Marlin_main.cpp 388 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #include "config.h"
  48. #ifdef ENABLE_AUTO_BED_LEVELING
  49. #include "vector_3.h"
  50. #ifdef AUTO_BED_LEVELING_GRID
  51. #include "qr_solve.h"
  52. #endif
  53. #endif // ENABLE_AUTO_BED_LEVELING
  54. #ifdef MESH_BED_LEVELING
  55. #include "mesh_bed_leveling.h"
  56. #include "mesh_bed_calibration.h"
  57. #endif
  58. #include "printers.h"
  59. #include "menu.h"
  60. #include "ultralcd.h"
  61. #include "backlight.h"
  62. #include "planner.h"
  63. #include "stepper.h"
  64. #include "temperature.h"
  65. #include "motion_control.h"
  66. #include "cardreader.h"
  67. #include "ConfigurationStore.h"
  68. #include "language.h"
  69. #include "pins_arduino.h"
  70. #include "math.h"
  71. #include "util.h"
  72. #include "Timer.h"
  73. #include <avr/wdt.h>
  74. #include <avr/pgmspace.h>
  75. #include "Dcodes.h"
  76. #include "AutoDeplete.h"
  77. #ifndef LA_NOCOMPAT
  78. #include "la10compat.h"
  79. #endif
  80. #ifdef SWSPI
  81. #include "swspi.h"
  82. #endif //SWSPI
  83. #include "spi.h"
  84. #ifdef SWI2C
  85. #include "swi2c.h"
  86. #endif //SWI2C
  87. #ifdef FILAMENT_SENSOR
  88. #include "fsensor.h"
  89. #endif //FILAMENT_SENSOR
  90. #ifdef TMC2130
  91. #include "tmc2130.h"
  92. #endif //TMC2130
  93. #ifdef W25X20CL
  94. #include "w25x20cl.h"
  95. #include "optiboot_w25x20cl.h"
  96. #endif //W25X20CL
  97. #ifdef BLINKM
  98. #include "BlinkM.h"
  99. #include "Wire.h"
  100. #endif
  101. #ifdef ULTRALCD
  102. #include "ultralcd.h"
  103. #endif
  104. #if NUM_SERVOS > 0
  105. #include "Servo.h"
  106. #endif
  107. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  108. #include <SPI.h>
  109. #endif
  110. #include "mmu.h"
  111. #define VERSION_STRING "1.0.2"
  112. #include "ultralcd.h"
  113. #include "sound.h"
  114. #include "cmdqueue.h"
  115. #include "io_atmega2560.h"
  116. // Macros for bit masks
  117. #define BIT(b) (1<<(b))
  118. #define TEST(n,b) (((n)&BIT(b))!=0)
  119. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  120. //Macro for print fan speed
  121. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  122. //filament types
  123. #define FILAMENT_DEFAULT 0
  124. #define FILAMENT_FLEX 1
  125. #define FILAMENT_PVA 2
  126. #define FILAMENT_UNDEFINED 255
  127. //Stepper Movement Variables
  128. //===========================================================================
  129. //=============================imported variables============================
  130. //===========================================================================
  131. //===========================================================================
  132. //=============================public variables=============================
  133. //===========================================================================
  134. #ifdef SDSUPPORT
  135. CardReader card;
  136. #endif
  137. unsigned long PingTime = _millis();
  138. unsigned long NcTime;
  139. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  140. //used for PINDA temp calibration and pause print
  141. #define DEFAULT_RETRACTION 1
  142. #define DEFAULT_RETRACTION_MM 4 //MM
  143. float default_retraction = DEFAULT_RETRACTION;
  144. float homing_feedrate[] = HOMING_FEEDRATE;
  145. //Although this flag and many others like this could be represented with a struct/bitfield for each axis (more readable and efficient code), the implementation
  146. //would not be standard across all platforms. That being said, the code will continue to use bitmasks for independent axis.
  147. //Moreover, according to C/C++ standard, the ordering of bits is platform/compiler dependent and the compiler is allowed to align the bits arbitrarily,
  148. //thus bit operations like shifting and masking may stop working and will be very hard to fix.
  149. uint8_t axis_relative_modes = 0;
  150. int feedmultiply=100; //100->1 200->2
  151. int extrudemultiply=100; //100->1 200->2
  152. int extruder_multiply[EXTRUDERS] = {100
  153. #if EXTRUDERS > 1
  154. , 100
  155. #if EXTRUDERS > 2
  156. , 100
  157. #endif
  158. #endif
  159. };
  160. int bowden_length[4] = {385, 385, 385, 385};
  161. bool is_usb_printing = false;
  162. bool homing_flag = false;
  163. bool temp_cal_active = false;
  164. unsigned long kicktime = _millis()+100000;
  165. unsigned int usb_printing_counter;
  166. int8_t lcd_change_fil_state = 0;
  167. unsigned long pause_time = 0;
  168. unsigned long start_pause_print = _millis();
  169. unsigned long t_fan_rising_edge = _millis();
  170. LongTimer safetyTimer;
  171. static LongTimer crashDetTimer;
  172. //unsigned long load_filament_time;
  173. bool mesh_bed_leveling_flag = false;
  174. bool mesh_bed_run_from_menu = false;
  175. bool prusa_sd_card_upload = false;
  176. unsigned int status_number = 0;
  177. unsigned long total_filament_used;
  178. unsigned int heating_status;
  179. unsigned int heating_status_counter;
  180. bool loading_flag = false;
  181. char snmm_filaments_used = 0;
  182. bool fan_state[2];
  183. int fan_edge_counter[2];
  184. int fan_speed[2];
  185. char dir_names[3][9];
  186. bool sortAlpha = false;
  187. float extruder_multiplier[EXTRUDERS] = {1.0
  188. #if EXTRUDERS > 1
  189. , 1.0
  190. #if EXTRUDERS > 2
  191. , 1.0
  192. #endif
  193. #endif
  194. };
  195. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  196. //shortcuts for more readable code
  197. #define _x current_position[X_AXIS]
  198. #define _y current_position[Y_AXIS]
  199. #define _z current_position[Z_AXIS]
  200. #define _e current_position[E_AXIS]
  201. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  202. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  203. bool axis_known_position[3] = {false, false, false};
  204. // Extruder offset
  205. #if EXTRUDERS > 1
  206. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  207. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  208. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  209. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  210. #endif
  211. };
  212. #endif
  213. uint8_t active_extruder = 0;
  214. int fanSpeed=0;
  215. #ifdef FWRETRACT
  216. bool retracted[EXTRUDERS]={false
  217. #if EXTRUDERS > 1
  218. , false
  219. #if EXTRUDERS > 2
  220. , false
  221. #endif
  222. #endif
  223. };
  224. bool retracted_swap[EXTRUDERS]={false
  225. #if EXTRUDERS > 1
  226. , false
  227. #if EXTRUDERS > 2
  228. , false
  229. #endif
  230. #endif
  231. };
  232. float retract_length_swap = RETRACT_LENGTH_SWAP;
  233. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  234. #endif
  235. #ifdef PS_DEFAULT_OFF
  236. bool powersupply = false;
  237. #else
  238. bool powersupply = true;
  239. #endif
  240. bool cancel_heatup = false ;
  241. int8_t busy_state = NOT_BUSY;
  242. static long prev_busy_signal_ms = -1;
  243. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  244. const char errormagic[] PROGMEM = "Error:";
  245. const char echomagic[] PROGMEM = "echo:";
  246. bool no_response = false;
  247. uint8_t important_status;
  248. uint8_t saved_filament_type;
  249. #define SAVED_TARGET_UNSET (X_MIN_POS-1)
  250. float saved_target[NUM_AXIS] = {SAVED_TARGET_UNSET, 0, 0, 0};
  251. // save/restore printing in case that mmu was not responding
  252. bool mmu_print_saved = false;
  253. // storing estimated time to end of print counted by slicer
  254. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  255. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  256. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  257. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  258. //===========================================================================
  259. //=============================Private Variables=============================
  260. //===========================================================================
  261. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  262. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  263. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  264. // For tracing an arc
  265. static float offset[3] = {0.0, 0.0, 0.0};
  266. // Current feedrate
  267. float feedrate = 1500.0;
  268. // Feedrate for the next move
  269. static float next_feedrate;
  270. // Original feedrate saved during homing moves
  271. static float saved_feedrate;
  272. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  273. //static float tt = 0;
  274. //static float bt = 0;
  275. //Inactivity shutdown variables
  276. static unsigned long previous_millis_cmd = 0;
  277. unsigned long max_inactive_time = 0;
  278. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  279. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  280. unsigned long starttime=0;
  281. unsigned long stoptime=0;
  282. unsigned long _usb_timer = 0;
  283. bool Stopped=false;
  284. #if NUM_SERVOS > 0
  285. Servo servos[NUM_SERVOS];
  286. #endif
  287. bool target_direction;
  288. //Insert variables if CHDK is defined
  289. #ifdef CHDK
  290. unsigned long chdkHigh = 0;
  291. boolean chdkActive = false;
  292. #endif
  293. //! @name RAM save/restore printing
  294. //! @{
  295. bool saved_printing = false; //!< Print is paused and saved in RAM
  296. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  297. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  298. static float saved_pos[4] = { 0, 0, 0, 0 };
  299. static uint16_t saved_feedrate2 = 0; //!< Default feedrate (truncated from float)
  300. static int saved_feedmultiply2 = 0;
  301. static uint8_t saved_active_extruder = 0;
  302. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  303. static bool saved_extruder_relative_mode = false;
  304. static int saved_fanSpeed = 0; //!< Print fan speed
  305. //! @}
  306. static int saved_feedmultiply_mm = 100;
  307. //===========================================================================
  308. //=============================Routines======================================
  309. //===========================================================================
  310. static void get_arc_coordinates();
  311. static bool setTargetedHotend(int code, uint8_t &extruder);
  312. static void print_time_remaining_init();
  313. static void wait_for_heater(long codenum, uint8_t extruder);
  314. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  315. static void temp_compensation_start();
  316. static void temp_compensation_apply();
  317. uint16_t gcode_in_progress = 0;
  318. uint16_t mcode_in_progress = 0;
  319. void serial_echopair_P(const char *s_P, float v)
  320. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  321. void serial_echopair_P(const char *s_P, double v)
  322. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  323. void serial_echopair_P(const char *s_P, unsigned long v)
  324. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  325. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  326. {
  327. #if 0
  328. char ch=pgm_read_byte(str);
  329. while(ch)
  330. {
  331. MYSERIAL.write(ch);
  332. ch=pgm_read_byte(++str);
  333. }
  334. #else
  335. // hmm, same size as the above version, the compiler did a good job optimizing the above
  336. while( uint8_t ch = pgm_read_byte(str) ){
  337. MYSERIAL.write((char)ch);
  338. ++str;
  339. }
  340. #endif
  341. }
  342. #ifdef SDSUPPORT
  343. #include "SdFatUtil.h"
  344. int freeMemory() { return SdFatUtil::FreeRam(); }
  345. #else
  346. extern "C" {
  347. extern unsigned int __bss_end;
  348. extern unsigned int __heap_start;
  349. extern void *__brkval;
  350. int freeMemory() {
  351. int free_memory;
  352. if ((int)__brkval == 0)
  353. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  354. else
  355. free_memory = ((int)&free_memory) - ((int)__brkval);
  356. return free_memory;
  357. }
  358. }
  359. #endif //!SDSUPPORT
  360. void setup_killpin()
  361. {
  362. #if defined(KILL_PIN) && KILL_PIN > -1
  363. SET_INPUT(KILL_PIN);
  364. WRITE(KILL_PIN,HIGH);
  365. #endif
  366. }
  367. // Set home pin
  368. void setup_homepin(void)
  369. {
  370. #if defined(HOME_PIN) && HOME_PIN > -1
  371. SET_INPUT(HOME_PIN);
  372. WRITE(HOME_PIN,HIGH);
  373. #endif
  374. }
  375. void setup_photpin()
  376. {
  377. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  378. SET_OUTPUT(PHOTOGRAPH_PIN);
  379. WRITE(PHOTOGRAPH_PIN, LOW);
  380. #endif
  381. }
  382. void setup_powerhold()
  383. {
  384. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  385. SET_OUTPUT(SUICIDE_PIN);
  386. WRITE(SUICIDE_PIN, HIGH);
  387. #endif
  388. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  389. SET_OUTPUT(PS_ON_PIN);
  390. #if defined(PS_DEFAULT_OFF)
  391. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  392. #else
  393. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  394. #endif
  395. #endif
  396. }
  397. void suicide()
  398. {
  399. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  400. SET_OUTPUT(SUICIDE_PIN);
  401. WRITE(SUICIDE_PIN, LOW);
  402. #endif
  403. }
  404. void servo_init()
  405. {
  406. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  407. servos[0].attach(SERVO0_PIN);
  408. #endif
  409. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  410. servos[1].attach(SERVO1_PIN);
  411. #endif
  412. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  413. servos[2].attach(SERVO2_PIN);
  414. #endif
  415. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  416. servos[3].attach(SERVO3_PIN);
  417. #endif
  418. #if (NUM_SERVOS >= 5)
  419. #error "TODO: enter initalisation code for more servos"
  420. #endif
  421. }
  422. bool fans_check_enabled = true;
  423. #ifdef TMC2130
  424. void crashdet_stop_and_save_print()
  425. {
  426. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  427. }
  428. void crashdet_restore_print_and_continue()
  429. {
  430. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  431. // babystep_apply();
  432. }
  433. void crashdet_stop_and_save_print2()
  434. {
  435. cli();
  436. planner_abort_hard(); //abort printing
  437. cmdqueue_reset(); //empty cmdqueue
  438. card.sdprinting = false;
  439. card.closefile();
  440. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  441. st_reset_timer();
  442. sei();
  443. }
  444. void crashdet_detected(uint8_t mask)
  445. {
  446. st_synchronize();
  447. static uint8_t crashDet_counter = 0;
  448. bool automatic_recovery_after_crash = true;
  449. if (crashDet_counter++ == 0) {
  450. crashDetTimer.start();
  451. }
  452. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  453. crashDetTimer.stop();
  454. crashDet_counter = 0;
  455. }
  456. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  457. automatic_recovery_after_crash = false;
  458. crashDetTimer.stop();
  459. crashDet_counter = 0;
  460. }
  461. else {
  462. crashDetTimer.start();
  463. }
  464. lcd_update_enable(true);
  465. lcd_clear();
  466. lcd_update(2);
  467. if (mask & X_AXIS_MASK)
  468. {
  469. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  470. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  471. }
  472. if (mask & Y_AXIS_MASK)
  473. {
  474. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  475. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  476. }
  477. lcd_update_enable(true);
  478. lcd_update(2);
  479. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  480. gcode_G28(true, true, false); //home X and Y
  481. st_synchronize();
  482. if (automatic_recovery_after_crash) {
  483. enquecommand_P(PSTR("CRASH_RECOVER"));
  484. }else{
  485. setTargetHotend(0, active_extruder);
  486. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  487. lcd_update_enable(true);
  488. if (yesno)
  489. {
  490. enquecommand_P(PSTR("CRASH_RECOVER"));
  491. }
  492. else
  493. {
  494. enquecommand_P(PSTR("CRASH_CANCEL"));
  495. }
  496. }
  497. }
  498. void crashdet_recover()
  499. {
  500. crashdet_restore_print_and_continue();
  501. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  502. }
  503. void crashdet_cancel()
  504. {
  505. saved_printing = false;
  506. tmc2130_sg_stop_on_crash = true;
  507. if (saved_printing_type == PRINTING_TYPE_SD) {
  508. lcd_print_stop();
  509. }else if(saved_printing_type == PRINTING_TYPE_USB){
  510. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  511. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  512. }
  513. }
  514. #endif //TMC2130
  515. void failstats_reset_print()
  516. {
  517. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  518. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  519. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  520. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  521. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  522. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  523. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  524. fsensor_softfail = 0;
  525. #endif
  526. }
  527. #ifdef MESH_BED_LEVELING
  528. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  529. #endif
  530. // Factory reset function
  531. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  532. // Level input parameter sets depth of reset
  533. int er_progress = 0;
  534. static void factory_reset(char level)
  535. {
  536. lcd_clear();
  537. switch (level) {
  538. // Level 0: Language reset
  539. case 0:
  540. Sound_MakeCustom(100,0,false);
  541. lang_reset();
  542. break;
  543. //Level 1: Reset statistics
  544. case 1:
  545. Sound_MakeCustom(100,0,false);
  546. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  547. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  548. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  549. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  550. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  551. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  552. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  553. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  554. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  555. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  556. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  557. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  558. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  559. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  560. lcd_menu_statistics();
  561. break;
  562. // Level 2: Prepare for shipping
  563. case 2:
  564. //lcd_puts_P(PSTR("Factory RESET"));
  565. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  566. // Force language selection at the next boot up.
  567. lang_reset();
  568. // Force the "Follow calibration flow" message at the next boot up.
  569. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  570. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  571. farm_no = 0;
  572. farm_mode = false;
  573. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  574. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  575. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  576. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  577. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  578. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  579. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  580. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  581. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  582. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  583. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  584. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  585. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  586. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  587. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  588. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  589. #ifdef FILAMENT_SENSOR
  590. fsensor_enable();
  591. fsensor_autoload_set(true);
  592. #endif //FILAMENT_SENSOR
  593. Sound_MakeCustom(100,0,false);
  594. //_delay_ms(2000);
  595. break;
  596. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  597. case 3:
  598. lcd_puts_P(PSTR("Factory RESET"));
  599. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  600. Sound_MakeCustom(100,0,false);
  601. er_progress = 0;
  602. lcd_puts_at_P(3, 3, PSTR(" "));
  603. lcd_set_cursor(3, 3);
  604. lcd_print(er_progress);
  605. // Erase EEPROM
  606. for (int i = 0; i < 4096; i++) {
  607. eeprom_update_byte((uint8_t*)i, 0xFF);
  608. if (i % 41 == 0) {
  609. er_progress++;
  610. lcd_puts_at_P(3, 3, PSTR(" "));
  611. lcd_set_cursor(3, 3);
  612. lcd_print(er_progress);
  613. lcd_puts_P(PSTR("%"));
  614. }
  615. }
  616. break;
  617. case 4:
  618. bowden_menu();
  619. break;
  620. default:
  621. break;
  622. }
  623. }
  624. extern "C" {
  625. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  626. }
  627. int uart_putchar(char c, FILE *)
  628. {
  629. MYSERIAL.write(c);
  630. return 0;
  631. }
  632. void lcd_splash()
  633. {
  634. lcd_clear(); // clears display and homes screen
  635. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  636. }
  637. void factory_reset()
  638. {
  639. KEEPALIVE_STATE(PAUSED_FOR_USER);
  640. if (!READ(BTN_ENC))
  641. {
  642. _delay_ms(1000);
  643. if (!READ(BTN_ENC))
  644. {
  645. lcd_clear();
  646. lcd_puts_P(PSTR("Factory RESET"));
  647. SET_OUTPUT(BEEPER);
  648. if(eSoundMode!=e_SOUND_MODE_SILENT)
  649. WRITE(BEEPER, HIGH);
  650. while (!READ(BTN_ENC));
  651. WRITE(BEEPER, LOW);
  652. _delay_ms(2000);
  653. char level = reset_menu();
  654. factory_reset(level);
  655. switch (level) {
  656. case 0: _delay_ms(0); break;
  657. case 1: _delay_ms(0); break;
  658. case 2: _delay_ms(0); break;
  659. case 3: _delay_ms(0); break;
  660. }
  661. }
  662. }
  663. KEEPALIVE_STATE(IN_HANDLER);
  664. }
  665. void show_fw_version_warnings() {
  666. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  667. switch (FW_DEV_VERSION) {
  668. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  669. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  670. case(FW_VERSION_DEVEL):
  671. case(FW_VERSION_DEBUG):
  672. lcd_update_enable(false);
  673. lcd_clear();
  674. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  675. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  676. #else
  677. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  678. #endif
  679. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  680. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  681. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  682. lcd_wait_for_click();
  683. break;
  684. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  685. }
  686. lcd_update_enable(true);
  687. }
  688. //! @brief try to check if firmware is on right type of printer
  689. static void check_if_fw_is_on_right_printer(){
  690. #ifdef FILAMENT_SENSOR
  691. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  692. #ifdef IR_SENSOR
  693. swi2c_init();
  694. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  695. if (pat9125_detected){
  696. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}////c=20 r=3
  697. #endif //IR_SENSOR
  698. #ifdef PAT9125
  699. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  700. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  701. if (ir_detected){
  702. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}////c=20 r=3
  703. #endif //PAT9125
  704. }
  705. #endif //FILAMENT_SENSOR
  706. }
  707. uint8_t check_printer_version()
  708. {
  709. uint8_t version_changed = 0;
  710. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  711. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  712. if (printer_type != PRINTER_TYPE) {
  713. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  714. else version_changed |= 0b10;
  715. }
  716. if (motherboard != MOTHERBOARD) {
  717. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  718. else version_changed |= 0b01;
  719. }
  720. return version_changed;
  721. }
  722. #ifdef BOOTAPP
  723. #include "bootapp.h" //bootloader support
  724. #endif //BOOTAPP
  725. #if (LANG_MODE != 0) //secondary language support
  726. #ifdef W25X20CL
  727. // language update from external flash
  728. #define LANGBOOT_BLOCKSIZE 0x1000u
  729. #define LANGBOOT_RAMBUFFER 0x0800
  730. void update_sec_lang_from_external_flash()
  731. {
  732. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  733. {
  734. uint8_t lang = boot_reserved >> 4;
  735. uint8_t state = boot_reserved & 0xf;
  736. lang_table_header_t header;
  737. uint32_t src_addr;
  738. if (lang_get_header(lang, &header, &src_addr))
  739. {
  740. lcd_puts_at_P(1,3,PSTR("Language update."));
  741. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  742. _delay(100);
  743. boot_reserved = (state + 1) | (lang << 4);
  744. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  745. {
  746. cli();
  747. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  748. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  749. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  750. if (state == 0)
  751. {
  752. //TODO - check header integrity
  753. }
  754. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  755. }
  756. else
  757. {
  758. //TODO - check sec lang data integrity
  759. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  760. }
  761. }
  762. }
  763. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  764. }
  765. #ifdef DEBUG_W25X20CL
  766. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  767. {
  768. lang_table_header_t header;
  769. uint8_t count = 0;
  770. uint32_t addr = 0x00000;
  771. while (1)
  772. {
  773. printf_P(_n("LANGTABLE%d:"), count);
  774. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  775. if (header.magic != LANG_MAGIC)
  776. {
  777. printf_P(_n("NG!\n"));
  778. break;
  779. }
  780. printf_P(_n("OK\n"));
  781. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  782. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  783. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  784. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  785. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  786. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  787. addr += header.size;
  788. codes[count] = header.code;
  789. count ++;
  790. }
  791. return count;
  792. }
  793. void list_sec_lang_from_external_flash()
  794. {
  795. uint16_t codes[8];
  796. uint8_t count = lang_xflash_enum_codes(codes);
  797. printf_P(_n("XFlash lang count = %hhd\n"), count);
  798. }
  799. #endif //DEBUG_W25X20CL
  800. #endif //W25X20CL
  801. #endif //(LANG_MODE != 0)
  802. static void w25x20cl_err_msg()
  803. {
  804. lcd_clear();
  805. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  806. }
  807. // "Setup" function is called by the Arduino framework on startup.
  808. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  809. // are initialized by the main() routine provided by the Arduino framework.
