planner.cpp 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #include "ConfigurationStore.h"
  43. #ifdef MESH_BED_LEVELING
  44. #include "mesh_bed_leveling.h"
  45. #include "mesh_bed_calibration.h"
  46. #endif
  47. #ifdef TMC2130
  48. #include "tmc2130.h"
  49. #endif //TMC2130
  50. //===========================================================================
  51. //=============================public variables ============================
  52. //===========================================================================
  53. unsigned long minsegmenttime;
  54. // Use M203 to override by software
  55. float max_feedrate_silent[NUM_AXIS]; // max speeds for silent mode
  56. float* max_feedrate = cs.max_feedrate_normal;
  57. // Use M201 to override by software
  58. unsigned long max_acceleration_units_per_sq_second_silent[NUM_AXIS];
  59. unsigned long* max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  60. float minimumfeedrate;
  61. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  62. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  63. // Jerk is a maximum immediate velocity change.
  64. float max_jerk[NUM_AXIS];
  65. float mintravelfeedrate;
  66. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  67. #ifdef ENABLE_AUTO_BED_LEVELING
  68. // this holds the required transform to compensate for bed level
  69. matrix_3x3 plan_bed_level_matrix = {
  70. 1.0, 0.0, 0.0,
  71. 0.0, 1.0, 0.0,
  72. 0.0, 0.0, 1.0,
  73. };
  74. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  75. // The current position of the tool in absolute steps
  76. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  77. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  78. static float previous_nominal_speed; // Nominal speed of previous path line segment
  79. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  80. uint8_t maxlimit_status;
  81. #ifdef AUTOTEMP
  82. float autotemp_max=250;
  83. float autotemp_min=210;
  84. float autotemp_factor=0.1;
  85. bool autotemp_enabled=false;
  86. #endif
  87. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  88. //===========================================================================
  89. //=================semi-private variables, used in inline functions =====
  90. //===========================================================================
  91. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  92. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  93. volatile unsigned char block_buffer_tail; // Index of the block to process now
  94. #ifdef PLANNER_DIAGNOSTICS
  95. // Diagnostic function: Minimum number of planned moves since the last
  96. static uint8_t g_cntr_planner_queue_min = 0;
  97. #endif /* PLANNER_DIAGNOSTICS */
  98. //===========================================================================
  99. //=============================private variables ============================
  100. //===========================================================================
  101. #ifdef PREVENT_DANGEROUS_EXTRUDE
  102. float extrude_min_temp=EXTRUDE_MINTEMP;
  103. #endif
  104. #ifdef LIN_ADVANCE
  105. float extruder_advance_k = LIN_ADVANCE_K,
  106. advance_ed_ratio = LIN_ADVANCE_E_D_RATIO,
  107. position_float[NUM_AXIS] = { 0 };
  108. #endif
  109. // Returns the index of the next block in the ring buffer
  110. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  111. static inline int8_t next_block_index(int8_t block_index) {
  112. if (++ block_index == BLOCK_BUFFER_SIZE)
  113. block_index = 0;
  114. return block_index;
  115. }
  116. // Returns the index of the previous block in the ring buffer
  117. static inline int8_t prev_block_index(int8_t block_index) {
  118. if (block_index == 0)
  119. block_index = BLOCK_BUFFER_SIZE;
  120. -- block_index;
  121. return block_index;
  122. }
  123. //===========================================================================
  124. //=============================functions ============================
  125. //===========================================================================
  126. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  127. // given acceleration:
  128. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  129. {
  130. if (acceleration!=0) {
  131. return((target_rate*target_rate-initial_rate*initial_rate)/
  132. (2.0*acceleration));
  133. }
  134. else {
  135. return 0.0; // acceleration was 0, set acceleration distance to 0
  136. }
  137. }
  138. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  139. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  140. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  141. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  142. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  143. {
  144. if (acceleration!=0) {
  145. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  146. (4.0*acceleration) );
  147. }
  148. else {
  149. return 0.0; // acceleration was 0, set intersection distance to 0
  150. }
  151. }
  152. // Minimum stepper rate 120Hz.
  153. #define MINIMAL_STEP_RATE 120
  154. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  155. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  156. {
  157. // These two lines are the only floating point calculations performed in this routine.
  158. // initial_rate, final_rate in Hz.
  159. // Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
  160. // the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
  161. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  162. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  163. // Limit minimal step rate (Otherwise the timer will overflow.)
  164. if (initial_rate < MINIMAL_STEP_RATE)
  165. initial_rate = MINIMAL_STEP_RATE;
  166. if (initial_rate > block->nominal_rate)
  167. initial_rate = block->nominal_rate;
  168. if (final_rate < MINIMAL_STEP_RATE)
  169. final_rate = MINIMAL_STEP_RATE;
  170. if (final_rate > block->nominal_rate)
  171. final_rate = block->nominal_rate;
  172. uint32_t acceleration = block->acceleration_st;
  173. if (acceleration == 0)
  174. // Don't allow zero acceleration.
  175. acceleration = 1;
  176. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  177. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  178. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  179. //FIXME assert that this result fits a 64bit unsigned int.
