Marlin_main.cpp 282 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "printers.h"
  35. #include "ultralcd.h"
  36. #include "Configuration_prusa.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "motion_control.h"
  41. #include "cardreader.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include "Timer.h"
  48. #include <avr/wdt.h>
  49. #include "Dcodes.h"
  50. #ifdef SWSPI
  51. #include "swspi.h"
  52. #endif //SWSPI
  53. #ifdef SWI2C
  54. #include "swi2c.h"
  55. #endif //SWI2C
  56. #ifdef PAT9125
  57. #include "pat9125.h"
  58. #include "fsensor.h"
  59. #endif //PAT9125
  60. #ifdef TMC2130
  61. #include "tmc2130.h"
  62. #endif //TMC2130
  63. #ifdef BLINKM
  64. #include "BlinkM.h"
  65. #include "Wire.h"
  66. #endif
  67. #ifdef ULTRALCD
  68. #include "ultralcd.h"
  69. #endif
  70. #if NUM_SERVOS > 0
  71. #include "Servo.h"
  72. #endif
  73. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  74. #include <SPI.h>
  75. #endif
  76. #define VERSION_STRING "1.0.2"
  77. #include "ultralcd.h"
  78. #include "cmdqueue.h"
  79. // Macros for bit masks
  80. #define BIT(b) (1<<(b))
  81. #define TEST(n,b) (((n)&BIT(b))!=0)
  82. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  83. //Macro for print fan speed
  84. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  85. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  86. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  87. //Implemented Codes
  88. //-------------------
  89. // PRUSA CODES
  90. // P F - Returns FW versions
  91. // P R - Returns revision of printer
  92. // G0 -> G1
  93. // G1 - Coordinated Movement X Y Z E
  94. // G2 - CW ARC
  95. // G3 - CCW ARC
  96. // G4 - Dwell S<seconds> or P<milliseconds>
  97. // G10 - retract filament according to settings of M207
  98. // G11 - retract recover filament according to settings of M208
  99. // G28 - Home all Axis
  100. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  101. // G30 - Single Z Probe, probes bed at current XY location.
  102. // G31 - Dock sled (Z_PROBE_SLED only)
  103. // G32 - Undock sled (Z_PROBE_SLED only)
  104. // G80 - Automatic mesh bed leveling
  105. // G81 - Print bed profile
  106. // G90 - Use Absolute Coordinates
  107. // G91 - Use Relative Coordinates
  108. // G92 - Set current position to coordinates given
  109. // M Codes
  110. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  111. // M1 - Same as M0
  112. // M17 - Enable/Power all stepper motors
  113. // M18 - Disable all stepper motors; same as M84
  114. // M20 - List SD card
  115. // M21 - Init SD card
  116. // M22 - Release SD card
  117. // M23 - Select SD file (M23 filename.g)
  118. // M24 - Start/resume SD print
  119. // M25 - Pause SD print
  120. // M26 - Set SD position in bytes (M26 S12345)
  121. // M27 - Report SD print status
  122. // M28 - Start SD write (M28 filename.g)
  123. // M29 - Stop SD write
  124. // M30 - Delete file from SD (M30 filename.g)
  125. // M31 - Output time since last M109 or SD card start to serial
  126. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  127. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  128. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  129. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  130. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  131. // M80 - Turn on Power Supply
  132. // M81 - Turn off Power Supply
  133. // M82 - Set E codes absolute (default)
  134. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  135. // M84 - Disable steppers until next move,
  136. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  137. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  138. // M92 - Set axis_steps_per_unit - same syntax as G92
  139. // M104 - Set extruder target temp
  140. // M105 - Read current temp
  141. // M106 - Fan on
  142. // M107 - Fan off
  143. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  144. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  145. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  146. // M112 - Emergency stop
  147. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  148. // M114 - Output current position to serial port
  149. // M115 - Capabilities string
  150. // M117 - display message
  151. // M119 - Output Endstop status to serial port
  152. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  153. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  154. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  156. // M140 - Set bed target temp
  157. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  158. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  159. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  160. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  161. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  162. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  163. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  164. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  165. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  166. // M206 - set additional homing offset
  167. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  168. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  169. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  170. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  171. // M220 S<factor in percent>- set speed factor override percentage
  172. // M221 S<factor in percent>- set extrude factor override percentage
  173. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  174. // M240 - Trigger a camera to take a photograph
  175. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  176. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  177. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  178. // M301 - Set PID parameters P I and D
  179. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  180. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  181. // M304 - Set bed PID parameters P I and D
  182. // M400 - Finish all moves
  183. // M401 - Lower z-probe if present
  184. // M402 - Raise z-probe if present
  185. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  186. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  187. // M406 - Turn off Filament Sensor extrusion control
  188. // M407 - Displays measured filament diameter
  189. // M500 - stores parameters in EEPROM
  190. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  191. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  192. // M503 - print the current settings (from memory not from EEPROM)
  193. // M509 - force language selection on next restart
  194. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  195. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  196. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  197. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  198. // M907 - Set digital trimpot motor current using axis codes.
  199. // M908 - Control digital trimpot directly.
  200. // M350 - Set microstepping mode.
  201. // M351 - Toggle MS1 MS2 pins directly.
  202. // M928 - Start SD logging (M928 filename.g) - ended by M29
  203. // M999 - Restart after being stopped by error
  204. //Stepper Movement Variables
  205. //===========================================================================
  206. //=============================imported variables============================
  207. //===========================================================================
  208. //===========================================================================
  209. //=============================public variables=============================
  210. //===========================================================================
  211. #ifdef SDSUPPORT
  212. CardReader card;
  213. #endif
  214. unsigned long PingTime = millis();
  215. unsigned long NcTime;
  216. union Data
  217. {
  218. byte b[2];
  219. int value;
  220. };
  221. float homing_feedrate[] = HOMING_FEEDRATE;
  222. // Currently only the extruder axis may be switched to a relative mode.
  223. // Other axes are always absolute or relative based on the common relative_mode flag.
  224. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  225. int feedmultiply=100; //100->1 200->2
  226. int saved_feedmultiply;
  227. int extrudemultiply=100; //100->1 200->2
  228. int extruder_multiply[EXTRUDERS] = {100
  229. #if EXTRUDERS > 1
  230. , 100
  231. #if EXTRUDERS > 2
  232. , 100
  233. #endif
  234. #endif
  235. };
  236. int bowden_length[4] = {385, 385, 385, 385};
  237. bool is_usb_printing = false;
  238. bool homing_flag = false;
  239. bool temp_cal_active = false;
  240. unsigned long kicktime = millis()+100000;
  241. unsigned int usb_printing_counter;
  242. int lcd_change_fil_state = 0;
  243. int feedmultiplyBckp = 100;
  244. float HotendTempBckp = 0;
  245. int fanSpeedBckp = 0;
  246. float pause_lastpos[4];
  247. unsigned long pause_time = 0;
  248. unsigned long start_pause_print = millis();
  249. unsigned long t_fan_rising_edge = millis();
  250. //unsigned long load_filament_time;
  251. bool mesh_bed_leveling_flag = false;
  252. bool mesh_bed_run_from_menu = false;
  253. unsigned char lang_selected = 0;
  254. int8_t FarmMode = 0;
  255. bool prusa_sd_card_upload = false;
  256. unsigned int status_number = 0;
  257. unsigned long total_filament_used;
  258. unsigned int heating_status;
  259. unsigned int heating_status_counter;
  260. bool custom_message;
  261. bool loading_flag = false;
  262. unsigned int custom_message_type;
  263. unsigned int custom_message_state;
  264. char snmm_filaments_used = 0;
  265. float distance_from_min[2];
  266. bool fan_state[2];
  267. int fan_edge_counter[2];
  268. int fan_speed[2];
  269. char dir_names[3][9];
  270. bool sortAlpha = false;
  271. bool volumetric_enabled = false;
  272. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  273. #if EXTRUDERS > 1
  274. , DEFAULT_NOMINAL_FILAMENT_DIA
  275. #if EXTRUDERS > 2
  276. , DEFAULT_NOMINAL_FILAMENT_DIA
  277. #endif
  278. #endif
  279. };
  280. float extruder_multiplier[EXTRUDERS] = {1.0
  281. #if EXTRUDERS > 1
  282. , 1.0
  283. #if EXTRUDERS > 2
  284. , 1.0
  285. #endif
  286. #endif
  287. };
  288. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  289. float add_homing[3]={0,0,0};
  290. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  291. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  292. bool axis_known_position[3] = {false, false, false};
  293. float zprobe_zoffset;
  294. // Extruder offset
  295. #if EXTRUDERS > 1
  296. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  297. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  298. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  299. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  300. #endif
  301. };
  302. #endif
  303. uint8_t active_extruder = 0;
  304. int fanSpeed=0;
  305. #ifdef FWRETRACT
  306. bool autoretract_enabled=false;
  307. bool retracted[EXTRUDERS]={false
  308. #if EXTRUDERS > 1
  309. , false
  310. #if EXTRUDERS > 2
  311. , false
  312. #endif
  313. #endif
  314. };
  315. bool retracted_swap[EXTRUDERS]={false
  316. #if EXTRUDERS > 1
  317. , false
  318. #if EXTRUDERS > 2
  319. , false
  320. #endif
  321. #endif
  322. };
  323. float retract_length = RETRACT_LENGTH;
  324. float retract_length_swap = RETRACT_LENGTH_SWAP;
  325. float retract_feedrate = RETRACT_FEEDRATE;
  326. float retract_zlift = RETRACT_ZLIFT;
  327. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  328. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  329. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  330. #endif
  331. #ifdef ULTIPANEL
  332. #ifdef PS_DEFAULT_OFF
  333. bool powersupply = false;
  334. #else
  335. bool powersupply = true;
  336. #endif
  337. #endif
  338. bool cancel_heatup = false ;
  339. #ifdef HOST_KEEPALIVE_FEATURE
  340. int busy_state = NOT_BUSY;
  341. static long prev_busy_signal_ms = -1;
  342. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  343. #else
  344. #define host_keepalive();
  345. #define KEEPALIVE_STATE(n);
  346. #endif
  347. const char errormagic[] PROGMEM = "Error:";
  348. const char echomagic[] PROGMEM = "echo:";
  349. bool no_response = false;
  350. uint8_t important_status;
  351. uint8_t saved_filament_type;
  352. //===========================================================================
  353. //=============================Private Variables=============================
  354. //===========================================================================
  355. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  356. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  357. static float delta[3] = {0.0, 0.0, 0.0};
  358. // For tracing an arc
  359. static float offset[3] = {0.0, 0.0, 0.0};
  360. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  361. // Determines Absolute or Relative Coordinates.
  362. // Also there is bool axis_relative_modes[] per axis flag.
  363. static bool relative_mode = false;
  364. #ifndef _DISABLE_M42_M226
  365. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  366. #endif //_DISABLE_M42_M226
  367. //static float tt = 0;
  368. //static float bt = 0;
  369. //Inactivity shutdown variables
  370. static unsigned long previous_millis_cmd = 0;
  371. unsigned long max_inactive_time = 0;
  372. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  373. unsigned long starttime=0;
  374. unsigned long stoptime=0;
  375. unsigned long _usb_timer = 0;
  376. static uint8_t tmp_extruder;
  377. bool extruder_under_pressure = true;
  378. bool Stopped=false;
  379. #if NUM_SERVOS > 0
  380. Servo servos[NUM_SERVOS];
  381. #endif
  382. bool CooldownNoWait = true;
  383. bool target_direction;
  384. //Insert variables if CHDK is defined
  385. #ifdef CHDK
  386. unsigned long chdkHigh = 0;
  387. boolean chdkActive = false;
  388. #endif
  389. //===========================================================================
  390. //=============================Routines======================================
  391. //===========================================================================
  392. void get_arc_coordinates();
  393. bool setTargetedHotend(int code);
  394. void serial_echopair_P(const char *s_P, float v)
  395. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  396. void serial_echopair_P(const char *s_P, double v)
  397. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  398. void serial_echopair_P(const char *s_P, unsigned long v)
  399. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  400. #ifdef SDSUPPORT
  401. #include "SdFatUtil.h"
  402. int freeMemory() { return SdFatUtil::FreeRam(); }
  403. #else
  404. extern "C" {
  405. extern unsigned int __bss_end;
  406. extern unsigned int __heap_start;
  407. extern void *__brkval;
  408. int freeMemory() {
  409. int free_memory;
  410. if ((int)__brkval == 0)
  411. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  412. else
  413. free_memory = ((int)&free_memory) - ((int)__brkval);
  414. return free_memory;
  415. }
  416. }
  417. #endif //!SDSUPPORT
  418. void setup_killpin()
  419. {
  420. #if defined(KILL_PIN) && KILL_PIN > -1
  421. SET_INPUT(KILL_PIN);
  422. WRITE(KILL_PIN,HIGH);
  423. #endif
  424. }
  425. // Set home pin
  426. void setup_homepin(void)
  427. {
  428. #if defined(HOME_PIN) && HOME_PIN > -1
  429. SET_INPUT(HOME_PIN);
  430. WRITE(HOME_PIN,HIGH);
  431. #endif
  432. }
  433. void setup_photpin()
  434. {
  435. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  436. SET_OUTPUT(PHOTOGRAPH_PIN);
  437. WRITE(PHOTOGRAPH_PIN, LOW);
  438. #endif
  439. }
  440. void setup_powerhold()
  441. {
  442. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  443. SET_OUTPUT(SUICIDE_PIN);
  444. WRITE(SUICIDE_PIN, HIGH);
  445. #endif
  446. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  447. SET_OUTPUT(PS_ON_PIN);
  448. #if defined(PS_DEFAULT_OFF)
  449. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  450. #else
  451. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  452. #endif
  453. #endif
  454. }
  455. void suicide()
  456. {
  457. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  458. SET_OUTPUT(SUICIDE_PIN);
  459. WRITE(SUICIDE_PIN, LOW);
  460. #endif
  461. }
  462. void servo_init()
  463. {
  464. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  465. servos[0].attach(SERVO0_PIN);
  466. #endif
  467. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  468. servos[1].attach(SERVO1_PIN);
  469. #endif
  470. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  471. servos[2].attach(SERVO2_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  474. servos[3].attach(SERVO3_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 5)
  477. #error "TODO: enter initalisation code for more servos"
  478. #endif
  479. }
  480. static void lcd_language_menu();
  481. void stop_and_save_print_to_ram(float z_move, float e_move);
  482. void restore_print_from_ram_and_continue(float e_move);
  483. bool fans_check_enabled = true;
  484. bool filament_autoload_enabled = true;
  485. #ifdef TMC2130
  486. extern int8_t CrashDetectMenu;
  487. void crashdet_enable()
  488. {
  489. // MYSERIAL.println("crashdet_enable");
  490. tmc2130_sg_stop_on_crash = true;
  491. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  492. CrashDetectMenu = 1;
  493. }
  494. void crashdet_disable()
  495. {
  496. // MYSERIAL.println("crashdet_disable");
  497. tmc2130_sg_stop_on_crash = false;
  498. tmc2130_sg_crash = 0;
  499. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  500. CrashDetectMenu = 0;
  501. }
  502. void crashdet_stop_and_save_print()
  503. {
  504. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  505. }
  506. void crashdet_restore_print_and_continue()
  507. {
  508. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  509. // babystep_apply();
  510. }
  511. void crashdet_stop_and_save_print2()
  512. {
  513. cli();
  514. planner_abort_hard(); //abort printing
  515. cmdqueue_reset(); //empty cmdqueue
  516. card.sdprinting = false;
  517. card.closefile();
  518. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  519. st_reset_timer();
  520. sei();
  521. }
  522. void crashdet_detected(uint8_t mask)
  523. {
  524. // printf("CRASH_DETECTED");
  525. /* while (!is_buffer_empty())
  526. {
  527. process_commands();
  528. cmdqueue_pop_front();
  529. }*/
  530. st_synchronize();
  531. lcd_update_enable(true);
  532. lcd_implementation_clear();
  533. lcd_update(2);
  534. if (mask & X_AXIS_MASK)
  535. {
  536. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  537. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  538. }
  539. if (mask & Y_AXIS_MASK)
  540. {
  541. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  542. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  543. }
  544. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  545. bool yesno = true;
  546. #else
  547. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  548. #endif
  549. lcd_update_enable(true);
  550. lcd_update(2);
  551. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  552. if (yesno)
  553. {
  554. enquecommand_P(PSTR("G28 X Y"));
  555. enquecommand_P(PSTR("CRASH_RECOVER"));
  556. }
  557. else
  558. {
  559. enquecommand_P(PSTR("CRASH_CANCEL"));
  560. }
  561. }
  562. void crashdet_recover()
  563. {
  564. crashdet_restore_print_and_continue();
  565. tmc2130_sg_stop_on_crash = true;
  566. }
  567. void crashdet_cancel()
  568. {
  569. card.sdprinting = false;
  570. card.closefile();
  571. tmc2130_sg_stop_on_crash = true;
  572. }
  573. #endif //TMC2130
  574. void failstats_reset_print()
  575. {
  576. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  577. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  578. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  579. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  580. }
  581. #ifdef MESH_BED_LEVELING
  582. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  583. #endif
  584. // Factory reset function
  585. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  586. // Level input parameter sets depth of reset
  587. // Quiet parameter masks all waitings for user interact.
  588. int er_progress = 0;
  589. void factory_reset(char level, bool quiet)
  590. {
  591. lcd_implementation_clear();
  592. int cursor_pos = 0;
  593. switch (level) {
  594. // Level 0: Language reset
  595. case 0:
  596. WRITE(BEEPER, HIGH);
  597. _delay_ms(100);
  598. WRITE(BEEPER, LOW);
  599. lcd_force_language_selection();
  600. break;
  601. //Level 1: Reset statistics
  602. case 1:
  603. WRITE(BEEPER, HIGH);
  604. _delay_ms(100);
  605. WRITE(BEEPER, LOW);
  606. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  607. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  608. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  609. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  610. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  611. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  612. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  613. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  614. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  615. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  616. lcd_menu_statistics();
  617. break;
  618. // Level 2: Prepare for shipping
  619. case 2:
  620. //lcd_printPGM(PSTR("Factory RESET"));
  621. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  622. // Force language selection at the next boot up.
  623. lcd_force_language_selection();
  624. // Force the "Follow calibration flow" message at the next boot up.
  625. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  626. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  627. farm_no = 0;
  628. farm_mode == false;
  629. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  630. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  631. WRITE(BEEPER, HIGH);
  632. _delay_ms(100);
  633. WRITE(BEEPER, LOW);
  634. //_delay_ms(2000);
  635. break;
  636. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  637. case 3:
  638. lcd_printPGM(PSTR("Factory RESET"));
  639. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  640. WRITE(BEEPER, HIGH);
  641. _delay_ms(100);
  642. WRITE(BEEPER, LOW);
  643. er_progress = 0;
  644. lcd_print_at_PGM(3, 3, PSTR(" "));
  645. lcd_implementation_print_at(3, 3, er_progress);
  646. // Erase EEPROM
  647. for (int i = 0; i < 4096; i++) {
  648. eeprom_write_byte((uint8_t*)i, 0xFF);
  649. if (i % 41 == 0) {
  650. er_progress++;
  651. lcd_print_at_PGM(3, 3, PSTR(" "));
  652. lcd_implementation_print_at(3, 3, er_progress);
  653. lcd_printPGM(PSTR("%"));
  654. }
  655. }
  656. break;
  657. case 4:
  658. bowden_menu();
  659. break;
  660. default:
  661. break;
  662. }
  663. }
  664. #include "LiquidCrystal.h"
  665. extern LiquidCrystal lcd;
  666. FILE _lcdout = {0};
  667. int lcd_putchar(char c, FILE *stream)
  668. {
  669. lcd.write(c);
  670. return 0;
  671. }
  672. FILE _uartout = {0};
  673. int uart_putchar(char c, FILE *stream)
  674. {
  675. MYSERIAL.write(c);
  676. return 0;
  677. }
  678. void lcd_splash()
  679. {
  680. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  681. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  682. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  683. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  684. }
  685. void factory_reset()
  686. {
  687. KEEPALIVE_STATE(PAUSED_FOR_USER);
  688. if (!READ(BTN_ENC))
  689. {
  690. _delay_ms(1000);
  691. if (!READ(BTN_ENC))
  692. {
  693. lcd_implementation_clear();
  694. lcd_printPGM(PSTR("Factory RESET"));
  695. SET_OUTPUT(BEEPER);
  696. WRITE(BEEPER, HIGH);
  697. while (!READ(BTN_ENC));
  698. WRITE(BEEPER, LOW);
  699. _delay_ms(2000);
  700. char level = reset_menu();
  701. factory_reset(level, false);
  702. switch (level) {
  703. case 0: _delay_ms(0); break;
  704. case 1: _delay_ms(0); break;
  705. case 2: _delay_ms(0); break;
  706. case 3: _delay_ms(0); break;
  707. }
  708. // _delay_ms(100);
  709. /*
  710. #ifdef MESH_BED_LEVELING
  711. _delay_ms(2000);
  712. if (!READ(BTN_ENC))
  713. {
  714. WRITE(BEEPER, HIGH);
  715. _delay_ms(100);
  716. WRITE(BEEPER, LOW);
  717. _delay_ms(200);
  718. WRITE(BEEPER, HIGH);
  719. _delay_ms(100);
  720. WRITE(BEEPER, LOW);
  721. int _z = 0;
  722. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  723. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  724. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  725. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  726. }
  727. else
  728. {
  729. WRITE(BEEPER, HIGH);
  730. _delay_ms(100);
  731. WRITE(BEEPER, LOW);
  732. }
  733. #endif // mesh */
  734. }
  735. }
  736. else
  737. {
  738. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  739. }
  740. KEEPALIVE_STATE(IN_HANDLER);
  741. }
  742. void show_fw_version_warnings() {
  743. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  744. switch (FW_DEV_VERSION) {
  745. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  746. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  747. case(FW_VERSION_DEVEL):
  748. case(FW_VERSION_DEBUG):
  749. lcd_update_enable(false);
  750. lcd_implementation_clear();
  751. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  752. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  753. #else
  754. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  755. #endif
  756. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  757. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  758. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  759. lcd_wait_for_click();
  760. break;
  761. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  762. }
  763. lcd_update_enable(true);
  764. }
  765. uint8_t check_printer_version()
  766. {
  767. uint8_t version_changed = 0;
  768. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  769. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  770. if (printer_type != PRINTER_TYPE) {
  771. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  772. else version_changed |= 0b10;
  773. }
  774. if (motherboard != MOTHERBOARD) {
  775. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  776. else version_changed |= 0b01;
  777. }
  778. return version_changed;
  779. }
  780. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  781. {
  782. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  783. }
  784. // "Setup" function is called by the Arduino framework on startup.
  785. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  786. // are initialized by the main() routine provided by the Arduino framework.
  787. void setup()
  788. {
  789. lcd_init();
  790. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  791. lcd_splash();
  792. setup_killpin();
  793. setup_powerhold();
  794. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  795. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  796. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  797. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  798. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  799. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  800. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  801. if (farm_mode)
  802. {
  803. no_response = true; //we need confirmation by recieving PRUSA thx
  804. important_status = 8;
  805. prusa_statistics(8);
  806. selectedSerialPort = 1;
  807. }
  808. MYSERIAL.begin(BAUDRATE);
  809. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  810. stdout = uartout;
  811. SERIAL_PROTOCOLLNPGM("start");
  812. SERIAL_ECHO_START;
  813. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  814. #if 0
  815. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  816. for (int i = 0; i < 4096; ++i) {
  817. int b = eeprom_read_byte((unsigned char*)i);
  818. if (b != 255) {
  819. SERIAL_ECHO(i);
  820. SERIAL_ECHO(":");
  821. SERIAL_ECHO(b);
  822. SERIAL_ECHOLN("");
  823. }
  824. }
  825. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  826. #endif
  827. // Check startup - does nothing if bootloader sets MCUSR to 0
  828. byte mcu = MCUSR;
  829. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  830. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  831. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  832. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  833. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  834. if (mcu & 1) puts_P(MSG_POWERUP);
  835. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  836. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  837. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  838. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  839. MCUSR = 0;
  840. //SERIAL_ECHORPGM(MSG_MARLIN);
  841. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  842. #ifdef STRING_VERSION_CONFIG_H
  843. #ifdef STRING_CONFIG_H_AUTHOR
  844. SERIAL_ECHO_START;
  845. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  846. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  847. SERIAL_ECHORPGM(MSG_AUTHOR);
  848. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  849. SERIAL_ECHOPGM("Compiled: ");
  850. SERIAL_ECHOLNPGM(__DATE__);
  851. #endif
  852. #endif
  853. SERIAL_ECHO_START;
  854. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  855. SERIAL_ECHO(freeMemory());
  856. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  857. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  858. //lcd_update_enable(false); // why do we need this?? - andre
  859. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  860. bool previous_settings_retrieved = false;
  861. uint8_t hw_changed = check_printer_version();
  862. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  863. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  864. }
  865. else { //printer version was changed so use default settings
  866. Config_ResetDefault();
  867. }
  868. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  869. tp_init(); // Initialize temperature loop
  870. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  871. plan_init(); // Initialize planner;
  872. factory_reset();
  873. #ifdef TMC2130
  874. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  875. if (silentMode == 0xff) silentMode = 0;
  876. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  877. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  878. if (crashdet)
  879. {
  880. crashdet_enable();
  881. MYSERIAL.println("CrashDetect ENABLED!");
  882. }
  883. else
  884. {
  885. crashdet_disable();
  886. MYSERIAL.println("CrashDetect DISABLED");
  887. }
  888. #ifdef TMC2130_LINEARITY_CORRECTION
  889. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  890. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  891. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  892. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  893. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  894. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  895. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  896. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  897. #endif //TMC2130_LINEARITY_CORRECTION
  898. #ifdef TMC2130_VARIABLE_RESOLUTION
  899. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  900. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  901. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  902. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  903. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  904. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  905. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  906. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  907. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  908. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  909. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  910. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  911. #else //TMC2130_VARIABLE_RESOLUTION
  912. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  913. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  914. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  915. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  916. #endif //TMC2130_VARIABLE_RESOLUTION
  917. #endif //TMC2130
  918. st_init(); // Initialize stepper, this enables interrupts!
  919. setup_photpin();
  920. servo_init();
  921. // Reset the machine correction matrix.
  922. // It does not make sense to load the correction matrix until the machine is homed.
  923. world2machine_reset();
  924. #ifdef PAT9125
  925. fsensor_init();
  926. #endif //PAT9125
  927. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  928. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  929. #endif
  930. #ifdef DIGIPOT_I2C
  931. digipot_i2c_init();
  932. #endif
  933. setup_homepin();
  934. #ifdef TMC2130
  935. if (1) {
  936. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  937. // try to run to zero phase before powering the Z motor.
  938. // Move in negative direction
  939. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  940. // Round the current micro-micro steps to micro steps.
  941. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  942. // Until the phase counter is reset to zero.
  943. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  944. delay(2);
  945. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  946. delay(2);
  947. }
  948. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  949. }
  950. #endif //TMC2130
  951. #if defined(Z_AXIS_ALWAYS_ON)
  952. enable_z();
  953. #endif
  954. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  955. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  956. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  957. if (farm_no == 0xFFFF) farm_no = 0;
  958. if (farm_mode)
  959. {
  960. prusa_statistics(8);
  961. }
  962. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  963. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  964. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  965. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  966. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  967. // where all the EEPROM entries are set to 0x0ff.
  968. // Once a firmware boots up, it forces at least a language selection, which changes
  969. // EEPROM_LANG to number lower than 0x0ff.
  970. // 1) Set a high power mode.
  971. #ifdef TMC2130
  972. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  973. tmc2130_mode = TMC2130_MODE_NORMAL;
  974. #endif //TMC2130
  975. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  976. }
  977. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  978. // but this times out if a blocking dialog is shown in setup().