  810. void setup()
  811. {
  812. mmu_init();
  813. ultralcd_init();
  814. spi_init();
  815. lcd_splash();
  816. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  817. selectedSerialPort = eeprom_read_byte((uint8_t *)EEPROM_SECOND_SERIAL_ACTIVE);
  818. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  819. eeprom_update_byte((uint8_t *)EEPROM_SECOND_SERIAL_ACTIVE, selectedSerialPort);
  820. MYSERIAL.begin(BAUDRATE);
  821. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  822. stdout = uartout;
  823. #ifdef W25X20CL
  824. bool w25x20cl_success = w25x20cl_init();
  825. uint8_t optiboot_status = 1;
  826. if (w25x20cl_success)
  827. {
  828. optiboot_status = optiboot_w25x20cl_enter();
  829. #if (LANG_MODE != 0) //secondary language support
  830. update_sec_lang_from_external_flash();
  831. #endif //(LANG_MODE != 0)
  832. }
  833. else
  834. {
  835. w25x20cl_err_msg();
  836. }
  837. #else
  838. const bool w25x20cl_success = true;
  839. #endif //W25X20CL
  840. setup_killpin();
  841. setup_powerhold();
  842. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  843. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  844. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  845. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  846. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  847. if (farm_mode)
  848. {
  849. no_response = true; //we need confirmation by recieving PRUSA thx
  850. important_status = 8;
  851. prusa_statistics(8);
  852. selectedSerialPort = 1;
  853. MYSERIAL.begin(BAUDRATE);
  854. #ifdef TMC2130
  855. //increased extruder current (PFW363)
  856. tmc2130_current_h[E_AXIS] = 36;
  857. tmc2130_current_r[E_AXIS] = 36;
  858. #endif //TMC2130
  859. #ifdef FILAMENT_SENSOR
  860. //disabled filament autoload (PFW360)
  861. fsensor_autoload_set(false);
  862. #endif //FILAMENT_SENSOR
  863. // ~ FanCheck -> on
  864. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  865. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  866. }
  867. #ifndef W25X20CL
  868. SERIAL_PROTOCOLLNPGM("start");
  869. #else
  870. if ((optiboot_status != 0) || (selectedSerialPort != 0))
  871. SERIAL_PROTOCOLLNPGM("start");
  872. #endif
  873. SERIAL_ECHO_START;
  874. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  875. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  876. #ifdef DEBUG_SEC_LANG
  877. lang_table_header_t header;
  878. uint32_t src_addr = 0x00000;
  879. if (lang_get_header(1, &header, &src_addr))
  880. {
  881. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  882. #define LT_PRINT_TEST 2
  883. // flash usage
  884. // total p.test
  885. //0 252718 t+c text code
  886. //1 253142 424 170 254
  887. //2 253040 322 164 158
  888. //3 253248 530 135 395
  889. #if (LT_PRINT_TEST==1) //not optimized printf
  890. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  891. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  892. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  893. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  894. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  895. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  896. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  897. #elif (LT_PRINT_TEST==2) //optimized printf
  898. printf_P(
  899. _n(
  900. " _src_addr = 0x%08lx\n"
  901. " _lt_magic = 0x%08lx %S\n"
  902. " _lt_size = 0x%04x (%d)\n"
  903. " _lt_count = 0x%04x (%d)\n"
  904. " _lt_chsum = 0x%04x\n"
  905. " _lt_code = 0x%04x (%c%c)\n"
  906. " _lt_resv1 = 0x%08lx\n"
  907. ),
  908. src_addr,
  909. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  910. header.size, header.size,
  911. header.count, header.count,
  912. header.checksum,
  913. header.code, header.code >> 8, header.code & 0xff,
  914. header.signature
  915. );
  916. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  917. MYSERIAL.print(" _src_addr = 0x");
  918. MYSERIAL.println(src_addr, 16);
  919. MYSERIAL.print(" _lt_magic = 0x");
  920. MYSERIAL.print(header.magic, 16);
  921. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  922. MYSERIAL.print(" _lt_size = 0x");
  923. MYSERIAL.print(header.size, 16);
  924. MYSERIAL.print(" (");
  925. MYSERIAL.print(header.size, 10);
  926. MYSERIAL.println(")");
  927. MYSERIAL.print(" _lt_count = 0x");
  928. MYSERIAL.print(header.count, 16);
  929. MYSERIAL.print(" (");
  930. MYSERIAL.print(header.count, 10);
  931. MYSERIAL.println(")");
  932. MYSERIAL.print(" _lt_chsum = 0x");
  933. MYSERIAL.println(header.checksum, 16);
  934. MYSERIAL.print(" _lt_code = 0x");
  935. MYSERIAL.print(header.code, 16);
  936. MYSERIAL.print(" (");
  937. MYSERIAL.print((char)(header.code >> 8), 0);
  938. MYSERIAL.print((char)(header.code & 0xff), 0);
  939. MYSERIAL.println(")");
  940. MYSERIAL.print(" _lt_resv1 = 0x");
  941. MYSERIAL.println(header.signature, 16);
  942. #endif //(LT_PRINT_TEST==)
  943. #undef LT_PRINT_TEST
  944. #if 0
  945. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  946. for (uint16_t i = 0; i < 1024; i++)
  947. {
  948. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  949. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  950. if ((i % 16) == 15) putchar('\n');
  951. }
  952. #endif
  953. uint16_t sum = 0;
  954. for (uint16_t i = 0; i < header.size; i++)
  955. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  956. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  957. sum -= header.checksum; //subtract checksum
  958. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  959. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  960. if (sum == header.checksum)
  961. printf_P(_n("Checksum OK\n"), sum);
  962. else
  963. printf_P(_n("Checksum NG\n"), sum);
  964. }
  965. else
  966. printf_P(_n("lang_get_header failed!\n"));
  967. #if 0
  968. for (uint16_t i = 0; i < 1024*10; i++)
  969. {
  970. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  971. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  972. if ((i % 16) == 15) putchar('\n');
  973. }
  974. #endif
  975. #if 0
  976. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  977. for (int i = 0; i < 4096; ++i) {
  978. int b = eeprom_read_byte((unsigned char*)i);
  979. if (b != 255) {
  980. SERIAL_ECHO(i);
  981. SERIAL_ECHO(":");
  982. SERIAL_ECHO(b);
  983. SERIAL_ECHOLN("");
  984. }
  985. }
  986. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  987. #endif
  988. #endif //DEBUG_SEC_LANG
  989. // Check startup - does nothing if bootloader sets MCUSR to 0
  990. byte mcu = MCUSR;
  991. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  992. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  993. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  994. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  995. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  996. if (mcu & 1) puts_P(MSG_POWERUP);
  997. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  998. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  999. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1000. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1001. MCUSR = 0;
  1002. //SERIAL_ECHORPGM(MSG_MARLIN);
  1003. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1004. #ifdef STRING_VERSION_CONFIG_H
  1005. #ifdef STRING_CONFIG_H_AUTHOR
  1006. SERIAL_ECHO_START;
  1007. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  1008. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1009. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  1010. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1011. SERIAL_ECHOPGM("Compiled: ");
  1012. SERIAL_ECHOLNPGM(__DATE__);
  1013. #endif
  1014. #endif
  1015. SERIAL_ECHO_START;
  1016. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1017. SERIAL_ECHO(freeMemory());
  1018. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1019. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1020. //lcd_update_enable(false); // why do we need this?? - andre
  1021. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1022. bool previous_settings_retrieved = false;
  1023. uint8_t hw_changed = check_printer_version();
  1024. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1025. previous_settings_retrieved = Config_RetrieveSettings();
  1026. }
  1027. else { //printer version was changed so use default settings
  1028. Config_ResetDefault();
  1029. }
  1030. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1031. tp_init(); // Initialize temperature loop
  1032. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1033. else
  1034. {
  1035. w25x20cl_err_msg();
  1036. printf_P(_n("W25X20CL not responding.\n"));
  1037. }
  1038. #ifdef EXTRUDER_ALTFAN_DETECT
  1039. SERIAL_ECHORPGM(_n("Extruder fan type: "));
  1040. if (extruder_altfan_detect())
  1041. SERIAL_ECHOLNRPGM(PSTR("ALTFAN"));
  1042. else
  1043. SERIAL_ECHOLNRPGM(PSTR("NOCTUA"));
  1044. #endif //EXTRUDER_ALTFAN_DETECT
  1045. plan_init(); // Initialize planner;
  1046. factory_reset();
  1047. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1048. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff)
  1049. {
  1050. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1051. // where all the EEPROM entries are set to 0x0ff.
  1052. // Once a firmware boots up, it forces at least a language selection, which changes
  1053. // EEPROM_LANG to number lower than 0x0ff.
  1054. // 1) Set a high power mode.
  1055. eeprom_update_byte((uint8_t*)EEPROM_SILENT, SILENT_MODE_OFF);
  1056. #ifdef TMC2130
  1057. tmc2130_mode = TMC2130_MODE_NORMAL;
  1058. #endif //TMC2130
  1059. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1060. }
  1061. lcd_encoder_diff=0;
  1062. #ifdef TMC2130
  1063. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1064. if (silentMode == 0xff) silentMode = 0;
  1065. tmc2130_mode = TMC2130_MODE_NORMAL;
  1066. if (lcd_crash_detect_enabled() && !farm_mode)
  1067. {
  1068. lcd_crash_detect_enable();
  1069. puts_P(_N("CrashDetect ENABLED!"));
  1070. }
  1071. else
  1072. {
  1073. lcd_crash_detect_disable();
  1074. puts_P(_N("CrashDetect DISABLED"));
  1075. }
  1076. #ifdef TMC2130_LINEARITY_CORRECTION
  1077. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1078. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1079. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1080. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1081. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1082. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1083. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1084. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1085. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1086. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1087. #endif //TMC2130_LINEARITY_CORRECTION
  1088. #ifdef TMC2130_VARIABLE_RESOLUTION
  1089. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1090. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1091. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1092. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1093. #else //TMC2130_VARIABLE_RESOLUTION
  1094. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1095. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1096. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1097. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1098. #endif //TMC2130_VARIABLE_RESOLUTION
  1099. #endif //TMC2130
  1100. st_init(); // Initialize stepper, this enables interrupts!
  1101. #ifdef TMC2130
  1102. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1103. update_mode_profile();
  1104. tmc2130_init();
  1105. #endif //TMC2130
  1106. #ifdef PSU_Delta
  1107. init_force_z(); // ! important for correct Z-axis initialization
  1108. #endif // PSU_Delta
  1109. setup_photpin();
  1110. servo_init();
  1111. // Reset the machine correction matrix.
  1112. // It does not make sense to load the correction matrix until the machine is homed.
  1113. world2machine_reset();
  1114. // Initialize current_position accounting for software endstops to
  1115. // avoid unexpected initial shifts on the first move
  1116. clamp_to_software_endstops(current_position);
  1117. plan_set_position_curposXYZE();
  1118. #ifdef FILAMENT_SENSOR
  1119. fsensor_init();
  1120. #endif //FILAMENT_SENSOR
  1121. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1122. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1123. #endif
  1124. setup_homepin();
  1125. #if defined(Z_AXIS_ALWAYS_ON)
  1126. enable_z();
  1127. #endif
  1128. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1129. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1130. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1131. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1132. if (farm_mode)
  1133. {
  1134. prusa_statistics(8);
  1135. }
  1136. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1137. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1138. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1139. // but this times out if a blocking dialog is shown in setup().
  1140. card.initsd();
  1141. #ifdef DEBUG_SD_SPEED_TEST
  1142. if (card.cardOK)
  1143. {
  1144. uint8_t* buff = (uint8_t*)block_buffer;
  1145. uint32_t block = 0;
  1146. uint32_t sumr = 0;
  1147. uint32_t sumw = 0;
  1148. for (int i = 0; i < 1024; i++)
  1149. {
  1150. uint32_t u = _micros();
  1151. bool res = card.card.readBlock(i, buff);
  1152. u = _micros() - u;
  1153. if (res)
  1154. {
  1155. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1156. sumr += u;
  1157. u = _micros();
  1158. res = card.card.writeBlock(i, buff);
  1159. u = _micros() - u;
  1160. if (res)
  1161. {
  1162. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1163. sumw += u;
  1164. }
  1165. else
  1166. {
  1167. printf_P(PSTR("writeBlock %4d error\n"), i);
  1168. break;
  1169. }
  1170. }
  1171. else
  1172. {
  1173. printf_P(PSTR("readBlock %4d error\n"), i);
  1174. break;
  1175. }
  1176. }
  1177. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1178. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1179. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1180. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1181. }
  1182. else
  1183. printf_P(PSTR("Card NG!\n"));
  1184. #endif //DEBUG_SD_SPEED_TEST
  1185. eeprom_init();
  1186. #ifdef SNMM
  1187. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1188. int _z = BOWDEN_LENGTH;
  1189. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1190. }
  1191. #endif
  1192. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1193. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1194. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1195. #if (LANG_MODE != 0) //secondary language support
  1196. #ifdef DEBUG_W25X20CL
  1197. W25X20CL_SPI_ENTER();
  1198. uint8_t uid[8]; // 64bit unique id
  1199. w25x20cl_rd_uid(uid);
  1200. puts_P(_n("W25X20CL UID="));
  1201. for (uint8_t i = 0; i < 8; i ++)
  1202. printf_P(PSTR("%02hhx"), uid[i]);
  1203. putchar('\n');
  1204. list_sec_lang_from_external_flash();
  1205. #endif //DEBUG_W25X20CL
  1206. // lang_reset();
  1207. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1208. lcd_language();
  1209. #ifdef DEBUG_SEC_LANG
  1210. uint16_t sec_lang_code = lang_get_code(1);
  1211. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1212. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1213. lang_print_sec_lang(uartout);
  1214. #endif //DEBUG_SEC_LANG
  1215. #endif //(LANG_MODE != 0)
  1216. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1217. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1218. temp_cal_active = false;
  1219. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1220. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1221. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1222. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1223. int16_t z_shift = 0;
  1224. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1225. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1226. temp_cal_active = false;
  1227. }
  1228. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1229. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1230. }
  1231. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1232. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1233. }
  1234. //mbl_mode_init();
  1235. mbl_settings_init();
  1236. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1237. if (SilentModeMenu_MMU == 255) {
  1238. SilentModeMenu_MMU = 1;
  1239. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1240. }
  1241. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1242. setup_fan_interrupt();
  1243. #endif //DEBUG_DISABLE_FANCHECK
  1244. #ifdef PAT9125
  1245. fsensor_setup_interrupt();
  1246. #endif //PAT9125
  1247. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1248. #ifndef DEBUG_DISABLE_STARTMSGS
  1249. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1250. if (!farm_mode) {
  1251. check_if_fw_is_on_right_printer();
  1252. show_fw_version_warnings();
  1253. }
  1254. switch (hw_changed) {
  1255. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1256. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1257. case(0b01):
  1258. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1259. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1260. break;
  1261. case(0b10):
  1262. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1263. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1264. break;
  1265. case(0b11):
  1266. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1267. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1268. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1269. break;
  1270. default: break; //no change, show no message
  1271. }
  1272. if (!previous_settings_retrieved) {
  1273. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=5
  1274. Config_StoreSettings();
  1275. }
  1276. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1277. lcd_wizard(WizState::Run);
  1278. }
  1279. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1280. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1281. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1282. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1283. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1284. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  1285. // Show the message.
  1286. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1287. }
  1288. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1289. // Show the message.
  1290. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1291. lcd_update_enable(true);
  1292. }
  1293. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1294. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1295. lcd_update_enable(true);
  1296. }
  1297. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1298. // Show the message.
  1299. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1300. }
  1301. }
  1302. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1303. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1304. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1305. update_current_firmware_version_to_eeprom();
  1306. lcd_selftest();
  1307. }
  1308. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1309. KEEPALIVE_STATE(IN_PROCESS);
  1310. #endif //DEBUG_DISABLE_STARTMSGS
  1311. lcd_update_enable(true);
  1312. lcd_clear();
  1313. lcd_update(2);
  1314. // Store the currently running firmware into an eeprom,
  1315. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1316. update_current_firmware_version_to_eeprom();
  1317. #ifdef TMC2130
  1318. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1319. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1320. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1321. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1322. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1323. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1324. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1325. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1326. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1327. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1328. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1329. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1330. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1331. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1332. #endif //TMC2130
  1333. #ifdef UVLO_SUPPORT
  1334. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1335. /*
  1336. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1337. else {
  1338. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1339. lcd_update_enable(true);
  1340. lcd_update(2);
  1341. lcd_setstatuspgm(_T(WELCOME_MSG));
  1342. }
  1343. */
  1344. manage_heater(); // Update temperatures
  1345. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1346. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1347. #endif
  1348. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1349. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1350. puts_P(_N("Automatic recovery!"));
  1351. #endif
  1352. recover_print(1);
  1353. }
  1354. else{
  1355. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1356. puts_P(_N("Normal recovery!"));
  1357. #endif
  1358. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1359. else {
  1360. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1361. lcd_update_enable(true);
  1362. lcd_update(2);
  1363. lcd_setstatuspgm(_T(WELCOME_MSG));
  1364. }
  1365. }
  1366. }
  1367. // Only arm the uvlo interrupt _after_ a recovering print has been initialized and
  1368. // the entire state machine initialized.
  1369. setup_uvlo_interrupt();
  1370. #endif //UVLO_SUPPORT
  1371. fCheckModeInit();
  1372. fSetMmuMode(mmu_enabled);
  1373. KEEPALIVE_STATE(NOT_BUSY);
  1374. #ifdef WATCHDOG
  1375. wdt_enable(WDTO_4S);
  1376. #endif //WATCHDOG
  1377. }
  1378. void trace();
  1379. #define CHUNK_SIZE 64 // bytes
  1380. #define SAFETY_MARGIN 1
  1381. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1382. int chunkHead = 0;
  1383. void serial_read_stream() {
  1384. setAllTargetHotends(0);
  1385. setTargetBed(0);
  1386. lcd_clear();
  1387. lcd_puts_P(PSTR(" Upload in progress"));
  1388. // first wait for how many bytes we will receive
  1389. uint32_t bytesToReceive;
  1390. // receive the four bytes
  1391. char bytesToReceiveBuffer[4];
  1392. for (int i=0; i<4; i++) {
  1393. int data;
  1394. while ((data = MYSERIAL.read()) == -1) {};
  1395. bytesToReceiveBuffer[i] = data;
  1396. }
  1397. // make it a uint32
  1398. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1399. // we're ready, notify the sender
  1400. MYSERIAL.write('+');
  1401. // lock in the routine
  1402. uint32_t receivedBytes = 0;
  1403. while (prusa_sd_card_upload) {
  1404. int i;
  1405. for (i=0; i<CHUNK_SIZE; i++) {
  1406. int data;
  1407. // check if we're not done
  1408. if (receivedBytes == bytesToReceive) {
  1409. break;
  1410. }
  1411. // read the next byte
  1412. while ((data = MYSERIAL.read()) == -1) {};
  1413. receivedBytes++;
  1414. // save it to the chunk
  1415. chunk[i] = data;
  1416. }
  1417. // write the chunk to SD
  1418. card.write_command_no_newline(&chunk[0]);
  1419. // notify the sender we're ready for more data
  1420. MYSERIAL.write('+');
  1421. // for safety
  1422. manage_heater();
  1423. // check if we're done
  1424. if(receivedBytes == bytesToReceive) {
  1425. trace(); // beep
  1426. card.closefile();
  1427. prusa_sd_card_upload = false;
  1428. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1429. }
  1430. }
  1431. }
  1432. /**
  1433. * Output a "busy" message at regular intervals
  1434. * while the machine is not accepting commands.
  1435. */
  1436. void host_keepalive() {
  1437. #ifndef HOST_KEEPALIVE_FEATURE
  1438. return;
  1439. #endif //HOST_KEEPALIVE_FEATURE
  1440. if (farm_mode) return;
  1441. long ms = _millis();
  1442. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1443. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1444. switch (busy_state) {
  1445. case IN_HANDLER:
  1446. case IN_PROCESS:
  1447. SERIAL_ECHO_START;
  1448. SERIAL_ECHOLNPGM("busy: processing");
  1449. break;
  1450. case PAUSED_FOR_USER:
  1451. SERIAL_ECHO_START;
  1452. SERIAL_ECHOLNPGM("busy: paused for user");
  1453. break;
  1454. case PAUSED_FOR_INPUT:
  1455. SERIAL_ECHO_START;
  1456. SERIAL_ECHOLNPGM("busy: paused for input");
  1457. break;
  1458. default:
  1459. break;
  1460. }
  1461. }
  1462. prev_busy_signal_ms = ms;
  1463. }
  1464. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1465. // Before loop(), the setup() function is called by the main() routine.
  1466. void loop()
  1467. {
  1468. KEEPALIVE_STATE(NOT_BUSY);
  1469. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1470. {
  1471. is_usb_printing = true;
  1472. usb_printing_counter--;
  1473. _usb_timer = _millis();
  1474. }
  1475. if (usb_printing_counter == 0)
  1476. {
  1477. is_usb_printing = false;
  1478. }
  1479. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1480. {
  1481. is_usb_printing = true;
  1482. }
  1483. #ifdef FANCHECK
  1484. if (fan_check_error && isPrintPaused)
  1485. {
  1486. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1487. host_keepalive(); //prevent timeouts since usb processing is disabled until print is resumed. This is for a crude way of pausing a print on all hosts.
  1488. }
  1489. #endif
  1490. if (prusa_sd_card_upload)
  1491. {
  1492. //we read byte-by byte
  1493. serial_read_stream();
  1494. }
  1495. else
  1496. {
  1497. get_command();
  1498. #ifdef SDSUPPORT
  1499. card.checkautostart(false);
  1500. #endif
  1501. if(buflen)
  1502. {
  1503. cmdbuffer_front_already_processed = false;
  1504. #ifdef SDSUPPORT
  1505. if(card.saving)
  1506. {
  1507. // Saving a G-code file onto an SD-card is in progress.
  1508. // Saving starts with M28, saving until M29 is seen.
  1509. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1510. card.write_command(CMDBUFFER_CURRENT_STRING);
  1511. if(card.logging)
  1512. process_commands();
  1513. else
  1514. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1515. } else {
  1516. card.closefile();
  1517. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1518. }
  1519. } else {
  1520. process_commands();
  1521. }
  1522. #else
  1523. process_commands();
  1524. #endif //SDSUPPORT
  1525. if (! cmdbuffer_front_already_processed && buflen)
  1526. {
  1527. // ptr points to the start of the block currently being processed.
  1528. // The first character in the block is the block type.
  1529. char *ptr = cmdbuffer + bufindr;
  1530. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1531. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1532. union {
  1533. struct {
  1534. char lo;
  1535. char hi;
  1536. } lohi;
  1537. uint16_t value;
  1538. } sdlen;
  1539. sdlen.value = 0;
  1540. {
  1541. // This block locks the interrupts globally for 3.25 us,
  1542. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1543. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1544. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1545. cli();
  1546. // Reset the command to something, which will be ignored by the power panic routine,
  1547. // so this buffer length will not be counted twice.
  1548. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1549. // Extract the current buffer length.
  1550. sdlen.lohi.lo = *ptr ++;
  1551. sdlen.lohi.hi = *ptr;
  1552. // and pass it to the planner queue.
  1553. planner_add_sd_length(sdlen.value);
  1554. sei();
  1555. }
  1556. }
  1557. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1558. cli();
  1559. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1560. // and one for each command to previous block in the planner queue.
  1561. planner_add_sd_length(1);
  1562. sei();
  1563. }
  1564. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1565. // this block's SD card length will not be counted twice as its command type has been replaced
  1566. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1567. cmdqueue_pop_front();
  1568. }
  1569. host_keepalive();
  1570. }
  1571. }
  1572. //check heater every n milliseconds
  1573. manage_heater();
  1574. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1575. checkHitEndstops();
  1576. lcd_update(0);
  1577. #ifdef TMC2130
  1578. tmc2130_check_overtemp();
  1579. if (tmc2130_sg_crash)
  1580. {
  1581. uint8_t crash = tmc2130_sg_crash;
  1582. tmc2130_sg_crash = 0;
  1583. // crashdet_stop_and_save_print();
  1584. switch (crash)
  1585. {
  1586. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1587. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1588. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1589. }
  1590. }
  1591. #endif //TMC2130
  1592. mmu_loop();
  1593. }
  1594. #define DEFINE_PGM_READ_ANY(type, reader) \
  1595. static inline type pgm_read_any(const type *p) \
  1596. { return pgm_read_##reader##_near(p); }
  1597. DEFINE_PGM_READ_ANY(float, float);
  1598. DEFINE_PGM_READ_ANY(signed char, byte);
  1599. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1600. static const PROGMEM type array##_P[3] = \
  1601. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1602. static inline type array(int axis) \
  1603. { return pgm_read_any(&array##_P[axis]); } \
  1604. type array##_ext(int axis) \
  1605. { return pgm_read_any(&array##_P[axis]); }
  1606. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1607. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1608. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1609. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1610. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1611. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1612. static void axis_is_at_home(int axis) {
  1613. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1614. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1615. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1616. }
  1617. //! @return original feedmultiply
  1618. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1619. saved_feedrate = feedrate;
  1620. int l_feedmultiply = feedmultiply;
  1621. feedmultiply = 100;
  1622. previous_millis_cmd = _millis();
  1623. enable_endstops(enable_endstops_now);
  1624. return l_feedmultiply;
  1625. }
  1626. //! @param original_feedmultiply feedmultiply to restore
  1627. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1628. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1629. enable_endstops(false);
  1630. #endif
  1631. feedrate = saved_feedrate;
  1632. feedmultiply = original_feedmultiply;
  1633. previous_millis_cmd = _millis();
  1634. }
  1635. #ifdef ENABLE_AUTO_BED_LEVELING
  1636. #ifdef AUTO_BED_LEVELING_GRID
  1637. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1638. {
  1639. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1640. planeNormal.debug("planeNormal");
  1641. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1642. //bedLevel.debug("bedLevel");
  1643. //plan_bed_level_matrix.debug("bed level before");
  1644. //vector_3 uncorrected_position = plan_get_position_mm();
  1645. //uncorrected_position.debug("position before");
  1646. vector_3 corrected_position = plan_get_position();
  1647. // corrected_position.debug("position after");
  1648. current_position[X_AXIS] = corrected_position.x;
  1649. current_position[Y_AXIS] = corrected_position.y;
  1650. current_position[Z_AXIS] = corrected_position.z;
  1651. // put the bed at 0 so we don't go below it.
  1652. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1653. plan_set_position_curposXYZE();
  1654. }
  1655. #else // not AUTO_BED_LEVELING_GRID
  1656. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1657. plan_bed_level_matrix.set_to_identity();
  1658. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1659. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1660. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1661. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1662. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1663. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1664. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1665. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1666. vector_3 corrected_position = plan_get_position();
  1667. current_position[X_AXIS] = corrected_position.x;
  1668. current_position[Y_AXIS] = corrected_position.y;
  1669. current_position[Z_AXIS] = corrected_position.z;
  1670. // put the bed at 0 so we don't go below it.
  1671. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1672. plan_set_position_curposXYZE();
  1673. }
  1674. #endif // AUTO_BED_LEVELING_GRID
  1675. static void run_z_probe() {
  1676. plan_bed_level_matrix.set_to_identity();
  1677. feedrate = homing_feedrate[Z_AXIS];
  1678. // move down until you find the bed
  1679. float zPosition = -10;
  1680. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1681. st_synchronize();
  1682. // we have to let the planner know where we are right now as it is not where we said to go.
