planner.cpp 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #ifdef MESH_BED_LEVELING
  43. #include "mesh_bed_leveling.h"
  44. #include "mesh_bed_calibration.h"
  45. #endif
  46. #ifdef TMC2130
  47. #include "tmc2130.h"
  48. #endif //TMC2130
  49. //===========================================================================
  50. //=============================public variables ============================
  51. //===========================================================================
  52. unsigned long minsegmenttime;
  53. // Use M203 to override by software
  54. float max_feedrate_normal[NUM_AXIS]; // max speeds for normal mode
  55. float max_feedrate_silent[NUM_AXIS]; // max speeds for silent mode
  56. float* max_feedrate = max_feedrate_normal;
  57. // Use M92 to override by software
  58. float axis_steps_per_unit[NUM_AXIS];
  59. // Use M201 to override by software
  60. unsigned long max_acceleration_units_per_sq_second_normal[NUM_AXIS];
  61. unsigned long max_acceleration_units_per_sq_second_silent[NUM_AXIS];
  62. unsigned long* max_acceleration_units_per_sq_second = max_acceleration_units_per_sq_second_normal;
  63. float minimumfeedrate;
  64. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  65. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  66. // Jerk is a maximum immediate velocity change.
  67. float max_jerk[NUM_AXIS];
  68. float mintravelfeedrate;
  69. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  70. #ifdef ENABLE_AUTO_BED_LEVELING
  71. // this holds the required transform to compensate for bed level
  72. matrix_3x3 plan_bed_level_matrix = {
  73. 1.0, 0.0, 0.0,
  74. 0.0, 1.0, 0.0,
  75. 0.0, 0.0, 1.0,
  76. };
  77. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  78. // The current position of the tool in absolute steps
  79. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  80. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  81. static float previous_nominal_speed; // Nominal speed of previous path line segment
  82. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  83. uint8_t maxlimit_status;
  84. #ifdef AUTOTEMP
  85. float autotemp_max=250;
  86. float autotemp_min=210;
  87. float autotemp_factor=0.1;
  88. bool autotemp_enabled=false;
  89. #endif
  90. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  91. //===========================================================================
  92. //=================semi-private variables, used in inline functions =====
  93. //===========================================================================
  94. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  95. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  96. volatile unsigned char block_buffer_tail; // Index of the block to process now
  97. #ifdef PLANNER_DIAGNOSTICS
  98. // Diagnostic function: Minimum number of planned moves since the last
  99. static uint8_t g_cntr_planner_queue_min = 0;
  100. #endif /* PLANNER_DIAGNOSTICS */
  101. //===========================================================================
  102. //=============================private variables ============================
  103. //===========================================================================
  104. #ifdef PREVENT_DANGEROUS_EXTRUDE
  105. float extrude_min_temp=EXTRUDE_MINTEMP;
  106. #endif
  107. #ifdef LIN_ADVANCE
  108. float extruder_advance_k = LIN_ADVANCE_K,
  109. advance_ed_ratio = LIN_ADVANCE_E_D_RATIO,
  110. position_float[NUM_AXIS] = { 0 };
  111. #endif
  112. // Returns the index of the next block in the ring buffer
  113. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  114. static inline int8_t next_block_index(int8_t block_index) {
  115. if (++ block_index == BLOCK_BUFFER_SIZE)
  116. block_index = 0;
  117. return block_index;
  118. }
  119. // Returns the index of the previous block in the ring buffer
  120. static inline int8_t prev_block_index(int8_t block_index) {
  121. if (block_index == 0)
  122. block_index = BLOCK_BUFFER_SIZE;
  123. -- block_index;
  124. return block_index;
  125. }
  126. //===========================================================================
  127. //=============================functions ============================
  128. //===========================================================================
  129. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  130. // given acceleration:
  131. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  132. {
  133. if (acceleration!=0) {
  134. return((target_rate*target_rate-initial_rate*initial_rate)/
  135. (2.0*acceleration));
  136. }
  137. else {
  138. return 0.0; // acceleration was 0, set acceleration distance to 0
  139. }
  140. }
  141. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  142. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  143. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  144. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  145. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  146. {
  147. if (acceleration!=0) {
  148. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  149. (4.0*acceleration) );
  150. }
  151. else {
  152. return 0.0; // acceleration was 0, set intersection distance to 0
  153. }
  154. }
  155. // Minimum stepper rate 120Hz.
  156. #define MINIMAL_STEP_RATE 120
  157. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  158. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  159. {
  160. // These two lines are the only floating point calculations performed in this routine.
  161. // initial_rate, final_rate in Hz.
  162. // Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
  163. // the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
  164. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  165. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  166. // Limit minimal step rate (Otherwise the timer will overflow.)
  167. if (initial_rate < MINIMAL_STEP_RATE)
  168. initial_rate = MINIMAL_STEP_RATE;
  169. if (initial_rate > block->nominal_rate)
  170. initial_rate = block->nominal_rate;
  171. if (final_rate < MINIMAL_STEP_RATE)
  172. final_rate = MINIMAL_STEP_RATE;
  173. if (final_rate > block->nominal_rate)
  174. final_rate = block->nominal_rate;
  175. uint32_t acceleration = block->acceleration_st;
  176. if (acceleration == 0)
  177. // Don't allow zero acceleration.
