Marlin_main.cpp 299 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "ultralcd.h"
  57. #include "Configuration_prusa.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef PAT9125
  80. #include "pat9125.h"
  81. #include "fsensor.h"
  82. #endif //PAT9125
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #endif //W25X20CL
  89. #ifdef BLINKM
  90. #include "BlinkM.h"
  91. #include "Wire.h"
  92. #endif
  93. #ifdef ULTRALCD
  94. #include "ultralcd.h"
  95. #endif
  96. #if NUM_SERVOS > 0
  97. #include "Servo.h"
  98. #endif
  99. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  100. #include <SPI.h>
  101. #endif
  102. #define VERSION_STRING "1.0.2"
  103. #include "ultralcd.h"
  104. #include "cmdqueue.h"
  105. // Macros for bit masks
  106. #define BIT(b) (1<<(b))
  107. #define TEST(n,b) (((n)&BIT(b))!=0)
  108. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  109. //Macro for print fan speed
  110. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  111. #define PRINTING_TYPE_SD 0
  112. #define PRINTING_TYPE_USB 1
  113. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  114. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  115. //Implemented Codes
  116. //-------------------
  117. // PRUSA CODES
  118. // P F - Returns FW versions
  119. // P R - Returns revision of printer
  120. // G0 -> G1
  121. // G1 - Coordinated Movement X Y Z E
  122. // G2 - CW ARC
  123. // G3 - CCW ARC
  124. // G4 - Dwell S<seconds> or P<milliseconds>
  125. // G10 - retract filament according to settings of M207
  126. // G11 - retract recover filament according to settings of M208
  127. // G28 - Home all Axis
  128. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  129. // G30 - Single Z Probe, probes bed at current XY location.
  130. // G31 - Dock sled (Z_PROBE_SLED only)
  131. // G32 - Undock sled (Z_PROBE_SLED only)
  132. // G80 - Automatic mesh bed leveling
  133. // G81 - Print bed profile
  134. // G90 - Use Absolute Coordinates
  135. // G91 - Use Relative Coordinates
  136. // G92 - Set current position to coordinates given
  137. // M Codes
  138. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  139. // M1 - Same as M0
  140. // M17 - Enable/Power all stepper motors
  141. // M18 - Disable all stepper motors; same as M84
  142. // M20 - List SD card
  143. // M21 - Init SD card
  144. // M22 - Release SD card
  145. // M23 - Select SD file (M23 filename.g)
  146. // M24 - Start/resume SD print
  147. // M25 - Pause SD print
  148. // M26 - Set SD position in bytes (M26 S12345)
  149. // M27 - Report SD print status
  150. // M28 - Start SD write (M28 filename.g)
  151. // M29 - Stop SD write
  152. // M30 - Delete file from SD (M30 filename.g)
  153. // M31 - Output time since last M109 or SD card start to serial
  154. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  155. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  156. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  157. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  158. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  159. // M73 - Show percent done and print time remaining
  160. // M80 - Turn on Power Supply
  161. // M81 - Turn off Power Supply
  162. // M82 - Set E codes absolute (default)
  163. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  164. // M84 - Disable steppers until next move,
  165. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  166. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  167. // M92 - Set axis_steps_per_unit - same syntax as G92
  168. // M104 - Set extruder target temp
  169. // M105 - Read current temp
  170. // M106 - Fan on
  171. // M107 - Fan off
  172. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  173. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  174. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  175. // M112 - Emergency stop
  176. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  177. // M114 - Output current position to serial port
  178. // M115 - Capabilities string
  179. // M117 - display message
  180. // M119 - Output Endstop status to serial port
  181. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  182. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  183. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  184. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  185. // M140 - Set bed target temp
  186. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  187. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  188. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  189. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  190. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  191. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  192. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  193. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  194. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  195. // M206 - set additional homing offset
  196. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  197. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  198. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  199. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  200. // M220 S<factor in percent>- set speed factor override percentage
  201. // M221 S<factor in percent>- set extrude factor override percentage
  202. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  203. // M240 - Trigger a camera to take a photograph
  204. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  205. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  206. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  207. // M301 - Set PID parameters P I and D
  208. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  209. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  210. // M304 - Set bed PID parameters P I and D
  211. // M400 - Finish all moves
  212. // M401 - Lower z-probe if present
  213. // M402 - Raise z-probe if present
  214. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  215. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  216. // M406 - Turn off Filament Sensor extrusion control
  217. // M407 - Displays measured filament diameter
  218. // M500 - stores parameters in EEPROM
  219. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  220. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  221. // M503 - print the current settings (from memory not from EEPROM)
  222. // M509 - force language selection on next restart
  223. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  224. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  225. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  226. // M860 - Wait for PINDA thermistor to reach target temperature.
  227. // M861 - Set / Read PINDA temperature compensation offsets
  228. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  229. // M907 - Set digital trimpot motor current using axis codes.
  230. // M908 - Control digital trimpot directly.
  231. // M350 - Set microstepping mode.
  232. // M351 - Toggle MS1 MS2 pins directly.
  233. // M928 - Start SD logging (M928 filename.g) - ended by M29
  234. // M999 - Restart after being stopped by error
  235. //Stepper Movement Variables
  236. //===========================================================================
  237. //=============================imported variables============================
  238. //===========================================================================
  239. //===========================================================================
  240. //=============================public variables=============================
  241. //===========================================================================
  242. #ifdef SDSUPPORT
  243. CardReader card;
  244. #endif
  245. unsigned long PingTime = millis();
  246. unsigned long NcTime;
  247. union Data
  248. {
  249. byte b[2];
  250. int value;
  251. };
  252. float homing_feedrate[] = HOMING_FEEDRATE;
  253. // Currently only the extruder axis may be switched to a relative mode.
  254. // Other axes are always absolute or relative based on the common relative_mode flag.
  255. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  256. int feedmultiply=100; //100->1 200->2
  257. int saved_feedmultiply;
  258. int extrudemultiply=100; //100->1 200->2
  259. int extruder_multiply[EXTRUDERS] = {100
  260. #if EXTRUDERS > 1
  261. , 100
  262. #if EXTRUDERS > 2
  263. , 100
  264. #endif
  265. #endif
  266. };
  267. int bowden_length[4] = {385, 385, 385, 385};
  268. bool is_usb_printing = false;
  269. bool homing_flag = false;
  270. bool temp_cal_active = false;
  271. unsigned long kicktime = millis()+100000;
  272. unsigned int usb_printing_counter;
  273. int lcd_change_fil_state = 0;
  274. int feedmultiplyBckp = 100;
  275. float HotendTempBckp = 0;
  276. int fanSpeedBckp = 0;
  277. float pause_lastpos[4];
  278. unsigned long pause_time = 0;
  279. unsigned long start_pause_print = millis();
  280. unsigned long t_fan_rising_edge = millis();
  281. static LongTimer safetyTimer;
  282. static LongTimer crashDetTimer;
  283. //unsigned long load_filament_time;
  284. bool mesh_bed_leveling_flag = false;
  285. bool mesh_bed_run_from_menu = false;
  286. int8_t FarmMode = 0;
  287. bool prusa_sd_card_upload = false;
  288. unsigned int status_number = 0;
  289. unsigned long total_filament_used;
  290. unsigned int heating_status;
  291. unsigned int heating_status_counter;
  292. bool custom_message;
  293. bool loading_flag = false;
  294. unsigned int custom_message_type;
  295. unsigned int custom_message_state;
  296. char snmm_filaments_used = 0;
  297. bool fan_state[2];
  298. int fan_edge_counter[2];
  299. int fan_speed[2];
  300. char dir_names[3][9];
  301. bool sortAlpha = false;
  302. bool volumetric_enabled = false;
  303. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  304. #if EXTRUDERS > 1
  305. , DEFAULT_NOMINAL_FILAMENT_DIA
  306. #if EXTRUDERS > 2
  307. , DEFAULT_NOMINAL_FILAMENT_DIA
  308. #endif
  309. #endif
  310. };
  311. float extruder_multiplier[EXTRUDERS] = {1.0
  312. #if EXTRUDERS > 1
  313. , 1.0
  314. #if EXTRUDERS > 2
  315. , 1.0
  316. #endif
  317. #endif
  318. };
  319. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  320. //shortcuts for more readable code
  321. #define _x current_position[X_AXIS]
  322. #define _y current_position[Y_AXIS]
  323. #define _z current_position[Z_AXIS]
  324. #define _e current_position[E_AXIS]
  325. float add_homing[3]={0,0,0};
  326. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  327. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  328. bool axis_known_position[3] = {false, false, false};
  329. float zprobe_zoffset;
  330. // Extruder offset
  331. #if EXTRUDERS > 1
  332. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  333. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  334. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  335. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  336. #endif
  337. };
  338. #endif
  339. uint8_t active_extruder = 0;
  340. int fanSpeed=0;
  341. #ifdef FWRETRACT
  342. bool autoretract_enabled=false;
  343. bool retracted[EXTRUDERS]={false
  344. #if EXTRUDERS > 1
  345. , false
  346. #if EXTRUDERS > 2
  347. , false
  348. #endif
  349. #endif
  350. };
  351. bool retracted_swap[EXTRUDERS]={false
  352. #if EXTRUDERS > 1
  353. , false
  354. #if EXTRUDERS > 2
  355. , false
  356. #endif
  357. #endif
  358. };
  359. float retract_length = RETRACT_LENGTH;
  360. float retract_length_swap = RETRACT_LENGTH_SWAP;
  361. float retract_feedrate = RETRACT_FEEDRATE;
  362. float retract_zlift = RETRACT_ZLIFT;
  363. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  364. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  365. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  366. #endif
  367. #ifdef ULTIPANEL
  368. #ifdef PS_DEFAULT_OFF
  369. bool powersupply = false;
  370. #else
  371. bool powersupply = true;
  372. #endif
  373. #endif
  374. bool cancel_heatup = false ;
  375. #ifdef HOST_KEEPALIVE_FEATURE
  376. int busy_state = NOT_BUSY;
  377. static long prev_busy_signal_ms = -1;
  378. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  379. #else
  380. #define host_keepalive();
  381. #define KEEPALIVE_STATE(n);
  382. #endif
  383. const char errormagic[] PROGMEM = "Error:";
  384. const char echomagic[] PROGMEM = "echo:";
  385. bool no_response = false;
  386. uint8_t important_status;
  387. uint8_t saved_filament_type;
  388. // save/restore printing
  389. bool saved_printing = false;
  390. // storing estimated time to end of print counted by slicer
  391. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  392. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  393. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  394. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  395. //===========================================================================
  396. //=============================Private Variables=============================
  397. //===========================================================================
  398. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  399. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  400. static float delta[3] = {0.0, 0.0, 0.0};
  401. // For tracing an arc
  402. static float offset[3] = {0.0, 0.0, 0.0};
  403. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  404. // Determines Absolute or Relative Coordinates.
  405. // Also there is bool axis_relative_modes[] per axis flag.
  406. static bool relative_mode = false;
  407. #ifndef _DISABLE_M42_M226
  408. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  409. #endif //_DISABLE_M42_M226
  410. //static float tt = 0;
  411. //static float bt = 0;
  412. //Inactivity shutdown variables
  413. static unsigned long previous_millis_cmd = 0;
  414. unsigned long max_inactive_time = 0;
  415. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  416. unsigned long starttime=0;
  417. unsigned long stoptime=0;
  418. unsigned long _usb_timer = 0;
  419. static uint8_t tmp_extruder;
  420. bool extruder_under_pressure = true;
  421. bool Stopped=false;
  422. #if NUM_SERVOS > 0
  423. Servo servos[NUM_SERVOS];
  424. #endif
  425. bool CooldownNoWait = true;
  426. bool target_direction;
  427. //Insert variables if CHDK is defined
  428. #ifdef CHDK
  429. unsigned long chdkHigh = 0;
  430. boolean chdkActive = false;
  431. #endif
  432. // save/restore printing
  433. static uint32_t saved_sdpos = 0;
  434. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  435. static float saved_pos[4] = { 0, 0, 0, 0 };
  436. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  437. static float saved_feedrate2 = 0;
  438. static uint8_t saved_active_extruder = 0;
  439. static bool saved_extruder_under_pressure = false;
  440. //===========================================================================
  441. //=============================Routines======================================
  442. //===========================================================================
  443. void get_arc_coordinates();
  444. bool setTargetedHotend(int code);
  445. void serial_echopair_P(const char *s_P, float v)
  446. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  447. void serial_echopair_P(const char *s_P, double v)
  448. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  449. void serial_echopair_P(const char *s_P, unsigned long v)
  450. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  451. #ifdef SDSUPPORT
  452. #include "SdFatUtil.h"
  453. int freeMemory() { return SdFatUtil::FreeRam(); }
  454. #else
  455. extern "C" {
  456. extern unsigned int __bss_end;
  457. extern unsigned int __heap_start;
  458. extern void *__brkval;
  459. int freeMemory() {
  460. int free_memory;
  461. if ((int)__brkval == 0)
  462. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  463. else
  464. free_memory = ((int)&free_memory) - ((int)__brkval);
  465. return free_memory;
  466. }
  467. }
  468. #endif //!SDSUPPORT
  469. void setup_killpin()
  470. {
  471. #if defined(KILL_PIN) && KILL_PIN > -1
  472. SET_INPUT(KILL_PIN);
  473. WRITE(KILL_PIN,HIGH);
  474. #endif
  475. }
  476. // Set home pin
  477. void setup_homepin(void)
  478. {
  479. #if defined(HOME_PIN) && HOME_PIN > -1
  480. SET_INPUT(HOME_PIN);
  481. WRITE(HOME_PIN,HIGH);
  482. #endif
  483. }
  484. void setup_photpin()
  485. {
  486. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  487. SET_OUTPUT(PHOTOGRAPH_PIN);
  488. WRITE(PHOTOGRAPH_PIN, LOW);
  489. #endif
  490. }
  491. void setup_powerhold()
  492. {
  493. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  494. SET_OUTPUT(SUICIDE_PIN);
  495. WRITE(SUICIDE_PIN, HIGH);
  496. #endif
  497. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  498. SET_OUTPUT(PS_ON_PIN);
  499. #if defined(PS_DEFAULT_OFF)
  500. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  501. #else
  502. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  503. #endif
  504. #endif
  505. }
  506. void suicide()
  507. {
  508. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  509. SET_OUTPUT(SUICIDE_PIN);
  510. WRITE(SUICIDE_PIN, LOW);
  511. #endif
  512. }
  513. void servo_init()
  514. {
  515. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  516. servos[0].attach(SERVO0_PIN);
  517. #endif
  518. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  519. servos[1].attach(SERVO1_PIN);
  520. #endif
  521. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  522. servos[2].attach(SERVO2_PIN);
  523. #endif
  524. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  525. servos[3].attach(SERVO3_PIN);
  526. #endif
  527. #if (NUM_SERVOS >= 5)
  528. #error "TODO: enter initalisation code for more servos"
  529. #endif
  530. }
  531. void stop_and_save_print_to_ram(float z_move, float e_move);
  532. void restore_print_from_ram_and_continue(float e_move);
  533. bool fans_check_enabled = true;
  534. bool filament_autoload_enabled = true;
  535. #ifdef TMC2130
  536. extern int8_t CrashDetectMenu;
  537. void crashdet_enable()
  538. {
  539. tmc2130_sg_stop_on_crash = true;
  540. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  541. CrashDetectMenu = 1;
  542. }
  543. void crashdet_disable()
  544. {
  545. tmc2130_sg_stop_on_crash = false;
  546. tmc2130_sg_crash = 0;
  547. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  548. CrashDetectMenu = 0;
  549. }
  550. void crashdet_stop_and_save_print()
  551. {
  552. stop_and_save_print_to_ram(10, -2); //XY - no change, Z 10mm up, E -2mm retract
  553. }
  554. void crashdet_restore_print_and_continue()
  555. {
  556. restore_print_from_ram_and_continue(2); //XYZ = orig, E +2mm unretract
  557. // babystep_apply();
  558. }
  559. void crashdet_stop_and_save_print2()
  560. {
  561. cli();
  562. planner_abort_hard(); //abort printing
  563. cmdqueue_reset(); //empty cmdqueue
  564. card.sdprinting = false;
  565. card.closefile();
  566. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  567. st_reset_timer();
  568. sei();
  569. }
  570. void crashdet_detected(uint8_t mask)
  571. {
  572. // printf("CRASH_DETECTED");
  573. /* while (!is_buffer_empty())
  574. {
  575. process_commands();
  576. cmdqueue_pop_front();
  577. }*/
  578. st_synchronize();
  579. static uint8_t crashDet_counter = 0;
  580. bool automatic_recovery_after_crash = true;
  581. if (crashDet_counter++ == 0) {
  582. crashDetTimer.start();
  583. }
  584. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  585. crashDetTimer.stop();
  586. crashDet_counter = 0;
  587. }
  588. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  589. automatic_recovery_after_crash = false;
  590. crashDetTimer.stop();
  591. crashDet_counter = 0;
  592. }
  593. else {
  594. crashDetTimer.start();
  595. }
  596. lcd_update_enable(true);
  597. lcd_implementation_clear();
  598. lcd_update(2);
  599. if (mask & X_AXIS_MASK)
  600. {
  601. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  602. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  603. }
  604. if (mask & Y_AXIS_MASK)
  605. {
  606. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  607. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  608. }
  609. lcd_update_enable(true);
  610. lcd_update(2);
  611. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  612. gcode_G28(true, true, false, false); //home X and Y
  613. st_synchronize();
  614. if (automatic_recovery_after_crash) {
  615. enquecommand_P(PSTR("CRASH_RECOVER"));
  616. }else{
  617. HotendTempBckp = degTargetHotend(active_extruder);
  618. setTargetHotend(0, active_extruder);
  619. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  620. lcd_update_enable(true);
  621. if (yesno)
  622. {
  623. char cmd1[10];
  624. strcpy(cmd1, "M109 S");
  625. strcat(cmd1, ftostr3(HotendTempBckp));
  626. enquecommand(cmd1);
  627. enquecommand_P(PSTR("CRASH_RECOVER"));
  628. }
  629. else
  630. {
  631. enquecommand_P(PSTR("CRASH_CANCEL"));
  632. }
  633. }
  634. }
  635. void crashdet_recover()
  636. {
  637. crashdet_restore_print_and_continue();
  638. tmc2130_sg_stop_on_crash = true;
  639. }
  640. void crashdet_cancel()
  641. {
  642. tmc2130_sg_stop_on_crash = true;
  643. if (saved_printing_type == PRINTING_TYPE_SD) {
  644. lcd_print_stop();
  645. }else if(saved_printing_type == PRINTING_TYPE_USB){
  646. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  647. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  648. }
  649. }
  650. #endif //TMC2130
  651. void failstats_reset_print()
  652. {
  653. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  654. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  655. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  656. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  657. }
  658. #ifdef MESH_BED_LEVELING
  659. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  660. #endif
  661. // Factory reset function
  662. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  663. // Level input parameter sets depth of reset
  664. // Quiet parameter masks all waitings for user interact.
  665. int er_progress = 0;
  666. void factory_reset(char level, bool quiet)
  667. {
  668. lcd_implementation_clear();
  669. int cursor_pos = 0;
  670. switch (level) {
  671. // Level 0: Language reset
  672. case 0:
  673. WRITE(BEEPER, HIGH);
  674. _delay_ms(100);
  675. WRITE(BEEPER, LOW);
  676. lang_reset();
  677. break;
  678. //Level 1: Reset statistics
  679. case 1:
  680. WRITE(BEEPER, HIGH);
  681. _delay_ms(100);
  682. WRITE(BEEPER, LOW);
  683. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  684. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  685. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  686. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  687. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  688. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  689. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  690. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  691. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  692. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  693. lcd_menu_statistics();
  694. break;
  695. // Level 2: Prepare for shipping
  696. case 2:
  697. //lcd_printPGM(PSTR("Factory RESET"));
  698. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  699. // Force language selection at the next boot up.
  700. lang_reset();
  701. // Force the "Follow calibration flow" message at the next boot up.
  702. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  703. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  704. farm_no = 0;
  705. farm_mode = false;
  706. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  707. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  708. WRITE(BEEPER, HIGH);
  709. _delay_ms(100);
  710. WRITE(BEEPER, LOW);
  711. //_delay_ms(2000);
  712. break;
  713. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  714. case 3:
  715. lcd_printPGM(PSTR("Factory RESET"));
  716. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  717. WRITE(BEEPER, HIGH);
  718. _delay_ms(100);
  719. WRITE(BEEPER, LOW);
  720. er_progress = 0;
  721. lcd_print_at_PGM(3, 3, PSTR(" "));
  722. lcd_implementation_print_at(3, 3, er_progress);
  723. // Erase EEPROM
  724. for (int i = 0; i < 4096; i++) {
  725. eeprom_write_byte((uint8_t*)i, 0xFF);
  726. if (i % 41 == 0) {
  727. er_progress++;
  728. lcd_print_at_PGM(3, 3, PSTR(" "));
  729. lcd_implementation_print_at(3, 3, er_progress);
  730. lcd_printPGM(PSTR("%"));
  731. }
  732. }
  733. break;
  734. case 4:
  735. bowden_menu();
  736. break;
  737. default:
  738. break;
  739. }
  740. }
  741. #include "LiquidCrystal_Prusa.h"
  742. extern LiquidCrystal_Prusa lcd;
  743. FILE _lcdout = {0};
  744. int lcd_putchar(char c, FILE *stream)
  745. {
  746. lcd.write(c);
  747. return 0;
  748. }
  749. FILE _uartout = {0};
  750. int uart_putchar(char c, FILE *stream)
  751. {
  752. MYSERIAL.write(c);
  753. return 0;
  754. }
  755. void lcd_splash()
  756. {
  757. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  758. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  759. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  760. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  761. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  762. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  763. }
  764. void factory_reset()
  765. {
  766. KEEPALIVE_STATE(PAUSED_FOR_USER);
  767. if (!READ(BTN_ENC))
  768. {
  769. _delay_ms(1000);
  770. if (!READ(BTN_ENC))
  771. {
  772. lcd_implementation_clear();
  773. lcd_printPGM(PSTR("Factory RESET"));
  774. SET_OUTPUT(BEEPER);
  775. WRITE(BEEPER, HIGH);
  776. while (!READ(BTN_ENC));
  777. WRITE(BEEPER, LOW);
  778. _delay_ms(2000);
  779. char level = reset_menu();
  780. factory_reset(level, false);
  781. switch (level) {
  782. case 0: _delay_ms(0); break;
  783. case 1: _delay_ms(0); break;
  784. case 2: _delay_ms(0); break;
  785. case 3: _delay_ms(0); break;
  786. }
  787. // _delay_ms(100);
  788. /*
  789. #ifdef MESH_BED_LEVELING
  790. _delay_ms(2000);
  791. if (!READ(BTN_ENC))
  792. {
  793. WRITE(BEEPER, HIGH);
  794. _delay_ms(100);
  795. WRITE(BEEPER, LOW);
  796. _delay_ms(200);
  797. WRITE(BEEPER, HIGH);
  798. _delay_ms(100);
  799. WRITE(BEEPER, LOW);
  800. int _z = 0;
  801. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  802. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  803. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  804. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  805. }
  806. else
  807. {
  808. WRITE(BEEPER, HIGH);
  809. _delay_ms(100);
  810. WRITE(BEEPER, LOW);
  811. }
  812. #endif // mesh */
  813. }
  814. }
  815. else
  816. {
  817. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  818. }
  819. KEEPALIVE_STATE(IN_HANDLER);
  820. }
  821. void show_fw_version_warnings() {
  822. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  823. switch (FW_DEV_VERSION) {
  824. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  825. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  826. case(FW_VERSION_DEVEL):
  827. case(FW_VERSION_DEBUG):
  828. lcd_update_enable(false);
  829. lcd_implementation_clear();
  830. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  831. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  832. #else
  833. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  834. #endif
  835. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  836. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  837. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  838. lcd_wait_for_click();
  839. break;
  840. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  841. }
  842. lcd_update_enable(true);
  843. }
  844. uint8_t check_printer_version()
  845. {
  846. uint8_t version_changed = 0;
  847. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  848. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  849. if (printer_type != PRINTER_TYPE) {
  850. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  851. else version_changed |= 0b10;
  852. }
  853. if (motherboard != MOTHERBOARD) {
  854. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  855. else version_changed |= 0b01;
  856. }
  857. return version_changed;
  858. }
  859. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  860. {
  861. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  862. }
  863. #if (LANG_MODE != 0) //secondary language support
  864. #ifdef W25X20CL
  865. #include "bootapp.h" //bootloader support
  866. // language update from external flash
  867. #define LANGBOOT_BLOCKSIZE 0x1000
  868. #define LANGBOOT_RAMBUFFER 0x0800
  869. void update_sec_lang_from_external_flash()
  870. {
  871. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  872. {
  873. uint8_t lang = boot_reserved >> 4;
  874. uint8_t state = boot_reserved & 0xf;
  875. lang_table_header_t header;
  876. uint32_t src_addr;
  877. if (lang_get_header(lang, &header, &src_addr))
  878. {
  879. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  880. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  881. delay(100);
  882. boot_reserved = (state + 1) | (lang << 4);
  883. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  884. {
  885. cli();
  886. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  887. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  888. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  889. if (state == 0)
  890. {
  891. //TODO - check header integrity
  892. }
  893. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  894. }
  895. else
  896. {
  897. //TODO - check sec lang data integrity
  898. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  899. }
  900. }
  901. }
  902. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  903. }
  904. #ifdef DEBUG_W25X20CL
  905. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  906. {
  907. lang_table_header_t header;
  908. uint8_t count = 0;
  909. uint32_t addr = 0x00000;
  910. while (1)
  911. {
  912. printf_P(_n("LANGTABLE%d:"), count);
  913. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  914. if (header.magic != LANG_MAGIC)
  915. {
  916. printf_P(_n("NG!\n"));
  917. break;
  918. }
  919. printf_P(_n("OK\n"));
  920. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  921. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  922. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  923. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  924. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  925. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), header.reserved1);
  926. addr += header.size;
  927. codes[count] = header.code;
  928. count ++;
  929. }
  930. return count;
  931. }
  932. void list_sec_lang_from_external_flash()
  933. {
  934. uint16_t codes[8];
  935. uint8_t count = lang_xflash_enum_codes(codes);
  936. printf_P(_n("XFlash lang count = %hhd\n"), count);
  937. }
  938. #endif //DEBUG_W25X20CL
  939. #endif //W25X20CL
  940. #endif //(LANG_MODE != 0)
  941. // "Setup" function is called by the Arduino framework on startup.
  942. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  943. // are initialized by the main() routine provided by the Arduino framework.