  1683. zPosition = st_get_position_mm(Z_AXIS);
  1684. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1685. // move up the retract distance
  1686. zPosition += home_retract_mm(Z_AXIS);
  1687. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1688. st_synchronize();
  1689. // move back down slowly to find bed
  1690. feedrate = homing_feedrate[Z_AXIS]/4;
  1691. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1692. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1693. st_synchronize();
  1694. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1695. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1696. plan_set_position_curposXYZE();
  1697. }
  1698. static void do_blocking_move_to(float x, float y, float z) {
  1699. float oldFeedRate = feedrate;
  1700. feedrate = homing_feedrate[Z_AXIS];
  1701. current_position[Z_AXIS] = z;
  1702. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1703. st_synchronize();
  1704. feedrate = XY_TRAVEL_SPEED;
  1705. current_position[X_AXIS] = x;
  1706. current_position[Y_AXIS] = y;
  1707. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1708. st_synchronize();
  1709. feedrate = oldFeedRate;
  1710. }
  1711. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1712. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1713. }
  1714. /// Probe bed height at position (x,y), returns the measured z value
  1715. static float probe_pt(float x, float y, float z_before) {
  1716. // move to right place
  1717. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1718. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1719. run_z_probe();
  1720. float measured_z = current_position[Z_AXIS];
  1721. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1722. SERIAL_PROTOCOLPGM(" x: ");
  1723. SERIAL_PROTOCOL(x);
  1724. SERIAL_PROTOCOLPGM(" y: ");
  1725. SERIAL_PROTOCOL(y);
  1726. SERIAL_PROTOCOLPGM(" z: ");
  1727. SERIAL_PROTOCOL(measured_z);
  1728. SERIAL_PROTOCOLPGM("\n");
  1729. return measured_z;
  1730. }
  1731. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1732. #ifdef LIN_ADVANCE
  1733. /**
  1734. * M900: Set and/or Get advance K factor
  1735. *
  1736. * K<factor> Set advance K factor
  1737. */
  1738. inline void gcode_M900() {
  1739. float newK = code_seen('K') ? code_value_float() : -2;
  1740. #ifdef LA_NOCOMPAT
  1741. if (newK >= 0 && newK < LA_K_MAX)
  1742. extruder_advance_K = newK;
  1743. else
  1744. SERIAL_ECHOLNPGM("K out of allowed range!");
  1745. #else
  1746. if (newK == 0)
  1747. {
  1748. extruder_advance_K = 0;
  1749. la10c_reset();
  1750. }
  1751. else
  1752. {
  1753. newK = la10c_value(newK);
  1754. if (newK < 0)
  1755. SERIAL_ECHOLNPGM("K out of allowed range!");
  1756. else
  1757. extruder_advance_K = newK;
  1758. }
  1759. #endif
  1760. SERIAL_ECHO_START;
  1761. SERIAL_ECHOPGM("Advance K=");
  1762. SERIAL_ECHOLN(extruder_advance_K);
  1763. }
  1764. #endif // LIN_ADVANCE
  1765. bool check_commands() {
  1766. bool end_command_found = false;
  1767. while (buflen)
  1768. {
  1769. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1770. if (!cmdbuffer_front_already_processed)
  1771. cmdqueue_pop_front();
  1772. cmdbuffer_front_already_processed = false;
  1773. }
  1774. return end_command_found;
  1775. }
  1776. // raise_z_above: slowly raise Z to the requested height
  1777. //
  1778. // contrarily to a simple move, this function will carefully plan a move
  1779. // when the current Z position is unknown. In such cases, stallguard is
  1780. // enabled and will prevent prolonged pushing against the Z tops
  1781. void raise_z_above(float target, bool plan)
  1782. {
  1783. if (current_position[Z_AXIS] >= target)
  1784. return;
  1785. // Z needs raising
  1786. current_position[Z_AXIS] = target;
  1787. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  1788. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1789. #else
  1790. bool z_min_endstop = false;
  1791. #endif
  1792. if (axis_known_position[Z_AXIS] || z_min_endstop)
  1793. {
  1794. // current position is known or very low, it's safe to raise Z
  1795. if(plan) plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  1796. return;
  1797. }
  1798. // ensure Z is powered in normal mode to overcome initial load
  1799. enable_z();
  1800. st_synchronize();
  1801. // rely on crashguard to limit damage
  1802. bool z_endstop_enabled = enable_z_endstop(true);
  1803. #ifdef TMC2130
  1804. tmc2130_home_enter(Z_AXIS_MASK);
  1805. #endif //TMC2130
  1806. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60);
  1807. st_synchronize();
  1808. #ifdef TMC2130
  1809. if (endstop_z_hit_on_purpose())
  1810. {
  1811. // not necessarily exact, but will avoid further vertical moves
  1812. current_position[Z_AXIS] = max_pos[Z_AXIS];
  1813. plan_set_position_curposXYZE();
  1814. }
  1815. tmc2130_home_exit();
  1816. #endif //TMC2130
  1817. enable_z_endstop(z_endstop_enabled);
  1818. }
  1819. #ifdef TMC2130
  1820. bool calibrate_z_auto()
  1821. {
  1822. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1823. lcd_clear();
  1824. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1825. bool endstops_enabled = enable_endstops(true);
  1826. int axis_up_dir = -home_dir(Z_AXIS);
  1827. tmc2130_home_enter(Z_AXIS_MASK);
  1828. current_position[Z_AXIS] = 0;
  1829. plan_set_position_curposXYZE();
  1830. set_destination_to_current();
  1831. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1832. feedrate = homing_feedrate[Z_AXIS];
  1833. plan_buffer_line_destinationXYZE(feedrate / 60);
  1834. st_synchronize();
  1835. // current_position[axis] = 0;
  1836. // plan_set_position_curposXYZE();
  1837. tmc2130_home_exit();
  1838. enable_endstops(false);
  1839. current_position[Z_AXIS] = 0;
  1840. plan_set_position_curposXYZE();
  1841. set_destination_to_current();
  1842. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1843. feedrate = homing_feedrate[Z_AXIS] / 2;
  1844. plan_buffer_line_destinationXYZE(feedrate / 60);
  1845. st_synchronize();
  1846. enable_endstops(endstops_enabled);
  1847. if (PRINTER_TYPE == PRINTER_MK3) {
  1848. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1849. }
  1850. else {
  1851. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1852. }
  1853. plan_set_position_curposXYZE();
  1854. return true;
  1855. }
  1856. #endif //TMC2130
  1857. #ifdef TMC2130
  1858. static void check_Z_crash(void)
  1859. {
  1860. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1861. FORCE_HIGH_POWER_END;
  1862. current_position[Z_AXIS] = 0;
  1863. plan_set_position_curposXYZE();
  1864. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  1865. plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  1866. st_synchronize();
  1867. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1868. }
  1869. }
  1870. #endif //TMC2130
  1871. #ifdef TMC2130
  1872. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1873. #else
  1874. void homeaxis(int axis, uint8_t cnt)
  1875. #endif //TMC2130
  1876. {
  1877. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1878. #define HOMEAXIS_DO(LETTER) \
  1879. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1880. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1881. {
  1882. int axis_home_dir = home_dir(axis);
  1883. feedrate = homing_feedrate[axis];
  1884. #ifdef TMC2130
  1885. tmc2130_home_enter(X_AXIS_MASK << axis);
  1886. #endif //TMC2130
  1887. // Move away a bit, so that the print head does not touch the end position,
  1888. // and the following movement to endstop has a chance to achieve the required velocity
  1889. // for the stall guard to work.
  1890. current_position[axis] = 0;
  1891. plan_set_position_curposXYZE();
  1892. set_destination_to_current();
  1893. // destination[axis] = 11.f;
  1894. destination[axis] = -3.f * axis_home_dir;
  1895. plan_buffer_line_destinationXYZE(feedrate/60);
  1896. st_synchronize();
  1897. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1898. endstops_hit_on_purpose();
  1899. enable_endstops(false);
  1900. current_position[axis] = 0;
  1901. plan_set_position_curposXYZE();
  1902. destination[axis] = 1. * axis_home_dir;
  1903. plan_buffer_line_destinationXYZE(feedrate/60);
  1904. st_synchronize();
  1905. // Now continue to move up to the left end stop with the collision detection enabled.
  1906. enable_endstops(true);
  1907. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1908. plan_buffer_line_destinationXYZE(feedrate/60);
  1909. st_synchronize();
  1910. for (uint8_t i = 0; i < cnt; i++)
  1911. {
  1912. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1913. endstops_hit_on_purpose();
  1914. enable_endstops(false);
  1915. current_position[axis] = 0;
  1916. plan_set_position_curposXYZE();
  1917. destination[axis] = -10.f * axis_home_dir;
  1918. plan_buffer_line_destinationXYZE(feedrate/60);
  1919. st_synchronize();
  1920. endstops_hit_on_purpose();
  1921. // Now move left up to the collision, this time with a repeatable velocity.
  1922. enable_endstops(true);
  1923. destination[axis] = 11.f * axis_home_dir;
  1924. #ifdef TMC2130
  1925. feedrate = homing_feedrate[axis];
  1926. #else //TMC2130
  1927. feedrate = homing_feedrate[axis] / 2;
  1928. #endif //TMC2130
  1929. plan_buffer_line_destinationXYZE(feedrate/60);
  1930. st_synchronize();
  1931. #ifdef TMC2130
  1932. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1933. if (pstep) pstep[i] = mscnt >> 4;
  1934. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1935. #endif //TMC2130
  1936. }
  1937. endstops_hit_on_purpose();
  1938. enable_endstops(false);
  1939. #ifdef TMC2130
  1940. uint8_t orig = tmc2130_home_origin[axis];
  1941. uint8_t back = tmc2130_home_bsteps[axis];
  1942. if (tmc2130_home_enabled && (orig <= 63))
  1943. {
  1944. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1945. if (back > 0)
  1946. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1947. }
  1948. else
  1949. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1950. tmc2130_home_exit();
  1951. #endif //TMC2130
  1952. axis_is_at_home(axis);
  1953. axis_known_position[axis] = true;
  1954. // Move from minimum
  1955. #ifdef TMC2130
  1956. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1957. #else //TMC2130
  1958. float dist = - axis_home_dir * 0.01f * 64;
  1959. #endif //TMC2130
  1960. current_position[axis] -= dist;
  1961. plan_set_position_curposXYZE();
  1962. current_position[axis] += dist;
  1963. destination[axis] = current_position[axis];
  1964. plan_buffer_line_destinationXYZE(0.5f*feedrate/60);
  1965. st_synchronize();
  1966. feedrate = 0.0;
  1967. }
  1968. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1969. {
  1970. #ifdef TMC2130
  1971. FORCE_HIGH_POWER_START;
  1972. #endif
  1973. int axis_home_dir = home_dir(axis);
  1974. current_position[axis] = 0;
  1975. plan_set_position_curposXYZE();
  1976. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1977. feedrate = homing_feedrate[axis];
  1978. plan_buffer_line_destinationXYZE(feedrate/60);
  1979. st_synchronize();
  1980. #ifdef TMC2130
  1981. check_Z_crash();
  1982. #endif //TMC2130
  1983. current_position[axis] = 0;
  1984. plan_set_position_curposXYZE();
  1985. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1986. plan_buffer_line_destinationXYZE(feedrate/60);
  1987. st_synchronize();
  1988. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1989. feedrate = homing_feedrate[axis]/2 ;
  1990. plan_buffer_line_destinationXYZE(feedrate/60);
  1991. st_synchronize();
  1992. #ifdef TMC2130
  1993. check_Z_crash();
  1994. #endif //TMC2130
  1995. axis_is_at_home(axis);
  1996. destination[axis] = current_position[axis];
  1997. feedrate = 0.0;
  1998. endstops_hit_on_purpose();
  1999. axis_known_position[axis] = true;
  2000. #ifdef TMC2130
  2001. FORCE_HIGH_POWER_END;
  2002. #endif
  2003. }
  2004. enable_endstops(endstops_enabled);
  2005. }
  2006. /**/
  2007. void home_xy()
  2008. {
  2009. set_destination_to_current();
  2010. homeaxis(X_AXIS);
  2011. homeaxis(Y_AXIS);
  2012. plan_set_position_curposXYZE();
  2013. endstops_hit_on_purpose();
  2014. }
  2015. void refresh_cmd_timeout(void)
  2016. {
  2017. previous_millis_cmd = _millis();
  2018. }
  2019. #ifdef FWRETRACT
  2020. void retract(bool retracting, bool swapretract = false) {
  2021. if(retracting && !retracted[active_extruder]) {
  2022. destination[X_AXIS]=current_position[X_AXIS];
  2023. destination[Y_AXIS]=current_position[Y_AXIS];
  2024. destination[Z_AXIS]=current_position[Z_AXIS];
  2025. destination[E_AXIS]=current_position[E_AXIS];
  2026. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  2027. plan_set_e_position(current_position[E_AXIS]);
  2028. float oldFeedrate = feedrate;
  2029. feedrate=cs.retract_feedrate*60;
  2030. retracted[active_extruder]=true;
  2031. prepare_move();
  2032. current_position[Z_AXIS]-=cs.retract_zlift;
  2033. plan_set_position_curposXYZE();
  2034. prepare_move();
  2035. feedrate = oldFeedrate;
  2036. } else if(!retracting && retracted[active_extruder]) {
  2037. destination[X_AXIS]=current_position[X_AXIS];
  2038. destination[Y_AXIS]=current_position[Y_AXIS];
  2039. destination[Z_AXIS]=current_position[Z_AXIS];
  2040. destination[E_AXIS]=current_position[E_AXIS];
  2041. current_position[Z_AXIS]+=cs.retract_zlift;
  2042. plan_set_position_curposXYZE();
  2043. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  2044. plan_set_e_position(current_position[E_AXIS]);
  2045. float oldFeedrate = feedrate;
  2046. feedrate=cs.retract_recover_feedrate*60;
  2047. retracted[active_extruder]=false;
  2048. prepare_move();
  2049. feedrate = oldFeedrate;
  2050. }
  2051. } //retract
  2052. #endif //FWRETRACT
  2053. void trace() {
  2054. Sound_MakeCustom(25,440,true);
  2055. }
  2056. /*
  2057. void ramming() {
  2058. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2059. if (current_temperature[0] < 230) {
  2060. //PLA
  2061. max_feedrate[E_AXIS] = 50;
  2062. //current_position[E_AXIS] -= 8;
  2063. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2064. //current_position[E_AXIS] += 8;
  2065. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2066. current_position[E_AXIS] += 5.4;
  2067. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  2068. current_position[E_AXIS] += 3.2;
  2069. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2070. current_position[E_AXIS] += 3;
  2071. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  2072. st_synchronize();
  2073. max_feedrate[E_AXIS] = 80;
  2074. current_position[E_AXIS] -= 82;
  2075. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2076. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2077. current_position[E_AXIS] -= 20;
  2078. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2079. current_position[E_AXIS] += 5;
  2080. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2081. current_position[E_AXIS] += 5;
  2082. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2083. current_position[E_AXIS] -= 10;
  2084. st_synchronize();
  2085. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2086. current_position[E_AXIS] += 10;
  2087. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2088. current_position[E_AXIS] -= 10;
  2089. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2090. current_position[E_AXIS] += 10;
  2091. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2092. current_position[E_AXIS] -= 10;
  2093. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2094. st_synchronize();
  2095. }
  2096. else {
  2097. //ABS
  2098. max_feedrate[E_AXIS] = 50;
  2099. //current_position[E_AXIS] -= 8;
  2100. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2101. //current_position[E_AXIS] += 8;
  2102. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2103. current_position[E_AXIS] += 3.1;
  2104. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2105. current_position[E_AXIS] += 3.1;
  2106. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2107. current_position[E_AXIS] += 4;
  2108. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2109. st_synchronize();
  2110. //current_position[X_AXIS] += 23; //delay
  2111. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2112. //current_position[X_AXIS] -= 23; //delay
  2113. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2114. _delay(4700);
  2115. max_feedrate[E_AXIS] = 80;
  2116. current_position[E_AXIS] -= 92;
  2117. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2118. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2119. current_position[E_AXIS] -= 5;
  2120. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2121. current_position[E_AXIS] += 5;
  2122. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2123. current_position[E_AXIS] -= 5;
  2124. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2125. st_synchronize();
  2126. current_position[E_AXIS] += 5;
  2127. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2128. current_position[E_AXIS] -= 5;
  2129. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2130. current_position[E_AXIS] += 5;
  2131. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2132. current_position[E_AXIS] -= 5;
  2133. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2134. st_synchronize();
  2135. }
  2136. }
  2137. */
  2138. #ifdef TMC2130
  2139. void force_high_power_mode(bool start_high_power_section) {
  2140. #ifdef PSU_Delta
  2141. if (start_high_power_section == true) enable_force_z();
  2142. #endif //PSU_Delta
  2143. uint8_t silent;
  2144. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2145. if (silent == 1) {
  2146. //we are in silent mode, set to normal mode to enable crash detection
  2147. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2148. st_synchronize();
  2149. cli();
  2150. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2151. update_mode_profile();
  2152. tmc2130_init();
  2153. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2154. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2155. st_reset_timer();
  2156. sei();
  2157. }
  2158. }
  2159. #endif //TMC2130
  2160. #ifdef TMC2130
  2161. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2162. #else
  2163. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2164. #endif //TMC2130
  2165. {
  2166. st_synchronize();
  2167. #if 0
  2168. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2169. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2170. #endif
  2171. // Flag for the display update routine and to disable the print cancelation during homing.
  2172. homing_flag = true;
  2173. // Which axes should be homed?
  2174. bool home_x = home_x_axis;
  2175. bool home_y = home_y_axis;
  2176. bool home_z = home_z_axis;
  2177. // Either all X,Y,Z codes are present, or none of them.
  2178. bool home_all_axes = home_x == home_y && home_x == home_z;
  2179. if (home_all_axes)
  2180. // No X/Y/Z code provided means to home all axes.
  2181. home_x = home_y = home_z = true;
  2182. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2183. if (home_all_axes) {
  2184. raise_z_above(MESH_HOME_Z_SEARCH);
  2185. st_synchronize();
  2186. }
  2187. #ifdef ENABLE_AUTO_BED_LEVELING
  2188. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2189. #endif //ENABLE_AUTO_BED_LEVELING
  2190. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2191. // the planner will not perform any adjustments in the XY plane.
  2192. // Wait for the motors to stop and update the current position with the absolute values.
  2193. world2machine_revert_to_uncorrected();
  2194. // For mesh bed leveling deactivate the matrix temporarily.
  2195. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2196. // in a single axis only.
  2197. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2198. #ifdef MESH_BED_LEVELING
  2199. uint8_t mbl_was_active = mbl.active;
  2200. mbl.active = 0;
  2201. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2202. #endif
  2203. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2204. // consumed during the first movements following this statement.
  2205. if (home_z)
  2206. babystep_undo();
  2207. saved_feedrate = feedrate;
  2208. int l_feedmultiply = feedmultiply;
  2209. feedmultiply = 100;
  2210. previous_millis_cmd = _millis();
  2211. enable_endstops(true);
  2212. memcpy(destination, current_position, sizeof(destination));
  2213. feedrate = 0.0;
  2214. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2215. if(home_z)
  2216. homeaxis(Z_AXIS);
  2217. #endif
  2218. #ifdef QUICK_HOME
  2219. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2220. if(home_x && home_y) //first diagonal move
  2221. {
  2222. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2223. int x_axis_home_dir = home_dir(X_AXIS);
  2224. plan_set_position_curposXYZE();
  2225. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2226. feedrate = homing_feedrate[X_AXIS];
  2227. if(homing_feedrate[Y_AXIS]<feedrate)
  2228. feedrate = homing_feedrate[Y_AXIS];
  2229. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2230. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2231. } else {
  2232. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2233. }
  2234. plan_buffer_line_destinationXYZE(feedrate/60);
  2235. st_synchronize();
  2236. axis_is_at_home(X_AXIS);
  2237. axis_is_at_home(Y_AXIS);
  2238. plan_set_position_curposXYZE();
  2239. destination[X_AXIS] = current_position[X_AXIS];
  2240. destination[Y_AXIS] = current_position[Y_AXIS];
  2241. plan_buffer_line_destinationXYZE(feedrate/60);
  2242. feedrate = 0.0;
  2243. st_synchronize();
  2244. endstops_hit_on_purpose();
  2245. current_position[X_AXIS] = destination[X_AXIS];
  2246. current_position[Y_AXIS] = destination[Y_AXIS];
  2247. current_position[Z_AXIS] = destination[Z_AXIS];
  2248. }
  2249. #endif /* QUICK_HOME */
  2250. #ifdef TMC2130
  2251. if(home_x)
  2252. {
  2253. if (!calib)
  2254. homeaxis(X_AXIS);
  2255. else
  2256. tmc2130_home_calibrate(X_AXIS);
  2257. }
  2258. if(home_y)
  2259. {
  2260. if (!calib)
  2261. homeaxis(Y_AXIS);
  2262. else
  2263. tmc2130_home_calibrate(Y_AXIS);
  2264. }
  2265. #else //TMC2130
  2266. if(home_x) homeaxis(X_AXIS);
  2267. if(home_y) homeaxis(Y_AXIS);
  2268. #endif //TMC2130
  2269. if(home_x_axis && home_x_value != 0)
  2270. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2271. if(home_y_axis && home_y_value != 0)
  2272. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2273. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2274. #ifndef Z_SAFE_HOMING
  2275. if(home_z) {
  2276. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2277. raise_z_above(Z_RAISE_BEFORE_HOMING);
  2278. st_synchronize();
  2279. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2280. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2281. raise_z_above(MESH_HOME_Z_SEARCH);
  2282. st_synchronize();
  2283. if (!axis_known_position[X_AXIS]) homeaxis(X_AXIS);
  2284. if (!axis_known_position[Y_AXIS]) homeaxis(Y_AXIS);
  2285. // 1st mesh bed leveling measurement point, corrected.
  2286. world2machine_initialize();
  2287. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2288. world2machine_reset();
  2289. if (destination[Y_AXIS] < Y_MIN_POS)
  2290. destination[Y_AXIS] = Y_MIN_POS;
  2291. feedrate = homing_feedrate[X_AXIS] / 20;
  2292. enable_endstops(false);
  2293. #ifdef DEBUG_BUILD
  2294. SERIAL_ECHOLNPGM("plan_set_position()");
  2295. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2296. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2297. #endif
  2298. plan_set_position_curposXYZE();
  2299. #ifdef DEBUG_BUILD
  2300. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2301. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2302. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2303. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2304. #endif
  2305. plan_buffer_line_destinationXYZE(feedrate);
  2306. st_synchronize();
  2307. current_position[X_AXIS] = destination[X_AXIS];
  2308. current_position[Y_AXIS] = destination[Y_AXIS];
  2309. enable_endstops(true);
  2310. endstops_hit_on_purpose();
  2311. homeaxis(Z_AXIS);
  2312. #else // MESH_BED_LEVELING
  2313. homeaxis(Z_AXIS);
  2314. #endif // MESH_BED_LEVELING
  2315. }
  2316. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2317. if(home_all_axes) {
  2318. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2319. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2320. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2321. feedrate = XY_TRAVEL_SPEED/60;
  2322. current_position[Z_AXIS] = 0;
  2323. plan_set_position_curposXYZE();
  2324. plan_buffer_line_destinationXYZE(feedrate);
  2325. st_synchronize();
  2326. current_position[X_AXIS] = destination[X_AXIS];
  2327. current_position[Y_AXIS] = destination[Y_AXIS];
  2328. homeaxis(Z_AXIS);
  2329. }
  2330. // Let's see if X and Y are homed and probe is inside bed area.
  2331. if(home_z) {
  2332. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2333. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2334. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2335. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2336. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2337. current_position[Z_AXIS] = 0;
  2338. plan_set_position_curposXYZE();
  2339. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2340. feedrate = max_feedrate[Z_AXIS];
  2341. plan_buffer_line_destinationXYZE(feedrate);
  2342. st_synchronize();
  2343. homeaxis(Z_AXIS);
  2344. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2345. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2346. SERIAL_ECHO_START;
  2347. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2348. } else {
  2349. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2350. SERIAL_ECHO_START;
  2351. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2352. }
  2353. }
  2354. #endif // Z_SAFE_HOMING
  2355. #endif // Z_HOME_DIR < 0
  2356. if(home_z_axis && home_z_value != 0)
  2357. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2358. #ifdef ENABLE_AUTO_BED_LEVELING
  2359. if(home_z)
  2360. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2361. #endif
  2362. // Set the planner and stepper routine positions.
  2363. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2364. // contains the machine coordinates.
  2365. plan_set_position_curposXYZE();
  2366. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2367. enable_endstops(false);
  2368. #endif
  2369. feedrate = saved_feedrate;
  2370. feedmultiply = l_feedmultiply;
  2371. previous_millis_cmd = _millis();
  2372. endstops_hit_on_purpose();
  2373. #ifndef MESH_BED_LEVELING
  2374. //-// Oct 2019 :: this part of code is (from) now probably un-compilable
  2375. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2376. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2377. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2378. lcd_adjust_z();
  2379. #endif
  2380. // Load the machine correction matrix
  2381. world2machine_initialize();
  2382. // and correct the current_position XY axes to match the transformed coordinate system.
  2383. world2machine_update_current();
  2384. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2385. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2386. {
  2387. if (! home_z && mbl_was_active) {
  2388. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2389. mbl.active = true;
  2390. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2391. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2392. }
  2393. }
  2394. else
  2395. {
  2396. st_synchronize();
  2397. homing_flag = false;
  2398. }
  2399. #endif
  2400. if (farm_mode) { prusa_statistics(20); };
  2401. homing_flag = false;
  2402. #if 0
  2403. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2404. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2405. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2406. #endif
  2407. }
  2408. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2409. {
  2410. #ifdef TMC2130
  2411. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2412. #else
  2413. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2414. #endif //TMC2130
  2415. }
  2416. void adjust_bed_reset()
  2417. {
  2418. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2419. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2420. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2421. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2422. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2423. }
  2424. //! @brief Calibrate XYZ
  2425. //! @param onlyZ if true, calibrate only Z axis
  2426. //! @param verbosity_level
  2427. //! @retval true Succeeded
  2428. //! @retval false Failed
  2429. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2430. {
  2431. bool final_result = false;
  2432. #ifdef TMC2130
  2433. FORCE_HIGH_POWER_START;
  2434. #endif // TMC2130
  2435. FORCE_BL_ON_START;
  2436. // Only Z calibration?
  2437. if (!onlyZ)
  2438. {
  2439. setTargetBed(0);
  2440. setAllTargetHotends(0);
  2441. adjust_bed_reset(); //reset bed level correction
  2442. }
  2443. // Disable the default update procedure of the display. We will do a modal dialog.
  2444. lcd_update_enable(false);
  2445. // Let the planner use the uncorrected coordinates.
  2446. mbl.reset();
  2447. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2448. // the planner will not perform any adjustments in the XY plane.
  2449. // Wait for the motors to stop and update the current position with the absolute values.
  2450. world2machine_revert_to_uncorrected();
  2451. // Reset the baby step value applied without moving the axes.
  2452. babystep_reset();
  2453. // Mark all axes as in a need for homing.
  2454. memset(axis_known_position, 0, sizeof(axis_known_position));
  2455. // Home in the XY plane.
  2456. //set_destination_to_current();
  2457. int l_feedmultiply = setup_for_endstop_move();
  2458. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2459. home_xy();
  2460. enable_endstops(false);
  2461. current_position[X_AXIS] += 5;
  2462. current_position[Y_AXIS] += 5;
  2463. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2464. st_synchronize();
  2465. // Let the user move the Z axes up to the end stoppers.