  178. acceleration = 1;
  179. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  180. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  181. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  182. //FIXME assert that this result fits a 64bit unsigned int.
  183. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  184. uint32_t final_rate_sqr = final_rate*final_rate;
  185. uint32_t acceleration_x2 = acceleration << 1;
  186. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  187. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  188. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  189. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  190. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  191. // Size of Plateau of Nominal Rate.
  192. uint32_t plateau_steps = 0;
  193. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  194. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  195. // in order to reach the final_rate exactly at the end of this block.
  196. if (accel_decel_steps < block->step_event_count.wide) {
  197. plateau_steps = block->step_event_count.wide - accel_decel_steps;
  198. } else {
  199. uint32_t acceleration_x4 = acceleration << 2;
  200. // Avoid negative numbers
  201. if (final_rate_sqr >= initial_rate_sqr) {
  202. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  203. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  204. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  205. #if 0
  206. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  207. #else
  208. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  209. if (block->step_event_count.wide & 1)
  210. accelerate_steps += acceleration_x2;
  211. accelerate_steps /= acceleration_x4;
  212. accelerate_steps += (block->step_event_count.wide >> 1);
  213. #endif
  214. if (accelerate_steps > block->step_event_count.wide)
  215. accelerate_steps = block->step_event_count.wide;
  216. } else {
  217. #if 0
  218. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  219. #else
  220. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  221. if (block->step_event_count.wide & 1)
  222. decelerate_steps += acceleration_x2;
  223. decelerate_steps /= acceleration_x4;
  224. decelerate_steps += (block->step_event_count.wide >> 1);
  225. #endif
  226. if (decelerate_steps > block->step_event_count.wide)
  227. decelerate_steps = block->step_event_count.wide;
  228. accelerate_steps = block->step_event_count.wide - decelerate_steps;
  229. }
  230. }
  231. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  232. // This block locks the interrupts globally for 4.38 us,
  233. // which corresponds to a maximum repeat frequency of 228.57 kHz.
  234. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  235. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  236. if (! block->busy) { // Don't update variables if block is busy.
  237. block->accelerate_until = accelerate_steps;
  238. block->decelerate_after = accelerate_steps+plateau_steps;
  239. block->initial_rate = initial_rate;
  240. block->final_rate = final_rate;
  241. }
  242. CRITICAL_SECTION_END;
  243. }
  244. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  245. // decceleration within the allotted distance.
  246. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  247. {
  248. // assert(decceleration < 0);
  249. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  250. }
  251. // Recalculates the motion plan according to the following algorithm:
  252. //
  253. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  254. // so that:
  255. // a. The junction jerk is within the set limit
  256. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  257. // acceleration.
  258. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  259. // a. The speed increase within one block would require faster accelleration than the one, true
  260. // constant acceleration.
  261. //
  262. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  263. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  264. // the set limit. Finally it will:
  265. //
  266. // 3. Recalculate trapezoids for all blocks.
  267. //
  268. //FIXME This routine is called 15x every time a new line is added to the planner,
  269. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  270. // if the CPU is found lacking computational power.
  271. //
  272. // Following sources may be used to optimize the 8-bit AVR code:
  273. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  274. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  275. //
  276. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  277. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  278. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  279. //
  280. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  281. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  282. // https://github.com/rekka/avrmultiplication
  283. //
  284. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  285. // https://courses.cit.cornell.edu/ee476/Math/
  286. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  287. //
  288. void planner_recalculate(const float &safe_final_speed)
  289. {
  290. // Reverse pass
  291. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  292. // by consuming the blocks, therefore shortening the queue.
  293. unsigned char tail = block_buffer_tail;
  294. uint8_t block_index;
  295. block_t *prev, *current, *next;
  296. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  297. // At least three blocks are in the queue?
  298. unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  299. if (n_blocks >= 3) {
  300. // Initialize the last tripple of blocks.
  301. block_index = prev_block_index(block_buffer_head);
  302. next = block_buffer + block_index;
  303. current = block_buffer + (block_index = prev_block_index(block_index));
  304. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  305. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  306. // 1) it may already be running at the stepper interrupt,
  307. // 2) there is no way to limit it when going in the forward direction.
  308. while (block_index != tail) {
  309. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  310. // Don't modify the entry velocity of the starting block.
  311. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  312. // for the stepper interrupt routine to use them.
  313. tail = block_index;
  314. // Update the number of blocks to process.
  315. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  316. // SERIAL_ECHOLNPGM("START");
  317. break;
  318. }
  319. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  320. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  321. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  322. if (current->entry_speed != current->max_entry_speed) {
  323. // assert(current->entry_speed < current->max_entry_speed);
  324. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  325. // segment and the maximum acceleration allowed for this segment.
  326. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  327. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  328. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  329. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  330. // together with an assembly 32bit->16bit sqrt function.
