fsensor.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697
  1. //! @file
  2. #include "Marlin.h"
  3. #include "fsensor.h"
  4. #include <avr/pgmspace.h>
  5. #include "pat9125.h"
  6. #include "stepper.h"
  7. #include "io_atmega2560.h"
  8. #include "cmdqueue.h"
  9. #include "ultralcd.h"
  10. #include "mmu.h"
  11. #include "cardreader.h"
  12. #include "adc.h"
  13. #include "temperature.h"
  14. #include "config.h"
  15. //! @name Basic parameters
  16. //! @{
  17. #define FSENSOR_CHUNK_LEN 0.64F //!< filament sensor chunk length 0.64mm
  18. #define FSENSOR_ERR_MAX 9 //!< filament sensor maximum error count for runout detection
  19. #define FSENSOR_SOFTERR_CMAX 3 //!< number of contiguous soft failures before a triggering a runout
  20. #define FSENSOR_SOFTERR_DELTA 30000 //!< maximum interval (ms) to consider soft failures contiguous
  21. //! @}
  22. //! @name Optical quality measurement parameters
  23. //! @{
  24. #define FSENSOR_OQ_MAX_ES 6 //!< maximum error sum while loading (length ~64mm = 100chunks)
  25. #define FSENSOR_OQ_MAX_EM 2 //!< maximum error counter value while loading
  26. #define FSENSOR_OQ_MIN_YD 2 //!< minimum yd per chunk (applied to avg value)
  27. #define FSENSOR_OQ_MAX_YD 200 //!< maximum yd per chunk (applied to avg value)
  28. #define FSENSOR_OQ_MAX_PD 4 //!< maximum positive deviation (= yd_max/yd_avg)
  29. #define FSENSOR_OQ_MAX_ND 5 //!< maximum negative deviation (= yd_avg/yd_min)
  30. #define FSENSOR_OQ_MAX_SH 13 //!< maximum shutter value
  31. //! @}
  32. const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
  33. // PJ7 can not be used (does not have PinChangeInterrupt possibility)
  34. #define FSENSOR_INT_PIN 75 //!< filament sensor interrupt pin PJ4
  35. #define FSENSOR_INT_PIN_MASK 0x10 //!< filament sensor interrupt pin mask (bit4)
  36. #define FSENSOR_INT_PIN_PIN_REG PINJ // PIN register @ PJ4
  37. #define FSENSOR_INT_PIN_VECT PCINT1_vect // PinChange ISR @ PJ4
  38. #define FSENSOR_INT_PIN_PCMSK_REG PCMSK1 // PinChangeMaskRegister @ PJ4
  39. #define FSENSOR_INT_PIN_PCMSK_BIT PCINT13 // PinChange Interrupt / PinChange Enable Mask @ PJ4
  40. #define FSENSOR_INT_PIN_PCICR_BIT PCIE1 // PinChange Interrupt Enable / Flag @ PJ4
  41. //uint8_t fsensor_int_pin = FSENSOR_INT_PIN;
  42. uint8_t fsensor_int_pin_old = 0;
  43. int16_t fsensor_chunk_len = 0;
  44. //! enabled = initialized and sampled every chunk event
  45. bool fsensor_enabled = true;
  46. //! runout watching is done in fsensor_update (called from main loop)
  47. bool fsensor_watch_runout = true;
  48. //! not responding - is set if any communication error occurred during initialization or readout
  49. bool fsensor_not_responding = false;
  50. //! enable/disable quality meassurement
  51. bool fsensor_oq_meassure_enabled = false;
  52. //! number of errors, updated in ISR
  53. uint8_t fsensor_err_cnt = 0;
  54. //! variable for accumulating step count (updated callbacks from stepper and ISR)
  55. int16_t fsensor_st_cnt = 0;
  56. //! last dy value from pat9125 sensor (used in ISR)
  57. int16_t fsensor_dy_old = 0;
  58. //! log flag: 0=log disabled, 1=log enabled
  59. uint8_t fsensor_log = 1;
  60. //! @name filament autoload variables
  61. //! @{
  62. //! autoload feature enabled
  63. bool fsensor_autoload_enabled = true;
  64. //! autoload watching enable/disable flag
  65. bool fsensor_watch_autoload = false;
  66. //
  67. uint16_t fsensor_autoload_y;
  68. //
  69. uint8_t fsensor_autoload_c;
  70. //
  71. uint32_t fsensor_autoload_last_millis;
  72. //
  73. uint8_t fsensor_autoload_sum;
  74. //
  75. uint8_t fsensor_softfail = 0;
  76. uint8_t fsensor_softfail_ccnt = 0;
  77. unsigned long fsensor_softfail_last = 0;
  78. //! @}
  79. //! @name filament optical quality measurement variables
  80. //! @{
  81. //! Measurement enable/disable flag
  82. bool fsensor_oq_meassure = false;
  83. //! skip-chunk counter, for accurate measurement is necessary to skip first chunk...