  180. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  181. uint32_t final_rate_sqr = final_rate*final_rate;
  182. uint32_t acceleration_x2 = acceleration << 1;
  183. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  184. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  185. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  186. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  187. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  188. // Size of Plateau of Nominal Rate.
  189. uint32_t plateau_steps = 0;
  190. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  191. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  192. // in order to reach the final_rate exactly at the end of this block.
  193. if (accel_decel_steps < block->step_event_count.wide) {
  194. plateau_steps = block->step_event_count.wide - accel_decel_steps;
  195. } else {
  196. uint32_t acceleration_x4 = acceleration << 2;
  197. // Avoid negative numbers
  198. if (final_rate_sqr >= initial_rate_sqr) {
  199. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  200. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  201. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  202. #if 0
  203. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  204. #else
  205. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  206. if (block->step_event_count.wide & 1)
  207. accelerate_steps += acceleration_x2;
  208. accelerate_steps /= acceleration_x4;
  209. accelerate_steps += (block->step_event_count.wide >> 1);
  210. #endif
  211. if (accelerate_steps > block->step_event_count.wide)
  212. accelerate_steps = block->step_event_count.wide;
  213. } else {
  214. #if 0
  215. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  216. #else
  217. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  218. if (block->step_event_count.wide & 1)
  219. decelerate_steps += acceleration_x2;
  220. decelerate_steps /= acceleration_x4;
  221. decelerate_steps += (block->step_event_count.wide >> 1);
  222. #endif
  223. if (decelerate_steps > block->step_event_count.wide)
  224. decelerate_steps = block->step_event_count.wide;
  225. accelerate_steps = block->step_event_count.wide - decelerate_steps;
  226. }
  227. }
  228. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  229. // This block locks the interrupts globally for 4.38 us,
  230. // which corresponds to a maximum repeat frequency of 228.57 kHz.
  231. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  232. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  233. if (! block->busy) { // Don't update variables if block is busy.
  234. block->accelerate_until = accelerate_steps;
  235. block->decelerate_after = accelerate_steps+plateau_steps;
  236. block->initial_rate = initial_rate;
  237. block->final_rate = final_rate;
  238. }
  239. CRITICAL_SECTION_END;
  240. }
  241. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  242. // decceleration within the allotted distance.
  243. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  244. {
  245. // assert(decceleration < 0);
  246. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  247. }
  248. // Recalculates the motion plan according to the following algorithm:
  249. //
  250. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  251. // so that:
  252. // a. The junction jerk is within the set limit
  253. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  254. // acceleration.
  255. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  256. // a. The speed increase within one block would require faster accelleration than the one, true
  257. // constant acceleration.
  258. //
  259. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  260. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  261. // the set limit. Finally it will:
  262. //
  263. // 3. Recalculate trapezoids for all blocks.
  264. //
  265. //FIXME This routine is called 15x every time a new line is added to the planner,
  266. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  267. // if the CPU is found lacking computational power.
  268. //
  269. // Following sources may be used to optimize the 8-bit AVR code:
  270. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  271. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  272. //
  273. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  274. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  275. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  276. //
  277. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  278. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  279. // https://github.com/rekka/avrmultiplication
  280. //
  281. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  282. // https://courses.cit.cornell.edu/ee476/Math/
  283. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  284. //
  285. void planner_recalculate(const float &safe_final_speed)
  286. {
  287. // Reverse pass
  288. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  289. // by consuming the blocks, therefore shortening the queue.
  290. unsigned char tail = block_buffer_tail;
  291. uint8_t block_index;
  292. block_t *prev, *current, *next;
  293. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  294. // At least three blocks are in the queue?
  295. unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  296. if (n_blocks >= 3) {
  297. // Initialize the last tripple of blocks.
  298. block_index = prev_block_index(block_buffer_head);
  299. next = block_buffer + block_index;
  300. current = block_buffer + (block_index = prev_block_index(block_index));
  301. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  302. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  303. // 1) it may already be running at the stepper interrupt,
  304. // 2) there is no way to limit it when going in the forward direction.
  305. while (block_index != tail) {
  306. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  307. // Don't modify the entry velocity of the starting block.
  308. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  309. // for the stepper interrupt routine to use them.
  310. tail = block_index;
  311. // Update the number of blocks to process.
  312. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  313. // SERIAL_ECHOLNPGM("START");
  314. break;
  315. }
  316. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  317. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  318. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  319. if (current->entry_speed != current->max_entry_speed) {
  320. // assert(current->entry_speed < current->max_entry_speed);
  321. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  322. // segment and the maximum acceleration allowed for this segment.
  323. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  324. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  325. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  326. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  327. // together with an assembly 32bit->16bit sqrt function.
  328. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  329. current->max_entry_speed :
  330. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  331. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  332. current->flag |= BLOCK_FLAG_RECALCULATE;
  333. }
  334. next = current;
  335. current = block_buffer + (block_index = prev_block_index(block_index));
  336. }
  337. }
  338. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  339. // Forward pass and recalculate the trapezoids.