  331. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  332. current->max_entry_speed :
  333. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  334. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  335. current->flag |= BLOCK_FLAG_RECALCULATE;
  336. }
  337. next = current;
  338. current = block_buffer + (block_index = prev_block_index(block_index));
  339. }
  340. }
  341. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  342. // Forward pass and recalculate the trapezoids.
  343. if (n_blocks >= 2) {
  344. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  345. block_index = tail;
  346. prev = block_buffer + block_index;
  347. current = block_buffer + (block_index = next_block_index(block_index));
  348. do {
  349. // If the previous block is an acceleration block, but it is not long enough to complete the
  350. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  351. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  352. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  353. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  354. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  355. // Check for junction speed change
  356. if (current->entry_speed != entry_speed) {
  357. current->entry_speed = entry_speed;
  358. current->flag |= BLOCK_FLAG_RECALCULATE;
  359. }
  360. }
  361. // Recalculate if current block entry or exit junction speed has changed.
  362. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  363. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  364. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  365. // Reset current only to ensure next trapezoid is computed.
  366. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  367. }
  368. prev = current;
  369. current = block_buffer + (block_index = next_block_index(block_index));
  370. } while (block_index != block_buffer_head);
  371. }
  372. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  373. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  374. current = block_buffer + prev_block_index(block_buffer_head);
  375. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  376. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  377. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  378. }
  379. void plan_init() {
  380. block_buffer_head = 0;
  381. block_buffer_tail = 0;
  382. memset(position, 0, sizeof(position)); // clear position
  383. #ifdef LIN_ADVANCE
  384. memset(position_float, 0, sizeof(position)); // clear position
  385. #endif
  386. previous_speed[0] = 0.0;
  387. previous_speed[1] = 0.0;
  388. previous_speed[2] = 0.0;
  389. previous_speed[3] = 0.0;
  390. previous_nominal_speed = 0.0;
  391. }
  392. #ifdef AUTOTEMP
  393. void getHighESpeed()
  394. {
  395. static float oldt=0;
  396. if(!autotemp_enabled){
  397. return;
  398. }
  399. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  400. return; //do nothing
  401. }
  402. float high=0.0;
  403. uint8_t block_index = block_buffer_tail;
  404. while(block_index != block_buffer_head) {
  405. if((block_buffer[block_index].steps_x.wide != 0) ||
  406. (block_buffer[block_index].steps_y.wide != 0) ||
  407. (block_buffer[block_index].steps_z.wide != 0)) {
  408. float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
  409. //se; mm/sec;
  410. if(se>high)
  411. {
  412. high=se;
  413. }
  414. }
  415. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  416. }
  417. float g=autotemp_min+high*autotemp_factor;
  418. float t=g;
  419. if(t<autotemp_min)
  420. t=autotemp_min;
  421. if(t>autotemp_max)
  422. t=autotemp_max;
  423. if(oldt>t)
  424. {
  425. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  426. }
  427. oldt=t;
  428. setTargetHotend0(t);
  429. }
  430. #endif
  431. bool e_active()
  432. {
  433. unsigned char e_active = 0;
  434. block_t *block;
  435. if(block_buffer_tail != block_buffer_head)
  436. {
  437. uint8_t block_index = block_buffer_tail;
  438. while(block_index != block_buffer_head)
  439. {
  440. block = &block_buffer[block_index];
  441. if(block->steps_e.wide != 0) e_active++;
  442. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  443. }
  444. }
  445. return (e_active > 0) ? true : false ;
  446. }
  447. void check_axes_activity()
  448. {
  449. unsigned char x_active = 0;
  450. unsigned char y_active = 0;
  451. unsigned char z_active = 0;
  452. unsigned char e_active = 0;
  453. unsigned char tail_fan_speed = fanSpeed;
  454. block_t *block;
  455. if(block_buffer_tail != block_buffer_head)
  456. {
  457. uint8_t block_index = block_buffer_tail;
  458. tail_fan_speed = block_buffer[block_index].fan_speed;
  459. while(block_index != block_buffer_head)
  460. {
  461. block = &block_buffer[block_index];
  462. if(block->steps_x.wide != 0) x_active++;
  463. if(block->steps_y.wide != 0) y_active++;
  464. if(block->steps_z.wide != 0) z_active++;
  465. if(block->steps_e.wide != 0) e_active++;
  466. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  467. }
  468. }
  469. if((DISABLE_X) && (x_active == 0)) disable_x();
  470. if((DISABLE_Y) && (y_active == 0)) disable_y();
  471. if((DISABLE_Z) && (z_active == 0)) disable_z();
  472. if((DISABLE_E) && (e_active == 0))
  473. {
  474. disable_e0();
  475. disable_e1();
  476. disable_e2();
  477. }
  478. #if defined(FAN_PIN) && FAN_PIN > -1
  479. #ifdef FAN_KICKSTART_TIME
  480. static unsigned long fan_kick_end;
  481. if (tail_fan_speed) {
  482. if (fan_kick_end == 0) {
  483. // Just starting up fan - run at full power.