  979. card.initsd();
  980. #ifdef DEBUG_SD_SPEED_TEST
  981. if (card.cardOK)
  982. {
  983. uint8_t* buff = (uint8_t*)block_buffer;
  984. uint32_t block = 0;
  985. uint32_t sumr = 0;
  986. uint32_t sumw = 0;
  987. for (int i = 0; i < 1024; i++)
  988. {
  989. uint32_t u = micros();
  990. bool res = card.card.readBlock(i, buff);
  991. u = micros() - u;
  992. if (res)
  993. {
  994. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  995. sumr += u;
  996. u = micros();
  997. res = card.card.writeBlock(i, buff);
  998. u = micros() - u;
  999. if (res)
  1000. {
  1001. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1002. sumw += u;
  1003. }
  1004. else
  1005. {
  1006. printf_P(PSTR("writeBlock %4d error\n"), i);
  1007. break;
  1008. }
  1009. }
  1010. else
  1011. {
  1012. printf_P(PSTR("readBlock %4d error\n"), i);
  1013. break;
  1014. }
  1015. }
  1016. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1017. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1018. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1019. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1020. }
  1021. else
  1022. printf_P(PSTR("Card NG!\n"));
  1023. #endif DEBUG_SD_SPEED_TEST
  1024. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1025. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1026. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1027. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1028. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1029. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1030. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1031. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1032. #ifdef SNMM
  1033. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1034. int _z = BOWDEN_LENGTH;
  1035. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1036. }
  1037. #endif
  1038. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1039. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1040. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1041. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1042. if (lang_selected >= LANG_NUM){
  1043. lcd_mylang();
  1044. }
  1045. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1046. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1047. temp_cal_active = false;
  1048. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1049. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1050. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1051. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1052. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  1053. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  1054. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  1055. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  1056. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  1057. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  1058. temp_cal_active = true;
  1059. }
  1060. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1061. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1062. }
  1063. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1064. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1065. }
  1066. check_babystep(); //checking if Z babystep is in allowed range
  1067. #ifdef UVLO_SUPPORT
  1068. setup_uvlo_interrupt();
  1069. #endif //UVLO_SUPPORT
  1070. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1071. setup_fan_interrupt();
  1072. #endif //DEBUG_DISABLE_FANCHECK
  1073. #ifdef PAT9125
  1074. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1075. fsensor_setup_interrupt();
  1076. #endif //DEBUG_DISABLE_FSENSORCHECK
  1077. #endif //PAT9125
  1078. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1079. #ifndef DEBUG_DISABLE_STARTMSGS
  1080. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1081. show_fw_version_warnings();
  1082. switch (hw_changed) {
  1083. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1084. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1085. case(0b01):
  1086. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_MOTHERBOARD);
  1087. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1088. break;
  1089. case(0b10):
  1090. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_PRINTER);
  1091. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1092. break;
  1093. case(0b11):
  1094. lcd_show_fullscreen_message_and_wait_P(MSG_CHANGED_BOTH);
  1095. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1096. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1097. break;
  1098. default: break; //no change, show no message
  1099. }
  1100. if (!previous_settings_retrieved) {
  1101. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version or printer type was changed, inform user that default setting were loaded
  1102. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1103. }
  1104. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1105. lcd_wizard(0);
  1106. }
  1107. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1108. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1109. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1110. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1111. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1112. // Show the message.
  1113. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1114. }
  1115. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1116. // Show the message.
  1117. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1118. lcd_update_enable(true);
  1119. }
  1120. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1121. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1122. lcd_update_enable(true);
  1123. }
  1124. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1125. // Show the message.
  1126. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1127. }
  1128. }
  1129. #ifndef DEBUG_DISABLE_FORCE_SELFTEST
  1130. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED ) {
  1131. lcd_show_fullscreen_message_and_wait_P(MSG_FORCE_SELFTEST);
  1132. update_current_firmware_version_to_eeprom();
  1133. lcd_selftest();
  1134. }
  1135. #endif //DEBUG_DISABLE_FORCE_SELFTEST
  1136. KEEPALIVE_STATE(IN_PROCESS);
  1137. #endif //DEBUG_DISABLE_STARTMSGS
  1138. lcd_update_enable(true);
  1139. lcd_implementation_clear();
  1140. lcd_update(2);
  1141. // Store the currently running firmware into an eeprom,
  1142. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1143. update_current_firmware_version_to_eeprom();
  1144. #ifdef TMC2130
  1145. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1146. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1147. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1148. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1149. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1150. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1151. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1152. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1153. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1154. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1155. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1156. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1157. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1158. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1159. #endif //TMC2130
  1160. #ifdef UVLO_SUPPORT
  1161. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1162. /*
  1163. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  1164. else {
  1165. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1166. lcd_update_enable(true);
  1167. lcd_update(2);
  1168. lcd_setstatuspgm(WELCOME_MSG);
  1169. }
  1170. */
  1171. manage_heater(); // Update temperatures
  1172. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1173. MYSERIAL.println("Power panic detected!");
  1174. MYSERIAL.print("Current bed temp:");
  1175. MYSERIAL.println(degBed());
  1176. MYSERIAL.print("Saved bed temp:");
  1177. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1178. #endif
  1179. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1180. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1181. MYSERIAL.println("Automatic recovery!");
  1182. #endif
  1183. recover_print(1);
  1184. }
  1185. else{
  1186. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1187. MYSERIAL.println("Normal recovery!");
  1188. #endif
  1189. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1190. else {
  1191. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1192. lcd_update_enable(true);
  1193. lcd_update(2);
  1194. lcd_setstatuspgm(WELCOME_MSG);
  1195. }
  1196. }
  1197. }
  1198. #endif //UVLO_SUPPORT
  1199. KEEPALIVE_STATE(NOT_BUSY);
  1200. #ifdef WATCHDOG
  1201. wdt_enable(WDTO_4S);
  1202. #endif //WATCHDOG
  1203. }
  1204. #ifdef PAT9125
  1205. void fsensor_init() {
  1206. int pat9125 = pat9125_init();
  1207. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1208. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1209. if (!pat9125)
  1210. {
  1211. fsensor = 0; //disable sensor
  1212. fsensor_not_responding = true;
  1213. }
  1214. else {
  1215. fsensor_not_responding = false;
  1216. }
  1217. puts_P(PSTR("FSensor "));
  1218. if (fsensor)
  1219. {
  1220. puts_P(PSTR("ENABLED\n"));
  1221. fsensor_enable();
  1222. }
  1223. else
  1224. {
  1225. puts_P(PSTR("DISABLED\n"));
  1226. fsensor_disable();
  1227. }
  1228. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1229. filament_autoload_enabled = false;
  1230. fsensor_disable();
  1231. #endif //DEBUG_DISABLE_FSENSORCHECK
  1232. }
  1233. #endif //PAT9125
  1234. void trace();
  1235. #define CHUNK_SIZE 64 // bytes
  1236. #define SAFETY_MARGIN 1
  1237. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1238. int chunkHead = 0;
  1239. int serial_read_stream() {
  1240. setTargetHotend(0, 0);
  1241. setTargetBed(0);
  1242. lcd_implementation_clear();
  1243. lcd_printPGM(PSTR(" Upload in progress"));
  1244. // first wait for how many bytes we will receive
  1245. uint32_t bytesToReceive;
  1246. // receive the four bytes
  1247. char bytesToReceiveBuffer[4];
  1248. for (int i=0; i<4; i++) {
  1249. int data;
  1250. while ((data = MYSERIAL.read()) == -1) {};
  1251. bytesToReceiveBuffer[i] = data;
  1252. }
  1253. // make it a uint32
  1254. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1255. // we're ready, notify the sender
  1256. MYSERIAL.write('+');
  1257. // lock in the routine
  1258. uint32_t receivedBytes = 0;
  1259. while (prusa_sd_card_upload) {
  1260. int i;
  1261. for (i=0; i<CHUNK_SIZE; i++) {
  1262. int data;
  1263. // check if we're not done
  1264. if (receivedBytes == bytesToReceive) {
  1265. break;
  1266. }
  1267. // read the next byte
  1268. while ((data = MYSERIAL.read()) == -1) {};
  1269. receivedBytes++;
  1270. // save it to the chunk
  1271. chunk[i] = data;
  1272. }
  1273. // write the chunk to SD
  1274. card.write_command_no_newline(&chunk[0]);
  1275. // notify the sender we're ready for more data
  1276. MYSERIAL.write('+');
  1277. // for safety
  1278. manage_heater();
  1279. // check if we're done
  1280. if(receivedBytes == bytesToReceive) {
  1281. trace(); // beep
  1282. card.closefile();
  1283. prusa_sd_card_upload = false;
  1284. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1285. return 0;
  1286. }
  1287. }
  1288. }
  1289. #ifdef HOST_KEEPALIVE_FEATURE
  1290. /**
  1291. * Output a "busy" message at regular intervals
  1292. * while the machine is not accepting commands.
  1293. */
  1294. void host_keepalive() {
  1295. if (farm_mode) return;
  1296. long ms = millis();
  1297. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1298. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1299. switch (busy_state) {
  1300. case IN_HANDLER:
  1301. case IN_PROCESS:
  1302. SERIAL_ECHO_START;
  1303. SERIAL_ECHOLNPGM("busy: processing");
  1304. break;
  1305. case PAUSED_FOR_USER:
  1306. SERIAL_ECHO_START;
  1307. SERIAL_ECHOLNPGM("busy: paused for user");
  1308. break;
  1309. case PAUSED_FOR_INPUT:
  1310. SERIAL_ECHO_START;
  1311. SERIAL_ECHOLNPGM("busy: paused for input");
  1312. break;
  1313. default:
  1314. break;
  1315. }
  1316. }
  1317. prev_busy_signal_ms = ms;
  1318. }
  1319. #endif
  1320. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1321. // Before loop(), the setup() function is called by the main() routine.
  1322. void loop()
  1323. {
  1324. KEEPALIVE_STATE(NOT_BUSY);
  1325. bool stack_integrity = true;
  1326. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1327. {
  1328. is_usb_printing = true;
  1329. usb_printing_counter--;
  1330. _usb_timer = millis();
  1331. }
  1332. if (usb_printing_counter == 0)
  1333. {
  1334. is_usb_printing = false;
  1335. }
  1336. if (prusa_sd_card_upload)
  1337. {
  1338. //we read byte-by byte
  1339. serial_read_stream();
  1340. } else
  1341. {
  1342. get_command();
  1343. #ifdef SDSUPPORT
  1344. card.checkautostart(false);
  1345. #endif
  1346. if(buflen)
  1347. {
  1348. cmdbuffer_front_already_processed = false;
  1349. #ifdef SDSUPPORT
  1350. if(card.saving)
  1351. {
  1352. // Saving a G-code file onto an SD-card is in progress.
  1353. // Saving starts with M28, saving until M29 is seen.
  1354. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1355. card.write_command(CMDBUFFER_CURRENT_STRING);
  1356. if(card.logging)
  1357. process_commands();
  1358. else
  1359. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1360. } else {
  1361. card.closefile();
  1362. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1363. }
  1364. } else {
  1365. process_commands();
  1366. }
  1367. #else
  1368. process_commands();
  1369. #endif //SDSUPPORT
  1370. if (! cmdbuffer_front_already_processed && buflen)
  1371. {
  1372. // ptr points to the start of the block currently being processed.
  1373. // The first character in the block is the block type.
  1374. char *ptr = cmdbuffer + bufindr;
  1375. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1376. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1377. union {
  1378. struct {
  1379. char lo;
  1380. char hi;
  1381. } lohi;
  1382. uint16_t value;
  1383. } sdlen;
  1384. sdlen.value = 0;
  1385. {
  1386. // This block locks the interrupts globally for 3.25 us,
  1387. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1388. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1389. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1390. cli();
  1391. // Reset the command to something, which will be ignored by the power panic routine,
  1392. // so this buffer length will not be counted twice.
  1393. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1394. // Extract the current buffer length.
  1395. sdlen.lohi.lo = *ptr ++;
  1396. sdlen.lohi.hi = *ptr;
  1397. // and pass it to the planner queue.
  1398. planner_add_sd_length(sdlen.value);
  1399. sei();
  1400. }
  1401. }
  1402. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1403. // this block's SD card length will not be counted twice as its command type has been replaced
  1404. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1405. cmdqueue_pop_front();
  1406. }
  1407. host_keepalive();
  1408. }
  1409. }
  1410. //check heater every n milliseconds
  1411. manage_heater();
  1412. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1413. checkHitEndstops();
  1414. lcd_update();
  1415. #ifdef PAT9125
  1416. fsensor_update();
  1417. #endif //PAT9125
  1418. #ifdef TMC2130
  1419. tmc2130_check_overtemp();
  1420. if (tmc2130_sg_crash)
  1421. {
  1422. uint8_t crash = tmc2130_sg_crash;
  1423. tmc2130_sg_crash = 0;
  1424. // crashdet_stop_and_save_print();
  1425. switch (crash)
  1426. {
  1427. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1428. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1429. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1430. }
  1431. }
  1432. #endif //TMC2130
  1433. }
  1434. #define DEFINE_PGM_READ_ANY(type, reader) \
  1435. static inline type pgm_read_any(const type *p) \
  1436. { return pgm_read_##reader##_near(p); }
  1437. DEFINE_PGM_READ_ANY(float, float);
  1438. DEFINE_PGM_READ_ANY(signed char, byte);
  1439. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1440. static const PROGMEM type array##_P[3] = \
  1441. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1442. static inline type array(int axis) \
  1443. { return pgm_read_any(&array##_P[axis]); } \
  1444. type array##_ext(int axis) \
  1445. { return pgm_read_any(&array##_P[axis]); }
  1446. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1447. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1448. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1449. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1450. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1451. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1452. static void axis_is_at_home(int axis) {
  1453. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1454. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1455. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1456. }
  1457. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1458. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1459. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1460. saved_feedrate = feedrate;
  1461. saved_feedmultiply = feedmultiply;
  1462. feedmultiply = 100;
  1463. previous_millis_cmd = millis();
  1464. enable_endstops(enable_endstops_now);
  1465. }
  1466. static void clean_up_after_endstop_move() {
  1467. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1468. enable_endstops(false);
  1469. #endif
  1470. feedrate = saved_feedrate;
  1471. feedmultiply = saved_feedmultiply;
  1472. previous_millis_cmd = millis();
  1473. }
  1474. #ifdef ENABLE_AUTO_BED_LEVELING
  1475. #ifdef AUTO_BED_LEVELING_GRID
  1476. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1477. {
  1478. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1479. planeNormal.debug("planeNormal");
  1480. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1481. //bedLevel.debug("bedLevel");
  1482. //plan_bed_level_matrix.debug("bed level before");
  1483. //vector_3 uncorrected_position = plan_get_position_mm();
  1484. //uncorrected_position.debug("position before");
  1485. vector_3 corrected_position = plan_get_position();
  1486. // corrected_position.debug("position after");
  1487. current_position[X_AXIS] = corrected_position.x;
  1488. current_position[Y_AXIS] = corrected_position.y;
  1489. current_position[Z_AXIS] = corrected_position.z;
  1490. // put the bed at 0 so we don't go below it.
  1491. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1492. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1493. }
  1494. #else // not AUTO_BED_LEVELING_GRID
  1495. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1496. plan_bed_level_matrix.set_to_identity();
  1497. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1498. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1499. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1500. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1501. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1502. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1503. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1504. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1505. vector_3 corrected_position = plan_get_position();
  1506. current_position[X_AXIS] = corrected_position.x;
  1507. current_position[Y_AXIS] = corrected_position.y;
  1508. current_position[Z_AXIS] = corrected_position.z;
  1509. // put the bed at 0 so we don't go below it.
  1510. current_position[Z_AXIS] = zprobe_zoffset;
  1511. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1512. }
  1513. #endif // AUTO_BED_LEVELING_GRID
  1514. static void run_z_probe() {
  1515. plan_bed_level_matrix.set_to_identity();
  1516. feedrate = homing_feedrate[Z_AXIS];
  1517. // move down until you find the bed
  1518. float zPosition = -10;
  1519. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1520. st_synchronize();
  1521. // we have to let the planner know where we are right now as it is not where we said to go.
  1522. zPosition = st_get_position_mm(Z_AXIS);
  1523. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1524. // move up the retract distance
  1525. zPosition += home_retract_mm(Z_AXIS);
  1526. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1527. st_synchronize();
  1528. // move back down slowly to find bed
  1529. feedrate = homing_feedrate[Z_AXIS]/4;
  1530. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1531. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1532. st_synchronize();
  1533. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1534. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1535. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1536. }
  1537. static void do_blocking_move_to(float x, float y, float z) {
  1538. float oldFeedRate = feedrate;
  1539. feedrate = homing_feedrate[Z_AXIS];
  1540. current_position[Z_AXIS] = z;
  1541. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1542. st_synchronize();
  1543. feedrate = XY_TRAVEL_SPEED;
  1544. current_position[X_AXIS] = x;
  1545. current_position[Y_AXIS] = y;
  1546. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1547. st_synchronize();
  1548. feedrate = oldFeedRate;
  1549. }
  1550. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1551. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1552. }
  1553. /// Probe bed height at position (x,y), returns the measured z value
  1554. static float probe_pt(float x, float y, float z_before) {
  1555. // move to right place
  1556. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1557. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1558. run_z_probe();
  1559. float measured_z = current_position[Z_AXIS];
  1560. SERIAL_PROTOCOLRPGM(MSG_BED);
  1561. SERIAL_PROTOCOLPGM(" x: ");
  1562. SERIAL_PROTOCOL(x);
  1563. SERIAL_PROTOCOLPGM(" y: ");
  1564. SERIAL_PROTOCOL(y);
  1565. SERIAL_PROTOCOLPGM(" z: ");
  1566. SERIAL_PROTOCOL(measured_z);
  1567. SERIAL_PROTOCOLPGM("\n");
  1568. return measured_z;
  1569. }
  1570. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1571. #ifdef LIN_ADVANCE
  1572. /**
  1573. * M900: Set and/or Get advance K factor and WH/D ratio
  1574. *
  1575. * K<factor> Set advance K factor
  1576. * R<ratio> Set ratio directly (overrides WH/D)
  1577. * W<width> H<height> D<diam> Set ratio from WH/D
  1578. */
  1579. inline void gcode_M900() {
  1580. st_synchronize();
  1581. const float newK = code_seen('K') ? code_value_float() : -1;
  1582. if (newK >= 0) extruder_advance_k = newK;
  1583. float newR = code_seen('R') ? code_value_float() : -1;
  1584. if (newR < 0) {
  1585. const float newD = code_seen('D') ? code_value_float() : -1,
  1586. newW = code_seen('W') ? code_value_float() : -1,
  1587. newH = code_seen('H') ? code_value_float() : -1;
  1588. if (newD >= 0 && newW >= 0 && newH >= 0)
  1589. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1590. }
  1591. if (newR >= 0) advance_ed_ratio = newR;
  1592. SERIAL_ECHO_START;
  1593. SERIAL_ECHOPGM("Advance K=");
  1594. SERIAL_ECHOLN(extruder_advance_k);
  1595. SERIAL_ECHOPGM(" E/D=");
  1596. const float ratio = advance_ed_ratio;
  1597. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1598. }
  1599. #endif // LIN_ADVANCE
  1600. bool check_commands() {
  1601. bool end_command_found = false;
  1602. while (buflen)
  1603. {
  1604. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1605. if (!cmdbuffer_front_already_processed)
  1606. cmdqueue_pop_front();
  1607. cmdbuffer_front_already_processed = false;
  1608. }
  1609. return end_command_found;
  1610. }
  1611. #ifdef TMC2130
  1612. bool calibrate_z_auto()
  1613. {
  1614. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1615. lcd_implementation_clear();
  1616. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1617. bool endstops_enabled = enable_endstops(true);
  1618. int axis_up_dir = -home_dir(Z_AXIS);
  1619. tmc2130_home_enter(Z_AXIS_MASK);
  1620. current_position[Z_AXIS] = 0;
  1621. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1622. set_destination_to_current();
  1623. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1624. feedrate = homing_feedrate[Z_AXIS];
  1625. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1626. st_synchronize();
  1627. // current_position[axis] = 0;
  1628. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1629. tmc2130_home_exit();
  1630. enable_endstops(false);
  1631. current_position[Z_AXIS] = 0;
  1632. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1633. set_destination_to_current();
  1634. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1635. feedrate = homing_feedrate[Z_AXIS] / 2;
  1636. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1637. st_synchronize();
  1638. enable_endstops(endstops_enabled);
  1639. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1640. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1641. return true;
  1642. }
  1643. #endif //TMC2130
  1644. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1645. {
  1646. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1647. #define HOMEAXIS_DO(LETTER) \
  1648. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1649. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1650. {
  1651. int axis_home_dir = home_dir(axis);
  1652. feedrate = homing_feedrate[axis];
  1653. #ifdef TMC2130
  1654. tmc2130_home_enter(X_AXIS_MASK << axis);
  1655. #endif //TMC2130
  1656. // Move right a bit, so that the print head does not touch the left end position,
  1657. // and the following left movement has a chance to achieve the required velocity
  1658. // for the stall guard to work.
  1659. current_position[axis] = 0;
  1660. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1661. set_destination_to_current();
  1662. // destination[axis] = 11.f;
  1663. destination[axis] = 3.f;
  1664. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1665. st_synchronize();
  1666. // Move left away from the possible collision with the collision detection disabled.
  1667. endstops_hit_on_purpose();
  1668. enable_endstops(false);
  1669. current_position[axis] = 0;
  1670. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1671. destination[axis] = - 1.;
  1672. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1673. st_synchronize();
  1674. // Now continue to move up to the left end stop with the collision detection enabled.
  1675. enable_endstops(true);
  1676. destination[axis] = - 1.1 * max_length(axis);
  1677. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1678. st_synchronize();
  1679. for (uint8_t i = 0; i < cnt; i++)
  1680. {
  1681. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1682. endstops_hit_on_purpose();
  1683. enable_endstops(false);
  1684. current_position[axis] = 0;
  1685. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1686. destination[axis] = 10.f;
  1687. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1688. st_synchronize();
  1689. endstops_hit_on_purpose();
  1690. // Now move left up to the collision, this time with a repeatable velocity.
  1691. enable_endstops(true);
  1692. destination[axis] = - 11.f;
  1693. #ifdef TMC2130
  1694. feedrate = homing_feedrate[axis];
  1695. #else //TMC2130
  1696. feedrate = homing_feedrate[axis] / 2;
  1697. #endif //TMC2130
  1698. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1699. st_synchronize();
  1700. #ifdef TMC2130
  1701. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1702. if (pstep) pstep[i] = mscnt >> 4;
  1703. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1704. #endif //TMC2130
  1705. }
  1706. endstops_hit_on_purpose();
  1707. enable_endstops(false);
  1708. #ifdef TMC2130
  1709. uint8_t orig = tmc2130_home_origin[axis];
  1710. uint8_t back = tmc2130_home_bsteps[axis];
  1711. if (tmc2130_home_enabled && (orig <= 63))
  1712. {
  1713. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1714. if (back > 0)
  1715. tmc2130_do_steps(axis, back, 1, 1000);
  1716. }
  1717. else
  1718. tmc2130_do_steps(axis, 8, 2, 1000);
  1719. tmc2130_home_exit();
  1720. #endif //TMC2130
  1721. axis_is_at_home(axis);
  1722. axis_known_position[axis] = true;
  1723. // Move from minimum
  1724. #ifdef TMC2130
  1725. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1726. #else //TMC2130
  1727. float dist = 0.01f * 64;
  1728. #endif //TMC2130
  1729. current_position[axis] -= dist;
  1730. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1731. current_position[axis] += dist;
  1732. destination[axis] = current_position[axis];
  1733. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1734. st_synchronize();
  1735. feedrate = 0.0;
  1736. }
  1737. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1738. {
  1739. int axis_home_dir = home_dir(axis);
  1740. current_position[axis] = 0;
  1741. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1742. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1743. feedrate = homing_feedrate[axis];
  1744. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1745. st_synchronize();
  1746. current_position[axis] = 0;
  1747. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1748. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1749. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1750. st_synchronize();
  1751. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1752. feedrate = homing_feedrate[axis]/2 ;
  1753. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1754. st_synchronize();
  1755. axis_is_at_home(axis);
  1756. destination[axis] = current_position[axis];
  1757. feedrate = 0.0;
  1758. endstops_hit_on_purpose();
  1759. axis_known_position[axis] = true;
  1760. }
  1761. enable_endstops(endstops_enabled);
  1762. }
  1763. /**/
  1764. void home_xy()
  1765. {
  1766. set_destination_to_current();
  1767. homeaxis(X_AXIS);
  1768. homeaxis(Y_AXIS);
  1769. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1770. endstops_hit_on_purpose();
  1771. }
  1772. void refresh_cmd_timeout(void)
  1773. {
  1774. previous_millis_cmd = millis();
  1775. }
  1776. #ifdef FWRETRACT
  1777. void retract(bool retracting, bool swapretract = false) {
  1778. if(retracting && !retracted[active_extruder]) {
  1779. destination[X_AXIS]=current_position[X_AXIS];
  1780. destination[Y_AXIS]=current_position[Y_AXIS];
  1781. destination[Z_AXIS]=current_position[Z_AXIS];
  1782. destination[E_AXIS]=current_position[E_AXIS];
  1783. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1784. plan_set_e_position(current_position[E_AXIS]);
  1785. float oldFeedrate = feedrate;
  1786. feedrate=retract_feedrate*60;
  1787. retracted[active_extruder]=true;
  1788. prepare_move();
  1789. current_position[Z_AXIS]-=retract_zlift;
  1790. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1791. prepare_move();
  1792. feedrate = oldFeedrate;
  1793. } else if(!retracting && retracted[active_extruder]) {
  1794. destination[X_AXIS]=current_position[X_AXIS];
  1795. destination[Y_AXIS]=current_position[Y_AXIS];
  1796. destination[Z_AXIS]=current_position[Z_AXIS];
  1797. destination[E_AXIS]=current_position[E_AXIS];
  1798. current_position[Z_AXIS]+=retract_zlift;
  1799. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1800. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  1801. plan_set_e_position(current_position[E_AXIS]);
  1802. float oldFeedrate = feedrate;
  1803. feedrate=retract_recover_feedrate*60;
  1804. retracted[active_extruder]=false;
  1805. prepare_move();
  1806. feedrate = oldFeedrate;
  1807. }
  1808. } //retract
  1809. #endif //FWRETRACT
  1810. void trace() {
  1811. tone(BEEPER, 440);
  1812. delay(25);
  1813. noTone(BEEPER);
  1814. delay(20);
  1815. }
  1816. /*
  1817. void ramming() {
  1818. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1819. if (current_temperature[0] < 230) {
  1820. //PLA
  1821. max_feedrate[E_AXIS] = 50;
  1822. //current_position[E_AXIS] -= 8;
  1823. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1824. //current_position[E_AXIS] += 8;
  1825. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1826. current_position[E_AXIS] += 5.4;
  1827. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1828. current_position[E_AXIS] += 3.2;
  1829. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1830. current_position[E_AXIS] += 3;
  1831. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1832. st_synchronize();
  1833. max_feedrate[E_AXIS] = 80;
  1834. current_position[E_AXIS] -= 82;
  1835. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1836. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1837. current_position[E_AXIS] -= 20;
  1838. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1839. current_position[E_AXIS] += 5;
  1840. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1841. current_position[E_AXIS] += 5;
  1842. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1843. current_position[E_AXIS] -= 10;
  1844. st_synchronize();
  1845. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1846. current_position[E_AXIS] += 10;
  1847. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1848. current_position[E_AXIS] -= 10;
  1849. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1850. current_position[E_AXIS] += 10;
  1851. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1852. current_position[E_AXIS] -= 10;
  1853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1854. st_synchronize();
  1855. }
  1856. else {
  1857. //ABS
  1858. max_feedrate[E_AXIS] = 50;
  1859. //current_position[E_AXIS] -= 8;
  1860. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1861. //current_position[E_AXIS] += 8;
  1862. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1863. current_position[E_AXIS] += 3.1;
  1864. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1865. current_position[E_AXIS] += 3.1;
  1866. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1867. current_position[E_AXIS] += 4;
  1868. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1869. st_synchronize();
  1870. //current_position[X_AXIS] += 23; //delay
  1871. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1872. //current_position[X_AXIS] -= 23; //delay
  1873. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1874. delay(4700);
  1875. max_feedrate[E_AXIS] = 80;
  1876. current_position[E_AXIS] -= 92;
  1877. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1878. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1879. current_position[E_AXIS] -= 5;
  1880. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1881. current_position[E_AXIS] += 5;
  1882. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1883. current_position[E_AXIS] -= 5;
  1884. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1885. st_synchronize();
  1886. current_position[E_AXIS] += 5;
  1887. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1888. current_position[E_AXIS] -= 5;
  1889. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1890. current_position[E_AXIS] += 5;
  1891. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1892. current_position[E_AXIS] -= 5;
  1893. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1894. st_synchronize();
  1895. }
  1896. }
  1897. */
  1898. #ifdef TMC2130
  1899. void force_high_power_mode(bool start_high_power_section) {
  1900. uint8_t silent;
  1901. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1902. if (silent == 1) {
  1903. //we are in silent mode, set to normal mode to enable crash detection
  1904. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1905. st_synchronize();
  1906. cli();
  1907. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1908. tmc2130_init();
  1909. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1910. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1911. st_reset_timer();
  1912. sei();
  1913. digipot_init();
  1914. }
  1915. }
  1916. #endif //TMC2130
  1917. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  1918. {
  1919. bool final_result = false;
  1920. #ifdef TMC2130
  1921. FORCE_HIGH_POWER_START;
  1922. #endif // TMC2130
  1923. // Only Z calibration?
