ECHOLNPGM("kill - disable Y");
  5382. disable_y();
  5383. disable_z();
  5384. disable_e0();
  5385. disable_e1();
  5386. disable_e2();
  5387. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5388. pinMode(PS_ON_PIN,INPUT);
  5389. #endif
  5390. SERIAL_ERROR_START;
  5391. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5392. if (full_screen_message != NULL) {
  5393. SERIAL_ERRORLNRPGM(full_screen_message);
  5394. lcd_display_message_fullscreen_P(full_screen_message);
  5395. } else {
  5396. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5397. }
  5398. // FMC small patch to update the LCD before ending
  5399. sei(); // enable interrupts
  5400. for ( int i=5; i--; lcd_update())
  5401. {
  5402. delay(200);
  5403. }
  5404. cli(); // disable interrupts
  5405. suicide();
  5406. while(1) { /* Intentionally left empty */ } // Wait for reset
  5407. }
  5408. void Stop()
  5409. {
  5410. disable_heater();
  5411. if(Stopped == false) {
  5412. Stopped = true;
  5413. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5414. SERIAL_ERROR_START;
  5415. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5416. LCD_MESSAGERPGM(MSG_STOPPED);
  5417. }
  5418. }
  5419. bool IsStopped() { return Stopped; };
  5420. #ifdef FAST_PWM_FAN
  5421. void setPwmFrequency(uint8_t pin, int val)
  5422. {
  5423. val &= 0x07;
  5424. switch(digitalPinToTimer(pin))
  5425. {
  5426. #if defined(TCCR0A)
  5427. case TIMER0A:
  5428. case TIMER0B:
  5429. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5430. // TCCR0B |= val;
  5431. break;
  5432. #endif
  5433. #if defined(TCCR1A)
  5434. case TIMER1A:
  5435. case TIMER1B:
  5436. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5437. // TCCR1B |= val;
  5438. break;
  5439. #endif
  5440. #if defined(TCCR2)
  5441. case TIMER2:
  5442. case TIMER2:
  5443. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5444. TCCR2 |= val;
  5445. break;
  5446. #endif
  5447. #if defined(TCCR2A)
  5448. case TIMER2A:
  5449. case TIMER2B:
  5450. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5451. TCCR2B |= val;
  5452. break;
  5453. #endif
  5454. #if defined(TCCR3A)
  5455. case TIMER3A:
  5456. case TIMER3B:
  5457. case TIMER3C:
  5458. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5459. TCCR3B |= val;
  5460. break;
  5461. #endif
  5462. #if defined(TCCR4A)
  5463. case TIMER4A:
  5464. case TIMER4B:
  5465. case TIMER4C:
  5466. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5467. TCCR4B |= val;
  5468. break;
  5469. #endif
  5470. #if defined(TCCR5A)
  5471. case TIMER5A:
  5472. case TIMER5B:
  5473. case TIMER5C:
  5474. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5475. TCCR5B |= val;
  5476. break;
  5477. #endif
  5478. }
  5479. }
  5480. #endif //FAST_PWM_FAN
  5481. bool setTargetedHotend(int code){
  5482. tmp_extruder = active_extruder;
  5483. if(code_seen('T')) {
  5484. tmp_extruder = code_value();
  5485. if(tmp_extruder >= EXTRUDERS) {
  5486. SERIAL_ECHO_START;
  5487. switch(code){
  5488. case 104:
  5489. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5490. break;
  5491. case 105:
  5492. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5493. break;
  5494. case 109:
  5495. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5496. break;
  5497. case 218:
  5498. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5499. break;
  5500. case 221:
  5501. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5502. break;
  5503. }
  5504. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5505. return true;
  5506. }
  5507. }
  5508. return false;
  5509. }
  5510. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5511. {
  5512. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5513. {
  5514. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5515. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5516. }
  5517. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5518. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5519. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5520. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5521. total_filament_used = 0;
  5522. }
  5523. float calculate_volumetric_multiplier(float diameter) {
  5524. float area = .0;
  5525. float radius = .0;
  5526. radius = diameter * .5;
  5527. if (! volumetric_enabled || radius == 0) {
  5528. area = 1;
  5529. }
  5530. else {
  5531. area = M_PI * pow(radius, 2);
  5532. }
  5533. return 1.0 / area;
  5534. }
  5535. void calculate_volumetric_multipliers() {
  5536. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5537. #if EXTRUDERS > 1
  5538. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5539. #if EXTRUDERS > 2
  5540. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5541. #endif
  5542. #endif
  5543. }
  5544. void delay_keep_alive(unsigned int ms)
  5545. {
  5546. for (;;) {
  5547. manage_heater();
  5548. // Manage inactivity, but don't disable steppers on timeout.