  340. if (n_blocks >= 2) {
  341. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  342. block_index = tail;
  343. prev = block_buffer + block_index;
  344. current = block_buffer + (block_index = next_block_index(block_index));
  345. do {
  346. // If the previous block is an acceleration block, but it is not long enough to complete the
  347. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  348. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  349. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  350. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  351. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  352. // Check for junction speed change
  353. if (current->entry_speed != entry_speed) {
  354. current->entry_speed = entry_speed;
  355. current->flag |= BLOCK_FLAG_RECALCULATE;
  356. }
  357. }
  358. // Recalculate if current block entry or exit junction speed has changed.
  359. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  360. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  361. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  362. // Reset current only to ensure next trapezoid is computed.
  363. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  364. }
  365. prev = current;
  366. current = block_buffer + (block_index = next_block_index(block_index));
  367. } while (block_index != block_buffer_head);
  368. }
  369. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  370. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  371. current = block_buffer + prev_block_index(block_buffer_head);
  372. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  373. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  374. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  375. }
  376. void plan_init() {
  377. block_buffer_head = 0;
  378. block_buffer_tail = 0;
  379. memset(position, 0, sizeof(position)); // clear position
  380. #ifdef LIN_ADVANCE
  381. memset(position_float, 0, sizeof(position)); // clear position
  382. #endif
  383. previous_speed[0] = 0.0;
  384. previous_speed[1] = 0.0;
  385. previous_speed[2] = 0.0;
  386. previous_speed[3] = 0.0;
  387. previous_nominal_speed = 0.0;
  388. }
  389. #ifdef AUTOTEMP
  390. void getHighESpeed()
  391. {
  392. static float oldt=0;
  393. if(!autotemp_enabled){
  394. return;
  395. }
  396. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  397. return; //do nothing
  398. }
  399. float high=0.0;
  400. uint8_t block_index = block_buffer_tail;
  401. while(block_index != block_buffer_head) {
  402. if((block_buffer[block_index].steps_x.wide != 0) ||
  403. (block_buffer[block_index].steps_y.wide != 0) ||
  404. (block_buffer[block_index].steps_z.wide != 0)) {
  405. float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
  406. //se; mm/sec;
  407. if(se>high)
  408. {
  409. high=se;
  410. }
  411. }
  412. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  413. }
  414. float g=autotemp_min+high*autotemp_factor;
  415. float t=g;
  416. if(t<autotemp_min)
  417. t=autotemp_min;
  418. if(t>autotemp_max)
  419. t=autotemp_max;
  420. if(oldt>t)
  421. {
  422. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  423. }
  424. oldt=t;
  425. setTargetHotend0(t);
  426. }
  427. #endif
  428. bool e_active()
  429. {
  430. unsigned char e_active = 0;
  431. block_t *block;
  432. if(block_buffer_tail != block_buffer_head)
  433. {
  434. uint8_t block_index = block_buffer_tail;
  435. while(block_index != block_buffer_head)
  436. {
  437. block = &block_buffer[block_index];
  438. if(block->steps_e.wide != 0) e_active++;
  439. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  440. }
  441. }
  442. return (e_active > 0) ? true : false ;
  443. }
  444. void check_axes_activity()
  445. {
  446. unsigned char x_active = 0;
  447. unsigned char y_active = 0;
  448. unsigned char z_active = 0;
  449. unsigned char e_active = 0;
  450. unsigned char tail_fan_speed = fanSpeed;
  451. block_t *block;
  452. if(block_buffer_tail != block_buffer_head)
  453. {
  454. uint8_t block_index = block_buffer_tail;
  455. tail_fan_speed = block_buffer[block_index].fan_speed;
  456. while(block_index != block_buffer_head)
  457. {
  458. block = &block_buffer[block_index];
  459. if(block->steps_x.wide != 0) x_active++;
  460. if(block->steps_y.wide != 0) y_active++;
  461. if(block->steps_z.wide != 0) z_active++;
  462. if(block->steps_e.wide != 0) e_active++;
  463. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  464. }
  465. }
  466. if((DISABLE_X) && (x_active == 0)) disable_x();
  467. if((DISABLE_Y) && (y_active == 0)) disable_y();
  468. if((DISABLE_Z) && (z_active == 0)) disable_z();
  469. if((DISABLE_E) && (e_active == 0))
  470. {
  471. disable_e0();
  472. disable_e1();
  473. disable_e2();
  474. }
  475. #if defined(FAN_PIN) && FAN_PIN > -1
  476. #ifdef FAN_KICKSTART_TIME
  477. static unsigned long fan_kick_end;
  478. if (tail_fan_speed) {
  479. if (fan_kick_end == 0) {
  480. // Just starting up fan - run at full power.
  481. fan_kick_end = millis() + FAN_KICKSTART_TIME;
  482. tail_fan_speed = 255;
  483. } else if (fan_kick_end > millis())
  484. // Fan still spinning up.