  944. void setup()
  945. {
  946. lcd_init();
  947. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  948. spi_init();
  949. lcd_splash();
  950. #if (LANG_MODE != 0) //secondary language support
  951. #ifdef W25X20CL
  952. if (w25x20cl_init())
  953. update_sec_lang_from_external_flash();
  954. else
  955. kill(_i("External SPI flash W25X20CL not responding."));
  956. #endif //W25X20CL
  957. #endif //(LANG_MODE != 0)
  958. setup_killpin();
  959. setup_powerhold();
  960. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  961. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  962. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  963. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  964. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  965. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  966. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  967. if (farm_mode)
  968. {
  969. no_response = true; //we need confirmation by recieving PRUSA thx
  970. important_status = 8;
  971. prusa_statistics(8);
  972. selectedSerialPort = 1;
  973. }
  974. MYSERIAL.begin(BAUDRATE);
  975. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  976. stdout = uartout;
  977. SERIAL_PROTOCOLLNPGM("start");
  978. SERIAL_ECHO_START;
  979. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  980. #ifdef DEBUG_SEC_LANG
  981. lang_table_header_t header;
  982. uint32_t src_addr = 0x00000;
  983. if (lang_get_header(3, &header, &src_addr))
  984. {
  985. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  986. #define LT_PRINT_TEST 2
  987. // flash usage
  988. // total p.test
  989. //0 252718 t+c text code
  990. //1 253142 424 170 254
  991. //2 253040 322 164 158
  992. //3 253248 530 135 395
  993. #if (LT_PRINT_TEST==1) //not optimized printf
  994. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  995. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  996. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  997. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  998. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  999. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  1000. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), header.reserved1);
  1001. #elif (LT_PRINT_TEST==2) //optimized printf
  1002. printf_P(
  1003. _n(
  1004. " _src_addr = 0x%08lx\n"
  1005. " _lt_magic = 0x%08lx %S\n"
  1006. " _lt_size = 0x%04x (%d)\n"
  1007. " _lt_count = 0x%04x (%d)\n"
  1008. " _lt_chsum = 0x%04x\n"
  1009. " _lt_code = 0x%04x (%c%c)\n"
  1010. " _lt_resv1 = 0x%08lx\n"
  1011. ),
  1012. src_addr,
  1013. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1014. header.size, header.size,
  1015. header.count, header.count,
  1016. header.checksum,
  1017. header.code, header.code >> 8, header.code & 0xff,
  1018. header.reserved1
  1019. );
  1020. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1021. MYSERIAL.print(" _src_addr = 0x");
  1022. MYSERIAL.println(src_addr, 16);
  1023. MYSERIAL.print(" _lt_magic = 0x");
  1024. MYSERIAL.print(header.magic, 16);
  1025. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1026. MYSERIAL.print(" _lt_size = 0x");
  1027. MYSERIAL.print(header.size, 16);
  1028. MYSERIAL.print(" (");
  1029. MYSERIAL.print(header.size, 10);
  1030. MYSERIAL.println(")");
  1031. MYSERIAL.print(" _lt_count = 0x");
  1032. MYSERIAL.print(header.count, 16);
  1033. MYSERIAL.print(" (");
  1034. MYSERIAL.print(header.count, 10);
  1035. MYSERIAL.println(")");
  1036. MYSERIAL.print(" _lt_chsum = 0x");
  1037. MYSERIAL.println(header.checksum, 16);
  1038. MYSERIAL.print(" _lt_code = 0x");
  1039. MYSERIAL.print(header.code, 16);
  1040. MYSERIAL.print(" (");
  1041. MYSERIAL.print((char)(header.code >> 8), 0);
  1042. MYSERIAL.print((char)(header.code & 0xff), 0);
  1043. MYSERIAL.println(")");
  1044. MYSERIAL.print(" _lt_resv1 = 0x");
  1045. MYSERIAL.println(header.reserved1, 16);
  1046. #endif //(LT_PRINT_TEST==)
  1047. #undef LT_PRINT_TEST
  1048. #if 0
  1049. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1050. for (uint16_t i = 0; i < 1024; i++)
  1051. {
  1052. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1053. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1054. if ((i % 16) == 15) putchar('\n');
  1055. }
  1056. #endif
  1057. #if 1
  1058. for (uint16_t i = 0; i < 1024*10; i++)
  1059. {
  1060. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1061. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1062. if ((i % 16) == 15) putchar('\n');
  1063. }
  1064. #endif
  1065. }
  1066. else
  1067. printf_P(_n("lang_get_header failed!\n"));
  1068. #if 0
  1069. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1070. for (int i = 0; i < 4096; ++i) {
  1071. int b = eeprom_read_byte((unsigned char*)i);
  1072. if (b != 255) {
  1073. SERIAL_ECHO(i);
  1074. SERIAL_ECHO(":");
  1075. SERIAL_ECHO(b);
  1076. SERIAL_ECHOLN("");
  1077. }
  1078. }
  1079. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1080. #endif
  1081. #endif //DEBUG_SEC_LANG
  1082. // Check startup - does nothing if bootloader sets MCUSR to 0
  1083. byte mcu = MCUSR;
  1084. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1085. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1086. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1087. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1088. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1089. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1090. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1091. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1092. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1093. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1094. MCUSR = 0;
  1095. //SERIAL_ECHORPGM(MSG_MARLIN);
  1096. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1097. #ifdef STRING_VERSION_CONFIG_H
  1098. #ifdef STRING_CONFIG_H_AUTHOR
  1099. SERIAL_ECHO_START;
  1100. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1101. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1102. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1103. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1104. SERIAL_ECHOPGM("Compiled: ");
  1105. SERIAL_ECHOLNPGM(__DATE__);
  1106. #endif
  1107. #endif
  1108. SERIAL_ECHO_START;
  1109. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1110. SERIAL_ECHO(freeMemory());
  1111. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1112. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1113. //lcd_update_enable(false); // why do we need this?? - andre
  1114. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1115. bool previous_settings_retrieved = false;
  1116. uint8_t hw_changed = check_printer_version();
  1117. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1118. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1119. }
  1120. else { //printer version was changed so use default settings
  1121. Config_ResetDefault();
  1122. }
  1123. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1124. tp_init(); // Initialize temperature loop
  1125. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1126. plan_init(); // Initialize planner;
  1127. factory_reset();
  1128. #ifdef TMC2130
  1129. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1130. if (silentMode == 0xff) silentMode = 0;
  1131. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1132. tmc2130_mode = TMC2130_MODE_NORMAL;
  1133. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1134. if (crashdet && !farm_mode)
  1135. {
  1136. crashdet_enable();
  1137. puts_P(_N("CrashDetect ENABLED!"));
  1138. }
  1139. else
  1140. {
  1141. crashdet_disable();
  1142. puts_P(_N("CrashDetect DISABLED"));
  1143. }
  1144. #ifdef TMC2130_LINEARITY_CORRECTION
  1145. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1146. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1147. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1148. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1149. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1150. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1151. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1152. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1153. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1154. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1155. #endif //TMC2130_LINEARITY_CORRECTION
  1156. #ifdef TMC2130_VARIABLE_RESOLUTION
  1157. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1158. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1159. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1160. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1161. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1162. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1163. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1164. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1165. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1166. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1167. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1168. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1169. #else //TMC2130_VARIABLE_RESOLUTION
  1170. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1171. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1172. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1173. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1174. #endif //TMC2130_VARIABLE_RESOLUTION
  1175. #endif //TMC2130
  1176. st_init(); // Initialize stepper, this enables interrupts!
  1177. #ifdef TMC2130
  1178. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1179. tmc2130_init();
  1180. #endif //TMC2130
  1181. setup_photpin();
  1182. servo_init();
  1183. // Reset the machine correction matrix.
  1184. // It does not make sense to load the correction matrix until the machine is homed.
  1185. world2machine_reset();
  1186. #ifdef PAT9125
  1187. fsensor_init();
  1188. #endif //PAT9125
  1189. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1190. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1191. #endif
  1192. setup_homepin();
  1193. #ifdef TMC2130
  1194. if (1) {
  1195. // try to run to zero phase before powering the Z motor.
  1196. // Move in negative direction
  1197. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1198. // Round the current micro-micro steps to micro steps.
  1199. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1200. // Until the phase counter is reset to zero.
  1201. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1202. delay(2);
  1203. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1204. delay(2);
  1205. }
  1206. }
  1207. #endif //TMC2130
  1208. #if defined(Z_AXIS_ALWAYS_ON)
  1209. enable_z();
  1210. #endif
  1211. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1212. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1213. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1214. if (farm_no == 0xFFFF) farm_no = 0;
  1215. if (farm_mode)
  1216. {
  1217. prusa_statistics(8);
  1218. }
  1219. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1220. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1221. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1222. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1223. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1224. // where all the EEPROM entries are set to 0x0ff.
  1225. // Once a firmware boots up, it forces at least a language selection, which changes
  1226. // EEPROM_LANG to number lower than 0x0ff.
  1227. // 1) Set a high power mode.
  1228. #ifdef TMC2130
  1229. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1230. tmc2130_mode = TMC2130_MODE_NORMAL;
  1231. #endif //TMC2130
  1232. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1233. }
  1234. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1235. // but this times out if a blocking dialog is shown in setup().
  1236. card.initsd();
  1237. #ifdef DEBUG_SD_SPEED_TEST
  1238. if (card.cardOK)
  1239. {
  1240. uint8_t* buff = (uint8_t*)block_buffer;
  1241. uint32_t block = 0;
  1242. uint32_t sumr = 0;
  1243. uint32_t sumw = 0;
  1244. for (int i = 0; i < 1024; i++)
  1245. {
  1246. uint32_t u = micros();
  1247. bool res = card.card.readBlock(i, buff);
  1248. u = micros() - u;
  1249. if (res)
  1250. {
  1251. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1252. sumr += u;
  1253. u = micros();
  1254. res = card.card.writeBlock(i, buff);
  1255. u = micros() - u;
  1256. if (res)
  1257. {
  1258. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1259. sumw += u;
  1260. }
  1261. else
  1262. {
  1263. printf_P(PSTR("writeBlock %4d error\n"), i);
  1264. break;
  1265. }
  1266. }
  1267. else
  1268. {
  1269. printf_P(PSTR("readBlock %4d error\n"), i);
  1270. break;
  1271. }
  1272. }
  1273. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1274. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1275. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1276. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1277. }
  1278. else
  1279. printf_P(PSTR("Card NG!\n"));
  1280. #endif //DEBUG_SD_SPEED_TEST
  1281. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1282. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1283. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1284. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1285. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1286. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1287. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1288. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1289. #ifdef SNMM
  1290. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1291. int _z = BOWDEN_LENGTH;
  1292. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1293. }
  1294. #endif
  1295. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1296. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1297. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1298. #if (LANG_MODE != 0) //secondary language support
  1299. #ifdef DEBUG_W25X20CL
  1300. W25X20CL_SPI_ENTER();
  1301. uint8_t uid[8]; // 64bit unique id
  1302. w25x20cl_rd_uid(uid);
  1303. puts_P(_n("W25X20CL UID="));
  1304. for (uint8_t i = 0; i < 8; i ++)
  1305. printf_P(PSTR("%02hhx"), uid[i]);
  1306. putchar('\n');
  1307. list_sec_lang_from_external_flash();
  1308. #endif //DEBUG_W25X20CL
  1309. // lang_reset();
  1310. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1311. lcd_language();
  1312. #ifdef DEBUG_SEC_LANG
  1313. uint16_t sec_lang_code = lang_get_code(1);
  1314. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1315. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1316. // lang_print_sec_lang(uartout);
  1317. #endif //DEBUG_SEC_LANG
  1318. #endif //(LANG_MODE != 0)
  1319. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1320. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1321. temp_cal_active = false;
  1322. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1323. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1324. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1325. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1326. int16_t z_shift = 0;
  1327. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1328. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1329. temp_cal_active = false;
  1330. }
  1331. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1332. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1333. }
  1334. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1335. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1336. }
  1337. check_babystep(); //checking if Z babystep is in allowed range
  1338. #ifdef UVLO_SUPPORT
  1339. setup_uvlo_interrupt();
  1340. #endif //UVLO_SUPPORT
  1341. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1342. setup_fan_interrupt();
  1343. #endif //DEBUG_DISABLE_FANCHECK
  1344. #ifdef PAT9125
  1345. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1346. fsensor_setup_interrupt();
  1347. #endif //DEBUG_DISABLE_FSENSORCHECK
  1348. #endif //PAT9125
  1349. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1350. #ifndef DEBUG_DISABLE_STARTMSGS
  1351. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1352. show_fw_version_warnings();
  1353. switch (hw_changed) {
  1354. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1355. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1356. case(0b01):
  1357. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1358. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1359. break;
  1360. case(0b10):
  1361. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1362. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1363. break;
  1364. case(0b11):
  1365. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1366. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1367. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1368. break;
  1369. default: break; //no change, show no message
  1370. }
  1371. if (!previous_settings_retrieved) {
  1372. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1373. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1374. }
  1375. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1376. lcd_wizard(0);
  1377. }
  1378. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1379. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1380. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1381. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1382. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1383. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1384. // Show the message.
  1385. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1386. }
  1387. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1388. // Show the message.
  1389. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1390. lcd_update_enable(true);
  1391. }
  1392. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1393. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1394. lcd_update_enable(true);
  1395. }
  1396. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1397. // Show the message.
  1398. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1399. }
  1400. }
  1401. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1402. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1403. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1404. update_current_firmware_version_to_eeprom();
  1405. lcd_selftest();
  1406. }
  1407. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1408. KEEPALIVE_STATE(IN_PROCESS);
  1409. #endif //DEBUG_DISABLE_STARTMSGS
  1410. lcd_update_enable(true);
  1411. lcd_implementation_clear();
  1412. lcd_update(2);
  1413. // Store the currently running firmware into an eeprom,
  1414. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1415. update_current_firmware_version_to_eeprom();
  1416. #ifdef TMC2130
  1417. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1418. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1419. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1420. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1421. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1422. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1423. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1424. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1425. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1426. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1427. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1428. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1429. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1430. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1431. #endif //TMC2130
  1432. #ifdef UVLO_SUPPORT
  1433. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1434. /*
  1435. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1436. else {
  1437. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1438. lcd_update_enable(true);
  1439. lcd_update(2);
  1440. lcd_setstatuspgm(_T(WELCOME_MSG));
  1441. }
  1442. */
  1443. manage_heater(); // Update temperatures
  1444. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1445. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1446. #endif
  1447. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1448. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1449. puts_P(_N("Automatic recovery!"));
  1450. #endif
  1451. recover_print(1);
  1452. }
  1453. else{
  1454. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1455. puts_P(_N("Normal recovery!"));
  1456. #endif
  1457. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1458. else {
  1459. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1460. lcd_update_enable(true);
  1461. lcd_update(2);
  1462. lcd_setstatuspgm(_T(WELCOME_MSG));
  1463. }
  1464. }
  1465. }
  1466. #endif //UVLO_SUPPORT
  1467. KEEPALIVE_STATE(NOT_BUSY);
  1468. #ifdef WATCHDOG
  1469. wdt_enable(WDTO_4S);
  1470. #endif //WATCHDOG
  1471. }
  1472. #ifdef PAT9125
  1473. void fsensor_init() {
  1474. int pat9125 = pat9125_init();
  1475. printf_P(_N("PAT9125_init:%d\n"), pat9125);
  1476. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1477. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1478. if (!pat9125)
  1479. {
  1480. fsensor = 0; //disable sensor
  1481. fsensor_not_responding = true;
  1482. }
  1483. else {
  1484. fsensor_not_responding = false;
  1485. }
  1486. puts_P(PSTR("FSensor "));
  1487. if (fsensor)
  1488. {
  1489. puts_P(PSTR("ENABLED\n"));
  1490. fsensor_enable();
  1491. }
  1492. else
  1493. {
  1494. puts_P(PSTR("DISABLED\n"));
  1495. fsensor_disable();
  1496. }
  1497. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1498. filament_autoload_enabled = false;
  1499. fsensor_disable();
  1500. #endif //DEBUG_DISABLE_FSENSORCHECK
  1501. }
  1502. #endif //PAT9125
  1503. void trace();
  1504. #define CHUNK_SIZE 64 // bytes
  1505. #define SAFETY_MARGIN 1
  1506. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1507. int chunkHead = 0;
  1508. int serial_read_stream() {
  1509. setTargetHotend(0, 0);
  1510. setTargetBed(0);
  1511. lcd_implementation_clear();
  1512. lcd_printPGM(PSTR(" Upload in progress"));
  1513. // first wait for how many bytes we will receive
  1514. uint32_t bytesToReceive;
  1515. // receive the four bytes
  1516. char bytesToReceiveBuffer[4];
  1517. for (int i=0; i<4; i++) {
  1518. int data;
  1519. while ((data = MYSERIAL.read()) == -1) {};
  1520. bytesToReceiveBuffer[i] = data;
  1521. }
  1522. // make it a uint32
  1523. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1524. // we're ready, notify the sender
  1525. MYSERIAL.write('+');
  1526. // lock in the routine
  1527. uint32_t receivedBytes = 0;
  1528. while (prusa_sd_card_upload) {
  1529. int i;
  1530. for (i=0; i<CHUNK_SIZE; i++) {
  1531. int data;
  1532. // check if we're not done
  1533. if (receivedBytes == bytesToReceive) {
  1534. break;
  1535. }
  1536. // read the next byte
  1537. while ((data = MYSERIAL.read()) == -1) {};
  1538. receivedBytes++;
  1539. // save it to the chunk
  1540. chunk[i] = data;
  1541. }
  1542. // write the chunk to SD
  1543. card.write_command_no_newline(&chunk[0]);
  1544. // notify the sender we're ready for more data
  1545. MYSERIAL.write('+');
  1546. // for safety
  1547. manage_heater();
  1548. // check if we're done
  1549. if(receivedBytes == bytesToReceive) {
  1550. trace(); // beep
  1551. card.closefile();
  1552. prusa_sd_card_upload = false;
  1553. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1554. return 0;
  1555. }
  1556. }
  1557. }
  1558. #ifdef HOST_KEEPALIVE_FEATURE
  1559. /**
  1560. * Output a "busy" message at regular intervals
  1561. * while the machine is not accepting commands.
  1562. */
  1563. void host_keepalive() {
  1564. if (farm_mode) return;
  1565. long ms = millis();
  1566. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1567. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1568. switch (busy_state) {
  1569. case IN_HANDLER:
  1570. case IN_PROCESS:
  1571. SERIAL_ECHO_START;
  1572. SERIAL_ECHOLNPGM("busy: processing");
  1573. break;
  1574. case PAUSED_FOR_USER:
  1575. SERIAL_ECHO_START;
  1576. SERIAL_ECHOLNPGM("busy: paused for user");
  1577. break;
  1578. case PAUSED_FOR_INPUT:
  1579. SERIAL_ECHO_START;
  1580. SERIAL_ECHOLNPGM("busy: paused for input");
  1581. break;
  1582. default:
  1583. break;
  1584. }
  1585. }
  1586. prev_busy_signal_ms = ms;
  1587. }
  1588. #endif
  1589. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1590. // Before loop(), the setup() function is called by the main() routine.
  1591. void loop()
  1592. {
  1593. KEEPALIVE_STATE(NOT_BUSY);
  1594. bool stack_integrity = true;
  1595. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1596. {
  1597. is_usb_printing = true;
  1598. usb_printing_counter--;
  1599. _usb_timer = millis();
  1600. }
  1601. if (usb_printing_counter == 0)
  1602. {
  1603. is_usb_printing = false;
  1604. }
  1605. if (prusa_sd_card_upload)
  1606. {
  1607. //we read byte-by byte
  1608. serial_read_stream();
  1609. } else
  1610. {
  1611. get_command();
  1612. #ifdef SDSUPPORT
  1613. card.checkautostart(false);
  1614. #endif
  1615. if(buflen)
  1616. {
  1617. cmdbuffer_front_already_processed = false;
  1618. #ifdef SDSUPPORT
  1619. if(card.saving)
  1620. {
  1621. // Saving a G-code file onto an SD-card is in progress.
  1622. // Saving starts with M28, saving until M29 is seen.
  1623. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1624. card.write_command(CMDBUFFER_CURRENT_STRING);
  1625. if(card.logging)
  1626. process_commands();
  1627. else
  1628. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1629. } else {
  1630. card.closefile();
  1631. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1632. }
  1633. } else {
  1634. process_commands();
  1635. }
  1636. #else
  1637. process_commands();
  1638. #endif //SDSUPPORT
  1639. if (! cmdbuffer_front_already_processed && buflen)
  1640. {
  1641. // ptr points to the start of the block currently being processed.
  1642. // The first character in the block is the block type.
  1643. char *ptr = cmdbuffer + bufindr;
  1644. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1645. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1646. union {
  1647. struct {
  1648. char lo;
  1649. char hi;
  1650. } lohi;
  1651. uint16_t value;
  1652. } sdlen;
  1653. sdlen.value = 0;
  1654. {
  1655. // This block locks the interrupts globally for 3.25 us,
  1656. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1657. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1658. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1659. cli();
  1660. // Reset the command to something, which will be ignored by the power panic routine,
  1661. // so this buffer length will not be counted twice.
  1662. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1663. // Extract the current buffer length.
  1664. sdlen.lohi.lo = *ptr ++;
  1665. sdlen.lohi.hi = *ptr;
  1666. // and pass it to the planner queue.
  1667. planner_add_sd_length(sdlen.value);
  1668. sei();
  1669. }
  1670. }
  1671. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1672. cli();
  1673. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1674. // and one for each command to previous block in the planner queue.
  1675. planner_add_sd_length(1);
  1676. sei();
  1677. }
  1678. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1679. // this block's SD card length will not be counted twice as its command type has been replaced
  1680. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1681. cmdqueue_pop_front();
  1682. }
  1683. host_keepalive();
  1684. }
  1685. }
  1686. //check heater every n milliseconds
  1687. manage_heater();
  1688. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1689. checkHitEndstops();
  1690. lcd_update();
  1691. #ifdef PAT9125
  1692. fsensor_update();
  1693. #endif //PAT9125
  1694. #ifdef TMC2130
  1695. tmc2130_check_overtemp();
  1696. if (tmc2130_sg_crash)
  1697. {
  1698. uint8_t crash = tmc2130_sg_crash;
  1699. tmc2130_sg_crash = 0;
  1700. // crashdet_stop_and_save_print();
  1701. switch (crash)
  1702. {
  1703. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1704. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1705. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1706. }
  1707. }
  1708. #endif //TMC2130
  1709. }
  1710. #define DEFINE_PGM_READ_ANY(type, reader) \
  1711. static inline type pgm_read_any(const type *p) \
  1712. { return pgm_read_##reader##_near(p); }
  1713. DEFINE_PGM_READ_ANY(float, float);
  1714. DEFINE_PGM_READ_ANY(signed char, byte);
  1715. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1716. static const PROGMEM type array##_P[3] = \
  1717. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1718. static inline type array(int axis) \
  1719. { return pgm_read_any(&array##_P[axis]); } \
  1720. type array##_ext(int axis) \
  1721. { return pgm_read_any(&array##_P[axis]); }
  1722. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1723. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1724. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1725. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1726. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1727. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1728. static void axis_is_at_home(int axis) {
  1729. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1730. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1731. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1732. }
  1733. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1734. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1735. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1736. saved_feedrate = feedrate;
  1737. saved_feedmultiply = feedmultiply;
  1738. feedmultiply = 100;
  1739. previous_millis_cmd = millis();
  1740. enable_endstops(enable_endstops_now);
  1741. }
  1742. static void clean_up_after_endstop_move() {
  1743. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1744. enable_endstops(false);
  1745. #endif
  1746. feedrate = saved_feedrate;
  1747. feedmultiply = saved_feedmultiply;
  1748. previous_millis_cmd = millis();
  1749. }
  1750. #ifdef ENABLE_AUTO_BED_LEVELING
  1751. #ifdef AUTO_BED_LEVELING_GRID
  1752. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1753. {
  1754. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1755. planeNormal.debug("planeNormal");
  1756. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1757. //bedLevel.debug("bedLevel");
  1758. //plan_bed_level_matrix.debug("bed level before");
  1759. //vector_3 uncorrected_position = plan_get_position_mm();
  1760. //uncorrected_position.debug("position before");
  1761. vector_3 corrected_position = plan_get_position();
  1762. // corrected_position.debug("position after");
  1763. current_position[X_AXIS] = corrected_position.x;
  1764. current_position[Y_AXIS] = corrected_position.y;
  1765. current_position[Z_AXIS] = corrected_position.z;
  1766. // put the bed at 0 so we don't go below it.
  1767. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1768. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1769. }
  1770. #else // not AUTO_BED_LEVELING_GRID
  1771. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1772. plan_bed_level_matrix.set_to_identity();
  1773. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1774. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1775. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1776. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1777. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1778. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1779. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1780. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1781. vector_3 corrected_position = plan_get_position();
  1782. current_position[X_AXIS] = corrected_position.x;
  1783. current_position[Y_AXIS] = corrected_position.y;
  1784. current_position[Z_AXIS] = corrected_position.z;
  1785. // put the bed at 0 so we don't go below it.
  1786. current_position[Z_AXIS] = zprobe_zoffset;
  1787. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1788. }
  1789. #endif // AUTO_BED_LEVELING_GRID
  1790. static void run_z_probe() {
  1791. plan_bed_level_matrix.set_to_identity();
  1792. feedrate = homing_feedrate[Z_AXIS];
  1793. // move down until you find the bed
  1794. float zPosition = -10;
  1795. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1796. st_synchronize();
  1797. // we have to let the planner know where we are right now as it is not where we said to go.
  1798. zPosition = st_get_position_mm(Z_AXIS);
  1799. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1800. // move up the retract distance
  1801. zPosition += home_retract_mm(Z_AXIS);
  1802. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1803. st_synchronize();
  1804. // move back down slowly to find bed
  1805. feedrate = homing_feedrate[Z_AXIS]/4;
  1806. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1807. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1808. st_synchronize();
  1809. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1810. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1811. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1812. }
  1813. static void do_blocking_move_to(float x, float y, float z) {
  1814. float oldFeedRate = feedrate;
  1815. feedrate = homing_feedrate[Z_AXIS];
  1816. current_position[Z_AXIS] = z;
  1817. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1818. st_synchronize();
  1819. feedrate = XY_TRAVEL_SPEED;
  1820. current_position[X_AXIS] = x;
  1821. current_position[Y_AXIS] = y;
  1822. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1823. st_synchronize();
  1824. feedrate = oldFeedRate;
  1825. }
  1826. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1827. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1828. }
  1829. /// Probe bed height at position (x,y), returns the measured z value
  1830. static float probe_pt(float x, float y, float z_before) {
  1831. // move to right place
  1832. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1833. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1834. run_z_probe();
  1835. float measured_z = current_position[Z_AXIS];
  1836. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1837. SERIAL_PROTOCOLPGM(" x: ");
  1838. SERIAL_PROTOCOL(x);
  1839. SERIAL_PROTOCOLPGM(" y: ");
  1840. SERIAL_PROTOCOL(y);
  1841. SERIAL_PROTOCOLPGM(" z: ");
  1842. SERIAL_PROTOCOL(measured_z);
  1843. SERIAL_PROTOCOLPGM("\n");
  1844. return measured_z;
  1845. }
  1846. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1847. #ifdef LIN_ADVANCE
  1848. /**
  1849. * M900: Set and/or Get advance K factor and WH/D ratio
  1850. *
  1851. * K<factor> Set advance K factor
  1852. * R<ratio> Set ratio directly (overrides WH/D)
  1853. * W<width> H<height> D<diam> Set ratio from WH/D
  1854. */
  1855. inline void gcode_M900() {
  1856. st_synchronize();
  1857. const float newK = code_seen('K') ? code_value_float() : -1;
  1858. if (newK >= 0) extruder_advance_k = newK;
  1859. float newR = code_seen('R') ? code_value_float() : -1;
  1860. if (newR < 0) {
  1861. const float newD = code_seen('D') ? code_value_float() : -1,
  1862. newW = code_seen('W') ? code_value_float() : -1,
  1863. newH = code_seen('H') ? code_value_float() : -1;
  1864. if (newD >= 0 && newW >= 0 && newH >= 0)
  1865. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1866. }
  1867. if (newR >= 0) advance_ed_ratio = newR;
  1868. SERIAL_ECHO_START;
  1869. SERIAL_ECHOPGM("Advance K=");
  1870. SERIAL_ECHOLN(extruder_advance_k);
  1871. SERIAL_ECHOPGM(" E/D=");
  1872. const float ratio = advance_ed_ratio;
  1873. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1874. }
  1875. #endif // LIN_ADVANCE
  1876. bool check_commands() {
  1877. bool end_command_found = false;
  1878. while (buflen)
  1879. {
  1880. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1881. if (!cmdbuffer_front_already_processed)
  1882. cmdqueue_pop_front();
  1883. cmdbuffer_front_already_processed = false;
  1884. }
  1885. return end_command_found;
  1886. }
  1887. #ifdef TMC2130
  1888. bool calibrate_z_auto()
  1889. {
  1890. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1891. lcd_implementation_clear();
  1892. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1893. bool endstops_enabled = enable_endstops(true);
  1894. int axis_up_dir = -home_dir(Z_AXIS);
  1895. tmc2130_home_enter(Z_AXIS_MASK);
  1896. current_position[Z_AXIS] = 0;
  1897. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1898. set_destination_to_current();
  1899. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1900. feedrate = homing_feedrate[Z_AXIS];
  1901. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1902. st_synchronize();
  1903. // current_position[axis] = 0;
  1904. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1905. tmc2130_home_exit();
  1906. enable_endstops(false);
  1907. current_position[Z_AXIS] = 0;
  1908. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1909. set_destination_to_current();
  1910. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1911. feedrate = homing_feedrate[Z_AXIS] / 2;
  1912. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1913. st_synchronize();
  1914. enable_endstops(endstops_enabled);
  1915. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1916. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1917. return true;
  1918. }
  1919. #endif //TMC2130
  1920. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1921. {
  1922. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1923. #define HOMEAXIS_DO(LETTER) \
  1924. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1925. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1926. {
  1927. int axis_home_dir = home_dir(axis);
  1928. feedrate = homing_feedrate[axis];
  1929. #ifdef TMC2130
  1930. tmc2130_home_enter(X_AXIS_MASK << axis);
  1931. #endif //TMC2130
  1932. // Move right a bit, so that the print head does not touch the left end position,
  1933. // and the following left movement has a chance to achieve the required velocity
  1934. // for the stall guard to work.
  1935. current_position[axis] = 0;
  1936. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1937. set_destination_to_current();
  1938. // destination[axis] = 11.f;
  1939. destination[axis] = 3.f;
  1940. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1941. st_synchronize();
  1942. // Move left away from the possible collision with the collision detection disabled.
  1943. endstops_hit_on_purpose();
  1944. enable_endstops(false);
  1945. current_position[axis] = 0;
  1946. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1947. destination[axis] = - 1.;
  1948. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1949. st_synchronize();
  1950. // Now continue to move up to the left end stop with the collision detection enabled.
  1951. enable_endstops(true);
  1952. destination[axis] = - 1.1 * max_length(axis);
  1953. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1954. st_synchronize();
  1955. for (uint8_t i = 0; i < cnt; i++)
  1956. {
  1957. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1958. endstops_hit_on_purpose();
  1959. enable_endstops(false);
  1960. current_position[axis] = 0;
  1961. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1962. destination[axis] = 10.f;
  1963. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1964. st_synchronize();
  1965. endstops_hit_on_purpose();
  1966. // Now move left up to the collision, this time with a repeatable velocity.