  84. uint8_t fsensor_oq_skipchunk;
  85. //! number of samples from start of measurement
  86. uint8_t fsensor_oq_samples;
  87. //! sum of steps in positive direction movements
  88. uint16_t fsensor_oq_st_sum;
  89. //! sum of deltas in positive direction movements
  90. uint16_t fsensor_oq_yd_sum;
  91. //! sum of errors during measurement
  92. uint16_t fsensor_oq_er_sum;
  93. //! max error counter value during measurement
  94. uint8_t fsensor_oq_er_max;
  95. //! minimum delta value
  96. int16_t fsensor_oq_yd_min;
  97. //! maximum delta value
  98. int16_t fsensor_oq_yd_max;
  99. //! sum of shutter value
  100. uint16_t fsensor_oq_sh_sum;
  101. //! @}
  102. #if IR_SENSOR_ANALOG
  103. ClFsensorPCB oFsensorPCB;
  104. ClFsensorActionNA oFsensorActionNA;
  105. bool bIRsensorStateFlag=false;
  106. unsigned long nIRsensorLastTime;
  107. #endif //IR_SENSOR_ANALOG
  108. void fsensor_stop_and_save_print(void)
  109. {
  110. printf_P(PSTR("fsensor_stop_and_save_print\n"));
  111. stop_and_save_print_to_ram(0, 0);
  112. fsensor_watch_runout = false;
  113. }
  114. void fsensor_restore_print_and_continue(void)
  115. {
  116. printf_P(PSTR("fsensor_restore_print_and_continue\n"));
  117. fsensor_watch_runout = true;
  118. fsensor_err_cnt = 0;
  119. restore_print_from_ram_and_continue(0);
  120. }
  121. // fsensor_checkpoint_print cuts the current print job at the current position,
  122. // allowing new instructions to be inserted in the middle
  123. void fsensor_checkpoint_print(void)
  124. {
  125. printf_P(PSTR("fsensor_checkpoint_print\n"));
  126. stop_and_save_print_to_ram(0, 0);
  127. restore_print_from_ram_and_continue(0);
  128. }
  129. void fsensor_init(void)
  130. {
  131. #ifdef PAT9125
  132. uint8_t pat9125 = pat9125_init();
  133. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  134. #endif //PAT9125
  135. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  136. fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  137. fsensor_not_responding = false;
  138. #ifdef PAT9125
  139. uint8_t oq_meassure_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENS_OQ_MEASS_ENABLED);
  140. fsensor_oq_meassure_enabled = (oq_meassure_enabled == 1)?true:false;
  141. fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * cs.axis_steps_per_unit[E_AXIS]);
  142. if (!pat9125)
  143. {
  144. fsensor = 0; //disable sensor
  145. fsensor_not_responding = true;
  146. }
  147. #endif //PAT9125
  148. #if IR_SENSOR_ANALOG
  149. bIRsensorStateFlag=false;
  150. oFsensorPCB=(ClFsensorPCB)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_PCB);
  151. oFsensorActionNA=(ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA);
  152. #endif //IR_SENSOR_ANALOG
  153. if (fsensor)
  154. fsensor_enable(false); // (in this case) EEPROM update is not necessary
  155. else
  156. fsensor_disable(false); // (in this case) EEPROM update is not necessary
  157. printf_P(PSTR("FSensor %S"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED")));
  158. #if IR_SENSOR_ANALOG
  159. printf_P(PSTR(" (sensor board revision: %S)\n"),(oFsensorPCB==ClFsensorPCB::_Rev03b)?PSTR("03b or newer"):PSTR("03 or older"));
  160. #else //IR_SENSOR_ANALOG
  161. printf_P(PSTR("\n"));
  162. #endif //IR_SENSOR_ANALOG
  163. if (check_for_ir_sensor()) ir_sensor_detected = true;
  164. }
  165. bool fsensor_enable(bool bUpdateEEPROM)
  166. {
  167. #ifdef PAT9125