  2466. #ifdef TMC2130
  2467. if (calibrate_z_auto())
  2468. {
  2469. #else //TMC2130
  2470. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2471. {
  2472. #endif //TMC2130
  2473. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2474. if(onlyZ){
  2475. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2476. lcd_set_cursor(0, 3);
  2477. lcd_print(1);
  2478. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2479. }else{
  2480. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2481. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2482. lcd_set_cursor(0, 2);
  2483. lcd_print(1);
  2484. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2485. }
  2486. refresh_cmd_timeout();
  2487. #ifndef STEEL_SHEET
  2488. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2489. {
  2490. lcd_wait_for_cool_down();
  2491. }
  2492. #endif //STEEL_SHEET
  2493. if(!onlyZ)
  2494. {
  2495. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2496. #ifdef STEEL_SHEET
  2497. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2498. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2499. #endif //STEEL_SHEET
  2500. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2501. KEEPALIVE_STATE(IN_HANDLER);
  2502. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2503. lcd_set_cursor(0, 2);
  2504. lcd_print(1);
  2505. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2506. }
  2507. bool endstops_enabled = enable_endstops(false);
  2508. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2509. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2510. st_synchronize();
  2511. // Move the print head close to the bed.
  2512. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2513. enable_endstops(true);
  2514. #ifdef TMC2130
  2515. tmc2130_home_enter(Z_AXIS_MASK);
  2516. #endif //TMC2130
  2517. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2518. st_synchronize();
  2519. #ifdef TMC2130
  2520. tmc2130_home_exit();
  2521. #endif //TMC2130
  2522. enable_endstops(endstops_enabled);
  2523. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  2524. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  2525. {
  2526. if (onlyZ)
  2527. {
  2528. clean_up_after_endstop_move(l_feedmultiply);
  2529. // Z only calibration.
  2530. // Load the machine correction matrix
  2531. world2machine_initialize();
  2532. // and correct the current_position to match the transformed coordinate system.
  2533. world2machine_update_current();
  2534. //FIXME
  2535. bool result = sample_mesh_and_store_reference();
  2536. if (result)
  2537. {
  2538. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2539. // Shipped, the nozzle height has been set already. The user can start printing now.
  2540. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2541. final_result = true;
  2542. // babystep_apply();
  2543. }
  2544. }
  2545. else
  2546. {
  2547. // Reset the baby step value and the baby step applied flag.
  2548. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2549. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  2550. // Complete XYZ calibration.
  2551. uint8_t point_too_far_mask = 0;
  2552. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2553. clean_up_after_endstop_move(l_feedmultiply);
  2554. // Print head up.
  2555. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2556. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2557. st_synchronize();
  2558. //#ifndef NEW_XYZCAL
  2559. if (result >= 0)
  2560. {
  2561. #ifdef HEATBED_V2
  2562. sample_z();
  2563. #else //HEATBED_V2
  2564. point_too_far_mask = 0;
  2565. // Second half: The fine adjustment.
  2566. // Let the planner use the uncorrected coordinates.
  2567. mbl.reset();
  2568. world2machine_reset();
  2569. // Home in the XY plane.
  2570. int l_feedmultiply = setup_for_endstop_move();
  2571. home_xy();
  2572. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2573. clean_up_after_endstop_move(l_feedmultiply);
  2574. // Print head up.
  2575. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2576. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2577. st_synchronize();
  2578. // if (result >= 0) babystep_apply();
  2579. #endif //HEATBED_V2
  2580. }
  2581. //#endif //NEW_XYZCAL
  2582. lcd_update_enable(true);
  2583. lcd_update(2);
  2584. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2585. if (result >= 0)
  2586. {
  2587. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2588. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2589. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2590. final_result = true;
  2591. }
  2592. }
  2593. #ifdef TMC2130
  2594. tmc2130_home_exit();
  2595. #endif
  2596. }
  2597. else
  2598. {
  2599. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2600. final_result = false;
  2601. }
  2602. }
  2603. else
  2604. {
  2605. // Timeouted.
  2606. }
  2607. lcd_update_enable(true);
  2608. #ifdef TMC2130
  2609. FORCE_HIGH_POWER_END;
  2610. #endif // TMC2130
  2611. FORCE_BL_ON_END;
  2612. return final_result;
  2613. }
  2614. void gcode_M114()
  2615. {
  2616. SERIAL_PROTOCOLPGM("X:");
  2617. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2618. SERIAL_PROTOCOLPGM(" Y:");
  2619. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2620. SERIAL_PROTOCOLPGM(" Z:");
  2621. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2622. SERIAL_PROTOCOLPGM(" E:");
  2623. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2624. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2625. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2626. SERIAL_PROTOCOLPGM(" Y:");
  2627. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2628. SERIAL_PROTOCOLPGM(" Z:");
  2629. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2630. SERIAL_PROTOCOLPGM(" E:");
  2631. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2632. SERIAL_PROTOCOLLN("");
  2633. }
  2634. //! extracted code to compute z_shift for M600 in case of filament change operation
  2635. //! requested from fsensors.
  2636. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2637. //! unlike the previous implementation, which was adding 25mm even when the head was
  2638. //! printing at e.g. 24mm height.
  2639. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2640. //! the printout.
  2641. //! This function is templated to enable fast change of computation data type.
  2642. //! @return new z_shift value
  2643. template<typename T>
  2644. static T gcode_M600_filament_change_z_shift()
  2645. {
  2646. #ifdef FILAMENTCHANGE_ZADD
  2647. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2648. // avoid floating point arithmetics when not necessary - results in shorter code
  2649. T ztmp = T( current_position[Z_AXIS] );
  2650. T z_shift = 0;
  2651. if(ztmp < T(25)){
  2652. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2653. }
  2654. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2655. #else
  2656. return T(0);
  2657. #endif
  2658. }
  2659. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2660. {
  2661. st_synchronize();
  2662. float lastpos[4];
  2663. if (farm_mode)
  2664. {
  2665. prusa_statistics(22);
  2666. }
  2667. //First backup current position and settings
  2668. int feedmultiplyBckp = feedmultiply;
  2669. float HotendTempBckp = degTargetHotend(active_extruder);
  2670. int fanSpeedBckp = fanSpeed;
  2671. lastpos[X_AXIS] = current_position[X_AXIS];
  2672. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2673. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2674. lastpos[E_AXIS] = current_position[E_AXIS];
  2675. //Retract E
  2676. current_position[E_AXIS] += e_shift;
  2677. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED);
  2678. st_synchronize();
  2679. //Lift Z
  2680. current_position[Z_AXIS] += z_shift;
  2681. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED);
  2682. st_synchronize();
  2683. //Move XY to side
  2684. current_position[X_AXIS] = x_position;
  2685. current_position[Y_AXIS] = y_position;
  2686. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED);
  2687. st_synchronize();
  2688. //Beep, manage nozzle heater and wait for user to start unload filament
  2689. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2690. lcd_change_fil_state = 0;
  2691. // Unload filament
  2692. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2693. else unload_filament(); //unload filament for single material (used also in M702)
  2694. //finish moves
  2695. st_synchronize();
  2696. if (!mmu_enabled)
  2697. {
  2698. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2699. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2700. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2701. if (lcd_change_fil_state == 0)
  2702. {
  2703. lcd_clear();
  2704. lcd_set_cursor(0, 2);
  2705. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2706. current_position[X_AXIS] -= 100;
  2707. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED);
  2708. st_synchronize();
  2709. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2710. }
  2711. }
  2712. if (mmu_enabled)
  2713. {
  2714. if (!automatic) {
  2715. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2716. mmu_M600_wait_and_beep();
  2717. if (saved_printing) {
  2718. lcd_clear();
  2719. lcd_set_cursor(0, 2);
  2720. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2721. mmu_command(MmuCmd::R0);
  2722. manage_response(false, false);
  2723. }
  2724. }
  2725. mmu_M600_load_filament(automatic, HotendTempBckp);
  2726. }
  2727. else
  2728. M600_load_filament();
  2729. if (!automatic) M600_check_state(HotendTempBckp);
  2730. lcd_update_enable(true);
  2731. //Not let's go back to print
  2732. fanSpeed = fanSpeedBckp;
  2733. //Feed a little of filament to stabilize pressure
  2734. if (!automatic)
  2735. {
  2736. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2737. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EXFEED);
  2738. }
  2739. //Move XY back
  2740. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2741. FILAMENTCHANGE_XYFEED, active_extruder);
  2742. st_synchronize();
  2743. //Move Z back
  2744. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2745. FILAMENTCHANGE_ZFEED, active_extruder);
  2746. st_synchronize();
  2747. //Set E position to original
  2748. plan_set_e_position(lastpos[E_AXIS]);
  2749. memcpy(current_position, lastpos, sizeof(lastpos));
  2750. memcpy(destination, current_position, sizeof(current_position));
  2751. //Recover feed rate
  2752. feedmultiply = feedmultiplyBckp;
  2753. char cmd[9];
  2754. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2755. enquecommand(cmd);
  2756. #ifdef IR_SENSOR
  2757. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2758. fsensor_check_autoload();
  2759. #endif //IR_SENSOR
  2760. lcd_setstatuspgm(_T(WELCOME_MSG));
  2761. custom_message_type = CustomMsg::Status;
  2762. }
  2763. void gcode_M701()
  2764. {
  2765. printf_P(PSTR("gcode_M701 begin\n"));
  2766. if (farm_mode)
  2767. {
  2768. prusa_statistics(22);
  2769. }
  2770. if (mmu_enabled)
  2771. {
  2772. extr_adj(tmp_extruder);//loads current extruder
  2773. mmu_extruder = tmp_extruder;
  2774. }
  2775. else
  2776. {
  2777. enable_z();
  2778. custom_message_type = CustomMsg::FilamentLoading;
  2779. #ifdef FSENSOR_QUALITY
  2780. fsensor_oq_meassure_start(40);
  2781. #endif //FSENSOR_QUALITY
  2782. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2783. current_position[E_AXIS] += 40;
  2784. plan_buffer_line_curposXYZE(400 / 60); //fast sequence
  2785. st_synchronize();
  2786. raise_z_above(MIN_Z_FOR_LOAD, false);
  2787. current_position[E_AXIS] += 30;
  2788. plan_buffer_line_curposXYZE(400 / 60); //fast sequence
  2789. load_filament_final_feed(); //slow sequence
  2790. st_synchronize();
  2791. Sound_MakeCustom(50,500,false);
  2792. if (!farm_mode && loading_flag) {
  2793. lcd_load_filament_color_check();
  2794. }
  2795. lcd_update_enable(true);
  2796. lcd_update(2);
  2797. lcd_setstatuspgm(_T(WELCOME_MSG));
  2798. disable_z();
  2799. loading_flag = false;
  2800. custom_message_type = CustomMsg::Status;
  2801. #ifdef FSENSOR_QUALITY
  2802. fsensor_oq_meassure_stop();
  2803. if (!fsensor_oq_result())
  2804. {
  2805. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2806. lcd_update_enable(true);
  2807. lcd_update(2);
  2808. if (disable)
  2809. fsensor_disable();
  2810. }
  2811. #endif //FSENSOR_QUALITY
  2812. }
  2813. }
  2814. /**
  2815. * @brief Get serial number from 32U2 processor
  2816. *
  2817. * Typical format of S/N is:CZPX0917X003XC13518
  2818. *
  2819. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2820. *
  2821. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2822. * reply is transmitted to serial port 1 character by character.
  2823. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2824. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2825. * in any case.
  2826. */
  2827. static void gcode_PRUSA_SN()
  2828. {
  2829. if (farm_mode) {
  2830. selectedSerialPort = 0;
  2831. putchar(';');
  2832. putchar('S');
  2833. int numbersRead = 0;
  2834. ShortTimer timeout;
  2835. timeout.start();
  2836. while (numbersRead < 19) {
  2837. while (MSerial.available() > 0) {
  2838. uint8_t serial_char = MSerial.read();
  2839. selectedSerialPort = 1;
  2840. putchar(serial_char);
  2841. numbersRead++;
  2842. selectedSerialPort = 0;
  2843. }
  2844. if (timeout.expired(100u)) break;
  2845. }
  2846. selectedSerialPort = 1;
  2847. putchar('\n');
  2848. #if 0
  2849. for (int b = 0; b < 3; b++) {
  2850. _tone(BEEPER, 110);
  2851. _delay(50);
  2852. _noTone(BEEPER);
  2853. _delay(50);
  2854. }
  2855. #endif
  2856. } else {
  2857. puts_P(_N("Not in farm mode."));
  2858. }
  2859. }
  2860. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  2861. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  2862. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  2863. //! it may even interfere with other functions of the printer! You have been warned!
  2864. //! The test idea is to measure the time necessary to charge the capacitor.
  2865. //! So the algorithm is as follows:
  2866. //! 1. Set TACH_1 pin to INPUT mode and LOW
  2867. //! 2. Wait a few ms
  2868. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  2869. //! Repeat 1.-3. several times
  2870. //! Good RAMBo's times are in the range of approx. 260-320 us
  2871. //! Bad RAMBo's times are approx. 260-1200 us
  2872. //! So basically we are interested in maximum time, the minima are mostly the same.
  2873. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  2874. static void gcode_PRUSA_BadRAMBoFanTest(){
  2875. //printf_P(PSTR("Enter fan pin test\n"));
  2876. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  2877. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  2878. unsigned long tach1max = 0;
  2879. uint8_t tach1cntr = 0;
  2880. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  2881. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  2882. SET_OUTPUT(TACH_1);
  2883. WRITE(TACH_1, LOW);
  2884. _delay(20); // the delay may be lower
  2885. unsigned long tachMeasure = _micros();
  2886. cli();
  2887. SET_INPUT(TACH_1);
  2888. // just wait brutally in an endless cycle until we reach HIGH
  2889. // if this becomes a problem it may be improved to non-endless cycle
  2890. while( READ(TACH_1) == 0 ) ;
  2891. sei();
  2892. tachMeasure = _micros() - tachMeasure;
  2893. if( tach1max < tachMeasure )
  2894. tach1max = tachMeasure;
  2895. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  2896. }
  2897. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  2898. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  2899. if( tach1max > 500 ){
  2900. // bad RAMBo
  2901. SERIAL_PROTOCOLLNPGM("BAD");
  2902. } else {
  2903. SERIAL_PROTOCOLLNPGM("OK");
  2904. }
  2905. // cleanup after the test function
  2906. SET_INPUT(TACH_1);
  2907. WRITE(TACH_1, HIGH);
  2908. #endif
  2909. }
  2910. // G92 - Set current position to coordinates given
  2911. static void gcode_G92()
  2912. {
  2913. bool codes[NUM_AXIS];
  2914. float values[NUM_AXIS];
  2915. // Check which axes need to be set
  2916. for(uint8_t i = 0; i < NUM_AXIS; ++i)
  2917. {
  2918. codes[i] = code_seen(axis_codes[i]);
  2919. if(codes[i])
  2920. values[i] = code_value();
  2921. }
  2922. if((codes[E_AXIS] && values[E_AXIS] == 0) &&
  2923. (!codes[X_AXIS] && !codes[Y_AXIS] && !codes[Z_AXIS]))
  2924. {
  2925. // As a special optimization, when _just_ clearing the E position
  2926. // we schedule a flag asynchronously along with the next block to
  2927. // reset the starting E position instead of stopping the planner
  2928. current_position[E_AXIS] = 0;
  2929. plan_reset_next_e();
  2930. }
  2931. else
  2932. {
  2933. // In any other case we're forced to synchronize
  2934. st_synchronize();
  2935. for(uint8_t i = 0; i < 3; ++i)
  2936. {
  2937. if(codes[i])
  2938. current_position[i] = values[i] + cs.add_homing[i];
  2939. }
  2940. if(codes[E_AXIS])
  2941. current_position[E_AXIS] = values[E_AXIS];
  2942. // Set all at once
  2943. plan_set_position_curposXYZE();
  2944. }
  2945. }
  2946. #ifdef BACKLASH_X
  2947. extern uint8_t st_backlash_x;
  2948. #endif //BACKLASH_X
  2949. #ifdef BACKLASH_Y
  2950. extern uint8_t st_backlash_y;
  2951. #endif //BACKLASH_Y
  2952. //! \ingroup marlin_main
  2953. //! @brief Parse and process commands
  2954. //!
  2955. //! look here for descriptions of G-codes: https://reprap.org/wiki/G-code
  2956. //!
  2957. //!
  2958. //! Implemented Codes
  2959. //! -------------------
  2960. //!
  2961. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  2962. //!
  2963. //!@n PRUSA CODES
  2964. //!@n P F - Returns FW versions
  2965. //!@n P R - Returns revision of printer
  2966. //!
  2967. //!@n G0 -> G1
  2968. //!@n G1 - Coordinated Movement X Y Z E
  2969. //!@n G2 - CW ARC
  2970. //!@n G3 - CCW ARC
  2971. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2972. //!@n G10 - retract filament according to settings of M207
  2973. //!@n G11 - retract recover filament according to settings of M208
  2974. //!@n G28 - Home all Axes
  2975. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2976. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2977. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2978. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2979. //!@n G80 - Automatic mesh bed leveling
  2980. //!@n G81 - Print bed profile
  2981. //!@n G90 - Use Absolute Coordinates
  2982. //!@n G91 - Use Relative Coordinates
  2983. //!@n G92 - Set current position to coordinates given
  2984. //!
  2985. //!@n M Codes
  2986. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2987. //!@n M1 - Same as M0
  2988. //!@n M17 - Enable/Power all stepper motors
  2989. //!@n M18 - Disable all stepper motors; same as M84
  2990. //!@n M20 - List SD card
  2991. //!@n M21 - Init SD card
  2992. //!@n M22 - Release SD card
  2993. //!@n M23 - Select SD file (M23 filename.g)
  2994. //!@n M24 - Start/resume SD print
  2995. //!@n M25 - Pause SD print
  2996. //!@n M26 - Set SD position in bytes (M26 S12345)
  2997. //!@n M27 - Report SD print status
  2998. //!@n M28 - Start SD write (M28 filename.g)
  2999. //!@n M29 - Stop SD write
  3000. //!@n M30 - Delete file from SD (M30 filename.g)
  3001. //!@n M31 - Output time since last M109 or SD card start to serial
  3002. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  3003. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  3004. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  3005. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  3006. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  3007. //!@n M73 - Show percent done and print time remaining
  3008. //!@n M80 - Turn on Power Supply
  3009. //!@n M81 - Turn off Power Supply
  3010. //!@n M82 - Set E codes absolute (default)
  3011. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  3012. //!@n M84 - Disable steppers until next move,
  3013. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  3014. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3015. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  3016. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  3017. //!@n M104 - Set extruder target temp
  3018. //!@n M105 - Read current temp
  3019. //!@n M106 - Fan on
  3020. //!@n M107 - Fan off
  3021. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  3022. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  3023. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  3024. //!@n M112 - Emergency stop
  3025. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  3026. //!@n M114 - Output current position to serial port
  3027. //!@n M115 - Capabilities string
  3028. //!@n M117 - display message
  3029. //!@n M119 - Output Endstop status to serial port
  3030. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  3031. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  3032. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3033. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3034. //!@n M140 - Set bed target temp
  3035. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  3036. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3037. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3038. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3039. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3040. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  3041. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3042. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3043. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  3044. //!@n M206 - set additional homing offset
  3045. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  3046. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  3047. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3048. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3049. //!@n M220 S<factor in percent>- set speed factor override percentage
  3050. //!@n M221 S<factor in percent>- set extrude factor override percentage
  3051. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3052. //!@n M240 - Trigger a camera to take a photograph
  3053. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  3054. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3055. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  3056. //!@n M301 - Set PID parameters P I and D
  3057. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  3058. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  3059. //!@n M304 - Set bed PID parameters P I and D
  3060. //!@n M400 - Finish all moves
  3061. //!@n M401 - Lower z-probe if present
  3062. //!@n M402 - Raise z-probe if present
  3063. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  3064. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  3065. //!@n M406 - Turn off Filament Sensor extrusion control
  3066. //!@n M407 - Displays measured filament diameter
  3067. //!@n M500 - stores parameters in EEPROM
  3068. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  3069. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  3070. //!@n M503 - print the current settings (from memory not from EEPROM)
  3071. //!@n M509 - force language selection on next restart
  3072. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  3073. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3074. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  3075. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  3076. //!@n M861 - Set / Read PINDA temperature compensation offsets
  3077. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  3078. //!@n M907 - Set digital trimpot motor current using axis codes.
  3079. //!@n M908 - Control digital trimpot directly.
  3080. //!@n M350 - Set microstepping mode.
  3081. //!@n M351 - Toggle MS1 MS2 pins directly.
  3082. //!
  3083. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  3084. //!@n M999 - Restart after being stopped by error
  3085. //! <br><br>
  3086. /** @defgroup marlin_main Marlin main */
  3087. /** \ingroup GCodes */
  3088. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)._
  3089. /**
  3090. They are shown in order of appearance in the code.
  3091. There are reasons why some G Codes aren't in numerical order.
  3092. */
  3093. void process_commands()
  3094. {
  3095. #ifdef FANCHECK
  3096. if(fan_check_error){
  3097. if(fan_check_error == EFCE_DETECTED){
  3098. fan_check_error = EFCE_REPORTED;
  3099. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED);
  3100. lcd_pause_print();
  3101. } // otherwise it has already been reported, so just ignore further processing
  3102. return; //ignore usb stream. It is reenabled by selecting resume from the lcd.
  3103. }
  3104. #endif
  3105. if (!buflen) return; //empty command
  3106. #ifdef FILAMENT_RUNOUT_SUPPORT
  3107. SET_INPUT(FR_SENS);
  3108. #endif
  3109. #ifdef CMDBUFFER_DEBUG
  3110. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3111. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3112. SERIAL_ECHOLNPGM("");
  3113. SERIAL_ECHOPGM("In cmdqueue: ");
  3114. SERIAL_ECHO(buflen);
  3115. SERIAL_ECHOLNPGM("");
  3116. #endif /* CMDBUFFER_DEBUG */
  3117. unsigned long codenum; //throw away variable
  3118. char *starpos = NULL;
  3119. #ifdef ENABLE_AUTO_BED_LEVELING
  3120. float x_tmp, y_tmp, z_tmp, real_z;
  3121. #endif
  3122. // PRUSA GCODES
  3123. KEEPALIVE_STATE(IN_HANDLER);
  3124. #ifdef SNMM
  3125. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  3126. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  3127. int8_t SilentMode;
  3128. #endif
  3129. /*!
  3130. ---------------------------------------------------------------------------------
  3131. ### M117 - Display Message <a href="https://reprap.org/wiki/G-code#M117:_Display_Message">M117: Display Message</a>
  3132. This causes the given message to be shown in the status line on an attached LCD.
  3133. It is processed early as to allow printing messages that contain G, M, N or T.
  3134. ---------------------------------------------------------------------------------
  3135. ### Special internal commands
  3136. These are used by internal functions to process certain actions in the right order. Some of these are also usable by the user.
  3137. They are processed early as the commands are complex (strings).
  3138. These are only available on the MK3(S) as these require TMC2130 drivers:
  3139. - CRASH DETECTED
  3140. - CRASH RECOVER
  3141. - CRASH_CANCEL
  3142. - TMC_SET_WAVE
  3143. - TMC_SET_STEP
  3144. - TMC_SET_CHOP
  3145. */
  3146. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3147. starpos = (strchr(strchr_pointer + 5, '*'));
  3148. if (starpos != NULL)
  3149. *(starpos) = '\0';
  3150. lcd_setstatus(strchr_pointer + 5);
  3151. }
  3152. #ifdef TMC2130
  3153. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3154. {
  3155. // ### CRASH_DETECTED - TMC2130
  3156. // ---------------------------------
  3157. if(code_seen("CRASH_DETECTED"))
  3158. {
  3159. uint8_t mask = 0;
  3160. if (code_seen('X')) mask |= X_AXIS_MASK;
  3161. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3162. crashdet_detected(mask);
  3163. }
  3164. // ### CRASH_RECOVER - TMC2130
  3165. // ----------------------------------
  3166. else if(code_seen("CRASH_RECOVER"))
  3167. crashdet_recover();
  3168. // ### CRASH_CANCEL - TMC2130
  3169. // ----------------------------------
  3170. else if(code_seen("CRASH_CANCEL"))
  3171. crashdet_cancel();
  3172. }
  3173. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3174. {
  3175. // ### TMC_SET_WAVE_
  3176. // --------------------
  3177. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3178. {
  3179. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3180. axis = (axis == 'E')?3:(axis - 'X');
  3181. if (axis < 4)
  3182. {
  3183. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3184. tmc2130_set_wave(axis, 247, fac);
  3185. }
  3186. }
  3187. // ### TMC_SET_STEP_
  3188. // ------------------
  3189. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3190. {
  3191. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3192. axis = (axis == 'E')?3:(axis - 'X');
  3193. if (axis < 4)
  3194. {
  3195. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3196. uint16_t res = tmc2130_get_res(axis);
  3197. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3198. }
  3199. }
  3200. // ### TMC_SET_CHOP_
  3201. // -------------------
  3202. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3203. {
  3204. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3205. axis = (axis == 'E')?3:(axis - 'X');
  3206. if (axis < 4)
  3207. {
  3208. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3209. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3210. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3211. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3212. char* str_end = 0;
  3213. if (CMDBUFFER_CURRENT_STRING[14])
  3214. {
  3215. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3216. if (str_end && *str_end)
  3217. {
  3218. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3219. if (str_end && *str_end)
  3220. {
  3221. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3222. if (str_end && *str_end)
  3223. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3224. }
  3225. }
  3226. }
  3227. tmc2130_chopper_config[axis].toff = chop0;
  3228. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3229. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3230. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3231. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3232. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3233. }
  3234. }
  3235. }
  3236. #ifdef BACKLASH_X
  3237. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3238. {
  3239. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3240. st_backlash_x = bl;
  3241. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3242. }
  3243. #endif //BACKLASH_X
  3244. #ifdef BACKLASH_Y
  3245. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3246. {
  3247. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3248. st_backlash_y = bl;
  3249. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3250. }
  3251. #endif //BACKLASH_Y
  3252. #endif //TMC2130
  3253. else if(code_seen("PRUSA")){
  3254. /*!
  3255. ---------------------------------------------------------------------------------
  3256. ### PRUSA - Internal command set <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode - Notes</a>
  3257. Set of internal PRUSA commands
  3258. #### Usage
  3259. PRUSA [ Ping | PRN | FAN | fn | thx | uvlo | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | Beat | FR ]
  3260. #### Parameters
  3261. - `Ping`
  3262. - `PRN` - Prints revision of the printer
  3263. - `FAN` - Prints fan details
  3264. - `fn` - Prints farm no.