  5549. manage_inactivity(true);
  5550. lcd_update();
  5551. if (ms == 0)
  5552. break;
  5553. else if (ms >= 50) {
  5554. delay(50);
  5555. ms -= 50;
  5556. } else {
  5557. delay(ms);
  5558. ms = 0;
  5559. }
  5560. }
  5561. }
  5562. void wait_for_heater(long codenum) {
  5563. #ifdef TEMP_RESIDENCY_TIME
  5564. long residencyStart;
  5565. residencyStart = -1;
  5566. /* continue to loop until we have reached the target temp
  5567. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5568. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5569. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5570. #else
  5571. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5572. #endif //TEMP_RESIDENCY_TIME
  5573. if ((millis() - codenum) > 1000UL)
  5574. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5575. if (!farm_mode) {
  5576. SERIAL_PROTOCOLPGM("T:");
  5577. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5578. SERIAL_PROTOCOLPGM(" E:");
  5579. SERIAL_PROTOCOL((int)tmp_extruder);
  5580. #ifdef TEMP_RESIDENCY_TIME
  5581. SERIAL_PROTOCOLPGM(" W:");
  5582. if (residencyStart > -1)
  5583. {
  5584. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5585. SERIAL_PROTOCOLLN(codenum);
  5586. }
  5587. else
  5588. {
  5589. SERIAL_PROTOCOLLN("?");
  5590. }
  5591. }
  5592. #else
  5593. SERIAL_PROTOCOLLN("");
  5594. #endif
  5595. codenum = millis();
  5596. }
  5597. manage_heater();
  5598. manage_inactivity();
  5599. lcd_update();
  5600. #ifdef TEMP_RESIDENCY_TIME
  5601. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5602. or when current temp falls outside the hysteresis after target temp was reached */
  5603. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5604. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5605. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5606. {
  5607. residencyStart = millis();
  5608. }
  5609. #endif //TEMP_RESIDENCY_TIME
  5610. }
  5611. }
  5612. void check_babystep() {
  5613. int babystep_z;
  5614. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5615. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5616. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5617. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5618. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5619. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5620. lcd_update_enable(true);
  5621. }
  5622. }
  5623. #ifdef DIS
  5624. void d_setup()
  5625. {
  5626. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5627. pinMode(D_DATA, INPUT_PULLUP);
  5628. pinMode(D_REQUIRE, OUTPUT);
  5629. digitalWrite(D_REQUIRE, HIGH);
  5630. }
  5631. float d_ReadData()
  5632. {
  5633. int digit[13];
  5634. String mergeOutput;
  5635. float output;
  5636. digitalWrite(D_REQUIRE, HIGH);
  5637. for (int i = 0; i<13; i++)
  5638. {
  5639. for (int j = 0; j < 4; j++)
  5640. {
  5641. while (digitalRead(D_DATACLOCK) == LOW) {}
  5642. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5643. bitWrite(digit[i], j, digitalRead(D_DATA));
  5644. }
  5645. }
  5646. digitalWrite(D_REQUIRE, LOW);
  5647. mergeOutput = "";
  5648. output = 0;
  5649. for (int r = 5; r <= 10; r++) //Merge digits
  5650. {
  5651. mergeOutput += digit[r];
  5652. }
  5653. output = mergeOutput.toFloat();
  5654. if (digit[4] == 8) //Handle sign
  5655. {
  5656. output *= -1;
  5657. }
  5658. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5659. {
  5660. output /= 10;
  5661. }
  5662. return output;
  5663. }
  5664. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5665. int t1 = 0;
  5666. int t_delay = 0;
  5667. int digit[13];
  5668. int m;
  5669. char str[3];
  5670. //String mergeOutput;
  5671. char mergeOutput[15];
  5672. float output;
  5673. int mesh_point = 0; //index number of calibration point
  5674. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5675. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5676. float mesh_home_z_search = 4;
  5677. float row[x_points_num];
  5678. int ix = 0;
  5679. int iy = 0;
  5680. char* filename_wldsd = "wldsd.txt";
  5681. char data_wldsd[70];
  5682. char numb_wldsd[10];
  5683. d_setup();
  5684. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5685. // We don't know where we are! HOME!