  485. tail_fan_speed = 255;
  486. } else {
  487. fan_kick_end = 0;
  488. }
  489. #endif//FAN_KICKSTART_TIME
  490. #ifdef FAN_SOFT_PWM
  491. fanSpeedSoftPwm = tail_fan_speed;
  492. #else
  493. analogWrite(FAN_PIN,tail_fan_speed);
  494. #endif//!FAN_SOFT_PWM
  495. #endif//FAN_PIN > -1
  496. #ifdef AUTOTEMP
  497. getHighESpeed();
  498. #endif
  499. }
  500. bool waiting_inside_plan_buffer_line_print_aborted = false;
  501. /*
  502. void planner_abort_soft()
  503. {
  504. // Empty the queue.
  505. while (blocks_queued()) plan_discard_current_block();
  506. // Relay to planner wait routine, that the current line shall be canceled.
  507. waiting_inside_plan_buffer_line_print_aborted = true;
  508. //current_position[i]
  509. }
  510. */
  511. #ifdef PLANNER_DIAGNOSTICS
  512. static inline void planner_update_queue_min_counter()
  513. {
  514. uint8_t new_counter = moves_planned();
  515. if (new_counter < g_cntr_planner_queue_min)
  516. g_cntr_planner_queue_min = new_counter;
  517. }
  518. #endif /* PLANNER_DIAGNOSTICS */
  519. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  520. void planner_abort_hard()
  521. {
  522. // Abort the stepper routine and flush the planner queue.
  523. DISABLE_STEPPER_DRIVER_INTERRUPT();
  524. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  525. // First update the planner's current position in the physical motor steps.
  526. position[X_AXIS] = st_get_position(X_AXIS);
  527. position[Y_AXIS] = st_get_position(Y_AXIS);
  528. position[Z_AXIS] = st_get_position(Z_AXIS);
  529. position[E_AXIS] = st_get_position(E_AXIS);
  530. // Second update the current position of the front end.
  531. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  532. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  533. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  534. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  535. // Apply the mesh bed leveling correction to the Z axis.
  536. #ifdef MESH_BED_LEVELING
  537. if (mbl.active) {
  538. #if 1
  539. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  540. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  541. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  542. #else
  543. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  544. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  545. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  546. else {
  547. float t = float(step_events_completed) / float(current_block->step_event_count);
  548. float vec[3] = {
  549. current_block->steps_x / cs.axis_steps_per_unit[X_AXIS],
  550. current_block->steps_y / cs.axis_steps_per_unit[Y_AXIS],
  551. current_block->steps_z / cs.axis_steps_per_unit[Z_AXIS]
  552. };
  553. float pos1[3], pos2[3];
  554. for (int8_t i = 0; i < 3; ++ i) {
  555. if (current_block->direction_bits & (1<<i))
  556. vec[i] = - vec[i];
  557. pos1[i] = current_position[i] - vec[i] * t;
  558. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  559. }
  560. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  561. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  562. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  563. }
  564. #endif
  565. }
  566. #endif
  567. // Clear the planner queue, reset and re-enable the stepper timer.
  568. quickStop();
  569. // Apply inverse world correction matrix.
  570. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  571. memcpy(destination, current_position, sizeof(destination));
  572. // Resets planner junction speeds. Assumes start from rest.
  573. previous_nominal_speed = 0.0;
  574. previous_speed[0] = 0.0;
  575. previous_speed[1] = 0.0;
  576. previous_speed[2] = 0.0;
  577. previous_speed[3] = 0.0;
  578. // Relay to planner wait routine, that the current line shall be canceled.
  579. waiting_inside_plan_buffer_line_print_aborted = true;
  580. }
  581. float junction_deviation = 0.1;
  582. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  583. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  584. // calculation the caller must also provide the physical length of the line in millimeters.
  585. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  586. {
  587. // Calculate the buffer head after we push this byte
  588. int next_buffer_head = next_block_index(block_buffer_head);
  589. // If the buffer is full: good! That means we are well ahead of the robot.
  590. // Rest here until there is room in the buffer.
  591. if (block_buffer_tail == next_buffer_head) {
  592. waiting_inside_plan_buffer_line_print_aborted = false;
  593. do {
  594. manage_heater();
  595. // Vojtech: Don't disable motors inside the planner!
  596. manage_inactivity(false);
  597. lcd_update(0);
  598. } while (block_buffer_tail == next_buffer_head);
  599. if (waiting_inside_plan_buffer_line_print_aborted) {
  600. // Inside the lcd_update(0) routine the print has been aborted.
  601. // Cancel the print, do not plan the current line this routine is waiting on.
  602. #ifdef PLANNER_DIAGNOSTICS
  603. planner_update_queue_min_counter();
  604. #endif /* PLANNER_DIAGNOSTICS */
  605. return;
  606. }
  607. }
  608. #ifdef PLANNER_DIAGNOSTICS
  609. planner_update_queue_min_counter();
  610. #endif /* PLANNER_DIAGNOSTICS */
  611. #ifdef ENABLE_AUTO_BED_LEVELING
  612. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  613. #endif // ENABLE_AUTO_BED_LEVELING
  614. // Apply the machine correction matrix.