  1924. if (!onlyZ)
  1925. {
  1926. setTargetBed(0);
  1927. setTargetHotend(0, 0);
  1928. setTargetHotend(0, 1);
  1929. setTargetHotend(0, 2);
  1930. adjust_bed_reset(); //reset bed level correction
  1931. }
  1932. // Disable the default update procedure of the display. We will do a modal dialog.
  1933. lcd_update_enable(false);
  1934. // Let the planner use the uncorrected coordinates.
  1935. mbl.reset();
  1936. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1937. // the planner will not perform any adjustments in the XY plane.
  1938. // Wait for the motors to stop and update the current position with the absolute values.
  1939. world2machine_revert_to_uncorrected();
  1940. // Reset the baby step value applied without moving the axes.
  1941. babystep_reset();
  1942. // Mark all axes as in a need for homing.
  1943. memset(axis_known_position, 0, sizeof(axis_known_position));
  1944. // Home in the XY plane.
  1945. //set_destination_to_current();
  1946. setup_for_endstop_move();
  1947. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1948. home_xy();
  1949. enable_endstops(false);
  1950. current_position[X_AXIS] += 5;
  1951. current_position[Y_AXIS] += 5;
  1952. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1953. st_synchronize();
  1954. // Let the user move the Z axes up to the end stoppers.
  1955. #ifdef TMC2130
  1956. if (calibrate_z_auto())
  1957. {
  1958. #else //TMC2130
  1959. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1960. {
  1961. #endif //TMC2130
  1962. refresh_cmd_timeout();
  1963. #ifndef STEEL_SHEET
  1964. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1965. {
  1966. lcd_wait_for_cool_down();
  1967. }
  1968. #endif //STEEL_SHEET
  1969. if(!onlyZ)
  1970. {
  1971. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1972. #ifdef STEEL_SHEET
  1973. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1974. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1975. #endif //STEEL_SHEET
  1976. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1977. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1978. KEEPALIVE_STATE(IN_HANDLER);
  1979. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1980. lcd_implementation_print_at(0, 2, 1);
  1981. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1982. }
  1983. // Move the print head close to the bed.
  1984. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1985. bool endstops_enabled = enable_endstops(true);
  1986. #ifdef TMC2130
  1987. tmc2130_home_enter(Z_AXIS_MASK);
  1988. #endif //TMC2130
  1989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1990. st_synchronize();
  1991. #ifdef TMC2130
  1992. tmc2130_home_exit();
  1993. #endif //TMC2130
  1994. enable_endstops(endstops_enabled);
  1995. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1996. {
  1997. int8_t verbosity_level = 0;
  1998. if (code_seen('V'))
  1999. {
  2000. // Just 'V' without a number counts as V1.
  2001. char c = strchr_pointer[1];
  2002. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2003. }
  2004. if (onlyZ)
  2005. {
  2006. clean_up_after_endstop_move();
  2007. // Z only calibration.
  2008. // Load the machine correction matrix
  2009. world2machine_initialize();
  2010. // and correct the current_position to match the transformed coordinate system.
  2011. world2machine_update_current();
  2012. //FIXME
  2013. bool result = sample_mesh_and_store_reference();
  2014. if (result)
  2015. {
  2016. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2017. // Shipped, the nozzle height has been set already. The user can start printing now.
  2018. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2019. final_result = true;
  2020. // babystep_apply();
  2021. }
  2022. }
  2023. else
  2024. {
  2025. // Reset the baby step value and the baby step applied flag.
  2026. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2027. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2028. // Complete XYZ calibration.
  2029. uint8_t point_too_far_mask = 0;
  2030. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2031. clean_up_after_endstop_move();
  2032. // Print head up.
  2033. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2034. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2035. st_synchronize();
  2036. //#ifndef NEW_XYZCAL
  2037. if (result >= 0)
  2038. {
  2039. #ifdef HEATBED_V2
  2040. sample_z();
  2041. #else //HEATBED_V2
  2042. point_too_far_mask = 0;
  2043. // Second half: The fine adjustment.
  2044. // Let the planner use the uncorrected coordinates.
  2045. mbl.reset();
  2046. world2machine_reset();
  2047. // Home in the XY plane.
  2048. setup_for_endstop_move();
  2049. home_xy();
  2050. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2051. clean_up_after_endstop_move();
  2052. // Print head up.
  2053. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2054. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2055. st_synchronize();
  2056. // if (result >= 0) babystep_apply();
  2057. #endif //HEATBED_V2
  2058. }
  2059. //#endif //NEW_XYZCAL
  2060. lcd_update_enable(true);
  2061. lcd_update(2);
  2062. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2063. if (result >= 0)
  2064. {
  2065. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2066. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2067. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  2068. final_result = true;
  2069. }
  2070. }
  2071. #ifdef TMC2130
  2072. tmc2130_home_exit();
  2073. #endif
  2074. }
  2075. else
  2076. {
  2077. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2078. final_result = false;
  2079. }
  2080. }
  2081. else
  2082. {
  2083. // Timeouted.
  2084. }
  2085. lcd_update_enable(true);
  2086. #ifdef TMC2130
  2087. FORCE_HIGH_POWER_END;
  2088. #endif // TMC2130
  2089. return final_result;
  2090. }
  2091. void gcode_M114()
  2092. {
  2093. SERIAL_PROTOCOLPGM("X:");
  2094. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2095. SERIAL_PROTOCOLPGM(" Y:");
  2096. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2097. SERIAL_PROTOCOLPGM(" Z:");
  2098. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2099. SERIAL_PROTOCOLPGM(" E:");
  2100. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2101. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  2102. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2103. SERIAL_PROTOCOLPGM(" Y:");
  2104. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2105. SERIAL_PROTOCOLPGM(" Z:");
  2106. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2107. SERIAL_PROTOCOLPGM(" E:");
  2108. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2109. SERIAL_PROTOCOLLN("");
  2110. }
  2111. void gcode_M701()
  2112. {
  2113. #ifdef SNMM
  2114. extr_adj(snmm_extruder);//loads current extruder
  2115. #else
  2116. enable_z();
  2117. custom_message = true;
  2118. custom_message_type = 2;
  2119. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  2120. current_position[E_AXIS] += 70;
  2121. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2122. current_position[E_AXIS] += 25;
  2123. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2124. st_synchronize();
  2125. tone(BEEPER, 500);
  2126. delay_keep_alive(50);
  2127. noTone(BEEPER);
  2128. if (!farm_mode && loading_flag) {
  2129. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2130. while (!clean) {
  2131. lcd_update_enable(true);
  2132. lcd_update(2);
  2133. current_position[E_AXIS] += 25;
  2134. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2135. st_synchronize();
  2136. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2137. }
  2138. }
  2139. lcd_update_enable(true);
  2140. lcd_update(2);
  2141. lcd_setstatuspgm(WELCOME_MSG);
  2142. disable_z();
  2143. loading_flag = false;
  2144. custom_message = false;
  2145. custom_message_type = 0;
  2146. #endif
  2147. }
  2148. void process_commands()
  2149. {
  2150. if (!buflen) return; //empty command
  2151. #ifdef FILAMENT_RUNOUT_SUPPORT
  2152. SET_INPUT(FR_SENS);
  2153. #endif
  2154. #ifdef CMDBUFFER_DEBUG
  2155. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2156. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2157. SERIAL_ECHOLNPGM("");
  2158. SERIAL_ECHOPGM("In cmdqueue: ");
  2159. SERIAL_ECHO(buflen);
  2160. SERIAL_ECHOLNPGM("");
  2161. #endif /* CMDBUFFER_DEBUG */
  2162. unsigned long codenum; //throw away variable
  2163. char *starpos = NULL;
  2164. #ifdef ENABLE_AUTO_BED_LEVELING
  2165. float x_tmp, y_tmp, z_tmp, real_z;
  2166. #endif
  2167. // PRUSA GCODES
  2168. KEEPALIVE_STATE(IN_HANDLER);
  2169. #ifdef SNMM
  2170. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2171. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2172. int8_t SilentMode;
  2173. #endif
  2174. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2175. starpos = (strchr(strchr_pointer + 5, '*'));
  2176. if (starpos != NULL)
  2177. *(starpos) = '\0';
  2178. lcd_setstatus(strchr_pointer + 5);
  2179. }
  2180. #ifdef TMC2130
  2181. else if(code_seen("CRASH_DETECTED"))
  2182. {
  2183. uint8_t mask = 0;
  2184. if (code_seen("X")) mask |= X_AXIS_MASK;
  2185. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2186. crashdet_detected(mask);
  2187. }
  2188. else if(code_seen("CRASH_RECOVER"))
  2189. crashdet_recover();
  2190. else if(code_seen("CRASH_CANCEL"))
  2191. crashdet_cancel();
  2192. #endif //TMC2130
  2193. else if(code_seen("PRUSA")){
  2194. if (code_seen("Ping")) { //PRUSA Ping
  2195. if (farm_mode) {
  2196. PingTime = millis();
  2197. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2198. }
  2199. }
  2200. else if (code_seen("PRN")) {
  2201. MYSERIAL.println(status_number);
  2202. }else if (code_seen("FAN")) {
  2203. MYSERIAL.print("E0:");
  2204. MYSERIAL.print(60*fan_speed[0]);
  2205. MYSERIAL.println(" RPM");
  2206. MYSERIAL.print("PRN0:");
  2207. MYSERIAL.print(60*fan_speed[1]);
  2208. MYSERIAL.println(" RPM");
  2209. }else if (code_seen("fn")) {
  2210. if (farm_mode) {
  2211. MYSERIAL.println(farm_no);
  2212. }
  2213. else {
  2214. MYSERIAL.println("Not in farm mode.");
  2215. }
  2216. }
  2217. else if (code_seen("thx")) {
  2218. no_response = false;
  2219. }else if (code_seen("fv")) {
  2220. // get file version
  2221. #ifdef SDSUPPORT
  2222. card.openFile(strchr_pointer + 3,true);
  2223. while (true) {
  2224. uint16_t readByte = card.get();
  2225. MYSERIAL.write(readByte);
  2226. if (readByte=='\n') {
  2227. break;
  2228. }
  2229. }
  2230. card.closefile();
  2231. #endif // SDSUPPORT
  2232. } else if (code_seen("M28")) {
  2233. trace();
  2234. prusa_sd_card_upload = true;
  2235. card.openFile(strchr_pointer+4,false);
  2236. } else if (code_seen("SN")) {
  2237. if (farm_mode) {
  2238. selectedSerialPort = 0;
  2239. MSerial.write(";S");
  2240. // S/N is:CZPX0917X003XC13518
  2241. int numbersRead = 0;
  2242. while (numbersRead < 19) {
  2243. while (MSerial.available() > 0) {
  2244. uint8_t serial_char = MSerial.read();
  2245. selectedSerialPort = 1;
  2246. MSerial.write(serial_char);
  2247. numbersRead++;
  2248. selectedSerialPort = 0;
  2249. }
  2250. }
  2251. selectedSerialPort = 1;
  2252. MSerial.write('\n');
  2253. /*for (int b = 0; b < 3; b++) {
  2254. tone(BEEPER, 110);
  2255. delay(50);
  2256. noTone(BEEPER);
  2257. delay(50);
  2258. }*/
  2259. } else {
  2260. MYSERIAL.println("Not in farm mode.");
  2261. }
  2262. } else if(code_seen("Fir")){
  2263. SERIAL_PROTOCOLLN(FW_VERSION);
  2264. } else if(code_seen("Rev")){
  2265. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2266. } else if(code_seen("Lang")) {
  2267. lcd_force_language_selection();
  2268. } else if(code_seen("Lz")) {
  2269. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2270. } else if (code_seen("SERIAL LOW")) {
  2271. MYSERIAL.println("SERIAL LOW");
  2272. MYSERIAL.begin(BAUDRATE);
  2273. return;
  2274. } else if (code_seen("SERIAL HIGH")) {
  2275. MYSERIAL.println("SERIAL HIGH");
  2276. MYSERIAL.begin(1152000);
  2277. return;
  2278. } else if(code_seen("Beat")) {
  2279. // Kick farm link timer
  2280. kicktime = millis();
  2281. } else if(code_seen("FR")) {
  2282. // Factory full reset
  2283. factory_reset(0,true);
  2284. }
  2285. //else if (code_seen('Cal')) {
  2286. // lcd_calibration();
  2287. // }
  2288. }
  2289. else if (code_seen('^')) {
  2290. // nothing, this is a version line
  2291. } else if(code_seen('G'))
  2292. {
  2293. switch((int)code_value())
  2294. {
  2295. case 0: // G0 -> G1
  2296. case 1: // G1
  2297. if(Stopped == false) {
  2298. #ifdef FILAMENT_RUNOUT_SUPPORT
  2299. if(READ(FR_SENS)){
  2300. feedmultiplyBckp=feedmultiply;
  2301. float target[4];
  2302. float lastpos[4];
  2303. target[X_AXIS]=current_position[X_AXIS];
  2304. target[Y_AXIS]=current_position[Y_AXIS];
  2305. target[Z_AXIS]=current_position[Z_AXIS];
  2306. target[E_AXIS]=current_position[E_AXIS];
  2307. lastpos[X_AXIS]=current_position[X_AXIS];
  2308. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2309. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2310. lastpos[E_AXIS]=current_position[E_AXIS];
  2311. //retract by E
  2312. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2313. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2314. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2315. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2316. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2317. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2318. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2319. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2320. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2321. //finish moves
  2322. st_synchronize();
  2323. //disable extruder steppers so filament can be removed
  2324. disable_e0();
  2325. disable_e1();
  2326. disable_e2();
  2327. delay(100);
  2328. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2329. uint8_t cnt=0;
  2330. int counterBeep = 0;
  2331. lcd_wait_interact();
  2332. while(!lcd_clicked()){
  2333. cnt++;
  2334. manage_heater();
  2335. manage_inactivity(true);
  2336. //lcd_update();
  2337. if(cnt==0)
  2338. {
  2339. #if BEEPER > 0
  2340. if (counterBeep== 500){
  2341. counterBeep = 0;
  2342. }
  2343. SET_OUTPUT(BEEPER);
  2344. if (counterBeep== 0){
  2345. WRITE(BEEPER,HIGH);
  2346. }
  2347. if (counterBeep== 20){
  2348. WRITE(BEEPER,LOW);
  2349. }
  2350. counterBeep++;
  2351. #else
  2352. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2353. lcd_buzz(1000/6,100);
  2354. #else
  2355. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2356. #endif
  2357. #endif
  2358. }
  2359. }
  2360. WRITE(BEEPER,LOW);
  2361. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2362. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2363. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2364. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2365. lcd_change_fil_state = 0;
  2366. lcd_loading_filament();
  2367. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2368. lcd_change_fil_state = 0;
  2369. lcd_alright();
  2370. switch(lcd_change_fil_state){
  2371. case 2:
  2372. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2373. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2374. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2375. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2376. lcd_loading_filament();
  2377. break;
  2378. case 3:
  2379. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2380. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2381. lcd_loading_color();
  2382. break;
  2383. default:
  2384. lcd_change_success();
  2385. break;
  2386. }
  2387. }
  2388. target[E_AXIS]+= 5;
  2389. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2390. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2391. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2392. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2393. //plan_set_e_position(current_position[E_AXIS]);
  2394. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2395. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2396. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2397. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2398. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2399. plan_set_e_position(lastpos[E_AXIS]);
  2400. feedmultiply=feedmultiplyBckp;
  2401. char cmd[9];
  2402. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2403. enquecommand(cmd);
  2404. }
  2405. #endif
  2406. get_coordinates(); // For X Y Z E F
  2407. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2408. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2409. }
  2410. #ifdef FWRETRACT
  2411. if(autoretract_enabled)
  2412. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2413. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2414. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2415. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2416. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2417. retract(!retracted);
  2418. return;
  2419. }
  2420. }
  2421. #endif //FWRETRACT
  2422. prepare_move();
  2423. //ClearToSend();
  2424. }
  2425. break;
  2426. case 2: // G2 - CW ARC
  2427. if(Stopped == false) {
  2428. get_arc_coordinates();
  2429. prepare_arc_move(true);
  2430. }
  2431. break;
  2432. case 3: // G3 - CCW ARC
  2433. if(Stopped == false) {
  2434. get_arc_coordinates();
  2435. prepare_arc_move(false);
  2436. }
  2437. break;
  2438. case 4: // G4 dwell
  2439. codenum = 0;
  2440. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2441. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2442. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2443. st_synchronize();
  2444. codenum += millis(); // keep track of when we started waiting
  2445. previous_millis_cmd = millis();
  2446. while(millis() < codenum) {
  2447. manage_heater();
  2448. manage_inactivity();
  2449. lcd_update();
  2450. }
  2451. break;
  2452. #ifdef FWRETRACT
  2453. case 10: // G10 retract
  2454. #if EXTRUDERS > 1
  2455. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2456. retract(true,retracted_swap[active_extruder]);
  2457. #else
  2458. retract(true);
  2459. #endif
  2460. break;
  2461. case 11: // G11 retract_recover
  2462. #if EXTRUDERS > 1
  2463. retract(false,retracted_swap[active_extruder]);
  2464. #else
  2465. retract(false);
  2466. #endif
  2467. break;
  2468. #endif //FWRETRACT
  2469. case 28: //G28 Home all Axis one at a time
  2470. {
  2471. st_synchronize();
  2472. #if 0
  2473. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2474. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2475. #endif
  2476. // Flag for the display update routine and to disable the print cancelation during homing.
  2477. homing_flag = true;
  2478. // Which axes should be homed?
  2479. bool home_x = code_seen(axis_codes[X_AXIS]);
  2480. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2481. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2482. // calibrate?
  2483. bool calib = code_seen('C');
  2484. // Either all X,Y,Z codes are present, or none of them.
  2485. bool home_all_axes = home_x == home_y && home_x == home_z;
  2486. if (home_all_axes)
  2487. // No X/Y/Z code provided means to home all axes.
  2488. home_x = home_y = home_z = true;
  2489. #ifdef ENABLE_AUTO_BED_LEVELING
  2490. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2491. #endif //ENABLE_AUTO_BED_LEVELING
  2492. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2493. // the planner will not perform any adjustments in the XY plane.
  2494. // Wait for the motors to stop and update the current position with the absolute values.
  2495. world2machine_revert_to_uncorrected();
  2496. // For mesh bed leveling deactivate the matrix temporarily.
  2497. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2498. // in a single axis only.
  2499. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2500. #ifdef MESH_BED_LEVELING
  2501. uint8_t mbl_was_active = mbl.active;
  2502. mbl.active = 0;
  2503. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2504. #endif
  2505. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2506. // consumed during the first movements following this statement.
  2507. if (home_z)
  2508. babystep_undo();
  2509. saved_feedrate = feedrate;
  2510. saved_feedmultiply = feedmultiply;
  2511. feedmultiply = 100;
  2512. previous_millis_cmd = millis();
  2513. enable_endstops(true);
  2514. memcpy(destination, current_position, sizeof(destination));
  2515. feedrate = 0.0;
  2516. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2517. if(home_z)
  2518. homeaxis(Z_AXIS);
  2519. #endif
  2520. #ifdef QUICK_HOME
  2521. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2522. if(home_x && home_y) //first diagonal move
  2523. {
  2524. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2525. int x_axis_home_dir = home_dir(X_AXIS);
  2526. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2527. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2528. feedrate = homing_feedrate[X_AXIS];
  2529. if(homing_feedrate[Y_AXIS]<feedrate)
  2530. feedrate = homing_feedrate[Y_AXIS];
  2531. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2532. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2533. } else {
  2534. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2535. }
  2536. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2537. st_synchronize();
  2538. axis_is_at_home(X_AXIS);
  2539. axis_is_at_home(Y_AXIS);
  2540. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2541. destination[X_AXIS] = current_position[X_AXIS];
  2542. destination[Y_AXIS] = current_position[Y_AXIS];
  2543. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2544. feedrate = 0.0;
  2545. st_synchronize();
  2546. endstops_hit_on_purpose();
  2547. current_position[X_AXIS] = destination[X_AXIS];
  2548. current_position[Y_AXIS] = destination[Y_AXIS];
  2549. current_position[Z_AXIS] = destination[Z_AXIS];
  2550. }
  2551. #endif /* QUICK_HOME */
  2552. #ifdef TMC2130
  2553. if(home_x)
  2554. {
  2555. if (!calib)
  2556. homeaxis(X_AXIS);
  2557. else
  2558. tmc2130_home_calibrate(X_AXIS);
  2559. }
  2560. if(home_y)
  2561. {
  2562. if (!calib)
  2563. homeaxis(Y_AXIS);
  2564. else
  2565. tmc2130_home_calibrate(Y_AXIS);
  2566. }
  2567. #endif //TMC2130
  2568. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2569. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2570. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2571. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2572. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2573. #ifndef Z_SAFE_HOMING
  2574. if(home_z) {
  2575. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2576. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2577. feedrate = max_feedrate[Z_AXIS];
  2578. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2579. st_synchronize();
  2580. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2581. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2582. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2583. {
  2584. homeaxis(X_AXIS);
  2585. homeaxis(Y_AXIS);
  2586. }
  2587. // 1st mesh bed leveling measurement point, corrected.
  2588. world2machine_initialize();
  2589. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2590. world2machine_reset();
  2591. if (destination[Y_AXIS] < Y_MIN_POS)
  2592. destination[Y_AXIS] = Y_MIN_POS;
  2593. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2594. feedrate = homing_feedrate[Z_AXIS]/10;
  2595. current_position[Z_AXIS] = 0;
  2596. enable_endstops(false);
  2597. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2598. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2599. st_synchronize();
  2600. current_position[X_AXIS] = destination[X_AXIS];
  2601. current_position[Y_AXIS] = destination[Y_AXIS];
  2602. enable_endstops(true);
  2603. endstops_hit_on_purpose();
  2604. homeaxis(Z_AXIS);
  2605. #else // MESH_BED_LEVELING
  2606. homeaxis(Z_AXIS);
  2607. #endif // MESH_BED_LEVELING
  2608. }
  2609. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2610. if(home_all_axes) {
  2611. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2612. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2613. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2614. feedrate = XY_TRAVEL_SPEED/60;
  2615. current_position[Z_AXIS] = 0;
  2616. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2617. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2618. st_synchronize();
  2619. current_position[X_AXIS] = destination[X_AXIS];
  2620. current_position[Y_AXIS] = destination[Y_AXIS];
  2621. homeaxis(Z_AXIS);
  2622. }
  2623. // Let's see if X and Y are homed and probe is inside bed area.
  2624. if(home_z) {
  2625. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2626. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2627. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2628. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2629. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2630. current_position[Z_AXIS] = 0;
  2631. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2632. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2633. feedrate = max_feedrate[Z_AXIS];
  2634. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2635. st_synchronize();
  2636. homeaxis(Z_AXIS);
  2637. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2638. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2639. SERIAL_ECHO_START;
  2640. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2641. } else {
  2642. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2643. SERIAL_ECHO_START;
  2644. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2645. }
  2646. }
  2647. #endif // Z_SAFE_HOMING
  2648. #endif // Z_HOME_DIR < 0
  2649. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2650. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2651. #ifdef ENABLE_AUTO_BED_LEVELING
  2652. if(home_z)
  2653. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2654. #endif
  2655. // Set the planner and stepper routine positions.
  2656. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2657. // contains the machine coordinates.
  2658. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2659. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2660. enable_endstops(false);
  2661. #endif
  2662. feedrate = saved_feedrate;
  2663. feedmultiply = saved_feedmultiply;
  2664. previous_millis_cmd = millis();
  2665. endstops_hit_on_purpose();
  2666. #ifndef MESH_BED_LEVELING
  2667. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2668. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2669. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2670. lcd_adjust_z();
  2671. #endif
  2672. // Load the machine correction matrix
  2673. world2machine_initialize();
  2674. // and correct the current_position XY axes to match the transformed coordinate system.
  2675. world2machine_update_current();
  2676. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2677. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2678. {
  2679. if (! home_z && mbl_was_active) {
  2680. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2681. mbl.active = true;
  2682. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2683. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2684. }
  2685. }
  2686. else
  2687. {
  2688. st_synchronize();
  2689. homing_flag = false;
  2690. // Push the commands to the front of the message queue in the reverse order!
  2691. // There shall be always enough space reserved for these commands.
  2692. // enquecommand_front_P((PSTR("G80")));
  2693. goto case_G80;
  2694. }
  2695. #endif
  2696. if (farm_mode) { prusa_statistics(20); };
  2697. homing_flag = false;
  2698. #if 0
  2699. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2700. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2701. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2702. #endif
  2703. break;
  2704. }
  2705. #ifdef ENABLE_AUTO_BED_LEVELING
  2706. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2707. {
  2708. #if Z_MIN_PIN == -1
  2709. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2710. #endif
  2711. // Prevent user from running a G29 without first homing in X and Y
  2712. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2713. {
  2714. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2715. SERIAL_ECHO_START;
  2716. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2717. break; // abort G29, since we don't know where we are
  2718. }
  2719. st_synchronize();
  2720. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2721. //vector_3 corrected_position = plan_get_position_mm();
  2722. //corrected_position.debug("position before G29");
  2723. plan_bed_level_matrix.set_to_identity();
  2724. vector_3 uncorrected_position = plan_get_position();
  2725. //uncorrected_position.debug("position durring G29");
  2726. current_position[X_AXIS] = uncorrected_position.x;
  2727. current_position[Y_AXIS] = uncorrected_position.y;
  2728. current_position[Z_AXIS] = uncorrected_position.z;
  2729. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2730. setup_for_endstop_move();
  2731. feedrate = homing_feedrate[Z_AXIS];
  2732. #ifdef AUTO_BED_LEVELING_GRID
  2733. // probe at the points of a lattice grid
  2734. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2735. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2736. // solve the plane equation ax + by + d = z
  2737. // A is the matrix with rows [x y 1] for all the probed points
  2738. // B is the vector of the Z positions
  2739. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2740. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2741. // "A" matrix of the linear system of equations
  2742. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2743. // "B" vector of Z points
  2744. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2745. int probePointCounter = 0;
  2746. bool zig = true;
  2747. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2748. {
  2749. int xProbe, xInc;
  2750. if (zig)
  2751. {
  2752. xProbe = LEFT_PROBE_BED_POSITION;
  2753. //xEnd = RIGHT_PROBE_BED_POSITION;
  2754. xInc = xGridSpacing;
  2755. zig = false;
  2756. } else // zag
  2757. {
  2758. xProbe = RIGHT_PROBE_BED_POSITION;
  2759. //xEnd = LEFT_PROBE_BED_POSITION;
  2760. xInc = -xGridSpacing;
  2761. zig = true;
  2762. }
  2763. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2764. {
  2765. float z_before;
  2766. if (probePointCounter == 0)
  2767. {
  2768. // raise before probing
  2769. z_before = Z_RAISE_BEFORE_PROBING;
  2770. } else
  2771. {
  2772. // raise extruder
  2773. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2774. }
  2775. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2776. eqnBVector[probePointCounter] = measured_z;
  2777. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2778. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2779. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2780. probePointCounter++;
  2781. xProbe += xInc;
  2782. }
  2783. }
  2784. clean_up_after_endstop_move();
  2785. // solve lsq problem
  2786. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2787. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2788. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2789. SERIAL_PROTOCOLPGM(" b: ");
  2790. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2791. SERIAL_PROTOCOLPGM(" d: ");
  2792. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2793. set_bed_level_equation_lsq(plane_equation_coefficients);
  2794. free(plane_equation_coefficients);
  2795. #else // AUTO_BED_LEVELING_GRID not defined
  2796. // Probe at 3 arbitrary points
  2797. // probe 1
  2798. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2799. // probe 2
  2800. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2801. // probe 3
  2802. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2803. clean_up_after_endstop_move();
  2804. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2805. #endif // AUTO_BED_LEVELING_GRID
  2806. st_synchronize();
  2807. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2808. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2809. // When the bed is uneven, this height must be corrected.