  5686. // Push the commands to the front of the message queue in the reverse order!
  5687. // There shall be always enough space reserved for these commands.
  5688. repeatcommand_front(); // repeat G80 with all its parameters
  5689. enquecommand_front_P((PSTR("G28 W0")));
  5690. enquecommand_front_P((PSTR("G1 Z5")));
  5691. return;
  5692. }
  5693. bool custom_message_old = custom_message;
  5694. unsigned int custom_message_type_old = custom_message_type;
  5695. unsigned int custom_message_state_old = custom_message_state;
  5696. custom_message = true;
  5697. custom_message_type = 1;
  5698. custom_message_state = (x_points_num * y_points_num) + 10;
  5699. lcd_update(1);
  5700. mbl.reset();
  5701. babystep_undo();
  5702. card.openFile(filename_wldsd, false);
  5703. current_position[Z_AXIS] = mesh_home_z_search;
  5704. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5705. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5706. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5707. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5708. setup_for_endstop_move(false);
  5709. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5710. SERIAL_PROTOCOL(x_points_num);
  5711. SERIAL_PROTOCOLPGM(",");
  5712. SERIAL_PROTOCOL(y_points_num);
  5713. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5714. SERIAL_PROTOCOL(mesh_home_z_search);
  5715. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5716. SERIAL_PROTOCOL(x_dimension);
  5717. SERIAL_PROTOCOLPGM(",");
  5718. SERIAL_PROTOCOL(y_dimension);
  5719. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5720. while (mesh_point != x_points_num * y_points_num) {
  5721. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5722. iy = mesh_point / x_points_num;
  5723. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5724. float z0 = 0.f;
  5725. current_position[Z_AXIS] = mesh_home_z_search;
  5726. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5727. st_synchronize();
  5728. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5729. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5730. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5731. st_synchronize();
  5732. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5733. break;
  5734. card.closefile();
  5735. }
  5736. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5737. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5738. //strcat(data_wldsd, numb_wldsd);
  5739. //MYSERIAL.println(data_wldsd);
  5740. //delay(1000);
  5741. //delay(3000);
  5742. //t1 = millis();
  5743. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5744. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5745. memset(digit, 0, sizeof(digit));
  5746. //cli();
  5747. digitalWrite(D_REQUIRE, LOW);
  5748. for (int i = 0; i<13; i++)
  5749. {
  5750. //t1 = millis();
  5751. for (int j = 0; j < 4; j++)
  5752. {
  5753. while (digitalRead(D_DATACLOCK) == LOW) {}
  5754. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5755. bitWrite(digit[i], j, digitalRead(D_DATA));
  5756. }
  5757. //t_delay = (millis() - t1);
  5758. //SERIAL_PROTOCOLPGM(" ");
  5759. //SERIAL_PROTOCOL_F(t_delay, 5);
  5760. //SERIAL_PROTOCOLPGM(" ");
  5761. }
  5762. //sei();
  5763. digitalWrite(D_REQUIRE, HIGH);
  5764. mergeOutput[0] = '\0';
  5765. output = 0;
  5766. for (int r = 5; r <= 10; r++) //Merge digits
  5767. {
  5768. sprintf(str, "%d", digit[r]);
  5769. strcat(mergeOutput, str);
  5770. }
  5771. output = atof(mergeOutput);
  5772. if (digit[4] == 8) //Handle sign
  5773. {
  5774. output *= -1;
  5775. }
  5776. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5777. {
  5778. output *= 0.1;
  5779. }
  5780. //output = d_ReadData();
  5781. //row[ix] = current_position[Z_AXIS];
  5782. memset(data_wldsd, 0, sizeof(data_wldsd));
  5783. for (int i = 0; i <3; i++) {
  5784. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5785. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5786. strcat(data_wldsd, numb_wldsd);
  5787. strcat(data_wldsd, ";");
  5788. }
  5789. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5790. dtostrf(output, 8, 5, numb_wldsd);
  5791. strcat(data_wldsd, numb_wldsd);
  5792. //strcat(data_wldsd, ";");
  5793. card.write_command(data_wldsd);
  5794. //row[ix] = d_ReadData();
  5795. row[ix] = output; // current_position[Z_AXIS];
  5796. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5797. for (int i = 0; i < x_points_num; i++) {
  5798. SERIAL_PROTOCOLPGM(" ");
  5799. SERIAL_PROTOCOL_F(row[i], 5);