  484. fan_kick_end = millis() + FAN_KICKSTART_TIME;
  485. tail_fan_speed = 255;
  486. } else if (fan_kick_end > millis())
  487. // Fan still spinning up.
  488. tail_fan_speed = 255;
  489. } else {
  490. fan_kick_end = 0;
  491. }
  492. #endif//FAN_KICKSTART_TIME
  493. #ifdef FAN_SOFT_PWM
  494. fanSpeedSoftPwm = tail_fan_speed;
  495. #else
  496. analogWrite(FAN_PIN,tail_fan_speed);
  497. #endif//!FAN_SOFT_PWM
  498. #endif//FAN_PIN > -1
  499. #ifdef AUTOTEMP
  500. getHighESpeed();
  501. #endif
  502. }
  503. bool waiting_inside_plan_buffer_line_print_aborted = false;
  504. /*
  505. void planner_abort_soft()
  506. {
  507. // Empty the queue.
  508. while (blocks_queued()) plan_discard_current_block();
  509. // Relay to planner wait routine, that the current line shall be canceled.
  510. waiting_inside_plan_buffer_line_print_aborted = true;
  511. //current_position[i]
  512. }
  513. */
  514. #ifdef PLANNER_DIAGNOSTICS
  515. static inline void planner_update_queue_min_counter()
  516. {
  517. uint8_t new_counter = moves_planned();
  518. if (new_counter < g_cntr_planner_queue_min)
  519. g_cntr_planner_queue_min = new_counter;
  520. }
  521. #endif /* PLANNER_DIAGNOSTICS */
  522. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  523. void planner_abort_hard()
  524. {
  525. // Abort the stepper routine and flush the planner queue.
  526. DISABLE_STEPPER_DRIVER_INTERRUPT();
  527. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  528. // First update the planner's current position in the physical motor steps.
  529. position[X_AXIS] = st_get_position(X_AXIS);
  530. position[Y_AXIS] = st_get_position(Y_AXIS);
  531. position[Z_AXIS] = st_get_position(Z_AXIS);
  532. position[E_AXIS] = st_get_position(E_AXIS);
  533. // Second update the current position of the front end.
  534. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  535. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  536. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  537. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  538. // Apply the mesh bed leveling correction to the Z axis.
  539. #ifdef MESH_BED_LEVELING
  540. if (mbl.active) {
  541. #if 1
  542. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  543. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  544. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  545. #else
  546. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  547. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  548. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  549. else {
  550. float t = float(step_events_completed) / float(current_block->step_event_count);
  551. float vec[3] = {
  552. current_block->steps_x / axis_steps_per_unit[X_AXIS],
  553. current_block->steps_y / axis_steps_per_unit[Y_AXIS],
  554. current_block->steps_z / axis_steps_per_unit[Z_AXIS]
  555. };
  556. float pos1[3], pos2[3];
  557. for (int8_t i = 0; i < 3; ++ i) {
  558. if (current_block->direction_bits & (1<<i))
  559. vec[i] = - vec[i];
  560. pos1[i] = current_position[i] - vec[i] * t;
  561. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  562. }
  563. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  564. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  565. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  566. }
  567. #endif
  568. }
  569. #endif
  570. // Clear the planner queue, reset and re-enable the stepper timer.
  571. quickStop();
  572. // Apply inverse world correction matrix.
  573. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  574. memcpy(destination, current_position, sizeof(destination));
  575. // Resets planner junction speeds. Assumes start from rest.
  576. previous_nominal_speed = 0.0;
  577. previous_speed[0] = 0.0;
  578. previous_speed[1] = 0.0;
  579. previous_speed[2] = 0.0;
  580. previous_speed[3] = 0.0;
  581. // Relay to planner wait routine, that the current line shall be canceled.
  582. waiting_inside_plan_buffer_line_print_aborted = true;
  583. }
  584. float junction_deviation = 0.1;
  585. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  586. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  587. // calculation the caller must also provide the physical length of the line in millimeters.
  588. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  589. {
  590. // Calculate the buffer head after we push this byte
  591. int next_buffer_head = next_block_index(block_buffer_head);
  592. // If the buffer is full: good! That means we are well ahead of the robot.
  593. // Rest here until there is room in the buffer.
  594. if (block_buffer_tail == next_buffer_head) {
  595. waiting_inside_plan_buffer_line_print_aborted = false;
  596. do {
  597. manage_heater();
  598. // Vojtech: Don't disable motors inside the planner!
  599. manage_inactivity(false);
  600. lcd_update(0);
  601. } while (block_buffer_tail == next_buffer_head);
  602. if (waiting_inside_plan_buffer_line_print_aborted) {
  603. // Inside the lcd_update(0) routine the print has been aborted.
  604. // Cancel the print, do not plan the current line this routine is waiting on.
  605. #ifdef PLANNER_DIAGNOSTICS
  606. planner_update_queue_min_counter();
  607. #endif /* PLANNER_DIAGNOSTICS */
  608. return;
  609. }
  610. }
  611. #ifdef PLANNER_DIAGNOSTICS
  612. planner_update_queue_min_counter();
  613. #endif /* PLANNER_DIAGNOSTICS */
  614. #ifdef ENABLE_AUTO_BED_LEVELING
  615. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  616. #endif // ENABLE_AUTO_BED_LEVELING
  617. // Apply the machine correction matrix.