  1967. enable_endstops(true);
  1968. destination[axis] = - 11.f;
  1969. #ifdef TMC2130
  1970. feedrate = homing_feedrate[axis];
  1971. #else //TMC2130
  1972. feedrate = homing_feedrate[axis] / 2;
  1973. #endif //TMC2130
  1974. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1975. st_synchronize();
  1976. #ifdef TMC2130
  1977. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1978. if (pstep) pstep[i] = mscnt >> 4;
  1979. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1980. #endif //TMC2130
  1981. }
  1982. endstops_hit_on_purpose();
  1983. enable_endstops(false);
  1984. #ifdef TMC2130
  1985. uint8_t orig = tmc2130_home_origin[axis];
  1986. uint8_t back = tmc2130_home_bsteps[axis];
  1987. if (tmc2130_home_enabled && (orig <= 63))
  1988. {
  1989. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1990. if (back > 0)
  1991. tmc2130_do_steps(axis, back, 1, 1000);
  1992. }
  1993. else
  1994. tmc2130_do_steps(axis, 8, 2, 1000);
  1995. tmc2130_home_exit();
  1996. #endif //TMC2130
  1997. axis_is_at_home(axis);
  1998. axis_known_position[axis] = true;
  1999. // Move from minimum
  2000. #ifdef TMC2130
  2001. float dist = 0.01f * tmc2130_home_fsteps[axis];
  2002. #else //TMC2130
  2003. float dist = 0.01f * 64;
  2004. #endif //TMC2130
  2005. current_position[axis] -= dist;
  2006. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2007. current_position[axis] += dist;
  2008. destination[axis] = current_position[axis];
  2009. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2010. st_synchronize();
  2011. feedrate = 0.0;
  2012. }
  2013. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2014. {
  2015. #ifdef TMC2130
  2016. FORCE_HIGH_POWER_START;
  2017. #endif
  2018. int axis_home_dir = home_dir(axis);
  2019. current_position[axis] = 0;
  2020. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2021. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2022. feedrate = homing_feedrate[axis];
  2023. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2024. st_synchronize();
  2025. #ifdef TMC2130
  2026. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2027. FORCE_HIGH_POWER_END;
  2028. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2029. return;
  2030. }
  2031. #endif //TMC2130
  2032. current_position[axis] = 0;
  2033. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2034. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2035. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2036. st_synchronize();
  2037. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2038. feedrate = homing_feedrate[axis]/2 ;
  2039. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2040. st_synchronize();
  2041. #ifdef TMC2130
  2042. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2043. FORCE_HIGH_POWER_END;
  2044. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2045. return;
  2046. }
  2047. #endif //TMC2130
  2048. axis_is_at_home(axis);
  2049. destination[axis] = current_position[axis];
  2050. feedrate = 0.0;
  2051. endstops_hit_on_purpose();
  2052. axis_known_position[axis] = true;
  2053. #ifdef TMC2130
  2054. FORCE_HIGH_POWER_END;
  2055. #endif
  2056. }
  2057. enable_endstops(endstops_enabled);
  2058. }
  2059. /**/
  2060. void home_xy()
  2061. {
  2062. set_destination_to_current();
  2063. homeaxis(X_AXIS);
  2064. homeaxis(Y_AXIS);
  2065. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2066. endstops_hit_on_purpose();
  2067. }
  2068. void refresh_cmd_timeout(void)
  2069. {
  2070. previous_millis_cmd = millis();
  2071. }
  2072. #ifdef FWRETRACT
  2073. void retract(bool retracting, bool swapretract = false) {
  2074. if(retracting && !retracted[active_extruder]) {
  2075. destination[X_AXIS]=current_position[X_AXIS];
  2076. destination[Y_AXIS]=current_position[Y_AXIS];
  2077. destination[Z_AXIS]=current_position[Z_AXIS];
  2078. destination[E_AXIS]=current_position[E_AXIS];
  2079. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2080. plan_set_e_position(current_position[E_AXIS]);
  2081. float oldFeedrate = feedrate;
  2082. feedrate=retract_feedrate*60;
  2083. retracted[active_extruder]=true;
  2084. prepare_move();
  2085. current_position[Z_AXIS]-=retract_zlift;
  2086. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2087. prepare_move();
  2088. feedrate = oldFeedrate;
  2089. } else if(!retracting && retracted[active_extruder]) {
  2090. destination[X_AXIS]=current_position[X_AXIS];
  2091. destination[Y_AXIS]=current_position[Y_AXIS];
  2092. destination[Z_AXIS]=current_position[Z_AXIS];
  2093. destination[E_AXIS]=current_position[E_AXIS];
  2094. current_position[Z_AXIS]+=retract_zlift;
  2095. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2096. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2097. plan_set_e_position(current_position[E_AXIS]);
  2098. float oldFeedrate = feedrate;
  2099. feedrate=retract_recover_feedrate*60;
  2100. retracted[active_extruder]=false;
  2101. prepare_move();
  2102. feedrate = oldFeedrate;
  2103. }
  2104. } //retract
  2105. #endif //FWRETRACT
  2106. void trace() {
  2107. tone(BEEPER, 440);
  2108. delay(25);
  2109. noTone(BEEPER);
  2110. delay(20);
  2111. }
  2112. /*
  2113. void ramming() {
  2114. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2115. if (current_temperature[0] < 230) {
  2116. //PLA
  2117. max_feedrate[E_AXIS] = 50;
  2118. //current_position[E_AXIS] -= 8;
  2119. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2120. //current_position[E_AXIS] += 8;
  2121. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2122. current_position[E_AXIS] += 5.4;
  2123. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2124. current_position[E_AXIS] += 3.2;
  2125. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2126. current_position[E_AXIS] += 3;
  2127. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2128. st_synchronize();
  2129. max_feedrate[E_AXIS] = 80;
  2130. current_position[E_AXIS] -= 82;
  2131. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2132. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2133. current_position[E_AXIS] -= 20;
  2134. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2135. current_position[E_AXIS] += 5;
  2136. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2137. current_position[E_AXIS] += 5;
  2138. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2139. current_position[E_AXIS] -= 10;
  2140. st_synchronize();
  2141. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2142. current_position[E_AXIS] += 10;
  2143. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2144. current_position[E_AXIS] -= 10;
  2145. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2146. current_position[E_AXIS] += 10;
  2147. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2148. current_position[E_AXIS] -= 10;
  2149. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2150. st_synchronize();
  2151. }
  2152. else {
  2153. //ABS
  2154. max_feedrate[E_AXIS] = 50;
  2155. //current_position[E_AXIS] -= 8;
  2156. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2157. //current_position[E_AXIS] += 8;
  2158. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2159. current_position[E_AXIS] += 3.1;
  2160. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2161. current_position[E_AXIS] += 3.1;
  2162. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2163. current_position[E_AXIS] += 4;
  2164. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2165. st_synchronize();
  2166. //current_position[X_AXIS] += 23; //delay
  2167. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2168. //current_position[X_AXIS] -= 23; //delay
  2169. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2170. delay(4700);
  2171. max_feedrate[E_AXIS] = 80;
  2172. current_position[E_AXIS] -= 92;
  2173. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2174. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2175. current_position[E_AXIS] -= 5;
  2176. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2177. current_position[E_AXIS] += 5;
  2178. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2179. current_position[E_AXIS] -= 5;
  2180. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2181. st_synchronize();
  2182. current_position[E_AXIS] += 5;
  2183. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2184. current_position[E_AXIS] -= 5;
  2185. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2186. current_position[E_AXIS] += 5;
  2187. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2188. current_position[E_AXIS] -= 5;
  2189. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2190. st_synchronize();
  2191. }
  2192. }
  2193. */
  2194. #ifdef TMC2130
  2195. void force_high_power_mode(bool start_high_power_section) {
  2196. uint8_t silent;
  2197. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2198. if (silent == 1) {
  2199. //we are in silent mode, set to normal mode to enable crash detection
  2200. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2201. st_synchronize();
  2202. cli();
  2203. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2204. tmc2130_init();
  2205. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2206. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2207. st_reset_timer();
  2208. sei();
  2209. }
  2210. }
  2211. #endif //TMC2130
  2212. void gcode_G28(bool home_x, bool home_y, bool home_z, bool calib) {
  2213. st_synchronize();
  2214. #if 0
  2215. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2216. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2217. #endif
  2218. // Flag for the display update routine and to disable the print cancelation during homing.
  2219. homing_flag = true;
  2220. // Either all X,Y,Z codes are present, or none of them.
  2221. bool home_all_axes = home_x == home_y && home_x == home_z;
  2222. if (home_all_axes)
  2223. // No X/Y/Z code provided means to home all axes.
  2224. home_x = home_y = home_z = true;
  2225. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2226. if (home_all_axes) {
  2227. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2228. feedrate = homing_feedrate[Z_AXIS];
  2229. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2230. st_synchronize();
  2231. }
  2232. #ifdef ENABLE_AUTO_BED_LEVELING
  2233. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2234. #endif //ENABLE_AUTO_BED_LEVELING
  2235. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2236. // the planner will not perform any adjustments in the XY plane.
  2237. // Wait for the motors to stop and update the current position with the absolute values.
  2238. world2machine_revert_to_uncorrected();
  2239. // For mesh bed leveling deactivate the matrix temporarily.
  2240. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2241. // in a single axis only.
  2242. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2243. #ifdef MESH_BED_LEVELING
  2244. uint8_t mbl_was_active = mbl.active;
  2245. mbl.active = 0;
  2246. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2247. #endif
  2248. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2249. // consumed during the first movements following this statement.
  2250. if (home_z)
  2251. babystep_undo();
  2252. saved_feedrate = feedrate;
  2253. saved_feedmultiply = feedmultiply;
  2254. feedmultiply = 100;
  2255. previous_millis_cmd = millis();
  2256. enable_endstops(true);
  2257. memcpy(destination, current_position, sizeof(destination));
  2258. feedrate = 0.0;
  2259. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2260. if(home_z)
  2261. homeaxis(Z_AXIS);
  2262. #endif
  2263. #ifdef QUICK_HOME
  2264. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2265. if(home_x && home_y) //first diagonal move
  2266. {
  2267. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2268. int x_axis_home_dir = home_dir(X_AXIS);
  2269. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2270. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2271. feedrate = homing_feedrate[X_AXIS];
  2272. if(homing_feedrate[Y_AXIS]<feedrate)
  2273. feedrate = homing_feedrate[Y_AXIS];
  2274. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2275. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2276. } else {
  2277. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2278. }
  2279. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2280. st_synchronize();
  2281. axis_is_at_home(X_AXIS);
  2282. axis_is_at_home(Y_AXIS);
  2283. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2284. destination[X_AXIS] = current_position[X_AXIS];
  2285. destination[Y_AXIS] = current_position[Y_AXIS];
  2286. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2287. feedrate = 0.0;
  2288. st_synchronize();
  2289. endstops_hit_on_purpose();
  2290. current_position[X_AXIS] = destination[X_AXIS];
  2291. current_position[Y_AXIS] = destination[Y_AXIS];
  2292. current_position[Z_AXIS] = destination[Z_AXIS];
  2293. }
  2294. #endif /* QUICK_HOME */
  2295. #ifdef TMC2130
  2296. if(home_x)
  2297. {
  2298. if (!calib)
  2299. homeaxis(X_AXIS);
  2300. else
  2301. tmc2130_home_calibrate(X_AXIS);
  2302. }
  2303. if(home_y)
  2304. {
  2305. if (!calib)
  2306. homeaxis(Y_AXIS);
  2307. else
  2308. tmc2130_home_calibrate(Y_AXIS);
  2309. }
  2310. #endif //TMC2130
  2311. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2312. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2313. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2314. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2315. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2316. #ifndef Z_SAFE_HOMING
  2317. if(home_z) {
  2318. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2319. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2320. feedrate = max_feedrate[Z_AXIS];
  2321. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2322. st_synchronize();
  2323. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2324. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2325. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2326. {
  2327. homeaxis(X_AXIS);
  2328. homeaxis(Y_AXIS);
  2329. }
  2330. // 1st mesh bed leveling measurement point, corrected.
  2331. world2machine_initialize();
  2332. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2333. world2machine_reset();
  2334. if (destination[Y_AXIS] < Y_MIN_POS)
  2335. destination[Y_AXIS] = Y_MIN_POS;
  2336. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2337. feedrate = homing_feedrate[Z_AXIS]/10;
  2338. current_position[Z_AXIS] = 0;
  2339. enable_endstops(false);
  2340. #ifdef DEBUG_BUILD
  2341. SERIAL_ECHOLNPGM("plan_set_position()");
  2342. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2343. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2344. #endif
  2345. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2346. #ifdef DEBUG_BUILD
  2347. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2348. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2349. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2350. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2351. #endif
  2352. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2353. st_synchronize();
  2354. current_position[X_AXIS] = destination[X_AXIS];
  2355. current_position[Y_AXIS] = destination[Y_AXIS];
  2356. enable_endstops(true);
  2357. endstops_hit_on_purpose();
  2358. homeaxis(Z_AXIS);
  2359. #else // MESH_BED_LEVELING
  2360. homeaxis(Z_AXIS);
  2361. #endif // MESH_BED_LEVELING
  2362. }
  2363. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2364. if(home_all_axes) {
  2365. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2366. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2367. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2368. feedrate = XY_TRAVEL_SPEED/60;
  2369. current_position[Z_AXIS] = 0;
  2370. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2371. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2372. st_synchronize();
  2373. current_position[X_AXIS] = destination[X_AXIS];
  2374. current_position[Y_AXIS] = destination[Y_AXIS];
  2375. homeaxis(Z_AXIS);
  2376. }
  2377. // Let's see if X and Y are homed and probe is inside bed area.
  2378. if(home_z) {
  2379. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2380. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2381. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2382. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2383. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2384. current_position[Z_AXIS] = 0;
  2385. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2386. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2387. feedrate = max_feedrate[Z_AXIS];
  2388. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2389. st_synchronize();
  2390. homeaxis(Z_AXIS);
  2391. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2392. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2393. SERIAL_ECHO_START;
  2394. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2395. } else {
  2396. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2397. SERIAL_ECHO_START;
  2398. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2399. }
  2400. }
  2401. #endif // Z_SAFE_HOMING
  2402. #endif // Z_HOME_DIR < 0
  2403. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2404. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2405. #ifdef ENABLE_AUTO_BED_LEVELING
  2406. if(home_z)
  2407. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2408. #endif
  2409. // Set the planner and stepper routine positions.
  2410. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2411. // contains the machine coordinates.
  2412. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2413. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2414. enable_endstops(false);
  2415. #endif
  2416. feedrate = saved_feedrate;
  2417. feedmultiply = saved_feedmultiply;
  2418. previous_millis_cmd = millis();
  2419. endstops_hit_on_purpose();
  2420. #ifndef MESH_BED_LEVELING
  2421. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2422. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2423. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2424. lcd_adjust_z();
  2425. #endif
  2426. // Load the machine correction matrix
  2427. world2machine_initialize();
  2428. // and correct the current_position XY axes to match the transformed coordinate system.
  2429. world2machine_update_current();
  2430. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2431. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2432. {
  2433. if (! home_z && mbl_was_active) {
  2434. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2435. mbl.active = true;
  2436. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2437. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2438. }
  2439. }
  2440. else
  2441. {
  2442. st_synchronize();
  2443. homing_flag = false;
  2444. // Push the commands to the front of the message queue in the reverse order!
  2445. // There shall be always enough space reserved for these commands.
  2446. enquecommand_front_P((PSTR("G80")));
  2447. //goto case_G80;
  2448. }
  2449. #endif
  2450. if (farm_mode) { prusa_statistics(20); };
  2451. homing_flag = false;
  2452. #if 0
  2453. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2454. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2455. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2456. #endif
  2457. }
  2458. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2459. {
  2460. bool final_result = false;
  2461. #ifdef TMC2130
  2462. FORCE_HIGH_POWER_START;
  2463. #endif // TMC2130
  2464. // Only Z calibration?
  2465. if (!onlyZ)
  2466. {
  2467. setTargetBed(0);
  2468. setTargetHotend(0, 0);
  2469. setTargetHotend(0, 1);
  2470. setTargetHotend(0, 2);
  2471. adjust_bed_reset(); //reset bed level correction
  2472. }
  2473. // Disable the default update procedure of the display. We will do a modal dialog.
  2474. lcd_update_enable(false);
  2475. // Let the planner use the uncorrected coordinates.
  2476. mbl.reset();
  2477. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2478. // the planner will not perform any adjustments in the XY plane.
  2479. // Wait for the motors to stop and update the current position with the absolute values.
  2480. world2machine_revert_to_uncorrected();
  2481. // Reset the baby step value applied without moving the axes.
  2482. babystep_reset();
  2483. // Mark all axes as in a need for homing.
  2484. memset(axis_known_position, 0, sizeof(axis_known_position));
  2485. // Home in the XY plane.
  2486. //set_destination_to_current();
  2487. setup_for_endstop_move();
  2488. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2489. home_xy();
  2490. enable_endstops(false);
  2491. current_position[X_AXIS] += 5;
  2492. current_position[Y_AXIS] += 5;
  2493. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2494. st_synchronize();
  2495. // Let the user move the Z axes up to the end stoppers.
  2496. #ifdef TMC2130
  2497. if (calibrate_z_auto())
  2498. {
  2499. #else //TMC2130
  2500. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2501. {
  2502. #endif //TMC2130
  2503. refresh_cmd_timeout();
  2504. #ifndef STEEL_SHEET
  2505. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2506. {
  2507. lcd_wait_for_cool_down();
  2508. }
  2509. #endif //STEEL_SHEET
  2510. if(!onlyZ)
  2511. {
  2512. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2513. #ifdef STEEL_SHEET
  2514. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2515. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2516. #endif //STEEL_SHEET
  2517. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2518. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2519. KEEPALIVE_STATE(IN_HANDLER);
  2520. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2521. lcd_implementation_print_at(0, 2, 1);
  2522. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2523. }
  2524. // Move the print head close to the bed.
  2525. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2526. bool endstops_enabled = enable_endstops(true);
  2527. #ifdef TMC2130
  2528. tmc2130_home_enter(Z_AXIS_MASK);
  2529. #endif //TMC2130
  2530. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2531. st_synchronize();
  2532. #ifdef TMC2130
  2533. tmc2130_home_exit();
  2534. #endif //TMC2130
  2535. enable_endstops(endstops_enabled);
  2536. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2537. {
  2538. int8_t verbosity_level = 0;
  2539. if (code_seen('V'))
  2540. {
  2541. // Just 'V' without a number counts as V1.
  2542. char c = strchr_pointer[1];
  2543. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2544. }
  2545. if (onlyZ)
  2546. {
  2547. clean_up_after_endstop_move();
  2548. // Z only calibration.
  2549. // Load the machine correction matrix
  2550. world2machine_initialize();
  2551. // and correct the current_position to match the transformed coordinate system.
  2552. world2machine_update_current();
  2553. //FIXME
  2554. bool result = sample_mesh_and_store_reference();
  2555. if (result)
  2556. {
  2557. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2558. // Shipped, the nozzle height has been set already. The user can start printing now.
  2559. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2560. final_result = true;
  2561. // babystep_apply();
  2562. }
  2563. }
  2564. else
  2565. {
  2566. // Reset the baby step value and the baby step applied flag.
  2567. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2568. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2569. // Complete XYZ calibration.
  2570. uint8_t point_too_far_mask = 0;
  2571. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2572. clean_up_after_endstop_move();
  2573. // Print head up.
  2574. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2575. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2576. st_synchronize();
  2577. //#ifndef NEW_XYZCAL
  2578. if (result >= 0)
  2579. {
  2580. #ifdef HEATBED_V2
  2581. sample_z();
  2582. #else //HEATBED_V2
  2583. point_too_far_mask = 0;
  2584. // Second half: The fine adjustment.
  2585. // Let the planner use the uncorrected coordinates.
  2586. mbl.reset();
  2587. world2machine_reset();
  2588. // Home in the XY plane.
  2589. setup_for_endstop_move();
  2590. home_xy();
  2591. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2592. clean_up_after_endstop_move();
  2593. // Print head up.
  2594. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2595. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2596. st_synchronize();
  2597. // if (result >= 0) babystep_apply();
  2598. #endif //HEATBED_V2
  2599. }
  2600. //#endif //NEW_XYZCAL
  2601. lcd_update_enable(true);
  2602. lcd_update(2);
  2603. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2604. if (result >= 0)
  2605. {
  2606. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2607. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2608. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2609. final_result = true;
  2610. }
  2611. }
  2612. #ifdef TMC2130
  2613. tmc2130_home_exit();
  2614. #endif
  2615. }
  2616. else
  2617. {
  2618. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2619. final_result = false;
  2620. }
  2621. }
  2622. else
  2623. {
  2624. // Timeouted.
  2625. }
  2626. lcd_update_enable(true);
  2627. #ifdef TMC2130
  2628. FORCE_HIGH_POWER_END;
  2629. #endif // TMC2130
  2630. return final_result;
  2631. }
  2632. void gcode_M114()
  2633. {
  2634. SERIAL_PROTOCOLPGM("X:");
  2635. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2636. SERIAL_PROTOCOLPGM(" Y:");
  2637. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2638. SERIAL_PROTOCOLPGM(" Z:");
  2639. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2640. SERIAL_PROTOCOLPGM(" E:");
  2641. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2642. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2643. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2644. SERIAL_PROTOCOLPGM(" Y:");
  2645. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2646. SERIAL_PROTOCOLPGM(" Z:");
  2647. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2648. SERIAL_PROTOCOLPGM(" E:");
  2649. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2650. SERIAL_PROTOCOLLN("");
  2651. }
  2652. void gcode_M701()
  2653. {
  2654. #ifdef SNMM
  2655. extr_adj(snmm_extruder);//loads current extruder
  2656. #else
  2657. enable_z();
  2658. custom_message = true;
  2659. custom_message_type = 2;
  2660. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2661. current_position[E_AXIS] += 70;
  2662. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2663. current_position[E_AXIS] += 25;
  2664. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2665. st_synchronize();
  2666. tone(BEEPER, 500);
  2667. delay_keep_alive(50);
  2668. noTone(BEEPER);
  2669. if (!farm_mode && loading_flag) {
  2670. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2671. while (!clean) {
  2672. lcd_update_enable(true);
  2673. lcd_update(2);
  2674. current_position[E_AXIS] += 25;
  2675. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2676. st_synchronize();
  2677. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2678. }
  2679. }
  2680. lcd_update_enable(true);
  2681. lcd_update(2);
  2682. lcd_setstatuspgm(_T(WELCOME_MSG));
  2683. disable_z();
  2684. loading_flag = false;
  2685. custom_message = false;
  2686. custom_message_type = 0;
  2687. #endif
  2688. }
  2689. /**
  2690. * @brief Get serial number from 32U2 processor
  2691. *
  2692. * Typical format of S/N is:CZPX0917X003XC13518
  2693. *
  2694. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2695. *
  2696. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2697. * reply is transmitted to serial port 1 character by character.
  2698. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2699. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2700. * in any case.
  2701. */
  2702. static void gcode_PRUSA_SN()
  2703. {
  2704. if (farm_mode) {
  2705. selectedSerialPort = 0;
  2706. putchar(';');
  2707. putchar('S');
  2708. int numbersRead = 0;
  2709. ShortTimer timeout;
  2710. timeout.start();
  2711. while (numbersRead < 19) {
  2712. while (MSerial.available() > 0) {
  2713. uint8_t serial_char = MSerial.read();
  2714. selectedSerialPort = 1;
  2715. putchar(serial_char);
  2716. numbersRead++;
  2717. selectedSerialPort = 0;
  2718. }
  2719. if (timeout.expired(100u)) break;
  2720. }
  2721. selectedSerialPort = 1;
  2722. putchar('\n');
  2723. #if 0
  2724. for (int b = 0; b < 3; b++) {
  2725. tone(BEEPER, 110);
  2726. delay(50);
  2727. noTone(BEEPER);
  2728. delay(50);
  2729. }
  2730. #endif
  2731. } else {
  2732. puts_P(_N("Not in farm mode."));
  2733. }
  2734. }
  2735. void process_commands()
  2736. {
  2737. if (!buflen) return; //empty command
  2738. #ifdef FILAMENT_RUNOUT_SUPPORT
  2739. SET_INPUT(FR_SENS);
  2740. #endif
  2741. #ifdef CMDBUFFER_DEBUG
  2742. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2743. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2744. SERIAL_ECHOLNPGM("");
  2745. SERIAL_ECHOPGM("In cmdqueue: ");
  2746. SERIAL_ECHO(buflen);
  2747. SERIAL_ECHOLNPGM("");
  2748. #endif /* CMDBUFFER_DEBUG */
  2749. unsigned long codenum; //throw away variable
  2750. char *starpos = NULL;
  2751. #ifdef ENABLE_AUTO_BED_LEVELING
  2752. float x_tmp, y_tmp, z_tmp, real_z;
  2753. #endif
  2754. // PRUSA GCODES
  2755. KEEPALIVE_STATE(IN_HANDLER);
  2756. #ifdef SNMM
  2757. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2758. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2759. int8_t SilentMode;
  2760. #endif
  2761. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2762. starpos = (strchr(strchr_pointer + 5, '*'));
  2763. if (starpos != NULL)
  2764. *(starpos) = '\0';
  2765. lcd_setstatus(strchr_pointer + 5);
  2766. }
  2767. #ifdef TMC2130
  2768. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2769. {
  2770. if(code_seen("CRASH_DETECTED"))
  2771. {
  2772. uint8_t mask = 0;
  2773. if (code_seen("X")) mask |= X_AXIS_MASK;
  2774. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2775. crashdet_detected(mask);
  2776. }
  2777. else if(code_seen("CRASH_RECOVER"))
  2778. crashdet_recover();
  2779. else if(code_seen("CRASH_CANCEL"))
  2780. crashdet_cancel();
  2781. }
  2782. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2783. {
  2784. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2785. {
  2786. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2787. tmc2130_set_wave(E_AXIS, 247, fac);
  2788. }
  2789. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2790. {
  2791. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2792. uint16_t res = tmc2130_get_res(E_AXIS);
  2793. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2794. }
  2795. }
  2796. #endif //TMC2130
  2797. else if(code_seen("PRUSA")){
  2798. if (code_seen("Ping")) { //PRUSA Ping
  2799. if (farm_mode) {
  2800. PingTime = millis();
  2801. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2802. }
  2803. }
  2804. else if (code_seen("PRN")) {
  2805. printf_P(_N("%d"), status_number);
  2806. }else if (code_seen("FAN")) {
  2807. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2808. }else if (code_seen("fn")) {
  2809. if (farm_mode) {
  2810. printf_P(_N("%d"), farm_no);
  2811. }
  2812. else {
  2813. puts_P(_N("Not in farm mode."));
  2814. }
  2815. }
  2816. else if (code_seen("thx")) {
  2817. no_response = false;
  2818. }else if (code_seen("fv")) {
  2819. // get file version
  2820. #ifdef SDSUPPORT
  2821. card.openFile(strchr_pointer + 3,true);
  2822. while (true) {
  2823. uint16_t readByte = card.get();
  2824. MYSERIAL.write(readByte);
  2825. if (readByte=='\n') {
  2826. break;
  2827. }
  2828. }
  2829. card.closefile();
  2830. #endif // SDSUPPORT
  2831. } else if (code_seen("M28")) {
  2832. trace();
  2833. prusa_sd_card_upload = true;
  2834. card.openFile(strchr_pointer+4,false);
  2835. } else if (code_seen("SN")) {
  2836. gcode_PRUSA_SN();
  2837. } else if(code_seen("Fir")){
  2838. SERIAL_PROTOCOLLN(FW_VERSION);
  2839. } else if(code_seen("Rev")){
  2840. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2841. } else if(code_seen("Lang")) {
  2842. lang_reset();
  2843. } else if(code_seen("Lz")) {
  2844. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2845. } else if(code_seen("Beat")) {
  2846. // Kick farm link timer
  2847. kicktime = millis();
  2848. } else if(code_seen("FR")) {
  2849. // Factory full reset
  2850. factory_reset(0,true);
  2851. }
  2852. //else if (code_seen('Cal')) {
  2853. // lcd_calibration();
  2854. // }
  2855. }
  2856. else if (code_seen('^')) {
  2857. // nothing, this is a version line
  2858. } else if(code_seen('G'))
  2859. {
  2860. switch((int)code_value())
  2861. {
  2862. case 0: // G0 -> G1
  2863. case 1: // G1
  2864. if(Stopped == false) {
  2865. #ifdef FILAMENT_RUNOUT_SUPPORT
  2866. if(READ(FR_SENS)){
  2867. feedmultiplyBckp=feedmultiply;
  2868. float target[4];
  2869. float lastpos[4];
  2870. target[X_AXIS]=current_position[X_AXIS];
  2871. target[Y_AXIS]=current_position[Y_AXIS];
  2872. target[Z_AXIS]=current_position[Z_AXIS];
  2873. target[E_AXIS]=current_position[E_AXIS];
  2874. lastpos[X_AXIS]=current_position[X_AXIS];
  2875. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2876. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2877. lastpos[E_AXIS]=current_position[E_AXIS];
  2878. //retract by E
  2879. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2880. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2881. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2882. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2883. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2884. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2885. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2886. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2887. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2888. //finish moves
  2889. st_synchronize();
  2890. //disable extruder steppers so filament can be removed
  2891. disable_e0();
  2892. disable_e1();
  2893. disable_e2();
  2894. delay(100);
  2895. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  2896. uint8_t cnt=0;
  2897. int counterBeep = 0;
  2898. lcd_wait_interact();
  2899. while(!lcd_clicked()){
  2900. cnt++;
  2901. manage_heater();
  2902. manage_inactivity(true);
  2903. //lcd_update();
  2904. if(cnt==0)
  2905. {
  2906. #if BEEPER > 0
  2907. if (counterBeep== 500){
  2908. counterBeep = 0;
  2909. }
  2910. SET_OUTPUT(BEEPER);
  2911. if (counterBeep== 0){
  2912. WRITE(BEEPER,HIGH);
  2913. }
  2914. if (counterBeep== 20){
  2915. WRITE(BEEPER,LOW);
  2916. }
  2917. counterBeep++;
  2918. #else
  2919. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2920. lcd_buzz(1000/6,100);
  2921. #else
  2922. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2923. #endif
  2924. #endif
  2925. }
  2926. }
  2927. WRITE(BEEPER,LOW);
  2928. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2929. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2930. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2931. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2932. lcd_change_fil_state = 0;
  2933. lcd_loading_filament();
  2934. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2935. lcd_change_fil_state = 0;
  2936. lcd_alright();
  2937. switch(lcd_change_fil_state){
  2938. case 2:
  2939. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2940. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2941. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2942. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2943. lcd_loading_filament();
  2944. break;
  2945. case 3:
  2946. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2947. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2948. lcd_loading_color();
  2949. break;
  2950. default:
  2951. lcd_change_success();
  2952. break;
  2953. }
  2954. }
  2955. target[E_AXIS]+= 5;
  2956. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2957. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2958. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2959. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2960. //plan_set_e_position(current_position[E_AXIS]);
  2961. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2962. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2963. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2964. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2965. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2966. plan_set_e_position(lastpos[E_AXIS]);
  2967. feedmultiply=feedmultiplyBckp;
  2968. char cmd[9];
  2969. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2970. enquecommand(cmd);
  2971. }
  2972. #endif
  2973. get_coordinates(); // For X Y Z E F
  2974. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2975. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2976. }
  2977. #ifdef FWRETRACT
  2978. if(autoretract_enabled)
  2979. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2980. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2981. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  2982. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2983. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2984. retract(!retracted[active_extruder]);
  2985. return;
  2986. }
  2987. }
  2988. #endif //FWRETRACT
  2989. prepare_move();
  2990. //ClearToSend();
  2991. }
  2992. break;
  2993. case 2: // G2 - CW ARC
  2994. if(Stopped == false) {
  2995. get_arc_coordinates();
  2996. prepare_arc_move(true);
  2997. }
  2998. break;
  2999. case 3: // G3 - CCW ARC
  3000. if(Stopped == false) {
  3001. get_arc_coordinates();
  3002. prepare_arc_move(false);
  3003. }
  3004. break;
  3005. case 4: // G4 dwell
  3006. codenum = 0;
  3007. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3008. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3009. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3010. st_synchronize();
  3011. codenum += millis(); // keep track of when we started waiting
  3012. previous_millis_cmd = millis();
  3013. while(millis() < codenum) {
  3014. manage_heater();
  3015. manage_inactivity();
  3016. lcd_update();
  3017. }
  3018. break;
  3019. #ifdef FWRETRACT
  3020. case 10: // G10 retract
  3021. #if EXTRUDERS > 1
  3022. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3023. retract(true,retracted_swap[active_extruder]);
  3024. #else
  3025. retract(true);
  3026. #endif
  3027. break;
  3028. case 11: // G11 retract_recover
  3029. #if EXTRUDERS > 1
  3030. retract(false,retracted_swap[active_extruder]);
  3031. #else
  3032. retract(false);
  3033. #endif
  3034. break;
  3035. #endif //FWRETRACT
  3036. case 28: //G28 Home all Axis one at a time
  3037. {
  3038. // Which axes should be homed?