  5800. }
  5801. SERIAL_PROTOCOLPGM("\n");
  5802. }
  5803. custom_message_state--;
  5804. mesh_point++;
  5805. lcd_update(1);
  5806. }
  5807. card.closefile();
  5808. }
  5809. #endif
  5810. void temp_compensation_start() {
  5811. custom_message = true;
  5812. custom_message_type = 5;
  5813. custom_message_state = PINDA_HEAT_T + 1;
  5814. lcd_update(2);
  5815. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5816. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5817. }
  5818. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5819. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5820. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5821. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5822. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5823. st_synchronize();
  5824. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5825. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5826. delay_keep_alive(1000);
  5827. custom_message_state = PINDA_HEAT_T - i;
  5828. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5829. else lcd_update(1);
  5830. }
  5831. custom_message_type = 0;
  5832. custom_message_state = 0;
  5833. custom_message = false;
  5834. }
  5835. void temp_compensation_apply() {
  5836. int i_add;
  5837. int compensation_value;
  5838. int z_shift = 0;
  5839. float z_shift_mm;
  5840. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5841. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5842. i_add = (target_temperature_bed - 60) / 10;
  5843. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5844. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5845. }else {
  5846. //interpolation
  5847. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5848. }
  5849. SERIAL_PROTOCOLPGM("\n");
  5850. SERIAL_PROTOCOLPGM("Z shift applied:");
  5851. MYSERIAL.print(z_shift_mm);
  5852. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5853. st_synchronize();
  5854. plan_set_z_position(current_position[Z_AXIS]);
  5855. }
  5856. else {
  5857. //we have no temp compensation data
  5858. }
  5859. }
  5860. float temp_comp_interpolation(float inp_temperature) {
  5861. //cubic spline interpolation
  5862. int n, i, j, k;
  5863. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5864. int shift[10];
  5865. int temp_C[10];
  5866. n = 6; //number of measured points
  5867. shift[0] = 0;
  5868. for (i = 0; i < n; i++) {
  5869. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5870. temp_C[i] = 50 + i * 10; //temperature in C
  5871. #ifdef PINDA_THERMISTOR
  5872. temp_C[i] = 35 + i * 5; //temperature in C
  5873. #else
  5874. temp_C[i] = 50 + i * 10; //temperature in C
  5875. #endif
  5876. x[i] = (float)temp_C[i];
  5877. f[i] = (float)shift[i];
  5878. }
  5879. if (inp_temperature < x[0]) return 0;
  5880. for (i = n - 1; i>0; i--) {
  5881. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5882. h[i - 1] = x[i] - x[i - 1];
  5883. }
  5884. //*********** formation of h, s , f matrix **************
  5885. for (i = 1; i<n - 1; i++) {
  5886. m[i][i] = 2 * (h[i - 1] + h[i]);
  5887. if (i != 1) {
  5888. m[i][i - 1] = h[i - 1];
  5889. m[i - 1][i] = h[i - 1];
  5890. }
  5891. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5892. }
  5893. //*********** forward elimination **************
  5894. for (i = 1; i<n - 2; i++) {
  5895. temp = (m[i + 1][i] / m[i][i]);
  5896. for (j = 1; j <= n - 1; j++)
  5897. m[i + 1][j] -= temp*m[i][j];
  5898. }
  5899. //*********** backward substitution *********
  5900. for (i = n - 2; i>0; i--) {
  5901. sum = 0;
  5902. for (j = i; j <= n - 2; j++)
  5903. sum += m[i][j] * s[j];
  5904. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5905. }
  5906. for (i = 0; i<n - 1; i++)
  5907. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5908. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5909. b = s[i] / 2;
  5910. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5911. d = f[i];
  5912. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5913. }
  5914. return sum;
  5915. }
  5916. #ifdef PINDA_THERMISTOR
  5917. float temp_compensation_pinda_thermistor_offset()
  5918. {
  5919. if (!temp_cal_active) return 0;
  5920. if (!calibration_status_pinda()) return 0;
  5921. return temp_comp_interpolation(current_temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  5922. }
  5923. #endif //PINDA_THERMISTOR
  5924. void long_pause() //long pause print
  5925. {
  5926. st_synchronize();
  5927. //save currently set parameters to global variables