  618. {
  619. #if 0
  620. SERIAL_ECHOPGM("Planner, current position - servos: ");
  621. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  622. SERIAL_ECHOPGM(", ");
  623. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  624. SERIAL_ECHOPGM(", ");
  625. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  626. SERIAL_ECHOLNPGM("");
  627. SERIAL_ECHOPGM("Planner, target position, initial: ");
  628. MYSERIAL.print(x, 5);
  629. SERIAL_ECHOPGM(", ");
  630. MYSERIAL.print(y, 5);
  631. SERIAL_ECHOLNPGM("");
  632. SERIAL_ECHOPGM("Planner, world2machine: ");
  633. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  634. SERIAL_ECHOPGM(", ");
  635. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  636. SERIAL_ECHOPGM(", ");
  637. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  638. SERIAL_ECHOPGM(", ");
  639. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  640. SERIAL_ECHOLNPGM("");
  641. SERIAL_ECHOPGM("Planner, offset: ");
  642. MYSERIAL.print(world2machine_shift[0], 5);
  643. SERIAL_ECHOPGM(", ");
  644. MYSERIAL.print(world2machine_shift[1], 5);
  645. SERIAL_ECHOLNPGM("");
  646. #endif
  647. world2machine(x, y);
  648. #if 0
  649. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  650. MYSERIAL.print(x, 5);
  651. SERIAL_ECHOPGM(", ");
  652. MYSERIAL.print(y, 5);
  653. SERIAL_ECHOLNPGM("");
  654. #endif
  655. }
  656. // The target position of the tool in absolute steps
  657. // Calculate target position in absolute steps
  658. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  659. long target[4];
  660. target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  661. target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  662. #ifdef MESH_BED_LEVELING
  663. if (mbl.active){
  664. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]);
  665. }else{
  666. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  667. }
  668. #else
  669. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  670. #endif // ENABLE_MESH_BED_LEVELING
  671. target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  672. #ifdef LIN_ADVANCE
  673. const float mm_D_float = sqrt(sq(x - position_float[X_AXIS]) + sq(y - position_float[Y_AXIS]));
  674. float de_float = e - position_float[E_AXIS];
  675. #endif
  676. #ifdef PREVENT_DANGEROUS_EXTRUDE
  677. if(target[E_AXIS]!=position[E_AXIS])
  678. {
  679. if(degHotend(active_extruder)<extrude_min_temp)
  680. {
  681. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  682. #ifdef LIN_ADVANCE
  683. position_float[E_AXIS] = e;
  684. de_float = 0;
  685. #endif
  686. SERIAL_ECHO_START;
  687. SERIAL_ECHOLNRPGM(_i(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP c=0 r=0
  688. }
  689. #ifdef PREVENT_LENGTHY_EXTRUDE
  690. if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  691. {
  692. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  693. #ifdef LIN_ADVANCE
  694. position_float[E_AXIS] = e;
  695. de_float = 0;
  696. #endif
  697. SERIAL_ECHO_START;
  698. SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP c=0 r=0
  699. }
  700. #endif
  701. }
  702. #endif
  703. // Prepare to set up new block
  704. block_t *block = &block_buffer[block_buffer_head];
  705. // Set sdlen for calculating sd position
  706. block->sdlen = 0;
  707. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  708. block->busy = false;
  709. // Number of steps for each axis
  710. #ifndef COREXY
  711. // default non-h-bot planning
  712. block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
  713. block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
  714. #else
  715. // corexy planning
  716. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  717. block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  718. block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  719. #endif
  720. block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
  721. block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
  722. block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
  723. // Bail if this is a zero-length block
  724. if (block->step_event_count.wide <= dropsegments)
  725. {
  726. #ifdef PLANNER_DIAGNOSTICS
  727. planner_update_queue_min_counter();
  728. #endif /* PLANNER_DIAGNOSTICS */
  729. return;
  730. }
  731. block->fan_speed = fanSpeed;
  732. // Compute direction bits for this block
  733. block->direction_bits = 0;
  734. #ifndef COREXY
  735. if (target[X_AXIS] < position[X_AXIS])
  736. {
  737. block->direction_bits |= (1<<X_AXIS);
  738. }
  739. if (target[Y_AXIS] < position[Y_AXIS])
  740. {
  741. block->direction_bits |= (1<<Y_AXIS);
  742. }
  743. #else
  744. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  745. {
  746. block->direction_bits |= (1<<X_AXIS);
  747. }
  748. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  749. {
  750. block->direction_bits |= (1<<Y_AXIS);
  751. }
  752. #endif
  753. if (target[Z_AXIS] < position[Z_AXIS])
  754. {
  755. block->direction_bits |= (1<<Z_AXIS);
  756. }
  757. if (target[E_AXIS] < position[E_AXIS])
  758. {
  759. block->direction_bits |= (1<<E_AXIS);
  760. }
  761. block->active_extruder = extruder;
  762. //enable active axes
  763. #ifdef COREXY
  764. if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
  765. {
  766. enable_x();
  767. enable_y();
  768. }
  769. #else
  770. if(block->steps_x.wide != 0) enable_x();
  771. if(block->steps_y.wide != 0) enable_y();
  772. #endif
  773. if(block->steps_z.wide != 0) enable_z();
  774. // Enable extruder(s)
  775. if(block->steps_e.wide != 0)
  776. {
  777. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  778. {
  779. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  780. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  781. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  782. switch(extruder)
  783. {
  784. case 0:
  785. enable_e0();
  786. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  787. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  788. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  789. break;
  790. case 1:
  791. enable_e1();
  792. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  793. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  794. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  795. break;
  796. case 2:
  797. enable_e2();
  798. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  799. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  800. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  801. break;
  802. }
  803. }
  804. else //enable all
  805. {
  806. enable_e0();
  807. enable_e1();
  808. enable_e2();
  809. }
  810. }
  811. if (block->steps_e.wide == 0)
  812. {
  813. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  814. }
  815. else
  816. {
  817. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  818. }
  819. /* This part of the code calculates the total length of the movement.