  168. if (mmu_enabled == false) { //filament sensor is pat9125, enable only if it is working
  169. uint8_t pat9125 = pat9125_init();
  170. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  171. if (pat9125)
  172. fsensor_not_responding = false;
  173. else
  174. fsensor_not_responding = true;
  175. fsensor_enabled = pat9125 ? true : false;
  176. fsensor_watch_runout = true;
  177. fsensor_oq_meassure = false;
  178. fsensor_err_cnt = 0;
  179. fsensor_dy_old = 0;
  180. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled ? 0x01 : 0x00);
  181. FSensorStateMenu = fsensor_enabled ? 1 : 0;
  182. }
  183. else //filament sensor is FINDA, always enable
  184. {
  185. fsensor_enabled = true;
  186. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x01);
  187. FSensorStateMenu = 1;
  188. }
  189. #else // PAT9125
  190. #if IR_SENSOR_ANALOG
  191. if(!fsensor_IR_check())
  192. {
  193. bUpdateEEPROM=true;
  194. fsensor_enabled=false;
  195. fsensor_not_responding=true;
  196. FSensorStateMenu=0;
  197. }
  198. else {
  199. #endif //IR_SENSOR_ANALOG
  200. fsensor_enabled=true;
  201. fsensor_not_responding=false;
  202. FSensorStateMenu=1;
  203. #if IR_SENSOR_ANALOG
  204. }
  205. #endif //IR_SENSOR_ANALOG
  206. if(bUpdateEEPROM)
  207. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, FSensorStateMenu);
  208. #endif //PAT9125
  209. return fsensor_enabled;
  210. }
  211. void fsensor_disable(bool bUpdateEEPROM)
  212. {
  213. fsensor_enabled = false;
  214. FSensorStateMenu = 0;
  215. if(bUpdateEEPROM)
  216. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  217. }
  218. void fsensor_autoload_set(bool State)
  219. {
  220. #ifdef PAT9125
  221. if (!State) fsensor_autoload_check_stop();
  222. #endif //PAT9125
  223. fsensor_autoload_enabled = State;
  224. eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
  225. }
  226. void pciSetup(byte pin)
  227. {
  228. // !!! "digitalPinTo?????bit()" does not provide the correct results for some MCU pins
  229. *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
  230. PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
  231. PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
  232. }
  233. #ifdef PAT9125
  234. void fsensor_autoload_check_start(void)
  235. {
  236. // puts_P(_N("fsensor_autoload_check_start\n"));
  237. if (!fsensor_enabled) return;
  238. if (!fsensor_autoload_enabled) return;
  239. if (fsensor_watch_autoload) return;
  240. if (!pat9125_update()) //update sensor
  241. {
  242. fsensor_disable();
  243. fsensor_not_responding = true;
  244. fsensor_watch_autoload = false;
  245. printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
  246. return;
  247. }
  248. puts_P(_N("fsensor_autoload_check_start - autoload ENABLED\n"));
  249. fsensor_autoload_y = pat9125_y; //save current y value
  250. fsensor_autoload_c = 0; //reset number of changes counter
  251. fsensor_autoload_sum = 0;
  252. fsensor_autoload_last_millis = _millis();
  253. fsensor_watch_runout = false;
  254. fsensor_watch_autoload = true;
  255. fsensor_err_cnt = 0;
  256. }
  257. void fsensor_autoload_check_stop(void)
  258. {
  259. // puts_P(_N("fsensor_autoload_check_stop\n"));
  260. if (!fsensor_enabled) return;
  261. // puts_P(_N("fsensor_autoload_check_stop 1\n"));
  262. if (!fsensor_autoload_enabled) return;
  263. // puts_P(_N("fsensor_autoload_check_stop 2\n"));