  2810. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2811. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2812. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2813. z_tmp = current_position[Z_AXIS];
  2814. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2815. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2816. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2817. }
  2818. break;
  2819. #ifndef Z_PROBE_SLED
  2820. case 30: // G30 Single Z Probe
  2821. {
  2822. st_synchronize();
  2823. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2824. setup_for_endstop_move();
  2825. feedrate = homing_feedrate[Z_AXIS];
  2826. run_z_probe();
  2827. SERIAL_PROTOCOLPGM(MSG_BED);
  2828. SERIAL_PROTOCOLPGM(" X: ");
  2829. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2830. SERIAL_PROTOCOLPGM(" Y: ");
  2831. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2832. SERIAL_PROTOCOLPGM(" Z: ");
  2833. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2834. SERIAL_PROTOCOLPGM("\n");
  2835. clean_up_after_endstop_move();
  2836. }
  2837. break;
  2838. #else
  2839. case 31: // dock the sled
  2840. dock_sled(true);
  2841. break;
  2842. case 32: // undock the sled
  2843. dock_sled(false);
  2844. break;
  2845. #endif // Z_PROBE_SLED
  2846. #endif // ENABLE_AUTO_BED_LEVELING
  2847. #ifdef MESH_BED_LEVELING
  2848. case 30: // G30 Single Z Probe
  2849. {
  2850. st_synchronize();
  2851. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2852. setup_for_endstop_move();
  2853. feedrate = homing_feedrate[Z_AXIS];
  2854. find_bed_induction_sensor_point_z(-10.f, 3);
  2855. SERIAL_PROTOCOLRPGM(MSG_BED);
  2856. SERIAL_PROTOCOLPGM(" X: ");
  2857. MYSERIAL.print(current_position[X_AXIS], 5);
  2858. SERIAL_PROTOCOLPGM(" Y: ");
  2859. MYSERIAL.print(current_position[Y_AXIS], 5);
  2860. SERIAL_PROTOCOLPGM(" Z: ");
  2861. MYSERIAL.print(current_position[Z_AXIS], 5);
  2862. SERIAL_PROTOCOLPGM("\n");
  2863. clean_up_after_endstop_move();
  2864. }
  2865. break;
  2866. case 75:
  2867. {
  2868. for (int i = 40; i <= 110; i++) {
  2869. MYSERIAL.print(i);
  2870. MYSERIAL.print(" ");
  2871. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2872. }
  2873. }
  2874. break;
  2875. case 76: //PINDA probe temperature calibration
  2876. {
  2877. #ifdef PINDA_THERMISTOR
  2878. if (true)
  2879. {
  2880. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  2881. {
  2882. // We don't know where we are! HOME!
  2883. // Push the commands to the front of the message queue in the reverse order!
  2884. // There shall be always enough space reserved for these commands.
  2885. repeatcommand_front(); // repeat G76 with all its parameters
  2886. enquecommand_front_P((PSTR("G28 W0")));
  2887. break;
  2888. }
  2889. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
  2890. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  2891. if (result)
  2892. {
  2893. current_position[Z_AXIS] = 50;
  2894. current_position[Y_AXIS] = 190;
  2895. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2896. st_synchronize();
  2897. lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  2898. }
  2899. lcd_update_enable(true);
  2900. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2901. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2902. float zero_z;
  2903. int z_shift = 0; //unit: steps
  2904. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2905. if (start_temp < 35) start_temp = 35;
  2906. if (start_temp < current_temperature_pinda) start_temp += 5;
  2907. SERIAL_ECHOPGM("start temperature: ");
  2908. MYSERIAL.println(start_temp);
  2909. // setTargetHotend(200, 0);
  2910. setTargetBed(70 + (start_temp - 30));
  2911. custom_message = true;
  2912. custom_message_type = 4;
  2913. custom_message_state = 1;
  2914. custom_message = MSG_TEMP_CALIBRATION;
  2915. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2916. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2917. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2918. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2919. st_synchronize();
  2920. while (current_temperature_pinda < start_temp)
  2921. {
  2922. delay_keep_alive(1000);
  2923. serialecho_temperatures();
  2924. }
  2925. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2926. current_position[Z_AXIS] = 5;
  2927. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2928. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2929. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2930. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2931. st_synchronize();
  2932. find_bed_induction_sensor_point_z(-1.f);
  2933. zero_z = current_position[Z_AXIS];
  2934. //current_position[Z_AXIS]
  2935. SERIAL_ECHOLNPGM("");
  2936. SERIAL_ECHOPGM("ZERO: ");
  2937. MYSERIAL.print(current_position[Z_AXIS]);
  2938. SERIAL_ECHOLNPGM("");
  2939. int i = -1; for (; i < 5; i++)
  2940. {
  2941. float temp = (40 + i * 5);
  2942. SERIAL_ECHOPGM("Step: ");
  2943. MYSERIAL.print(i + 2);
  2944. SERIAL_ECHOLNPGM("/6 (skipped)");
  2945. SERIAL_ECHOPGM("PINDA temperature: ");
  2946. MYSERIAL.print((40 + i*5));
  2947. SERIAL_ECHOPGM(" Z shift (mm):");
  2948. MYSERIAL.print(0);
  2949. SERIAL_ECHOLNPGM("");
  2950. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2951. if (start_temp <= temp) break;
  2952. }
  2953. for (i++; i < 5; i++)
  2954. {
  2955. float temp = (40 + i * 5);
  2956. SERIAL_ECHOPGM("Step: ");
  2957. MYSERIAL.print(i + 2);
  2958. SERIAL_ECHOLNPGM("/6");
  2959. custom_message_state = i + 2;
  2960. setTargetBed(50 + 10 * (temp - 30) / 5);
  2961. // setTargetHotend(255, 0);
  2962. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2963. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2964. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2965. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2966. st_synchronize();
  2967. while (current_temperature_pinda < temp)
  2968. {
  2969. delay_keep_alive(1000);
  2970. serialecho_temperatures();
  2971. }
  2972. current_position[Z_AXIS] = 5;
  2973. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2974. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2975. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2976. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2977. st_synchronize();
  2978. find_bed_induction_sensor_point_z(-1.f);
  2979. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2980. SERIAL_ECHOLNPGM("");
  2981. SERIAL_ECHOPGM("PINDA temperature: ");
  2982. MYSERIAL.print(current_temperature_pinda);
  2983. SERIAL_ECHOPGM(" Z shift (mm):");
  2984. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2985. SERIAL_ECHOLNPGM("");
  2986. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2987. }
  2988. custom_message_type = 0;
  2989. custom_message = false;
  2990. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2991. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2992. disable_x();
  2993. disable_y();
  2994. disable_z();
  2995. disable_e0();
  2996. disable_e1();
  2997. disable_e2();
  2998. setTargetBed(0); //set bed target temperature back to 0
  2999. // setTargetHotend(0,0); //set hotend target temperature back to 0
  3000. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  3001. lcd_update_enable(true);
  3002. lcd_update(2);
  3003. break;
  3004. }
  3005. #endif //PINDA_THERMISTOR
  3006. setTargetBed(PINDA_MIN_T);
  3007. float zero_z;
  3008. int z_shift = 0; //unit: steps
  3009. int t_c; // temperature
  3010. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3011. // We don't know where we are! HOME!
  3012. // Push the commands to the front of the message queue in the reverse order!
  3013. // There shall be always enough space reserved for these commands.
  3014. repeatcommand_front(); // repeat G76 with all its parameters
  3015. enquecommand_front_P((PSTR("G28 W0")));
  3016. break;
  3017. }
  3018. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3019. custom_message = true;
  3020. custom_message_type = 4;
  3021. custom_message_state = 1;
  3022. custom_message = MSG_TEMP_CALIBRATION;
  3023. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3024. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3025. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3026. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3027. st_synchronize();
  3028. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3029. delay_keep_alive(1000);
  3030. serialecho_temperatures();
  3031. }
  3032. //enquecommand_P(PSTR("M190 S50"));
  3033. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3034. delay_keep_alive(1000);
  3035. serialecho_temperatures();
  3036. }
  3037. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3038. current_position[Z_AXIS] = 5;
  3039. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3040. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3041. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3042. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3043. st_synchronize();
  3044. find_bed_induction_sensor_point_z(-1.f);
  3045. zero_z = current_position[Z_AXIS];
  3046. //current_position[Z_AXIS]
  3047. SERIAL_ECHOLNPGM("");
  3048. SERIAL_ECHOPGM("ZERO: ");
  3049. MYSERIAL.print(current_position[Z_AXIS]);
  3050. SERIAL_ECHOLNPGM("");
  3051. for (int i = 0; i<5; i++) {
  3052. SERIAL_ECHOPGM("Step: ");
  3053. MYSERIAL.print(i+2);
  3054. SERIAL_ECHOLNPGM("/6");
  3055. custom_message_state = i + 2;
  3056. t_c = 60 + i * 10;
  3057. setTargetBed(t_c);
  3058. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3059. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3060. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3061. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3062. st_synchronize();
  3063. while (degBed() < t_c) {
  3064. delay_keep_alive(1000);
  3065. serialecho_temperatures();
  3066. }
  3067. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3068. delay_keep_alive(1000);
  3069. serialecho_temperatures();
  3070. }
  3071. current_position[Z_AXIS] = 5;
  3072. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3073. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3074. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3075. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3076. st_synchronize();
  3077. find_bed_induction_sensor_point_z(-1.f);
  3078. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3079. SERIAL_ECHOLNPGM("");
  3080. SERIAL_ECHOPGM("Temperature: ");
  3081. MYSERIAL.print(t_c);
  3082. SERIAL_ECHOPGM(" Z shift (mm):");
  3083. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3084. SERIAL_ECHOLNPGM("");
  3085. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3086. }
  3087. custom_message_type = 0;
  3088. custom_message = false;
  3089. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3090. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3091. disable_x();
  3092. disable_y();
  3093. disable_z();
  3094. disable_e0();
  3095. disable_e1();
  3096. disable_e2();
  3097. setTargetBed(0); //set bed target temperature back to 0
  3098. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  3099. lcd_update_enable(true);
  3100. lcd_update(2);
  3101. }
  3102. break;
  3103. #ifdef DIS
  3104. case 77:
  3105. {
  3106. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3107. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3108. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3109. float dimension_x = 40;
  3110. float dimension_y = 40;
  3111. int points_x = 40;
  3112. int points_y = 40;
  3113. float offset_x = 74;
  3114. float offset_y = 33;
  3115. if (code_seen('X')) dimension_x = code_value();
  3116. if (code_seen('Y')) dimension_y = code_value();
  3117. if (code_seen('XP')) points_x = code_value();
  3118. if (code_seen('YP')) points_y = code_value();
  3119. if (code_seen('XO')) offset_x = code_value();
  3120. if (code_seen('YO')) offset_y = code_value();
  3121. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3122. } break;
  3123. #endif
  3124. case 79: {
  3125. for (int i = 255; i > 0; i = i - 5) {
  3126. fanSpeed = i;
  3127. //delay_keep_alive(2000);
  3128. for (int j = 0; j < 100; j++) {
  3129. delay_keep_alive(100);
  3130. }
  3131. fan_speed[1];
  3132. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3133. }
  3134. }break;
  3135. /**
  3136. * G80: Mesh-based Z probe, probes a grid and produces a
  3137. * mesh to compensate for variable bed height
  3138. *
  3139. * The S0 report the points as below
  3140. *
  3141. * +----> X-axis
  3142. * |
  3143. * |
  3144. * v Y-axis
  3145. *
  3146. */
  3147. case 80:
  3148. #ifdef MK1BP
  3149. break;
  3150. #endif //MK1BP
  3151. case_G80:
  3152. {
  3153. mesh_bed_leveling_flag = true;
  3154. int8_t verbosity_level = 0;
  3155. static bool run = false;
  3156. if (code_seen('V')) {
  3157. // Just 'V' without a number counts as V1.
  3158. char c = strchr_pointer[1];
  3159. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3160. }
  3161. // Firstly check if we know where we are
  3162. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3163. // We don't know where we are! HOME!
  3164. // Push the commands to the front of the message queue in the reverse order!
  3165. // There shall be always enough space reserved for these commands.
  3166. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3167. repeatcommand_front(); // repeat G80 with all its parameters
  3168. enquecommand_front_P((PSTR("G28 W0")));
  3169. }
  3170. else {
  3171. mesh_bed_leveling_flag = false;
  3172. }
  3173. break;
  3174. }
  3175. bool temp_comp_start = true;
  3176. #ifdef PINDA_THERMISTOR
  3177. temp_comp_start = false;
  3178. #endif //PINDA_THERMISTOR
  3179. if (temp_comp_start)
  3180. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3181. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3182. temp_compensation_start();
  3183. run = true;
  3184. repeatcommand_front(); // repeat G80 with all its parameters
  3185. enquecommand_front_P((PSTR("G28 W0")));
  3186. }
  3187. else {
  3188. mesh_bed_leveling_flag = false;
  3189. }
  3190. break;
  3191. }
  3192. run = false;
  3193. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3194. mesh_bed_leveling_flag = false;
  3195. break;
  3196. }
  3197. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3198. bool custom_message_old = custom_message;
  3199. unsigned int custom_message_type_old = custom_message_type;
  3200. unsigned int custom_message_state_old = custom_message_state;
  3201. custom_message = true;
  3202. custom_message_type = 1;
  3203. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3204. lcd_update(1);
  3205. mbl.reset(); //reset mesh bed leveling
  3206. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3207. // consumed during the first movements following this statement.
  3208. babystep_undo();
  3209. // Cycle through all points and probe them
  3210. // First move up. During this first movement, the babystepping will be reverted.
  3211. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3212. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3213. // The move to the first calibration point.
  3214. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3215. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3216. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3217. #ifdef SUPPORT_VERBOSITY
  3218. if (verbosity_level >= 1) {
  3219. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3220. }
  3221. #endif //SUPPORT_VERBOSITY
  3222. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3223. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3224. // Wait until the move is finished.
  3225. st_synchronize();
  3226. int mesh_point = 0; //index number of calibration point
  3227. int ix = 0;
  3228. int iy = 0;
  3229. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3230. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3231. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3232. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3233. #ifdef SUPPORT_VERBOSITY
  3234. if (verbosity_level >= 1) {
  3235. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3236. }
  3237. #endif // SUPPORT_VERBOSITY
  3238. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3239. const char *kill_message = NULL;
  3240. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3241. // Get coords of a measuring point.
  3242. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3243. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3244. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3245. float z0 = 0.f;
  3246. if (has_z && mesh_point > 0) {
  3247. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3248. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3249. //#if 0
  3250. #ifdef SUPPORT_VERBOSITY
  3251. if (verbosity_level >= 1) {
  3252. SERIAL_ECHOLNPGM("");
  3253. SERIAL_ECHOPGM("Bed leveling, point: ");
  3254. MYSERIAL.print(mesh_point);
  3255. SERIAL_ECHOPGM(", calibration z: ");
  3256. MYSERIAL.print(z0, 5);
  3257. SERIAL_ECHOLNPGM("");
  3258. }
  3259. #endif // SUPPORT_VERBOSITY
  3260. //#endif
  3261. }
  3262. // Move Z up to MESH_HOME_Z_SEARCH.
  3263. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3264. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3265. st_synchronize();
  3266. // Move to XY position of the sensor point.
  3267. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3268. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3269. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3270. #ifdef SUPPORT_VERBOSITY
  3271. if (verbosity_level >= 1) {
  3272. SERIAL_PROTOCOL(mesh_point);
  3273. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3274. }
  3275. #endif // SUPPORT_VERBOSITY
  3276. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3277. st_synchronize();
  3278. // Go down until endstop is hit
  3279. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3280. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3281. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  3282. break;
  3283. }
  3284. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3285. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  3286. break;
  3287. }
  3288. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3289. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  3290. break;
  3291. }
  3292. #ifdef SUPPORT_VERBOSITY
  3293. if (verbosity_level >= 10) {
  3294. SERIAL_ECHOPGM("X: ");
  3295. MYSERIAL.print(current_position[X_AXIS], 5);
  3296. SERIAL_ECHOLNPGM("");
  3297. SERIAL_ECHOPGM("Y: ");
  3298. MYSERIAL.print(current_position[Y_AXIS], 5);
  3299. SERIAL_PROTOCOLPGM("\n");
  3300. }
  3301. #endif // SUPPORT_VERBOSITY
  3302. float offset_z = 0;
  3303. #ifdef PINDA_THERMISTOR
  3304. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3305. #endif //PINDA_THERMISTOR
  3306. // #ifdef SUPPORT_VERBOSITY
  3307. /* if (verbosity_level >= 1)
  3308. {
  3309. SERIAL_ECHOPGM("mesh bed leveling: ");
  3310. MYSERIAL.print(current_position[Z_AXIS], 5);
  3311. SERIAL_ECHOPGM(" offset: ");
  3312. MYSERIAL.print(offset_z, 5);
  3313. SERIAL_ECHOLNPGM("");
  3314. }*/
  3315. // #endif // SUPPORT_VERBOSITY
  3316. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3317. custom_message_state--;
  3318. mesh_point++;
  3319. lcd_update(1);
  3320. }
  3321. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3322. #ifdef SUPPORT_VERBOSITY
  3323. if (verbosity_level >= 20) {
  3324. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3325. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3326. MYSERIAL.print(current_position[Z_AXIS], 5);
  3327. }
  3328. #endif // SUPPORT_VERBOSITY
  3329. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3330. st_synchronize();
  3331. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3332. kill(kill_message);
  3333. SERIAL_ECHOLNPGM("killed");
  3334. }
  3335. clean_up_after_endstop_move();
  3336. // SERIAL_ECHOLNPGM("clean up finished ");
  3337. bool apply_temp_comp = true;
  3338. #ifdef PINDA_THERMISTOR
  3339. apply_temp_comp = false;
  3340. #endif
  3341. if (apply_temp_comp)
  3342. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3343. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3344. // SERIAL_ECHOLNPGM("babystep applied");
  3345. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3346. #ifdef SUPPORT_VERBOSITY
  3347. if (verbosity_level >= 1) {
  3348. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3349. }
  3350. #endif // SUPPORT_VERBOSITY
  3351. for (uint8_t i = 0; i < 4; ++i) {
  3352. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3353. long correction = 0;
  3354. if (code_seen(codes[i]))
  3355. correction = code_value_long();
  3356. else if (eeprom_bed_correction_valid) {
  3357. unsigned char *addr = (i < 2) ?
  3358. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3359. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3360. correction = eeprom_read_int8(addr);
  3361. }
  3362. if (correction == 0)
  3363. continue;
  3364. float offset = float(correction) * 0.001f;
  3365. if (fabs(offset) > 0.101f) {
  3366. SERIAL_ERROR_START;
  3367. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3368. SERIAL_ECHO(offset);
  3369. SERIAL_ECHOLNPGM(" microns");
  3370. }
  3371. else {
  3372. switch (i) {
  3373. case 0:
  3374. for (uint8_t row = 0; row < 3; ++row) {
  3375. mbl.z_values[row][1] += 0.5f * offset;
  3376. mbl.z_values[row][0] += offset;
  3377. }
  3378. break;
  3379. case 1:
  3380. for (uint8_t row = 0; row < 3; ++row) {
  3381. mbl.z_values[row][1] += 0.5f * offset;
  3382. mbl.z_values[row][2] += offset;
  3383. }
  3384. break;
  3385. case 2:
  3386. for (uint8_t col = 0; col < 3; ++col) {
  3387. mbl.z_values[1][col] += 0.5f * offset;
  3388. mbl.z_values[0][col] += offset;
  3389. }
  3390. break;
  3391. case 3:
  3392. for (uint8_t col = 0; col < 3; ++col) {
  3393. mbl.z_values[1][col] += 0.5f * offset;
  3394. mbl.z_values[2][col] += offset;
  3395. }
  3396. break;
  3397. }
  3398. }
  3399. }
  3400. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3401. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3402. // SERIAL_ECHOLNPGM("Upsample finished");
  3403. mbl.active = 1; //activate mesh bed leveling
  3404. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3405. go_home_with_z_lift();
  3406. // SERIAL_ECHOLNPGM("Go home finished");
  3407. //unretract (after PINDA preheat retraction)
  3408. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3409. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3410. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3411. }
  3412. KEEPALIVE_STATE(NOT_BUSY);
  3413. // Restore custom message state
  3414. custom_message = custom_message_old;
  3415. custom_message_type = custom_message_type_old;
  3416. custom_message_state = custom_message_state_old;
  3417. mesh_bed_leveling_flag = false;
  3418. mesh_bed_run_from_menu = false;
  3419. lcd_update(2);
  3420. }
  3421. break;
  3422. /**
  3423. * G81: Print mesh bed leveling status and bed profile if activated
  3424. */
  3425. case 81:
  3426. if (mbl.active) {
  3427. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3428. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3429. SERIAL_PROTOCOLPGM(",");
  3430. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3431. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3432. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3433. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3434. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3435. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3436. SERIAL_PROTOCOLPGM(" ");
  3437. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3438. }
  3439. SERIAL_PROTOCOLPGM("\n");
  3440. }
  3441. }
  3442. else
  3443. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3444. break;
  3445. #if 0
  3446. /**
  3447. * G82: Single Z probe at current location
  3448. *
  3449. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3450. *
  3451. */
  3452. case 82:
  3453. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3454. setup_for_endstop_move();
  3455. find_bed_induction_sensor_point_z();
  3456. clean_up_after_endstop_move();
  3457. SERIAL_PROTOCOLPGM("Bed found at: ");
  3458. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3459. SERIAL_PROTOCOLPGM("\n");
  3460. break;
  3461. /**
  3462. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3463. */
  3464. case 83:
  3465. {
  3466. int babystepz = code_seen('S') ? code_value() : 0;
  3467. int BabyPosition = code_seen('P') ? code_value() : 0;
  3468. if (babystepz != 0) {
  3469. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3470. // Is the axis indexed starting with zero or one?
  3471. if (BabyPosition > 4) {
  3472. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3473. }else{
  3474. // Save it to the eeprom
  3475. babystepLoadZ = babystepz;
  3476. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3477. // adjust the Z
  3478. babystepsTodoZadd(babystepLoadZ);
  3479. }
  3480. }
  3481. }
  3482. break;
  3483. /**
  3484. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3485. */
  3486. case 84:
  3487. babystepsTodoZsubtract(babystepLoadZ);
  3488. // babystepLoadZ = 0;
  3489. break;
  3490. /**
  3491. * G85: Prusa3D specific: Pick best babystep
  3492. */
  3493. case 85:
  3494. lcd_pick_babystep();
  3495. break;
  3496. #endif
  3497. /**
  3498. * G86: Prusa3D specific: Disable babystep correction after home.
  3499. * This G-code will be performed at the start of a calibration script.
  3500. */
  3501. case 86:
  3502. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3503. break;
  3504. /**
  3505. * G87: Prusa3D specific: Enable babystep correction after home
  3506. * This G-code will be performed at the end of a calibration script.
  3507. */
  3508. case 87:
  3509. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3510. break;
  3511. /**
  3512. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3513. */
  3514. case 88:
  3515. break;
  3516. #endif // ENABLE_MESH_BED_LEVELING
  3517. case 90: // G90
  3518. relative_mode = false;
  3519. break;
  3520. case 91: // G91
  3521. relative_mode = true;
  3522. break;
  3523. case 92: // G92
  3524. if(!code_seen(axis_codes[E_AXIS]))
  3525. st_synchronize();
  3526. for(int8_t i=0; i < NUM_AXIS; i++) {
  3527. if(code_seen(axis_codes[i])) {
  3528. if(i == E_AXIS) {
  3529. current_position[i] = code_value();
  3530. plan_set_e_position(current_position[E_AXIS]);
  3531. }
  3532. else {
  3533. current_position[i] = code_value()+add_homing[i];
  3534. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3535. }
  3536. }
  3537. }
  3538. break;
  3539. case 98: //activate farm mode
  3540. farm_mode = 1;
  3541. PingTime = millis();
  3542. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3543. break;
  3544. case 99: //deactivate farm mode
  3545. farm_mode = 0;
  3546. lcd_printer_connected();
  3547. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3548. lcd_update(2);
  3549. break;
  3550. default:
  3551. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3552. }
  3553. } // end if(code_seen('G'))
  3554. else if(code_seen('M'))
  3555. {
  3556. int index;
  3557. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3558. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3559. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3560. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3561. } else
  3562. switch((int)code_value())
  3563. {
  3564. #ifdef ULTIPANEL
  3565. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3566. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3567. {
  3568. char *src = strchr_pointer + 2;
  3569. codenum = 0;
  3570. bool hasP = false, hasS = false;
  3571. if (code_seen('P')) {
  3572. codenum = code_value(); // milliseconds to wait
  3573. hasP = codenum > 0;
  3574. }
  3575. if (code_seen('S')) {
  3576. codenum = code_value() * 1000; // seconds to wait
  3577. hasS = codenum > 0;
  3578. }
  3579. starpos = strchr(src, '*');
  3580. if (starpos != NULL) *(starpos) = '\0';
  3581. while (*src == ' ') ++src;
  3582. if (!hasP && !hasS && *src != '\0') {
  3583. lcd_setstatus(src);
  3584. } else {
  3585. LCD_MESSAGERPGM(MSG_USERWAIT);
  3586. }
  3587. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3588. st_synchronize();
  3589. previous_millis_cmd = millis();
  3590. if (codenum > 0){
  3591. codenum += millis(); // keep track of when we started waiting
  3592. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3593. while(millis() < codenum && !lcd_clicked()){
  3594. manage_heater();
  3595. manage_inactivity(true);
  3596. lcd_update();
  3597. }
  3598. KEEPALIVE_STATE(IN_HANDLER);
  3599. lcd_ignore_click(false);
  3600. }else{
  3601. if (!lcd_detected())
  3602. break;
  3603. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3604. while(!lcd_clicked()){
  3605. manage_heater();
  3606. manage_inactivity(true);
  3607. lcd_update();
  3608. }
  3609. KEEPALIVE_STATE(IN_HANDLER);
  3610. }
  3611. if (IS_SD_PRINTING)
  3612. LCD_MESSAGERPGM(MSG_RESUMING);
  3613. else
  3614. LCD_MESSAGERPGM(WELCOME_MSG);
  3615. }
  3616. break;
  3617. #endif
  3618. case 17:
  3619. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3620. enable_x();
  3621. enable_y();
  3622. enable_z();
  3623. enable_e0();
  3624. enable_e1();
  3625. enable_e2();
  3626. break;
  3627. #ifdef SDSUPPORT
  3628. case 20: // M20 - list SD card
  3629. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3630. card.ls();
  3631. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3632. break;
  3633. case 21: // M21 - init SD card
  3634. card.initsd();
  3635. break;
  3636. case 22: //M22 - release SD card
  3637. card.release();
  3638. break;
  3639. case 23: //M23 - Select file
  3640. starpos = (strchr(strchr_pointer + 4,'*'));
  3641. if(starpos!=NULL)
  3642. *(starpos)='\0';
  3643. card.openFile(strchr_pointer + 4,true);
  3644. break;
  3645. case 24: //M24 - Start SD print
  3646. if (!card.paused)
  3647. failstats_reset_print();
  3648. card.startFileprint();
  3649. starttime=millis();
  3650. break;
  3651. case 25: //M25 - Pause SD print
  3652. card.pauseSDPrint();
  3653. break;
  3654. case 26: //M26 - Set SD index
  3655. if(card.cardOK && code_seen('S')) {
  3656. card.setIndex(code_value_long());
  3657. }
  3658. break;
  3659. case 27: //M27 - Get SD status
  3660. card.getStatus();
  3661. break;
  3662. case 28: //M28 - Start SD write
  3663. starpos = (strchr(strchr_pointer + 4,'*'));
  3664. if(starpos != NULL){
  3665. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3666. strchr_pointer = strchr(npos,' ') + 1;
  3667. *(starpos) = '\0';
  3668. }
  3669. card.openFile(strchr_pointer+4,false);
  3670. break;
  3671. case 29: //M29 - Stop SD write
  3672. //processed in write to file routine above
  3673. //card,saving = false;
  3674. break;
  3675. case 30: //M30 <filename> Delete File
  3676. if (card.cardOK){
  3677. card.closefile();
  3678. starpos = (strchr(strchr_pointer + 4,'*'));
  3679. if(starpos != NULL){
  3680. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3681. strchr_pointer = strchr(npos,' ') + 1;
  3682. *(starpos) = '\0';
  3683. }
  3684. card.removeFile(strchr_pointer + 4);
  3685. }
  3686. break;
  3687. case 32: //M32 - Select file and start SD print
  3688. {
  3689. if(card.sdprinting) {
  3690. st_synchronize();
  3691. }
  3692. starpos = (strchr(strchr_pointer + 4,'*'));
  3693. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3694. if(namestartpos==NULL)
  3695. {
  3696. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3697. }
  3698. else
  3699. namestartpos++; //to skip the '!'
  3700. if(starpos!=NULL)
  3701. *(starpos)='\0';
  3702. bool call_procedure=(code_seen('P'));
  3703. if(strchr_pointer>namestartpos)
  3704. call_procedure=false; //false alert, 'P' found within filename
  3705. if( card.cardOK )
  3706. {
  3707. card.openFile(namestartpos,true,!call_procedure);
  3708. if(code_seen('S'))
  3709. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3710. card.setIndex(code_value_long());
  3711. card.startFileprint();
  3712. if(!call_procedure)
  3713. starttime=millis(); //procedure calls count as normal print time.