  820. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  821. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  822. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  823. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  824. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  825. */
  826. #ifndef COREXY
  827. float delta_mm[4];
  828. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  829. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  830. #else
  831. float delta_mm[6];
  832. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  833. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  834. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
  835. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
  836. #endif
  837. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  838. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
  839. if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
  840. {
  841. block->millimeters = fabs(delta_mm[E_AXIS]);
  842. }
  843. else
  844. {
  845. #ifndef COREXY
  846. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  847. #else
  848. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  849. #endif
  850. }
  851. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  852. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  853. float inverse_second = feed_rate * inverse_millimeters;
  854. int moves_queued = moves_planned();
  855. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  856. #ifdef SLOWDOWN
  857. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  858. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  859. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  860. // segment time in micro seconds
  861. unsigned long segment_time = lround(1000000.0/inverse_second);
  862. if (segment_time < minsegmenttime)
  863. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  864. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
  865. }
  866. #endif // SLOWDOWN
  867. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  868. block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
  869. // Calculate and limit speed in mm/sec for each axis
  870. float current_speed[4];
  871. float speed_factor = 1.0; //factor <=1 do decrease speed
  872. // maxlimit_status &= ~0xf;
  873. for(int i=0; i < 4; i++)
  874. {
  875. current_speed[i] = delta_mm[i] * inverse_second;
  876. if(fabs(current_speed[i]) > max_feedrate[i])
  877. {
  878. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  879. maxlimit_status |= (1 << i);
  880. }
  881. }
  882. // Correct the speed
  883. if( speed_factor < 1.0)
  884. {
  885. for(unsigned char i=0; i < 4; i++)
  886. {
  887. current_speed[i] *= speed_factor;
  888. }
  889. block->nominal_speed *= speed_factor;
  890. block->nominal_rate *= speed_factor;
  891. }
  892. // Compute and limit the acceleration rate for the trapezoid generator.
  893. // block->step_event_count ... event count of the fastest axis
  894. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  895. float steps_per_mm = block->step_event_count.wide/block->millimeters;
  896. if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
  897. {
  898. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  899. }
  900. else
  901. {
  902. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  903. // Limit acceleration per axis
  904. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  905. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  906. { block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; maxlimit_status |= (X_AXIS_MASK << 4); }
  907. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  908. { block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; maxlimit_status |= (Y_AXIS_MASK << 4); }
  909. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  910. { block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; maxlimit_status |= (Z_AXIS_MASK << 4); }
  911. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
  912. { block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; maxlimit_status |= (E_AXIS_MASK << 4); }
  913. }
  914. // Acceleration of the segment, in mm/sec^2
  915. block->acceleration = block->acceleration_st / steps_per_mm;
  916. #if 0
  917. // Oversample diagonal movements by a power of 2 up to 8x
  918. // to achieve more accurate diagonal movements.
  919. uint8_t bresenham_oversample = 1;
  920. for (uint8_t i = 0; i < 3; ++ i) {
  921. if (block->nominal_rate >= 5000) // 5kHz
  922. break;
  923. block->nominal_rate << 1;
  924. bresenham_oversample << 1;
  925. block->step_event_count << 1;
  926. }
  927. if (bresenham_oversample > 1)
  928. // Lower the acceleration steps/sec^2 to account for the oversampling.
  929. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  930. #endif
  931. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  932. // Start with a safe speed.
  933. // Safe speed is the speed, from which the machine may halt to stop immediately.
  934. float safe_speed = block->nominal_speed;
  935. bool limited = false;
  936. for (uint8_t axis = 0; axis < 4; ++ axis) {
  937. float jerk = fabs(current_speed[axis]);
  938. if (jerk > max_jerk[axis]) {
  939. // The actual jerk is lower, if it has been limited by the XY jerk.
  940. if (limited) {
  941. // Spare one division by a following gymnastics:
  942. // Instead of jerk *= safe_speed / block->nominal_speed,
  943. // multiply max_jerk[axis] by the divisor.