  3265. - `thx`
  3266. - `uvlo`
  3267. - `MMURES` - Reset MMU
  3268. - `RESET` - (Careful!)
  3269. - `fv` - ?
  3270. - `M28`
  3271. - `SN`
  3272. - `Fir` - Prints firmware version
  3273. - `Rev`- Prints filament size, elelectronics, nozzle type
  3274. - `Lang` - Reset the language
  3275. - `Lz`
  3276. - `Beat` - Kick farm link timer
  3277. - `FR` - Full factory reset
  3278. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3279. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3280. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3281. */
  3282. if (code_seen("Ping")) { // PRUSA Ping
  3283. if (farm_mode) {
  3284. PingTime = _millis();
  3285. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3286. }
  3287. }
  3288. else if (code_seen("PRN")) { // PRUSA PRN
  3289. printf_P(_N("%d"), status_number);
  3290. } else if( code_seen("FANPINTST") ){
  3291. gcode_PRUSA_BadRAMBoFanTest();
  3292. }else if (code_seen("FAN")) { // PRUSA FAN
  3293. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3294. }else if (code_seen("fn")) { // PRUSA fn
  3295. if (farm_mode) {
  3296. printf_P(_N("%d"), farm_no);
  3297. }
  3298. else {
  3299. puts_P(_N("Not in farm mode."));
  3300. }
  3301. }
  3302. else if (code_seen("thx")) // PRUSA thx
  3303. {
  3304. no_response = false;
  3305. }
  3306. else if (code_seen("uvlo")) // PRUSA uvlo
  3307. {
  3308. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3309. enquecommand_P(PSTR("M24"));
  3310. }
  3311. else if (code_seen("MMURES")) // PRUSA MMURES
  3312. {
  3313. mmu_reset();
  3314. }
  3315. else if (code_seen("RESET")) { // PRUSA RESET
  3316. // careful!
  3317. if (farm_mode) {
  3318. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3319. boot_app_magic = BOOT_APP_MAGIC;
  3320. boot_app_flags = BOOT_APP_FLG_RUN;
  3321. wdt_enable(WDTO_15MS);
  3322. cli();
  3323. while(1);
  3324. #else //WATCHDOG
  3325. asm volatile("jmp 0x3E000");
  3326. #endif //WATCHDOG
  3327. }
  3328. else {
  3329. MYSERIAL.println("Not in farm mode.");
  3330. }
  3331. }else if (code_seen("fv")) { // PRUSA fv
  3332. // get file version
  3333. #ifdef SDSUPPORT
  3334. card.openFile(strchr_pointer + 3,true);
  3335. while (true) {
  3336. uint16_t readByte = card.get();
  3337. MYSERIAL.write(readByte);
  3338. if (readByte=='\n') {
  3339. break;
  3340. }
  3341. }
  3342. card.closefile();
  3343. #endif // SDSUPPORT
  3344. } else if (code_seen("M28")) { // PRUSA M28
  3345. trace();
  3346. prusa_sd_card_upload = true;
  3347. card.openFile(strchr_pointer+4,false);
  3348. } else if (code_seen("SN")) { // PRUSA SN
  3349. gcode_PRUSA_SN();
  3350. } else if(code_seen("Fir")){ // PRUSA Fir
  3351. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3352. } else if(code_seen("Rev")){ // PRUSA Rev
  3353. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3354. } else if(code_seen("Lang")) { // PRUSA Lang
  3355. lang_reset();
  3356. } else if(code_seen("Lz")) { // PRUSA Lz
  3357. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3358. } else if(code_seen("Beat")) { // PRUSA Beat
  3359. // Kick farm link timer
  3360. kicktime = _millis();
  3361. } else if(code_seen("FR")) { // PRUSA FR
  3362. // Factory full reset
  3363. factory_reset(0);
  3364. } else if(code_seen("MBL")) { // PRUSA MBL
  3365. // Change the MBL status without changing the logical Z position.
  3366. if(code_seen("V")) {
  3367. bool value = code_value_short();
  3368. st_synchronize();
  3369. if(value != mbl.active) {
  3370. mbl.active = value;
  3371. // Use plan_set_z_position to reset the physical values
  3372. plan_set_z_position(current_position[Z_AXIS]);
  3373. }
  3374. }
  3375. //-//
  3376. /*
  3377. } else if(code_seen("rrr")) {
  3378. MYSERIAL.println("=== checking ===");
  3379. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3380. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3381. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3382. MYSERIAL.println(farm_mode,DEC);
  3383. MYSERIAL.println(eCheckMode,DEC);
  3384. } else if(code_seen("www")) {
  3385. MYSERIAL.println("=== @ FF ===");
  3386. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3387. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3388. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3389. */
  3390. } else if (code_seen("nozzle")) { // PRUSA nozzle
  3391. uint16_t nDiameter;
  3392. if(code_seen('D'))
  3393. {
  3394. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3395. nozzle_diameter_check(nDiameter);
  3396. }
  3397. else if(code_seen("set") && farm_mode)
  3398. {
  3399. strchr_pointer++; // skip 1st char (~ 's')
  3400. strchr_pointer++; // skip 2nd char (~ 'e')
  3401. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3402. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3403. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3404. }
  3405. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3406. //-// !!! SupportMenu
  3407. /*
  3408. // musi byt PRED "PRUSA model"
  3409. } else if (code_seen("smodel")) { //! PRUSA smodel
  3410. size_t nOffset;
  3411. // ! -> "l"
  3412. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3413. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3414. if(*(strchr_pointer+1+nOffset))
  3415. printer_smodel_check(strchr_pointer);
  3416. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3417. } else if (code_seen("model")) { //! PRUSA model
  3418. uint16_t nPrinterModel;
  3419. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3420. nPrinterModel=(uint16_t)code_value_long();
  3421. if(nPrinterModel!=0)
  3422. printer_model_check(nPrinterModel);
  3423. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3424. } else if (code_seen("version")) { //! PRUSA version
  3425. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3426. while(*strchr_pointer==' ') // skip leading spaces
  3427. strchr_pointer++;
  3428. if(*strchr_pointer!=0)
  3429. fw_version_check(strchr_pointer);
  3430. else SERIAL_PROTOCOLLN(FW_VERSION);
  3431. } else if (code_seen("gcode")) { //! PRUSA gcode
  3432. uint16_t nGcodeLevel;
  3433. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3434. nGcodeLevel=(uint16_t)code_value_long();
  3435. if(nGcodeLevel!=0)
  3436. gcode_level_check(nGcodeLevel);
  3437. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3438. */
  3439. }
  3440. //else if (code_seen('Cal')) {
  3441. // lcd_calibration();
  3442. // }
  3443. }
  3444. // This prevents reading files with "^" in their names.
  3445. // Since it is unclear, if there is some usage of this construct,
  3446. // it will be deprecated in 3.9 alpha a possibly completely removed in the future:
  3447. // else if (code_seen('^')) {
  3448. // // nothing, this is a version line
  3449. // }
  3450. else if(code_seen('G'))
  3451. {
  3452. gcode_in_progress = (int)code_value();
  3453. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3454. switch (gcode_in_progress)
  3455. {
  3456. /*!
  3457. ---------------------------------------------------------------------------------
  3458. # G Codes
  3459. ### G0, G1 - Coordinated movement X Y Z E <a href="https://reprap.org/wiki/G-code#G0_.26_G1:_Move">G0 & G1: Move</a>
  3460. In Prusa Firmware G0 and G1 are the same.
  3461. #### Usage
  3462. G0 [ X | Y | Z | E | F | S ]
  3463. G1 [ X | Y | Z | E | F | S ]
  3464. #### Parameters
  3465. - `X` - The position to move to on the X axis
  3466. - `Y` - The position to move to on the Y axis
  3467. - `Z` - The position to move to on the Z axis
  3468. - `E` - The amount to extrude between the starting point and ending point
  3469. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  3470. */
  3471. case 0: // G0 -> G1
  3472. case 1: // G1
  3473. if(Stopped == false) {
  3474. #ifdef FILAMENT_RUNOUT_SUPPORT
  3475. if(READ(FR_SENS)){
  3476. int feedmultiplyBckp=feedmultiply;
  3477. float target[4];
  3478. float lastpos[4];
  3479. target[X_AXIS]=current_position[X_AXIS];
  3480. target[Y_AXIS]=current_position[Y_AXIS];
  3481. target[Z_AXIS]=current_position[Z_AXIS];
  3482. target[E_AXIS]=current_position[E_AXIS];
  3483. lastpos[X_AXIS]=current_position[X_AXIS];
  3484. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3485. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3486. lastpos[E_AXIS]=current_position[E_AXIS];
  3487. //retract by E
  3488. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3489. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3490. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3491. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3492. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3493. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3494. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3495. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3496. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3497. //finish moves
  3498. st_synchronize();
  3499. //disable extruder steppers so filament can be removed
  3500. disable_e0();
  3501. disable_e1();
  3502. disable_e2();
  3503. _delay(100);
  3504. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3505. uint8_t cnt=0;
  3506. int counterBeep = 0;
  3507. lcd_wait_interact();
  3508. while(!lcd_clicked()){
  3509. cnt++;
  3510. manage_heater();
  3511. manage_inactivity(true);
  3512. //lcd_update(0);
  3513. if(cnt==0)
  3514. {
  3515. #if BEEPER > 0
  3516. if (counterBeep== 500){
  3517. counterBeep = 0;
  3518. }
  3519. SET_OUTPUT(BEEPER);
  3520. if (counterBeep== 0){
  3521. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3522. WRITE(BEEPER,HIGH);
  3523. }
  3524. if (counterBeep== 20){
  3525. WRITE(BEEPER,LOW);
  3526. }
  3527. counterBeep++;
  3528. #else
  3529. #endif
  3530. }
  3531. }
  3532. WRITE(BEEPER,LOW);
  3533. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3534. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3535. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3536. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3537. lcd_change_fil_state = 0;
  3538. lcd_loading_filament();
  3539. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3540. lcd_change_fil_state = 0;
  3541. lcd_alright();
  3542. switch(lcd_change_fil_state){
  3543. case 2:
  3544. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3545. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3546. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3547. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3548. lcd_loading_filament();
  3549. break;
  3550. case 3:
  3551. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3552. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3553. lcd_loading_color();
  3554. break;
  3555. default:
  3556. lcd_change_success();
  3557. break;
  3558. }
  3559. }
  3560. target[E_AXIS]+= 5;
  3561. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3562. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3563. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3564. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3565. //plan_set_e_position(current_position[E_AXIS]);
  3566. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3567. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3568. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3569. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3570. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3571. plan_set_e_position(lastpos[E_AXIS]);
  3572. feedmultiply=feedmultiplyBckp;
  3573. char cmd[9];
  3574. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3575. enquecommand(cmd);
  3576. }
  3577. #endif
  3578. get_coordinates(); // For X Y Z E F
  3579. // When recovering from a previous print move, restore the originally
  3580. // calculated target position on the first USB/SD command. This accounts
  3581. // properly for relative moves
  3582. if ((saved_target[0] != SAVED_TARGET_UNSET) &&
  3583. ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) ||
  3584. (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)))
  3585. {
  3586. memcpy(destination, saved_target, sizeof(destination));
  3587. saved_target[0] = SAVED_TARGET_UNSET;
  3588. }
  3589. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3590. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3591. }
  3592. #ifdef FWRETRACT
  3593. if(cs.autoretract_enabled)
  3594. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3595. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3596. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3597. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3598. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3599. retract(!retracted[active_extruder]);
  3600. return;
  3601. }
  3602. }
  3603. #endif //FWRETRACT
  3604. prepare_move();
  3605. //ClearToSend();
  3606. }
  3607. break;
  3608. /*!
  3609. ### G2, G3 - Controlled Arc Move <a href="https://reprap.org/wiki/G-code#G2_.26_G3:_Controlled_Arc_Move">G2 & G3: Controlled Arc Move</a>
  3610. These commands don't propperly work with MBL enabled. The compensation only happens at the end of the move, so avoid long arcs.
  3611. #### Usage
  3612. G2 [ X | Y | I | E | F ] (Clockwise Arc)
  3613. G3 [ X | Y | I | E | F ] (Counter-Clockwise Arc)
  3614. #### Parameters
  3615. - `X` - The position to move to on the X axis
  3616. - `Y` - The position to move to on the Y axis
  3617. - `I` - The point in X space from the current X position to maintain a constant distance from
  3618. - `J` - The point in Y space from the current Y position to maintain a constant distance from
  3619. - `E` - The amount to extrude between the starting point and ending point
  3620. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  3621. */
  3622. case 2:
  3623. if(Stopped == false) {
  3624. get_arc_coordinates();
  3625. prepare_arc_move(true);
  3626. }
  3627. break;
  3628. // -------------------------------
  3629. case 3:
  3630. if(Stopped == false) {
  3631. get_arc_coordinates();
  3632. prepare_arc_move(false);
  3633. }
  3634. break;
  3635. /*!
  3636. ### G4 - Dwell <a href="https://reprap.org/wiki/G-code#G4:_Dwell">G4: Dwell</a>
  3637. Pause the machine for a period of time.
  3638. #### Usage
  3639. G4 [ P | S ]
  3640. #### Parameters
  3641. - `P` - Time to wait, in milliseconds
  3642. - `S` - Time to wait, in seconds
  3643. */
  3644. case 4:
  3645. codenum = 0;
  3646. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3647. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3648. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3649. st_synchronize();
  3650. codenum += _millis(); // keep track of when we started waiting
  3651. previous_millis_cmd = _millis();
  3652. while(_millis() < codenum) {
  3653. manage_heater();
  3654. manage_inactivity();
  3655. lcd_update(0);
  3656. }
  3657. break;
  3658. #ifdef FWRETRACT
  3659. /*!
  3660. ### G10 - Retract <a href="https://reprap.org/wiki/G-code#G10:_Retract">G10: Retract</a>
  3661. Retracts filament according to settings of `M207`
  3662. */
  3663. case 10:
  3664. #if EXTRUDERS > 1
  3665. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3666. retract(true,retracted_swap[active_extruder]);
  3667. #else
  3668. retract(true);
  3669. #endif
  3670. break;
  3671. /*!
  3672. ### G11 - Retract recover <a href="https://reprap.org/wiki/G-code#G11:_Unretract">G11: Unretract</a>
  3673. Unretracts/recovers filament according to settings of `M208`
  3674. */
  3675. case 11:
  3676. #if EXTRUDERS > 1
  3677. retract(false,retracted_swap[active_extruder]);
  3678. #else
  3679. retract(false);
  3680. #endif
  3681. break;
  3682. #endif //FWRETRACT
  3683. /*!
  3684. ### G28 - Home all Axes one at a time <a href="https://reprap.org/wiki/G-code#G28:_Move_to_Origin_.28Home.29">G28: Move to Origin (Home)</a>
  3685. Using `G28` without any parameters will perfom homing of all axes AND mesh bed leveling, while `G28 W` will just home all axes (no mesh bed leveling).
  3686. #### Usage
  3687. G28 [ X | Y | Z | W | C ]
  3688. #### Parameters
  3689. - `X` - Flag to go back to the X axis origin
  3690. - `Y` - Flag to go back to the Y axis origin
  3691. - `Z` - Flag to go back to the Z axis origin
  3692. - `W` - Suppress mesh bed leveling if `X`, `Y` or `Z` are not provided
  3693. - `C` - Calibrate X and Y origin (home) - Only on MK3/s
  3694. */
  3695. case 28:
  3696. {
  3697. long home_x_value = 0;
  3698. long home_y_value = 0;
  3699. long home_z_value = 0;
  3700. // Which axes should be homed?
  3701. bool home_x = code_seen(axis_codes[X_AXIS]);
  3702. home_x_value = code_value_long();
  3703. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3704. home_y_value = code_value_long();
  3705. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3706. home_z_value = code_value_long();
  3707. bool without_mbl = code_seen('W');
  3708. // calibrate?
  3709. #ifdef TMC2130
  3710. bool calib = code_seen('C');
  3711. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3712. #else
  3713. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3714. #endif //TMC2130
  3715. if ((home_x || home_y || without_mbl || home_z) == false) {
  3716. // Push the commands to the front of the message queue in the reverse order!
  3717. // There shall be always enough space reserved for these commands.
  3718. goto case_G80;
  3719. }
  3720. break;
  3721. }
  3722. #ifdef ENABLE_AUTO_BED_LEVELING
  3723. /*!
  3724. ### G29 - Detailed Z-Probe <a href="https://reprap.org/wiki/G-code#G29:_Detailed_Z-Probe">G29: Detailed Z-Probe</a>
  3725. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3726. See `G81`
  3727. */
  3728. case 29:
  3729. {
  3730. #if Z_MIN_PIN == -1
  3731. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3732. #endif
  3733. // Prevent user from running a G29 without first homing in X and Y
  3734. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3735. {
  3736. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3737. SERIAL_ECHO_START;
  3738. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3739. break; // abort G29, since we don't know where we are
  3740. }
  3741. st_synchronize();
  3742. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3743. //vector_3 corrected_position = plan_get_position_mm();
  3744. //corrected_position.debug("position before G29");
  3745. plan_bed_level_matrix.set_to_identity();
  3746. vector_3 uncorrected_position = plan_get_position();
  3747. //uncorrected_position.debug("position durring G29");
  3748. current_position[X_AXIS] = uncorrected_position.x;
  3749. current_position[Y_AXIS] = uncorrected_position.y;
  3750. current_position[Z_AXIS] = uncorrected_position.z;
  3751. plan_set_position_curposXYZE();
  3752. int l_feedmultiply = setup_for_endstop_move();
  3753. feedrate = homing_feedrate[Z_AXIS];
  3754. #ifdef AUTO_BED_LEVELING_GRID
  3755. // probe at the points of a lattice grid
  3756. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3757. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3758. // solve the plane equation ax + by + d = z
  3759. // A is the matrix with rows [x y 1] for all the probed points
  3760. // B is the vector of the Z positions
  3761. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3762. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3763. // "A" matrix of the linear system of equations
  3764. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3765. // "B" vector of Z points
  3766. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3767. int probePointCounter = 0;
  3768. bool zig = true;
  3769. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3770. {
  3771. int xProbe, xInc;
  3772. if (zig)
  3773. {
  3774. xProbe = LEFT_PROBE_BED_POSITION;
  3775. //xEnd = RIGHT_PROBE_BED_POSITION;
  3776. xInc = xGridSpacing;
  3777. zig = false;
  3778. } else // zag
  3779. {
  3780. xProbe = RIGHT_PROBE_BED_POSITION;
  3781. //xEnd = LEFT_PROBE_BED_POSITION;
  3782. xInc = -xGridSpacing;
  3783. zig = true;
  3784. }
  3785. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3786. {
  3787. float z_before;
  3788. if (probePointCounter == 0)
  3789. {
  3790. // raise before probing
  3791. z_before = Z_RAISE_BEFORE_PROBING;
  3792. } else
  3793. {
  3794. // raise extruder
  3795. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3796. }
  3797. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3798. eqnBVector[probePointCounter] = measured_z;
  3799. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3800. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3801. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3802. probePointCounter++;
  3803. xProbe += xInc;
  3804. }
  3805. }
  3806. clean_up_after_endstop_move(l_feedmultiply);
  3807. // solve lsq problem
  3808. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3809. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3810. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3811. SERIAL_PROTOCOLPGM(" b: ");
  3812. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3813. SERIAL_PROTOCOLPGM(" d: ");
  3814. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3815. set_bed_level_equation_lsq(plane_equation_coefficients);
  3816. free(plane_equation_coefficients);
  3817. #else // AUTO_BED_LEVELING_GRID not defined
  3818. // Probe at 3 arbitrary points
  3819. // probe 1
  3820. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3821. // probe 2
  3822. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3823. // probe 3
  3824. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3825. clean_up_after_endstop_move(l_feedmultiply);
  3826. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3827. #endif // AUTO_BED_LEVELING_GRID
  3828. st_synchronize();
  3829. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3830. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3831. // When the bed is uneven, this height must be corrected.
  3832. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3833. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3834. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3835. z_tmp = current_position[Z_AXIS];
  3836. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3837. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3838. plan_set_position_curposXYZE();
  3839. }
  3840. break;
  3841. #ifndef Z_PROBE_SLED
  3842. /*!
  3843. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  3844. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3845. */
  3846. case 30:
  3847. {
  3848. st_synchronize();
  3849. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3850. int l_feedmultiply = setup_for_endstop_move();
  3851. feedrate = homing_feedrate[Z_AXIS];
  3852. run_z_probe();
  3853. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3854. SERIAL_PROTOCOLPGM(" X: ");
  3855. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3856. SERIAL_PROTOCOLPGM(" Y: ");
  3857. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3858. SERIAL_PROTOCOLPGM(" Z: ");
  3859. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3860. SERIAL_PROTOCOLPGM("\n");
  3861. clean_up_after_endstop_move(l_feedmultiply);
  3862. }
  3863. break;
  3864. #else
  3865. /*!
  3866. ### G31 - Dock the sled <a href="https://reprap.org/wiki/G-code#G31:_Dock_Z_Probe_sled">G31: Dock Z Probe sled</a>
  3867. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3868. */
  3869. case 31:
  3870. dock_sled(true);
  3871. break;
  3872. /*!
  3873. ### G32 - Undock the sled <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  3874. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3875. */
  3876. case 32:
  3877. dock_sled(false);
  3878. break;
  3879. #endif // Z_PROBE_SLED
  3880. #endif // ENABLE_AUTO_BED_LEVELING
  3881. #ifdef MESH_BED_LEVELING
  3882. /*!
  3883. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  3884. Sensor must be over the bed.
  3885. The maximum travel distance before an error is triggered is 10mm.
  3886. */
  3887. case 30:
  3888. {
  3889. st_synchronize();
  3890. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3891. int l_feedmultiply = setup_for_endstop_move();
  3892. feedrate = homing_feedrate[Z_AXIS];
  3893. find_bed_induction_sensor_point_z(-10.f, 3);
  3894. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3895. clean_up_after_endstop_move(l_feedmultiply);
  3896. }
  3897. break;
  3898. /*!
  3899. ### G75 - Print temperature interpolation <a href="https://reprap.org/wiki/G-code#G75:_Print_temperature_interpolation">G75: Print temperature interpolation</a>
  3900. Show/print PINDA temperature interpolating.
  3901. */
  3902. case 75:
  3903. {
  3904. for (int i = 40; i <= 110; i++)
  3905. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3906. }
  3907. break;
  3908. /*!
  3909. ### G76 - PINDA probe temperature calibration <a href="https://reprap.org/wiki/G-code#G76:_PINDA_probe_temperature_calibration">G76: PINDA probe temperature calibration</a>
  3910. This G-code is used to calibrate the temperature drift of the PINDA (inductive Sensor).
  3911. The PINDAv2 sensor has a built-in thermistor which has the advantage that the calibration can be done once for all materials.
  3912. The Original i3 Prusa MK2/s uses PINDAv1 and this calibration improves the temperature drift, but not as good as the PINDAv2.
  3913. #### Example
  3914. ```
  3915. G76
  3916. echo PINDA probe calibration start
  3917. echo start temperature: 35.0°
  3918. echo ...
  3919. echo PINDA temperature -- Z shift (mm): 0.---
  3920. ```
  3921. */
  3922. case 76:
  3923. {
  3924. #ifdef PINDA_THERMISTOR
  3925. if (true)
  3926. {
  3927. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3928. //we need to know accurate position of first calibration point
  3929. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3930. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3931. break;
  3932. }
  3933. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3934. {
  3935. // We don't know where we are! HOME!
  3936. // Push the commands to the front of the message queue in the reverse order!
  3937. // There shall be always enough space reserved for these commands.
  3938. repeatcommand_front(); // repeat G76 with all its parameters
  3939. enquecommand_front_P((PSTR("G28 W0")));
  3940. break;
  3941. }
  3942. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3943. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3944. if (result)
  3945. {
  3946. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3947. plan_buffer_line_curposXYZE(3000 / 60);
  3948. current_position[Z_AXIS] = 50;
  3949. current_position[Y_AXIS] = 180;
  3950. plan_buffer_line_curposXYZE(3000 / 60);
  3951. st_synchronize();
  3952. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3953. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3954. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3955. plan_buffer_line_curposXYZE(3000 / 60);
  3956. st_synchronize();
  3957. gcode_G28(false, false, true);
  3958. }
  3959. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3960. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3961. current_position[Z_AXIS] = 100;
  3962. plan_buffer_line_curposXYZE(3000 / 60);
  3963. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3964. lcd_temp_cal_show_result(false);
  3965. break;
  3966. }
  3967. }
  3968. lcd_update_enable(true);
  3969. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3970. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3971. float zero_z;
  3972. int z_shift = 0; //unit: steps
  3973. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3974. if (start_temp < 35) start_temp = 35;
  3975. if (start_temp < current_temperature_pinda) start_temp += 5;
  3976. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3977. // setTargetHotend(200, 0);
  3978. setTargetBed(70 + (start_temp - 30));
  3979. custom_message_type = CustomMsg::TempCal;
  3980. custom_message_state = 1;
  3981. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3982. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3983. plan_buffer_line_curposXYZE(3000 / 60);
  3984. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3985. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3986. plan_buffer_line_curposXYZE(3000 / 60);
  3987. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3988. plan_buffer_line_curposXYZE(3000 / 60);
  3989. st_synchronize();
  3990. while (current_temperature_pinda < start_temp)
  3991. {
  3992. delay_keep_alive(1000);
  3993. serialecho_temperatures();
  3994. }
  3995. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3996. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3997. plan_buffer_line_curposXYZE(3000 / 60);
  3998. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3999. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4000. plan_buffer_line_curposXYZE(3000 / 60);
  4001. st_synchronize();
  4002. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  4003. if (find_z_result == false) {
  4004. lcd_temp_cal_show_result(find_z_result);
  4005. break;
  4006. }
  4007. zero_z = current_position[Z_AXIS];
  4008. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4009. int i = -1; for (; i < 5; i++)
  4010. {
  4011. float temp = (40 + i * 5);
  4012. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  4013. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  4014. if (start_temp <= temp) break;
  4015. }
  4016. for (i++; i < 5; i++)
  4017. {
  4018. float temp = (40 + i * 5);
  4019. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4020. custom_message_state = i + 2;
  4021. setTargetBed(50 + 10 * (temp - 30) / 5);
  4022. // setTargetHotend(255, 0);
  4023. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4024. plan_buffer_line_curposXYZE(3000 / 60);
  4025. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4026. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4027. plan_buffer_line_curposXYZE(3000 / 60);
  4028. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4029. plan_buffer_line_curposXYZE(3000 / 60);
  4030. st_synchronize();
  4031. while (current_temperature_pinda < temp)
  4032. {
  4033. delay_keep_alive(1000);
  4034. serialecho_temperatures();
  4035. }
  4036. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4037. plan_buffer_line_curposXYZE(3000 / 60);
  4038. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4039. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4040. plan_buffer_line_curposXYZE(3000 / 60);
  4041. st_synchronize();
  4042. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  4043. if (find_z_result == false) {
  4044. lcd_temp_cal_show_result(find_z_result);
  4045. break;
  4046. }
  4047. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4048. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  4049. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  4050. }
  4051. lcd_temp_cal_show_result(true);
  4052. break;
  4053. }
  4054. #endif //PINDA_THERMISTOR
  4055. setTargetBed(PINDA_MIN_T);
  4056. float zero_z;
  4057. int z_shift = 0; //unit: steps
  4058. int t_c; // temperature
  4059. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4060. // We don't know where we are! HOME!