  3714. }
  3715. } break;
  3716. case 928: //M928 - Start SD write
  3717. starpos = (strchr(strchr_pointer + 5,'*'));
  3718. if(starpos != NULL){
  3719. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3720. strchr_pointer = strchr(npos,' ') + 1;
  3721. *(starpos) = '\0';
  3722. }
  3723. card.openLogFile(strchr_pointer+5);
  3724. break;
  3725. #endif //SDSUPPORT
  3726. case 31: //M31 take time since the start of the SD print or an M109 command
  3727. {
  3728. stoptime=millis();
  3729. char time[30];
  3730. unsigned long t=(stoptime-starttime)/1000;
  3731. int sec,min;
  3732. min=t/60;
  3733. sec=t%60;
  3734. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3735. SERIAL_ECHO_START;
  3736. SERIAL_ECHOLN(time);
  3737. lcd_setstatus(time);
  3738. autotempShutdown();
  3739. }
  3740. break;
  3741. #ifndef _DISABLE_M42_M226
  3742. case 42: //M42 -Change pin status via gcode
  3743. if (code_seen('S'))
  3744. {
  3745. int pin_status = code_value();
  3746. int pin_number = LED_PIN;
  3747. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3748. pin_number = code_value();
  3749. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3750. {
  3751. if (sensitive_pins[i] == pin_number)
  3752. {
  3753. pin_number = -1;
  3754. break;
  3755. }
  3756. }
  3757. #if defined(FAN_PIN) && FAN_PIN > -1
  3758. if (pin_number == FAN_PIN)
  3759. fanSpeed = pin_status;
  3760. #endif
  3761. if (pin_number > -1)
  3762. {
  3763. pinMode(pin_number, OUTPUT);
  3764. digitalWrite(pin_number, pin_status);
  3765. analogWrite(pin_number, pin_status);
  3766. }
  3767. }
  3768. break;
  3769. #endif //_DISABLE_M42_M226
  3770. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3771. // Reset the baby step value and the baby step applied flag.
  3772. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3773. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3774. // Reset the skew and offset in both RAM and EEPROM.
  3775. reset_bed_offset_and_skew();
  3776. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3777. // the planner will not perform any adjustments in the XY plane.
  3778. // Wait for the motors to stop and update the current position with the absolute values.
  3779. world2machine_revert_to_uncorrected();
  3780. break;
  3781. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3782. {
  3783. int8_t verbosity_level = 0;
  3784. bool only_Z = code_seen('Z');
  3785. #ifdef SUPPORT_VERBOSITY
  3786. if (code_seen('V'))
  3787. {
  3788. // Just 'V' without a number counts as V1.
  3789. char c = strchr_pointer[1];
  3790. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3791. }
  3792. #endif //SUPPORT_VERBOSITY
  3793. gcode_M45(only_Z, verbosity_level);
  3794. }
  3795. break;
  3796. /*
  3797. case 46:
  3798. {
  3799. // M46: Prusa3D: Show the assigned IP address.
  3800. uint8_t ip[4];
  3801. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3802. if (hasIP) {
  3803. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3804. SERIAL_ECHO(int(ip[0]));
  3805. SERIAL_ECHOPGM(".");
  3806. SERIAL_ECHO(int(ip[1]));
  3807. SERIAL_ECHOPGM(".");
  3808. SERIAL_ECHO(int(ip[2]));
  3809. SERIAL_ECHOPGM(".");
  3810. SERIAL_ECHO(int(ip[3]));
  3811. SERIAL_ECHOLNPGM("");
  3812. } else {
  3813. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3814. }
  3815. break;
  3816. }
  3817. */
  3818. case 47:
  3819. // M47: Prusa3D: Show end stops dialog on the display.
  3820. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3821. lcd_diag_show_end_stops();
  3822. KEEPALIVE_STATE(IN_HANDLER);
  3823. break;
  3824. #if 0
  3825. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3826. {
  3827. // Disable the default update procedure of the display. We will do a modal dialog.
  3828. lcd_update_enable(false);
  3829. // Let the planner use the uncorrected coordinates.
  3830. mbl.reset();
  3831. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3832. // the planner will not perform any adjustments in the XY plane.
  3833. // Wait for the motors to stop and update the current position with the absolute values.
  3834. world2machine_revert_to_uncorrected();
  3835. // Move the print head close to the bed.
  3836. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3837. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3838. st_synchronize();
  3839. // Home in the XY plane.
  3840. set_destination_to_current();
  3841. setup_for_endstop_move();
  3842. home_xy();
  3843. int8_t verbosity_level = 0;
  3844. if (code_seen('V')) {
  3845. // Just 'V' without a number counts as V1.
  3846. char c = strchr_pointer[1];
  3847. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3848. }
  3849. bool success = scan_bed_induction_points(verbosity_level);
  3850. clean_up_after_endstop_move();
  3851. // Print head up.
  3852. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3854. st_synchronize();
  3855. lcd_update_enable(true);
  3856. break;
  3857. }
  3858. #endif
  3859. // M48 Z-Probe repeatability measurement function.
  3860. //
  3861. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3862. //
  3863. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3864. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3865. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3866. // regenerated.
  3867. //
  3868. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3869. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3870. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3871. //
  3872. #ifdef ENABLE_AUTO_BED_LEVELING
  3873. #ifdef Z_PROBE_REPEATABILITY_TEST
  3874. case 48: // M48 Z-Probe repeatability
  3875. {
  3876. #if Z_MIN_PIN == -1
  3877. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3878. #endif
  3879. double sum=0.0;
  3880. double mean=0.0;
  3881. double sigma=0.0;
  3882. double sample_set[50];
  3883. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3884. double X_current, Y_current, Z_current;
  3885. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3886. if (code_seen('V') || code_seen('v')) {
  3887. verbose_level = code_value();
  3888. if (verbose_level<0 || verbose_level>4 ) {
  3889. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3890. goto Sigma_Exit;
  3891. }
  3892. }
  3893. if (verbose_level > 0) {
  3894. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3895. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3896. }
  3897. if (code_seen('n')) {
  3898. n_samples = code_value();
  3899. if (n_samples<4 || n_samples>50 ) {
  3900. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3901. goto Sigma_Exit;
  3902. }
  3903. }
  3904. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3905. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3906. Z_current = st_get_position_mm(Z_AXIS);
  3907. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3908. ext_position = st_get_position_mm(E_AXIS);
  3909. if (code_seen('X') || code_seen('x') ) {
  3910. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3911. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3912. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3913. goto Sigma_Exit;
  3914. }
  3915. }
  3916. if (code_seen('Y') || code_seen('y') ) {
  3917. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3918. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3919. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3920. goto Sigma_Exit;
  3921. }
  3922. }
  3923. if (code_seen('L') || code_seen('l') ) {
  3924. n_legs = code_value();
  3925. if ( n_legs==1 )
  3926. n_legs = 2;
  3927. if ( n_legs<0 || n_legs>15 ) {
  3928. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3929. goto Sigma_Exit;
  3930. }
  3931. }
  3932. //
  3933. // Do all the preliminary setup work. First raise the probe.
  3934. //
  3935. st_synchronize();
  3936. plan_bed_level_matrix.set_to_identity();
  3937. plan_buffer_line( X_current, Y_current, Z_start_location,
  3938. ext_position,
  3939. homing_feedrate[Z_AXIS]/60,
  3940. active_extruder);
  3941. st_synchronize();
  3942. //
  3943. // Now get everything to the specified probe point So we can safely do a probe to
  3944. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3945. // use that as a starting point for each probe.
  3946. //
  3947. if (verbose_level > 2)
  3948. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3949. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3950. ext_position,
  3951. homing_feedrate[X_AXIS]/60,
  3952. active_extruder);
  3953. st_synchronize();
  3954. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3955. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3956. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3957. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3958. //
  3959. // OK, do the inital probe to get us close to the bed.
  3960. // Then retrace the right amount and use that in subsequent probes
  3961. //
  3962. setup_for_endstop_move();
  3963. run_z_probe();
  3964. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3965. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3966. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3967. ext_position,
  3968. homing_feedrate[X_AXIS]/60,
  3969. active_extruder);
  3970. st_synchronize();
  3971. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3972. for( n=0; n<n_samples; n++) {
  3973. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3974. if ( n_legs) {
  3975. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3976. int rotational_direction, l;
  3977. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3978. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3979. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3980. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3981. //SERIAL_ECHOPAIR(" theta: ",theta);
  3982. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3983. //SERIAL_PROTOCOLLNPGM("");
  3984. for( l=0; l<n_legs-1; l++) {
  3985. if (rotational_direction==1)
  3986. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3987. else
  3988. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3989. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3990. if ( radius<0.0 )
  3991. radius = -radius;
  3992. X_current = X_probe_location + cos(theta) * radius;
  3993. Y_current = Y_probe_location + sin(theta) * radius;
  3994. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3995. X_current = X_MIN_POS;
  3996. if ( X_current>X_MAX_POS)
  3997. X_current = X_MAX_POS;
  3998. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3999. Y_current = Y_MIN_POS;
  4000. if ( Y_current>Y_MAX_POS)
  4001. Y_current = Y_MAX_POS;
  4002. if (verbose_level>3 ) {
  4003. SERIAL_ECHOPAIR("x: ", X_current);
  4004. SERIAL_ECHOPAIR("y: ", Y_current);
  4005. SERIAL_PROTOCOLLNPGM("");
  4006. }
  4007. do_blocking_move_to( X_current, Y_current, Z_current );
  4008. }
  4009. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4010. }
  4011. setup_for_endstop_move();
  4012. run_z_probe();
  4013. sample_set[n] = current_position[Z_AXIS];
  4014. //
  4015. // Get the current mean for the data points we have so far
  4016. //
  4017. sum=0.0;
  4018. for( j=0; j<=n; j++) {
  4019. sum = sum + sample_set[j];
  4020. }
  4021. mean = sum / (double (n+1));
  4022. //
  4023. // Now, use that mean to calculate the standard deviation for the
  4024. // data points we have so far
  4025. //
  4026. sum=0.0;
  4027. for( j=0; j<=n; j++) {
  4028. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4029. }
  4030. sigma = sqrt( sum / (double (n+1)) );
  4031. if (verbose_level > 1) {
  4032. SERIAL_PROTOCOL(n+1);
  4033. SERIAL_PROTOCOL(" of ");
  4034. SERIAL_PROTOCOL(n_samples);
  4035. SERIAL_PROTOCOLPGM(" z: ");
  4036. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4037. }
  4038. if (verbose_level > 2) {
  4039. SERIAL_PROTOCOL(" mean: ");
  4040. SERIAL_PROTOCOL_F(mean,6);
  4041. SERIAL_PROTOCOL(" sigma: ");
  4042. SERIAL_PROTOCOL_F(sigma,6);
  4043. }
  4044. if (verbose_level > 0)
  4045. SERIAL_PROTOCOLPGM("\n");
  4046. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4047. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4048. st_synchronize();
  4049. }
  4050. delay(1000);
  4051. clean_up_after_endstop_move();
  4052. // enable_endstops(true);
  4053. if (verbose_level > 0) {
  4054. SERIAL_PROTOCOLPGM("Mean: ");
  4055. SERIAL_PROTOCOL_F(mean, 6);
  4056. SERIAL_PROTOCOLPGM("\n");
  4057. }
  4058. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4059. SERIAL_PROTOCOL_F(sigma, 6);
  4060. SERIAL_PROTOCOLPGM("\n\n");
  4061. Sigma_Exit:
  4062. break;
  4063. }
  4064. #endif // Z_PROBE_REPEATABILITY_TEST
  4065. #endif // ENABLE_AUTO_BED_LEVELING
  4066. case 104: // M104
  4067. if(setTargetedHotend(104)){
  4068. break;
  4069. }
  4070. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4071. setWatch();
  4072. break;
  4073. case 112: // M112 -Emergency Stop
  4074. kill("", 3);
  4075. break;
  4076. case 140: // M140 set bed temp
  4077. if (code_seen('S')) setTargetBed(code_value());
  4078. break;
  4079. case 105 : // M105
  4080. if(setTargetedHotend(105)){
  4081. break;
  4082. }
  4083. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4084. SERIAL_PROTOCOLPGM("ok T:");
  4085. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4086. SERIAL_PROTOCOLPGM(" /");
  4087. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4088. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4089. SERIAL_PROTOCOLPGM(" B:");
  4090. SERIAL_PROTOCOL_F(degBed(),1);
  4091. SERIAL_PROTOCOLPGM(" /");
  4092. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4093. #endif //TEMP_BED_PIN
  4094. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4095. SERIAL_PROTOCOLPGM(" T");
  4096. SERIAL_PROTOCOL(cur_extruder);
  4097. SERIAL_PROTOCOLPGM(":");
  4098. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4099. SERIAL_PROTOCOLPGM(" /");
  4100. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4101. }
  4102. #else
  4103. SERIAL_ERROR_START;
  4104. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  4105. #endif
  4106. SERIAL_PROTOCOLPGM(" @:");
  4107. #ifdef EXTRUDER_WATTS
  4108. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4109. SERIAL_PROTOCOLPGM("W");
  4110. #else
  4111. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4112. #endif
  4113. SERIAL_PROTOCOLPGM(" B@:");
  4114. #ifdef BED_WATTS
  4115. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4116. SERIAL_PROTOCOLPGM("W");
  4117. #else
  4118. SERIAL_PROTOCOL(getHeaterPower(-1));
  4119. #endif
  4120. #ifdef PINDA_THERMISTOR
  4121. SERIAL_PROTOCOLPGM(" P:");
  4122. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4123. #endif //PINDA_THERMISTOR
  4124. #ifdef AMBIENT_THERMISTOR
  4125. SERIAL_PROTOCOLPGM(" A:");
  4126. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4127. #endif //AMBIENT_THERMISTOR
  4128. #ifdef SHOW_TEMP_ADC_VALUES
  4129. {float raw = 0.0;
  4130. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4131. SERIAL_PROTOCOLPGM(" ADC B:");
  4132. SERIAL_PROTOCOL_F(degBed(),1);
  4133. SERIAL_PROTOCOLPGM("C->");
  4134. raw = rawBedTemp();
  4135. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4136. SERIAL_PROTOCOLPGM(" Rb->");
  4137. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4138. SERIAL_PROTOCOLPGM(" Rxb->");
  4139. SERIAL_PROTOCOL_F(raw, 5);
  4140. #endif
  4141. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4142. SERIAL_PROTOCOLPGM(" T");
  4143. SERIAL_PROTOCOL(cur_extruder);
  4144. SERIAL_PROTOCOLPGM(":");
  4145. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4146. SERIAL_PROTOCOLPGM("C->");
  4147. raw = rawHotendTemp(cur_extruder);
  4148. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4149. SERIAL_PROTOCOLPGM(" Rt");
  4150. SERIAL_PROTOCOL(cur_extruder);
  4151. SERIAL_PROTOCOLPGM("->");
  4152. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4153. SERIAL_PROTOCOLPGM(" Rx");
  4154. SERIAL_PROTOCOL(cur_extruder);
  4155. SERIAL_PROTOCOLPGM("->");
  4156. SERIAL_PROTOCOL_F(raw, 5);
  4157. }}
  4158. #endif
  4159. SERIAL_PROTOCOLLN("");
  4160. KEEPALIVE_STATE(NOT_BUSY);
  4161. return;
  4162. break;
  4163. case 109:
  4164. {// M109 - Wait for extruder heater to reach target.
  4165. if(setTargetedHotend(109)){
  4166. break;
  4167. }
  4168. LCD_MESSAGERPGM(MSG_HEATING);
  4169. heating_status = 1;
  4170. if (farm_mode) { prusa_statistics(1); };
  4171. #ifdef AUTOTEMP
  4172. autotemp_enabled=false;
  4173. #endif
  4174. if (code_seen('S')) {
  4175. setTargetHotend(code_value(), tmp_extruder);
  4176. CooldownNoWait = true;
  4177. } else if (code_seen('R')) {
  4178. setTargetHotend(code_value(), tmp_extruder);
  4179. CooldownNoWait = false;
  4180. }
  4181. #ifdef AUTOTEMP
  4182. if (code_seen('S')) autotemp_min=code_value();
  4183. if (code_seen('B')) autotemp_max=code_value();
  4184. if (code_seen('F'))
  4185. {
  4186. autotemp_factor=code_value();
  4187. autotemp_enabled=true;
  4188. }
  4189. #endif
  4190. setWatch();
  4191. codenum = millis();
  4192. /* See if we are heating up or cooling down */
  4193. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4194. KEEPALIVE_STATE(NOT_BUSY);
  4195. cancel_heatup = false;
  4196. wait_for_heater(codenum); //loops until target temperature is reached
  4197. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  4198. KEEPALIVE_STATE(IN_HANDLER);
  4199. heating_status = 2;
  4200. if (farm_mode) { prusa_statistics(2); };
  4201. //starttime=millis();
  4202. previous_millis_cmd = millis();
  4203. }
  4204. break;
  4205. case 190: // M190 - Wait for bed heater to reach target.
  4206. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4207. LCD_MESSAGERPGM(MSG_BED_HEATING);
  4208. heating_status = 3;
  4209. if (farm_mode) { prusa_statistics(1); };
  4210. if (code_seen('S'))
  4211. {
  4212. setTargetBed(code_value());
  4213. CooldownNoWait = true;
  4214. }
  4215. else if (code_seen('R'))
  4216. {
  4217. setTargetBed(code_value());
  4218. CooldownNoWait = false;
  4219. }
  4220. codenum = millis();
  4221. cancel_heatup = false;
  4222. target_direction = isHeatingBed(); // true if heating, false if cooling
  4223. KEEPALIVE_STATE(NOT_BUSY);
  4224. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4225. {
  4226. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4227. {
  4228. if (!farm_mode) {
  4229. float tt = degHotend(active_extruder);
  4230. SERIAL_PROTOCOLPGM("T:");
  4231. SERIAL_PROTOCOL(tt);
  4232. SERIAL_PROTOCOLPGM(" E:");
  4233. SERIAL_PROTOCOL((int)active_extruder);
  4234. SERIAL_PROTOCOLPGM(" B:");
  4235. SERIAL_PROTOCOL_F(degBed(), 1);
  4236. SERIAL_PROTOCOLLN("");
  4237. }
  4238. codenum = millis();
  4239. }
  4240. manage_heater();
  4241. manage_inactivity();
  4242. lcd_update();
  4243. }
  4244. LCD_MESSAGERPGM(MSG_BED_DONE);
  4245. KEEPALIVE_STATE(IN_HANDLER);
  4246. heating_status = 4;
  4247. previous_millis_cmd = millis();
  4248. #endif
  4249. break;
  4250. #if defined(FAN_PIN) && FAN_PIN > -1
  4251. case 106: //M106 Fan On
  4252. if (code_seen('S')){
  4253. fanSpeed=constrain(code_value(),0,255);
  4254. }
  4255. else {
  4256. fanSpeed=255;
  4257. }
  4258. break;
  4259. case 107: //M107 Fan Off
  4260. fanSpeed = 0;
  4261. break;
  4262. #endif //FAN_PIN
  4263. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4264. case 80: // M80 - Turn on Power Supply
  4265. SET_OUTPUT(PS_ON_PIN); //GND
  4266. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4267. // If you have a switch on suicide pin, this is useful
  4268. // if you want to start another print with suicide feature after
  4269. // a print without suicide...
  4270. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4271. SET_OUTPUT(SUICIDE_PIN);
  4272. WRITE(SUICIDE_PIN, HIGH);
  4273. #endif
  4274. #ifdef ULTIPANEL
  4275. powersupply = true;
  4276. LCD_MESSAGERPGM(WELCOME_MSG);
  4277. lcd_update();
  4278. #endif
  4279. break;
  4280. #endif
  4281. case 81: // M81 - Turn off Power Supply
  4282. disable_heater();
  4283. st_synchronize();
  4284. disable_e0();
  4285. disable_e1();
  4286. disable_e2();
  4287. finishAndDisableSteppers();
  4288. fanSpeed = 0;
  4289. delay(1000); // Wait a little before to switch off
  4290. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4291. st_synchronize();
  4292. suicide();
  4293. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4294. SET_OUTPUT(PS_ON_PIN);
  4295. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4296. #endif
  4297. #ifdef ULTIPANEL
  4298. powersupply = false;
  4299. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4300. /*
  4301. MACHNAME = "Prusa i3"
  4302. MSGOFF = "Vypnuto"
  4303. "Prusai3"" ""vypnuto""."
  4304. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4305. */
  4306. lcd_update();
  4307. #endif
  4308. break;
  4309. case 82:
  4310. axis_relative_modes[3] = false;
  4311. break;
  4312. case 83:
  4313. axis_relative_modes[3] = true;
  4314. break;
  4315. case 18: //compatibility
  4316. case 84: // M84
  4317. if(code_seen('S')){
  4318. stepper_inactive_time = code_value() * 1000;
  4319. }
  4320. else
  4321. {
  4322. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4323. if(all_axis)
  4324. {
  4325. st_synchronize();
  4326. disable_e0();
  4327. disable_e1();
  4328. disable_e2();
  4329. finishAndDisableSteppers();
  4330. }
  4331. else
  4332. {
  4333. st_synchronize();
  4334. if (code_seen('X')) disable_x();
  4335. if (code_seen('Y')) disable_y();
  4336. if (code_seen('Z')) disable_z();
  4337. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4338. if (code_seen('E')) {
  4339. disable_e0();
  4340. disable_e1();
  4341. disable_e2();
  4342. }
  4343. #endif
  4344. }
  4345. }
  4346. snmm_filaments_used = 0;
  4347. break;
  4348. case 85: // M85
  4349. if(code_seen('S')) {
  4350. max_inactive_time = code_value() * 1000;
  4351. }
  4352. break;
  4353. case 92: // M92
  4354. for(int8_t i=0; i < NUM_AXIS; i++)
  4355. {
  4356. if(code_seen(axis_codes[i]))
  4357. {
  4358. if(i == 3) { // E
  4359. float value = code_value();
  4360. if(value < 20.0) {
  4361. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4362. max_jerk[E_AXIS] *= factor;
  4363. max_feedrate[i] *= factor;
  4364. axis_steps_per_sqr_second[i] *= factor;
  4365. }
  4366. axis_steps_per_unit[i] = value;
  4367. }
  4368. else {
  4369. axis_steps_per_unit[i] = code_value();
  4370. }
  4371. }
  4372. }
  4373. break;
  4374. case 110: // M110 - reset line pos
  4375. if (code_seen('N'))
  4376. gcode_LastN = code_value_long();
  4377. break;
  4378. #ifdef HOST_KEEPALIVE_FEATURE
  4379. case 113: // M113 - Get or set Host Keepalive interval
  4380. if (code_seen('S')) {
  4381. host_keepalive_interval = (uint8_t)code_value_short();
  4382. // NOMORE(host_keepalive_interval, 60);
  4383. }
  4384. else {
  4385. SERIAL_ECHO_START;
  4386. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4387. SERIAL_PROTOCOLLN("");
  4388. }
  4389. break;
  4390. #endif
  4391. case 115: // M115
  4392. if (code_seen('V')) {
  4393. // Report the Prusa version number.
  4394. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4395. } else if (code_seen('U')) {
  4396. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4397. // pause the print and ask the user to upgrade the firmware.