  944. jerk *= safe_speed;
  945. float mjerk = max_jerk[axis] * block->nominal_speed;
  946. if (jerk > mjerk) {
  947. safe_speed *= mjerk / jerk;
  948. limited = true;
  949. }
  950. } else {
  951. safe_speed = max_jerk[axis];
  952. limited = true;
  953. }
  954. }
  955. }
  956. // Reset the block flag.
  957. block->flag = 0;
  958. // Initial limit on the segment entry velocity.
  959. float vmax_junction;
  960. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  961. // Is it because we don't want to tinker with the first buffer line, which
  962. // is likely to be executed by the stepper interrupt routine soon?
  963. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  964. // Estimate a maximum velocity allowed at a joint of two successive segments.
  965. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  966. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  967. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  968. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  969. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  970. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  971. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  972. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  973. float v_factor = 1.f;
  974. limited = false;
  975. // Now limit the jerk in all axes.
  976. for (uint8_t axis = 0; axis < 4; ++ axis) {
  977. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  978. float v_exit = previous_speed[axis];
  979. float v_entry = current_speed [axis];
  980. if (prev_speed_larger)
  981. v_exit *= smaller_speed_factor;
  982. if (limited) {
  983. v_exit *= v_factor;
  984. v_entry *= v_factor;
  985. }
  986. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  987. float jerk =
  988. (v_exit > v_entry) ?
  989. ((v_entry > 0.f || v_exit < 0.f) ?
  990. // coasting
  991. (v_exit - v_entry) :
  992. // axis reversal
  993. max(v_exit, - v_entry)) :
  994. // v_exit <= v_entry
  995. ((v_entry < 0.f || v_exit > 0.f) ?
  996. // coasting
  997. (v_entry - v_exit) :
  998. // axis reversal
  999. max(- v_exit, v_entry));
  1000. if (jerk > max_jerk[axis]) {
  1001. v_factor *= max_jerk[axis] / jerk;
  1002. limited = true;
  1003. }
  1004. }
  1005. if (limited)
  1006. vmax_junction *= v_factor;
  1007. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1008. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1009. float vmax_junction_threshold = vmax_junction * 0.99f;
  1010. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1011. // Not coasting. The machine will stop and start the movements anyway,
  1012. // better to start the segment from start.
  1013. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1014. vmax_junction = safe_speed;
  1015. }
  1016. } else {
  1017. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1018. vmax_junction = safe_speed;
  1019. }
  1020. // Max entry speed of this block equals the max exit speed of the previous block.
  1021. block->max_entry_speed = vmax_junction;
  1022. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1023. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1024. block->entry_speed = min(vmax_junction, v_allowable);
  1025. // Initialize planner efficiency flags
  1026. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1027. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1028. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1029. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1030. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1031. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1032. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1033. // Always calculate trapezoid for new block
  1034. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1035. // Update previous path unit_vector and nominal speed
  1036. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1037. previous_nominal_speed = block->nominal_speed;
  1038. previous_safe_speed = safe_speed;
  1039. #ifdef LIN_ADVANCE
  1040. //
  1041. // Use LIN_ADVANCE for blocks if all these are true:
  1042. //
  1043. // esteps : We have E steps todo (a printing move)
  1044. //
  1045. // block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
  1046. //
  1047. // extruder_advance_k : There is an advance factor set.
  1048. //
  1049. // block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
  1050. // In that case, the retract and move will be executed together.
  1051. // This leads to too many advance steps due to a huge e_acceleration.
  1052. // The math is good, but we must avoid retract moves with advance!
  1053. // de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  1054. //
  1055. block->use_advance_lead = block->steps_e.wide
  1056. && (block->steps_x.wide || block->steps_y.wide)
  1057. && extruder_advance_k
  1058. && (uint32_t)block->steps_e.wide != block->step_event_count.wide
  1059. && de_float > 0.0;
  1060. if (block->use_advance_lead)
  1061. block->abs_adv_steps_multiplier8 = lround(
  1062. extruder_advance_k
  1063. * ((advance_ed_ratio < 0.000001) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
  1064. * (block->nominal_speed / (float)block->nominal_rate)
  1065. * axis_steps_per_unit[E_AXIS] * 256.0
  1066. );
  1067. #endif
  1068. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1069. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1070. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1071. if (block->step_event_count.wide <= 32767)
  1072. block->flag |= BLOCK_FLAG_DDA_LOWRES;
  1073. // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
  1074. block_buffer_head = next_buffer_head;
  1075. // Update position
  1076. memcpy(position, target, sizeof(target)); // position[] = target[]
  1077. #ifdef LIN_ADVANCE
  1078. position_float[X_AXIS] = x;
  1079. position_float[Y_AXIS] = y;
  1080. position_float[Z_AXIS] = z;
  1081. position_float[E_AXIS] = e;
  1082. #endif
  1083. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1084. // the machine limits (maximum acceleration and maximum jerk).
  1085. // This runs asynchronously with the stepper interrupt controller, which may
  1086. // interfere with the process.