  3039. bool home_x = code_seen(axis_codes[X_AXIS]);
  3040. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3041. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3042. // calibrate?
  3043. bool calib = code_seen('C');
  3044. gcode_G28(home_x, home_y, home_z, calib);
  3045. break;
  3046. }
  3047. #ifdef ENABLE_AUTO_BED_LEVELING
  3048. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3049. {
  3050. #if Z_MIN_PIN == -1
  3051. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3052. #endif
  3053. // Prevent user from running a G29 without first homing in X and Y
  3054. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3055. {
  3056. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3057. SERIAL_ECHO_START;
  3058. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3059. break; // abort G29, since we don't know where we are
  3060. }
  3061. st_synchronize();
  3062. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3063. //vector_3 corrected_position = plan_get_position_mm();
  3064. //corrected_position.debug("position before G29");
  3065. plan_bed_level_matrix.set_to_identity();
  3066. vector_3 uncorrected_position = plan_get_position();
  3067. //uncorrected_position.debug("position durring G29");
  3068. current_position[X_AXIS] = uncorrected_position.x;
  3069. current_position[Y_AXIS] = uncorrected_position.y;
  3070. current_position[Z_AXIS] = uncorrected_position.z;
  3071. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3072. setup_for_endstop_move();
  3073. feedrate = homing_feedrate[Z_AXIS];
  3074. #ifdef AUTO_BED_LEVELING_GRID
  3075. // probe at the points of a lattice grid
  3076. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3077. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3078. // solve the plane equation ax + by + d = z
  3079. // A is the matrix with rows [x y 1] for all the probed points
  3080. // B is the vector of the Z positions
  3081. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3082. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3083. // "A" matrix of the linear system of equations
  3084. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3085. // "B" vector of Z points
  3086. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3087. int probePointCounter = 0;
  3088. bool zig = true;
  3089. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3090. {
  3091. int xProbe, xInc;
  3092. if (zig)
  3093. {
  3094. xProbe = LEFT_PROBE_BED_POSITION;
  3095. //xEnd = RIGHT_PROBE_BED_POSITION;
  3096. xInc = xGridSpacing;
  3097. zig = false;
  3098. } else // zag
  3099. {
  3100. xProbe = RIGHT_PROBE_BED_POSITION;
  3101. //xEnd = LEFT_PROBE_BED_POSITION;
  3102. xInc = -xGridSpacing;
  3103. zig = true;
  3104. }
  3105. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3106. {
  3107. float z_before;
  3108. if (probePointCounter == 0)
  3109. {
  3110. // raise before probing
  3111. z_before = Z_RAISE_BEFORE_PROBING;
  3112. } else
  3113. {
  3114. // raise extruder
  3115. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3116. }
  3117. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3118. eqnBVector[probePointCounter] = measured_z;
  3119. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3120. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3121. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3122. probePointCounter++;
  3123. xProbe += xInc;
  3124. }
  3125. }
  3126. clean_up_after_endstop_move();
  3127. // solve lsq problem
  3128. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3129. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3130. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3131. SERIAL_PROTOCOLPGM(" b: ");
  3132. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3133. SERIAL_PROTOCOLPGM(" d: ");
  3134. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3135. set_bed_level_equation_lsq(plane_equation_coefficients);
  3136. free(plane_equation_coefficients);
  3137. #else // AUTO_BED_LEVELING_GRID not defined
  3138. // Probe at 3 arbitrary points
  3139. // probe 1
  3140. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3141. // probe 2
  3142. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3143. // probe 3
  3144. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3145. clean_up_after_endstop_move();
  3146. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3147. #endif // AUTO_BED_LEVELING_GRID
  3148. st_synchronize();
  3149. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3150. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3151. // When the bed is uneven, this height must be corrected.
  3152. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3153. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3154. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3155. z_tmp = current_position[Z_AXIS];
  3156. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3157. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3158. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3159. }
  3160. break;
  3161. #ifndef Z_PROBE_SLED
  3162. case 30: // G30 Single Z Probe
  3163. {
  3164. st_synchronize();
  3165. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3166. setup_for_endstop_move();
  3167. feedrate = homing_feedrate[Z_AXIS];
  3168. run_z_probe();
  3169. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3170. SERIAL_PROTOCOLPGM(" X: ");
  3171. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3172. SERIAL_PROTOCOLPGM(" Y: ");
  3173. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3174. SERIAL_PROTOCOLPGM(" Z: ");
  3175. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3176. SERIAL_PROTOCOLPGM("\n");
  3177. clean_up_after_endstop_move();
  3178. }
  3179. break;
  3180. #else
  3181. case 31: // dock the sled
  3182. dock_sled(true);
  3183. break;
  3184. case 32: // undock the sled
  3185. dock_sled(false);
  3186. break;
  3187. #endif // Z_PROBE_SLED
  3188. #endif // ENABLE_AUTO_BED_LEVELING
  3189. #ifdef MESH_BED_LEVELING
  3190. case 30: // G30 Single Z Probe
  3191. {
  3192. st_synchronize();
  3193. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3194. setup_for_endstop_move();
  3195. feedrate = homing_feedrate[Z_AXIS];
  3196. find_bed_induction_sensor_point_z(-10.f, 3);
  3197. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3198. clean_up_after_endstop_move();
  3199. }
  3200. break;
  3201. case 75:
  3202. {
  3203. for (int i = 40; i <= 110; i++)
  3204. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3205. }
  3206. break;
  3207. case 76: //PINDA probe temperature calibration
  3208. {
  3209. #ifdef PINDA_THERMISTOR
  3210. if (true)
  3211. {
  3212. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3213. //we need to know accurate position of first calibration point
  3214. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3215. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3216. break;
  3217. }
  3218. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3219. {
  3220. // We don't know where we are! HOME!
  3221. // Push the commands to the front of the message queue in the reverse order!
  3222. // There shall be always enough space reserved for these commands.
  3223. repeatcommand_front(); // repeat G76 with all its parameters
  3224. enquecommand_front_P((PSTR("G28 W0")));
  3225. break;
  3226. }
  3227. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3228. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3229. if (result)
  3230. {
  3231. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3232. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3233. current_position[Z_AXIS] = 50;
  3234. current_position[Y_AXIS] = 180;
  3235. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3236. st_synchronize();
  3237. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3238. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3239. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3240. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3241. st_synchronize();
  3242. gcode_G28(false, false, true, false);
  3243. }
  3244. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3245. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3246. current_position[Z_AXIS] = 100;
  3247. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3248. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3249. lcd_temp_cal_show_result(false);
  3250. break;
  3251. }
  3252. }
  3253. lcd_update_enable(true);
  3254. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3255. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3256. float zero_z;
  3257. int z_shift = 0; //unit: steps
  3258. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3259. if (start_temp < 35) start_temp = 35;
  3260. if (start_temp < current_temperature_pinda) start_temp += 5;
  3261. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3262. // setTargetHotend(200, 0);
  3263. setTargetBed(70 + (start_temp - 30));
  3264. custom_message = true;
  3265. custom_message_type = 4;
  3266. custom_message_state = 1;
  3267. custom_message = _T(MSG_TEMP_CALIBRATION);
  3268. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3269. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3270. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3271. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3272. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3273. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3274. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3275. st_synchronize();
  3276. while (current_temperature_pinda < start_temp)
  3277. {
  3278. delay_keep_alive(1000);
  3279. serialecho_temperatures();
  3280. }
  3281. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3282. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3283. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3284. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3285. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3286. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3287. st_synchronize();
  3288. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3289. if (find_z_result == false) {
  3290. lcd_temp_cal_show_result(find_z_result);
  3291. break;
  3292. }
  3293. zero_z = current_position[Z_AXIS];
  3294. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3295. int i = -1; for (; i < 5; i++)
  3296. {
  3297. float temp = (40 + i * 5);
  3298. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3299. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3300. if (start_temp <= temp) break;
  3301. }
  3302. for (i++; i < 5; i++)
  3303. {
  3304. float temp = (40 + i * 5);
  3305. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3306. custom_message_state = i + 2;
  3307. setTargetBed(50 + 10 * (temp - 30) / 5);
  3308. // setTargetHotend(255, 0);
  3309. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3310. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3311. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3312. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3313. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3314. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3315. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3316. st_synchronize();
  3317. while (current_temperature_pinda < temp)
  3318. {
  3319. delay_keep_alive(1000);
  3320. serialecho_temperatures();
  3321. }
  3322. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3323. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3324. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3325. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3326. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3327. st_synchronize();
  3328. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3329. if (find_z_result == false) {
  3330. lcd_temp_cal_show_result(find_z_result);
  3331. break;
  3332. }
  3333. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3334. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3335. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3336. }
  3337. lcd_temp_cal_show_result(true);
  3338. break;
  3339. }
  3340. #endif //PINDA_THERMISTOR
  3341. setTargetBed(PINDA_MIN_T);
  3342. float zero_z;
  3343. int z_shift = 0; //unit: steps
  3344. int t_c; // temperature
  3345. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3346. // We don't know where we are! HOME!
  3347. // Push the commands to the front of the message queue in the reverse order!
  3348. // There shall be always enough space reserved for these commands.
  3349. repeatcommand_front(); // repeat G76 with all its parameters
  3350. enquecommand_front_P((PSTR("G28 W0")));
  3351. break;
  3352. }
  3353. puts_P(_N("PINDA probe calibration start"));
  3354. custom_message = true;
  3355. custom_message_type = 4;
  3356. custom_message_state = 1;
  3357. custom_message = _T(MSG_TEMP_CALIBRATION);
  3358. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3359. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3360. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3361. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3362. st_synchronize();
  3363. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3364. delay_keep_alive(1000);
  3365. serialecho_temperatures();
  3366. }
  3367. //enquecommand_P(PSTR("M190 S50"));
  3368. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3369. delay_keep_alive(1000);
  3370. serialecho_temperatures();
  3371. }
  3372. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3373. current_position[Z_AXIS] = 5;
  3374. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3375. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3376. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3377. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3378. st_synchronize();
  3379. find_bed_induction_sensor_point_z(-1.f);
  3380. zero_z = current_position[Z_AXIS];
  3381. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3382. for (int i = 0; i<5; i++) {
  3383. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3384. custom_message_state = i + 2;
  3385. t_c = 60 + i * 10;
  3386. setTargetBed(t_c);
  3387. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3388. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3389. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3390. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3391. st_synchronize();
  3392. while (degBed() < t_c) {
  3393. delay_keep_alive(1000);
  3394. serialecho_temperatures();
  3395. }
  3396. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3397. delay_keep_alive(1000);
  3398. serialecho_temperatures();
  3399. }
  3400. current_position[Z_AXIS] = 5;
  3401. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3402. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3403. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3404. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3405. st_synchronize();
  3406. find_bed_induction_sensor_point_z(-1.f);
  3407. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3408. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3409. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3410. }
  3411. custom_message_type = 0;
  3412. custom_message = false;
  3413. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3414. puts_P(_N("Temperature calibration done."));
  3415. disable_x();
  3416. disable_y();
  3417. disable_z();
  3418. disable_e0();
  3419. disable_e1();
  3420. disable_e2();
  3421. setTargetBed(0); //set bed target temperature back to 0
  3422. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3423. temp_cal_active = true;
  3424. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3425. lcd_update_enable(true);
  3426. lcd_update(2);
  3427. }
  3428. break;
  3429. #ifdef DIS
  3430. case 77:
  3431. {
  3432. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3433. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3434. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3435. float dimension_x = 40;
  3436. float dimension_y = 40;
  3437. int points_x = 40;
  3438. int points_y = 40;
  3439. float offset_x = 74;
  3440. float offset_y = 33;
  3441. if (code_seen('X')) dimension_x = code_value();
  3442. if (code_seen('Y')) dimension_y = code_value();
  3443. if (code_seen('XP')) points_x = code_value();
  3444. if (code_seen('YP')) points_y = code_value();
  3445. if (code_seen('XO')) offset_x = code_value();
  3446. if (code_seen('YO')) offset_y = code_value();
  3447. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3448. } break;
  3449. #endif
  3450. case 79: {
  3451. for (int i = 255; i > 0; i = i - 5) {
  3452. fanSpeed = i;
  3453. //delay_keep_alive(2000);
  3454. for (int j = 0; j < 100; j++) {
  3455. delay_keep_alive(100);
  3456. }
  3457. fan_speed[1];
  3458. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3459. }
  3460. }break;
  3461. /**
  3462. * G80: Mesh-based Z probe, probes a grid and produces a
  3463. * mesh to compensate for variable bed height
  3464. *
  3465. * The S0 report the points as below
  3466. *
  3467. * +----> X-axis
  3468. * |
  3469. * |
  3470. * v Y-axis
  3471. *
  3472. */
  3473. case 80:
  3474. #ifdef MK1BP
  3475. break;
  3476. #endif //MK1BP
  3477. case_G80:
  3478. {
  3479. mesh_bed_leveling_flag = true;
  3480. int8_t verbosity_level = 0;
  3481. static bool run = false;
  3482. if (code_seen('V')) {
  3483. // Just 'V' without a number counts as V1.
  3484. char c = strchr_pointer[1];
  3485. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3486. }
  3487. // Firstly check if we know where we are
  3488. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3489. // We don't know where we are! HOME!
  3490. // Push the commands to the front of the message queue in the reverse order!
  3491. // There shall be always enough space reserved for these commands.
  3492. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3493. repeatcommand_front(); // repeat G80 with all its parameters
  3494. enquecommand_front_P((PSTR("G28 W0")));
  3495. }
  3496. else {
  3497. mesh_bed_leveling_flag = false;
  3498. }
  3499. break;
  3500. }
  3501. bool temp_comp_start = true;
  3502. #ifdef PINDA_THERMISTOR
  3503. temp_comp_start = false;
  3504. #endif //PINDA_THERMISTOR
  3505. if (temp_comp_start)
  3506. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3507. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3508. temp_compensation_start();
  3509. run = true;
  3510. repeatcommand_front(); // repeat G80 with all its parameters
  3511. enquecommand_front_P((PSTR("G28 W0")));
  3512. }
  3513. else {
  3514. mesh_bed_leveling_flag = false;
  3515. }
  3516. break;
  3517. }
  3518. run = false;
  3519. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3520. mesh_bed_leveling_flag = false;
  3521. break;
  3522. }
  3523. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3524. bool custom_message_old = custom_message;
  3525. unsigned int custom_message_type_old = custom_message_type;
  3526. unsigned int custom_message_state_old = custom_message_state;
  3527. custom_message = true;
  3528. custom_message_type = 1;
  3529. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3530. lcd_update(1);
  3531. mbl.reset(); //reset mesh bed leveling
  3532. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3533. // consumed during the first movements following this statement.
  3534. babystep_undo();
  3535. // Cycle through all points and probe them
  3536. // First move up. During this first movement, the babystepping will be reverted.
  3537. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3538. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3539. // The move to the first calibration point.
  3540. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3541. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3542. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3543. #ifdef SUPPORT_VERBOSITY
  3544. if (verbosity_level >= 1) {
  3545. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3546. }
  3547. #endif //SUPPORT_VERBOSITY
  3548. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3549. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3550. // Wait until the move is finished.
  3551. st_synchronize();
  3552. int mesh_point = 0; //index number of calibration point
  3553. int ix = 0;
  3554. int iy = 0;
  3555. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3556. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3557. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3558. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3559. #ifdef SUPPORT_VERBOSITY
  3560. if (verbosity_level >= 1) {
  3561. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3562. }
  3563. #endif // SUPPORT_VERBOSITY
  3564. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3565. const char *kill_message = NULL;
  3566. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3567. // Get coords of a measuring point.
  3568. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3569. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3570. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3571. float z0 = 0.f;
  3572. if (has_z && mesh_point > 0) {
  3573. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3574. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3575. //#if 0
  3576. #ifdef SUPPORT_VERBOSITY
  3577. if (verbosity_level >= 1) {
  3578. SERIAL_ECHOLNPGM("");
  3579. SERIAL_ECHOPGM("Bed leveling, point: ");
  3580. MYSERIAL.print(mesh_point);
  3581. SERIAL_ECHOPGM(", calibration z: ");
  3582. MYSERIAL.print(z0, 5);
  3583. SERIAL_ECHOLNPGM("");
  3584. }
  3585. #endif // SUPPORT_VERBOSITY
  3586. //#endif
  3587. }
  3588. // Move Z up to MESH_HOME_Z_SEARCH.
  3589. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3591. st_synchronize();
  3592. // Move to XY position of the sensor point.
  3593. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3594. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3595. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3596. #ifdef SUPPORT_VERBOSITY
  3597. if (verbosity_level >= 1) {
  3598. SERIAL_PROTOCOL(mesh_point);
  3599. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3600. }
  3601. #endif // SUPPORT_VERBOSITY
  3602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3603. st_synchronize();
  3604. // Go down until endstop is hit
  3605. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3606. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3607. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3608. break;
  3609. }
  3610. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3611. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3612. break;
  3613. }
  3614. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3615. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3616. break;
  3617. }
  3618. #ifdef SUPPORT_VERBOSITY
  3619. if (verbosity_level >= 10) {
  3620. SERIAL_ECHOPGM("X: ");
  3621. MYSERIAL.print(current_position[X_AXIS], 5);
  3622. SERIAL_ECHOLNPGM("");
  3623. SERIAL_ECHOPGM("Y: ");
  3624. MYSERIAL.print(current_position[Y_AXIS], 5);
  3625. SERIAL_PROTOCOLPGM("\n");
  3626. }
  3627. #endif // SUPPORT_VERBOSITY
  3628. float offset_z = 0;
  3629. #ifdef PINDA_THERMISTOR
  3630. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3631. #endif //PINDA_THERMISTOR
  3632. // #ifdef SUPPORT_VERBOSITY
  3633. /* if (verbosity_level >= 1)
  3634. {
  3635. SERIAL_ECHOPGM("mesh bed leveling: ");
  3636. MYSERIAL.print(current_position[Z_AXIS], 5);
  3637. SERIAL_ECHOPGM(" offset: ");
  3638. MYSERIAL.print(offset_z, 5);
  3639. SERIAL_ECHOLNPGM("");
  3640. }*/
  3641. // #endif // SUPPORT_VERBOSITY
  3642. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3643. custom_message_state--;
  3644. mesh_point++;
  3645. lcd_update(1);
  3646. }
  3647. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3648. #ifdef SUPPORT_VERBOSITY
  3649. if (verbosity_level >= 20) {
  3650. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3651. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3652. MYSERIAL.print(current_position[Z_AXIS], 5);
  3653. }
  3654. #endif // SUPPORT_VERBOSITY
  3655. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3656. st_synchronize();
  3657. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3658. kill(kill_message);
  3659. SERIAL_ECHOLNPGM("killed");
  3660. }
  3661. clean_up_after_endstop_move();
  3662. // SERIAL_ECHOLNPGM("clean up finished ");
  3663. bool apply_temp_comp = true;
  3664. #ifdef PINDA_THERMISTOR
  3665. apply_temp_comp = false;
  3666. #endif
  3667. if (apply_temp_comp)
  3668. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3669. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3670. // SERIAL_ECHOLNPGM("babystep applied");
  3671. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3672. #ifdef SUPPORT_VERBOSITY
  3673. if (verbosity_level >= 1) {
  3674. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3675. }
  3676. #endif // SUPPORT_VERBOSITY
  3677. for (uint8_t i = 0; i < 4; ++i) {
  3678. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3679. long correction = 0;
  3680. if (code_seen(codes[i]))
  3681. correction = code_value_long();
  3682. else if (eeprom_bed_correction_valid) {
  3683. unsigned char *addr = (i < 2) ?
  3684. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3685. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3686. correction = eeprom_read_int8(addr);
  3687. }
  3688. if (correction == 0)
  3689. continue;
  3690. float offset = float(correction) * 0.001f;
  3691. if (fabs(offset) > 0.101f) {
  3692. SERIAL_ERROR_START;
  3693. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3694. SERIAL_ECHO(offset);
  3695. SERIAL_ECHOLNPGM(" microns");
  3696. }
  3697. else {
  3698. switch (i) {
  3699. case 0:
  3700. for (uint8_t row = 0; row < 3; ++row) {
  3701. mbl.z_values[row][1] += 0.5f * offset;
  3702. mbl.z_values[row][0] += offset;
  3703. }
  3704. break;
  3705. case 1:
  3706. for (uint8_t row = 0; row < 3; ++row) {
  3707. mbl.z_values[row][1] += 0.5f * offset;
  3708. mbl.z_values[row][2] += offset;
  3709. }
  3710. break;
  3711. case 2:
  3712. for (uint8_t col = 0; col < 3; ++col) {
  3713. mbl.z_values[1][col] += 0.5f * offset;
  3714. mbl.z_values[0][col] += offset;
  3715. }
  3716. break;
  3717. case 3:
  3718. for (uint8_t col = 0; col < 3; ++col) {
  3719. mbl.z_values[1][col] += 0.5f * offset;
  3720. mbl.z_values[2][col] += offset;
  3721. }
  3722. break;
  3723. }
  3724. }
  3725. }
  3726. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3727. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3728. // SERIAL_ECHOLNPGM("Upsample finished");
  3729. mbl.active = 1; //activate mesh bed leveling
  3730. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3731. go_home_with_z_lift();
  3732. // SERIAL_ECHOLNPGM("Go home finished");
  3733. //unretract (after PINDA preheat retraction)
  3734. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3735. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3736. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3737. }
  3738. KEEPALIVE_STATE(NOT_BUSY);
  3739. // Restore custom message state
  3740. custom_message = custom_message_old;
  3741. custom_message_type = custom_message_type_old;
  3742. custom_message_state = custom_message_state_old;
  3743. mesh_bed_leveling_flag = false;
  3744. mesh_bed_run_from_menu = false;
  3745. lcd_update(2);
  3746. }
  3747. break;
  3748. /**
  3749. * G81: Print mesh bed leveling status and bed profile if activated
  3750. */
  3751. case 81:
  3752. if (mbl.active) {
  3753. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3754. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3755. SERIAL_PROTOCOLPGM(",");
  3756. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3757. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3758. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3759. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3760. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3761. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3762. SERIAL_PROTOCOLPGM(" ");
  3763. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3764. }
  3765. SERIAL_PROTOCOLPGM("\n");
  3766. }
  3767. }
  3768. else
  3769. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3770. break;
  3771. #if 0
  3772. /**
  3773. * G82: Single Z probe at current location
  3774. *
  3775. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3776. *
  3777. */
  3778. case 82:
  3779. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3780. setup_for_endstop_move();
  3781. find_bed_induction_sensor_point_z();
  3782. clean_up_after_endstop_move();
  3783. SERIAL_PROTOCOLPGM("Bed found at: ");
  3784. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3785. SERIAL_PROTOCOLPGM("\n");
  3786. break;
  3787. /**
  3788. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3789. */
  3790. case 83:
  3791. {
  3792. int babystepz = code_seen('S') ? code_value() : 0;
  3793. int BabyPosition = code_seen('P') ? code_value() : 0;
  3794. if (babystepz != 0) {
  3795. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3796. // Is the axis indexed starting with zero or one?
  3797. if (BabyPosition > 4) {
  3798. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3799. }else{
  3800. // Save it to the eeprom
  3801. babystepLoadZ = babystepz;
  3802. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3803. // adjust the Z
  3804. babystepsTodoZadd(babystepLoadZ);
  3805. }
  3806. }
  3807. }
  3808. break;
  3809. /**
  3810. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3811. */
  3812. case 84:
  3813. babystepsTodoZsubtract(babystepLoadZ);
  3814. // babystepLoadZ = 0;
  3815. break;
  3816. /**
  3817. * G85: Prusa3D specific: Pick best babystep
  3818. */
  3819. case 85:
  3820. lcd_pick_babystep();
  3821. break;
  3822. #endif
  3823. /**
  3824. * G86: Prusa3D specific: Disable babystep correction after home.
  3825. * This G-code will be performed at the start of a calibration script.
  3826. */
  3827. case 86:
  3828. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3829. break;
  3830. /**
  3831. * G87: Prusa3D specific: Enable babystep correction after home
  3832. * This G-code will be performed at the end of a calibration script.
  3833. */
  3834. case 87:
  3835. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3836. break;
  3837. /**
  3838. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3839. */
  3840. case 88:
  3841. break;
  3842. #endif // ENABLE_MESH_BED_LEVELING
  3843. case 90: // G90
  3844. relative_mode = false;
  3845. break;
  3846. case 91: // G91
  3847. relative_mode = true;
  3848. break;
  3849. case 92: // G92
  3850. if(!code_seen(axis_codes[E_AXIS]))
  3851. st_synchronize();
  3852. for(int8_t i=0; i < NUM_AXIS; i++) {
  3853. if(code_seen(axis_codes[i])) {
  3854. if(i == E_AXIS) {
  3855. current_position[i] = code_value();
  3856. plan_set_e_position(current_position[E_AXIS]);
  3857. }
  3858. else {
  3859. current_position[i] = code_value()+add_homing[i];
  3860. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3861. }
  3862. }
  3863. }
  3864. break;
  3865. case 98: // G98 (activate farm mode)
  3866. farm_mode = 1;
  3867. PingTime = millis();
  3868. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3869. SilentModeMenu = SILENT_MODE_OFF;
  3870. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3871. break;
  3872. case 99: // G99 (deactivate farm mode)
  3873. farm_mode = 0;
  3874. lcd_printer_connected();
  3875. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3876. lcd_update(2);
  3877. break;
  3878. default:
  3879. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3880. }
  3881. } // end if(code_seen('G'))
  3882. else if(code_seen('M'))
  3883. {
  3884. int index;
  3885. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3886. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3887. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3888. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3889. } else
  3890. switch((int)code_value())
  3891. {
  3892. #ifdef ULTIPANEL
  3893. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3894. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3895. {
  3896. char *src = strchr_pointer + 2;
  3897. codenum = 0;
  3898. bool hasP = false, hasS = false;
  3899. if (code_seen('P')) {
  3900. codenum = code_value(); // milliseconds to wait
  3901. hasP = codenum > 0;
  3902. }
  3903. if (code_seen('S')) {
  3904. codenum = code_value() * 1000; // seconds to wait
  3905. hasS = codenum > 0;
  3906. }
  3907. starpos = strchr(src, '*');
  3908. if (starpos != NULL) *(starpos) = '\0';
  3909. while (*src == ' ') ++src;
  3910. if (!hasP && !hasS && *src != '\0') {
  3911. lcd_setstatus(src);
  3912. } else {
  3913. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  3914. }
  3915. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3916. st_synchronize();
  3917. previous_millis_cmd = millis();
  3918. if (codenum > 0){
  3919. codenum += millis(); // keep track of when we started waiting
  3920. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3921. while(millis() < codenum && !lcd_clicked()){
  3922. manage_heater();
  3923. manage_inactivity(true);
  3924. lcd_update();
  3925. }
  3926. KEEPALIVE_STATE(IN_HANDLER);
  3927. lcd_ignore_click(false);
  3928. }else{
  3929. if (!lcd_detected())
  3930. break;
  3931. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3932. while(!lcd_clicked()){
  3933. manage_heater();
  3934. manage_inactivity(true);
  3935. lcd_update();
  3936. }
  3937. KEEPALIVE_STATE(IN_HANDLER);
  3938. }
  3939. if (IS_SD_PRINTING)
  3940. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  3941. else
  3942. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  3943. }
  3944. break;
  3945. #endif
  3946. case 17:
  3947. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  3948. enable_x();
  3949. enable_y();
  3950. enable_z();
  3951. enable_e0();
  3952. enable_e1();
  3953. enable_e2();
  3954. break;
  3955. #ifdef SDSUPPORT
  3956. case 20: // M20 - list SD card
  3957. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  3958. card.ls();
  3959. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  3960. break;
  3961. case 21: // M21 - init SD card
  3962. card.initsd();
  3963. break;
  3964. case 22: //M22 - release SD card
  3965. card.release();
  3966. break;
  3967. case 23: //M23 - Select file
  3968. starpos = (strchr(strchr_pointer + 4,'*'));
  3969. if(starpos!=NULL)
  3970. *(starpos)='\0';
  3971. card.openFile(strchr_pointer + 4,true);
  3972. break;
  3973. case 24: //M24 - Start SD print
  3974. if (!card.paused)
  3975. failstats_reset_print();
  3976. card.startFileprint();
  3977. starttime=millis();
  3978. break;
  3979. case 25: //M25 - Pause SD print
  3980. card.pauseSDPrint();
  3981. break;
  3982. case 26: //M26 - Set SD index
  3983. if(card.cardOK && code_seen('S')) {
  3984. card.setIndex(code_value_long());
  3985. }
  3986. break;
  3987. case 27: //M27 - Get SD status
  3988. card.getStatus();
  3989. break;
  3990. case 28: //M28 - Start SD write
  3991. starpos = (strchr(strchr_pointer + 4,'*'));
  3992. if(starpos != NULL){
  3993. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3994. strchr_pointer = strchr(npos,' ') + 1;
  3995. *(starpos) = '\0';
  3996. }
  3997. card.openFile(strchr_pointer+4,false);
  3998. break;
  3999. case 29: //M29 - Stop SD write
  4000. //processed in write to file routine above
  4001. //card,saving = false;
  4002. break;
  4003. case 30: //M30 <filename> Delete File
  4004. if (card.cardOK){
  4005. card.closefile();
  4006. starpos = (strchr(strchr_pointer + 4,'*'));
  4007. if(starpos != NULL){
  4008. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4009. strchr_pointer = strchr(npos,' ') + 1;
  4010. *(starpos) = '\0';
  4011. }
  4012. card.removeFile(strchr_pointer + 4);
  4013. }
  4014. break;
  4015. case 32: //M32 - Select file and start SD print
  4016. {
  4017. if(card.sdprinting) {
  4018. st_synchronize();
  4019. }
  4020. starpos = (strchr(strchr_pointer + 4,'*'));
  4021. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4022. if(namestartpos==NULL)
  4023. {
  4024. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4025. }
  4026. else
  4027. namestartpos++; //to skip the '!'