  4398. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4399. } else {
  4400. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4401. }
  4402. break;
  4403. /* case 117: // M117 display message
  4404. starpos = (strchr(strchr_pointer + 5,'*'));
  4405. if(starpos!=NULL)
  4406. *(starpos)='\0';
  4407. lcd_setstatus(strchr_pointer + 5);
  4408. break;*/
  4409. case 114: // M114
  4410. gcode_M114();
  4411. break;
  4412. case 120: // M120
  4413. enable_endstops(false) ;
  4414. break;
  4415. case 121: // M121
  4416. enable_endstops(true) ;
  4417. break;
  4418. case 119: // M119
  4419. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4420. SERIAL_PROTOCOLLN("");
  4421. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4422. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4423. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4424. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4425. }else{
  4426. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4427. }
  4428. SERIAL_PROTOCOLLN("");
  4429. #endif
  4430. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4431. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4432. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4433. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4434. }else{
  4435. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4436. }
  4437. SERIAL_PROTOCOLLN("");
  4438. #endif
  4439. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4440. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4441. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4442. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4443. }else{
  4444. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4445. }
  4446. SERIAL_PROTOCOLLN("");
  4447. #endif
  4448. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4449. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4450. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4451. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4452. }else{
  4453. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4454. }
  4455. SERIAL_PROTOCOLLN("");
  4456. #endif
  4457. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4458. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4459. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4460. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4461. }else{
  4462. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4463. }
  4464. SERIAL_PROTOCOLLN("");
  4465. #endif
  4466. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4467. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4468. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4469. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4470. }else{
  4471. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4472. }
  4473. SERIAL_PROTOCOLLN("");
  4474. #endif
  4475. break;
  4476. //TODO: update for all axis, use for loop
  4477. #ifdef BLINKM
  4478. case 150: // M150
  4479. {
  4480. byte red;
  4481. byte grn;
  4482. byte blu;
  4483. if(code_seen('R')) red = code_value();
  4484. if(code_seen('U')) grn = code_value();
  4485. if(code_seen('B')) blu = code_value();
  4486. SendColors(red,grn,blu);
  4487. }
  4488. break;
  4489. #endif //BLINKM
  4490. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4491. {
  4492. tmp_extruder = active_extruder;
  4493. if(code_seen('T')) {
  4494. tmp_extruder = code_value();
  4495. if(tmp_extruder >= EXTRUDERS) {
  4496. SERIAL_ECHO_START;
  4497. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4498. break;
  4499. }
  4500. }
  4501. float area = .0;
  4502. if(code_seen('D')) {
  4503. float diameter = (float)code_value();
  4504. if (diameter == 0.0) {
  4505. // setting any extruder filament size disables volumetric on the assumption that
  4506. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4507. // for all extruders
  4508. volumetric_enabled = false;
  4509. } else {
  4510. filament_size[tmp_extruder] = (float)code_value();
  4511. // make sure all extruders have some sane value for the filament size
  4512. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4513. #if EXTRUDERS > 1
  4514. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4515. #if EXTRUDERS > 2
  4516. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4517. #endif
  4518. #endif
  4519. volumetric_enabled = true;
  4520. }
  4521. } else {
  4522. //reserved for setting filament diameter via UFID or filament measuring device
  4523. break;
  4524. }
  4525. calculate_extruder_multipliers();
  4526. }
  4527. break;
  4528. case 201: // M201
  4529. for(int8_t i=0; i < NUM_AXIS; i++)
  4530. {
  4531. if(code_seen(axis_codes[i]))
  4532. {
  4533. max_acceleration_units_per_sq_second[i] = code_value();
  4534. }
  4535. }
  4536. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4537. reset_acceleration_rates();
  4538. break;
  4539. #if 0 // Not used for Sprinter/grbl gen6
  4540. case 202: // M202
  4541. for(int8_t i=0; i < NUM_AXIS; i++) {
  4542. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4543. }
  4544. break;
  4545. #endif
  4546. case 203: // M203 max feedrate mm/sec
  4547. for(int8_t i=0; i < NUM_AXIS; i++) {
  4548. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4549. }
  4550. break;
  4551. case 204: // M204 acclereration S normal moves T filmanent only moves
  4552. {
  4553. if(code_seen('S')) acceleration = code_value() ;
  4554. if(code_seen('T')) retract_acceleration = code_value() ;
  4555. }
  4556. break;
  4557. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4558. {
  4559. if(code_seen('S')) minimumfeedrate = code_value();
  4560. if(code_seen('T')) mintravelfeedrate = code_value();
  4561. if(code_seen('B')) minsegmenttime = code_value() ;
  4562. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4563. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4564. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4565. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4566. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4567. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4568. }
  4569. break;
  4570. case 206: // M206 additional homing offset
  4571. for(int8_t i=0; i < 3; i++)
  4572. {
  4573. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4574. }
  4575. break;
  4576. #ifdef FWRETRACT
  4577. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4578. {
  4579. if(code_seen('S'))
  4580. {
  4581. retract_length = code_value() ;
  4582. }
  4583. if(code_seen('F'))
  4584. {
  4585. retract_feedrate = code_value()/60 ;
  4586. }
  4587. if(code_seen('Z'))
  4588. {
  4589. retract_zlift = code_value() ;
  4590. }
  4591. }break;
  4592. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4593. {
  4594. if(code_seen('S'))
  4595. {
  4596. retract_recover_length = code_value() ;
  4597. }
  4598. if(code_seen('F'))
  4599. {
  4600. retract_recover_feedrate = code_value()/60 ;
  4601. }
  4602. }break;
  4603. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4604. {
  4605. if(code_seen('S'))
  4606. {
  4607. int t= code_value() ;
  4608. switch(t)
  4609. {
  4610. case 0:
  4611. {
  4612. autoretract_enabled=false;
  4613. retracted[0]=false;
  4614. #if EXTRUDERS > 1
  4615. retracted[1]=false;
  4616. #endif
  4617. #if EXTRUDERS > 2
  4618. retracted[2]=false;
  4619. #endif
  4620. }break;
  4621. case 1:
  4622. {
  4623. autoretract_enabled=true;
  4624. retracted[0]=false;
  4625. #if EXTRUDERS > 1
  4626. retracted[1]=false;
  4627. #endif
  4628. #if EXTRUDERS > 2
  4629. retracted[2]=false;
  4630. #endif
  4631. }break;
  4632. default:
  4633. SERIAL_ECHO_START;
  4634. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4635. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4636. SERIAL_ECHOLNPGM("\"(1)");
  4637. }
  4638. }
  4639. }break;
  4640. #endif // FWRETRACT
  4641. #if EXTRUDERS > 1
  4642. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4643. {
  4644. if(setTargetedHotend(218)){
  4645. break;
  4646. }
  4647. if(code_seen('X'))
  4648. {
  4649. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4650. }
  4651. if(code_seen('Y'))
  4652. {
  4653. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4654. }
  4655. SERIAL_ECHO_START;
  4656. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4657. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4658. {
  4659. SERIAL_ECHO(" ");
  4660. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4661. SERIAL_ECHO(",");
  4662. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4663. }
  4664. SERIAL_ECHOLN("");
  4665. }break;
  4666. #endif
  4667. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4668. {
  4669. if(code_seen('S'))
  4670. {
  4671. feedmultiply = code_value() ;
  4672. }
  4673. }
  4674. break;
  4675. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4676. {
  4677. if(code_seen('S'))
  4678. {
  4679. int tmp_code = code_value();
  4680. if (code_seen('T'))
  4681. {
  4682. if(setTargetedHotend(221)){
  4683. break;
  4684. }
  4685. extruder_multiply[tmp_extruder] = tmp_code;
  4686. }
  4687. else
  4688. {
  4689. extrudemultiply = tmp_code ;
  4690. }
  4691. }
  4692. calculate_extruder_multipliers();
  4693. }
  4694. break;
  4695. #ifndef _DISABLE_M42_M226
  4696. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4697. {
  4698. if(code_seen('P')){
  4699. int pin_number = code_value(); // pin number
  4700. int pin_state = -1; // required pin state - default is inverted
  4701. if(code_seen('S')) pin_state = code_value(); // required pin state
  4702. if(pin_state >= -1 && pin_state <= 1){
  4703. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4704. {
  4705. if (sensitive_pins[i] == pin_number)
  4706. {
  4707. pin_number = -1;
  4708. break;
  4709. }
  4710. }
  4711. if (pin_number > -1)
  4712. {
  4713. int target = LOW;
  4714. st_synchronize();
  4715. pinMode(pin_number, INPUT);
  4716. switch(pin_state){
  4717. case 1:
  4718. target = HIGH;
  4719. break;
  4720. case 0:
  4721. target = LOW;
  4722. break;
  4723. case -1:
  4724. target = !digitalRead(pin_number);
  4725. break;
  4726. }
  4727. while(digitalRead(pin_number) != target){
  4728. manage_heater();
  4729. manage_inactivity();
  4730. lcd_update();
  4731. }
  4732. }
  4733. }
  4734. }
  4735. }
  4736. break;
  4737. #endif //_DISABLE_M42_M226
  4738. #if NUM_SERVOS > 0
  4739. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4740. {
  4741. int servo_index = -1;
  4742. int servo_position = 0;
  4743. if (code_seen('P'))
  4744. servo_index = code_value();
  4745. if (code_seen('S')) {
  4746. servo_position = code_value();
  4747. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4748. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4749. servos[servo_index].attach(0);
  4750. #endif
  4751. servos[servo_index].write(servo_position);
  4752. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4753. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4754. servos[servo_index].detach();
  4755. #endif
  4756. }
  4757. else {
  4758. SERIAL_ECHO_START;
  4759. SERIAL_ECHO("Servo ");
  4760. SERIAL_ECHO(servo_index);
  4761. SERIAL_ECHOLN(" out of range");
  4762. }
  4763. }
  4764. else if (servo_index >= 0) {
  4765. SERIAL_PROTOCOL(MSG_OK);
  4766. SERIAL_PROTOCOL(" Servo ");
  4767. SERIAL_PROTOCOL(servo_index);
  4768. SERIAL_PROTOCOL(": ");
  4769. SERIAL_PROTOCOL(servos[servo_index].read());
  4770. SERIAL_PROTOCOLLN("");
  4771. }
  4772. }
  4773. break;
  4774. #endif // NUM_SERVOS > 0
  4775. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4776. case 300: // M300
  4777. {
  4778. int beepS = code_seen('S') ? code_value() : 110;
  4779. int beepP = code_seen('P') ? code_value() : 1000;
  4780. if (beepS > 0)
  4781. {
  4782. #if BEEPER > 0
  4783. tone(BEEPER, beepS);
  4784. delay(beepP);
  4785. noTone(BEEPER);
  4786. #elif defined(ULTRALCD)
  4787. lcd_buzz(beepS, beepP);
  4788. #elif defined(LCD_USE_I2C_BUZZER)
  4789. lcd_buzz(beepP, beepS);
  4790. #endif
  4791. }
  4792. else
  4793. {
  4794. delay(beepP);
  4795. }
  4796. }
  4797. break;
  4798. #endif // M300
  4799. #ifdef PIDTEMP
  4800. case 301: // M301
  4801. {
  4802. if(code_seen('P')) Kp = code_value();
  4803. if(code_seen('I')) Ki = scalePID_i(code_value());
  4804. if(code_seen('D')) Kd = scalePID_d(code_value());
  4805. #ifdef PID_ADD_EXTRUSION_RATE
  4806. if(code_seen('C')) Kc = code_value();
  4807. #endif
  4808. updatePID();
  4809. SERIAL_PROTOCOLRPGM(MSG_OK);
  4810. SERIAL_PROTOCOL(" p:");
  4811. SERIAL_PROTOCOL(Kp);
  4812. SERIAL_PROTOCOL(" i:");
  4813. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4814. SERIAL_PROTOCOL(" d:");
  4815. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4816. #ifdef PID_ADD_EXTRUSION_RATE
  4817. SERIAL_PROTOCOL(" c:");
  4818. //Kc does not have scaling applied above, or in resetting defaults
  4819. SERIAL_PROTOCOL(Kc);
  4820. #endif
  4821. SERIAL_PROTOCOLLN("");
  4822. }
  4823. break;
  4824. #endif //PIDTEMP
  4825. #ifdef PIDTEMPBED
  4826. case 304: // M304
  4827. {
  4828. if(code_seen('P')) bedKp = code_value();
  4829. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4830. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4831. updatePID();
  4832. SERIAL_PROTOCOLRPGM(MSG_OK);
  4833. SERIAL_PROTOCOL(" p:");
  4834. SERIAL_PROTOCOL(bedKp);
  4835. SERIAL_PROTOCOL(" i:");
  4836. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4837. SERIAL_PROTOCOL(" d:");
  4838. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4839. SERIAL_PROTOCOLLN("");
  4840. }
  4841. break;
  4842. #endif //PIDTEMP
  4843. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4844. {
  4845. #ifdef CHDK
  4846. SET_OUTPUT(CHDK);
  4847. WRITE(CHDK, HIGH);
  4848. chdkHigh = millis();
  4849. chdkActive = true;
  4850. #else
  4851. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4852. const uint8_t NUM_PULSES=16;
  4853. const float PULSE_LENGTH=0.01524;
  4854. for(int i=0; i < NUM_PULSES; i++) {
  4855. WRITE(PHOTOGRAPH_PIN, HIGH);
  4856. _delay_ms(PULSE_LENGTH);
  4857. WRITE(PHOTOGRAPH_PIN, LOW);
  4858. _delay_ms(PULSE_LENGTH);
  4859. }
  4860. delay(7.33);
  4861. for(int i=0; i < NUM_PULSES; i++) {
  4862. WRITE(PHOTOGRAPH_PIN, HIGH);
  4863. _delay_ms(PULSE_LENGTH);
  4864. WRITE(PHOTOGRAPH_PIN, LOW);
  4865. _delay_ms(PULSE_LENGTH);
  4866. }
  4867. #endif
  4868. #endif //chdk end if
  4869. }
  4870. break;
  4871. #ifdef DOGLCD
  4872. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4873. {
  4874. if (code_seen('C')) {
  4875. lcd_setcontrast( ((int)code_value())&63 );
  4876. }
  4877. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4878. SERIAL_PROTOCOL(lcd_contrast);
  4879. SERIAL_PROTOCOLLN("");
  4880. }
  4881. break;
  4882. #endif
  4883. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4884. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4885. {
  4886. float temp = .0;
  4887. if (code_seen('S')) temp=code_value();
  4888. set_extrude_min_temp(temp);
  4889. }
  4890. break;
  4891. #endif
  4892. case 303: // M303 PID autotune
  4893. {
  4894. float temp = 150.0;
  4895. int e=0;
  4896. int c=5;
  4897. if (code_seen('E')) e=code_value();
  4898. if (e<0)
  4899. temp=70;
  4900. if (code_seen('S')) temp=code_value();
  4901. if (code_seen('C')) c=code_value();
  4902. PID_autotune(temp, e, c);
  4903. }
  4904. break;
  4905. case 400: // M400 finish all moves
  4906. {
  4907. st_synchronize();
  4908. }
  4909. break;
  4910. case 500: // M500 Store settings in EEPROM
  4911. {
  4912. Config_StoreSettings(EEPROM_OFFSET);
  4913. }
  4914. break;
  4915. case 501: // M501 Read settings from EEPROM
  4916. {
  4917. Config_RetrieveSettings(EEPROM_OFFSET);
  4918. }
  4919. break;
  4920. case 502: // M502 Revert to default settings
  4921. {
  4922. Config_ResetDefault();
  4923. }
  4924. break;
  4925. case 503: // M503 print settings currently in memory
  4926. {
  4927. Config_PrintSettings();
  4928. }
  4929. break;
  4930. case 509: //M509 Force language selection
  4931. {
  4932. lcd_force_language_selection();
  4933. SERIAL_ECHO_START;
  4934. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4935. }
  4936. break;
  4937. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4938. case 540:
  4939. {
  4940. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4941. }
  4942. break;
  4943. #endif
  4944. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4945. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4946. {
  4947. float value;
  4948. if (code_seen('Z'))
  4949. {
  4950. value = code_value();
  4951. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4952. {
  4953. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4954. SERIAL_ECHO_START;
  4955. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4956. SERIAL_PROTOCOLLN("");
  4957. }
  4958. else
  4959. {
  4960. SERIAL_ECHO_START;
  4961. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4962. SERIAL_ECHORPGM(MSG_Z_MIN);
  4963. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4964. SERIAL_ECHORPGM(MSG_Z_MAX);
  4965. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4966. SERIAL_PROTOCOLLN("");
  4967. }
  4968. }
  4969. else
  4970. {
  4971. SERIAL_ECHO_START;
  4972. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4973. SERIAL_ECHO(-zprobe_zoffset);
  4974. SERIAL_PROTOCOLLN("");
  4975. }
  4976. break;
  4977. }
  4978. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4979. #ifdef FILAMENTCHANGEENABLE
  4980. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4981. {
  4982. #ifdef PAT9125
  4983. bool old_fsensor_enabled = fsensor_enabled;
  4984. fsensor_enabled = false; //temporary solution for unexpected restarting
  4985. #endif //PAT9125
  4986. st_synchronize();
  4987. float target[4];
  4988. float lastpos[4];
  4989. if (farm_mode)
  4990. {
  4991. prusa_statistics(22);
  4992. }
  4993. feedmultiplyBckp=feedmultiply;
  4994. int8_t TooLowZ = 0;
  4995. float HotendTempBckp = degTargetHotend(active_extruder);
  4996. int fanSpeedBckp = fanSpeed;
  4997. target[X_AXIS]=current_position[X_AXIS];
  4998. target[Y_AXIS]=current_position[Y_AXIS];
  4999. target[Z_AXIS]=current_position[Z_AXIS];
  5000. target[E_AXIS]=current_position[E_AXIS];
  5001. lastpos[X_AXIS]=current_position[X_AXIS];
  5002. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5003. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5004. lastpos[E_AXIS]=current_position[E_AXIS];
  5005. //Restract extruder
  5006. if(code_seen('E'))
  5007. {
  5008. target[E_AXIS]+= code_value();
  5009. }
  5010. else
  5011. {
  5012. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5013. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5014. #endif
  5015. }
  5016. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5017. //Lift Z
  5018. if(code_seen('Z'))
  5019. {
  5020. target[Z_AXIS]+= code_value();
  5021. }
  5022. else
  5023. {
  5024. #ifdef FILAMENTCHANGE_ZADD
  5025. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5026. if(target[Z_AXIS] < 10){
  5027. target[Z_AXIS]+= 10 ;
  5028. TooLowZ = 1;
  5029. }else{
  5030. TooLowZ = 0;
  5031. }
  5032. #endif
  5033. }
  5034. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5035. //Move XY to side
  5036. if(code_seen('X'))
  5037. {
  5038. target[X_AXIS]+= code_value();
  5039. }
  5040. else
  5041. {
  5042. #ifdef FILAMENTCHANGE_XPOS
  5043. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5044. #endif
  5045. }
  5046. if(code_seen('Y'))
  5047. {
  5048. target[Y_AXIS]= code_value();
  5049. }
  5050. else
  5051. {
  5052. #ifdef FILAMENTCHANGE_YPOS
  5053. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5054. #endif
  5055. }
  5056. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5057. st_synchronize();
  5058. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5059. uint8_t cnt = 0;
  5060. int counterBeep = 0;
  5061. fanSpeed = 0;
  5062. unsigned long waiting_start_time = millis();
  5063. uint8_t wait_for_user_state = 0;
  5064. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  5065. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5066. //cnt++;
  5067. manage_heater();
  5068. manage_inactivity(true);
  5069. /*#ifdef SNMM
  5070. target[E_AXIS] += 0.002;
  5071. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5072. #endif // SNMM*/
  5073. //if (cnt == 0)
  5074. {
  5075. #if BEEPER > 0
  5076. if (counterBeep == 500) {
  5077. counterBeep = 0;
  5078. }
  5079. SET_OUTPUT(BEEPER);
  5080. if (counterBeep == 0) {
  5081. WRITE(BEEPER, HIGH);
  5082. }
  5083. if (counterBeep == 20) {
  5084. WRITE(BEEPER, LOW);
  5085. }
  5086. counterBeep++;
  5087. #else
  5088. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5089. lcd_buzz(1000 / 6, 100);
  5090. #else
  5091. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5092. #endif
  5093. #endif
  5094. }
  5095. switch (wait_for_user_state) {
  5096. case 0:
  5097. delay_keep_alive(4);
  5098. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5099. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  5100. wait_for_user_state = 1;
  5101. setTargetHotend(0, 0);
  5102. setTargetHotend(0, 1);
  5103. setTargetHotend(0, 2);
  5104. st_synchronize();
  5105. disable_e0();
  5106. disable_e1();
  5107. disable_e2();
  5108. }
  5109. break;
  5110. case 1:
  5111. delay_keep_alive(4);
  5112. if (lcd_clicked()) {
  5113. setTargetHotend(HotendTempBckp, active_extruder);
  5114. lcd_wait_for_heater();
  5115. wait_for_user_state = 2;
  5116. }
  5117. break;
  5118. case 2:
  5119. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5120. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  5121. waiting_start_time = millis();
  5122. wait_for_user_state = 0;
  5123. }
  5124. else {
  5125. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5126. lcd.setCursor(1, 4);
  5127. lcd.print(ftostr3(degHotend(active_extruder)));
  5128. }
  5129. break;
  5130. }
  5131. }
  5132. WRITE(BEEPER, LOW);
  5133. lcd_change_fil_state = 0;
  5134. // Unload filament
  5135. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  5136. KEEPALIVE_STATE(IN_HANDLER);
  5137. custom_message = true;
  5138. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5139. if (code_seen('L'))
  5140. {
  5141. target[E_AXIS] += code_value();
  5142. }
  5143. else
  5144. {
  5145. #ifdef SNMM
  5146. #else
  5147. #ifdef FILAMENTCHANGE_FINALRETRACT
  5148. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5149. #endif
  5150. #endif // SNMM
  5151. }
  5152. #ifdef SNMM
  5153. target[E_AXIS] += 12;
  5154. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5155. target[E_AXIS] += 6;
  5156. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5157. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5158. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5159. st_synchronize();
  5160. target[E_AXIS] += (FIL_COOLING);
  5161. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5162. target[E_AXIS] += (FIL_COOLING*-1);
  5163. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5164. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5165. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5166. st_synchronize();
  5167. #else
  5168. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5169. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5170. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5171. st_synchronize();
  5172. #ifdef TMC2130
  5173. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5174. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5175. #else
  5176. digipot_current(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5177. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5178. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5179. #endif //TMC2130
  5180. target[E_AXIS] -= 45;
  5181. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5182. st_synchronize();
  5183. target[E_AXIS] -= 15;
  5184. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5185. st_synchronize();
  5186. target[E_AXIS] -= 20;
  5187. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5188. st_synchronize();
  5189. #ifdef TMC2130
  5190. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5191. #else
  5192. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5193. if(silentMode) digipot_current(2, tmp_motor[2]); //set E back to normal operation currents
  5194. else digipot_current(2, tmp_motor_loud[2]);
  5195. #endif //TMC2130
  5196. #endif // SNMM
  5197. //finish moves
  5198. st_synchronize();
  5199. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5200. //disable extruder steppers so filament can be removed
  5201. disable_e0();
  5202. disable_e1();
  5203. disable_e2();
  5204. delay(100);
  5205. WRITE(BEEPER, HIGH);
  5206. counterBeep = 0;
  5207. while(!lcd_clicked() && (counterBeep < 50)) {
  5208. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5209. delay_keep_alive(100);
  5210. counterBeep++;
  5211. }
  5212. WRITE(BEEPER, LOW);
  5213. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5214. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true);
  5215. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  5216. //lcd_return_to_status();
  5217. lcd_update_enable(true);
  5218. //Wait for user to insert filament
  5219. lcd_wait_interact();
  5220. //load_filament_time = millis();
  5221. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5222. #ifdef PAT9125
  5223. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5224. #endif //PAT9125
  5225. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5226. while(!lcd_clicked())
  5227. {
  5228. manage_heater();
  5229. manage_inactivity(true);
  5230. #ifdef PAT9125
  5231. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5232. {
  5233. tone(BEEPER, 1000);
  5234. delay_keep_alive(50);
  5235. noTone(BEEPER);
  5236. break;
  5237. }
  5238. #endif //PAT9125
  5239. /*#ifdef SNMM
  5240. target[E_AXIS] += 0.002;
  5241. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5242. #endif // SNMM*/
  5243. }
  5244. #ifdef PAT9125
  5245. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5246. #endif //PAT9125
  5247. //WRITE(BEEPER, LOW);
  5248. KEEPALIVE_STATE(IN_HANDLER);
  5249. #ifdef SNMM
  5250. display_loading();
  5251. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5252. do {
  5253. target[E_AXIS] += 0.002;
  5254. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5255. delay_keep_alive(2);
  5256. } while (!lcd_clicked());
  5257. KEEPALIVE_STATE(IN_HANDLER);
  5258. /*if (millis() - load_filament_time > 2) {
  5259. load_filament_time = millis();
  5260. target[E_AXIS] += 0.001;
  5261. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5262. }*/
  5263. //Filament inserted
  5264. //Feed the filament to the end of nozzle quickly
  5265. st_synchronize();
  5266. target[E_AXIS] += bowden_length[snmm_extruder];
  5267. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5268. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5269. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5270. target[E_AXIS] += 40;
  5271. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5272. target[E_AXIS] += 10;
  5273. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5274. #else
  5275. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5276. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5277. #endif // SNMM
  5278. //Extrude some filament
  5279. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5280. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5281. //Wait for user to check the state
  5282. lcd_change_fil_state = 0;
  5283. lcd_loading_filament();
  5284. tone(BEEPER, 500);
  5285. delay_keep_alive(50);
  5286. noTone(BEEPER);
  5287. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5288. lcd_change_fil_state = 0;
  5289. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5290. lcd_alright();
  5291. KEEPALIVE_STATE(IN_HANDLER);
  5292. switch(lcd_change_fil_state){
  5293. // Filament failed to load so load it again
  5294. case 2:
  5295. #ifdef SNMM
  5296. display_loading();
  5297. do {
  5298. target[E_AXIS] += 0.002;
  5299. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5300. delay_keep_alive(2);
  5301. } while (!lcd_clicked());
  5302. st_synchronize();
  5303. target[E_AXIS] += bowden_length[snmm_extruder];
  5304. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5305. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5306. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5307. target[E_AXIS] += 40;
  5308. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5309. target[E_AXIS] += 10;
  5310. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5311. #else
  5312. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5313. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5314. #endif
  5315. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5316. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5317. lcd_loading_filament();
  5318. break;
  5319. // Filament loaded properly but color is not clear
  5320. case 3:
  5321. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5322. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5323. lcd_loading_color();
  5324. break;
  5325. // Everything good
  5326. default:
  5327. lcd_change_success();
  5328. lcd_update_enable(true);
  5329. break;
  5330. }
  5331. }
  5332. //Not let's go back to print
  5333. fanSpeed = fanSpeedBckp;
  5334. //Feed a little of filament to stabilize pressure
  5335. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5336. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5337. //Retract
  5338. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5339. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5340. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5341. //Move XY back
  5342. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5343. //Move Z back
  5344. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5345. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5346. //Unretract
  5347. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5348. //Set E position to original
  5349. plan_set_e_position(lastpos[E_AXIS]);
  5350. //Recover feed rate
  5351. feedmultiply=feedmultiplyBckp;
  5352. char cmd[9];
  5353. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5354. enquecommand(cmd);
  5355. lcd_setstatuspgm(WELCOME_MSG);
  5356. custom_message = false;
  5357. custom_message_type = 0;
  5358. #ifdef PAT9125
  5359. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5360. if (fsensor_M600)
  5361. {
  5362. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5363. st_synchronize();
  5364. while (!is_buffer_empty())
  5365. {
  5366. process_commands();
  5367. cmdqueue_pop_front();
  5368. }
  5369. fsensor_enable();
  5370. fsensor_restore_print_and_continue();
  5371. }
  5372. #endif //PAT9125
  5373. }
  5374. break;
  5375. #endif //FILAMENTCHANGEENABLE
  5376. case 601: {
  5377. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5378. }
  5379. break;
  5380. case 602: {
  5381. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5382. }
  5383. break;
  5384. #ifdef LIN_ADVANCE
  5385. case 900: // M900: Set LIN_ADVANCE options.
  5386. gcode_M900();
  5387. break;
  5388. #endif
  5389. case 907: // M907 Set digital trimpot motor current using axis codes.
  5390. {
  5391. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5392. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5393. if(code_seen('B')) digipot_current(4,code_value());
  5394. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5395. #endif
  5396. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5397. if(code_seen('X')) digipot_current(0, code_value());
  5398. #endif
  5399. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5400. if(code_seen('Z')) digipot_current(1, code_value());
  5401. #endif
  5402. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5403. if(code_seen('E')) digipot_current(2, code_value());
  5404. #endif
  5405. #ifdef DIGIPOT_I2C
  5406. // this one uses actual amps in floating point
  5407. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5408. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5409. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5410. #endif
  5411. }
  5412. break;
  5413. case 908: // M908 Control digital trimpot directly.