  615. {
  616. #if 0
  617. SERIAL_ECHOPGM("Planner, current position - servos: ");
  618. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  619. SERIAL_ECHOPGM(", ");
  620. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  621. SERIAL_ECHOPGM(", ");
  622. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  623. SERIAL_ECHOLNPGM("");
  624. SERIAL_ECHOPGM("Planner, target position, initial: ");
  625. MYSERIAL.print(x, 5);
  626. SERIAL_ECHOPGM(", ");
  627. MYSERIAL.print(y, 5);
  628. SERIAL_ECHOLNPGM("");
  629. SERIAL_ECHOPGM("Planner, world2machine: ");
  630. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  631. SERIAL_ECHOPGM(", ");
  632. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  633. SERIAL_ECHOPGM(", ");
  634. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  635. SERIAL_ECHOPGM(", ");
  636. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  637. SERIAL_ECHOLNPGM("");
  638. SERIAL_ECHOPGM("Planner, offset: ");
  639. MYSERIAL.print(world2machine_shift[0], 5);
  640. SERIAL_ECHOPGM(", ");
  641. MYSERIAL.print(world2machine_shift[1], 5);
  642. SERIAL_ECHOLNPGM("");
  643. #endif
  644. world2machine(x, y);
  645. #if 0
  646. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  647. MYSERIAL.print(x, 5);
  648. SERIAL_ECHOPGM(", ");
  649. MYSERIAL.print(y, 5);
  650. SERIAL_ECHOLNPGM("");
  651. #endif
  652. }
  653. // The target position of the tool in absolute steps
  654. // Calculate target position in absolute steps
  655. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  656. long target[4];
  657. target[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  658. target[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  659. #ifdef MESH_BED_LEVELING
  660. if (mbl.active){
  661. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]);
  662. }else{
  663. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  664. }
  665. #else
  666. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  667. #endif // ENABLE_MESH_BED_LEVELING
  668. target[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  669. #ifdef LIN_ADVANCE
  670. const float mm_D_float = sqrt(sq(x - position_float[X_AXIS]) + sq(y - position_float[Y_AXIS]));
  671. float de_float = e - position_float[E_AXIS];
  672. #endif
  673. #ifdef PREVENT_DANGEROUS_EXTRUDE
  674. if(target[E_AXIS]!=position[E_AXIS])
  675. {
  676. if(degHotend(active_extruder)<extrude_min_temp)
  677. {
  678. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  679. #ifdef LIN_ADVANCE
  680. position_float[E_AXIS] = e;
  681. de_float = 0;
  682. #endif
  683. SERIAL_ECHO_START;
  684. SERIAL_ECHOLNRPGM(_i(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP c=0 r=0
  685. }
  686. #ifdef PREVENT_LENGTHY_EXTRUDE
  687. if(labs(target[E_AXIS]-position[E_AXIS])>cs.axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  688. {
  689. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  690. #ifdef LIN_ADVANCE
  691. position_float[E_AXIS] = e;
  692. de_float = 0;
  693. #endif
  694. SERIAL_ECHO_START;
  695. SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP c=0 r=0
  696. }
  697. #endif
  698. }
  699. #endif
  700. // Prepare to set up new block
  701. block_t *block = &block_buffer[block_buffer_head];
  702. // Set sdlen for calculating sd position
  703. block->sdlen = 0;
  704. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  705. block->busy = false;
  706. // Number of steps for each axis
  707. #ifndef COREXY
  708. // default non-h-bot planning
  709. block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
  710. block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
  711. #else
  712. // corexy planning
  713. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  714. block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  715. block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  716. #endif
  717. block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
  718. block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
  719. block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
  720. // Bail if this is a zero-length block
  721. if (block->step_event_count.wide <= dropsegments)
  722. {
  723. #ifdef PLANNER_DIAGNOSTICS
  724. planner_update_queue_min_counter();
  725. #endif /* PLANNER_DIAGNOSTICS */
  726. return;
  727. }
  728. block->fan_speed = fanSpeed;
  729. // Compute direction bits for this block
  730. block->direction_bits = 0;
  731. #ifndef COREXY
  732. if (target[X_AXIS] < position[X_AXIS])
  733. {
  734. block->direction_bits |= (1<<X_AXIS);
  735. }
  736. if (target[Y_AXIS] < position[Y_AXIS])
  737. {
  738. block->direction_bits |= (1<<Y_AXIS);
  739. }
  740. #else
  741. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  742. {
  743. block->direction_bits |= (1<<X_AXIS);
  744. }
  745. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  746. {
  747. block->direction_bits |= (1<<Y_AXIS);
  748. }
  749. #endif
  750. if (target[Z_AXIS] < position[Z_AXIS])
  751. {
  752. block->direction_bits |= (1<<Z_AXIS);
  753. }
  754. if (target[E_AXIS] < position[E_AXIS])
  755. {
  756. block->direction_bits |= (1<<E_AXIS);
  757. }
  758. block->active_extruder = extruder;
  759. //enable active axes
  760. #ifdef COREXY
  761. if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
  762. {
  763. enable_x();
  764. enable_y();
  765. }
  766. #else
  767. if(block->steps_x.wide != 0) enable_x();
  768. if(block->steps_y.wide != 0) enable_y();
  769. #endif
  770. if(block->steps_z.wide != 0) enable_z();
  771. // Enable extruder(s)
  772. if(block->steps_e.wide != 0)
  773. {
  774. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  775. {
  776. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  777. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  778. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  779. switch(extruder)
  780. {
  781. case 0:
  782. enable_e0();
  783. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  784. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  785. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  786. break;
  787. case 1:
  788. enable_e1();
  789. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  790. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  791. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  792. break;
  793. case 2:
  794. enable_e2();
  795. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  796. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  797. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  798. break;
  799. }
  800. }
  801. else //enable all
  802. {
  803. enable_e0();
  804. enable_e1();
  805. enable_e2();
  806. }
  807. }
  808. if (block->steps_e.wide == 0)
  809. {
  810. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  811. }
  812. else
  813. {
  814. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  815. }
  816. /* This part of the code calculates the total length of the movement.