  4028. if(starpos!=NULL)
  4029. *(starpos)='\0';
  4030. bool call_procedure=(code_seen('P'));
  4031. if(strchr_pointer>namestartpos)
  4032. call_procedure=false; //false alert, 'P' found within filename
  4033. if( card.cardOK )
  4034. {
  4035. card.openFile(namestartpos,true,!call_procedure);
  4036. if(code_seen('S'))
  4037. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4038. card.setIndex(code_value_long());
  4039. card.startFileprint();
  4040. if(!call_procedure)
  4041. starttime=millis(); //procedure calls count as normal print time.
  4042. }
  4043. } break;
  4044. case 928: //M928 - Start SD write
  4045. starpos = (strchr(strchr_pointer + 5,'*'));
  4046. if(starpos != NULL){
  4047. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4048. strchr_pointer = strchr(npos,' ') + 1;
  4049. *(starpos) = '\0';
  4050. }
  4051. card.openLogFile(strchr_pointer+5);
  4052. break;
  4053. #endif //SDSUPPORT
  4054. case 31: //M31 take time since the start of the SD print or an M109 command
  4055. {
  4056. stoptime=millis();
  4057. char time[30];
  4058. unsigned long t=(stoptime-starttime)/1000;
  4059. int sec,min;
  4060. min=t/60;
  4061. sec=t%60;
  4062. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4063. SERIAL_ECHO_START;
  4064. SERIAL_ECHOLN(time);
  4065. lcd_setstatus(time);
  4066. autotempShutdown();
  4067. }
  4068. break;
  4069. #ifndef _DISABLE_M42_M226
  4070. case 42: //M42 -Change pin status via gcode
  4071. if (code_seen('S'))
  4072. {
  4073. int pin_status = code_value();
  4074. int pin_number = LED_PIN;
  4075. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4076. pin_number = code_value();
  4077. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4078. {
  4079. if (sensitive_pins[i] == pin_number)
  4080. {
  4081. pin_number = -1;
  4082. break;
  4083. }
  4084. }
  4085. #if defined(FAN_PIN) && FAN_PIN > -1
  4086. if (pin_number == FAN_PIN)
  4087. fanSpeed = pin_status;
  4088. #endif
  4089. if (pin_number > -1)
  4090. {
  4091. pinMode(pin_number, OUTPUT);
  4092. digitalWrite(pin_number, pin_status);
  4093. analogWrite(pin_number, pin_status);
  4094. }
  4095. }
  4096. break;
  4097. #endif //_DISABLE_M42_M226
  4098. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4099. // Reset the baby step value and the baby step applied flag.
  4100. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4101. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4102. // Reset the skew and offset in both RAM and EEPROM.
  4103. reset_bed_offset_and_skew();
  4104. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4105. // the planner will not perform any adjustments in the XY plane.
  4106. // Wait for the motors to stop and update the current position with the absolute values.
  4107. world2machine_revert_to_uncorrected();
  4108. break;
  4109. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4110. {
  4111. int8_t verbosity_level = 0;
  4112. bool only_Z = code_seen('Z');
  4113. #ifdef SUPPORT_VERBOSITY
  4114. if (code_seen('V'))
  4115. {
  4116. // Just 'V' without a number counts as V1.
  4117. char c = strchr_pointer[1];
  4118. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4119. }
  4120. #endif //SUPPORT_VERBOSITY
  4121. gcode_M45(only_Z, verbosity_level);
  4122. }
  4123. break;
  4124. /*
  4125. case 46:
  4126. {
  4127. // M46: Prusa3D: Show the assigned IP address.
  4128. uint8_t ip[4];
  4129. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4130. if (hasIP) {
  4131. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4132. SERIAL_ECHO(int(ip[0]));
  4133. SERIAL_ECHOPGM(".");
  4134. SERIAL_ECHO(int(ip[1]));
  4135. SERIAL_ECHOPGM(".");
  4136. SERIAL_ECHO(int(ip[2]));
  4137. SERIAL_ECHOPGM(".");
  4138. SERIAL_ECHO(int(ip[3]));
  4139. SERIAL_ECHOLNPGM("");
  4140. } else {
  4141. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4142. }
  4143. break;
  4144. }
  4145. */
  4146. case 47:
  4147. // M47: Prusa3D: Show end stops dialog on the display.
  4148. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4149. lcd_diag_show_end_stops();
  4150. KEEPALIVE_STATE(IN_HANDLER);
  4151. break;
  4152. #if 0
  4153. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4154. {
  4155. // Disable the default update procedure of the display. We will do a modal dialog.
  4156. lcd_update_enable(false);
  4157. // Let the planner use the uncorrected coordinates.
  4158. mbl.reset();
  4159. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4160. // the planner will not perform any adjustments in the XY plane.
  4161. // Wait for the motors to stop and update the current position with the absolute values.
  4162. world2machine_revert_to_uncorrected();
  4163. // Move the print head close to the bed.
  4164. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4165. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4166. st_synchronize();
  4167. // Home in the XY plane.
  4168. set_destination_to_current();
  4169. setup_for_endstop_move();
  4170. home_xy();
  4171. int8_t verbosity_level = 0;
  4172. if (code_seen('V')) {
  4173. // Just 'V' without a number counts as V1.
  4174. char c = strchr_pointer[1];
  4175. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4176. }
  4177. bool success = scan_bed_induction_points(verbosity_level);
  4178. clean_up_after_endstop_move();
  4179. // Print head up.
  4180. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4181. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4182. st_synchronize();
  4183. lcd_update_enable(true);
  4184. break;
  4185. }
  4186. #endif
  4187. // M48 Z-Probe repeatability measurement function.
  4188. //
  4189. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4190. //
  4191. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4192. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4193. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4194. // regenerated.
  4195. //
  4196. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4197. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4198. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4199. //
  4200. #ifdef ENABLE_AUTO_BED_LEVELING
  4201. #ifdef Z_PROBE_REPEATABILITY_TEST
  4202. case 48: // M48 Z-Probe repeatability
  4203. {
  4204. #if Z_MIN_PIN == -1
  4205. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4206. #endif
  4207. double sum=0.0;
  4208. double mean=0.0;
  4209. double sigma=0.0;
  4210. double sample_set[50];
  4211. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4212. double X_current, Y_current, Z_current;
  4213. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4214. if (code_seen('V') || code_seen('v')) {
  4215. verbose_level = code_value();
  4216. if (verbose_level<0 || verbose_level>4 ) {
  4217. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4218. goto Sigma_Exit;
  4219. }
  4220. }
  4221. if (verbose_level > 0) {
  4222. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4223. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4224. }
  4225. if (code_seen('n')) {
  4226. n_samples = code_value();
  4227. if (n_samples<4 || n_samples>50 ) {
  4228. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4229. goto Sigma_Exit;
  4230. }
  4231. }
  4232. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4233. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4234. Z_current = st_get_position_mm(Z_AXIS);
  4235. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4236. ext_position = st_get_position_mm(E_AXIS);
  4237. if (code_seen('X') || code_seen('x') ) {
  4238. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4239. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4240. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4241. goto Sigma_Exit;
  4242. }
  4243. }
  4244. if (code_seen('Y') || code_seen('y') ) {
  4245. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4246. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4247. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4248. goto Sigma_Exit;
  4249. }
  4250. }
  4251. if (code_seen('L') || code_seen('l') ) {
  4252. n_legs = code_value();
  4253. if ( n_legs==1 )
  4254. n_legs = 2;
  4255. if ( n_legs<0 || n_legs>15 ) {
  4256. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4257. goto Sigma_Exit;
  4258. }
  4259. }
  4260. //
  4261. // Do all the preliminary setup work. First raise the probe.
  4262. //
  4263. st_synchronize();
  4264. plan_bed_level_matrix.set_to_identity();
  4265. plan_buffer_line( X_current, Y_current, Z_start_location,
  4266. ext_position,
  4267. homing_feedrate[Z_AXIS]/60,
  4268. active_extruder);
  4269. st_synchronize();
  4270. //
  4271. // Now get everything to the specified probe point So we can safely do a probe to
  4272. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4273. // use that as a starting point for each probe.
  4274. //
  4275. if (verbose_level > 2)
  4276. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4277. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4278. ext_position,
  4279. homing_feedrate[X_AXIS]/60,
  4280. active_extruder);
  4281. st_synchronize();
  4282. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4283. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4284. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4285. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4286. //
  4287. // OK, do the inital probe to get us close to the bed.
  4288. // Then retrace the right amount and use that in subsequent probes
  4289. //
  4290. setup_for_endstop_move();
  4291. run_z_probe();
  4292. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4293. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4294. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4295. ext_position,
  4296. homing_feedrate[X_AXIS]/60,
  4297. active_extruder);
  4298. st_synchronize();
  4299. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4300. for( n=0; n<n_samples; n++) {
  4301. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4302. if ( n_legs) {
  4303. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4304. int rotational_direction, l;
  4305. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4306. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4307. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4308. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4309. //SERIAL_ECHOPAIR(" theta: ",theta);
  4310. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4311. //SERIAL_PROTOCOLLNPGM("");
  4312. for( l=0; l<n_legs-1; l++) {
  4313. if (rotational_direction==1)
  4314. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4315. else
  4316. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4317. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4318. if ( radius<0.0 )
  4319. radius = -radius;
  4320. X_current = X_probe_location + cos(theta) * radius;
  4321. Y_current = Y_probe_location + sin(theta) * radius;
  4322. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4323. X_current = X_MIN_POS;
  4324. if ( X_current>X_MAX_POS)
  4325. X_current = X_MAX_POS;
  4326. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4327. Y_current = Y_MIN_POS;
  4328. if ( Y_current>Y_MAX_POS)
  4329. Y_current = Y_MAX_POS;
  4330. if (verbose_level>3 ) {
  4331. SERIAL_ECHOPAIR("x: ", X_current);
  4332. SERIAL_ECHOPAIR("y: ", Y_current);
  4333. SERIAL_PROTOCOLLNPGM("");
  4334. }
  4335. do_blocking_move_to( X_current, Y_current, Z_current );
  4336. }
  4337. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4338. }
  4339. setup_for_endstop_move();
  4340. run_z_probe();
  4341. sample_set[n] = current_position[Z_AXIS];
  4342. //
  4343. // Get the current mean for the data points we have so far
  4344. //
  4345. sum=0.0;
  4346. for( j=0; j<=n; j++) {
  4347. sum = sum + sample_set[j];
  4348. }
  4349. mean = sum / (double (n+1));
  4350. //
  4351. // Now, use that mean to calculate the standard deviation for the
  4352. // data points we have so far
  4353. //
  4354. sum=0.0;
  4355. for( j=0; j<=n; j++) {
  4356. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4357. }
  4358. sigma = sqrt( sum / (double (n+1)) );
  4359. if (verbose_level > 1) {
  4360. SERIAL_PROTOCOL(n+1);
  4361. SERIAL_PROTOCOL(" of ");
  4362. SERIAL_PROTOCOL(n_samples);
  4363. SERIAL_PROTOCOLPGM(" z: ");
  4364. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4365. }
  4366. if (verbose_level > 2) {
  4367. SERIAL_PROTOCOL(" mean: ");
  4368. SERIAL_PROTOCOL_F(mean,6);
  4369. SERIAL_PROTOCOL(" sigma: ");
  4370. SERIAL_PROTOCOL_F(sigma,6);
  4371. }
  4372. if (verbose_level > 0)
  4373. SERIAL_PROTOCOLPGM("\n");
  4374. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4375. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4376. st_synchronize();
  4377. }
  4378. delay(1000);
  4379. clean_up_after_endstop_move();
  4380. // enable_endstops(true);
  4381. if (verbose_level > 0) {
  4382. SERIAL_PROTOCOLPGM("Mean: ");
  4383. SERIAL_PROTOCOL_F(mean, 6);
  4384. SERIAL_PROTOCOLPGM("\n");
  4385. }
  4386. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4387. SERIAL_PROTOCOL_F(sigma, 6);
  4388. SERIAL_PROTOCOLPGM("\n\n");
  4389. Sigma_Exit:
  4390. break;
  4391. }
  4392. #endif // Z_PROBE_REPEATABILITY_TEST
  4393. #endif // ENABLE_AUTO_BED_LEVELING
  4394. case 73: //M73 show percent done and time remaining
  4395. if(code_seen('P')) print_percent_done_normal = code_value();
  4396. if(code_seen('R')) print_time_remaining_normal = code_value();
  4397. if(code_seen('Q')) print_percent_done_silent = code_value();
  4398. if(code_seen('S')) print_time_remaining_silent = code_value();
  4399. {
  4400. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4401. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4402. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4403. }
  4404. break;
  4405. case 104: // M104
  4406. if(setTargetedHotend(104)){
  4407. break;
  4408. }
  4409. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4410. setWatch();
  4411. break;
  4412. case 112: // M112 -Emergency Stop
  4413. kill(_n(""), 3);
  4414. break;
  4415. case 140: // M140 set bed temp
  4416. if (code_seen('S')) setTargetBed(code_value());
  4417. break;
  4418. case 105 : // M105
  4419. if(setTargetedHotend(105)){
  4420. break;
  4421. }
  4422. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4423. SERIAL_PROTOCOLPGM("ok T:");
  4424. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4425. SERIAL_PROTOCOLPGM(" /");
  4426. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4427. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4428. SERIAL_PROTOCOLPGM(" B:");
  4429. SERIAL_PROTOCOL_F(degBed(),1);
  4430. SERIAL_PROTOCOLPGM(" /");
  4431. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4432. #endif //TEMP_BED_PIN
  4433. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4434. SERIAL_PROTOCOLPGM(" T");
  4435. SERIAL_PROTOCOL(cur_extruder);
  4436. SERIAL_PROTOCOLPGM(":");
  4437. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4438. SERIAL_PROTOCOLPGM(" /");
  4439. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4440. }
  4441. #else
  4442. SERIAL_ERROR_START;
  4443. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4444. #endif
  4445. SERIAL_PROTOCOLPGM(" @:");
  4446. #ifdef EXTRUDER_WATTS
  4447. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4448. SERIAL_PROTOCOLPGM("W");
  4449. #else
  4450. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4451. #endif
  4452. SERIAL_PROTOCOLPGM(" B@:");
  4453. #ifdef BED_WATTS
  4454. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4455. SERIAL_PROTOCOLPGM("W");
  4456. #else
  4457. SERIAL_PROTOCOL(getHeaterPower(-1));
  4458. #endif
  4459. #ifdef PINDA_THERMISTOR
  4460. SERIAL_PROTOCOLPGM(" P:");
  4461. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4462. #endif //PINDA_THERMISTOR
  4463. #ifdef AMBIENT_THERMISTOR
  4464. SERIAL_PROTOCOLPGM(" A:");
  4465. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4466. #endif //AMBIENT_THERMISTOR
  4467. #ifdef SHOW_TEMP_ADC_VALUES
  4468. {float raw = 0.0;
  4469. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4470. SERIAL_PROTOCOLPGM(" ADC B:");
  4471. SERIAL_PROTOCOL_F(degBed(),1);
  4472. SERIAL_PROTOCOLPGM("C->");
  4473. raw = rawBedTemp();
  4474. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4475. SERIAL_PROTOCOLPGM(" Rb->");
  4476. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4477. SERIAL_PROTOCOLPGM(" Rxb->");
  4478. SERIAL_PROTOCOL_F(raw, 5);
  4479. #endif
  4480. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4481. SERIAL_PROTOCOLPGM(" T");
  4482. SERIAL_PROTOCOL(cur_extruder);
  4483. SERIAL_PROTOCOLPGM(":");
  4484. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4485. SERIAL_PROTOCOLPGM("C->");
  4486. raw = rawHotendTemp(cur_extruder);
  4487. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4488. SERIAL_PROTOCOLPGM(" Rt");
  4489. SERIAL_PROTOCOL(cur_extruder);
  4490. SERIAL_PROTOCOLPGM("->");
  4491. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4492. SERIAL_PROTOCOLPGM(" Rx");
  4493. SERIAL_PROTOCOL(cur_extruder);
  4494. SERIAL_PROTOCOLPGM("->");
  4495. SERIAL_PROTOCOL_F(raw, 5);
  4496. }}
  4497. #endif
  4498. SERIAL_PROTOCOLLN("");
  4499. KEEPALIVE_STATE(NOT_BUSY);
  4500. return;
  4501. break;
  4502. case 109:
  4503. {// M109 - Wait for extruder heater to reach target.
  4504. if(setTargetedHotend(109)){
  4505. break;
  4506. }
  4507. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4508. heating_status = 1;
  4509. if (farm_mode) { prusa_statistics(1); };
  4510. #ifdef AUTOTEMP
  4511. autotemp_enabled=false;
  4512. #endif
  4513. if (code_seen('S')) {
  4514. setTargetHotend(code_value(), tmp_extruder);
  4515. CooldownNoWait = true;
  4516. } else if (code_seen('R')) {
  4517. setTargetHotend(code_value(), tmp_extruder);
  4518. CooldownNoWait = false;
  4519. }
  4520. #ifdef AUTOTEMP
  4521. if (code_seen('S')) autotemp_min=code_value();
  4522. if (code_seen('B')) autotemp_max=code_value();
  4523. if (code_seen('F'))
  4524. {
  4525. autotemp_factor=code_value();
  4526. autotemp_enabled=true;
  4527. }
  4528. #endif
  4529. setWatch();
  4530. codenum = millis();
  4531. /* See if we are heating up or cooling down */
  4532. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4533. KEEPALIVE_STATE(NOT_BUSY);
  4534. cancel_heatup = false;
  4535. wait_for_heater(codenum); //loops until target temperature is reached
  4536. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4537. KEEPALIVE_STATE(IN_HANDLER);
  4538. heating_status = 2;
  4539. if (farm_mode) { prusa_statistics(2); };
  4540. //starttime=millis();
  4541. previous_millis_cmd = millis();
  4542. }
  4543. break;
  4544. case 190: // M190 - Wait for bed heater to reach target.
  4545. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4546. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4547. heating_status = 3;
  4548. if (farm_mode) { prusa_statistics(1); };
  4549. if (code_seen('S'))
  4550. {
  4551. setTargetBed(code_value());
  4552. CooldownNoWait = true;
  4553. }
  4554. else if (code_seen('R'))
  4555. {
  4556. setTargetBed(code_value());
  4557. CooldownNoWait = false;
  4558. }
  4559. codenum = millis();
  4560. cancel_heatup = false;
  4561. target_direction = isHeatingBed(); // true if heating, false if cooling
  4562. KEEPALIVE_STATE(NOT_BUSY);
  4563. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4564. {
  4565. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4566. {
  4567. if (!farm_mode) {
  4568. float tt = degHotend(active_extruder);
  4569. SERIAL_PROTOCOLPGM("T:");
  4570. SERIAL_PROTOCOL(tt);
  4571. SERIAL_PROTOCOLPGM(" E:");
  4572. SERIAL_PROTOCOL((int)active_extruder);
  4573. SERIAL_PROTOCOLPGM(" B:");
  4574. SERIAL_PROTOCOL_F(degBed(), 1);
  4575. SERIAL_PROTOCOLLN("");
  4576. }
  4577. codenum = millis();
  4578. }
  4579. manage_heater();
  4580. manage_inactivity();
  4581. lcd_update();
  4582. }
  4583. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4584. KEEPALIVE_STATE(IN_HANDLER);
  4585. heating_status = 4;
  4586. previous_millis_cmd = millis();
  4587. #endif
  4588. break;
  4589. #if defined(FAN_PIN) && FAN_PIN > -1
  4590. case 106: //M106 Fan On
  4591. if (code_seen('S')){
  4592. fanSpeed=constrain(code_value(),0,255);
  4593. }
  4594. else {
  4595. fanSpeed=255;
  4596. }
  4597. break;
  4598. case 107: //M107 Fan Off
  4599. fanSpeed = 0;
  4600. break;
  4601. #endif //FAN_PIN
  4602. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4603. case 80: // M80 - Turn on Power Supply
  4604. SET_OUTPUT(PS_ON_PIN); //GND
  4605. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4606. // If you have a switch on suicide pin, this is useful
  4607. // if you want to start another print with suicide feature after
  4608. // a print without suicide...
  4609. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4610. SET_OUTPUT(SUICIDE_PIN);
  4611. WRITE(SUICIDE_PIN, HIGH);
  4612. #endif
  4613. #ifdef ULTIPANEL
  4614. powersupply = true;
  4615. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4616. lcd_update();
  4617. #endif
  4618. break;
  4619. #endif
  4620. case 81: // M81 - Turn off Power Supply
  4621. disable_heater();
  4622. st_synchronize();
  4623. disable_e0();
  4624. disable_e1();
  4625. disable_e2();
  4626. finishAndDisableSteppers();
  4627. fanSpeed = 0;
  4628. delay(1000); // Wait a little before to switch off
  4629. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4630. st_synchronize();
  4631. suicide();
  4632. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4633. SET_OUTPUT(PS_ON_PIN);
  4634. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4635. #endif
  4636. #ifdef ULTIPANEL
  4637. powersupply = false;
  4638. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4639. lcd_update();
  4640. #endif
  4641. break;
  4642. case 82:
  4643. axis_relative_modes[3] = false;
  4644. break;
  4645. case 83:
  4646. axis_relative_modes[3] = true;
  4647. break;
  4648. case 18: //compatibility
  4649. case 84: // M84
  4650. if(code_seen('S')){
  4651. stepper_inactive_time = code_value() * 1000;
  4652. }
  4653. else
  4654. {
  4655. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4656. if(all_axis)
  4657. {
  4658. st_synchronize();
  4659. disable_e0();
  4660. disable_e1();
  4661. disable_e2();
  4662. finishAndDisableSteppers();
  4663. }
  4664. else
  4665. {
  4666. st_synchronize();
  4667. if (code_seen('X')) disable_x();
  4668. if (code_seen('Y')) disable_y();
  4669. if (code_seen('Z')) disable_z();
  4670. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4671. if (code_seen('E')) {
  4672. disable_e0();
  4673. disable_e1();
  4674. disable_e2();
  4675. }
  4676. #endif
  4677. }
  4678. }
  4679. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4680. print_time_remaining_init();
  4681. snmm_filaments_used = 0;
  4682. break;
  4683. case 85: // M85
  4684. if(code_seen('S')) {
  4685. max_inactive_time = code_value() * 1000;
  4686. }
  4687. break;
  4688. case 92: // M92
  4689. for(int8_t i=0; i < NUM_AXIS; i++)
  4690. {
  4691. if(code_seen(axis_codes[i]))
  4692. {
  4693. if(i == 3) { // E
  4694. float value = code_value();
  4695. if(value < 20.0) {
  4696. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4697. max_jerk[E_AXIS] *= factor;
  4698. max_feedrate[i] *= factor;
  4699. axis_steps_per_sqr_second[i] *= factor;
  4700. }
  4701. axis_steps_per_unit[i] = value;
  4702. }
  4703. else {
  4704. axis_steps_per_unit[i] = code_value();
  4705. }
  4706. }
  4707. }
  4708. break;
  4709. case 110: // M110 - reset line pos
  4710. if (code_seen('N'))
  4711. gcode_LastN = code_value_long();
  4712. break;
  4713. #ifdef HOST_KEEPALIVE_FEATURE
  4714. case 113: // M113 - Get or set Host Keepalive interval
  4715. if (code_seen('S')) {
  4716. host_keepalive_interval = (uint8_t)code_value_short();
  4717. // NOMORE(host_keepalive_interval, 60);
  4718. }
  4719. else {
  4720. SERIAL_ECHO_START;
  4721. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4722. SERIAL_PROTOCOLLN("");
  4723. }
  4724. break;
  4725. #endif
  4726. case 115: // M115
  4727. if (code_seen('V')) {
  4728. // Report the Prusa version number.
  4729. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4730. } else if (code_seen('U')) {
  4731. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4732. // pause the print and ask the user to upgrade the firmware.