  5928. saved_feedmultiply = feedmultiply;
  5929. HotendTempBckp = degTargetHotend(active_extruder);
  5930. fanSpeedBckp = fanSpeed;
  5931. start_pause_print = millis();
  5932. //save position
  5933. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  5934. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  5935. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  5936. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  5937. //retract
  5938. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5939. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5940. //lift z
  5941. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  5942. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  5943. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  5944. //set nozzle target temperature to 0
  5945. setTargetHotend(0, 0);
  5946. setTargetHotend(0, 1);
  5947. setTargetHotend(0, 2);
  5948. //Move XY to side
  5949. current_position[X_AXIS] = X_PAUSE_POS;
  5950. current_position[Y_AXIS] = Y_PAUSE_POS;
  5951. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5952. // Turn off the print fan
  5953. fanSpeed = 0;
  5954. st_synchronize();
  5955. }
  5956. void serialecho_temperatures() {
  5957. float tt = degHotend(active_extruder);
  5958. SERIAL_PROTOCOLPGM("T:");
  5959. SERIAL_PROTOCOL(tt);
  5960. SERIAL_PROTOCOLPGM(" E:");
  5961. SERIAL_PROTOCOL((int)active_extruder);
  5962. SERIAL_PROTOCOLPGM(" B:");
  5963. SERIAL_PROTOCOL_F(degBed(), 1);
  5964. SERIAL_PROTOCOLLN("");
  5965. }
  5966. extern uint32_t sdpos_atomic;
  5967. void uvlo_()
  5968. {
  5969. // Conserve power as soon as possible.
  5970. disable_x();
  5971. disable_y();
  5972. // Indicate that the interrupt has been triggered.
  5973. SERIAL_ECHOLNPGM("UVLO");
  5974. // Read out the current Z motor microstep counter. This will be later used
  5975. // for reaching the zero full step before powering off.
  5976. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  5977. // Calculate the file position, from which to resume this print.
  5978. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  5979. {
  5980. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  5981. sd_position -= sdlen_planner;
  5982. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  5983. sd_position -= sdlen_cmdqueue;
  5984. if (sd_position < 0) sd_position = 0;
  5985. }
  5986. // Backup the feedrate in mm/min.
  5987. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  5988. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  5989. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  5990. // are in action.
  5991. planner_abort_hard();
  5992. // Clean the input command queue.
  5993. cmdqueue_reset();
  5994. card.sdprinting = false;
  5995. // card.closefile();
  5996. // Enable stepper driver interrupt to move Z axis.
  5997. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  5998. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  5999. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6000. sei();
  6001. plan_buffer_line(
  6002. current_position[X_AXIS],
  6003. current_position[Y_AXIS],
  6004. current_position[Z_AXIS],
  6005. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6006. 400, active_extruder);
  6007. plan_buffer_line(
  6008. current_position[X_AXIS],
  6009. current_position[Y_AXIS],
  6010. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6011. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6012. 40, active_extruder);
  6013. // Move Z up to the next 0th full step.
  6014. // Write the file position.
  6015. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6016. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6017. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6018. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6019. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6020. // Scale the z value to 1u resolution.
  6021. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6022. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6023. }
  6024. // Read out the current Z motor microstep counter. This will be later used
  6025. // for reaching the zero full step before powering off.
  6026. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6027. // Store the current position.
  6028. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6029. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6030. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6031. // Store the current feed rate, temperatures and fan speed.