  817. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  818. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  819. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  820. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  821. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  822. */
  823. #ifndef COREXY
  824. float delta_mm[4];
  825. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  826. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  827. #else
  828. float delta_mm[6];
  829. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  830. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  831. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[X_AXIS];
  832. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[Y_AXIS];
  833. #endif
  834. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/cs.axis_steps_per_unit[Z_AXIS];
  835. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/cs.axis_steps_per_unit[E_AXIS];
  836. if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
  837. {
  838. block->millimeters = fabs(delta_mm[E_AXIS]);
  839. }
  840. else
  841. {
  842. #ifndef COREXY
  843. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  844. #else
  845. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  846. #endif
  847. }
  848. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  849. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  850. float inverse_second = feed_rate * inverse_millimeters;
  851. int moves_queued = moves_planned();
  852. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  853. #ifdef SLOWDOWN
  854. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  855. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  856. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  857. // segment time in micro seconds
  858. unsigned long segment_time = lround(1000000.0/inverse_second);
  859. if (segment_time < minsegmenttime)
  860. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  861. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
  862. }
  863. #endif // SLOWDOWN
  864. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  865. block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
  866. // Calculate and limit speed in mm/sec for each axis
  867. float current_speed[4];
  868. float speed_factor = 1.0; //factor <=1 do decrease speed
  869. // maxlimit_status &= ~0xf;
  870. for(int i=0; i < 4; i++)
  871. {
  872. current_speed[i] = delta_mm[i] * inverse_second;
  873. if(fabs(current_speed[i]) > max_feedrate[i])
  874. {
  875. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  876. maxlimit_status |= (1 << i);
  877. }
  878. }
  879. // Correct the speed
  880. if( speed_factor < 1.0)
  881. {
  882. for(unsigned char i=0; i < 4; i++)
  883. {
  884. current_speed[i] *= speed_factor;
  885. }
  886. block->nominal_speed *= speed_factor;
  887. block->nominal_rate *= speed_factor;
  888. }
  889. // Compute and limit the acceleration rate for the trapezoid generator.
  890. // block->step_event_count ... event count of the fastest axis
  891. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  892. float steps_per_mm = block->step_event_count.wide/block->millimeters;
  893. if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
  894. {
  895. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  896. }
  897. else
  898. {
  899. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  900. // Limit acceleration per axis
  901. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  902. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  903. { block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; maxlimit_status |= (X_AXIS_MASK << 4); }
  904. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  905. { block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; maxlimit_status |= (Y_AXIS_MASK << 4); }
  906. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  907. { block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; maxlimit_status |= (Z_AXIS_MASK << 4); }
  908. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
  909. { block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; maxlimit_status |= (E_AXIS_MASK << 4); }
  910. }
  911. // Acceleration of the segment, in mm/sec^2
  912. block->acceleration = block->acceleration_st / steps_per_mm;
  913. #if 0
  914. // Oversample diagonal movements by a power of 2 up to 8x
  915. // to achieve more accurate diagonal movements.
  916. uint8_t bresenham_oversample = 1;
  917. for (uint8_t i = 0; i < 3; ++ i) {
  918. if (block->nominal_rate >= 5000) // 5kHz
  919. break;
  920. block->nominal_rate << 1;
  921. bresenham_oversample << 1;
  922. block->step_event_count << 1;
  923. }
  924. if (bresenham_oversample > 1)
  925. // Lower the acceleration steps/sec^2 to account for the oversampling.
  926. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  927. #endif
  928. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  929. // Start with a safe speed.
  930. // Safe speed is the speed, from which the machine may halt to stop immediately.
  931. float safe_speed = block->nominal_speed;
  932. bool limited = false;
  933. for (uint8_t axis = 0; axis < 4; ++ axis) {
  934. float jerk = fabs(current_speed[axis]);
  935. if (jerk > max_jerk[axis]) {
  936. // The actual jerk is lower, if it has been limited by the XY jerk.
  937. if (limited) {
  938. // Spare one division by a following gymnastics:
  939. // Instead of jerk *= safe_speed / block->nominal_speed,
  940. // multiply max_jerk[axis] by the divisor.