  4733. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4734. } else {
  4735. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4736. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4737. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4738. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4739. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4740. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4741. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4742. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4743. SERIAL_ECHOPGM(" UUID:");
  4744. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4745. }
  4746. break;
  4747. /* case 117: // M117 display message
  4748. starpos = (strchr(strchr_pointer + 5,'*'));
  4749. if(starpos!=NULL)
  4750. *(starpos)='\0';
  4751. lcd_setstatus(strchr_pointer + 5);
  4752. break;*/
  4753. case 114: // M114
  4754. gcode_M114();
  4755. break;
  4756. case 120: // M120
  4757. enable_endstops(false) ;
  4758. break;
  4759. case 121: // M121
  4760. enable_endstops(true) ;
  4761. break;
  4762. case 119: // M119
  4763. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4764. SERIAL_PROTOCOLLN("");
  4765. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4766. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4767. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4768. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4769. }else{
  4770. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4771. }
  4772. SERIAL_PROTOCOLLN("");
  4773. #endif
  4774. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4775. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4776. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4777. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4778. }else{
  4779. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4780. }
  4781. SERIAL_PROTOCOLLN("");
  4782. #endif
  4783. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4784. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4785. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4786. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4787. }else{
  4788. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4789. }
  4790. SERIAL_PROTOCOLLN("");
  4791. #endif
  4792. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4793. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4794. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4795. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4796. }else{
  4797. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4798. }
  4799. SERIAL_PROTOCOLLN("");
  4800. #endif
  4801. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4802. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4803. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4804. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4805. }else{
  4806. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4807. }
  4808. SERIAL_PROTOCOLLN("");
  4809. #endif
  4810. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4811. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4812. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4813. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4814. }else{
  4815. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4816. }
  4817. SERIAL_PROTOCOLLN("");
  4818. #endif
  4819. break;
  4820. //TODO: update for all axis, use for loop
  4821. #ifdef BLINKM
  4822. case 150: // M150
  4823. {
  4824. byte red;
  4825. byte grn;
  4826. byte blu;
  4827. if(code_seen('R')) red = code_value();
  4828. if(code_seen('U')) grn = code_value();
  4829. if(code_seen('B')) blu = code_value();
  4830. SendColors(red,grn,blu);
  4831. }
  4832. break;
  4833. #endif //BLINKM
  4834. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4835. {
  4836. tmp_extruder = active_extruder;
  4837. if(code_seen('T')) {
  4838. tmp_extruder = code_value();
  4839. if(tmp_extruder >= EXTRUDERS) {
  4840. SERIAL_ECHO_START;
  4841. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4842. break;
  4843. }
  4844. }
  4845. float area = .0;
  4846. if(code_seen('D')) {
  4847. float diameter = (float)code_value();
  4848. if (diameter == 0.0) {
  4849. // setting any extruder filament size disables volumetric on the assumption that
  4850. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4851. // for all extruders
  4852. volumetric_enabled = false;
  4853. } else {
  4854. filament_size[tmp_extruder] = (float)code_value();
  4855. // make sure all extruders have some sane value for the filament size
  4856. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4857. #if EXTRUDERS > 1
  4858. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4859. #if EXTRUDERS > 2
  4860. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4861. #endif
  4862. #endif
  4863. volumetric_enabled = true;
  4864. }
  4865. } else {
  4866. //reserved for setting filament diameter via UFID or filament measuring device
  4867. break;
  4868. }
  4869. calculate_extruder_multipliers();
  4870. }
  4871. break;
  4872. case 201: // M201
  4873. for(int8_t i=0; i < NUM_AXIS; i++)
  4874. {
  4875. if(code_seen(axis_codes[i]))
  4876. {
  4877. max_acceleration_units_per_sq_second[i] = code_value();
  4878. }
  4879. }
  4880. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4881. reset_acceleration_rates();
  4882. break;
  4883. #if 0 // Not used for Sprinter/grbl gen6
  4884. case 202: // M202
  4885. for(int8_t i=0; i < NUM_AXIS; i++) {
  4886. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4887. }
  4888. break;
  4889. #endif
  4890. case 203: // M203 max feedrate mm/sec
  4891. for(int8_t i=0; i < NUM_AXIS; i++) {
  4892. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4893. }
  4894. break;
  4895. case 204: // M204 acclereration S normal moves T filmanent only moves
  4896. {
  4897. if(code_seen('S')) acceleration = code_value() ;
  4898. if(code_seen('T')) retract_acceleration = code_value() ;
  4899. }
  4900. break;
  4901. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4902. {
  4903. if(code_seen('S')) minimumfeedrate = code_value();
  4904. if(code_seen('T')) mintravelfeedrate = code_value();
  4905. if(code_seen('B')) minsegmenttime = code_value() ;
  4906. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4907. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4908. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4909. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4910. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4911. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4912. }
  4913. break;
  4914. case 206: // M206 additional homing offset
  4915. for(int8_t i=0; i < 3; i++)
  4916. {
  4917. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4918. }
  4919. break;
  4920. #ifdef FWRETRACT
  4921. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4922. {
  4923. if(code_seen('S'))
  4924. {
  4925. retract_length = code_value() ;
  4926. }
  4927. if(code_seen('F'))
  4928. {
  4929. retract_feedrate = code_value()/60 ;
  4930. }
  4931. if(code_seen('Z'))
  4932. {
  4933. retract_zlift = code_value() ;
  4934. }
  4935. }break;
  4936. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4937. {
  4938. if(code_seen('S'))
  4939. {
  4940. retract_recover_length = code_value() ;
  4941. }
  4942. if(code_seen('F'))
  4943. {
  4944. retract_recover_feedrate = code_value()/60 ;
  4945. }
  4946. }break;
  4947. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4948. {
  4949. if(code_seen('S'))
  4950. {
  4951. int t= code_value() ;
  4952. switch(t)
  4953. {
  4954. case 0:
  4955. {
  4956. autoretract_enabled=false;
  4957. retracted[0]=false;
  4958. #if EXTRUDERS > 1
  4959. retracted[1]=false;
  4960. #endif
  4961. #if EXTRUDERS > 2
  4962. retracted[2]=false;
  4963. #endif
  4964. }break;
  4965. case 1:
  4966. {
  4967. autoretract_enabled=true;
  4968. retracted[0]=false;
  4969. #if EXTRUDERS > 1
  4970. retracted[1]=false;
  4971. #endif
  4972. #if EXTRUDERS > 2
  4973. retracted[2]=false;
  4974. #endif
  4975. }break;
  4976. default:
  4977. SERIAL_ECHO_START;
  4978. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4979. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4980. SERIAL_ECHOLNPGM("\"(1)");
  4981. }
  4982. }
  4983. }break;
  4984. #endif // FWRETRACT
  4985. #if EXTRUDERS > 1
  4986. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4987. {
  4988. if(setTargetedHotend(218)){
  4989. break;
  4990. }
  4991. if(code_seen('X'))
  4992. {
  4993. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4994. }
  4995. if(code_seen('Y'))
  4996. {
  4997. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4998. }
  4999. SERIAL_ECHO_START;
  5000. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5001. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5002. {
  5003. SERIAL_ECHO(" ");
  5004. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5005. SERIAL_ECHO(",");
  5006. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5007. }
  5008. SERIAL_ECHOLN("");
  5009. }break;
  5010. #endif
  5011. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5012. {
  5013. if(code_seen('S'))
  5014. {
  5015. feedmultiply = code_value() ;
  5016. }
  5017. }
  5018. break;
  5019. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5020. {
  5021. if(code_seen('S'))
  5022. {
  5023. int tmp_code = code_value();
  5024. if (code_seen('T'))
  5025. {
  5026. if(setTargetedHotend(221)){
  5027. break;
  5028. }
  5029. extruder_multiply[tmp_extruder] = tmp_code;
  5030. }
  5031. else
  5032. {
  5033. extrudemultiply = tmp_code ;
  5034. }
  5035. }
  5036. calculate_extruder_multipliers();
  5037. }
  5038. break;
  5039. #ifndef _DISABLE_M42_M226
  5040. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5041. {
  5042. if(code_seen('P')){
  5043. int pin_number = code_value(); // pin number
  5044. int pin_state = -1; // required pin state - default is inverted
  5045. if(code_seen('S')) pin_state = code_value(); // required pin state
  5046. if(pin_state >= -1 && pin_state <= 1){
  5047. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5048. {
  5049. if (sensitive_pins[i] == pin_number)
  5050. {
  5051. pin_number = -1;
  5052. break;
  5053. }
  5054. }
  5055. if (pin_number > -1)
  5056. {
  5057. int target = LOW;
  5058. st_synchronize();
  5059. pinMode(pin_number, INPUT);
  5060. switch(pin_state){
  5061. case 1:
  5062. target = HIGH;
  5063. break;
  5064. case 0:
  5065. target = LOW;
  5066. break;
  5067. case -1:
  5068. target = !digitalRead(pin_number);
  5069. break;
  5070. }
  5071. while(digitalRead(pin_number) != target){
  5072. manage_heater();
  5073. manage_inactivity();
  5074. lcd_update();
  5075. }
  5076. }
  5077. }
  5078. }
  5079. }
  5080. break;
  5081. #endif //_DISABLE_M42_M226
  5082. #if NUM_SERVOS > 0
  5083. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5084. {
  5085. int servo_index = -1;
  5086. int servo_position = 0;
  5087. if (code_seen('P'))
  5088. servo_index = code_value();
  5089. if (code_seen('S')) {
  5090. servo_position = code_value();
  5091. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5092. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5093. servos[servo_index].attach(0);
  5094. #endif
  5095. servos[servo_index].write(servo_position);
  5096. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5097. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5098. servos[servo_index].detach();
  5099. #endif
  5100. }
  5101. else {
  5102. SERIAL_ECHO_START;
  5103. SERIAL_ECHO("Servo ");
  5104. SERIAL_ECHO(servo_index);
  5105. SERIAL_ECHOLN(" out of range");
  5106. }
  5107. }
  5108. else if (servo_index >= 0) {
  5109. SERIAL_PROTOCOL(_T(MSG_OK));
  5110. SERIAL_PROTOCOL(" Servo ");
  5111. SERIAL_PROTOCOL(servo_index);
  5112. SERIAL_PROTOCOL(": ");
  5113. SERIAL_PROTOCOL(servos[servo_index].read());
  5114. SERIAL_PROTOCOLLN("");
  5115. }
  5116. }
  5117. break;
  5118. #endif // NUM_SERVOS > 0
  5119. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5120. case 300: // M300
  5121. {
  5122. int beepS = code_seen('S') ? code_value() : 110;
  5123. int beepP = code_seen('P') ? code_value() : 1000;
  5124. if (beepS > 0)
  5125. {
  5126. #if BEEPER > 0
  5127. tone(BEEPER, beepS);
  5128. delay(beepP);
  5129. noTone(BEEPER);
  5130. #elif defined(ULTRALCD)
  5131. lcd_buzz(beepS, beepP);
  5132. #elif defined(LCD_USE_I2C_BUZZER)
  5133. lcd_buzz(beepP, beepS);
  5134. #endif
  5135. }
  5136. else
  5137. {
  5138. delay(beepP);
  5139. }
  5140. }
  5141. break;
  5142. #endif // M300
  5143. #ifdef PIDTEMP
  5144. case 301: // M301
  5145. {
  5146. if(code_seen('P')) Kp = code_value();
  5147. if(code_seen('I')) Ki = scalePID_i(code_value());
  5148. if(code_seen('D')) Kd = scalePID_d(code_value());
  5149. #ifdef PID_ADD_EXTRUSION_RATE
  5150. if(code_seen('C')) Kc = code_value();
  5151. #endif
  5152. updatePID();
  5153. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5154. SERIAL_PROTOCOL(" p:");
  5155. SERIAL_PROTOCOL(Kp);
  5156. SERIAL_PROTOCOL(" i:");
  5157. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5158. SERIAL_PROTOCOL(" d:");
  5159. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5160. #ifdef PID_ADD_EXTRUSION_RATE
  5161. SERIAL_PROTOCOL(" c:");
  5162. //Kc does not have scaling applied above, or in resetting defaults
  5163. SERIAL_PROTOCOL(Kc);
  5164. #endif
  5165. SERIAL_PROTOCOLLN("");
  5166. }
  5167. break;
  5168. #endif //PIDTEMP
  5169. #ifdef PIDTEMPBED
  5170. case 304: // M304
  5171. {
  5172. if(code_seen('P')) bedKp = code_value();
  5173. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5174. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5175. updatePID();
  5176. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5177. SERIAL_PROTOCOL(" p:");
  5178. SERIAL_PROTOCOL(bedKp);
  5179. SERIAL_PROTOCOL(" i:");
  5180. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5181. SERIAL_PROTOCOL(" d:");
  5182. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5183. SERIAL_PROTOCOLLN("");
  5184. }
  5185. break;
  5186. #endif //PIDTEMP
  5187. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5188. {
  5189. #ifdef CHDK
  5190. SET_OUTPUT(CHDK);
  5191. WRITE(CHDK, HIGH);
  5192. chdkHigh = millis();
  5193. chdkActive = true;
  5194. #else
  5195. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5196. const uint8_t NUM_PULSES=16;
  5197. const float PULSE_LENGTH=0.01524;
  5198. for(int i=0; i < NUM_PULSES; i++) {
  5199. WRITE(PHOTOGRAPH_PIN, HIGH);
  5200. _delay_ms(PULSE_LENGTH);
  5201. WRITE(PHOTOGRAPH_PIN, LOW);
  5202. _delay_ms(PULSE_LENGTH);
  5203. }
  5204. delay(7.33);
  5205. for(int i=0; i < NUM_PULSES; i++) {
  5206. WRITE(PHOTOGRAPH_PIN, HIGH);
  5207. _delay_ms(PULSE_LENGTH);
  5208. WRITE(PHOTOGRAPH_PIN, LOW);
  5209. _delay_ms(PULSE_LENGTH);
  5210. }
  5211. #endif
  5212. #endif //chdk end if
  5213. }
  5214. break;
  5215. #ifdef DOGLCD
  5216. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5217. {
  5218. if (code_seen('C')) {
  5219. lcd_setcontrast( ((int)code_value())&63 );
  5220. }
  5221. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5222. SERIAL_PROTOCOL(lcd_contrast);
  5223. SERIAL_PROTOCOLLN("");
  5224. }
  5225. break;
  5226. #endif
  5227. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5228. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5229. {
  5230. float temp = .0;
  5231. if (code_seen('S')) temp=code_value();
  5232. set_extrude_min_temp(temp);
  5233. }
  5234. break;
  5235. #endif
  5236. case 303: // M303 PID autotune
  5237. {
  5238. float temp = 150.0;
  5239. int e=0;
  5240. int c=5;
  5241. if (code_seen('E')) e=code_value();
  5242. if (e<0)
  5243. temp=70;
  5244. if (code_seen('S')) temp=code_value();
  5245. if (code_seen('C')) c=code_value();
  5246. PID_autotune(temp, e, c);
  5247. }
  5248. break;
  5249. case 400: // M400 finish all moves
  5250. {
  5251. st_synchronize();
  5252. }
  5253. break;
  5254. case 500: // M500 Store settings in EEPROM
  5255. {
  5256. Config_StoreSettings(EEPROM_OFFSET);
  5257. }
  5258. break;
  5259. case 501: // M501 Read settings from EEPROM
  5260. {
  5261. Config_RetrieveSettings(EEPROM_OFFSET);
  5262. }
  5263. break;
  5264. case 502: // M502 Revert to default settings
  5265. {
  5266. Config_ResetDefault();
  5267. }
  5268. break;
  5269. case 503: // M503 print settings currently in memory
  5270. {
  5271. Config_PrintSettings();
  5272. }
  5273. break;
  5274. case 509: //M509 Force language selection
  5275. {
  5276. lang_reset();
  5277. SERIAL_ECHO_START;
  5278. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5279. }
  5280. break;
  5281. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5282. case 540:
  5283. {
  5284. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5285. }
  5286. break;
  5287. #endif
  5288. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5289. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5290. {
  5291. float value;
  5292. if (code_seen('Z'))
  5293. {
  5294. value = code_value();
  5295. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5296. {
  5297. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5298. SERIAL_ECHO_START;
  5299. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5300. SERIAL_PROTOCOLLN("");
  5301. }
  5302. else
  5303. {
  5304. SERIAL_ECHO_START;
  5305. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5306. SERIAL_ECHORPGM(MSG_Z_MIN);
  5307. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5308. SERIAL_ECHORPGM(MSG_Z_MAX);
  5309. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5310. SERIAL_PROTOCOLLN("");
  5311. }
  5312. }
  5313. else
  5314. {
  5315. SERIAL_ECHO_START;
  5316. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5317. SERIAL_ECHO(-zprobe_zoffset);
  5318. SERIAL_PROTOCOLLN("");
  5319. }
  5320. break;
  5321. }
  5322. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5323. #ifdef FILAMENTCHANGEENABLE
  5324. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5325. {
  5326. #ifdef PAT9125
  5327. bool old_fsensor_enabled = fsensor_enabled;
  5328. fsensor_enabled = false; //temporary solution for unexpected restarting
  5329. #endif //PAT9125
  5330. st_synchronize();
  5331. float target[4];
  5332. float lastpos[4];
  5333. if (farm_mode)
  5334. {
  5335. prusa_statistics(22);
  5336. }
  5337. feedmultiplyBckp=feedmultiply;
  5338. int8_t TooLowZ = 0;
  5339. float HotendTempBckp = degTargetHotend(active_extruder);
  5340. int fanSpeedBckp = fanSpeed;
  5341. target[X_AXIS]=current_position[X_AXIS];
  5342. target[Y_AXIS]=current_position[Y_AXIS];
  5343. target[Z_AXIS]=current_position[Z_AXIS];
  5344. target[E_AXIS]=current_position[E_AXIS];
  5345. lastpos[X_AXIS]=current_position[X_AXIS];
  5346. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5347. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5348. lastpos[E_AXIS]=current_position[E_AXIS];
  5349. //Restract extruder
  5350. if(code_seen('E'))
  5351. {
  5352. target[E_AXIS]+= code_value();
  5353. }
  5354. else
  5355. {
  5356. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5357. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5358. #endif
  5359. }
  5360. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5361. //Lift Z
  5362. if(code_seen('Z'))
  5363. {
  5364. target[Z_AXIS]+= code_value();
  5365. }
  5366. else
  5367. {
  5368. #ifdef FILAMENTCHANGE_ZADD
  5369. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5370. if(target[Z_AXIS] < 10){
  5371. target[Z_AXIS]+= 10 ;
  5372. TooLowZ = 1;
  5373. }else{
  5374. TooLowZ = 0;
  5375. }
  5376. #endif
  5377. }
  5378. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5379. //Move XY to side
  5380. if(code_seen('X'))
  5381. {
  5382. target[X_AXIS]+= code_value();
  5383. }
  5384. else
  5385. {
  5386. #ifdef FILAMENTCHANGE_XPOS
  5387. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5388. #endif
  5389. }
  5390. if(code_seen('Y'))
  5391. {
  5392. target[Y_AXIS]= code_value();
  5393. }
  5394. else
  5395. {
  5396. #ifdef FILAMENTCHANGE_YPOS
  5397. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5398. #endif
  5399. }
  5400. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5401. st_synchronize();
  5402. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5403. uint8_t cnt = 0;
  5404. int counterBeep = 0;
  5405. fanSpeed = 0;
  5406. unsigned long waiting_start_time = millis();
  5407. uint8_t wait_for_user_state = 0;
  5408. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5409. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5410. //cnt++;
  5411. manage_heater();
  5412. manage_inactivity(true);
  5413. /*#ifdef SNMM
  5414. target[E_AXIS] += 0.002;
  5415. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5416. #endif // SNMM*/
  5417. //if (cnt == 0)
  5418. {
  5419. #if BEEPER > 0
  5420. if (counterBeep == 500) {
  5421. counterBeep = 0;
  5422. }
  5423. SET_OUTPUT(BEEPER);
  5424. if (counterBeep == 0) {
  5425. WRITE(BEEPER, HIGH);
  5426. }
  5427. if (counterBeep == 20) {
  5428. WRITE(BEEPER, LOW);
  5429. }
  5430. counterBeep++;
  5431. #else
  5432. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5433. lcd_buzz(1000 / 6, 100);
  5434. #else
  5435. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5436. #endif
  5437. #endif
  5438. }
  5439. switch (wait_for_user_state) {
  5440. case 0:
  5441. delay_keep_alive(4);
  5442. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5443. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5444. wait_for_user_state = 1;
  5445. setTargetHotend(0, 0);
  5446. setTargetHotend(0, 1);
  5447. setTargetHotend(0, 2);
  5448. st_synchronize();
  5449. disable_e0();
  5450. disable_e1();
  5451. disable_e2();
  5452. }
  5453. break;
  5454. case 1:
  5455. delay_keep_alive(4);
  5456. if (lcd_clicked()) {
  5457. setTargetHotend(HotendTempBckp, active_extruder);
  5458. lcd_wait_for_heater();
  5459. wait_for_user_state = 2;
  5460. }
  5461. break;
  5462. case 2:
  5463. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5464. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5465. waiting_start_time = millis();
  5466. wait_for_user_state = 0;
  5467. }
  5468. else {
  5469. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5470. lcd.setCursor(1, 4);
  5471. lcd.print(ftostr3(degHotend(active_extruder)));
  5472. }
  5473. break;
  5474. }
  5475. }
  5476. WRITE(BEEPER, LOW);
  5477. lcd_change_fil_state = 0;
  5478. // Unload filament
  5479. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5480. KEEPALIVE_STATE(IN_HANDLER);
  5481. custom_message = true;
  5482. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5483. if (code_seen('L'))
  5484. {
  5485. target[E_AXIS] += code_value();
  5486. }
  5487. else
  5488. {
  5489. #ifdef SNMM
  5490. #else
  5491. #ifdef FILAMENTCHANGE_FINALRETRACT
  5492. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5493. #endif
  5494. #endif // SNMM
  5495. }
  5496. #ifdef SNMM
  5497. target[E_AXIS] += 12;
  5498. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5499. target[E_AXIS] += 6;
  5500. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5501. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5502. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5503. st_synchronize();
  5504. target[E_AXIS] += (FIL_COOLING);
  5505. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5506. target[E_AXIS] += (FIL_COOLING*-1);
  5507. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5508. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5509. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5510. st_synchronize();
  5511. #else
  5512. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5513. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5514. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5515. st_synchronize();
  5516. #ifdef TMC2130
  5517. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5518. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5519. #else
  5520. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5521. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5522. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5523. #endif //TMC2130
  5524. target[E_AXIS] -= 45;
  5525. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5526. st_synchronize();
  5527. target[E_AXIS] -= 15;
  5528. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5529. st_synchronize();
  5530. target[E_AXIS] -= 20;
  5531. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5532. st_synchronize();
  5533. #ifdef TMC2130
  5534. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5535. #else
  5536. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5537. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5538. else st_current_set(2, tmp_motor_loud[2]);
  5539. #endif //TMC2130
  5540. #endif // SNMM
  5541. //finish moves
  5542. st_synchronize();
  5543. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5544. //disable extruder steppers so filament can be removed
  5545. disable_e0();
  5546. disable_e1();
  5547. disable_e2();
  5548. delay(100);
  5549. WRITE(BEEPER, HIGH);
  5550. counterBeep = 0;
  5551. while(!lcd_clicked() && (counterBeep < 50)) {
  5552. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5553. delay_keep_alive(100);
  5554. counterBeep++;
  5555. }
  5556. WRITE(BEEPER, LOW);
  5557. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5558. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5559. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5560. //lcd_return_to_status();
  5561. lcd_update_enable(true);
  5562. //Wait for user to insert filament
  5563. lcd_wait_interact();
  5564. //load_filament_time = millis();
  5565. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5566. #ifdef PAT9125
  5567. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5568. #endif //PAT9125
  5569. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5570. while(!lcd_clicked())
  5571. {
  5572. manage_heater();
  5573. manage_inactivity(true);
  5574. #ifdef PAT9125
  5575. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5576. {
  5577. tone(BEEPER, 1000);
  5578. delay_keep_alive(50);
  5579. noTone(BEEPER);
  5580. break;
  5581. }
  5582. #endif //PAT9125
  5583. /*#ifdef SNMM
  5584. target[E_AXIS] += 0.002;
  5585. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5586. #endif // SNMM*/
  5587. }
  5588. #ifdef PAT9125
  5589. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5590. #endif //PAT9125
  5591. //WRITE(BEEPER, LOW);
  5592. KEEPALIVE_STATE(IN_HANDLER);
  5593. #ifdef SNMM
  5594. display_loading();
  5595. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5596. do {
  5597. target[E_AXIS] += 0.002;
  5598. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5599. delay_keep_alive(2);
  5600. } while (!lcd_clicked());
  5601. KEEPALIVE_STATE(IN_HANDLER);
  5602. /*if (millis() - load_filament_time > 2) {
  5603. load_filament_time = millis();
  5604. target[E_AXIS] += 0.001;
  5605. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5606. }*/
  5607. //Filament inserted
  5608. //Feed the filament to the end of nozzle quickly
  5609. st_synchronize();
  5610. target[E_AXIS] += bowden_length[snmm_extruder];
  5611. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5612. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5613. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5614. target[E_AXIS] += 40;
  5615. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5616. target[E_AXIS] += 10;
  5617. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5618. #else
  5619. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5620. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5621. #endif // SNMM
  5622. //Extrude some filament
  5623. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5624. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5625. //Wait for user to check the state
  5626. lcd_change_fil_state = 0;
  5627. lcd_loading_filament();
  5628. tone(BEEPER, 500);
  5629. delay_keep_alive(50);
  5630. noTone(BEEPER);
  5631. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5632. lcd_change_fil_state = 0;
  5633. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5634. lcd_alright();
  5635. KEEPALIVE_STATE(IN_HANDLER);
  5636. switch(lcd_change_fil_state){
  5637. // Filament failed to load so load it again
  5638. case 2:
  5639. #ifdef SNMM
  5640. display_loading();
  5641. do {
  5642. target[E_AXIS] += 0.002;
  5643. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5644. delay_keep_alive(2);
  5645. } while (!lcd_clicked());
  5646. st_synchronize();
  5647. target[E_AXIS] += bowden_length[snmm_extruder];
  5648. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5649. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5650. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5651. target[E_AXIS] += 40;
  5652. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5653. target[E_AXIS] += 10;
  5654. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5655. #else
  5656. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5657. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5658. #endif
  5659. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5660. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5661. lcd_loading_filament();
  5662. break;
  5663. // Filament loaded properly but color is not clear
  5664. case 3:
  5665. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5666. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5667. lcd_loading_color();
  5668. break;
  5669. // Everything good
  5670. default:
  5671. lcd_change_success();
  5672. lcd_update_enable(true);
  5673. break;
  5674. }
  5675. }
  5676. //Not let's go back to print
  5677. fanSpeed = fanSpeedBckp;
  5678. //Feed a little of filament to stabilize pressure
  5679. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5680. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5681. //Retract
  5682. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5683. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5684. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5685. //Move XY back
  5686. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5687. //Move Z back
  5688. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5689. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5690. //Unretract
  5691. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5692. //Set E position to original
  5693. plan_set_e_position(lastpos[E_AXIS]);
  5694. //Recover feed rate
  5695. feedmultiply=feedmultiplyBckp;
  5696. char cmd[9];
  5697. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5698. enquecommand(cmd);
  5699. lcd_setstatuspgm(_T(WELCOME_MSG));
  5700. custom_message = false;
  5701. custom_message_type = 0;
  5702. #ifdef PAT9125
  5703. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5704. if (fsensor_M600)
  5705. {
  5706. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5707. st_synchronize();
  5708. while (!is_buffer_empty())
  5709. {
  5710. process_commands();
  5711. cmdqueue_pop_front();
  5712. }
  5713. KEEPALIVE_STATE(IN_HANDLER);
  5714. fsensor_enable();
  5715. fsensor_restore_print_and_continue();
  5716. }
  5717. #endif //PAT9125
  5718. }
  5719. break;
  5720. #endif //FILAMENTCHANGEENABLE
  5721. case 601: {
  5722. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5723. }
  5724. break;
  5725. case 602: {
  5726. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5727. }
  5728. break;
  5729. #ifdef PINDA_THERMISTOR
  5730. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5731. {
  5732. int set_target_pinda = 0;
  5733. if (code_seen('S')) {
  5734. set_target_pinda = code_value();
  5735. }
  5736. else {
  5737. break;
  5738. }
  5739. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5740. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5741. SERIAL_PROTOCOL(set_target_pinda);
  5742. SERIAL_PROTOCOLLN("");
  5743. codenum = millis();
  5744. cancel_heatup = false;
  5745. bool is_pinda_cooling = false;
  5746. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5747. is_pinda_cooling = true;
  5748. }
  5749. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5750. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5751. {
  5752. SERIAL_PROTOCOLPGM("P:");
  5753. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5754. SERIAL_PROTOCOLPGM("/");
  5755. SERIAL_PROTOCOL(set_target_pinda);
  5756. SERIAL_PROTOCOLLN("");
  5757. codenum = millis();
  5758. }
  5759. manage_heater();
  5760. manage_inactivity();
  5761. lcd_update();
  5762. }
  5763. LCD_MESSAGERPGM(_T(MSG_OK));
  5764. break;
  5765. }
  5766. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5767. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5768. uint8_t cal_status = calibration_status_pinda();
  5769. int16_t usteps = 0;
  5770. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5771. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5772. for (uint8_t i = 0; i < 6; i++)
  5773. {
  5774. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5775. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5776. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5777. SERIAL_PROTOCOLPGM(", ");
  5778. SERIAL_PROTOCOL(35 + (i * 5));
  5779. SERIAL_PROTOCOLPGM(", ");
  5780. SERIAL_PROTOCOL(usteps);
  5781. SERIAL_PROTOCOLPGM(", ");
  5782. SERIAL_PROTOCOL(mm * 1000);
  5783. SERIAL_PROTOCOLLN("");
  5784. }
  5785. }
  5786. else if (code_seen('!')) { // ! - Set factory default values
  5787. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5788. int16_t z_shift = 8; //40C - 20um - 8usteps
  5789. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5790. z_shift = 24; //45C - 60um - 24usteps
  5791. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5792. z_shift = 48; //50C - 120um - 48usteps
  5793. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5794. z_shift = 80; //55C - 200um - 80usteps
  5795. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5796. z_shift = 120; //60C - 300um - 120usteps
  5797. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5798. SERIAL_PROTOCOLLN("factory restored");
  5799. }
  5800. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5801. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5802. int16_t z_shift = 0;
  5803. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5804. SERIAL_PROTOCOLLN("zerorized");
  5805. }
  5806. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5807. int16_t usteps = code_value();
  5808. if (code_seen('I')) {
  5809. byte index = code_value();
  5810. if ((index >= 0) && (index < 5)) {
  5811. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5812. SERIAL_PROTOCOLLN("OK");
  5813. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5814. for (uint8_t i = 0; i < 6; i++)
  5815. {
  5816. usteps = 0;
  5817. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5818. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5819. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5820. SERIAL_PROTOCOLPGM(", ");
  5821. SERIAL_PROTOCOL(35 + (i * 5));
  5822. SERIAL_PROTOCOLPGM(", ");
  5823. SERIAL_PROTOCOL(usteps);
  5824. SERIAL_PROTOCOLPGM(", ");
  5825. SERIAL_PROTOCOL(mm * 1000);
  5826. SERIAL_PROTOCOLLN("");
  5827. }
  5828. }
  5829. }
  5830. }
  5831. else {
  5832. SERIAL_PROTOCOLPGM("no valid command");
  5833. }
  5834. break;
  5835. #endif //PINDA_THERMISTOR
  5836. #ifdef LIN_ADVANCE
  5837. case 900: // M900: Set LIN_ADVANCE options.
  5838. gcode_M900();
  5839. break;
  5840. #endif
  5841. case 907: // M907 Set digital trimpot motor current using axis codes.
  5842. {
  5843. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5844. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5845. if(code_seen('B')) st_current_set(4,code_value());
  5846. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5847. #endif
  5848. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5849. if(code_seen('X')) st_current_set(0, code_value());
  5850. #endif
  5851. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5852. if(code_seen('Z')) st_current_set(1, code_value());
  5853. #endif
  5854. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5855. if(code_seen('E')) st_current_set(2, code_value());
  5856. #endif
  5857. }
  5858. break;
  5859. case 908: // M908 Control digital trimpot directly.