  264. if (!fsensor_watch_autoload) return;
  265. puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED\n"));
  266. fsensor_autoload_sum = 0;
  267. fsensor_watch_autoload = false;
  268. fsensor_watch_runout = true;
  269. fsensor_err_cnt = 0;
  270. }
  271. #endif //PAT9125
  272. bool fsensor_check_autoload(void)
  273. {
  274. if (!fsensor_enabled) return false;
  275. if (!fsensor_autoload_enabled) return false;
  276. if (ir_sensor_detected) {
  277. if (digitalRead(IR_SENSOR_PIN) == 1) {
  278. fsensor_watch_autoload = true;
  279. }
  280. else if (fsensor_watch_autoload == true) {
  281. fsensor_watch_autoload = false;
  282. return true;
  283. }
  284. }
  285. #ifdef PAT9125
  286. if (!fsensor_watch_autoload)
  287. {
  288. fsensor_autoload_check_start();
  289. return false;
  290. }
  291. #if 0
  292. uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
  293. #endif
  294. if ((_millis() - fsensor_autoload_last_millis) < 25) return false;
  295. fsensor_autoload_last_millis = _millis();
  296. if (!pat9125_update_y()) //update sensor
  297. {
  298. fsensor_disable();
  299. fsensor_not_responding = true;
  300. printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
  301. return false;
  302. }
  303. int16_t dy = pat9125_y - fsensor_autoload_y;
  304. if (dy) //? dy value is nonzero
  305. {
  306. if (dy > 0) //? delta-y value is positive (inserting)
  307. {
  308. fsensor_autoload_sum += dy;
  309. fsensor_autoload_c += 3; //increment change counter by 3
  310. }
  311. else if (fsensor_autoload_c > 1)
  312. fsensor_autoload_c -= 2; //decrement change counter by 2
  313. fsensor_autoload_y = pat9125_y; //save current value
  314. }
  315. else if (fsensor_autoload_c > 0)
  316. fsensor_autoload_c--;
  317. if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
  318. #if 0
  319. puts_P(_N("fsensor_check_autoload\n"));
  320. if (fsensor_autoload_c != fsensor_autoload_c_old)
  321. printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
  322. #endif
  323. // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
  324. if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20))
  325. {
  326. // puts_P(_N("fsensor_check_autoload = true !!!\n"));
  327. return true;
  328. }
  329. #endif //PAT9125
  330. return false;
  331. }
  332. void fsensor_oq_meassure_set(bool State)
  333. {
  334. fsensor_oq_meassure_enabled = State;
  335. eeprom_update_byte((unsigned char *)EEPROM_FSENS_OQ_MEASS_ENABLED, fsensor_oq_meassure_enabled);
  336. }
  337. void fsensor_oq_meassure_start(uint8_t skip)
  338. {
  339. if (!fsensor_enabled) return;
  340. if (!fsensor_oq_meassure_enabled) return;
  341. printf_P(PSTR("fsensor_oq_meassure_start\n"));
  342. fsensor_oq_skipchunk = skip;
  343. fsensor_oq_samples = 0;
  344. fsensor_oq_st_sum = 0;
  345. fsensor_oq_yd_sum = 0;
  346. fsensor_oq_er_sum = 0;
  347. fsensor_oq_er_max = 0;
  348. fsensor_oq_yd_min = FSENSOR_OQ_MAX_YD;
  349. fsensor_oq_yd_max = 0;
  350. fsensor_oq_sh_sum = 0;
  351. pat9125_update();
  352. pat9125_y = 0;
  353. fsensor_oq_meassure = true;
  354. }
  355. void fsensor_oq_meassure_stop(void)
  356. {
  357. if (!fsensor_enabled) return;
  358. if (!fsensor_oq_meassure_enabled) return;
  359. printf_P(PSTR("fsensor_oq_meassure_stop, %hhu samples\n"), fsensor_oq_samples);
  360. printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  361. printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