  5414. {
  5415. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5416. uint8_t channel,current;
  5417. if(code_seen('P')) channel=code_value();
  5418. if(code_seen('S')) current=code_value();
  5419. digitalPotWrite(channel, current);
  5420. #endif
  5421. }
  5422. break;
  5423. #ifdef TMC2130
  5424. case 910: // M910 TMC2130 init
  5425. {
  5426. tmc2130_init();
  5427. }
  5428. break;
  5429. case 911: // M911 Set TMC2130 holding currents
  5430. {
  5431. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5432. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5433. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5434. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5435. }
  5436. break;
  5437. case 912: // M912 Set TMC2130 running currents
  5438. {
  5439. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5440. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5441. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5442. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5443. }
  5444. break;
  5445. case 913: // M913 Print TMC2130 currents
  5446. {
  5447. tmc2130_print_currents();
  5448. }
  5449. break;
  5450. case 914: // M914 Set normal mode
  5451. {
  5452. tmc2130_mode = TMC2130_MODE_NORMAL;
  5453. tmc2130_init();
  5454. }
  5455. break;
  5456. case 915: // M915 Set silent mode
  5457. {
  5458. tmc2130_mode = TMC2130_MODE_SILENT;
  5459. tmc2130_init();
  5460. }
  5461. break;
  5462. case 916: // M916 Set sg_thrs
  5463. {
  5464. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5465. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5466. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5467. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5468. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5469. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5470. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5471. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5472. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5473. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5474. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5475. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5476. }
  5477. break;
  5478. case 917: // M917 Set TMC2130 pwm_ampl
  5479. {
  5480. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5481. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5482. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5483. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5484. }
  5485. break;
  5486. case 918: // M918 Set TMC2130 pwm_grad
  5487. {
  5488. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5489. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5490. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5491. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5492. }
  5493. break;
  5494. #endif //TMC2130
  5495. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5496. {
  5497. #ifdef TMC2130
  5498. if(code_seen('E'))
  5499. {
  5500. uint16_t res_new = code_value();
  5501. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5502. {
  5503. st_synchronize();
  5504. uint8_t axis = E_AXIS;
  5505. uint16_t res = tmc2130_get_res(axis);
  5506. tmc2130_set_res(axis, res_new);
  5507. if (res_new > res)
  5508. {
  5509. uint16_t fac = (res_new / res);
  5510. axis_steps_per_unit[axis] *= fac;
  5511. position[E_AXIS] *= fac;
  5512. }
  5513. else
  5514. {
  5515. uint16_t fac = (res / res_new);
  5516. axis_steps_per_unit[axis] /= fac;
  5517. position[E_AXIS] /= fac;
  5518. }
  5519. }
  5520. }
  5521. #else //TMC2130
  5522. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5523. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5524. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5525. if(code_seen('B')) microstep_mode(4,code_value());
  5526. microstep_readings();
  5527. #endif
  5528. #endif //TMC2130
  5529. }
  5530. break;
  5531. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5532. {
  5533. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5534. if(code_seen('S')) switch((int)code_value())
  5535. {
  5536. case 1:
  5537. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5538. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5539. break;
  5540. case 2:
  5541. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5542. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5543. break;
  5544. }
  5545. microstep_readings();
  5546. #endif
  5547. }
  5548. break;
  5549. case 701: //M701: load filament
  5550. {
  5551. gcode_M701();
  5552. }
  5553. break;
  5554. case 702:
  5555. {
  5556. #ifdef SNMM
  5557. if (code_seen('U')) {
  5558. extr_unload_used(); //unload all filaments which were used in current print
  5559. }
  5560. else if (code_seen('C')) {
  5561. extr_unload(); //unload just current filament
  5562. }
  5563. else {
  5564. extr_unload_all(); //unload all filaments
  5565. }
  5566. #else
  5567. #ifdef PAT9125
  5568. bool old_fsensor_enabled = fsensor_enabled;
  5569. fsensor_enabled = false;
  5570. #endif //PAT9125
  5571. custom_message = true;
  5572. custom_message_type = 2;
  5573. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5574. // extr_unload2();
  5575. current_position[E_AXIS] -= 45;
  5576. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5577. st_synchronize();
  5578. current_position[E_AXIS] -= 15;
  5579. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5580. st_synchronize();
  5581. current_position[E_AXIS] -= 20;
  5582. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5583. st_synchronize();
  5584. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5585. //disable extruder steppers so filament can be removed
  5586. disable_e0();
  5587. disable_e1();
  5588. disable_e2();
  5589. delay(100);
  5590. WRITE(BEEPER, HIGH);
  5591. uint8_t counterBeep = 0;
  5592. while (!lcd_clicked() && (counterBeep < 50)) {
  5593. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5594. delay_keep_alive(100);
  5595. counterBeep++;
  5596. }
  5597. WRITE(BEEPER, LOW);
  5598. st_synchronize();
  5599. while (lcd_clicked()) delay_keep_alive(100);
  5600. lcd_update_enable(true);
  5601. lcd_setstatuspgm(WELCOME_MSG);
  5602. custom_message = false;
  5603. custom_message_type = 0;
  5604. #ifdef PAT9125
  5605. fsensor_enabled = old_fsensor_enabled;
  5606. #endif //PAT9125
  5607. #endif
  5608. }
  5609. break;
  5610. case 999: // M999: Restart after being stopped
  5611. Stopped = false;
  5612. lcd_reset_alert_level();
  5613. gcode_LastN = Stopped_gcode_LastN;
  5614. FlushSerialRequestResend();
  5615. break;
  5616. default:
  5617. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5618. }
  5619. } // end if(code_seen('M')) (end of M codes)
  5620. else if(code_seen('T'))
  5621. {
  5622. int index;
  5623. st_synchronize();
  5624. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5625. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5626. SERIAL_ECHOLNPGM("Invalid T code.");
  5627. }
  5628. else {
  5629. if (*(strchr_pointer + index) == '?') {
  5630. tmp_extruder = choose_extruder_menu();
  5631. }
  5632. else {
  5633. tmp_extruder = code_value();
  5634. }
  5635. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5636. #ifdef SNMM
  5637. #ifdef LIN_ADVANCE
  5638. if (snmm_extruder != tmp_extruder)
  5639. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5640. #endif
  5641. snmm_extruder = tmp_extruder;
  5642. delay(100);
  5643. disable_e0();
  5644. disable_e1();
  5645. disable_e2();
  5646. pinMode(E_MUX0_PIN, OUTPUT);
  5647. pinMode(E_MUX1_PIN, OUTPUT);
  5648. pinMode(E_MUX2_PIN, OUTPUT);
  5649. delay(100);
  5650. SERIAL_ECHO_START;
  5651. SERIAL_ECHO("T:");
  5652. SERIAL_ECHOLN((int)tmp_extruder);
  5653. switch (tmp_extruder) {
  5654. case 1:
  5655. WRITE(E_MUX0_PIN, HIGH);
  5656. WRITE(E_MUX1_PIN, LOW);
  5657. WRITE(E_MUX2_PIN, LOW);
  5658. break;
  5659. case 2:
  5660. WRITE(E_MUX0_PIN, LOW);
  5661. WRITE(E_MUX1_PIN, HIGH);
  5662. WRITE(E_MUX2_PIN, LOW);
  5663. break;
  5664. case 3:
  5665. WRITE(E_MUX0_PIN, HIGH);
  5666. WRITE(E_MUX1_PIN, HIGH);
  5667. WRITE(E_MUX2_PIN, LOW);
  5668. break;
  5669. default:
  5670. WRITE(E_MUX0_PIN, LOW);
  5671. WRITE(E_MUX1_PIN, LOW);
  5672. WRITE(E_MUX2_PIN, LOW);
  5673. break;
  5674. }
  5675. delay(100);
  5676. #else
  5677. if (tmp_extruder >= EXTRUDERS) {
  5678. SERIAL_ECHO_START;
  5679. SERIAL_ECHOPGM("T");
  5680. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5681. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5682. }
  5683. else {
  5684. boolean make_move = false;
  5685. if (code_seen('F')) {
  5686. make_move = true;
  5687. next_feedrate = code_value();
  5688. if (next_feedrate > 0.0) {
  5689. feedrate = next_feedrate;
  5690. }
  5691. }
  5692. #if EXTRUDERS > 1
  5693. if (tmp_extruder != active_extruder) {
  5694. // Save current position to return to after applying extruder offset
  5695. memcpy(destination, current_position, sizeof(destination));
  5696. // Offset extruder (only by XY)
  5697. int i;
  5698. for (i = 0; i < 2; i++) {
  5699. current_position[i] = current_position[i] -
  5700. extruder_offset[i][active_extruder] +
  5701. extruder_offset[i][tmp_extruder];
  5702. }
  5703. // Set the new active extruder and position
  5704. active_extruder = tmp_extruder;
  5705. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5706. // Move to the old position if 'F' was in the parameters
  5707. if (make_move && Stopped == false) {
  5708. prepare_move();
  5709. }
  5710. }
  5711. #endif
  5712. SERIAL_ECHO_START;
  5713. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5714. SERIAL_PROTOCOLLN((int)active_extruder);
  5715. }
  5716. #endif
  5717. }
  5718. } // end if(code_seen('T')) (end of T codes)
  5719. #ifdef DEBUG_DCODES
  5720. else if (code_seen('D')) // D codes (debug)
  5721. {
  5722. switch((int)code_value())
  5723. {
  5724. case -1: // D-1 - Endless loop
  5725. dcode__1(); break;
  5726. case 0: // D0 - Reset
  5727. dcode_0(); break;
  5728. case 1: // D1 - Clear EEPROM
  5729. dcode_1(); break;
  5730. case 2: // D2 - Read/Write RAM
  5731. dcode_2(); break;
  5732. case 3: // D3 - Read/Write EEPROM
  5733. dcode_3(); break;
  5734. case 4: // D4 - Read/Write PIN
  5735. dcode_4(); break;
  5736. case 5: // D5 - Read/Write FLASH
  5737. // dcode_5(); break;
  5738. break;
  5739. case 6: // D6 - Read/Write external FLASH
  5740. dcode_6(); break;
  5741. case 7: // D7 - Read/Write Bootloader
  5742. dcode_7(); break;
  5743. case 8: // D8 - Read/Write PINDA
  5744. dcode_8(); break;
  5745. case 9: // D9 - Read/Write ADC
  5746. dcode_9(); break;
  5747. case 10: // D10 - XYZ calibration = OK
  5748. dcode_10(); break;
  5749. #ifdef TMC2130
  5750. case 2130: // D9125 - TMC2130
  5751. dcode_2130(); break;
  5752. #endif //TMC2130
  5753. #ifdef PAT9125
  5754. case 9125: // D9125 - PAT9125
  5755. dcode_9125(); break;
  5756. #endif //PAT9125
  5757. }
  5758. }
  5759. #endif //DEBUG_DCODES
  5760. else
  5761. {
  5762. SERIAL_ECHO_START;
  5763. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5764. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5765. SERIAL_ECHOLNPGM("\"(2)");
  5766. }
  5767. KEEPALIVE_STATE(NOT_BUSY);
  5768. ClearToSend();
  5769. }
  5770. void FlushSerialRequestResend()
  5771. {
  5772. //char cmdbuffer[bufindr][100]="Resend:";
  5773. MYSERIAL.flush();
  5774. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5775. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5776. previous_millis_cmd = millis();
  5777. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5778. }
  5779. // Confirm the execution of a command, if sent from a serial line.
  5780. // Execution of a command from a SD card will not be confirmed.
  5781. void ClearToSend()
  5782. {
  5783. previous_millis_cmd = millis();
  5784. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5785. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5786. }
  5787. #if MOTHERBOARD == 200 || MOTHERBOARD == 203
  5788. void update_currents() {
  5789. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5790. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5791. float tmp_motor[3];
  5792. //SERIAL_ECHOLNPGM("Currents updated: ");
  5793. if (destination[Z_AXIS] < Z_SILENT) {
  5794. //SERIAL_ECHOLNPGM("LOW");
  5795. for (uint8_t i = 0; i < 3; i++) {
  5796. digipot_current(i, current_low[i]);
  5797. /*MYSERIAL.print(int(i));
  5798. SERIAL_ECHOPGM(": ");
  5799. MYSERIAL.println(current_low[i]);*/
  5800. }
  5801. }
  5802. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  5803. //SERIAL_ECHOLNPGM("HIGH");
  5804. for (uint8_t i = 0; i < 3; i++) {
  5805. digipot_current(i, current_high[i]);
  5806. /*MYSERIAL.print(int(i));
  5807. SERIAL_ECHOPGM(": ");
  5808. MYSERIAL.println(current_high[i]);*/
  5809. }
  5810. }
  5811. else {
  5812. for (uint8_t i = 0; i < 3; i++) {
  5813. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  5814. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  5815. digipot_current(i, tmp_motor[i]);
  5816. /*MYSERIAL.print(int(i));
  5817. SERIAL_ECHOPGM(": ");
  5818. MYSERIAL.println(tmp_motor[i]);*/
  5819. }
  5820. }
  5821. }
  5822. #endif //MOTHERBOARD == 200 || MOTHERBOARD == 203
  5823. void get_coordinates()
  5824. {
  5825. bool seen[4]={false,false,false,false};
  5826. for(int8_t i=0; i < NUM_AXIS; i++) {
  5827. if(code_seen(axis_codes[i]))
  5828. {
  5829. bool relative = axis_relative_modes[i] || relative_mode;
  5830. destination[i] = (float)code_value();
  5831. if (i == E_AXIS) {
  5832. float emult = extruder_multiplier[active_extruder];
  5833. if (emult != 1.) {
  5834. if (! relative) {
  5835. destination[i] -= current_position[i];
  5836. relative = true;
  5837. }
  5838. destination[i] *= emult;
  5839. }
  5840. }
  5841. if (relative)
  5842. destination[i] += current_position[i];
  5843. seen[i]=true;
  5844. #if MOTHERBOARD == 200 || MOTHERBOARD == 203
  5845. if (i == Z_AXIS && SilentModeMenu == 2) update_currents();
  5846. #endif //MOTHERBOARD == 200 || MOTHERBOARD == 203
  5847. }
  5848. else destination[i] = current_position[i]; //Are these else lines really needed?
  5849. }
  5850. if(code_seen('F')) {
  5851. next_feedrate = code_value();
  5852. #ifdef MAX_SILENT_FEEDRATE
  5853. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5854. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5855. #endif //MAX_SILENT_FEEDRATE
  5856. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5857. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  5858. {
  5859. // float e_max_speed =
  5860. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  5861. }
  5862. }
  5863. }
  5864. void get_arc_coordinates()
  5865. {
  5866. #ifdef SF_ARC_FIX
  5867. bool relative_mode_backup = relative_mode;
  5868. relative_mode = true;
  5869. #endif
  5870. get_coordinates();
  5871. #ifdef SF_ARC_FIX
  5872. relative_mode=relative_mode_backup;
  5873. #endif
  5874. if(code_seen('I')) {
  5875. offset[0] = code_value();
  5876. }
  5877. else {
  5878. offset[0] = 0.0;
  5879. }
  5880. if(code_seen('J')) {
  5881. offset[1] = code_value();
  5882. }
  5883. else {
  5884. offset[1] = 0.0;
  5885. }
  5886. }
  5887. void clamp_to_software_endstops(float target[3])
  5888. {
  5889. #ifdef DEBUG_DISABLE_SWLIMITS
  5890. return;
  5891. #endif //DEBUG_DISABLE_SWLIMITS
  5892. world2machine_clamp(target[0], target[1]);
  5893. // Clamp the Z coordinate.
  5894. if (min_software_endstops) {
  5895. float negative_z_offset = 0;
  5896. #ifdef ENABLE_AUTO_BED_LEVELING
  5897. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5898. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5899. #endif
  5900. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5901. }
  5902. if (max_software_endstops) {
  5903. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5904. }
  5905. }
  5906. #ifdef MESH_BED_LEVELING
  5907. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5908. float dx = x - current_position[X_AXIS];
  5909. float dy = y - current_position[Y_AXIS];
  5910. float dz = z - current_position[Z_AXIS];
  5911. int n_segments = 0;
  5912. if (mbl.active) {
  5913. float len = abs(dx) + abs(dy);
  5914. if (len > 0)
  5915. // Split to 3cm segments or shorter.
  5916. n_segments = int(ceil(len / 30.f));
  5917. }
  5918. if (n_segments > 1) {
  5919. float de = e - current_position[E_AXIS];
  5920. for (int i = 1; i < n_segments; ++ i) {
  5921. float t = float(i) / float(n_segments);
  5922. plan_buffer_line(
  5923. current_position[X_AXIS] + t * dx,
  5924. current_position[Y_AXIS] + t * dy,
  5925. current_position[Z_AXIS] + t * dz,
  5926. current_position[E_AXIS] + t * de,
  5927. feed_rate, extruder);
  5928. }
  5929. }
  5930. // The rest of the path.
  5931. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5932. current_position[X_AXIS] = x;
  5933. current_position[Y_AXIS] = y;
  5934. current_position[Z_AXIS] = z;
  5935. current_position[E_AXIS] = e;
  5936. }
  5937. #endif // MESH_BED_LEVELING
  5938. void prepare_move()
  5939. {
  5940. clamp_to_software_endstops(destination);
  5941. previous_millis_cmd = millis();
  5942. // Do not use feedmultiply for E or Z only moves
  5943. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5944. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5945. }
  5946. else {
  5947. #ifdef MESH_BED_LEVELING
  5948. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5949. #else
  5950. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5951. #endif
  5952. }
  5953. for(int8_t i=0; i < NUM_AXIS; i++) {
  5954. current_position[i] = destination[i];
  5955. }
  5956. }
  5957. void prepare_arc_move(char isclockwise) {
  5958. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5959. // Trace the arc
  5960. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5961. // As far as the parser is concerned, the position is now == target. In reality the
  5962. // motion control system might still be processing the action and the real tool position
  5963. // in any intermediate location.
  5964. for(int8_t i=0; i < NUM_AXIS; i++) {
  5965. current_position[i] = destination[i];
  5966. }
  5967. previous_millis_cmd = millis();
  5968. }
  5969. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5970. #if defined(FAN_PIN)
  5971. #if CONTROLLERFAN_PIN == FAN_PIN
  5972. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5973. #endif
  5974. #endif
  5975. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5976. unsigned long lastMotorCheck = 0;
  5977. void controllerFan()
  5978. {
  5979. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5980. {
  5981. lastMotorCheck = millis();
  5982. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5983. #if EXTRUDERS > 2
  5984. || !READ(E2_ENABLE_PIN)
  5985. #endif
  5986. #if EXTRUDER > 1
  5987. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5988. || !READ(X2_ENABLE_PIN)
  5989. #endif
  5990. || !READ(E1_ENABLE_PIN)
  5991. #endif
  5992. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5993. {
  5994. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5995. }
  5996. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5997. {
  5998. digitalWrite(CONTROLLERFAN_PIN, 0);
  5999. analogWrite(CONTROLLERFAN_PIN, 0);
  6000. }
  6001. else
  6002. {
  6003. // allows digital or PWM fan output to be used (see M42 handling)
  6004. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6005. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6006. }
  6007. }
  6008. }
  6009. #endif
  6010. #ifdef TEMP_STAT_LEDS
  6011. static bool blue_led = false;
  6012. static bool red_led = false;
  6013. static uint32_t stat_update = 0;
  6014. void handle_status_leds(void) {
  6015. float max_temp = 0.0;
  6016. if(millis() > stat_update) {
  6017. stat_update += 500; // Update every 0.5s
  6018. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6019. max_temp = max(max_temp, degHotend(cur_extruder));
  6020. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6021. }
  6022. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6023. max_temp = max(max_temp, degTargetBed());
  6024. max_temp = max(max_temp, degBed());
  6025. #endif
  6026. if((max_temp > 55.0) && (red_led == false)) {
  6027. digitalWrite(STAT_LED_RED, 1);
  6028. digitalWrite(STAT_LED_BLUE, 0);
  6029. red_led = true;
  6030. blue_led = false;
  6031. }
  6032. if((max_temp < 54.0) && (blue_led == false)) {
  6033. digitalWrite(STAT_LED_RED, 0);
  6034. digitalWrite(STAT_LED_BLUE, 1);
  6035. red_led = false;
  6036. blue_led = true;
  6037. }
  6038. }
  6039. }
  6040. #endif
  6041. #ifdef SAFETYTIMER
  6042. /**
  6043. * @brief Turn off heating after 15 minutes of inactivity
  6044. */
  6045. static void handleSafetyTimer()
  6046. {
  6047. #if (EXTRUDERS > 1)
  6048. #error Implemented only for one extruder.
  6049. #endif //(EXTRUDERS > 1)
  6050. static Timer safetyTimer;
  6051. if (IS_SD_PRINTING || is_usb_printing || (custom_message_type == 4) || (lcd_commands_type == LCD_COMMAND_V2_CAL) ||
  6052. (!degTargetBed() && !degTargetHotend(0)))
  6053. {
  6054. safetyTimer.stop();
  6055. }
  6056. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6057. {
  6058. safetyTimer.start();
  6059. }
  6060. else if (safetyTimer.expired(15*60*1000))
  6061. {
  6062. setTargetBed(0);
  6063. setTargetHotend(0, 0);
  6064. }
  6065. }
  6066. #endif //SAFETYTIMER
  6067. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6068. {
  6069. #ifdef PAT9125
  6070. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6071. {
  6072. if (fsensor_autoload_enabled)
  6073. {
  6074. if (fsensor_check_autoload())
  6075. {
  6076. if (degHotend0() > EXTRUDE_MINTEMP)
  6077. {
  6078. fsensor_autoload_check_stop();
  6079. tone(BEEPER, 1000);
  6080. delay_keep_alive(50);
  6081. noTone(BEEPER);
  6082. loading_flag = true;
  6083. enquecommand_front_P((PSTR("M701")));
  6084. }
  6085. else
  6086. {
  6087. lcd_update_enable(false);
  6088. lcd_implementation_clear();
  6089. lcd.setCursor(0, 0);
  6090. lcd_printPGM(MSG_ERROR);
  6091. lcd.setCursor(0, 2);
  6092. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  6093. delay(2000);
  6094. lcd_implementation_clear();
  6095. lcd_update_enable(true);
  6096. }
  6097. }
  6098. }
  6099. else
  6100. fsensor_autoload_check_start();
  6101. }
  6102. else
  6103. if (fsensor_autoload_enabled)
  6104. fsensor_autoload_check_stop();
  6105. #endif //PAT9125
  6106. #ifdef SAFETYTIMER
  6107. handleSafetyTimer();
  6108. #endif //SAFETYTIMER
  6109. #ifdef SAFETYTIMER
  6110. handleSafetyTimer();
  6111. #endif //SAFETYTIMER
  6112. #if defined(KILL_PIN) && KILL_PIN > -1
  6113. static int killCount = 0; // make the inactivity button a bit less responsive
  6114. const int KILL_DELAY = 10000;
  6115. #endif
  6116. if(buflen < (BUFSIZE-1)){
  6117. get_command();
  6118. }
  6119. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6120. if(max_inactive_time)
  6121. kill("", 4);
  6122. if(stepper_inactive_time) {
  6123. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6124. {
  6125. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6126. disable_x();
  6127. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6128. disable_y();
  6129. disable_z();
  6130. disable_e0();
  6131. disable_e1();
  6132. disable_e2();
  6133. }
  6134. }
  6135. }
  6136. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6137. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6138. {
  6139. chdkActive = false;
  6140. WRITE(CHDK, LOW);
  6141. }
  6142. #endif
  6143. #if defined(KILL_PIN) && KILL_PIN > -1
  6144. // Check if the kill button was pressed and wait just in case it was an accidental
  6145. // key kill key press
  6146. // -------------------------------------------------------------------------------
  6147. if( 0 == READ(KILL_PIN) )
  6148. {
  6149. killCount++;
  6150. }
  6151. else if (killCount > 0)
  6152. {
  6153. killCount--;
  6154. }
  6155. // Exceeded threshold and we can confirm that it was not accidental
  6156. // KILL the machine
  6157. // ----------------------------------------------------------------
  6158. if ( killCount >= KILL_DELAY)
  6159. {
  6160. kill("", 5);
  6161. }
  6162. #endif
  6163. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6164. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6165. #endif
  6166. #ifdef EXTRUDER_RUNOUT_PREVENT
  6167. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6168. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6169. {
  6170. bool oldstatus=READ(E0_ENABLE_PIN);
  6171. enable_e0();
  6172. float oldepos=current_position[E_AXIS];
  6173. float oldedes=destination[E_AXIS];
  6174. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6175. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6176. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6177. current_position[E_AXIS]=oldepos;
  6178. destination[E_AXIS]=oldedes;
  6179. plan_set_e_position(oldepos);
  6180. previous_millis_cmd=millis();
  6181. st_synchronize();
  6182. WRITE(E0_ENABLE_PIN,oldstatus);
  6183. }
  6184. #endif
  6185. #ifdef TEMP_STAT_LEDS
  6186. handle_status_leds();
  6187. #endif
  6188. check_axes_activity();
  6189. }
  6190. void kill(const char *full_screen_message, unsigned char id)
  6191. {
  6192. SERIAL_ECHOPGM("KILL: ");
  6193. MYSERIAL.println(int(id));
  6194. //return;
  6195. cli(); // Stop interrupts
  6196. disable_heater();
  6197. disable_x();
  6198. // SERIAL_ECHOLNPGM("kill - disable Y");
  6199. disable_y();
  6200. disable_z();
  6201. disable_e0();
  6202. disable_e1();
  6203. disable_e2();
  6204. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6205. pinMode(PS_ON_PIN,INPUT);
  6206. #endif
  6207. SERIAL_ERROR_START;
  6208. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  6209. if (full_screen_message != NULL) {
  6210. SERIAL_ERRORLNRPGM(full_screen_message);
  6211. lcd_display_message_fullscreen_P(full_screen_message);
  6212. } else {
  6213. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  6214. }
  6215. // FMC small patch to update the LCD before ending
  6216. sei(); // enable interrupts
  6217. for ( int i=5; i--; lcd_update())
  6218. {
  6219. delay(200);
  6220. }
  6221. cli(); // disable interrupts
  6222. suicide();
  6223. while(1)
  6224. {
  6225. #ifdef WATCHDOG
  6226. wdt_reset();
  6227. #endif //WATCHDOG
  6228. /* Intentionally left empty */
  6229. } // Wait for reset
  6230. }
  6231. void Stop()
  6232. {
  6233. disable_heater();
  6234. if(Stopped == false) {
  6235. Stopped = true;
  6236. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6237. SERIAL_ERROR_START;
  6238. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6239. LCD_MESSAGERPGM(MSG_STOPPED);
  6240. }
  6241. }
  6242. bool IsStopped() { return Stopped; };
  6243. #ifdef FAST_PWM_FAN
  6244. void setPwmFrequency(uint8_t pin, int val)
  6245. {
  6246. val &= 0x07;
  6247. switch(digitalPinToTimer(pin))
  6248. {
  6249. #if defined(TCCR0A)
  6250. case TIMER0A:
  6251. case TIMER0B:
  6252. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6253. // TCCR0B |= val;
  6254. break;
  6255. #endif
  6256. #if defined(TCCR1A)
  6257. case TIMER1A:
  6258. case TIMER1B:
  6259. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6260. // TCCR1B |= val;
  6261. break;
  6262. #endif
  6263. #if defined(TCCR2)
  6264. case TIMER2:
  6265. case TIMER2:
  6266. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6267. TCCR2 |= val;
  6268. break;
  6269. #endif
  6270. #if defined(TCCR2A)
  6271. case TIMER2A:
  6272. case TIMER2B:
  6273. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6274. TCCR2B |= val;
  6275. break;
  6276. #endif
  6277. #if defined(TCCR3A)
  6278. case TIMER3A:
  6279. case TIMER3B:
  6280. case TIMER3C:
  6281. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6282. TCCR3B |= val;
  6283. break;
  6284. #endif
  6285. #if defined(TCCR4A)
  6286. case TIMER4A:
  6287. case TIMER4B:
  6288. case TIMER4C:
  6289. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6290. TCCR4B |= val;
  6291. break;
  6292. #endif
  6293. #if defined(TCCR5A)
  6294. case TIMER5A:
  6295. case TIMER5B:
  6296. case TIMER5C:
  6297. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6298. TCCR5B |= val;
  6299. break;
  6300. #endif
  6301. }
  6302. }
  6303. #endif //FAST_PWM_FAN
  6304. bool setTargetedHotend(int code){
  6305. tmp_extruder = active_extruder;
  6306. if(code_seen('T')) {
  6307. tmp_extruder = code_value();
  6308. if(tmp_extruder >= EXTRUDERS) {
  6309. SERIAL_ECHO_START;
  6310. switch(code){
  6311. case 104:
  6312. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  6313. break;
  6314. case 105:
  6315. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  6316. break;
  6317. case 109:
  6318. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  6319. break;
  6320. case 218:
  6321. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  6322. break;
  6323. case 221:
  6324. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  6325. break;
  6326. }
  6327. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6328. return true;
  6329. }
  6330. }
  6331. return false;
  6332. }
  6333. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6334. {
  6335. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6336. {
  6337. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6338. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6339. }
  6340. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6341. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6342. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6343. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6344. total_filament_used = 0;
  6345. }
  6346. float calculate_extruder_multiplier(float diameter) {
  6347. float out = 1.f;
  6348. if (volumetric_enabled && diameter > 0.f) {
  6349. float area = M_PI * diameter * diameter * 0.25;
  6350. out = 1.f / area;
  6351. }
  6352. if (extrudemultiply != 100)
  6353. out *= float(extrudemultiply) * 0.01f;
  6354. return out;
  6355. }
  6356. void calculate_extruder_multipliers() {
  6357. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6358. #if EXTRUDERS > 1
  6359. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6360. #if EXTRUDERS > 2
  6361. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6362. #endif
  6363. #endif
  6364. }
  6365. void delay_keep_alive(unsigned int ms)
  6366. {
  6367. for (;;) {
  6368. manage_heater();
  6369. // Manage inactivity, but don't disable steppers on timeout.
  6370. manage_inactivity(true);
  6371. lcd_update();
  6372. if (ms == 0)
  6373. break;
  6374. else if (ms >= 50) {
  6375. delay(50);
  6376. ms -= 50;
  6377. } else {
  6378. delay(ms);
  6379. ms = 0;
  6380. }
  6381. }
  6382. }
  6383. void wait_for_heater(long codenum) {
  6384. #ifdef TEMP_RESIDENCY_TIME
  6385. long residencyStart;
  6386. residencyStart = -1;
  6387. /* continue to loop until we have reached the target temp
  6388. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6389. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6390. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6391. #else
  6392. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6393. #endif //TEMP_RESIDENCY_TIME
  6394. if ((millis() - codenum) > 1000UL)
  6395. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6396. if (!farm_mode) {
  6397. SERIAL_PROTOCOLPGM("T:");
  6398. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6399. SERIAL_PROTOCOLPGM(" E:");
  6400. SERIAL_PROTOCOL((int)tmp_extruder);
  6401. #ifdef TEMP_RESIDENCY_TIME
  6402. SERIAL_PROTOCOLPGM(" W:");
  6403. if (residencyStart > -1)
  6404. {
  6405. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6406. SERIAL_PROTOCOLLN(codenum);
  6407. }
  6408. else
  6409. {
  6410. SERIAL_PROTOCOLLN("?");
  6411. }
  6412. }
  6413. #else
  6414. SERIAL_PROTOCOLLN("");
  6415. #endif
  6416. codenum = millis();
  6417. }
  6418. manage_heater();
  6419. manage_inactivity();
  6420. lcd_update();
  6421. #ifdef TEMP_RESIDENCY_TIME
  6422. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6423. or when current temp falls outside the hysteresis after target temp was reached */
  6424. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6425. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6426. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6427. {
  6428. residencyStart = millis();
  6429. }
  6430. #endif //TEMP_RESIDENCY_TIME
  6431. }
  6432. }
  6433. void check_babystep() {
  6434. int babystep_z;
  6435. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6436. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6437. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6438. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6439. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6440. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6441. lcd_update_enable(true);
  6442. }
  6443. }
  6444. #ifdef DIS
  6445. void d_setup()
  6446. {
  6447. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6448. pinMode(D_DATA, INPUT_PULLUP);
  6449. pinMode(D_REQUIRE, OUTPUT);
  6450. digitalWrite(D_REQUIRE, HIGH);
  6451. }
  6452. float d_ReadData()
  6453. {
  6454. int digit[13];
  6455. String mergeOutput;
  6456. float output;
  6457. digitalWrite(D_REQUIRE, HIGH);
  6458. for (int i = 0; i<13; i++)
  6459. {
  6460. for (int j = 0; j < 4; j++)
  6461. {
  6462. while (digitalRead(D_DATACLOCK) == LOW) {}
  6463. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6464. bitWrite(digit[i], j, digitalRead(D_DATA));
  6465. }
  6466. }
  6467. digitalWrite(D_REQUIRE, LOW);
  6468. mergeOutput = "";
  6469. output = 0;
  6470. for (int r = 5; r <= 10; r++) //Merge digits
  6471. {
  6472. mergeOutput += digit[r];
  6473. }
  6474. output = mergeOutput.toFloat();
  6475. if (digit[4] == 8) //Handle sign
  6476. {
  6477. output *= -1;
  6478. }
  6479. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6480. {
  6481. output /= 10;
  6482. }
  6483. return output;
  6484. }
  6485. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6486. int t1 = 0;
  6487. int t_delay = 0;
  6488. int digit[13];
  6489. int m;
  6490. char str[3];
  6491. //String mergeOutput;
  6492. char mergeOutput[15];
  6493. float output;
  6494. int mesh_point = 0; //index number of calibration point
  6495. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6496. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6497. float mesh_home_z_search = 4;
  6498. float row[x_points_num];
  6499. int ix = 0;
  6500. int iy = 0;
  6501. char* filename_wldsd = "wldsd.txt";
  6502. char data_wldsd[70];
  6503. char numb_wldsd[10];
  6504. d_setup();
  6505. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6506. // We don't know where we are! HOME!
  6507. // Push the commands to the front of the message queue in the reverse order!
  6508. // There shall be always enough space reserved for these commands.