  5860. {
  5861. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5862. uint8_t channel,current;
  5863. if(code_seen('P')) channel=code_value();
  5864. if(code_seen('S')) current=code_value();
  5865. digitalPotWrite(channel, current);
  5866. #endif
  5867. }
  5868. break;
  5869. #ifdef TMC2130
  5870. case 910: // M910 TMC2130 init
  5871. {
  5872. tmc2130_init();
  5873. }
  5874. break;
  5875. case 911: // M911 Set TMC2130 holding currents
  5876. {
  5877. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5878. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5879. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5880. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5881. }
  5882. break;
  5883. case 912: // M912 Set TMC2130 running currents
  5884. {
  5885. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5886. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5887. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5888. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5889. }
  5890. break;
  5891. case 913: // M913 Print TMC2130 currents
  5892. {
  5893. tmc2130_print_currents();
  5894. }
  5895. break;
  5896. case 914: // M914 Set normal mode
  5897. {
  5898. tmc2130_mode = TMC2130_MODE_NORMAL;
  5899. tmc2130_init();
  5900. }
  5901. break;
  5902. case 915: // M915 Set silent mode
  5903. {
  5904. tmc2130_mode = TMC2130_MODE_SILENT;
  5905. tmc2130_init();
  5906. }
  5907. break;
  5908. case 916: // M916 Set sg_thrs
  5909. {
  5910. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5911. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5912. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5913. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5914. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5915. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5916. }
  5917. break;
  5918. case 917: // M917 Set TMC2130 pwm_ampl
  5919. {
  5920. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5921. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5922. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5923. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5924. }
  5925. break;
  5926. case 918: // M918 Set TMC2130 pwm_grad
  5927. {
  5928. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5929. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5930. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5931. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5932. }
  5933. break;
  5934. #endif //TMC2130
  5935. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5936. {
  5937. #ifdef TMC2130
  5938. if(code_seen('E'))
  5939. {
  5940. uint16_t res_new = code_value();
  5941. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5942. {
  5943. st_synchronize();
  5944. uint8_t axis = E_AXIS;
  5945. uint16_t res = tmc2130_get_res(axis);
  5946. tmc2130_set_res(axis, res_new);
  5947. if (res_new > res)
  5948. {
  5949. uint16_t fac = (res_new / res);
  5950. axis_steps_per_unit[axis] *= fac;
  5951. position[E_AXIS] *= fac;
  5952. }
  5953. else
  5954. {
  5955. uint16_t fac = (res / res_new);
  5956. axis_steps_per_unit[axis] /= fac;
  5957. position[E_AXIS] /= fac;
  5958. }
  5959. }
  5960. }
  5961. #else //TMC2130
  5962. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5963. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5964. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5965. if(code_seen('B')) microstep_mode(4,code_value());
  5966. microstep_readings();
  5967. #endif
  5968. #endif //TMC2130
  5969. }
  5970. break;
  5971. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5972. {
  5973. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5974. if(code_seen('S')) switch((int)code_value())
  5975. {
  5976. case 1:
  5977. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5978. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5979. break;
  5980. case 2:
  5981. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5982. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5983. break;
  5984. }
  5985. microstep_readings();
  5986. #endif
  5987. }
  5988. break;
  5989. case 701: //M701: load filament
  5990. {
  5991. gcode_M701();
  5992. }
  5993. break;
  5994. case 702:
  5995. {
  5996. #ifdef SNMM
  5997. if (code_seen('U')) {
  5998. extr_unload_used(); //unload all filaments which were used in current print
  5999. }
  6000. else if (code_seen('C')) {
  6001. extr_unload(); //unload just current filament
  6002. }
  6003. else {
  6004. extr_unload_all(); //unload all filaments
  6005. }
  6006. #else
  6007. #ifdef PAT9125
  6008. bool old_fsensor_enabled = fsensor_enabled;
  6009. fsensor_enabled = false;
  6010. #endif //PAT9125
  6011. custom_message = true;
  6012. custom_message_type = 2;
  6013. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6014. // extr_unload2();
  6015. current_position[E_AXIS] -= 45;
  6016. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6017. st_synchronize();
  6018. current_position[E_AXIS] -= 15;
  6019. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6020. st_synchronize();
  6021. current_position[E_AXIS] -= 20;
  6022. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6023. st_synchronize();
  6024. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6025. //disable extruder steppers so filament can be removed
  6026. disable_e0();
  6027. disable_e1();
  6028. disable_e2();
  6029. delay(100);
  6030. WRITE(BEEPER, HIGH);
  6031. uint8_t counterBeep = 0;
  6032. while (!lcd_clicked() && (counterBeep < 50)) {
  6033. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6034. delay_keep_alive(100);
  6035. counterBeep++;
  6036. }
  6037. WRITE(BEEPER, LOW);
  6038. st_synchronize();
  6039. while (lcd_clicked()) delay_keep_alive(100);
  6040. lcd_update_enable(true);
  6041. lcd_setstatuspgm(_T(WELCOME_MSG));
  6042. custom_message = false;
  6043. custom_message_type = 0;
  6044. #ifdef PAT9125
  6045. fsensor_enabled = old_fsensor_enabled;
  6046. #endif //PAT9125
  6047. #endif
  6048. }
  6049. break;
  6050. case 999: // M999: Restart after being stopped
  6051. Stopped = false;
  6052. lcd_reset_alert_level();
  6053. gcode_LastN = Stopped_gcode_LastN;
  6054. FlushSerialRequestResend();
  6055. break;
  6056. default:
  6057. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6058. }
  6059. } // end if(code_seen('M')) (end of M codes)
  6060. else if(code_seen('T'))
  6061. {
  6062. int index;
  6063. st_synchronize();
  6064. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6065. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6066. SERIAL_ECHOLNPGM("Invalid T code.");
  6067. }
  6068. else {
  6069. if (*(strchr_pointer + index) == '?') {
  6070. tmp_extruder = choose_extruder_menu();
  6071. }
  6072. else {
  6073. tmp_extruder = code_value();
  6074. }
  6075. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6076. #ifdef SNMM
  6077. #ifdef LIN_ADVANCE
  6078. if (snmm_extruder != tmp_extruder)
  6079. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6080. #endif
  6081. snmm_extruder = tmp_extruder;
  6082. delay(100);
  6083. disable_e0();
  6084. disable_e1();
  6085. disable_e2();
  6086. pinMode(E_MUX0_PIN, OUTPUT);
  6087. pinMode(E_MUX1_PIN, OUTPUT);
  6088. delay(100);
  6089. SERIAL_ECHO_START;
  6090. SERIAL_ECHO("T:");
  6091. SERIAL_ECHOLN((int)tmp_extruder);
  6092. switch (tmp_extruder) {
  6093. case 1:
  6094. WRITE(E_MUX0_PIN, HIGH);
  6095. WRITE(E_MUX1_PIN, LOW);
  6096. break;
  6097. case 2:
  6098. WRITE(E_MUX0_PIN, LOW);
  6099. WRITE(E_MUX1_PIN, HIGH);
  6100. break;
  6101. case 3:
  6102. WRITE(E_MUX0_PIN, HIGH);
  6103. WRITE(E_MUX1_PIN, HIGH);
  6104. break;
  6105. default:
  6106. WRITE(E_MUX0_PIN, LOW);
  6107. WRITE(E_MUX1_PIN, LOW);
  6108. break;
  6109. }
  6110. delay(100);
  6111. #else
  6112. if (tmp_extruder >= EXTRUDERS) {
  6113. SERIAL_ECHO_START;
  6114. SERIAL_ECHOPGM("T");
  6115. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6116. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6117. }
  6118. else {
  6119. boolean make_move = false;
  6120. if (code_seen('F')) {
  6121. make_move = true;
  6122. next_feedrate = code_value();
  6123. if (next_feedrate > 0.0) {
  6124. feedrate = next_feedrate;
  6125. }
  6126. }
  6127. #if EXTRUDERS > 1
  6128. if (tmp_extruder != active_extruder) {
  6129. // Save current position to return to after applying extruder offset
  6130. memcpy(destination, current_position, sizeof(destination));
  6131. // Offset extruder (only by XY)
  6132. int i;
  6133. for (i = 0; i < 2; i++) {
  6134. current_position[i] = current_position[i] -
  6135. extruder_offset[i][active_extruder] +
  6136. extruder_offset[i][tmp_extruder];
  6137. }
  6138. // Set the new active extruder and position
  6139. active_extruder = tmp_extruder;
  6140. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6141. // Move to the old position if 'F' was in the parameters
  6142. if (make_move && Stopped == false) {
  6143. prepare_move();
  6144. }
  6145. }
  6146. #endif
  6147. SERIAL_ECHO_START;
  6148. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6149. SERIAL_PROTOCOLLN((int)active_extruder);
  6150. }
  6151. #endif
  6152. }
  6153. } // end if(code_seen('T')) (end of T codes)
  6154. #ifdef DEBUG_DCODES
  6155. else if (code_seen('D')) // D codes (debug)
  6156. {
  6157. switch((int)code_value())
  6158. {
  6159. case -1: // D-1 - Endless loop
  6160. dcode__1(); break;
  6161. case 0: // D0 - Reset
  6162. dcode_0(); break;
  6163. case 1: // D1 - Clear EEPROM
  6164. dcode_1(); break;
  6165. case 2: // D2 - Read/Write RAM
  6166. dcode_2(); break;
  6167. case 3: // D3 - Read/Write EEPROM
  6168. dcode_3(); break;
  6169. case 4: // D4 - Read/Write PIN
  6170. dcode_4(); break;
  6171. case 5: // D5 - Read/Write FLASH
  6172. // dcode_5(); break;
  6173. break;
  6174. case 6: // D6 - Read/Write external FLASH
  6175. dcode_6(); break;
  6176. case 7: // D7 - Read/Write Bootloader
  6177. dcode_7(); break;
  6178. case 8: // D8 - Read/Write PINDA
  6179. dcode_8(); break;
  6180. case 9: // D9 - Read/Write ADC
  6181. dcode_9(); break;
  6182. case 10: // D10 - XYZ calibration = OK
  6183. dcode_10(); break;
  6184. #ifdef TMC2130
  6185. case 2130: // D9125 - TMC2130
  6186. dcode_2130(); break;
  6187. #endif //TMC2130
  6188. #ifdef PAT9125
  6189. case 9125: // D9125 - PAT9125
  6190. dcode_9125(); break;
  6191. #endif //PAT9125
  6192. }
  6193. }
  6194. #endif //DEBUG_DCODES
  6195. else
  6196. {
  6197. SERIAL_ECHO_START;
  6198. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6199. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6200. SERIAL_ECHOLNPGM("\"(2)");
  6201. }
  6202. KEEPALIVE_STATE(NOT_BUSY);
  6203. ClearToSend();
  6204. }
  6205. void FlushSerialRequestResend()
  6206. {
  6207. //char cmdbuffer[bufindr][100]="Resend:";
  6208. MYSERIAL.flush();
  6209. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6210. }
  6211. // Confirm the execution of a command, if sent from a serial line.
  6212. // Execution of a command from a SD card will not be confirmed.
  6213. void ClearToSend()
  6214. {
  6215. previous_millis_cmd = millis();
  6216. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6217. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6218. }
  6219. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6220. void update_currents() {
  6221. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6222. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6223. float tmp_motor[3];
  6224. //SERIAL_ECHOLNPGM("Currents updated: ");
  6225. if (destination[Z_AXIS] < Z_SILENT) {
  6226. //SERIAL_ECHOLNPGM("LOW");
  6227. for (uint8_t i = 0; i < 3; i++) {
  6228. st_current_set(i, current_low[i]);
  6229. /*MYSERIAL.print(int(i));
  6230. SERIAL_ECHOPGM(": ");
  6231. MYSERIAL.println(current_low[i]);*/
  6232. }
  6233. }
  6234. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6235. //SERIAL_ECHOLNPGM("HIGH");
  6236. for (uint8_t i = 0; i < 3; i++) {
  6237. st_current_set(i, current_high[i]);
  6238. /*MYSERIAL.print(int(i));
  6239. SERIAL_ECHOPGM(": ");
  6240. MYSERIAL.println(current_high[i]);*/
  6241. }
  6242. }
  6243. else {
  6244. for (uint8_t i = 0; i < 3; i++) {
  6245. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6246. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6247. st_current_set(i, tmp_motor[i]);
  6248. /*MYSERIAL.print(int(i));
  6249. SERIAL_ECHOPGM(": ");
  6250. MYSERIAL.println(tmp_motor[i]);*/
  6251. }
  6252. }
  6253. }
  6254. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6255. void get_coordinates()
  6256. {
  6257. bool seen[4]={false,false,false,false};
  6258. for(int8_t i=0; i < NUM_AXIS; i++) {
  6259. if(code_seen(axis_codes[i]))
  6260. {
  6261. bool relative = axis_relative_modes[i] || relative_mode;
  6262. destination[i] = (float)code_value();
  6263. if (i == E_AXIS) {
  6264. float emult = extruder_multiplier[active_extruder];
  6265. if (emult != 1.) {
  6266. if (! relative) {
  6267. destination[i] -= current_position[i];
  6268. relative = true;
  6269. }
  6270. destination[i] *= emult;
  6271. }
  6272. }
  6273. if (relative)
  6274. destination[i] += current_position[i];
  6275. seen[i]=true;
  6276. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6277. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6278. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6279. }
  6280. else destination[i] = current_position[i]; //Are these else lines really needed?
  6281. }
  6282. if(code_seen('F')) {
  6283. next_feedrate = code_value();
  6284. #ifdef MAX_SILENT_FEEDRATE
  6285. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6286. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6287. #endif //MAX_SILENT_FEEDRATE
  6288. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6289. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6290. {
  6291. // float e_max_speed =
  6292. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6293. }
  6294. }
  6295. }
  6296. void get_arc_coordinates()
  6297. {
  6298. #ifdef SF_ARC_FIX
  6299. bool relative_mode_backup = relative_mode;
  6300. relative_mode = true;
  6301. #endif
  6302. get_coordinates();
  6303. #ifdef SF_ARC_FIX
  6304. relative_mode=relative_mode_backup;
  6305. #endif
  6306. if(code_seen('I')) {
  6307. offset[0] = code_value();
  6308. }
  6309. else {
  6310. offset[0] = 0.0;
  6311. }
  6312. if(code_seen('J')) {
  6313. offset[1] = code_value();
  6314. }
  6315. else {
  6316. offset[1] = 0.0;
  6317. }
  6318. }
  6319. void clamp_to_software_endstops(float target[3])
  6320. {
  6321. #ifdef DEBUG_DISABLE_SWLIMITS
  6322. return;
  6323. #endif //DEBUG_DISABLE_SWLIMITS
  6324. world2machine_clamp(target[0], target[1]);
  6325. // Clamp the Z coordinate.
  6326. if (min_software_endstops) {
  6327. float negative_z_offset = 0;
  6328. #ifdef ENABLE_AUTO_BED_LEVELING
  6329. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6330. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6331. #endif
  6332. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6333. }
  6334. if (max_software_endstops) {
  6335. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6336. }
  6337. }
  6338. #ifdef MESH_BED_LEVELING
  6339. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6340. float dx = x - current_position[X_AXIS];
  6341. float dy = y - current_position[Y_AXIS];
  6342. float dz = z - current_position[Z_AXIS];
  6343. int n_segments = 0;
  6344. if (mbl.active) {
  6345. float len = abs(dx) + abs(dy);
  6346. if (len > 0)
  6347. // Split to 3cm segments or shorter.
  6348. n_segments = int(ceil(len / 30.f));
  6349. }
  6350. if (n_segments > 1) {
  6351. float de = e - current_position[E_AXIS];
  6352. for (int i = 1; i < n_segments; ++ i) {
  6353. float t = float(i) / float(n_segments);
  6354. plan_buffer_line(
  6355. current_position[X_AXIS] + t * dx,
  6356. current_position[Y_AXIS] + t * dy,
  6357. current_position[Z_AXIS] + t * dz,
  6358. current_position[E_AXIS] + t * de,
  6359. feed_rate, extruder);
  6360. }
  6361. }
  6362. // The rest of the path.
  6363. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6364. current_position[X_AXIS] = x;
  6365. current_position[Y_AXIS] = y;
  6366. current_position[Z_AXIS] = z;
  6367. current_position[E_AXIS] = e;
  6368. }
  6369. #endif // MESH_BED_LEVELING
  6370. void prepare_move()
  6371. {
  6372. clamp_to_software_endstops(destination);
  6373. previous_millis_cmd = millis();
  6374. // Do not use feedmultiply for E or Z only moves
  6375. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6376. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6377. }
  6378. else {
  6379. #ifdef MESH_BED_LEVELING
  6380. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6381. #else
  6382. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6383. #endif
  6384. }
  6385. for(int8_t i=0; i < NUM_AXIS; i++) {
  6386. current_position[i] = destination[i];
  6387. }
  6388. }
  6389. void prepare_arc_move(char isclockwise) {
  6390. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6391. // Trace the arc
  6392. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6393. // As far as the parser is concerned, the position is now == target. In reality the
  6394. // motion control system might still be processing the action and the real tool position
  6395. // in any intermediate location.
  6396. for(int8_t i=0; i < NUM_AXIS; i++) {
  6397. current_position[i] = destination[i];
  6398. }
  6399. previous_millis_cmd = millis();
  6400. }
  6401. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6402. #if defined(FAN_PIN)
  6403. #if CONTROLLERFAN_PIN == FAN_PIN
  6404. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6405. #endif
  6406. #endif
  6407. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6408. unsigned long lastMotorCheck = 0;
  6409. void controllerFan()
  6410. {
  6411. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6412. {
  6413. lastMotorCheck = millis();
  6414. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6415. #if EXTRUDERS > 2
  6416. || !READ(E2_ENABLE_PIN)
  6417. #endif
  6418. #if EXTRUDER > 1
  6419. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6420. || !READ(X2_ENABLE_PIN)
  6421. #endif
  6422. || !READ(E1_ENABLE_PIN)
  6423. #endif
  6424. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6425. {
  6426. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6427. }
  6428. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6429. {
  6430. digitalWrite(CONTROLLERFAN_PIN, 0);
  6431. analogWrite(CONTROLLERFAN_PIN, 0);
  6432. }
  6433. else
  6434. {
  6435. // allows digital or PWM fan output to be used (see M42 handling)
  6436. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6437. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6438. }
  6439. }
  6440. }
  6441. #endif
  6442. #ifdef TEMP_STAT_LEDS
  6443. static bool blue_led = false;
  6444. static bool red_led = false;
  6445. static uint32_t stat_update = 0;
  6446. void handle_status_leds(void) {
  6447. float max_temp = 0.0;
  6448. if(millis() > stat_update) {
  6449. stat_update += 500; // Update every 0.5s
  6450. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6451. max_temp = max(max_temp, degHotend(cur_extruder));
  6452. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6453. }
  6454. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6455. max_temp = max(max_temp, degTargetBed());
  6456. max_temp = max(max_temp, degBed());
  6457. #endif
  6458. if((max_temp > 55.0) && (red_led == false)) {
  6459. digitalWrite(STAT_LED_RED, 1);
  6460. digitalWrite(STAT_LED_BLUE, 0);
  6461. red_led = true;
  6462. blue_led = false;
  6463. }
  6464. if((max_temp < 54.0) && (blue_led == false)) {
  6465. digitalWrite(STAT_LED_RED, 0);
  6466. digitalWrite(STAT_LED_BLUE, 1);
  6467. red_led = false;
  6468. blue_led = true;
  6469. }
  6470. }
  6471. }
  6472. #endif
  6473. #ifdef SAFETYTIMER
  6474. /**
  6475. * @brief Turn off heating after 30 minutes of inactivity
  6476. *
  6477. * Full screen blocking notification message is shown after heater turning off.
  6478. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6479. * damage print.
  6480. */
  6481. static void handleSafetyTimer()
  6482. {
  6483. #if (EXTRUDERS > 1)
  6484. #error Implemented only for one extruder.
  6485. #endif //(EXTRUDERS > 1)
  6486. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)))
  6487. {
  6488. safetyTimer.stop();
  6489. }
  6490. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6491. {
  6492. safetyTimer.start();
  6493. }
  6494. else if (safetyTimer.expired(1800000ul)) //30 min
  6495. {
  6496. setTargetBed(0);
  6497. setTargetHotend(0, 0);
  6498. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6499. }
  6500. }
  6501. #endif //SAFETYTIMER
  6502. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6503. {
  6504. #ifdef PAT9125
  6505. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6506. {
  6507. if (fsensor_autoload_enabled)
  6508. {
  6509. if (fsensor_check_autoload())
  6510. {
  6511. if (degHotend0() > EXTRUDE_MINTEMP)
  6512. {
  6513. fsensor_autoload_check_stop();
  6514. tone(BEEPER, 1000);
  6515. delay_keep_alive(50);
  6516. noTone(BEEPER);
  6517. loading_flag = true;
  6518. enquecommand_front_P((PSTR("M701")));
  6519. }
  6520. else
  6521. {
  6522. lcd_update_enable(false);
  6523. lcd_implementation_clear();
  6524. lcd.setCursor(0, 0);
  6525. lcd_printPGM(_T(MSG_ERROR));
  6526. lcd.setCursor(0, 2);
  6527. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6528. delay(2000);
  6529. lcd_implementation_clear();
  6530. lcd_update_enable(true);
  6531. }
  6532. }
  6533. }
  6534. else
  6535. fsensor_autoload_check_start();
  6536. }
  6537. else
  6538. if (fsensor_autoload_enabled)
  6539. fsensor_autoload_check_stop();
  6540. #endif //PAT9125
  6541. #ifdef SAFETYTIMER
  6542. handleSafetyTimer();
  6543. #endif //SAFETYTIMER
  6544. #if defined(KILL_PIN) && KILL_PIN > -1
  6545. static int killCount = 0; // make the inactivity button a bit less responsive
  6546. const int KILL_DELAY = 10000;
  6547. #endif
  6548. if(buflen < (BUFSIZE-1)){
  6549. get_command();
  6550. }
  6551. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6552. if(max_inactive_time)
  6553. kill(_n(""), 4);
  6554. if(stepper_inactive_time) {
  6555. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6556. {
  6557. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6558. disable_x();
  6559. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6560. disable_y();
  6561. disable_z();
  6562. disable_e0();
  6563. disable_e1();
  6564. disable_e2();
  6565. }
  6566. }
  6567. }
  6568. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6569. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6570. {
  6571. chdkActive = false;
  6572. WRITE(CHDK, LOW);
  6573. }
  6574. #endif
  6575. #if defined(KILL_PIN) && KILL_PIN > -1
  6576. // Check if the kill button was pressed and wait just in case it was an accidental
  6577. // key kill key press
  6578. // -------------------------------------------------------------------------------
  6579. if( 0 == READ(KILL_PIN) )
  6580. {
  6581. killCount++;
  6582. }
  6583. else if (killCount > 0)
  6584. {
  6585. killCount--;
  6586. }
  6587. // Exceeded threshold and we can confirm that it was not accidental
  6588. // KILL the machine
  6589. // ----------------------------------------------------------------
  6590. if ( killCount >= KILL_DELAY)
  6591. {
  6592. kill("", 5);
  6593. }
  6594. #endif
  6595. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6596. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6597. #endif
  6598. #ifdef EXTRUDER_RUNOUT_PREVENT
  6599. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6600. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6601. {
  6602. bool oldstatus=READ(E0_ENABLE_PIN);
  6603. enable_e0();
  6604. float oldepos=current_position[E_AXIS];
  6605. float oldedes=destination[E_AXIS];
  6606. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6607. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6608. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6609. current_position[E_AXIS]=oldepos;
  6610. destination[E_AXIS]=oldedes;
  6611. plan_set_e_position(oldepos);
  6612. previous_millis_cmd=millis();
  6613. st_synchronize();
  6614. WRITE(E0_ENABLE_PIN,oldstatus);
  6615. }
  6616. #endif
  6617. #ifdef TEMP_STAT_LEDS
  6618. handle_status_leds();
  6619. #endif
  6620. check_axes_activity();
  6621. }
  6622. void kill(const char *full_screen_message, unsigned char id)
  6623. {
  6624. printf_P(_N("KILL: %d\n"), id);
  6625. //return;
  6626. cli(); // Stop interrupts
  6627. disable_heater();
  6628. disable_x();
  6629. // SERIAL_ECHOLNPGM("kill - disable Y");
  6630. disable_y();
  6631. disable_z();
  6632. disable_e0();
  6633. disable_e1();
  6634. disable_e2();
  6635. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6636. pinMode(PS_ON_PIN,INPUT);
  6637. #endif
  6638. SERIAL_ERROR_START;
  6639. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6640. if (full_screen_message != NULL) {
  6641. SERIAL_ERRORLNRPGM(full_screen_message);
  6642. lcd_display_message_fullscreen_P(full_screen_message);
  6643. } else {
  6644. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6645. }
  6646. // FMC small patch to update the LCD before ending
  6647. sei(); // enable interrupts
  6648. for ( int i=5; i--; lcd_update())
  6649. {
  6650. delay(200);
  6651. }
  6652. cli(); // disable interrupts
  6653. suicide();
  6654. while(1)
  6655. {
  6656. #ifdef WATCHDOG
  6657. wdt_reset();
  6658. #endif //WATCHDOG
  6659. /* Intentionally left empty */
  6660. } // Wait for reset
  6661. }
  6662. void Stop()
  6663. {
  6664. disable_heater();
  6665. if(Stopped == false) {
  6666. Stopped = true;
  6667. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6668. SERIAL_ERROR_START;
  6669. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6670. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6671. }
  6672. }
  6673. bool IsStopped() { return Stopped; };
  6674. #ifdef FAST_PWM_FAN
  6675. void setPwmFrequency(uint8_t pin, int val)
  6676. {
  6677. val &= 0x07;
  6678. switch(digitalPinToTimer(pin))
  6679. {
  6680. #if defined(TCCR0A)
  6681. case TIMER0A:
  6682. case TIMER0B:
  6683. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6684. // TCCR0B |= val;
  6685. break;
  6686. #endif
  6687. #if defined(TCCR1A)
  6688. case TIMER1A:
  6689. case TIMER1B:
  6690. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6691. // TCCR1B |= val;
  6692. break;
  6693. #endif
  6694. #if defined(TCCR2)
  6695. case TIMER2:
  6696. case TIMER2:
  6697. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6698. TCCR2 |= val;
  6699. break;
  6700. #endif
  6701. #if defined(TCCR2A)
  6702. case TIMER2A:
  6703. case TIMER2B:
  6704. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6705. TCCR2B |= val;
  6706. break;
  6707. #endif
  6708. #if defined(TCCR3A)
  6709. case TIMER3A:
  6710. case TIMER3B:
  6711. case TIMER3C:
  6712. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6713. TCCR3B |= val;
  6714. break;
  6715. #endif
  6716. #if defined(TCCR4A)
  6717. case TIMER4A:
  6718. case TIMER4B:
  6719. case TIMER4C:
  6720. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6721. TCCR4B |= val;
  6722. break;
  6723. #endif
  6724. #if defined(TCCR5A)
  6725. case TIMER5A:
  6726. case TIMER5B:
  6727. case TIMER5C:
  6728. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6729. TCCR5B |= val;
  6730. break;
  6731. #endif
  6732. }
  6733. }
  6734. #endif //FAST_PWM_FAN
  6735. bool setTargetedHotend(int code){
  6736. tmp_extruder = active_extruder;
  6737. if(code_seen('T')) {
  6738. tmp_extruder = code_value();
  6739. if(tmp_extruder >= EXTRUDERS) {
  6740. SERIAL_ECHO_START;
  6741. switch(code){
  6742. case 104:
  6743. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6744. break;
  6745. case 105:
  6746. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6747. break;
  6748. case 109:
  6749. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6750. break;
  6751. case 218:
  6752. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6753. break;
  6754. case 221:
  6755. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6756. break;
  6757. }
  6758. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6759. return true;
  6760. }
  6761. }
  6762. return false;
  6763. }
  6764. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6765. {
  6766. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6767. {
  6768. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6769. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6770. }
  6771. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6772. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6773. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6774. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6775. total_filament_used = 0;
  6776. }
  6777. float calculate_extruder_multiplier(float diameter) {
  6778. float out = 1.f;
  6779. if (volumetric_enabled && diameter > 0.f) {
  6780. float area = M_PI * diameter * diameter * 0.25;
  6781. out = 1.f / area;
  6782. }
  6783. if (extrudemultiply != 100)
  6784. out *= float(extrudemultiply) * 0.01f;
  6785. return out;
  6786. }
  6787. void calculate_extruder_multipliers() {
  6788. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6789. #if EXTRUDERS > 1
  6790. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6791. #if EXTRUDERS > 2
  6792. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6793. #endif
  6794. #endif
  6795. }
  6796. void delay_keep_alive(unsigned int ms)
  6797. {
  6798. for (;;) {
  6799. manage_heater();
  6800. // Manage inactivity, but don't disable steppers on timeout.