  362. fsensor_oq_meassure = false;
  363. fsensor_err_cnt = 0;
  364. }
  365. const char _OK[] PROGMEM = "OK";
  366. const char _NG[] PROGMEM = "NG!";
  367. bool fsensor_oq_result(void)
  368. {
  369. if (!fsensor_enabled) return true;
  370. if (!fsensor_oq_meassure_enabled) return true;
  371. printf_P(_N("fsensor_oq_result\n"));
  372. bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
  373. printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
  374. bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
  375. printf_P(_N(" er_max = %hhu %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
  376. uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum);
  377. bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
  378. printf_P(_N(" yd_avg = %hhu %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
  379. bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
  380. printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
  381. bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
  382. printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
  383. uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min);
  384. printf_P(_N(" yd_dev = %u\n"), yd_dev);
  385. uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1);
  386. printf_P(_N(" yd_qua = %u %S\n"), yd_qua, ((yd_qua >= 8)?_OK:_NG));
  387. uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
  388. bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
  389. if (yd_qua >= 8) res_sh_avg = true;
  390. printf_P(_N(" sh_avg = %hhu %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
  391. bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
  392. printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
  393. return res;
  394. }
  395. #ifdef PAT9125
  396. ISR(FSENSOR_INT_PIN_VECT)
  397. {
  398. if (mmu_enabled || ir_sensor_detected) return;
  399. if (!((fsensor_int_pin_old ^ FSENSOR_INT_PIN_PIN_REG) & FSENSOR_INT_PIN_MASK)) return;
  400. fsensor_int_pin_old = FSENSOR_INT_PIN_PIN_REG;
  401. static bool _lock = false;
  402. if (_lock) return;
  403. _lock = true;
  404. int st_cnt = fsensor_st_cnt;
  405. fsensor_st_cnt = 0;
  406. sei();
  407. uint8_t old_err_cnt = fsensor_err_cnt;
  408. uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
  409. if (!pat9125_res)
  410. {
  411. fsensor_disable();
  412. fsensor_not_responding = true;
  413. printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
  414. }
  415. if (st_cnt != 0)
  416. { //movement
  417. if (st_cnt > 0) //positive movement
  418. {
  419. if (pat9125_y < 0)
  420. {
  421. fsensor_err_cnt++;
  422. }
  423. else if (pat9125_y > 0)
  424. {
  425. if (fsensor_err_cnt)
  426. fsensor_err_cnt--;
  427. }
  428. else //(pat9125_y == 0)
  429. if (((fsensor_dy_old <= 0) || (fsensor_err_cnt)) && (st_cnt > (fsensor_chunk_len >> 1)))
  430. fsensor_err_cnt++;
  431. if (fsensor_oq_meassure)
  432. {
  433. if (fsensor_oq_skipchunk)
  434. {
  435. fsensor_oq_skipchunk--;
  436. fsensor_err_cnt = 0;
  437. }
  438. else
  439. {
  440. if (st_cnt == fsensor_chunk_len)
  441. {
  442. if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
  443. if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
  444. }
  445. fsensor_oq_samples++;
  446. fsensor_oq_st_sum += st_cnt;
  447. if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y;