  4061. // Push the commands to the front of the message queue in the reverse order!
  4062. // There shall be always enough space reserved for these commands.
  4063. repeatcommand_front(); // repeat G76 with all its parameters
  4064. enquecommand_front_P((PSTR("G28 W0")));
  4065. break;
  4066. }
  4067. puts_P(_N("PINDA probe calibration start"));
  4068. custom_message_type = CustomMsg::TempCal;
  4069. custom_message_state = 1;
  4070. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  4071. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4072. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4073. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4074. plan_buffer_line_curposXYZE(3000 / 60);
  4075. st_synchronize();
  4076. while (abs(degBed() - PINDA_MIN_T) > 1) {
  4077. delay_keep_alive(1000);
  4078. serialecho_temperatures();
  4079. }
  4080. //enquecommand_P(PSTR("M190 S50"));
  4081. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4082. delay_keep_alive(1000);
  4083. serialecho_temperatures();
  4084. }
  4085. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4086. current_position[Z_AXIS] = 5;
  4087. plan_buffer_line_curposXYZE(3000 / 60);
  4088. current_position[X_AXIS] = BED_X0;
  4089. current_position[Y_AXIS] = BED_Y0;
  4090. plan_buffer_line_curposXYZE(3000 / 60);
  4091. st_synchronize();
  4092. find_bed_induction_sensor_point_z(-1.f);
  4093. zero_z = current_position[Z_AXIS];
  4094. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4095. for (int i = 0; i<5; i++) {
  4096. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4097. custom_message_state = i + 2;
  4098. t_c = 60 + i * 10;
  4099. setTargetBed(t_c);
  4100. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4101. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4102. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4103. plan_buffer_line_curposXYZE(3000 / 60);
  4104. st_synchronize();
  4105. while (degBed() < t_c) {
  4106. delay_keep_alive(1000);
  4107. serialecho_temperatures();
  4108. }
  4109. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4110. delay_keep_alive(1000);
  4111. serialecho_temperatures();
  4112. }
  4113. current_position[Z_AXIS] = 5;
  4114. plan_buffer_line_curposXYZE(3000 / 60);
  4115. current_position[X_AXIS] = BED_X0;
  4116. current_position[Y_AXIS] = BED_Y0;
  4117. plan_buffer_line_curposXYZE(3000 / 60);
  4118. st_synchronize();
  4119. find_bed_induction_sensor_point_z(-1.f);
  4120. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4121. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  4122. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  4123. }
  4124. custom_message_type = CustomMsg::Status;
  4125. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  4126. puts_P(_N("Temperature calibration done."));
  4127. disable_x();
  4128. disable_y();
  4129. disable_z();
  4130. disable_e0();
  4131. disable_e1();
  4132. disable_e2();
  4133. setTargetBed(0); //set bed target temperature back to 0
  4134. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  4135. temp_cal_active = true;
  4136. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  4137. lcd_update_enable(true);
  4138. lcd_update(2);
  4139. }
  4140. break;
  4141. /*!
  4142. ### G80 - Mesh-based Z probe <a href="https://reprap.org/wiki/G-code#G80:_Mesh-based_Z_probe">G80: Mesh-based Z probe</a>
  4143. Default 3x3 grid can be changed on MK2.5/s and MK3/s to 7x7 grid.
  4144. #### Usage
  4145. G80 [ N | R | V | L | R | F | B ]
  4146. #### Parameters
  4147. - `N` - Number of mesh points on x axis. Default is 3. Valid values are 3 and 7.
  4148. - `R` - Probe retries. Default 3 max. 10
  4149. - `V` - Verbosity level 1=low, 10=mid, 20=high. It only can be used if the firmware has been compiled with SUPPORT_VERBOSITY active.
  4150. Using the following parameters enables additional "manual" bed leveling correction. Valid values are -100 microns to 100 microns.
  4151. #### Additional Parameters
  4152. - `L` - Left Bed Level correct value in um.
  4153. - `R` - Right Bed Level correct value in um.
  4154. - `F` - Front Bed Level correct value in um.
  4155. - `B` - Back Bed Level correct value in um.
  4156. */
  4157. /*
  4158. * Probes a grid and produces a mesh to compensate for variable bed height
  4159. * The S0 report the points as below
  4160. * +----> X-axis
  4161. * |
  4162. * |
  4163. * v Y-axis
  4164. */
  4165. case 80:
  4166. #ifdef MK1BP
  4167. break;
  4168. #endif //MK1BP
  4169. case_G80:
  4170. {
  4171. mesh_bed_leveling_flag = true;
  4172. #ifndef PINDA_THERMISTOR
  4173. static bool run = false; // thermistor-less PINDA temperature compensation is running
  4174. #endif // ndef PINDA_THERMISTOR
  4175. #ifdef SUPPORT_VERBOSITY
  4176. int8_t verbosity_level = 0;
  4177. if (code_seen('V')) {
  4178. // Just 'V' without a number counts as V1.
  4179. char c = strchr_pointer[1];
  4180. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4181. }
  4182. #endif //SUPPORT_VERBOSITY
  4183. // Firstly check if we know where we are
  4184. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4185. // We don't know where we are! HOME!
  4186. // Push the commands to the front of the message queue in the reverse order!
  4187. // There shall be always enough space reserved for these commands.
  4188. repeatcommand_front(); // repeat G80 with all its parameters
  4189. enquecommand_front_P((PSTR("G28 W0")));
  4190. break;
  4191. }
  4192. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  4193. if (code_seen('N')) {
  4194. nMeasPoints = code_value_uint8();
  4195. if (nMeasPoints != 7) {
  4196. nMeasPoints = 3;
  4197. }
  4198. }
  4199. else {
  4200. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  4201. }
  4202. uint8_t nProbeRetry = 3;
  4203. if (code_seen('R')) {
  4204. nProbeRetry = code_value_uint8();
  4205. if (nProbeRetry > 10) {
  4206. nProbeRetry = 10;
  4207. }
  4208. }
  4209. else {
  4210. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  4211. }
  4212. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  4213. #ifndef PINDA_THERMISTOR
  4214. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50)
  4215. {
  4216. temp_compensation_start();
  4217. run = true;
  4218. repeatcommand_front(); // repeat G80 with all its parameters
  4219. enquecommand_front_P((PSTR("G28 W0")));
  4220. break;
  4221. }
  4222. run = false;
  4223. #endif //PINDA_THERMISTOR
  4224. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  4225. CustomMsg custom_message_type_old = custom_message_type;
  4226. unsigned int custom_message_state_old = custom_message_state;
  4227. custom_message_type = CustomMsg::MeshBedLeveling;
  4228. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  4229. lcd_update(1);
  4230. mbl.reset(); //reset mesh bed leveling
  4231. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  4232. // consumed during the first movements following this statement.
  4233. babystep_undo();
  4234. // Cycle through all points and probe them
  4235. // First move up. During this first movement, the babystepping will be reverted.
  4236. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4237. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60);
  4238. // The move to the first calibration point.
  4239. current_position[X_AXIS] = BED_X0;
  4240. current_position[Y_AXIS] = BED_Y0;
  4241. #ifdef SUPPORT_VERBOSITY
  4242. if (verbosity_level >= 1)
  4243. {
  4244. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4245. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  4246. }
  4247. #else //SUPPORT_VERBOSITY
  4248. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4249. #endif //SUPPORT_VERBOSITY
  4250. plan_buffer_line_curposXYZE(homing_feedrate[X_AXIS] / 30);
  4251. // Wait until the move is finished.
  4252. st_synchronize();
  4253. uint8_t mesh_point = 0; //index number of calibration point
  4254. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  4255. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  4256. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  4257. #ifdef SUPPORT_VERBOSITY
  4258. if (verbosity_level >= 1) {
  4259. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  4260. }
  4261. #endif // SUPPORT_VERBOSITY
  4262. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  4263. const char *kill_message = NULL;
  4264. while (mesh_point != nMeasPoints * nMeasPoints) {
  4265. // Get coords of a measuring point.
  4266. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  4267. uint8_t iy = mesh_point / nMeasPoints;
  4268. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  4269. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  4270. custom_message_state--;
  4271. mesh_point++;
  4272. continue; //skip
  4273. }*/
  4274. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  4275. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  4276. {
  4277. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  4278. }
  4279. float z0 = 0.f;
  4280. if (has_z && (mesh_point > 0)) {
  4281. uint16_t z_offset_u = 0;
  4282. if (nMeasPoints == 7) {
  4283. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  4284. }
  4285. else {
  4286. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  4287. }
  4288. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  4289. #ifdef SUPPORT_VERBOSITY
  4290. if (verbosity_level >= 1) {
  4291. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  4292. }
  4293. #endif // SUPPORT_VERBOSITY
  4294. }
  4295. // Move Z up to MESH_HOME_Z_SEARCH.
  4296. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4297. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  4298. float init_z_bckp = current_position[Z_AXIS];
  4299. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  4300. st_synchronize();
  4301. // Move to XY position of the sensor point.
  4302. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  4303. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  4304. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4305. #ifdef SUPPORT_VERBOSITY
  4306. if (verbosity_level >= 1) {
  4307. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4308. SERIAL_PROTOCOL(mesh_point);
  4309. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  4310. }
  4311. #else //SUPPORT_VERBOSITY
  4312. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4313. #endif // SUPPORT_VERBOSITY
  4314. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4315. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE);
  4316. st_synchronize();
  4317. // Go down until endstop is hit
  4318. const float Z_CALIBRATION_THRESHOLD = 1.f;
  4319. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4320. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4321. break;
  4322. }
  4323. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4324. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4325. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4326. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  4327. st_synchronize();
  4328. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4329. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4330. break;
  4331. }
  4332. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4333. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  4334. break;
  4335. }
  4336. }
  4337. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4338. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4339. break;
  4340. }
  4341. #ifdef SUPPORT_VERBOSITY
  4342. if (verbosity_level >= 10) {
  4343. SERIAL_ECHOPGM("X: ");
  4344. MYSERIAL.print(current_position[X_AXIS], 5);
  4345. SERIAL_ECHOLNPGM("");
  4346. SERIAL_ECHOPGM("Y: ");
  4347. MYSERIAL.print(current_position[Y_AXIS], 5);
  4348. SERIAL_PROTOCOLPGM("\n");
  4349. }
  4350. #endif // SUPPORT_VERBOSITY
  4351. float offset_z = 0;
  4352. #ifdef PINDA_THERMISTOR
  4353. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4354. #endif //PINDA_THERMISTOR
  4355. // #ifdef SUPPORT_VERBOSITY
  4356. /* if (verbosity_level >= 1)
  4357. {
  4358. SERIAL_ECHOPGM("mesh bed leveling: ");
  4359. MYSERIAL.print(current_position[Z_AXIS], 5);
  4360. SERIAL_ECHOPGM(" offset: ");
  4361. MYSERIAL.print(offset_z, 5);
  4362. SERIAL_ECHOLNPGM("");
  4363. }*/
  4364. // #endif // SUPPORT_VERBOSITY
  4365. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4366. custom_message_state--;
  4367. mesh_point++;
  4368. lcd_update(1);
  4369. }
  4370. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4371. #ifdef SUPPORT_VERBOSITY
  4372. if (verbosity_level >= 20) {
  4373. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4374. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4375. MYSERIAL.print(current_position[Z_AXIS], 5);
  4376. }
  4377. #endif // SUPPORT_VERBOSITY
  4378. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  4379. st_synchronize();
  4380. if (mesh_point != nMeasPoints * nMeasPoints) {
  4381. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4382. bool bState;
  4383. do { // repeat until Z-leveling o.k.
  4384. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4385. #ifdef TMC2130
  4386. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4387. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4388. #else // TMC2130
  4389. lcd_wait_for_click_delay(0); // ~ no timeout
  4390. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4391. #endif // TMC2130
  4392. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4393. bState=enable_z_endstop(false);
  4394. current_position[Z_AXIS] -= 1;
  4395. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  4396. st_synchronize();
  4397. enable_z_endstop(true);
  4398. #ifdef TMC2130
  4399. tmc2130_home_enter(Z_AXIS_MASK);
  4400. #endif // TMC2130
  4401. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4402. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  4403. st_synchronize();
  4404. #ifdef TMC2130
  4405. tmc2130_home_exit();
  4406. #endif // TMC2130
  4407. enable_z_endstop(bState);
  4408. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4409. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4410. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4411. lcd_update_enable(true); // display / status-line recovery
  4412. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4413. repeatcommand_front(); // re-run (i.e. of "G80")
  4414. break;
  4415. }
  4416. clean_up_after_endstop_move(l_feedmultiply);
  4417. // SERIAL_ECHOLNPGM("clean up finished ");
  4418. #ifndef PINDA_THERMISTOR
  4419. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4420. #endif
  4421. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4422. // SERIAL_ECHOLNPGM("babystep applied");
  4423. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4424. #ifdef SUPPORT_VERBOSITY
  4425. if (verbosity_level >= 1) {
  4426. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4427. }
  4428. #endif // SUPPORT_VERBOSITY
  4429. for (uint8_t i = 0; i < 4; ++i) {
  4430. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4431. long correction = 0;
  4432. if (code_seen(codes[i]))
  4433. correction = code_value_long();
  4434. else if (eeprom_bed_correction_valid) {
  4435. unsigned char *addr = (i < 2) ?
  4436. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4437. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4438. correction = eeprom_read_int8(addr);
  4439. }
  4440. if (correction == 0)
  4441. continue;
  4442. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4443. SERIAL_ERROR_START;
  4444. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4445. SERIAL_ECHO(correction);
  4446. SERIAL_ECHOLNPGM(" microns");
  4447. }
  4448. else {
  4449. float offset = float(correction) * 0.001f;
  4450. switch (i) {
  4451. case 0:
  4452. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4453. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4454. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4455. }
  4456. }
  4457. break;
  4458. case 1:
  4459. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4460. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4461. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4462. }
  4463. }
  4464. break;
  4465. case 2:
  4466. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4467. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4468. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4469. }
  4470. }
  4471. break;
  4472. case 3:
  4473. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4474. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4475. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4476. }
  4477. }
  4478. break;
  4479. }
  4480. }
  4481. }
  4482. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4483. if (nMeasPoints == 3) {
  4484. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4485. }
  4486. /*
  4487. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4488. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4489. SERIAL_PROTOCOLPGM(",");
  4490. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4491. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4492. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4493. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4494. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4495. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4496. SERIAL_PROTOCOLPGM(" ");
  4497. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4498. }
  4499. SERIAL_PROTOCOLPGM("\n");
  4500. }
  4501. */
  4502. if (nMeasPoints == 7 && magnet_elimination) {
  4503. mbl_interpolation(nMeasPoints);
  4504. }
  4505. /*
  4506. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4507. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4508. SERIAL_PROTOCOLPGM(",");
  4509. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4510. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4511. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4512. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4513. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4514. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4515. SERIAL_PROTOCOLPGM(" ");
  4516. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4517. }
  4518. SERIAL_PROTOCOLPGM("\n");
  4519. }
  4520. */
  4521. // SERIAL_ECHOLNPGM("Upsample finished");
  4522. mbl.active = 1; //activate mesh bed leveling
  4523. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4524. go_home_with_z_lift();
  4525. // SERIAL_ECHOLNPGM("Go home finished");
  4526. //unretract (after PINDA preheat retraction)
  4527. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4528. current_position[E_AXIS] += default_retraction;
  4529. plan_buffer_line_curposXYZE(400);
  4530. }
  4531. KEEPALIVE_STATE(NOT_BUSY);
  4532. // Restore custom message state
  4533. lcd_setstatuspgm(_T(WELCOME_MSG));
  4534. custom_message_type = custom_message_type_old;
  4535. custom_message_state = custom_message_state_old;
  4536. mesh_bed_leveling_flag = false;
  4537. mesh_bed_run_from_menu = false;
  4538. lcd_update(2);
  4539. }
  4540. break;
  4541. /*!
  4542. ### G81 - Mesh bed leveling status <a href="https://reprap.org/wiki/G-code#G81:_Mesh_bed_leveling_status">G81: Mesh bed leveling status</a>
  4543. Prints mesh bed leveling status and bed profile if activated.
  4544. */
  4545. case 81:
  4546. if (mbl.active) {
  4547. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4548. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4549. SERIAL_PROTOCOL(',');
  4550. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4551. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4552. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4553. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4554. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4555. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4556. SERIAL_PROTOCOLPGM(" ");
  4557. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4558. }
  4559. SERIAL_PROTOCOLLN();
  4560. }
  4561. }
  4562. else
  4563. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4564. break;
  4565. #if 0
  4566. /*!
  4567. ### G82: Single Z probe at current location - Not active <a href="https://reprap.org/wiki/G-code#G82:_Single_Z_probe_at_current_location">G82: Single Z probe at current location</a>
  4568. WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4569. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4570. */
  4571. case 82:
  4572. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4573. int l_feedmultiply = setup_for_endstop_move();
  4574. find_bed_induction_sensor_point_z();
  4575. clean_up_after_endstop_move(l_feedmultiply);
  4576. SERIAL_PROTOCOLPGM("Bed found at: ");
  4577. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4578. SERIAL_PROTOCOLPGM("\n");
  4579. break;
  4580. /*!
  4581. ### G83: Babystep in Z and store to EEPROM - Not active <a href="https://reprap.org/wiki/G-code#G83:_Babystep_in_Z_and_store_to_EEPROM">G83: Babystep in Z and store to EEPROM</a>
  4582. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4583. */
  4584. case 83:
  4585. {
  4586. int babystepz = code_seen('S') ? code_value() : 0;
  4587. int BabyPosition = code_seen('P') ? code_value() : 0;
  4588. if (babystepz != 0) {
  4589. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4590. // Is the axis indexed starting with zero or one?
  4591. if (BabyPosition > 4) {
  4592. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4593. }else{
  4594. // Save it to the eeprom
  4595. babystepLoadZ = babystepz;
  4596. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4597. // adjust the Z
  4598. babystepsTodoZadd(babystepLoadZ);
  4599. }
  4600. }
  4601. }
  4602. break;
  4603. /*!
  4604. ### G84: UNDO Babystep Z (move Z axis back) - Not active <a href="https://reprap.org/wiki/G-code#G84:_UNDO_Babystep_Z_.28move_Z_axis_back.29">G84: UNDO Babystep Z (move Z axis back)</a>
  4605. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4606. */
  4607. case 84:
  4608. babystepsTodoZsubtract(babystepLoadZ);
  4609. // babystepLoadZ = 0;
  4610. break;
  4611. /*!
  4612. ### G85: Pick best babystep - Not active <a href="https://reprap.org/wiki/G-code#G85:_Pick_best_babystep">G85: Pick best babystep</a>
  4613. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4614. */
  4615. case 85:
  4616. lcd_pick_babystep();
  4617. break;
  4618. #endif
  4619. /*!
  4620. ### G86 - Disable babystep correction after home <a href="https://reprap.org/wiki/G-code#G86:_Disable_babystep_correction_after_home">G86: Disable babystep correction after home</a>
  4621. This G-code will be performed at the start of a calibration script.
  4622. (Prusa3D specific)
  4623. */
  4624. case 86:
  4625. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4626. break;
  4627. /*!
  4628. ### G87 - Enable babystep correction after home <a href="https://reprap.org/wiki/G-code#G87:_Enable_babystep_correction_after_home">G87: Enable babystep correction after home</a>
  4629. This G-code will be performed at the end of a calibration script.
  4630. (Prusa3D specific)
  4631. */
  4632. case 87:
  4633. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4634. break;
  4635. /*!
  4636. ### G88 - Reserved <a href="https://reprap.org/wiki/G-code#G88:_Reserved">G88: Reserved</a>
  4637. Currently has no effect.
  4638. */
  4639. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4640. case 88:
  4641. break;
  4642. #endif // ENABLE_MESH_BED_LEVELING
  4643. /*!
  4644. ### G90 - Switch off relative mode <a href="https://reprap.org/wiki/G-code#G90:_Set_to_Absolute_Positioning">G90: Set to Absolute Positioning</a>
  4645. All coordinates from now on are absolute relative to the origin of the machine. E axis is left intact.
  4646. */
  4647. case 90: {
  4648. axis_relative_modes &= ~(X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK);
  4649. }
  4650. break;
  4651. /*!
  4652. ### G91 - Switch on relative mode <a href="https://reprap.org/wiki/G-code#G91:_Set_to_Relative_Positioning">G91: Set to Relative Positioning</a>
  4653. All coordinates from now on are relative to the last position. E axis is left intact.
  4654. */
  4655. case 91: {
  4656. axis_relative_modes |= X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK;
  4657. }
  4658. break;
  4659. /*!
  4660. ### G92 - Set position <a href="https://reprap.org/wiki/G-code#G92:_Set_Position">G92: Set Position</a>
  4661. It is used for setting the current position of each axis. The parameters are always absolute to the origin.
  4662. If a parameter is omitted, that axis will not be affected.
  4663. If `X`, `Y`, or `Z` axis are specified, the move afterwards might stutter because of Mesh Bed Leveling. `E` axis is not affected if the target position is 0 (`G92 E0`).
  4664. A G92 without coordinates will reset all axes to zero on some firmware. This is not the case for Prusa-Firmware!
  4665. #### Usage
  4666. G92 [ X | Y | Z | E ]
  4667. #### Parameters
  4668. - `X` - new X axis position
  4669. - `Y` - new Y axis position
  4670. - `Z` - new Z axis position
  4671. - `E` - new extruder position
  4672. */
  4673. case 92: {
  4674. gcode_G92();
  4675. }
  4676. break;
  4677. /*!
  4678. ### G98 - Activate farm mode <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode</a>
  4679. Enable Prusa-specific Farm functions and g-code.
  4680. See Internal Prusa commands.
  4681. */
  4682. case 98:
  4683. farm_mode = 1;
  4684. PingTime = _millis();
  4685. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4686. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4687. SilentModeMenu = SILENT_MODE_OFF;
  4688. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4689. fCheckModeInit(); // alternatively invoke printer reset
  4690. break;
  4691. /*! ### G99 - Deactivate farm mode <a href="https://reprap.org/wiki/G-code#G99:_Deactivate_farm_mode">G99: Deactivate farm mode</a>
  4692. Disables Prusa-specific Farm functions and g-code.
  4693. */
  4694. case 99:
  4695. farm_mode = 0;
  4696. lcd_printer_connected();
  4697. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4698. lcd_update(2);
  4699. fCheckModeInit(); // alternatively invoke printer reset
  4700. break;
  4701. default:
  4702. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4703. }
  4704. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4705. gcode_in_progress = 0;
  4706. } // end if(code_seen('G'))
  4707. /*!
  4708. ### End of G-Codes
  4709. */
  4710. /*!
  4711. ---------------------------------------------------------------------------------
  4712. # M Commands
  4713. */
  4714. else if(code_seen('M'))
  4715. {
  4716. int index;
  4717. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4718. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4719. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4720. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4721. } else
  4722. {
  4723. mcode_in_progress = (int)code_value();
  4724. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4725. switch(mcode_in_progress)
  4726. {
  4727. /*!
  4728. ### M0, M1 - Stop the printer <a href="https://reprap.org/wiki/G-code#M0:_Stop_or_Unconditional_stop">M0: Stop or Unconditional stop</a>
  4729. */
  4730. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4731. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4732. {
  4733. char *src = strchr_pointer + 2;
  4734. codenum = 0;
  4735. bool hasP = false, hasS = false;
  4736. if (code_seen('P')) {
  4737. codenum = code_value(); // milliseconds to wait
  4738. hasP = codenum > 0;
  4739. }
  4740. if (code_seen('S')) {
  4741. codenum = code_value() * 1000; // seconds to wait
  4742. hasS = codenum > 0;
  4743. }
  4744. starpos = strchr(src, '*');
  4745. if (starpos != NULL) *(starpos) = '\0';
  4746. while (*src == ' ') ++src;
  4747. if (!hasP && !hasS && *src != '\0') {
  4748. lcd_setstatus(src);
  4749. } else {
  4750. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4751. }
  4752. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4753. st_synchronize();
  4754. previous_millis_cmd = _millis();
  4755. if (codenum > 0){
  4756. codenum += _millis(); // keep track of when we started waiting
  4757. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4758. while(_millis() < codenum && !lcd_clicked()){
  4759. manage_heater();
  4760. manage_inactivity(true);
  4761. lcd_update(0);
  4762. }
  4763. KEEPALIVE_STATE(IN_HANDLER);
  4764. lcd_ignore_click(false);
  4765. }else{
  4766. marlin_wait_for_click();
  4767. }
  4768. if (IS_SD_PRINTING)
  4769. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4770. else
  4771. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4772. }
  4773. break;
  4774. /*!
  4775. ### M17 - Enable all axes <a href="https://reprap.org/wiki/G-code#M17:_Enable.2FPower_all_stepper_motors">M17: Enable/Power all stepper motors</a>
  4776. */
  4777. case 17:
  4778. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4779. enable_x();
  4780. enable_y();
  4781. enable_z();
  4782. enable_e0();
  4783. enable_e1();
  4784. enable_e2();
  4785. break;
  4786. #ifdef SDSUPPORT
  4787. /*!