  6801. manage_inactivity(true);
  6802. lcd_update();
  6803. if (ms == 0)
  6804. break;
  6805. else if (ms >= 50) {
  6806. delay(50);
  6807. ms -= 50;
  6808. } else {
  6809. delay(ms);
  6810. ms = 0;
  6811. }
  6812. }
  6813. }
  6814. void wait_for_heater(long codenum) {
  6815. #ifdef TEMP_RESIDENCY_TIME
  6816. long residencyStart;
  6817. residencyStart = -1;
  6818. /* continue to loop until we have reached the target temp
  6819. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6820. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6821. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6822. #else
  6823. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6824. #endif //TEMP_RESIDENCY_TIME
  6825. if ((millis() - codenum) > 1000UL)
  6826. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6827. if (!farm_mode) {
  6828. SERIAL_PROTOCOLPGM("T:");
  6829. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6830. SERIAL_PROTOCOLPGM(" E:");
  6831. SERIAL_PROTOCOL((int)tmp_extruder);
  6832. #ifdef TEMP_RESIDENCY_TIME
  6833. SERIAL_PROTOCOLPGM(" W:");
  6834. if (residencyStart > -1)
  6835. {
  6836. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6837. SERIAL_PROTOCOLLN(codenum);
  6838. }
  6839. else
  6840. {
  6841. SERIAL_PROTOCOLLN("?");
  6842. }
  6843. }
  6844. #else
  6845. SERIAL_PROTOCOLLN("");
  6846. #endif
  6847. codenum = millis();
  6848. }
  6849. manage_heater();
  6850. manage_inactivity();
  6851. lcd_update();
  6852. #ifdef TEMP_RESIDENCY_TIME
  6853. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6854. or when current temp falls outside the hysteresis after target temp was reached */
  6855. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6856. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6857. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6858. {
  6859. residencyStart = millis();
  6860. }
  6861. #endif //TEMP_RESIDENCY_TIME
  6862. }
  6863. }
  6864. void check_babystep() {
  6865. int babystep_z;
  6866. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6867. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6868. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6869. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6870. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6871. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6872. lcd_update_enable(true);
  6873. }
  6874. }
  6875. #ifdef DIS
  6876. void d_setup()
  6877. {
  6878. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6879. pinMode(D_DATA, INPUT_PULLUP);
  6880. pinMode(D_REQUIRE, OUTPUT);
  6881. digitalWrite(D_REQUIRE, HIGH);
  6882. }
  6883. float d_ReadData()
  6884. {
  6885. int digit[13];
  6886. String mergeOutput;
  6887. float output;
  6888. digitalWrite(D_REQUIRE, HIGH);
  6889. for (int i = 0; i<13; i++)
  6890. {
  6891. for (int j = 0; j < 4; j++)
  6892. {
  6893. while (digitalRead(D_DATACLOCK) == LOW) {}
  6894. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6895. bitWrite(digit[i], j, digitalRead(D_DATA));
  6896. }
  6897. }
  6898. digitalWrite(D_REQUIRE, LOW);
  6899. mergeOutput = "";
  6900. output = 0;
  6901. for (int r = 5; r <= 10; r++) //Merge digits
  6902. {
  6903. mergeOutput += digit[r];
  6904. }
  6905. output = mergeOutput.toFloat();
  6906. if (digit[4] == 8) //Handle sign
  6907. {
  6908. output *= -1;
  6909. }
  6910. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6911. {
  6912. output /= 10;
  6913. }
  6914. return output;
  6915. }
  6916. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6917. int t1 = 0;
  6918. int t_delay = 0;
  6919. int digit[13];
  6920. int m;
  6921. char str[3];
  6922. //String mergeOutput;
  6923. char mergeOutput[15];
  6924. float output;
  6925. int mesh_point = 0; //index number of calibration point
  6926. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6927. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6928. float mesh_home_z_search = 4;
  6929. float row[x_points_num];
  6930. int ix = 0;
  6931. int iy = 0;
  6932. char* filename_wldsd = "wldsd.txt";
  6933. char data_wldsd[70];
  6934. char numb_wldsd[10];
  6935. d_setup();
  6936. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6937. // We don't know where we are! HOME!
  6938. // Push the commands to the front of the message queue in the reverse order!
  6939. // There shall be always enough space reserved for these commands.
  6940. repeatcommand_front(); // repeat G80 with all its parameters
  6941. enquecommand_front_P((PSTR("G28 W0")));
  6942. enquecommand_front_P((PSTR("G1 Z5")));
  6943. return;
  6944. }
  6945. bool custom_message_old = custom_message;
  6946. unsigned int custom_message_type_old = custom_message_type;
  6947. unsigned int custom_message_state_old = custom_message_state;
  6948. custom_message = true;
  6949. custom_message_type = 1;
  6950. custom_message_state = (x_points_num * y_points_num) + 10;
  6951. lcd_update(1);
  6952. mbl.reset();
  6953. babystep_undo();
  6954. card.openFile(filename_wldsd, false);
  6955. current_position[Z_AXIS] = mesh_home_z_search;
  6956. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6957. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6958. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6959. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6960. setup_for_endstop_move(false);
  6961. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6962. SERIAL_PROTOCOL(x_points_num);
  6963. SERIAL_PROTOCOLPGM(",");
  6964. SERIAL_PROTOCOL(y_points_num);
  6965. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6966. SERIAL_PROTOCOL(mesh_home_z_search);
  6967. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6968. SERIAL_PROTOCOL(x_dimension);
  6969. SERIAL_PROTOCOLPGM(",");
  6970. SERIAL_PROTOCOL(y_dimension);
  6971. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6972. while (mesh_point != x_points_num * y_points_num) {
  6973. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6974. iy = mesh_point / x_points_num;
  6975. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6976. float z0 = 0.f;
  6977. current_position[Z_AXIS] = mesh_home_z_search;
  6978. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6979. st_synchronize();
  6980. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6981. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6982. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6983. st_synchronize();
  6984. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6985. break;
  6986. card.closefile();
  6987. }
  6988. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6989. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6990. //strcat(data_wldsd, numb_wldsd);
  6991. //MYSERIAL.println(data_wldsd);
  6992. //delay(1000);
  6993. //delay(3000);
  6994. //t1 = millis();
  6995. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6996. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6997. memset(digit, 0, sizeof(digit));
  6998. //cli();
  6999. digitalWrite(D_REQUIRE, LOW);
  7000. for (int i = 0; i<13; i++)
  7001. {
  7002. //t1 = millis();
  7003. for (int j = 0; j < 4; j++)
  7004. {
  7005. while (digitalRead(D_DATACLOCK) == LOW) {}
  7006. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7007. bitWrite(digit[i], j, digitalRead(D_DATA));
  7008. }
  7009. //t_delay = (millis() - t1);
  7010. //SERIAL_PROTOCOLPGM(" ");
  7011. //SERIAL_PROTOCOL_F(t_delay, 5);
  7012. //SERIAL_PROTOCOLPGM(" ");
  7013. }
  7014. //sei();
  7015. digitalWrite(D_REQUIRE, HIGH);
  7016. mergeOutput[0] = '\0';
  7017. output = 0;
  7018. for (int r = 5; r <= 10; r++) //Merge digits
  7019. {
  7020. sprintf(str, "%d", digit[r]);
  7021. strcat(mergeOutput, str);
  7022. }
  7023. output = atof(mergeOutput);
  7024. if (digit[4] == 8) //Handle sign
  7025. {
  7026. output *= -1;
  7027. }
  7028. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7029. {
  7030. output *= 0.1;
  7031. }
  7032. //output = d_ReadData();
  7033. //row[ix] = current_position[Z_AXIS];
  7034. memset(data_wldsd, 0, sizeof(data_wldsd));
  7035. for (int i = 0; i <3; i++) {
  7036. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7037. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7038. strcat(data_wldsd, numb_wldsd);
  7039. strcat(data_wldsd, ";");
  7040. }
  7041. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7042. dtostrf(output, 8, 5, numb_wldsd);
  7043. strcat(data_wldsd, numb_wldsd);
  7044. //strcat(data_wldsd, ";");
  7045. card.write_command(data_wldsd);
  7046. //row[ix] = d_ReadData();
  7047. row[ix] = output; // current_position[Z_AXIS];
  7048. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7049. for (int i = 0; i < x_points_num; i++) {
  7050. SERIAL_PROTOCOLPGM(" ");
  7051. SERIAL_PROTOCOL_F(row[i], 5);
  7052. }
  7053. SERIAL_PROTOCOLPGM("\n");
  7054. }
  7055. custom_message_state--;
  7056. mesh_point++;
  7057. lcd_update(1);
  7058. }
  7059. card.closefile();
  7060. }
  7061. #endif
  7062. void temp_compensation_start() {
  7063. custom_message = true;
  7064. custom_message_type = 5;
  7065. custom_message_state = PINDA_HEAT_T + 1;
  7066. lcd_update(2);
  7067. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7068. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7069. }
  7070. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7071. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7072. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7073. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7074. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7075. st_synchronize();
  7076. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7077. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7078. delay_keep_alive(1000);
  7079. custom_message_state = PINDA_HEAT_T - i;
  7080. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7081. else lcd_update(1);
  7082. }
  7083. custom_message_type = 0;
  7084. custom_message_state = 0;
  7085. custom_message = false;
  7086. }
  7087. void temp_compensation_apply() {
  7088. int i_add;
  7089. int compensation_value;
  7090. int z_shift = 0;
  7091. float z_shift_mm;
  7092. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7093. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7094. i_add = (target_temperature_bed - 60) / 10;
  7095. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7096. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7097. }else {
  7098. //interpolation
  7099. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7100. }
  7101. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7102. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7103. st_synchronize();
  7104. plan_set_z_position(current_position[Z_AXIS]);
  7105. }
  7106. else {
  7107. //we have no temp compensation data
  7108. }
  7109. }
  7110. float temp_comp_interpolation(float inp_temperature) {
  7111. //cubic spline interpolation
  7112. int n, i, j, k;
  7113. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7114. int shift[10];
  7115. int temp_C[10];
  7116. n = 6; //number of measured points
  7117. shift[0] = 0;
  7118. for (i = 0; i < n; i++) {
  7119. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7120. temp_C[i] = 50 + i * 10; //temperature in C
  7121. #ifdef PINDA_THERMISTOR
  7122. temp_C[i] = 35 + i * 5; //temperature in C
  7123. #else
  7124. temp_C[i] = 50 + i * 10; //temperature in C
  7125. #endif
  7126. x[i] = (float)temp_C[i];
  7127. f[i] = (float)shift[i];
  7128. }
  7129. if (inp_temperature < x[0]) return 0;
  7130. for (i = n - 1; i>0; i--) {
  7131. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7132. h[i - 1] = x[i] - x[i - 1];
  7133. }
  7134. //*********** formation of h, s , f matrix **************
  7135. for (i = 1; i<n - 1; i++) {
  7136. m[i][i] = 2 * (h[i - 1] + h[i]);
  7137. if (i != 1) {
  7138. m[i][i - 1] = h[i - 1];
  7139. m[i - 1][i] = h[i - 1];
  7140. }
  7141. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7142. }
  7143. //*********** forward elimination **************
  7144. for (i = 1; i<n - 2; i++) {
  7145. temp = (m[i + 1][i] / m[i][i]);
  7146. for (j = 1; j <= n - 1; j++)
  7147. m[i + 1][j] -= temp*m[i][j];
  7148. }
  7149. //*********** backward substitution *********
  7150. for (i = n - 2; i>0; i--) {
  7151. sum = 0;
  7152. for (j = i; j <= n - 2; j++)
  7153. sum += m[i][j] * s[j];
  7154. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7155. }
  7156. for (i = 0; i<n - 1; i++)
  7157. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7158. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7159. b = s[i] / 2;
  7160. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7161. d = f[i];
  7162. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7163. }
  7164. return sum;
  7165. }
  7166. #ifdef PINDA_THERMISTOR
  7167. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7168. {
  7169. if (!temp_cal_active) return 0;
  7170. if (!calibration_status_pinda()) return 0;
  7171. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7172. }
  7173. #endif //PINDA_THERMISTOR
  7174. void long_pause() //long pause print
  7175. {
  7176. st_synchronize();
  7177. //save currently set parameters to global variables
  7178. saved_feedmultiply = feedmultiply;
  7179. HotendTempBckp = degTargetHotend(active_extruder);
  7180. fanSpeedBckp = fanSpeed;
  7181. start_pause_print = millis();
  7182. //save position
  7183. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7184. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7185. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7186. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7187. //retract
  7188. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7189. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7190. //lift z
  7191. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7192. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7193. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7194. //set nozzle target temperature to 0
  7195. setTargetHotend(0, 0);
  7196. setTargetHotend(0, 1);
  7197. setTargetHotend(0, 2);
  7198. //Move XY to side
  7199. current_position[X_AXIS] = X_PAUSE_POS;
  7200. current_position[Y_AXIS] = Y_PAUSE_POS;
  7201. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7202. // Turn off the print fan
  7203. fanSpeed = 0;
  7204. st_synchronize();
  7205. }
  7206. void serialecho_temperatures() {
  7207. float tt = degHotend(active_extruder);
  7208. SERIAL_PROTOCOLPGM("T:");
  7209. SERIAL_PROTOCOL(tt);
  7210. SERIAL_PROTOCOLPGM(" E:");
  7211. SERIAL_PROTOCOL((int)active_extruder);
  7212. SERIAL_PROTOCOLPGM(" B:");
  7213. SERIAL_PROTOCOL_F(degBed(), 1);
  7214. SERIAL_PROTOCOLLN("");
  7215. }
  7216. extern uint32_t sdpos_atomic;
  7217. #ifdef UVLO_SUPPORT
  7218. void uvlo_()
  7219. {
  7220. unsigned long time_start = millis();
  7221. bool sd_print = card.sdprinting;
  7222. // Conserve power as soon as possible.
  7223. disable_x();
  7224. disable_y();
  7225. #ifdef TMC2130
  7226. tmc2130_set_current_h(Z_AXIS, 20);
  7227. tmc2130_set_current_r(Z_AXIS, 20);
  7228. tmc2130_set_current_h(E_AXIS, 20);
  7229. tmc2130_set_current_r(E_AXIS, 20);
  7230. #endif //TMC2130
  7231. // Indicate that the interrupt has been triggered.
  7232. // SERIAL_ECHOLNPGM("UVLO");
  7233. // Read out the current Z motor microstep counter. This will be later used
  7234. // for reaching the zero full step before powering off.
  7235. uint16_t z_microsteps = 0;
  7236. #ifdef TMC2130
  7237. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7238. #endif //TMC2130
  7239. // Calculate the file position, from which to resume this print.
  7240. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7241. {
  7242. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7243. sd_position -= sdlen_planner;
  7244. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7245. sd_position -= sdlen_cmdqueue;
  7246. if (sd_position < 0) sd_position = 0;
  7247. }
  7248. // Backup the feedrate in mm/min.
  7249. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7250. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7251. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7252. // are in action.
  7253. planner_abort_hard();
  7254. // Store the current extruder position.
  7255. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7256. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7257. // Clean the input command queue.
  7258. cmdqueue_reset();
  7259. card.sdprinting = false;
  7260. // card.closefile();
  7261. // Enable stepper driver interrupt to move Z axis.
  7262. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7263. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7264. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7265. sei();
  7266. plan_buffer_line(
  7267. current_position[X_AXIS],
  7268. current_position[Y_AXIS],
  7269. current_position[Z_AXIS],
  7270. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7271. 95, active_extruder);
  7272. st_synchronize();
  7273. disable_e0();
  7274. plan_buffer_line(
  7275. current_position[X_AXIS],
  7276. current_position[Y_AXIS],
  7277. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7278. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7279. 40, active_extruder);
  7280. st_synchronize();
  7281. disable_e0();
  7282. plan_buffer_line(
  7283. current_position[X_AXIS],
  7284. current_position[Y_AXIS],
  7285. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7286. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7287. 40, active_extruder);
  7288. st_synchronize();
  7289. disable_e0();
  7290. disable_z();
  7291. // Move Z up to the next 0th full step.
  7292. // Write the file position.
  7293. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7294. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7295. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7296. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7297. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7298. // Scale the z value to 1u resolution.
  7299. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7300. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7301. }
  7302. // Read out the current Z motor microstep counter. This will be later used
  7303. // for reaching the zero full step before powering off.
  7304. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7305. // Store the current position.
  7306. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7307. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7308. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7309. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7310. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7311. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7312. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7313. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7314. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7315. #if EXTRUDERS > 1
  7316. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7317. #if EXTRUDERS > 2
  7318. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7319. #endif
  7320. #endif
  7321. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7322. // Finaly store the "power outage" flag.
  7323. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7324. st_synchronize();
  7325. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7326. disable_z();
  7327. // Increment power failure counter
  7328. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7329. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7330. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7331. #if 0
  7332. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7333. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7334. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7335. st_synchronize();
  7336. #endif
  7337. cli();
  7338. volatile unsigned int ppcount = 0;
  7339. SET_OUTPUT(BEEPER);
  7340. WRITE(BEEPER, HIGH);
  7341. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7342. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7343. }
  7344. WRITE(BEEPER, LOW);
  7345. while(1){
  7346. #if 1
  7347. WRITE(BEEPER, LOW);
  7348. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7349. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7350. }
  7351. #endif
  7352. };
  7353. }
  7354. #endif //UVLO_SUPPORT
  7355. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7356. void setup_fan_interrupt() {
  7357. //INT7
  7358. DDRE &= ~(1 << 7); //input pin
  7359. PORTE &= ~(1 << 7); //no internal pull-up
  7360. //start with sensing rising edge
  7361. EICRB &= ~(1 << 6);
  7362. EICRB |= (1 << 7);
  7363. //enable INT7 interrupt
  7364. EIMSK |= (1 << 7);
  7365. }
  7366. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7367. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7368. ISR(INT7_vect) {
  7369. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7370. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7371. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7372. t_fan_rising_edge = millis_nc();
  7373. }
  7374. else { //interrupt was triggered by falling edge
  7375. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7376. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7377. }
  7378. }
  7379. EICRB ^= (1 << 6); //change edge
  7380. }
  7381. #endif
  7382. #ifdef UVLO_SUPPORT
  7383. void setup_uvlo_interrupt() {
  7384. DDRE &= ~(1 << 4); //input pin
  7385. PORTE &= ~(1 << 4); //no internal pull-up
  7386. //sensing falling edge
  7387. EICRB |= (1 << 0);
  7388. EICRB &= ~(1 << 1);
  7389. //enable INT4 interrupt
  7390. EIMSK |= (1 << 4);
  7391. }
  7392. ISR(INT4_vect) {
  7393. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7394. SERIAL_ECHOLNPGM("INT4");
  7395. if (IS_SD_PRINTING) uvlo_();
  7396. }
  7397. void recover_print(uint8_t automatic) {
  7398. char cmd[30];
  7399. lcd_update_enable(true);
  7400. lcd_update(2);
  7401. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7402. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7403. // Lift the print head, so one may remove the excess priming material.
  7404. if (current_position[Z_AXIS] < 25)
  7405. enquecommand_P(PSTR("G1 Z25 F800"));
  7406. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7407. enquecommand_P(PSTR("G28 X Y"));
  7408. // Set the target bed and nozzle temperatures and wait.
  7409. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7410. enquecommand(cmd);
  7411. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7412. enquecommand(cmd);
  7413. enquecommand_P(PSTR("M83")); //E axis relative mode
  7414. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7415. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7416. if(automatic == 0){
  7417. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7418. }
  7419. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7420. // Mark the power panic status as inactive.
  7421. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7422. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7423. delay_keep_alive(1000);
  7424. }*/
  7425. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7426. // Restart the print.
  7427. restore_print_from_eeprom();
  7428. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7429. }
  7430. void recover_machine_state_after_power_panic()
  7431. {
  7432. char cmd[30];
  7433. // 1) Recover the logical cordinates at the time of the power panic.
  7434. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7435. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7436. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7437. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7438. // The current position after power panic is moved to the next closest 0th full step.
  7439. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7440. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7441. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7442. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7443. sprintf_P(cmd, PSTR("G92 E"));
  7444. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7445. enquecommand(cmd);
  7446. }
  7447. memcpy(destination, current_position, sizeof(destination));
  7448. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7449. print_world_coordinates();
  7450. // 2) Initialize the logical to physical coordinate system transformation.
  7451. world2machine_initialize();
  7452. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7453. mbl.active = false;
  7454. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7455. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7456. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7457. // Scale the z value to 10u resolution.
  7458. int16_t v;
  7459. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7460. if (v != 0)
  7461. mbl.active = true;
  7462. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7463. }
  7464. if (mbl.active)
  7465. mbl.upsample_3x3();
  7466. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7467. // print_mesh_bed_leveling_table();
  7468. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7469. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7470. babystep_load();
  7471. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7472. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7473. // 6) Power up the motors, mark their positions as known.
  7474. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7475. axis_known_position[X_AXIS] = true; enable_x();
  7476. axis_known_position[Y_AXIS] = true; enable_y();
  7477. axis_known_position[Z_AXIS] = true; enable_z();
  7478. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7479. print_physical_coordinates();
  7480. // 7) Recover the target temperatures.
  7481. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7482. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7483. // 8) Recover extruder multipilers
  7484. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7485. #if EXTRUDERS > 1
  7486. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7487. #if EXTRUDERS > 2
  7488. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7489. #endif
  7490. #endif
  7491. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7492. }
  7493. void restore_print_from_eeprom() {
  7494. float x_rec, y_rec, z_pos;
  7495. int feedrate_rec;
  7496. uint8_t fan_speed_rec;
  7497. char cmd[30];
  7498. char* c;
  7499. char filename[13];
  7500. uint8_t depth = 0;
  7501. char dir_name[9];
  7502. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7503. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7504. SERIAL_ECHOPGM("Feedrate:");
  7505. MYSERIAL.println(feedrate_rec);
  7506. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7507. MYSERIAL.println(int(depth));
  7508. for (int i = 0; i < depth; i++) {
  7509. for (int j = 0; j < 8; j++) {
  7510. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7511. }
  7512. dir_name[8] = '\0';
  7513. MYSERIAL.println(dir_name);
  7514. card.chdir(dir_name);
  7515. }
  7516. for (int i = 0; i < 8; i++) {
  7517. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7518. }
  7519. filename[8] = '\0';
  7520. MYSERIAL.print(filename);
  7521. strcat_P(filename, PSTR(".gco"));
  7522. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7523. for (c = &cmd[4]; *c; c++)
  7524. *c = tolower(*c);
  7525. enquecommand(cmd);
  7526. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7527. SERIAL_ECHOPGM("Position read from eeprom:");
  7528. MYSERIAL.println(position);
  7529. // E axis relative mode.
  7530. enquecommand_P(PSTR("M83"));
  7531. // Move to the XY print position in logical coordinates, where the print has been killed.
  7532. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7533. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7534. strcat_P(cmd, PSTR(" F2000"));
  7535. enquecommand(cmd);
  7536. // Move the Z axis down to the print, in logical coordinates.
  7537. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7538. enquecommand(cmd);
  7539. // Unretract.
  7540. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7541. // Set the feedrate saved at the power panic.
  7542. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7543. enquecommand(cmd);
  7544. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7545. {
  7546. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7547. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7548. }
  7549. // Set the fan speed saved at the power panic.
  7550. strcpy_P(cmd, PSTR("M106 S"));
  7551. strcat(cmd, itostr3(int(fan_speed_rec)));
  7552. enquecommand(cmd);
  7553. // Set a position in the file.
  7554. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7555. enquecommand(cmd);
  7556. // Start SD print.
  7557. enquecommand_P(PSTR("M24"));
  7558. }
  7559. #endif //UVLO_SUPPORT
  7560. ////////////////////////////////////////////////////////////////////////////////
  7561. // save/restore printing
  7562. void stop_and_save_print_to_ram(float z_move, float e_move)
  7563. {
  7564. if (saved_printing) return;
  7565. unsigned char nplanner_blocks;
  7566. unsigned char nlines;
  7567. uint16_t sdlen_planner;
  7568. uint16_t sdlen_cmdqueue;
  7569. cli();
  7570. if (card.sdprinting) {
  7571. nplanner_blocks = number_of_blocks();
  7572. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7573. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7574. saved_sdpos -= sdlen_planner;
  7575. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7576. saved_sdpos -= sdlen_cmdqueue;
  7577. saved_printing_type = PRINTING_TYPE_SD;
  7578. }
  7579. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7580. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7581. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7582. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7583. saved_sdpos -= nlines;
  7584. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7585. saved_printing_type = PRINTING_TYPE_USB;
  7586. }
  7587. else {
  7588. //not sd printing nor usb printing
  7589. }
  7590. #if 0
  7591. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7592. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7593. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7594. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7595. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7596. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7597. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7598. {
  7599. card.setIndex(saved_sdpos);
  7600. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7601. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7602. MYSERIAL.print(char(card.get()));
  7603. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7604. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7605. MYSERIAL.print(char(card.get()));
  7606. SERIAL_ECHOLNPGM("End of command buffer");
  7607. }
  7608. {
  7609. // Print the content of the planner buffer, line by line:
  7610. card.setIndex(saved_sdpos);
  7611. int8_t iline = 0;
  7612. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7613. SERIAL_ECHOPGM("Planner line (from file): ");
  7614. MYSERIAL.print(int(iline), DEC);
  7615. SERIAL_ECHOPGM(", length: ");
  7616. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7617. SERIAL_ECHOPGM(", steps: (");
  7618. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7619. SERIAL_ECHOPGM(",");
  7620. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7621. SERIAL_ECHOPGM(",");
  7622. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7623. SERIAL_ECHOPGM(",");
  7624. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7625. SERIAL_ECHOPGM("), events: ");
  7626. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7627. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7628. MYSERIAL.print(char(card.get()));
  7629. }
  7630. }
  7631. {
  7632. // Print the content of the command buffer, line by line:
  7633. int8_t iline = 0;
  7634. union {
  7635. struct {
  7636. char lo;
  7637. char hi;
  7638. } lohi;
  7639. uint16_t value;
  7640. } sdlen_single;
  7641. int _bufindr = bufindr;
  7642. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7643. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7644. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7645. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7646. }
  7647. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7648. MYSERIAL.print(int(iline), DEC);
  7649. SERIAL_ECHOPGM(", type: ");
  7650. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7651. SERIAL_ECHOPGM(", len: ");
  7652. MYSERIAL.println(sdlen_single.value, DEC);
  7653. // Print the content of the buffer line.
  7654. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7655. SERIAL_ECHOPGM("Buffer line (from file): ");
  7656. MYSERIAL.print(int(iline), DEC);
  7657. MYSERIAL.println(int(iline), DEC);
  7658. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7659. MYSERIAL.print(char(card.get()));
  7660. if (-- _buflen == 0)
  7661. break;
  7662. // First skip the current command ID and iterate up to the end of the string.
  7663. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7664. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7665. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7666. // If the end of the buffer was empty,
  7667. if (_bufindr == sizeof(cmdbuffer)) {
  7668. // skip to the start and find the nonzero command.
  7669. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7670. }
  7671. }
  7672. }
  7673. #endif
  7674. #if 0
  7675. saved_feedrate2 = feedrate; //save feedrate
  7676. #else
  7677. // Try to deduce the feedrate from the first block of the planner.
  7678. // Speed is in mm/min.
  7679. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7680. #endif
  7681. planner_abort_hard(); //abort printing
  7682. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7683. saved_active_extruder = active_extruder; //save active_extruder
  7684. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7685. cmdqueue_reset(); //empty cmdqueue
  7686. card.sdprinting = false;
  7687. // card.closefile();
  7688. saved_printing = true;
  7689. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7690. st_reset_timer();
  7691. sei();
  7692. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7693. #if 1
  7694. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7695. char buf[48];
  7696. // First unretract (relative extrusion)
  7697. strcpy_P(buf, PSTR("G1 E"));
  7698. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7699. strcat_P(buf, PSTR(" F"));
  7700. dtostrf(retract_feedrate*60, 8, 3, buf + strlen(buf));
  7701. enquecommand(buf, false);
  7702. // Then lift Z axis
  7703. strcpy_P(buf, PSTR("G1 Z"));
  7704. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7705. strcat_P(buf, PSTR(" F"));
  7706. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7707. // At this point the command queue is empty.
  7708. enquecommand(buf, false);
  7709. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7710. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7711. repeatcommand_front();
  7712. #else
  7713. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7714. st_synchronize(); //wait moving
  7715. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7716. memcpy(destination, current_position, sizeof(destination));
  7717. #endif
  7718. }
  7719. }
  7720. void restore_print_from_ram_and_continue(float e_move)
  7721. {
  7722. if (!saved_printing) return;
  7723. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7724. // current_position[axis] = st_get_position_mm(axis);
  7725. active_extruder = saved_active_extruder; //restore active_extruder
  7726. feedrate = saved_feedrate2; //restore feedrate
  7727. float e = saved_pos[E_AXIS] - e_move;
  7728. plan_set_e_position(e);
  7729. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7730. st_synchronize();
  7731. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7732. memcpy(destination, current_position, sizeof(destination));
  7733. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7734. card.setIndex(saved_sdpos);
  7735. sdpos_atomic = saved_sdpos;
  7736. card.sdprinting = true;
  7737. }
  7738. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7739. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7740. FlushSerialRequestResend();
  7741. }
  7742. else {
  7743. //not sd printing nor usb printing
  7744. }
  7745. saved_printing = false;
  7746. }
  7747. void print_world_coordinates()
  7748. {
  7749. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7750. }
  7751. void print_physical_coordinates()
  7752. {
  7753. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm[X_AXIS], st_get_position_mm[Y_AXIS], st_get_position_mm[Z_AXIS]);
  7754. }
  7755. void print_mesh_bed_leveling_table()
  7756. {
  7757. SERIAL_ECHOPGM("mesh bed leveling: ");
  7758. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7759. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7760. MYSERIAL.print(mbl.z_values[y][x], 3);
  7761. SERIAL_ECHOPGM(" ");
  7762. }
  7763. SERIAL_ECHOLNPGM("");
  7764. }
  7765. uint16_t print_time_remaining() {
  7766. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7767. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7768. else print_t = print_time_remaining_silent;
  7769. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7770. return print_t;
  7771. }
  7772. uint8_t print_percent_done() {
  7773. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7774. uint8_t percent_done = 0;
  7775. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7776. percent_done = print_percent_done_normal;
  7777. }
  7778. else if (print_percent_done_silent <= 100) {
  7779. percent_done = print_percent_done_silent;
  7780. }
  7781. else {
  7782. percent_done = card.percentDone();
  7783. }
  7784. return percent_done;
  7785. }
  7786. static void print_time_remaining_init() {
  7787. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7788. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7789. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7790. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7791. }
  7792. #define FIL_LOAD_LENGTH 60