  448. if (fsensor_err_cnt > old_err_cnt)
  449. fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
  450. if (fsensor_oq_er_max < fsensor_err_cnt)
  451. fsensor_oq_er_max = fsensor_err_cnt;
  452. fsensor_oq_sh_sum += pat9125_s;
  453. }
  454. }
  455. }
  456. else //negative movement
  457. {
  458. }
  459. }
  460. else
  461. { //no movement
  462. }
  463. #ifdef DEBUG_FSENSOR_LOG
  464. if (fsensor_log)
  465. {
  466. printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
  467. if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
  468. }
  469. #endif //DEBUG_FSENSOR_LOG
  470. fsensor_dy_old = pat9125_y;
  471. pat9125_y = 0;
  472. _lock = false;
  473. return;
  474. }
  475. void fsensor_setup_interrupt(void)
  476. {
  477. pinMode(FSENSOR_INT_PIN, OUTPUT);
  478. digitalWrite(FSENSOR_INT_PIN, LOW);
  479. fsensor_int_pin_old = 0;
  480. //pciSetup(FSENSOR_INT_PIN);
  481. // !!! "pciSetup()" does not provide the correct results for some MCU pins
  482. // so interrupt registers settings:
  483. FSENSOR_INT_PIN_PCMSK_REG |= bit(FSENSOR_INT_PIN_PCMSK_BIT); // enable corresponding PinChangeInterrupt (individual pin)
  484. PCIFR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // clear previous occasional interrupt (set of pins)
  485. PCICR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // enable corresponding PinChangeInterrupt (set of pins)
  486. }
  487. #endif //PAT9125
  488. void fsensor_st_block_chunk(int cnt)
  489. {
  490. if (!fsensor_enabled) return;
  491. fsensor_st_cnt += cnt;
  492. if (abs(fsensor_st_cnt) >= fsensor_chunk_len)
  493. {
  494. // !!! bit toggling (PINxn <- 1) (for PinChangeInterrupt) does not work for some MCU pins
  495. if (PIN_GET(FSENSOR_INT_PIN)) {PIN_VAL(FSENSOR_INT_PIN, LOW);}
  496. else {PIN_VAL(FSENSOR_INT_PIN, HIGH);}
  497. }
  498. }
  499. //! Common code for enqueing M600 and supplemental codes into the command queue.
  500. //! Used both for the IR sensor and the PAT9125
  501. void fsensor_enque_M600(){
  502. printf_P(PSTR("fsensor_update - M600\n"));
  503. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
  504. eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
  505. enquecommand_front_P((PSTR("M600")));
  506. }
  507. //! @brief filament sensor update (perform M600 on filament runout)
  508. //!
  509. //! Works only if filament sensor is enabled.
  510. //! When the filament sensor error count is larger then FSENSOR_ERR_MAX, pauses print, tries to move filament back and forth.
  511. //! If there is still no plausible signal from filament sensor plans M600 (Filament change).
  512. void fsensor_update(void)
  513. {
  514. #ifdef PAT9125
  515. if (fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))
  516. {
  517. fsensor_stop_and_save_print();
  518. KEEPALIVE_STATE(IN_HANDLER);
  519. bool autoload_enabled_tmp = fsensor_autoload_enabled;
  520. fsensor_autoload_enabled = false;
  521. bool oq_meassure_enabled_tmp = fsensor_oq_meassure_enabled;
  522. fsensor_oq_meassure_enabled = true;
  523. // move the nozzle away while checking the filament
  524. current_position[Z_AXIS] += 0.8;
  525. if(current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  526. plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS], active_extruder);
  527. st_synchronize();
  528. // check the filament in isolation
  529. fsensor_err_cnt = 0;
  530. fsensor_oq_meassure_start(0);