  6032. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6033. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6034. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6035. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6036. // Finaly store the "power outage" flag.
  6037. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6038. st_synchronize();
  6039. SERIAL_ECHOPGM("stps");
  6040. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6041. #if 0
  6042. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6043. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6044. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6045. st_synchronize();
  6046. #endif
  6047. disable_z();
  6048. // Increment power failure counter
  6049. uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
  6050. power_count++;
  6051. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
  6052. SERIAL_ECHOLNPGM("UVLO - end");
  6053. cli();
  6054. while(1);
  6055. }
  6056. void setup_uvlo_interrupt() {
  6057. DDRE &= ~(1 << 4); //input pin
  6058. PORTE &= ~(1 << 4); //no internal pull-up
  6059. //sensing falling edge
  6060. EICRB |= (1 << 0);
  6061. EICRB &= ~(1 << 1);
  6062. //enable INT4 interrupt
  6063. EIMSK |= (1 << 4);
  6064. }
  6065. ISR(INT4_vect) {
  6066. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6067. SERIAL_ECHOLNPGM("INT4");
  6068. if (IS_SD_PRINTING) uvlo_();
  6069. }
  6070. void recover_print(uint8_t automatic) {
  6071. char cmd[30];
  6072. lcd_update_enable(true);
  6073. lcd_update(2);
  6074. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6075. recover_machine_state_after_power_panic();
  6076. // Set the target bed and nozzle temperatures.
  6077. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6078. enquecommand(cmd);
  6079. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6080. enquecommand(cmd);
  6081. // Lift the print head, so one may remove the excess priming material.
  6082. if (current_position[Z_AXIS] < 25)
  6083. enquecommand_P(PSTR("G1 Z25 F800"));
  6084. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6085. enquecommand_P(PSTR("G28 X Y"));
  6086. // Set the target bed and nozzle temperatures and wait.
  6087. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6088. enquecommand(cmd);
  6089. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6090. enquecommand(cmd);
  6091. enquecommand_P(PSTR("M83")); //E axis relative mode
  6092. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6093. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6094. if(automatic == 0){
  6095. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6096. }
  6097. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6098. // Mark the power panic status as inactive.
  6099. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6100. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6101. delay_keep_alive(1000);
  6102. }*/
  6103. SERIAL_ECHOPGM("After waiting for temp:");
  6104. SERIAL_ECHOPGM("Current position X_AXIS:");
  6105. MYSERIAL.println(current_position[X_AXIS]);
  6106. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6107. MYSERIAL.println(current_position[Y_AXIS]);
  6108. // Restart the print.
  6109. restore_print_from_eeprom();
  6110. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6111. MYSERIAL.print(current_position[Z_AXIS]);
  6112. }
  6113. void recover_machine_state_after_power_panic()
  6114. {
  6115. // 1) Recover the logical cordinates at the time of the power panic.
  6116. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6117. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6118. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6119. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6120. // The current position after power panic is moved to the next closest 0th full step.
  6121. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6122. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6123. memcpy(destination, current_position, sizeof(destination));
  6124. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6125. print_world_coordinates();
  6126. // 2) Initialize the logical to physical coordinate system transformation.
  6127. world2machine_initialize();
  6128. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6129. mbl.active = false;
  6130. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6131. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6132. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6133. // Scale the z value to 10u resolution.
  6134. int16_t v;
  6135. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6136. if (v != 0)
  6137. mbl.active = true;
  6138. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6139. }
  6140. if (mbl.active)
  6141. mbl.upsample_3x3();
  6142. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6143. print_mesh_bed_leveling_table();
  6144. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6145. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6146. babystep_load();
  6147. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6148. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6149. // 6) Power up the motors, mark their positions as known.
  6150. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6151. axis_known_position[X_AXIS] = true; enable_x();
  6152. axis_known_position[Y_AXIS] = true; enable_y();
  6153. axis_known_position[Z_AXIS] = true; enable_z();
  6154. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6155. print_physical_coordinates();
  6156. // 7) Recover the target temperatures.