  941. jerk *= safe_speed;
  942. float mjerk = max_jerk[axis] * block->nominal_speed;
  943. if (jerk > mjerk) {
  944. safe_speed *= mjerk / jerk;
  945. limited = true;
  946. }
  947. } else {
  948. safe_speed = max_jerk[axis];
  949. limited = true;
  950. }
  951. }
  952. }
  953. // Reset the block flag.
  954. block->flag = 0;
  955. // Initial limit on the segment entry velocity.
  956. float vmax_junction;
  957. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  958. // Is it because we don't want to tinker with the first buffer line, which
  959. // is likely to be executed by the stepper interrupt routine soon?
  960. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  961. // Estimate a maximum velocity allowed at a joint of two successive segments.
  962. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  963. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  964. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  965. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  966. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  967. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  968. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  969. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  970. float v_factor = 1.f;
  971. limited = false;
  972. // Now limit the jerk in all axes.
  973. for (uint8_t axis = 0; axis < 4; ++ axis) {
  974. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  975. float v_exit = previous_speed[axis];
  976. float v_entry = current_speed [axis];
  977. if (prev_speed_larger)
  978. v_exit *= smaller_speed_factor;
  979. if (limited) {
  980. v_exit *= v_factor;
  981. v_entry *= v_factor;
  982. }
  983. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  984. float jerk =
  985. (v_exit > v_entry) ?
  986. ((v_entry > 0.f || v_exit < 0.f) ?
  987. // coasting
  988. (v_exit - v_entry) :
  989. // axis reversal
  990. max(v_exit, - v_entry)) :
  991. // v_exit <= v_entry
  992. ((v_entry < 0.f || v_exit > 0.f) ?
  993. // coasting
  994. (v_entry - v_exit) :
  995. // axis reversal
  996. max(- v_exit, v_entry));
  997. if (jerk > max_jerk[axis]) {
  998. v_factor *= max_jerk[axis] / jerk;
  999. limited = true;
  1000. }
  1001. }
  1002. if (limited)
  1003. vmax_junction *= v_factor;
  1004. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1005. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1006. float vmax_junction_threshold = vmax_junction * 0.99f;
  1007. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1008. // Not coasting. The machine will stop and start the movements anyway,
  1009. // better to start the segment from start.
  1010. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1011. vmax_junction = safe_speed;
  1012. }
  1013. } else {
  1014. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1015. vmax_junction = safe_speed;
  1016. }
  1017. // Max entry speed of this block equals the max exit speed of the previous block.
  1018. block->max_entry_speed = vmax_junction;
  1019. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1020. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1021. block->entry_speed = min(vmax_junction, v_allowable);
  1022. // Initialize planner efficiency flags
  1023. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1024. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1025. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1026. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1027. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1028. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1029. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1030. // Always calculate trapezoid for new block
  1031. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1032. // Update previous path unit_vector and nominal speed
  1033. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1034. previous_nominal_speed = block->nominal_speed;
  1035. previous_safe_speed = safe_speed;
  1036. #ifdef LIN_ADVANCE
  1037. //
  1038. // Use LIN_ADVANCE for blocks if all these are true:
  1039. //
  1040. // esteps : We have E steps todo (a printing move)
  1041. //
  1042. // block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
  1043. //
  1044. // extruder_advance_k : There is an advance factor set.
  1045. //
  1046. // block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
  1047. // In that case, the retract and move will be executed together.
  1048. // This leads to too many advance steps due to a huge e_acceleration.
  1049. // The math is good, but we must avoid retract moves with advance!
  1050. // de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  1051. //
  1052. block->use_advance_lead = block->steps_e.wide
  1053. && (block->steps_x.wide || block->steps_y.wide)
  1054. && extruder_advance_k
  1055. && (uint32_t)block->steps_e.wide != block->step_event_count.wide
  1056. && de_float > 0.0;
  1057. if (block->use_advance_lead)
  1058. block->abs_adv_steps_multiplier8 = lround(
  1059. extruder_advance_k
  1060. * ((advance_ed_ratio < 0.000001) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
  1061. * (block->nominal_speed / (float)block->nominal_rate)
  1062. * cs.axis_steps_per_unit[E_AXIS] * 256.0
  1063. );
  1064. #endif
  1065. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1066. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1067. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1068. if (block->step_event_count.wide <= 32767)
  1069. block->flag |= BLOCK_FLAG_DDA_LOWRES;
  1070. // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
  1071. block_buffer_head = next_buffer_head;
  1072. // Update position
  1073. memcpy(position, target, sizeof(target)); // position[] = target[]
  1074. #ifdef LIN_ADVANCE
  1075. position_float[X_AXIS] = x;
  1076. position_float[Y_AXIS] = y;
  1077. position_float[Z_AXIS] = z;
  1078. position_float[E_AXIS] = e;
  1079. #endif
  1080. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1081. // the machine limits (maximum acceleration and maximum jerk).
  1082. // This runs asynchronously with the stepper interrupt controller, which may
  1083. // interfere with the process.