  531. float e_tmp = current_position[E_AXIS];
  532. current_position[E_AXIS] -= 3;
  533. plan_buffer_line_curposXYZE(200/60, active_extruder);
  534. current_position[E_AXIS] = e_tmp;
  535. plan_buffer_line_curposXYZE(200/60, active_extruder);
  536. st_synchronize();
  537. uint8_t err_cnt = fsensor_err_cnt;
  538. fsensor_oq_meassure_stop();
  539. bool err = false;
  540. err |= (err_cnt > 1);
  541. err |= (fsensor_oq_er_sum > 2);
  542. err |= (fsensor_oq_yd_sum < (4 * FSENSOR_OQ_MIN_YD));
  543. fsensor_restore_print_and_continue();
  544. fsensor_autoload_enabled = autoload_enabled_tmp;
  545. fsensor_oq_meassure_enabled = oq_meassure_enabled_tmp;
  546. unsigned long now = _millis();
  547. if (!err && (now - fsensor_softfail_last) > FSENSOR_SOFTERR_DELTA)
  548. fsensor_softfail_ccnt = 0;
  549. if (!err && fsensor_softfail_ccnt <= FSENSOR_SOFTERR_CMAX)
  550. {
  551. printf_P(PSTR("fsensor_err_cnt = 0\n"));
  552. ++fsensor_softfail;
  553. ++fsensor_softfail_ccnt;
  554. fsensor_softfail_last = now;
  555. }
  556. else
  557. {
  558. fsensor_softfail_ccnt = 0;
  559. fsensor_softfail_last = 0;
  560. fsensor_enque_M600();
  561. }
  562. }
  563. #else //PAT9125
  564. if (CHECK_FSENSOR && ir_sensor_detected)
  565. {
  566. if(digitalRead(IR_SENSOR_PIN))
  567. { // IR_SENSOR_PIN ~ H
  568. #if IR_SENSOR_ANALOG
  569. if(!bIRsensorStateFlag)
  570. {
  571. bIRsensorStateFlag=true;
  572. nIRsensorLastTime=_millis();
  573. }
  574. else
  575. {
  576. if((_millis()-nIRsensorLastTime)>IR_SENSOR_STEADY)
  577. {
  578. uint8_t nMUX1,nMUX2;
  579. uint16_t nADC;
  580. bIRsensorStateFlag=false;
  581. // sequence for direct data reading from AD converter
  582. DISABLE_TEMPERATURE_INTERRUPT();
  583. nMUX1=ADMUX; // ADMUX saving
  584. nMUX2=ADCSRB;
  585. adc_setmux(VOLT_IR_PIN);
  586. ADCSRA|=(1<<ADSC); // first conversion after ADMUX change discarded (preventively)
  587. while(ADCSRA&(1<<ADSC))
  588. ;
  589. ADCSRA|=(1<<ADSC); // second conversion used
  590. while(ADCSRA&(1<<ADSC))
  591. ;
  592. nADC=ADC;
  593. ADMUX=nMUX1; // ADMUX restoring
  594. ADCSRB=nMUX2;
  595. ENABLE_TEMPERATURE_INTERRUPT();
  596. // end of sequence for ...
  597. if((oFsensorPCB==ClFsensorPCB::_Rev03b)&&((nADC*OVERSAMPLENR)>((int)IRsensor_Hopen_TRESHOLD)))
  598. {
  599. fsensor_disable();
  600. fsensor_not_responding = true;
  601. printf_P(PSTR("IR sensor not responding (%d)!\n"),1);
  602. if((ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA)==ClFsensorActionNA::_Pause)
  603. if(oFsensorActionNA==ClFsensorActionNA::_Pause)
  604. lcd_pause_print();
  605. }
  606. else
  607. {
  608. #endif //IR_SENSOR_ANALOG
  609. fsensor_checkpoint_print();
  610. fsensor_enque_M600();
  611. #if IR_SENSOR_ANALOG
  612. }
  613. }
  614. }
  615. }
  616. else
  617. { // IR_SENSOR_PIN ~ L
  618. bIRsensorStateFlag=false;
  619. #endif //IR_SENSOR_ANALOG
  620. }
  621. }
  622. #endif //PAT9125
  623. }
  624. #if IR_SENSOR_ANALOG
  625. bool fsensor_IR_check()
  626. {
  627. uint16_t volt_IR_int;
  628. bool bCheckResult;
  629. volt_IR_int=current_voltage_raw_IR;
  630. bCheckResult=(volt_IR_int<((int)IRsensor_Lmax_TRESHOLD))||(volt_IR_int>((int)IRsensor_Hmin_TRESHOLD));
  631. bCheckResult=bCheckResult&&(!((oFsensorPCB==ClFsensorPCB::_Rev03b)&&(volt_IR_int>((int)IRsensor_Hopen_TRESHOLD))));
  632. return(bCheckResult);
  633. }
  634. #endif //IR_SENSOR_ANALOG