  6157. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6158. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6159. }
  6160. void restore_print_from_eeprom() {
  6161. float x_rec, y_rec, z_pos;
  6162. int feedrate_rec;
  6163. uint8_t fan_speed_rec;
  6164. char cmd[30];
  6165. char* c;
  6166. char filename[13];
  6167. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6168. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6169. SERIAL_ECHOPGM("Feedrate:");
  6170. MYSERIAL.println(feedrate_rec);
  6171. for (int i = 0; i < 8; i++) {
  6172. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6173. }
  6174. filename[8] = '\0';
  6175. MYSERIAL.print(filename);
  6176. strcat_P(filename, PSTR(".gco"));
  6177. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6178. for (c = &cmd[4]; *c; c++)
  6179. *c = tolower(*c);
  6180. enquecommand(cmd);
  6181. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6182. SERIAL_ECHOPGM("Position read from eeprom:");
  6183. MYSERIAL.println(position);
  6184. // E axis relative mode.
  6185. enquecommand_P(PSTR("M83"));
  6186. // Move to the XY print position in logical coordinates, where the print has been killed.
  6187. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6188. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6189. strcat_P(cmd, PSTR(" F2000"));
  6190. enquecommand(cmd);
  6191. // Move the Z axis down to the print, in logical coordinates.
  6192. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6193. enquecommand(cmd);
  6194. // Unretract.
  6195. enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
  6196. // Set the feedrate saved at the power panic.
  6197. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6198. enquecommand(cmd);
  6199. // Set the fan speed saved at the power panic.
  6200. strcpy_P(cmd, PSTR("M106 S"));
  6201. strcat(cmd, itostr3(int(fan_speed_rec)));
  6202. enquecommand(cmd);
  6203. // Set a position in the file.
  6204. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6205. enquecommand(cmd);
  6206. // Start SD print.
  6207. enquecommand_P(PSTR("M24"));
  6208. }
  6209. ////////////////////////////////////////////////////////////////////////////////
  6210. // new save/restore printing
  6211. //extern uint32_t sdpos_atomic;
  6212. bool saved_printing = false;
  6213. uint32_t saved_sdpos = 0;
  6214. float saved_pos[4] = {0, 0, 0, 0};
  6215. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6216. float saved_feedrate2 = 0;
  6217. uint8_t saved_active_extruder = 0;
  6218. bool saved_extruder_under_pressure = false;
  6219. void stop_and_save_print_to_ram(float z_move, float e_move)
  6220. {
  6221. if (saved_printing) return;
  6222. cli();
  6223. unsigned char nplanner_blocks = number_of_blocks();
  6224. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6225. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6226. saved_sdpos -= sdlen_planner;
  6227. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6228. saved_sdpos -= sdlen_cmdqueue;
  6229. #if 0
  6230. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6231. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6232. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6233. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6234. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6235. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6236. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6237. {
  6238. card.setIndex(saved_sdpos);
  6239. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6240. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6241. MYSERIAL.print(char(card.get()));
  6242. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6243. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6244. MYSERIAL.print(char(card.get()));
  6245. SERIAL_ECHOLNPGM("End of command buffer");
  6246. }
  6247. {
  6248. // Print the content of the planner buffer, line by line:
  6249. card.setIndex(saved_sdpos);
  6250. int8_t iline = 0;
  6251. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6252. SERIAL_ECHOPGM("Planner line (from file): ");
  6253. MYSERIAL.print(int(iline), DEC);
  6254. SERIAL_ECHOPGM(", length: ");
  6255. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6256. SERIAL_ECHOPGM(", steps: (");
  6257. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6258. SERIAL_ECHOPGM(",");
  6259. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6260. SERIAL_ECHOPGM(",");
  6261. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6262. SERIAL_ECHOPGM(",");
  6263. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6264. SERIAL_ECHOPGM("), events: ");
  6265. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6266. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6267. MYSERIAL.print(char(card.get()));
  6268. }
  6269. }
  6270. {
  6271. // Print the content of the command buffer, line by line:
  6272. int8_t iline = 0;
  6273. union {
  6274. struct {
  6275. char lo;
  6276. char hi;
  6277. } lohi;
  6278. uint16_t value;
  6279. } sdlen_single;
  6280. int _bufindr = bufindr;
  6281. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6282. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6283. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6284. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6285. }
  6286. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6287. MYSERIAL.print(int(iline), DEC);
  6288. SERIAL_ECHOPGM(", type: ");
  6289. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6290. SERIAL_ECHOPGM(", len: ");
  6291. MYSERIAL.println(sdlen_single.value, DEC);
  6292. // Print the content of the buffer line.