  1087. planner_recalculate(safe_speed);
  1088. // SERIAL_ECHOPGM("Q");
  1089. // SERIAL_ECHO(int(moves_planned()));
  1090. // SERIAL_ECHOLNPGM("");
  1091. #ifdef PLANNER_DIAGNOSTICS
  1092. planner_update_queue_min_counter();
  1093. #endif /* PLANNER_DIAGNOSTIC */
  1094. // The stepper timer interrupt will run continuously from now on.
  1095. // If there are no planner blocks to be executed by the stepper routine,
  1096. // the stepper interrupt ticks at 1kHz to wake up and pick a block
  1097. // from the planner queue if available.
  1098. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1099. }
  1100. #ifdef ENABLE_AUTO_BED_LEVELING
  1101. vector_3 plan_get_position() {
  1102. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1103. //position.debug("in plan_get position");
  1104. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1105. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1106. //inverse.debug("in plan_get inverse");
  1107. position.apply_rotation(inverse);
  1108. //position.debug("after rotation");
  1109. return position;
  1110. }
  1111. #endif // ENABLE_AUTO_BED_LEVELING
  1112. void plan_set_position(float x, float y, float z, const float &e)
  1113. {
  1114. #ifdef ENABLE_AUTO_BED_LEVELING
  1115. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1116. #endif // ENABLE_AUTO_BED_LEVELING
  1117. // Apply the machine correction matrix.
  1118. if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE)
  1119. {
  1120. float tmpx = x;
  1121. float tmpy = y;
  1122. x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
  1123. y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
  1124. }
  1125. position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  1126. position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  1127. #ifdef MESH_BED_LEVELING
  1128. position[Z_AXIS] = mbl.active ?
  1129. lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]) :
  1130. lround(z*axis_steps_per_unit[Z_AXIS]);
  1131. #else
  1132. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  1133. #endif // ENABLE_MESH_BED_LEVELING
  1134. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  1135. #ifdef LIN_ADVANCE
  1136. position_float[X_AXIS] = x;
  1137. position_float[Y_AXIS] = y;
  1138. position_float[Z_AXIS] = z;
  1139. position_float[E_AXIS] = e;
  1140. #endif
  1141. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1142. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1143. previous_speed[0] = 0.0;
  1144. previous_speed[1] = 0.0;
  1145. previous_speed[2] = 0.0;
  1146. previous_speed[3] = 0.0;
  1147. }
  1148. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1149. void plan_set_z_position(const float &z)
  1150. {
  1151. #ifdef LIN_ADVANCE
  1152. position_float[Z_AXIS] = z;
  1153. #endif
  1154. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  1155. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1156. }
  1157. void plan_set_e_position(const float &e)
  1158. {
  1159. #ifdef LIN_ADVANCE
  1160. position_float[E_AXIS] = e;
  1161. #endif
  1162. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  1163. st_set_e_position(position[E_AXIS]);
  1164. }
  1165. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1166. void set_extrude_min_temp(float temp)
  1167. {
  1168. extrude_min_temp=temp;
  1169. }
  1170. #endif
  1171. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1172. void reset_acceleration_rates()
  1173. {
  1174. for(int8_t i=0; i < NUM_AXIS; i++)
  1175. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  1176. }
  1177. #ifdef TMC2130
  1178. void update_mode_profile()
  1179. {
  1180. if (tmc2130_mode == TMC2130_MODE_NORMAL)
  1181. {
  1182. max_feedrate = max_feedrate_normal;
  1183. max_acceleration_units_per_sq_second = max_acceleration_units_per_sq_second_normal;
  1184. }
  1185. else if (tmc2130_mode == TMC2130_MODE_SILENT)
  1186. {
  1187. max_feedrate = max_feedrate_silent;
  1188. max_acceleration_units_per_sq_second = max_acceleration_units_per_sq_second_silent;
  1189. }
  1190. reset_acceleration_rates();
  1191. }
  1192. #endif //TMC2130
  1193. unsigned char number_of_blocks()
  1194. {
  1195. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1196. }
  1197. #ifdef PLANNER_DIAGNOSTICS
  1198. uint8_t planner_queue_min()
  1199. {
  1200. return g_cntr_planner_queue_min;
  1201. }
  1202. void planner_queue_min_reset()
  1203. {
  1204. g_cntr_planner_queue_min = moves_planned();
  1205. }
  1206. #endif /* PLANNER_DIAGNOSTICS */
  1207. void planner_add_sd_length(uint16_t sdlen)
  1208. {
  1209. if (block_buffer_head != block_buffer_tail) {
  1210. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1211. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1212. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1213. } else {
  1214. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1215. // at a power panic, so the length of this command may be forgotten.
  1216. }
  1217. }
  1218. uint16_t planner_calc_sd_length()
  1219. {
  1220. unsigned char _block_buffer_head = block_buffer_head;
  1221. unsigned char _block_buffer_tail = block_buffer_tail;
  1222. uint16_t sdlen = 0;
  1223. while (_block_buffer_head != _block_buffer_tail)
  1224. {
  1225. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1226. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1227. }
  1228. return sdlen;
  1229. }