  1084. planner_recalculate(safe_speed);
  1085. // SERIAL_ECHOPGM("Q");
  1086. // SERIAL_ECHO(int(moves_planned()));
  1087. // SERIAL_ECHOLNPGM("");
  1088. #ifdef PLANNER_DIAGNOSTICS
  1089. planner_update_queue_min_counter();
  1090. #endif /* PLANNER_DIAGNOSTIC */
  1091. // The stepper timer interrupt will run continuously from now on.
  1092. // If there are no planner blocks to be executed by the stepper routine,
  1093. // the stepper interrupt ticks at 1kHz to wake up and pick a block
  1094. // from the planner queue if available.
  1095. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1096. }
  1097. #ifdef ENABLE_AUTO_BED_LEVELING
  1098. vector_3 plan_get_position() {
  1099. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1100. //position.debug("in plan_get position");
  1101. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1102. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1103. //inverse.debug("in plan_get inverse");
  1104. position.apply_rotation(inverse);
  1105. //position.debug("after rotation");
  1106. return position;
  1107. }
  1108. #endif // ENABLE_AUTO_BED_LEVELING
  1109. void plan_set_position(float x, float y, float z, const float &e)
  1110. {
  1111. #ifdef ENABLE_AUTO_BED_LEVELING
  1112. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1113. #endif // ENABLE_AUTO_BED_LEVELING
  1114. // Apply the machine correction matrix.
  1115. if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE)
  1116. {
  1117. float tmpx = x;
  1118. float tmpy = y;
  1119. x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
  1120. y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
  1121. }
  1122. position[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  1123. position[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  1124. #ifdef MESH_BED_LEVELING
  1125. position[Z_AXIS] = mbl.active ?
  1126. lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]) :
  1127. lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1128. #else
  1129. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1130. #endif // ENABLE_MESH_BED_LEVELING
  1131. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1132. #ifdef LIN_ADVANCE
  1133. position_float[X_AXIS] = x;
  1134. position_float[Y_AXIS] = y;
  1135. position_float[Z_AXIS] = z;
  1136. position_float[E_AXIS] = e;
  1137. #endif
  1138. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1139. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1140. previous_speed[0] = 0.0;
  1141. previous_speed[1] = 0.0;
  1142. previous_speed[2] = 0.0;
  1143. previous_speed[3] = 0.0;
  1144. }
  1145. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1146. void plan_set_z_position(const float &z)
  1147. {
  1148. #ifdef LIN_ADVANCE
  1149. position_float[Z_AXIS] = z;
  1150. #endif
  1151. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1152. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1153. }
  1154. void plan_set_e_position(const float &e)
  1155. {
  1156. #ifdef LIN_ADVANCE
  1157. position_float[E_AXIS] = e;
  1158. #endif
  1159. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1160. st_set_e_position(position[E_AXIS]);
  1161. }
  1162. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1163. void set_extrude_min_temp(float temp)
  1164. {
  1165. extrude_min_temp=temp;
  1166. }
  1167. #endif
  1168. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1169. void reset_acceleration_rates()
  1170. {
  1171. for(int8_t i=0; i < NUM_AXIS; i++)
  1172. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * cs.axis_steps_per_unit[i];
  1173. }
  1174. #ifdef TMC2130
  1175. void update_mode_profile()
  1176. {
  1177. if (tmc2130_mode == TMC2130_MODE_NORMAL)
  1178. {
  1179. max_feedrate = cs.max_feedrate_normal;
  1180. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  1181. }
  1182. else if (tmc2130_mode == TMC2130_MODE_SILENT)
  1183. {
  1184. max_feedrate = max_feedrate_silent;
  1185. max_acceleration_units_per_sq_second = max_acceleration_units_per_sq_second_silent;
  1186. }
  1187. reset_acceleration_rates();
  1188. }
  1189. #endif //TMC2130
  1190. unsigned char number_of_blocks()
  1191. {
  1192. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1193. }
  1194. #ifdef PLANNER_DIAGNOSTICS
  1195. uint8_t planner_queue_min()
  1196. {
  1197. return g_cntr_planner_queue_min;
  1198. }
  1199. void planner_queue_min_reset()
  1200. {
  1201. g_cntr_planner_queue_min = moves_planned();
  1202. }
  1203. #endif /* PLANNER_DIAGNOSTICS */
  1204. void planner_add_sd_length(uint16_t sdlen)
  1205. {
  1206. if (block_buffer_head != block_buffer_tail) {
  1207. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1208. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1209. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1210. } else {
  1211. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1212. // at a power panic, so the length of this command may be forgotten.
  1213. }
  1214. }
  1215. uint16_t planner_calc_sd_length()
  1216. {
  1217. unsigned char _block_buffer_head = block_buffer_head;
  1218. unsigned char _block_buffer_tail = block_buffer_tail;
  1219. uint16_t sdlen = 0;
  1220. while (_block_buffer_head != _block_buffer_tail)
  1221. {
  1222. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1223. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1224. }
  1225. return sdlen;
  1226. }