  6293. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6294. SERIAL_ECHOPGM("Buffer line (from file): ");
  6295. MYSERIAL.print(int(iline), DEC);
  6296. MYSERIAL.println(int(iline), DEC);
  6297. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6298. MYSERIAL.print(char(card.get()));
  6299. if (-- _buflen == 0)
  6300. break;
  6301. // First skip the current command ID and iterate up to the end of the string.
  6302. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6303. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6304. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6305. // If the end of the buffer was empty,
  6306. if (_bufindr == sizeof(cmdbuffer)) {
  6307. // skip to the start and find the nonzero command.
  6308. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6309. }
  6310. }
  6311. }
  6312. #endif
  6313. #if 0
  6314. saved_feedrate2 = feedrate; //save feedrate
  6315. #else
  6316. // Try to deduce the feedrate from the first block of the planner.
  6317. // Speed is in mm/min.
  6318. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6319. #endif
  6320. planner_abort_hard(); //abort printing
  6321. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6322. saved_active_extruder = active_extruder; //save active_extruder
  6323. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6324. cmdqueue_reset(); //empty cmdqueue
  6325. card.sdprinting = false;
  6326. // card.closefile();
  6327. saved_printing = true;
  6328. sei();
  6329. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6330. #if 1
  6331. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6332. char buf[48];
  6333. strcpy_P(buf, PSTR("G1 Z"));
  6334. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6335. strcat_P(buf, PSTR(" E"));
  6336. // Relative extrusion
  6337. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6338. strcat_P(buf, PSTR(" F"));
  6339. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6340. // At this point the command queue is empty.
  6341. enquecommand(buf, false);
  6342. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6343. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6344. repeatcommand_front();
  6345. #else
  6346. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6347. st_synchronize(); //wait moving
  6348. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6349. memcpy(destination, current_position, sizeof(destination));
  6350. #endif
  6351. }
  6352. }
  6353. void restore_print_from_ram_and_continue(float e_move)
  6354. {
  6355. if (!saved_printing) return;
  6356. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6357. // current_position[axis] = st_get_position_mm(axis);
  6358. active_extruder = saved_active_extruder; //restore active_extruder
  6359. feedrate = saved_feedrate2; //restore feedrate
  6360. float e = saved_pos[E_AXIS] - e_move;
  6361. plan_set_e_position(e);
  6362. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6363. st_synchronize();
  6364. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6365. memcpy(destination, current_position, sizeof(destination));
  6366. card.setIndex(saved_sdpos);
  6367. sdpos_atomic = saved_sdpos;
  6368. card.sdprinting = true;
  6369. saved_printing = false;
  6370. }
  6371. void print_world_coordinates()
  6372. {
  6373. SERIAL_ECHOPGM("world coordinates: (");
  6374. MYSERIAL.print(current_position[X_AXIS], 3);
  6375. SERIAL_ECHOPGM(", ");
  6376. MYSERIAL.print(current_position[Y_AXIS], 3);
  6377. SERIAL_ECHOPGM(", ");
  6378. MYSERIAL.print(current_position[Z_AXIS], 3);
  6379. SERIAL_ECHOLNPGM(")");
  6380. }
  6381. void print_physical_coordinates()
  6382. {
  6383. SERIAL_ECHOPGM("physical coordinates: (");
  6384. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6385. SERIAL_ECHOPGM(", ");
  6386. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6387. SERIAL_ECHOPGM(", ");
  6388. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6389. SERIAL_ECHOLNPGM(")");
  6390. }
  6391. void print_mesh_bed_leveling_table()
  6392. {
  6393. SERIAL_ECHOPGM("mesh bed leveling: ");
  6394. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6395. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6396. MYSERIAL.print(mbl.z_values[y][x], 3);
  6397. SERIAL_ECHOPGM(" ");
  6398. }
  6399. SERIAL_ECHOLNPGM("");
  6400. }