  4788. ### M20 - SD Card file list <a href="https://reprap.org/wiki/G-code#M20:_List_SD_card">M20: List SD card</a>
  4789. */
  4790. case 20:
  4791. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4792. card.ls();
  4793. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4794. break;
  4795. /*!
  4796. ### M21 - Init SD card <a href="https://reprap.org/wiki/G-code#M21:_Initialize_SD_card">M21: Initialize SD card</a>
  4797. */
  4798. case 21:
  4799. card.initsd();
  4800. break;
  4801. /*!
  4802. ### M22 - Release SD card <a href="https://reprap.org/wiki/G-code#M22:_Release_SD_card">M22: Release SD card</a>
  4803. */
  4804. case 22:
  4805. card.release();
  4806. break;
  4807. /*!
  4808. ### M23 - Select file <a href="https://reprap.org/wiki/G-code#M23:_Select_SD_file">M23: Select SD file</a>
  4809. #### Usage
  4810. M23 [filename]
  4811. */
  4812. case 23:
  4813. starpos = (strchr(strchr_pointer + 4,'*'));
  4814. if(starpos!=NULL)
  4815. *(starpos)='\0';
  4816. card.openFile(strchr_pointer + 4,true);
  4817. break;
  4818. /*!
  4819. ### M24 - Start SD print <a href="https://reprap.org/wiki/G-code#M24:_Start.2Fresume_SD_print">M24: Start/resume SD print</a>
  4820. */
  4821. case 24:
  4822. if (isPrintPaused)
  4823. lcd_resume_print();
  4824. else
  4825. {
  4826. if (!card.get_sdpos())
  4827. {
  4828. // A new print has started from scratch, reset stats
  4829. failstats_reset_print();
  4830. #ifndef LA_NOCOMPAT
  4831. la10c_reset();
  4832. #endif
  4833. }
  4834. card.startFileprint();
  4835. starttime=_millis();
  4836. }
  4837. break;
  4838. /*!
  4839. ### M26 - Set SD index <a href="https://reprap.org/wiki/G-code#M26:_Set_SD_position">M26: Set SD position</a>
  4840. Set position in SD card file to index in bytes.
  4841. This command is expected to be called after M23 and before M24.
  4842. Otherwise effect of this command is undefined.
  4843. #### Usage
  4844. M26 [ S ]
  4845. #### Parameters
  4846. - `S` - Index in bytes
  4847. */
  4848. case 26:
  4849. if(card.cardOK && code_seen('S')) {
  4850. long index = code_value_long();
  4851. card.setIndex(index);
  4852. // We don't disable interrupt during update of sdpos_atomic
  4853. // as we expect, that SD card print is not active in this moment
  4854. sdpos_atomic = index;
  4855. }
  4856. break;
  4857. /*!
  4858. ### M27 - Get SD status <a href="https://reprap.org/wiki/G-code#M27:_Report_SD_print_status">M27: Report SD print status</a>
  4859. */
  4860. case 27:
  4861. card.getStatus();
  4862. break;
  4863. /*!
  4864. ### M28 - Start SD write <a href="https://reprap.org/wiki/G-code#M28:_Begin_write_to_SD_card">M28: Begin write to SD card</a>
  4865. */
  4866. case 28:
  4867. starpos = (strchr(strchr_pointer + 4,'*'));
  4868. if(starpos != NULL){
  4869. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4870. strchr_pointer = strchr(npos,' ') + 1;
  4871. *(starpos) = '\0';
  4872. }
  4873. card.openFile(strchr_pointer+4,false);
  4874. break;
  4875. /*! ### M29 - Stop SD write <a href="https://reprap.org/wiki/G-code#M29:_Stop_writing_to_SD_card">M29: Stop writing to SD card</a>
  4876. Stops writing to the SD file signaling the end of the uploaded file. It is processed very early and it's not written to the card.
  4877. */
  4878. case 29:
  4879. //processed in write to file routine above
  4880. //card,saving = false;
  4881. break;
  4882. /*!
  4883. ### M30 - Delete file <a href="https://reprap.org/wiki/G-code#M30:_Delete_a_file_on_the_SD_card">M30: Delete a file on the SD card</a>
  4884. #### Usage
  4885. M30 [filename]
  4886. */
  4887. case 30:
  4888. if (card.cardOK){
  4889. card.closefile();
  4890. starpos = (strchr(strchr_pointer + 4,'*'));
  4891. if(starpos != NULL){
  4892. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4893. strchr_pointer = strchr(npos,' ') + 1;
  4894. *(starpos) = '\0';
  4895. }
  4896. card.removeFile(strchr_pointer + 4);
  4897. }
  4898. break;
  4899. /*!
  4900. ### M32 - Select file and start SD print <a href="https://reprap.org/wiki/G-code#M32:_Select_file_and_start_SD_print">M32: Select file and start SD print</a>
  4901. @todo What are the parameters P and S for in M32?
  4902. */
  4903. case 32:
  4904. {
  4905. if(card.sdprinting) {
  4906. st_synchronize();
  4907. }
  4908. starpos = (strchr(strchr_pointer + 4,'*'));
  4909. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4910. if(namestartpos==NULL)
  4911. {
  4912. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4913. }
  4914. else
  4915. namestartpos++; //to skip the '!'
  4916. if(starpos!=NULL)
  4917. *(starpos)='\0';
  4918. bool call_procedure=(code_seen('P'));
  4919. if(strchr_pointer>namestartpos)
  4920. call_procedure=false; //false alert, 'P' found within filename
  4921. if( card.cardOK )
  4922. {
  4923. card.openFile(namestartpos,true,!call_procedure);
  4924. if(code_seen('S'))
  4925. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4926. card.setIndex(code_value_long());
  4927. card.startFileprint();
  4928. if(!call_procedure)
  4929. {
  4930. if(!card.get_sdpos())
  4931. {
  4932. // A new print has started from scratch, reset stats
  4933. failstats_reset_print();
  4934. #ifndef LA_NOCOMPAT
  4935. la10c_reset();
  4936. #endif
  4937. }
  4938. starttime=_millis(); // procedure calls count as normal print time.
  4939. }
  4940. }
  4941. } break;
  4942. /*!
  4943. ### M928 - Start SD logging <a href="https://reprap.org/wiki/G-code#M928:_Start_SD_logging">M928: Start SD logging</a>
  4944. #### Usage
  4945. M928 [filename]
  4946. */
  4947. case 928:
  4948. starpos = (strchr(strchr_pointer + 5,'*'));
  4949. if(starpos != NULL){
  4950. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4951. strchr_pointer = strchr(npos,' ') + 1;
  4952. *(starpos) = '\0';
  4953. }
  4954. card.openLogFile(strchr_pointer+5);
  4955. break;
  4956. #endif //SDSUPPORT
  4957. /*!
  4958. ### M31 - Report current print time <a href="https://reprap.org/wiki/G-code#M31:_Output_time_since_last_M109_or_SD_card_start_to_serial">M31: Output time since last M109 or SD card start to serial</a>
  4959. */
  4960. case 31: //M31 take time since the start of the SD print or an M109 command
  4961. {
  4962. stoptime=_millis();
  4963. char time[30];
  4964. unsigned long t=(stoptime-starttime)/1000;
  4965. int sec,min;
  4966. min=t/60;
  4967. sec=t%60;
  4968. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4969. SERIAL_ECHO_START;
  4970. SERIAL_ECHOLN(time);
  4971. lcd_setstatus(time);
  4972. autotempShutdown();
  4973. }
  4974. break;
  4975. /*!
  4976. ### M42 - Set pin state <a href="https://reprap.org/wiki/G-code#M42:_Switch_I.2FO_pin">M42: Switch I/O pin</a>
  4977. #### Usage
  4978. M42 [ P | S ]
  4979. #### Parameters
  4980. - `P` - Pin number.
  4981. - `S` - Pin value. If the pin is analog, values are from 0 to 255. If the pin is digital, values are from 0 to 1.
  4982. */
  4983. case 42:
  4984. if (code_seen('S'))
  4985. {
  4986. int pin_status = code_value();
  4987. int pin_number = LED_PIN;
  4988. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4989. pin_number = code_value();
  4990. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4991. {
  4992. if (sensitive_pins[i] == pin_number)
  4993. {
  4994. pin_number = -1;
  4995. break;
  4996. }
  4997. }
  4998. #if defined(FAN_PIN) && FAN_PIN > -1
  4999. if (pin_number == FAN_PIN)
  5000. fanSpeed = pin_status;
  5001. #endif
  5002. if (pin_number > -1)
  5003. {
  5004. pinMode(pin_number, OUTPUT);
  5005. digitalWrite(pin_number, pin_status);
  5006. analogWrite(pin_number, pin_status);
  5007. }
  5008. }
  5009. break;
  5010. /*!
  5011. ### M44 - Reset the bed skew and offset calibration <a href="https://reprap.org/wiki/G-code#M44:_Reset_the_bed_skew_and_offset_calibration">M44: Reset the bed skew and offset calibration</a>
  5012. */
  5013. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  5014. // Reset the baby step value and the baby step applied flag.
  5015. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  5016. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  5017. // Reset the skew and offset in both RAM and EEPROM.
  5018. reset_bed_offset_and_skew();
  5019. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  5020. // the planner will not perform any adjustments in the XY plane.
  5021. // Wait for the motors to stop and update the current position with the absolute values.
  5022. world2machine_revert_to_uncorrected();
  5023. break;
  5024. /*!
  5025. ### M45 - Bed skew and offset with manual Z up <a href="https://reprap.org/wiki/G-code#M45:_Bed_skew_and_offset_with_manual_Z_up">M45: Bed skew and offset with manual Z up</a>
  5026. #### Usage
  5027. M45 [ V ]
  5028. #### Parameters
  5029. - `V` - Verbosity level 1, 10 and 20 (low, mid, high). Only when SUPPORT_VERBOSITY is defined. Optional.
  5030. - `Z` - If it is provided, only Z calibration will run. Otherwise full calibration is executed.
  5031. */
  5032. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  5033. {
  5034. int8_t verbosity_level = 0;
  5035. bool only_Z = code_seen('Z');
  5036. #ifdef SUPPORT_VERBOSITY
  5037. if (code_seen('V'))
  5038. {
  5039. // Just 'V' without a number counts as V1.
  5040. char c = strchr_pointer[1];
  5041. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5042. }
  5043. #endif //SUPPORT_VERBOSITY
  5044. gcode_M45(only_Z, verbosity_level);
  5045. }
  5046. break;
  5047. /*!
  5048. ### M46 - Show the assigned IP address <a href="https://reprap.org/wiki/G-code#M46:_Show_the_assigned_IP_address">M46: Show the assigned IP address.</a>
  5049. */
  5050. /*
  5051. case 46:
  5052. {
  5053. // M46: Prusa3D: Show the assigned IP address.
  5054. uint8_t ip[4];
  5055. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  5056. if (hasIP) {
  5057. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  5058. SERIAL_ECHO(int(ip[0]));
  5059. SERIAL_ECHOPGM(".");
  5060. SERIAL_ECHO(int(ip[1]));
  5061. SERIAL_ECHOPGM(".");
  5062. SERIAL_ECHO(int(ip[2]));
  5063. SERIAL_ECHOPGM(".");
  5064. SERIAL_ECHO(int(ip[3]));
  5065. SERIAL_ECHOLNPGM("");
  5066. } else {
  5067. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  5068. }
  5069. break;
  5070. }
  5071. */
  5072. /*!
  5073. ### M47 - Show end stops dialog on the display <a href="https://reprap.org/wiki/G-code#M47:_Show_end_stops_dialog_on_the_display">M47: Show end stops dialog on the display</a>
  5074. */
  5075. case 47:
  5076. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5077. lcd_diag_show_end_stops();
  5078. KEEPALIVE_STATE(IN_HANDLER);
  5079. break;
  5080. #if 0
  5081. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  5082. {
  5083. // Disable the default update procedure of the display. We will do a modal dialog.
  5084. lcd_update_enable(false);
  5085. // Let the planner use the uncorrected coordinates.
  5086. mbl.reset();
  5087. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  5088. // the planner will not perform any adjustments in the XY plane.
  5089. // Wait for the motors to stop and update the current position with the absolute values.
  5090. world2machine_revert_to_uncorrected();
  5091. // Move the print head close to the bed.
  5092. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5093. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5094. st_synchronize();
  5095. // Home in the XY plane.
  5096. set_destination_to_current();
  5097. int l_feedmultiply = setup_for_endstop_move();
  5098. home_xy();
  5099. int8_t verbosity_level = 0;
  5100. if (code_seen('V')) {
  5101. // Just 'V' without a number counts as V1.
  5102. char c = strchr_pointer[1];
  5103. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5104. }
  5105. bool success = scan_bed_induction_points(verbosity_level);
  5106. clean_up_after_endstop_move(l_feedmultiply);
  5107. // Print head up.
  5108. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5109. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5110. st_synchronize();
  5111. lcd_update_enable(true);
  5112. break;
  5113. }
  5114. #endif
  5115. #ifdef ENABLE_AUTO_BED_LEVELING
  5116. #ifdef Z_PROBE_REPEATABILITY_TEST
  5117. /*!
  5118. ### M48 - Z-Probe repeatability measurement function <a href="https://reprap.org/wiki/G-code#M48:_Measure_Z-Probe_repeatability">M48: Measure Z-Probe repeatability</a>
  5119. This function assumes the bed has been homed. Specifically, that a G28 command as been issued prior to invoking the M48 Z-Probe repeatability measurement function. Any information generated by a prior G29 Bed leveling command will be lost and needs to be regenerated.
  5120. The number of samples will default to 10 if not specified. You can use upper or lower case letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital N for its communication protocol and will get horribly confused if you send it a capital N.
  5121. @todo Why would you check for both uppercase and lowercase? Seems wasteful.
  5122. #### Usage
  5123. M48 [ n | X | Y | V | L ]
  5124. #### Parameters
  5125. - `n` - Number of samples. Valid values 4-50
  5126. - `X` - X position for samples
  5127. - `Y` - Y position for samples
  5128. - `V` - Verbose level. Valid values 1-4
  5129. - `L` - Legs of movementprior to doing probe. Valid values 1-15
  5130. */
  5131. case 48: // M48 Z-Probe repeatability
  5132. {
  5133. #if Z_MIN_PIN == -1
  5134. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  5135. #endif
  5136. double sum=0.0;
  5137. double mean=0.0;
  5138. double sigma=0.0;
  5139. double sample_set[50];
  5140. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  5141. double X_current, Y_current, Z_current;
  5142. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  5143. if (code_seen('V') || code_seen('v')) {
  5144. verbose_level = code_value();
  5145. if (verbose_level<0 || verbose_level>4 ) {
  5146. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  5147. goto Sigma_Exit;
  5148. }
  5149. }
  5150. if (verbose_level > 0) {
  5151. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  5152. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  5153. }
  5154. if (code_seen('n')) {
  5155. n_samples = code_value();
  5156. if (n_samples<4 || n_samples>50 ) {
  5157. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  5158. goto Sigma_Exit;
  5159. }
  5160. }
  5161. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  5162. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  5163. Z_current = st_get_position_mm(Z_AXIS);
  5164. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5165. ext_position = st_get_position_mm(E_AXIS);
  5166. if (code_seen('X') || code_seen('x') ) {
  5167. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  5168. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  5169. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  5170. goto Sigma_Exit;
  5171. }
  5172. }
  5173. if (code_seen('Y') || code_seen('y') ) {
  5174. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  5175. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  5176. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  5177. goto Sigma_Exit;
  5178. }
  5179. }
  5180. if (code_seen('L') || code_seen('l') ) {
  5181. n_legs = code_value();
  5182. if ( n_legs==1 )
  5183. n_legs = 2;
  5184. if ( n_legs<0 || n_legs>15 ) {
  5185. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  5186. goto Sigma_Exit;
  5187. }
  5188. }
  5189. //
  5190. // Do all the preliminary setup work. First raise the probe.
  5191. //
  5192. st_synchronize();
  5193. plan_bed_level_matrix.set_to_identity();
  5194. plan_buffer_line( X_current, Y_current, Z_start_location,
  5195. ext_position,
  5196. homing_feedrate[Z_AXIS]/60,
  5197. active_extruder);
  5198. st_synchronize();
  5199. //
  5200. // Now get everything to the specified probe point So we can safely do a probe to
  5201. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  5202. // use that as a starting point for each probe.
  5203. //
  5204. if (verbose_level > 2)
  5205. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  5206. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5207. ext_position,
  5208. homing_feedrate[X_AXIS]/60,
  5209. active_extruder);
  5210. st_synchronize();
  5211. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  5212. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  5213. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5214. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  5215. //
  5216. // OK, do the inital probe to get us close to the bed.
  5217. // Then retrace the right amount and use that in subsequent probes
  5218. //
  5219. int l_feedmultiply = setup_for_endstop_move();
  5220. run_z_probe();
  5221. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5222. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5223. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5224. ext_position,
  5225. homing_feedrate[X_AXIS]/60,
  5226. active_extruder);
  5227. st_synchronize();
  5228. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5229. for( n=0; n<n_samples; n++) {
  5230. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  5231. if ( n_legs) {
  5232. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  5233. int rotational_direction, l;
  5234. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  5235. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  5236. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  5237. //SERIAL_ECHOPAIR("starting radius: ",radius);
  5238. //SERIAL_ECHOPAIR(" theta: ",theta);
  5239. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  5240. //SERIAL_PROTOCOLLNPGM("");
  5241. for( l=0; l<n_legs-1; l++) {
  5242. if (rotational_direction==1)
  5243. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5244. else
  5245. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5246. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  5247. if ( radius<0.0 )
  5248. radius = -radius;
  5249. X_current = X_probe_location + cos(theta) * radius;
  5250. Y_current = Y_probe_location + sin(theta) * radius;
  5251. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  5252. X_current = X_MIN_POS;
  5253. if ( X_current>X_MAX_POS)
  5254. X_current = X_MAX_POS;
  5255. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  5256. Y_current = Y_MIN_POS;
  5257. if ( Y_current>Y_MAX_POS)
  5258. Y_current = Y_MAX_POS;
  5259. if (verbose_level>3 ) {
  5260. SERIAL_ECHOPAIR("x: ", X_current);
  5261. SERIAL_ECHOPAIR("y: ", Y_current);
  5262. SERIAL_PROTOCOLLNPGM("");
  5263. }
  5264. do_blocking_move_to( X_current, Y_current, Z_current );
  5265. }
  5266. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5267. }
  5268. int l_feedmultiply = setup_for_endstop_move();
  5269. run_z_probe();
  5270. sample_set[n] = current_position[Z_AXIS];
  5271. //
  5272. // Get the current mean for the data points we have so far
  5273. //
  5274. sum=0.0;
  5275. for( j=0; j<=n; j++) {
  5276. sum = sum + sample_set[j];
  5277. }
  5278. mean = sum / (double (n+1));
  5279. //
  5280. // Now, use that mean to calculate the standard deviation for the
  5281. // data points we have so far
  5282. //
  5283. sum=0.0;
  5284. for( j=0; j<=n; j++) {
  5285. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5286. }
  5287. sigma = sqrt( sum / (double (n+1)) );
  5288. if (verbose_level > 1) {
  5289. SERIAL_PROTOCOL(n+1);
  5290. SERIAL_PROTOCOL(" of ");
  5291. SERIAL_PROTOCOL(n_samples);
  5292. SERIAL_PROTOCOLPGM(" z: ");
  5293. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5294. }
  5295. if (verbose_level > 2) {
  5296. SERIAL_PROTOCOL(" mean: ");
  5297. SERIAL_PROTOCOL_F(mean,6);
  5298. SERIAL_PROTOCOL(" sigma: ");
  5299. SERIAL_PROTOCOL_F(sigma,6);
  5300. }
  5301. if (verbose_level > 0)
  5302. SERIAL_PROTOCOLPGM("\n");
  5303. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5304. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5305. st_synchronize();
  5306. }
  5307. _delay(1000);
  5308. clean_up_after_endstop_move(l_feedmultiply);
  5309. // enable_endstops(true);
  5310. if (verbose_level > 0) {
  5311. SERIAL_PROTOCOLPGM("Mean: ");
  5312. SERIAL_PROTOCOL_F(mean, 6);
  5313. SERIAL_PROTOCOLPGM("\n");
  5314. }
  5315. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5316. SERIAL_PROTOCOL_F(sigma, 6);
  5317. SERIAL_PROTOCOLPGM("\n\n");
  5318. Sigma_Exit:
  5319. break;
  5320. }
  5321. #endif // Z_PROBE_REPEATABILITY_TEST
  5322. #endif // ENABLE_AUTO_BED_LEVELING
  5323. /*!
  5324. ### M73 - Set/get print progress <a href="https://reprap.org/wiki/G-code#M73:_Set.2FGet_build_percentage">M73: Set/Get build percentage</a>
  5325. #### Usage
  5326. M73 [ P | R | Q | S ]
  5327. #### Parameters
  5328. - `P` - Percent in normal mode
  5329. - `R` - Time remaining in normal mode
  5330. - `Q` - Percent in silent mode
  5331. - `S` - Time in silent mode
  5332. */
  5333. case 73: //M73 show percent done and time remaining
  5334. if(code_seen('P')) print_percent_done_normal = code_value();
  5335. if(code_seen('R')) print_time_remaining_normal = code_value();
  5336. if(code_seen('Q')) print_percent_done_silent = code_value();
  5337. if(code_seen('S')) print_time_remaining_silent = code_value();
  5338. {
  5339. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  5340. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  5341. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  5342. }
  5343. break;
  5344. /*!
  5345. ### M104 - Set hotend temperature <a href="https://reprap.org/wiki/G-code#M104:_Set_Extruder_Temperature">M104: Set Extruder Temperature</a>
  5346. #### Usage
  5347. M104 [ S ]
  5348. #### Parameters
  5349. - `S` - Target temperature
  5350. */
  5351. case 104: // M104
  5352. {
  5353. uint8_t extruder;
  5354. if(setTargetedHotend(104,extruder)){
  5355. break;
  5356. }
  5357. if (code_seen('S'))
  5358. {
  5359. setTargetHotendSafe(code_value(), extruder);
  5360. }
  5361. break;
  5362. }
  5363. /*!
  5364. ### M112 - Emergency stop <a href="https://reprap.org/wiki/G-code#M112:_Full_.28Emergency.29_Stop">M112: Full (Emergency) Stop</a>
  5365. It is processed much earlier as to bypass the cmdqueue.
  5366. */
  5367. case 112:
  5368. kill(MSG_M112_KILL, 3);
  5369. break;
  5370. /*!
  5371. ### M140 - Set bed temperature <a href="https://reprap.org/wiki/G-code#M140:_Set_Bed_Temperature_.28Fast.29">M140: Set Bed Temperature (Fast)</a>
  5372. #### Usage
  5373. M140 [ S ]
  5374. #### Parameters
  5375. - `S` - Target temperature
  5376. */
  5377. case 140:
  5378. if (code_seen('S')) setTargetBed(code_value());
  5379. break;
  5380. /*!
  5381. ### M105 - Report temperatures <a href="https://reprap.org/wiki/G-code#M105:_Get_Extruder_Temperature">M105: Get Extruder Temperature</a>
  5382. Prints temperatures:
  5383. - `T:` - Hotend (actual / target)
  5384. - `B:` - Bed (actual / target)
  5385. - `Tx:` - x Tool (actual / target)
  5386. - `@:` - Hotend power
  5387. - `B@:` - Bed power
  5388. - `P:` - PINDAv2 actual (only MK2.5/s and MK3/s)
  5389. - `A:` - Ambient actual (only MK3/s)
  5390. _Example:_
  5391. ok T:20.2 /0.0 B:19.1 /0.0 T0:20.2 /0.0 @:0 B@:0 P:19.8 A:26.4
  5392. */
  5393. case 105:
  5394. {
  5395. uint8_t extruder;
  5396. if(setTargetedHotend(105, extruder)){
  5397. break;
  5398. }
  5399. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  5400. SERIAL_PROTOCOLPGM("ok T:");
  5401. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  5402. SERIAL_PROTOCOLPGM(" /");
  5403. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  5404. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5405. SERIAL_PROTOCOLPGM(" B:");
  5406. SERIAL_PROTOCOL_F(degBed(),1);
  5407. SERIAL_PROTOCOLPGM(" /");
  5408. SERIAL_PROTOCOL_F(degTargetBed(),1);
  5409. #endif //TEMP_BED_PIN
  5410. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5411. SERIAL_PROTOCOLPGM(" T");
  5412. SERIAL_PROTOCOL(cur_extruder);
  5413. SERIAL_PROTOCOL(':');
  5414. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5415. SERIAL_PROTOCOLPGM(" /");
  5416. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  5417. }
  5418. #else
  5419. SERIAL_ERROR_START;
  5420. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  5421. #endif
  5422. SERIAL_PROTOCOLPGM(" @:");
  5423. #ifdef EXTRUDER_WATTS
  5424. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  5425. SERIAL_PROTOCOLPGM("W");
  5426. #else
  5427. SERIAL_PROTOCOL(getHeaterPower(extruder));
  5428. #endif
  5429. SERIAL_PROTOCOLPGM(" B@:");
  5430. #ifdef BED_WATTS
  5431. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  5432. SERIAL_PROTOCOLPGM("W");
  5433. #else
  5434. SERIAL_PROTOCOL(getHeaterPower(-1));
  5435. #endif
  5436. #ifdef PINDA_THERMISTOR
  5437. SERIAL_PROTOCOLPGM(" P:");
  5438. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  5439. #endif //PINDA_THERMISTOR
  5440. #ifdef AMBIENT_THERMISTOR
  5441. SERIAL_PROTOCOLPGM(" A:");
  5442. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  5443. #endif //AMBIENT_THERMISTOR
  5444. #ifdef SHOW_TEMP_ADC_VALUES
  5445. {float raw = 0.0;
  5446. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5447. SERIAL_PROTOCOLPGM(" ADC B:");
  5448. SERIAL_PROTOCOL_F(degBed(),1);
  5449. SERIAL_PROTOCOLPGM("C->");
  5450. raw = rawBedTemp();
  5451. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5452. SERIAL_PROTOCOLPGM(" Rb->");
  5453. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5454. SERIAL_PROTOCOLPGM(" Rxb->");
  5455. SERIAL_PROTOCOL_F(raw, 5);
  5456. #endif
  5457. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5458. SERIAL_PROTOCOLPGM(" T");
  5459. SERIAL_PROTOCOL(cur_extruder);
  5460. SERIAL_PROTOCOLPGM(":");
  5461. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5462. SERIAL_PROTOCOLPGM("C->");
  5463. raw = rawHotendTemp(cur_extruder);
  5464. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5465. SERIAL_PROTOCOLPGM(" Rt");
  5466. SERIAL_PROTOCOL(cur_extruder);
  5467. SERIAL_PROTOCOLPGM("->");
  5468. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5469. SERIAL_PROTOCOLPGM(" Rx");
  5470. SERIAL_PROTOCOL(cur_extruder);
  5471. SERIAL_PROTOCOLPGM("->");
  5472. SERIAL_PROTOCOL_F(raw, 5);
  5473. }}
  5474. #endif
  5475. SERIAL_PROTOCOLLN("");
  5476. KEEPALIVE_STATE(NOT_BUSY);
  5477. return;
  5478. break;
  5479. }
  5480. /*!