  6509. repeatcommand_front(); // repeat G80 with all its parameters
  6510. enquecommand_front_P((PSTR("G28 W0")));
  6511. enquecommand_front_P((PSTR("G1 Z5")));
  6512. return;
  6513. }
  6514. bool custom_message_old = custom_message;
  6515. unsigned int custom_message_type_old = custom_message_type;
  6516. unsigned int custom_message_state_old = custom_message_state;
  6517. custom_message = true;
  6518. custom_message_type = 1;
  6519. custom_message_state = (x_points_num * y_points_num) + 10;
  6520. lcd_update(1);
  6521. mbl.reset();
  6522. babystep_undo();
  6523. card.openFile(filename_wldsd, false);
  6524. current_position[Z_AXIS] = mesh_home_z_search;
  6525. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6526. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6527. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6528. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6529. setup_for_endstop_move(false);
  6530. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6531. SERIAL_PROTOCOL(x_points_num);
  6532. SERIAL_PROTOCOLPGM(",");
  6533. SERIAL_PROTOCOL(y_points_num);
  6534. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6535. SERIAL_PROTOCOL(mesh_home_z_search);
  6536. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6537. SERIAL_PROTOCOL(x_dimension);
  6538. SERIAL_PROTOCOLPGM(",");
  6539. SERIAL_PROTOCOL(y_dimension);
  6540. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6541. while (mesh_point != x_points_num * y_points_num) {
  6542. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6543. iy = mesh_point / x_points_num;
  6544. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6545. float z0 = 0.f;
  6546. current_position[Z_AXIS] = mesh_home_z_search;
  6547. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6548. st_synchronize();
  6549. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6550. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6551. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6552. st_synchronize();
  6553. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6554. break;
  6555. card.closefile();
  6556. }
  6557. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6558. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6559. //strcat(data_wldsd, numb_wldsd);
  6560. //MYSERIAL.println(data_wldsd);
  6561. //delay(1000);
  6562. //delay(3000);
  6563. //t1 = millis();
  6564. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6565. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6566. memset(digit, 0, sizeof(digit));
  6567. //cli();
  6568. digitalWrite(D_REQUIRE, LOW);
  6569. for (int i = 0; i<13; i++)
  6570. {
  6571. //t1 = millis();
  6572. for (int j = 0; j < 4; j++)
  6573. {
  6574. while (digitalRead(D_DATACLOCK) == LOW) {}
  6575. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6576. bitWrite(digit[i], j, digitalRead(D_DATA));
  6577. }
  6578. //t_delay = (millis() - t1);
  6579. //SERIAL_PROTOCOLPGM(" ");
  6580. //SERIAL_PROTOCOL_F(t_delay, 5);
  6581. //SERIAL_PROTOCOLPGM(" ");
  6582. }
  6583. //sei();
  6584. digitalWrite(D_REQUIRE, HIGH);
  6585. mergeOutput[0] = '\0';
  6586. output = 0;
  6587. for (int r = 5; r <= 10; r++) //Merge digits
  6588. {
  6589. sprintf(str, "%d", digit[r]);
  6590. strcat(mergeOutput, str);
  6591. }
  6592. output = atof(mergeOutput);
  6593. if (digit[4] == 8) //Handle sign
  6594. {
  6595. output *= -1;
  6596. }
  6597. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6598. {
  6599. output *= 0.1;
  6600. }
  6601. //output = d_ReadData();
  6602. //row[ix] = current_position[Z_AXIS];
  6603. memset(data_wldsd, 0, sizeof(data_wldsd));
  6604. for (int i = 0; i <3; i++) {
  6605. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6606. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6607. strcat(data_wldsd, numb_wldsd);
  6608. strcat(data_wldsd, ";");
  6609. }
  6610. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6611. dtostrf(output, 8, 5, numb_wldsd);
  6612. strcat(data_wldsd, numb_wldsd);
  6613. //strcat(data_wldsd, ";");
  6614. card.write_command(data_wldsd);
  6615. //row[ix] = d_ReadData();
  6616. row[ix] = output; // current_position[Z_AXIS];
  6617. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6618. for (int i = 0; i < x_points_num; i++) {
  6619. SERIAL_PROTOCOLPGM(" ");
  6620. SERIAL_PROTOCOL_F(row[i], 5);
  6621. }
  6622. SERIAL_PROTOCOLPGM("\n");
  6623. }
  6624. custom_message_state--;
  6625. mesh_point++;
  6626. lcd_update(1);
  6627. }
  6628. card.closefile();
  6629. }
  6630. #endif
  6631. void temp_compensation_start() {
  6632. custom_message = true;
  6633. custom_message_type = 5;
  6634. custom_message_state = PINDA_HEAT_T + 1;
  6635. lcd_update(2);
  6636. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6637. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6638. }
  6639. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6640. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6641. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6642. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6643. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6644. st_synchronize();
  6645. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6646. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6647. delay_keep_alive(1000);
  6648. custom_message_state = PINDA_HEAT_T - i;
  6649. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6650. else lcd_update(1);
  6651. }
  6652. custom_message_type = 0;
  6653. custom_message_state = 0;
  6654. custom_message = false;
  6655. }
  6656. void temp_compensation_apply() {
  6657. int i_add;
  6658. int compensation_value;
  6659. int z_shift = 0;
  6660. float z_shift_mm;
  6661. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6662. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6663. i_add = (target_temperature_bed - 60) / 10;
  6664. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6665. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6666. }else {
  6667. //interpolation
  6668. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6669. }
  6670. SERIAL_PROTOCOLPGM("\n");
  6671. SERIAL_PROTOCOLPGM("Z shift applied:");
  6672. MYSERIAL.print(z_shift_mm);
  6673. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6674. st_synchronize();
  6675. plan_set_z_position(current_position[Z_AXIS]);
  6676. }
  6677. else {
  6678. //we have no temp compensation data
  6679. }
  6680. }
  6681. float temp_comp_interpolation(float inp_temperature) {
  6682. //cubic spline interpolation
  6683. int n, i, j, k;
  6684. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6685. int shift[10];
  6686. int temp_C[10];
  6687. n = 6; //number of measured points
  6688. shift[0] = 0;
  6689. for (i = 0; i < n; i++) {
  6690. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6691. temp_C[i] = 50 + i * 10; //temperature in C
  6692. #ifdef PINDA_THERMISTOR
  6693. temp_C[i] = 35 + i * 5; //temperature in C
  6694. #else
  6695. temp_C[i] = 50 + i * 10; //temperature in C
  6696. #endif
  6697. x[i] = (float)temp_C[i];
  6698. f[i] = (float)shift[i];
  6699. }
  6700. if (inp_temperature < x[0]) return 0;
  6701. for (i = n - 1; i>0; i--) {
  6702. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6703. h[i - 1] = x[i] - x[i - 1];
  6704. }
  6705. //*********** formation of h, s , f matrix **************
  6706. for (i = 1; i<n - 1; i++) {
  6707. m[i][i] = 2 * (h[i - 1] + h[i]);
  6708. if (i != 1) {
  6709. m[i][i - 1] = h[i - 1];
  6710. m[i - 1][i] = h[i - 1];
  6711. }
  6712. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6713. }
  6714. //*********** forward elimination **************
  6715. for (i = 1; i<n - 2; i++) {
  6716. temp = (m[i + 1][i] / m[i][i]);
  6717. for (j = 1; j <= n - 1; j++)
  6718. m[i + 1][j] -= temp*m[i][j];
  6719. }
  6720. //*********** backward substitution *********
  6721. for (i = n - 2; i>0; i--) {
  6722. sum = 0;
  6723. for (j = i; j <= n - 2; j++)
  6724. sum += m[i][j] * s[j];
  6725. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6726. }
  6727. for (i = 0; i<n - 1; i++)
  6728. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6729. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6730. b = s[i] / 2;
  6731. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6732. d = f[i];
  6733. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6734. }
  6735. return sum;
  6736. }
  6737. #ifdef PINDA_THERMISTOR
  6738. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6739. {
  6740. if (!temp_cal_active) return 0;
  6741. if (!calibration_status_pinda()) return 0;
  6742. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6743. }
  6744. #endif //PINDA_THERMISTOR
  6745. void long_pause() //long pause print
  6746. {
  6747. st_synchronize();
  6748. //save currently set parameters to global variables
  6749. saved_feedmultiply = feedmultiply;
  6750. HotendTempBckp = degTargetHotend(active_extruder);
  6751. fanSpeedBckp = fanSpeed;
  6752. start_pause_print = millis();
  6753. //save position
  6754. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6755. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6756. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6757. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6758. //retract
  6759. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6760. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6761. //lift z
  6762. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6763. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6764. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6765. //set nozzle target temperature to 0
  6766. setTargetHotend(0, 0);
  6767. setTargetHotend(0, 1);
  6768. setTargetHotend(0, 2);
  6769. //Move XY to side
  6770. current_position[X_AXIS] = X_PAUSE_POS;
  6771. current_position[Y_AXIS] = Y_PAUSE_POS;
  6772. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6773. // Turn off the print fan
  6774. fanSpeed = 0;
  6775. st_synchronize();
  6776. }
  6777. void serialecho_temperatures() {
  6778. float tt = degHotend(active_extruder);
  6779. SERIAL_PROTOCOLPGM("T:");
  6780. SERIAL_PROTOCOL(tt);
  6781. SERIAL_PROTOCOLPGM(" E:");
  6782. SERIAL_PROTOCOL((int)active_extruder);
  6783. SERIAL_PROTOCOLPGM(" B:");
  6784. SERIAL_PROTOCOL_F(degBed(), 1);
  6785. SERIAL_PROTOCOLLN("");
  6786. }
  6787. extern uint32_t sdpos_atomic;
  6788. #ifdef UVLO_SUPPORT
  6789. void uvlo_()
  6790. {
  6791. unsigned long time_start = millis();
  6792. bool sd_print = card.sdprinting;
  6793. // Conserve power as soon as possible.
  6794. disable_x();
  6795. disable_y();
  6796. disable_e0();
  6797. #ifdef TMC2130
  6798. tmc2130_set_current_h(Z_AXIS, 20);
  6799. tmc2130_set_current_r(Z_AXIS, 20);
  6800. tmc2130_set_current_h(E_AXIS, 20);
  6801. tmc2130_set_current_r(E_AXIS, 20);
  6802. #endif //TMC2130
  6803. // Indicate that the interrupt has been triggered.
  6804. // SERIAL_ECHOLNPGM("UVLO");
  6805. // Read out the current Z motor microstep counter. This will be later used
  6806. // for reaching the zero full step before powering off.
  6807. uint16_t z_microsteps = 0;
  6808. #ifdef TMC2130
  6809. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6810. #endif //TMC2130
  6811. // Calculate the file position, from which to resume this print.
  6812. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6813. {
  6814. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6815. sd_position -= sdlen_planner;
  6816. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6817. sd_position -= sdlen_cmdqueue;
  6818. if (sd_position < 0) sd_position = 0;
  6819. }
  6820. // Backup the feedrate in mm/min.
  6821. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6822. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6823. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6824. // are in action.
  6825. planner_abort_hard();
  6826. // Store the current extruder position.
  6827. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6828. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6829. // Clean the input command queue.
  6830. cmdqueue_reset();
  6831. card.sdprinting = false;
  6832. // card.closefile();
  6833. // Enable stepper driver interrupt to move Z axis.
  6834. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6835. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6836. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6837. sei();
  6838. plan_buffer_line(
  6839. current_position[X_AXIS],
  6840. current_position[Y_AXIS],
  6841. current_position[Z_AXIS],
  6842. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6843. 95, active_extruder);
  6844. st_synchronize();
  6845. disable_e0();
  6846. plan_buffer_line(
  6847. current_position[X_AXIS],
  6848. current_position[Y_AXIS],
  6849. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6850. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6851. 40, active_extruder);
  6852. st_synchronize();
  6853. disable_e0();
  6854. plan_buffer_line(
  6855. current_position[X_AXIS],
  6856. current_position[Y_AXIS],
  6857. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6858. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6859. 40, active_extruder);
  6860. st_synchronize();
  6861. disable_e0();
  6862. disable_z();
  6863. // Move Z up to the next 0th full step.
  6864. // Write the file position.
  6865. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6866. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6867. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6868. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6869. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6870. // Scale the z value to 1u resolution.
  6871. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6872. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6873. }
  6874. // Read out the current Z motor microstep counter. This will be later used
  6875. // for reaching the zero full step before powering off.
  6876. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6877. // Store the current position.
  6878. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6879. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6880. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6881. // Store the current feed rate, temperatures and fan speed.
  6882. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6883. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6884. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6885. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6886. // Finaly store the "power outage" flag.
  6887. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6888. st_synchronize();
  6889. SERIAL_ECHOPGM("stps");
  6890. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  6891. disable_z();
  6892. // Increment power failure counter
  6893. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  6894. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  6895. SERIAL_ECHOLNPGM("UVLO - end");
  6896. MYSERIAL.println(millis() - time_start);
  6897. #if 0
  6898. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6899. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6900. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6901. st_synchronize();
  6902. #endif
  6903. cli();
  6904. volatile unsigned int ppcount = 0;
  6905. SET_OUTPUT(BEEPER);
  6906. WRITE(BEEPER, HIGH);
  6907. for(ppcount = 0; ppcount < 2000; ppcount ++){
  6908. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6909. }
  6910. WRITE(BEEPER, LOW);
  6911. while(1){
  6912. #if 1
  6913. WRITE(BEEPER, LOW);
  6914. for(ppcount = 0; ppcount < 8000; ppcount ++){
  6915. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6916. }
  6917. #endif
  6918. };
  6919. }
  6920. #endif //UVLO_SUPPORT
  6921. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  6922. void setup_fan_interrupt() {
  6923. //INT7
  6924. DDRE &= ~(1 << 7); //input pin
  6925. PORTE &= ~(1 << 7); //no internal pull-up
  6926. //start with sensing rising edge
  6927. EICRB &= ~(1 << 6);
  6928. EICRB |= (1 << 7);
  6929. //enable INT7 interrupt
  6930. EIMSK |= (1 << 7);
  6931. }
  6932. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  6933. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  6934. ISR(INT7_vect) {
  6935. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6936. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6937. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6938. t_fan_rising_edge = millis_nc();
  6939. }
  6940. else { //interrupt was triggered by falling edge
  6941. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6942. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6943. }
  6944. }
  6945. EICRB ^= (1 << 6); //change edge
  6946. }
  6947. #endif
  6948. #ifdef UVLO_SUPPORT
  6949. void setup_uvlo_interrupt() {
  6950. DDRE &= ~(1 << 4); //input pin
  6951. PORTE &= ~(1 << 4); //no internal pull-up
  6952. //sensing falling edge
  6953. EICRB |= (1 << 0);
  6954. EICRB &= ~(1 << 1);
  6955. //enable INT4 interrupt
  6956. EIMSK |= (1 << 4);
  6957. }
  6958. ISR(INT4_vect) {
  6959. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6960. SERIAL_ECHOLNPGM("INT4");
  6961. if (IS_SD_PRINTING) uvlo_();
  6962. }
  6963. void recover_print(uint8_t automatic) {
  6964. char cmd[30];
  6965. lcd_update_enable(true);
  6966. lcd_update(2);
  6967. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6968. recover_machine_state_after_power_panic();
  6969. // Set the target bed and nozzle temperatures.
  6970. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6971. enquecommand(cmd);
  6972. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6973. enquecommand(cmd);
  6974. // Lift the print head, so one may remove the excess priming material.
  6975. if (current_position[Z_AXIS] < 25)
  6976. enquecommand_P(PSTR("G1 Z25 F800"));
  6977. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6978. enquecommand_P(PSTR("G28 X Y"));
  6979. // Set the target bed and nozzle temperatures and wait.
  6980. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6981. enquecommand(cmd);
  6982. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6983. enquecommand(cmd);
  6984. enquecommand_P(PSTR("M83")); //E axis relative mode
  6985. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6986. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6987. if(automatic == 0){
  6988. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6989. }
  6990. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6991. // Mark the power panic status as inactive.
  6992. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6993. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6994. delay_keep_alive(1000);
  6995. }*/
  6996. SERIAL_ECHOPGM("After waiting for temp:");
  6997. SERIAL_ECHOPGM("Current position X_AXIS:");
  6998. MYSERIAL.println(current_position[X_AXIS]);
  6999. SERIAL_ECHOPGM("Current position Y_AXIS:");
  7000. MYSERIAL.println(current_position[Y_AXIS]);
  7001. // Restart the print.
  7002. restore_print_from_eeprom();
  7003. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  7004. MYSERIAL.print(current_position[Z_AXIS]);
  7005. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  7006. MYSERIAL.print(current_position[E_AXIS]);
  7007. }
  7008. void recover_machine_state_after_power_panic()
  7009. {
  7010. char cmd[30];
  7011. // 1) Recover the logical cordinates at the time of the power panic.
  7012. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7013. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7014. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7015. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7016. // The current position after power panic is moved to the next closest 0th full step.
  7017. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7018. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7019. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7020. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7021. sprintf_P(cmd, PSTR("G92 E"));
  7022. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7023. enquecommand(cmd);
  7024. }
  7025. memcpy(destination, current_position, sizeof(destination));
  7026. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7027. print_world_coordinates();
  7028. // 2) Initialize the logical to physical coordinate system transformation.
  7029. world2machine_initialize();
  7030. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7031. mbl.active = false;
  7032. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7033. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7034. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7035. // Scale the z value to 10u resolution.
  7036. int16_t v;
  7037. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7038. if (v != 0)
  7039. mbl.active = true;
  7040. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7041. }
  7042. if (mbl.active)
  7043. mbl.upsample_3x3();
  7044. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7045. // print_mesh_bed_leveling_table();
  7046. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7047. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7048. babystep_load();
  7049. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7050. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7051. // 6) Power up the motors, mark their positions as known.
  7052. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7053. axis_known_position[X_AXIS] = true; enable_x();
  7054. axis_known_position[Y_AXIS] = true; enable_y();
  7055. axis_known_position[Z_AXIS] = true; enable_z();
  7056. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7057. print_physical_coordinates();
  7058. // 7) Recover the target temperatures.
  7059. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7060. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7061. }
  7062. void restore_print_from_eeprom() {
  7063. float x_rec, y_rec, z_pos;
  7064. int feedrate_rec;
  7065. uint8_t fan_speed_rec;
  7066. char cmd[30];
  7067. char* c;
  7068. char filename[13];
  7069. uint8_t depth = 0;
  7070. char dir_name[9];
  7071. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7072. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7073. SERIAL_ECHOPGM("Feedrate:");
  7074. MYSERIAL.println(feedrate_rec);
  7075. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7076. MYSERIAL.println(int(depth));
  7077. for (int i = 0; i < depth; i++) {
  7078. for (int j = 0; j < 8; j++) {
  7079. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7080. }
  7081. dir_name[8] = '\0';
  7082. MYSERIAL.println(dir_name);
  7083. card.chdir(dir_name);
  7084. }
  7085. for (int i = 0; i < 8; i++) {
  7086. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7087. }
  7088. filename[8] = '\0';
  7089. MYSERIAL.print(filename);
  7090. strcat_P(filename, PSTR(".gco"));
  7091. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7092. for (c = &cmd[4]; *c; c++)
  7093. *c = tolower(*c);
  7094. enquecommand(cmd);
  7095. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7096. SERIAL_ECHOPGM("Position read from eeprom:");
  7097. MYSERIAL.println(position);
  7098. // E axis relative mode.
  7099. enquecommand_P(PSTR("M83"));
  7100. // Move to the XY print position in logical coordinates, where the print has been killed.
  7101. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7102. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7103. strcat_P(cmd, PSTR(" F2000"));
  7104. enquecommand(cmd);
  7105. // Move the Z axis down to the print, in logical coordinates.
  7106. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7107. enquecommand(cmd);
  7108. // Unretract.
  7109. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7110. // Set the feedrate saved at the power panic.
  7111. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7112. enquecommand(cmd);
  7113. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7114. {
  7115. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7116. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7117. }
  7118. // Set the fan speed saved at the power panic.
  7119. strcpy_P(cmd, PSTR("M106 S"));
  7120. strcat(cmd, itostr3(int(fan_speed_rec)));
  7121. enquecommand(cmd);
  7122. // Set a position in the file.
  7123. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7124. enquecommand(cmd);
  7125. // Start SD print.
  7126. enquecommand_P(PSTR("M24"));
  7127. }
  7128. #endif //UVLO_SUPPORT
  7129. ////////////////////////////////////////////////////////////////////////////////
  7130. // new save/restore printing
  7131. //extern uint32_t sdpos_atomic;
  7132. bool saved_printing = false;
  7133. uint32_t saved_sdpos = 0;
  7134. float saved_pos[4] = {0, 0, 0, 0};
  7135. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  7136. float saved_feedrate2 = 0;
  7137. uint8_t saved_active_extruder = 0;
  7138. bool saved_extruder_under_pressure = false;
  7139. void stop_and_save_print_to_ram(float z_move, float e_move)
  7140. {
  7141. if (saved_printing) return;
  7142. cli();
  7143. unsigned char nplanner_blocks = number_of_blocks();
  7144. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7145. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7146. saved_sdpos -= sdlen_planner;
  7147. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7148. saved_sdpos -= sdlen_cmdqueue;
  7149. #if 0
  7150. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7151. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7152. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7153. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7154. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7155. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7156. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7157. {
  7158. card.setIndex(saved_sdpos);
  7159. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7160. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7161. MYSERIAL.print(char(card.get()));
  7162. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7163. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7164. MYSERIAL.print(char(card.get()));
  7165. SERIAL_ECHOLNPGM("End of command buffer");
  7166. }
  7167. {
  7168. // Print the content of the planner buffer, line by line:
  7169. card.setIndex(saved_sdpos);
  7170. int8_t iline = 0;
  7171. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7172. SERIAL_ECHOPGM("Planner line (from file): ");
  7173. MYSERIAL.print(int(iline), DEC);
  7174. SERIAL_ECHOPGM(", length: ");
  7175. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7176. SERIAL_ECHOPGM(", steps: (");
  7177. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7178. SERIAL_ECHOPGM(",");
  7179. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7180. SERIAL_ECHOPGM(",");
  7181. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7182. SERIAL_ECHOPGM(",");
  7183. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7184. SERIAL_ECHOPGM("), events: ");
  7185. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7186. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7187. MYSERIAL.print(char(card.get()));
  7188. }
  7189. }
  7190. {
  7191. // Print the content of the command buffer, line by line:
  7192. int8_t iline = 0;
  7193. union {
  7194. struct {
  7195. char lo;
  7196. char hi;
  7197. } lohi;
  7198. uint16_t value;
  7199. } sdlen_single;
  7200. int _bufindr = bufindr;
  7201. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7202. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7203. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7204. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7205. }
  7206. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7207. MYSERIAL.print(int(iline), DEC);
  7208. SERIAL_ECHOPGM(", type: ");
  7209. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7210. SERIAL_ECHOPGM(", len: ");
  7211. MYSERIAL.println(sdlen_single.value, DEC);
  7212. // Print the content of the buffer line.
  7213. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7214. SERIAL_ECHOPGM("Buffer line (from file): ");
  7215. MYSERIAL.print(int(iline), DEC);
  7216. MYSERIAL.println(int(iline), DEC);
  7217. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7218. MYSERIAL.print(char(card.get()));
  7219. if (-- _buflen == 0)
  7220. break;
  7221. // First skip the current command ID and iterate up to the end of the string.
  7222. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7223. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7224. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7225. // If the end of the buffer was empty,
  7226. if (_bufindr == sizeof(cmdbuffer)) {
  7227. // skip to the start and find the nonzero command.
  7228. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7229. }
  7230. }
  7231. }
  7232. #endif
  7233. #if 0
  7234. saved_feedrate2 = feedrate; //save feedrate
  7235. #else
  7236. // Try to deduce the feedrate from the first block of the planner.
  7237. // Speed is in mm/min.
  7238. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7239. #endif
  7240. planner_abort_hard(); //abort printing
  7241. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7242. saved_active_extruder = active_extruder; //save active_extruder
  7243. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7244. cmdqueue_reset(); //empty cmdqueue
  7245. card.sdprinting = false;
  7246. // card.closefile();
  7247. saved_printing = true;
  7248. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7249. st_reset_timer();
  7250. sei();
  7251. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7252. #if 1
  7253. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7254. char buf[48];
  7255. strcpy_P(buf, PSTR("G1 Z"));
  7256. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7257. strcat_P(buf, PSTR(" E"));
  7258. // Relative extrusion
  7259. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7260. strcat_P(buf, PSTR(" F"));
  7261. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7262. // At this point the command queue is empty.
  7263. enquecommand(buf, false);
  7264. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7265. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7266. repeatcommand_front();
  7267. #else
  7268. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7269. st_synchronize(); //wait moving
  7270. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7271. memcpy(destination, current_position, sizeof(destination));
  7272. #endif
  7273. }
  7274. }
  7275. void restore_print_from_ram_and_continue(float e_move)
  7276. {
  7277. if (!saved_printing) return;
  7278. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7279. // current_position[axis] = st_get_position_mm(axis);
  7280. active_extruder = saved_active_extruder; //restore active_extruder
  7281. feedrate = saved_feedrate2; //restore feedrate
  7282. float e = saved_pos[E_AXIS] - e_move;
  7283. plan_set_e_position(e);
  7284. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7285. st_synchronize();
  7286. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7287. memcpy(destination, current_position, sizeof(destination));
  7288. card.setIndex(saved_sdpos);
  7289. sdpos_atomic = saved_sdpos;
  7290. card.sdprinting = true;
  7291. saved_printing = false;
  7292. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7293. }
  7294. void print_world_coordinates()
  7295. {
  7296. SERIAL_ECHOPGM("world coordinates: (");
  7297. MYSERIAL.print(current_position[X_AXIS], 3);
  7298. SERIAL_ECHOPGM(", ");
  7299. MYSERIAL.print(current_position[Y_AXIS], 3);
  7300. SERIAL_ECHOPGM(", ");
  7301. MYSERIAL.print(current_position[Z_AXIS], 3);
  7302. SERIAL_ECHOLNPGM(")");
  7303. }
  7304. void print_physical_coordinates()
  7305. {
  7306. SERIAL_ECHOPGM("physical coordinates: (");
  7307. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7308. SERIAL_ECHOPGM(", ");
  7309. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7310. SERIAL_ECHOPGM(", ");
  7311. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7312. SERIAL_ECHOLNPGM(")");
  7313. }
  7314. void print_mesh_bed_leveling_table()
  7315. {
  7316. SERIAL_ECHOPGM("mesh bed leveling: ");
  7317. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7318. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7319. MYSERIAL.print(mbl.z_values[y][x], 3);
  7320. SERIAL_ECHOPGM(" ");
  7321. }
  7322. SERIAL_ECHOLNPGM("");
  7323. }
  7324. #define FIL_LOAD_LENGTH 60
  7325. void extr_unload2() { //unloads filament
  7326. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7327. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7328. // int8_t SilentMode;
  7329. uint8_t snmm_extruder = 0;
  7330. if (degHotend0() > EXTRUDE_MINTEMP) {
  7331. lcd_implementation_clear();
  7332. lcd_display_message_fullscreen_P(PSTR(""));
  7333. max_feedrate[E_AXIS] = 50;
  7334. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  7335. // lcd.print(" ");
  7336. // lcd.print(snmm_extruder + 1);
  7337. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  7338. if (current_position[Z_AXIS] < 15) {
  7339. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  7340. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  7341. }
  7342. current_position[E_AXIS] += 10; //extrusion
  7343. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  7344. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  7345. if (current_temperature[0] < 230) { //PLA & all other filaments
  7346. current_position[E_AXIS] += 5.4;
  7347. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  7348. current_position[E_AXIS] += 3.2;
  7349. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7350. current_position[E_AXIS] += 3;
  7351. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  7352. }
  7353. else { //ABS
  7354. current_position[E_AXIS] += 3.1;
  7355. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  7356. current_position[E_AXIS] += 3.1;
  7357. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  7358. current_position[E_AXIS] += 4;
  7359. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7360. /*current_position[X_AXIS] += 23; //delay
  7361. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  7362. current_position[X_AXIS] -= 23; //delay
  7363. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  7364. delay_keep_alive(4700);
  7365. }
  7366. max_feedrate[E_AXIS] = 80;
  7367. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7368. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7369. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7370. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7371. st_synchronize();
  7372. //digipot_init();
  7373. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  7374. // else digipot_current(2, tmp_motor_loud[2]);
  7375. lcd_update_enable(true);
  7376. // lcd_return_to_status();
  7377. max_feedrate[E_AXIS] = 50;
  7378. }
  7379. else {
  7380. lcd_implementation_clear();
  7381. lcd.setCursor(0, 0);
  7382. lcd_printPGM(MSG_ERROR);
  7383. lcd.setCursor(0, 2);
  7384. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  7385. delay(2000);
  7386. lcd_implementation_clear();
  7387. }
  7388. // lcd_return_to_status();
  7389. }