  5481. ### M109 - Wait for extruder temperature <a href="https://reprap.org/wiki/G-code#M109:_Set_Extruder_Temperature_and_Wait">M109: Set Extruder Temperature and Wait</a>
  5482. #### Usage
  5483. M104 [ B | R | S ]
  5484. #### Parameters (not mandatory)
  5485. - `S` - Set extruder temperature
  5486. - `R` - Set extruder temperature
  5487. - `B` - Set max. extruder temperature, while `S` is min. temperature. Not active in default, only if AUTOTEMP is defined in source code.
  5488. Parameters S and R are treated identically.
  5489. Command always waits for both cool down and heat up.
  5490. If no parameters are supplied waits for previously set extruder temperature.
  5491. */
  5492. case 109:
  5493. {
  5494. uint8_t extruder;
  5495. if(setTargetedHotend(109, extruder)){
  5496. break;
  5497. }
  5498. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5499. heating_status = 1;
  5500. if (farm_mode) { prusa_statistics(1); };
  5501. #ifdef AUTOTEMP
  5502. autotemp_enabled=false;
  5503. #endif
  5504. if (code_seen('S')) {
  5505. setTargetHotendSafe(code_value(), extruder);
  5506. } else if (code_seen('R')) {
  5507. setTargetHotendSafe(code_value(), extruder);
  5508. }
  5509. #ifdef AUTOTEMP
  5510. if (code_seen('S')) autotemp_min=code_value();
  5511. if (code_seen('B')) autotemp_max=code_value();
  5512. if (code_seen('F'))
  5513. {
  5514. autotemp_factor=code_value();
  5515. autotemp_enabled=true;
  5516. }
  5517. #endif
  5518. codenum = _millis();
  5519. /* See if we are heating up or cooling down */
  5520. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5521. KEEPALIVE_STATE(NOT_BUSY);
  5522. cancel_heatup = false;
  5523. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5524. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5525. KEEPALIVE_STATE(IN_HANDLER);
  5526. heating_status = 2;
  5527. if (farm_mode) { prusa_statistics(2); };
  5528. //starttime=_millis();
  5529. previous_millis_cmd = _millis();
  5530. }
  5531. break;
  5532. /*!
  5533. ### M190 - Wait for bed temperature <a href="https://reprap.org/wiki/G-code#M190:_Wait_for_bed_temperature_to_reach_target_temp">M190: Wait for bed temperature to reach target temp</a>
  5534. #### Usage
  5535. M190 [ R | S ]
  5536. #### Parameters (not mandatory)
  5537. - `S` - Set extruder temperature and wait for heating
  5538. - `R` - Set extruder temperature and wait for heating or cooling
  5539. If no parameter is supplied, waits for heating or cooling to previously set temperature.
  5540. */
  5541. case 190:
  5542. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5543. {
  5544. bool CooldownNoWait = false;
  5545. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5546. heating_status = 3;
  5547. if (farm_mode) { prusa_statistics(1); };
  5548. if (code_seen('S'))
  5549. {
  5550. setTargetBed(code_value());
  5551. CooldownNoWait = true;
  5552. }
  5553. else if (code_seen('R'))
  5554. {
  5555. setTargetBed(code_value());
  5556. }
  5557. codenum = _millis();
  5558. cancel_heatup = false;
  5559. target_direction = isHeatingBed(); // true if heating, false if cooling
  5560. KEEPALIVE_STATE(NOT_BUSY);
  5561. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5562. {
  5563. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5564. {
  5565. if (!farm_mode) {
  5566. float tt = degHotend(active_extruder);
  5567. SERIAL_PROTOCOLPGM("T:");
  5568. SERIAL_PROTOCOL(tt);
  5569. SERIAL_PROTOCOLPGM(" E:");
  5570. SERIAL_PROTOCOL((int)active_extruder);
  5571. SERIAL_PROTOCOLPGM(" B:");
  5572. SERIAL_PROTOCOL_F(degBed(), 1);
  5573. SERIAL_PROTOCOLLN("");
  5574. }
  5575. codenum = _millis();
  5576. }
  5577. manage_heater();
  5578. manage_inactivity();
  5579. lcd_update(0);
  5580. }
  5581. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5582. KEEPALIVE_STATE(IN_HANDLER);
  5583. heating_status = 4;
  5584. previous_millis_cmd = _millis();
  5585. }
  5586. #endif
  5587. break;
  5588. #if defined(FAN_PIN) && FAN_PIN > -1
  5589. /*!
  5590. ### M106 - Set fan speed <a href="https://reprap.org/wiki/G-code#M106:_Fan_On">M106: Fan On</a>
  5591. #### Usage
  5592. M106 [ S ]
  5593. #### Parameters
  5594. - `S` - Specifies the duty cycle of the print fan. Allowed values are 0-255. If it's omitted, a value of 255 is used.
  5595. */
  5596. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5597. if (code_seen('S')){
  5598. fanSpeed=constrain(code_value(),0,255);
  5599. }
  5600. else {
  5601. fanSpeed=255;
  5602. }
  5603. break;
  5604. /*!
  5605. ### M107 - Fan off <a href="https://reprap.org/wiki/G-code#M107:_Fan_Off">M107: Fan Off</a>
  5606. */
  5607. case 107:
  5608. fanSpeed = 0;
  5609. break;
  5610. #endif //FAN_PIN
  5611. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5612. /*!
  5613. ### M80 - Turn on the Power Supply <a href="https://reprap.org/wiki/G-code#M80:_ATX_Power_On">M80: ATX Power On</a>
  5614. Only works if the firmware is compiled with PS_ON_PIN defined.
  5615. */
  5616. case 80:
  5617. SET_OUTPUT(PS_ON_PIN); //GND
  5618. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5619. // If you have a switch on suicide pin, this is useful
  5620. // if you want to start another print with suicide feature after
  5621. // a print without suicide...
  5622. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5623. SET_OUTPUT(SUICIDE_PIN);
  5624. WRITE(SUICIDE_PIN, HIGH);
  5625. #endif
  5626. powersupply = true;
  5627. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5628. lcd_update(0);
  5629. break;
  5630. /*!
  5631. ### M81 - Turn off Power Supply <a href="https://reprap.org/wiki/G-code#M81:_ATX_Power_Off">M81: ATX Power Off</a>
  5632. Only works if the firmware is compiled with PS_ON_PIN defined.
  5633. */
  5634. case 81:
  5635. disable_heater();
  5636. st_synchronize();
  5637. disable_e0();
  5638. disable_e1();
  5639. disable_e2();
  5640. finishAndDisableSteppers();
  5641. fanSpeed = 0;
  5642. _delay(1000); // Wait a little before to switch off
  5643. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5644. st_synchronize();
  5645. suicide();
  5646. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5647. SET_OUTPUT(PS_ON_PIN);
  5648. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5649. #endif
  5650. powersupply = false;
  5651. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5652. lcd_update(0);
  5653. break;
  5654. #endif
  5655. /*!
  5656. ### M82 - Set E axis to absolute mode <a href="https://reprap.org/wiki/G-code#M82:_Set_extruder_to_absolute_mode">M82: Set extruder to absolute mode</a>
  5657. Makes the extruder interpret extrusion as absolute positions.
  5658. */
  5659. case 82:
  5660. axis_relative_modes &= ~E_AXIS_MASK;
  5661. break;
  5662. /*!
  5663. ### M83 - Set E axis to relative mode <a href="https://reprap.org/wiki/G-code#M83:_Set_extruder_to_relative_mode">M83: Set extruder to relative mode</a>
  5664. Makes the extruder interpret extrusion values as relative positions.
  5665. */
  5666. case 83:
  5667. axis_relative_modes |= E_AXIS_MASK;
  5668. break;
  5669. /*!
  5670. ### M84 - Disable steppers <a href="https://reprap.org/wiki/G-code#M84:_Stop_idle_hold">M84: Stop idle hold</a>
  5671. This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5672. This command can be used without any additional parameters. In that case all steppers are disabled.
  5673. The file completeness check uses this parameter to detect an incomplete file. It has to be present at the end of a file with no parameters.
  5674. M84 [ S | X | Y | Z | E ]
  5675. - `S` - Seconds
  5676. - `X` - X axis
  5677. - `Y` - Y axis
  5678. - `Z` - Z axis
  5679. - `E` - Exruder
  5680. ### M18 - Disable steppers <a href="https://reprap.org/wiki/G-code#M18:_Disable_all_stepper_motors">M18: Disable all stepper motors</a>
  5681. Equal to M84 (compatibility)
  5682. */
  5683. case 18: //compatibility
  5684. case 84: // M84
  5685. if(code_seen('S')){
  5686. stepper_inactive_time = code_value() * 1000;
  5687. }
  5688. else
  5689. {
  5690. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5691. if(all_axis)
  5692. {
  5693. st_synchronize();
  5694. disable_e0();
  5695. disable_e1();
  5696. disable_e2();
  5697. finishAndDisableSteppers();
  5698. }
  5699. else
  5700. {
  5701. st_synchronize();
  5702. if (code_seen('X')) disable_x();
  5703. if (code_seen('Y')) disable_y();
  5704. if (code_seen('Z')) disable_z();
  5705. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5706. if (code_seen('E')) {
  5707. disable_e0();
  5708. disable_e1();
  5709. disable_e2();
  5710. }
  5711. #endif
  5712. }
  5713. }
  5714. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5715. print_time_remaining_init();
  5716. snmm_filaments_used = 0;
  5717. break;
  5718. /*!
  5719. ### M85 - Set max inactive time <a href="https://reprap.org/wiki/G-code#M85:_Set_Inactivity_Shutdown_Timer">M85: Set Inactivity Shutdown Timer</a>
  5720. #### Usage
  5721. M85 [ S ]
  5722. #### Parameters
  5723. - `S` - specifies the time in seconds. If a value of 0 is specified, the timer is disabled.
  5724. */
  5725. case 85: // M85
  5726. if(code_seen('S')) {
  5727. max_inactive_time = code_value() * 1000;
  5728. }
  5729. break;
  5730. #ifdef SAFETYTIMER
  5731. /*!
  5732. ### M86 - Set safety timer expiration time <a href="https://reprap.org/wiki/G-code#M86:_Set_Safety_Timer_expiration_time">M86: Set Safety Timer expiration time</a>
  5733. When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5734. #### Usage
  5735. M86 [ S ]
  5736. #### Parameters
  5737. - `S` - specifies the time in seconds. If a value of 0 is specified, the timer is disabled.
  5738. */
  5739. case 86:
  5740. if (code_seen('S')) {
  5741. safetytimer_inactive_time = code_value() * 1000;
  5742. safetyTimer.start();
  5743. }
  5744. break;
  5745. #endif
  5746. /*!
  5747. ### M92 Set Axis steps-per-unit <a href="https://reprap.org/wiki/G-code#M92:_Set_axis_steps_per_unit">M92: Set axis_steps_per_unit</a>
  5748. Allows programming of steps per unit (usually mm) for motor drives. These values are reset to firmware defaults on power on, unless saved to EEPROM if available (M500 in Marlin)
  5749. #### Usage
  5750. M92 [ X | Y | Z | E ]
  5751. #### Parameters
  5752. - `X` - Steps per unit for the X drive
  5753. - `Y` - Steps per unit for the Y drive
  5754. - `Z` - Steps per unit for the Z drive
  5755. - `E` - Steps per unit for the extruder drive
  5756. */
  5757. case 92:
  5758. for(int8_t i=0; i < NUM_AXIS; i++)
  5759. {
  5760. if(code_seen(axis_codes[i]))
  5761. {
  5762. if(i == E_AXIS) { // E
  5763. float value = code_value();
  5764. if(value < 20.0) {
  5765. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5766. cs.max_jerk[E_AXIS] *= factor;
  5767. max_feedrate[i] *= factor;
  5768. axis_steps_per_sqr_second[i] *= factor;
  5769. }
  5770. cs.axis_steps_per_unit[i] = value;
  5771. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  5772. fsensor_set_axis_steps_per_unit(value);
  5773. #endif
  5774. }
  5775. else {
  5776. cs.axis_steps_per_unit[i] = code_value();
  5777. }
  5778. }
  5779. }
  5780. break;
  5781. /*!
  5782. ### M110 - Set Line number <a href="https://reprap.org/wiki/G-code#M110:_Set_Current_Line_Number">M110: Set Current Line Number</a>
  5783. Sets the line number in G-code
  5784. #### Usage
  5785. M110 [ N ]
  5786. #### Parameters
  5787. - `N` - Line number
  5788. */
  5789. case 110:
  5790. if (code_seen('N'))
  5791. gcode_LastN = code_value_long();
  5792. break;
  5793. /*!
  5794. ### M113 - Get or set host keep-alive interval <a href="https://reprap.org/wiki/G-code#M113:_Host_Keepalive">M113: Host Keepalive</a>
  5795. During some lengthy processes, such as G29, Marlin may appear to the host to have “gone away.” The “host keepalive” feature will send messages to the host when Marlin is busy or waiting for user response so the host won’t try to reconnect (or disconnect).
  5796. #### Usage
  5797. M113 [ S ]
  5798. #### Parameters
  5799. - `S` - Seconds. Default is 2 seconds between "busy" messages
  5800. */
  5801. case 113:
  5802. if (code_seen('S')) {
  5803. host_keepalive_interval = (uint8_t)code_value_short();
  5804. // NOMORE(host_keepalive_interval, 60);
  5805. }
  5806. else {
  5807. SERIAL_ECHO_START;
  5808. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5809. SERIAL_PROTOCOLLN("");
  5810. }
  5811. break;
  5812. /*!
  5813. ### M115 - Firmware info <a href="https://reprap.org/wiki/G-code#M115:_Get_Firmware_Version_and_Capabilities">M115: Get Firmware Version and Capabilities</a>
  5814. Print the firmware info and capabilities
  5815. Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5816. `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware, it will pause the print for 30s and ask the user to upgrade the firmware.
  5817. _Examples:_
  5818. `M115` results:
  5819. `FIRMWARE_NAME:Prusa-Firmware 3.8.1 based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:1.0 MACHINE_TYPE:Prusa i3 MK3S EXTRUDER_COUNT:1 UUID:00000000-0000-0000-0000-000000000000`
  5820. `M115 V` results:
  5821. `3.8.1`
  5822. `M115 U3.8.2-RC1` results on LCD display for 30s or user interaction:
  5823. `New firmware version available: 3.8.2-RC1 Please upgrade.`
  5824. #### Usage
  5825. M115 [ V | U ]
  5826. #### Parameters
  5827. - V - Report current installed firmware version
  5828. - U - Firmware version provided by G-code to be compared to current one.
  5829. */
  5830. case 115: // M115
  5831. if (code_seen('V')) {
  5832. // Report the Prusa version number.
  5833. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5834. } else if (code_seen('U')) {
  5835. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5836. // pause the print for 30s and ask the user to upgrade the firmware.
  5837. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5838. } else {
  5839. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5840. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5841. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5842. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5843. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5844. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5845. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5846. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5847. SERIAL_ECHOPGM(" UUID:");
  5848. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5849. }
  5850. break;
  5851. /*!
  5852. ### M114 - Get current position <a href="https://reprap.org/wiki/G-code#M114:_Get_Current_Position">M114: Get Current Position</a>
  5853. */
  5854. case 114:
  5855. gcode_M114();
  5856. break;
  5857. /*
  5858. M117 moved up to get the high priority
  5859. case 117: // M117 display message
  5860. starpos = (strchr(strchr_pointer + 5,'*'));
  5861. if(starpos!=NULL)
  5862. *(starpos)='\0';
  5863. lcd_setstatus(strchr_pointer + 5);
  5864. break;*/
  5865. /*!
  5866. ### M120 - Enable endstops <a href="https://reprap.org/wiki/G-code#M120:_Enable_endstop_detection">M120: Enable endstop detection</a>
  5867. */
  5868. case 120:
  5869. enable_endstops(false) ;
  5870. break;
  5871. /*!
  5872. ### M121 - Disable endstops <a href="https://reprap.org/wiki/G-code#M121:_Disable_endstop_detection">M121: Disable endstop detection</a>
  5873. */
  5874. case 121:
  5875. enable_endstops(true) ;
  5876. break;
  5877. /*!
  5878. ### M119 - Get endstop states <a href="https://reprap.org/wiki/G-code#M119:_Get_Endstop_Status">M119: Get Endstop Status</a>
  5879. Returns the current state of the configured X, Y, Z endstops. Takes into account any 'inverted endstop' settings, so one can confirm that the machine is interpreting the endstops correctly.
  5880. */
  5881. case 119:
  5882. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5883. SERIAL_PROTOCOLLN("");
  5884. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5885. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5886. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5887. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5888. }else{
  5889. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5890. }
  5891. SERIAL_PROTOCOLLN("");
  5892. #endif
  5893. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5894. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5895. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5896. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5897. }else{
  5898. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5899. }
  5900. SERIAL_PROTOCOLLN("");
  5901. #endif
  5902. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5903. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5904. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5905. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5906. }else{
  5907. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5908. }
  5909. SERIAL_PROTOCOLLN("");
  5910. #endif
  5911. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5912. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5913. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5914. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5915. }else{
  5916. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5917. }
  5918. SERIAL_PROTOCOLLN("");
  5919. #endif
  5920. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5921. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5922. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5923. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5924. }else{
  5925. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5926. }
  5927. SERIAL_PROTOCOLLN("");
  5928. #endif
  5929. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5930. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5931. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5932. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5933. }else{
  5934. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5935. }
  5936. SERIAL_PROTOCOLLN("");
  5937. #endif
  5938. break;
  5939. //!@todo update for all axes, use for loop
  5940. #ifdef BLINKM
  5941. /*!
  5942. ### M150 - Set RGB(W) Color <a href="https://reprap.org/wiki/G-code#M150:_Set_LED_color">M150: Set LED color</a>
  5943. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code by defining BLINKM and its dependencies.
  5944. #### Usage
  5945. M150 [ R | U | B ]
  5946. #### Parameters
  5947. - `R` - Red color value
  5948. - `U` - Green color value. It is NOT `G`!
  5949. - `B` - Blue color value
  5950. */
  5951. case 150:
  5952. {
  5953. byte red;
  5954. byte grn;
  5955. byte blu;
  5956. if(code_seen('R')) red = code_value();
  5957. if(code_seen('U')) grn = code_value();
  5958. if(code_seen('B')) blu = code_value();
  5959. SendColors(red,grn,blu);
  5960. }
  5961. break;
  5962. #endif //BLINKM
  5963. /*!
  5964. ### M200 - Set filament diameter <a href="https://reprap.org/wiki/G-code#M200:_Set_filament_diameter">M200: Set filament diameter</a>
  5965. #### Usage
  5966. M200 [ D | T ]
  5967. #### Parameters
  5968. - `D` - Diameter in mm
  5969. - `T` - Number of extruder (MMUs)
  5970. */
  5971. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5972. {
  5973. uint8_t extruder = active_extruder;
  5974. if(code_seen('T')) {
  5975. extruder = code_value();
  5976. if(extruder >= EXTRUDERS) {
  5977. SERIAL_ECHO_START;
  5978. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5979. break;
  5980. }
  5981. }
  5982. if(code_seen('D')) {
  5983. float diameter = (float)code_value();
  5984. if (diameter == 0.0) {
  5985. // setting any extruder filament size disables volumetric on the assumption that
  5986. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5987. // for all extruders
  5988. cs.volumetric_enabled = false;
  5989. } else {
  5990. cs.filament_size[extruder] = (float)code_value();
  5991. // make sure all extruders have some sane value for the filament size
  5992. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5993. #if EXTRUDERS > 1
  5994. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5995. #if EXTRUDERS > 2
  5996. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5997. #endif
  5998. #endif
  5999. cs.volumetric_enabled = true;
  6000. }
  6001. } else {
  6002. //reserved for setting filament diameter via UFID or filament measuring device
  6003. break;
  6004. }
  6005. calculate_extruder_multipliers();
  6006. }
  6007. break;
  6008. /*!
  6009. ### M201 - Set Print Max Acceleration <a href="https://reprap.org/wiki/G-code#M201:_Set_max_printing_acceleration">M201: Set max printing acceleration</a>
  6010. For each axis individually.
  6011. */
  6012. case 201:
  6013. for (int8_t i = 0; i < NUM_AXIS; i++)
  6014. {
  6015. if (code_seen(axis_codes[i]))
  6016. {
  6017. unsigned long val = code_value();
  6018. #ifdef TMC2130
  6019. unsigned long val_silent = val;
  6020. if ((i == X_AXIS) || (i == Y_AXIS))
  6021. {
  6022. if (val > NORMAL_MAX_ACCEL_XY)
  6023. val = NORMAL_MAX_ACCEL_XY;
  6024. if (val_silent > SILENT_MAX_ACCEL_XY)
  6025. val_silent = SILENT_MAX_ACCEL_XY;
  6026. }
  6027. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  6028. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  6029. #else //TMC2130
  6030. max_acceleration_units_per_sq_second[i] = val;
  6031. #endif //TMC2130
  6032. }
  6033. }
  6034. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  6035. reset_acceleration_rates();
  6036. break;
  6037. #if 0 // Not used for Sprinter/grbl gen6
  6038. case 202: // M202
  6039. for(int8_t i=0; i < NUM_AXIS; i++) {
  6040. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  6041. }
  6042. break;
  6043. #endif
  6044. /*!
  6045. ### M203 - Set Max Feedrate <a href="https://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate">M203: Set maximum feedrate</a>
  6046. For each axis individually.
  6047. */
  6048. case 203: // M203 max feedrate mm/sec
  6049. for (int8_t i = 0; i < NUM_AXIS; i++)
  6050. {
  6051. if (code_seen(axis_codes[i]))
  6052. {
  6053. float val = code_value();
  6054. #ifdef TMC2130
  6055. float val_silent = val;
  6056. if ((i == X_AXIS) || (i == Y_AXIS))
  6057. {
  6058. if (val > NORMAL_MAX_FEEDRATE_XY)
  6059. val = NORMAL_MAX_FEEDRATE_XY;
  6060. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  6061. val_silent = SILENT_MAX_FEEDRATE_XY;
  6062. }
  6063. cs.max_feedrate_normal[i] = val;
  6064. cs.max_feedrate_silent[i] = val_silent;
  6065. #else //TMC2130
  6066. max_feedrate[i] = val;
  6067. #endif //TMC2130
  6068. }
  6069. }
  6070. break;
  6071. /*!
  6072. ### M204 - Acceleration settings <a href="https://reprap.org/wiki/G-code#M204:_Set_default_acceleration">M204: Set default acceleration</a>
  6073. #### Old format:
  6074. ##### Usage
  6075. M204 [ S | T ]
  6076. ##### Parameters
  6077. - `S` - normal moves
  6078. - `T` - filmanent only moves
  6079. #### New format:
  6080. ##### Usage
  6081. M204 [ P | R | T ]
  6082. ##### Parameters
  6083. - `P` - printing moves
  6084. - `R` - filmanent only moves
  6085. - `T` - travel moves (as of now T is ignored)
  6086. */
  6087. case 204:
  6088. {
  6089. if(code_seen('S')) {
  6090. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  6091. // and it is also generated by Slic3r to control acceleration per extrusion type
  6092. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  6093. cs.acceleration = code_value();
  6094. // Interpret the T value as retract acceleration in the old Marlin format.
  6095. if(code_seen('T'))
  6096. cs.retract_acceleration = code_value();
  6097. } else {
  6098. // New acceleration format, compatible with the upstream Marlin.
  6099. if(code_seen('P'))
  6100. cs.acceleration = code_value();
  6101. if(code_seen('R'))
  6102. cs.retract_acceleration = code_value();
  6103. if(code_seen('T')) {
  6104. // Interpret the T value as the travel acceleration in the new Marlin format.
  6105. /*!
  6106. @todo Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  6107. */
  6108. // travel_acceleration = code_value();
  6109. }
  6110. }
  6111. }
  6112. break;
  6113. /*!
  6114. ### M205 - Set advanced settings <a href="https://reprap.org/wiki/G-code#M205:_Advanced_settings">M205: Advanced settings</a>
  6115. Set some advanced settings related to movement.
  6116. #### Usage
  6117. M205 [ S | T | B | X | Y | Z | E ]
  6118. #### Parameters
  6119. - `S` - Minimum feedrate for print moves (unit/s)
  6120. - `T` - Minimum feedrate for travel moves (units/s)
  6121. - `B` - Minimum segment time (us)
  6122. - `X` - Maximum X jerk (units/s)
  6123. - `Y` - Maximum Y jerk (units/s)
  6124. - `Z` - Maximum Z jerk (units/s)
  6125. - `E` - Maximum E jerk (units/s)
  6126. */
  6127. case 205:
  6128. {
  6129. if(code_seen('S')) cs.minimumfeedrate = code_value();
  6130. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  6131. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  6132. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  6133. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  6134. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  6135. if(code_seen('E'))
  6136. {
  6137. float e = code_value();
  6138. #ifndef LA_NOCOMPAT
  6139. e = la10c_jerk(e);
  6140. #endif
  6141. cs.max_jerk[E_AXIS] = e;
  6142. }
  6143. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  6144. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  6145. }
  6146. break;
  6147. /*!
  6148. ### M206 - Set additional homing offsets <a href="https://reprap.org/wiki/G-code#M206:_Offset_axes">M206: Offset axes</a>
  6149. #### Usage
  6150. M206 [ X | Y | Z ]
  6151. #### Parameters
  6152. - `X` - X axis offset
  6153. - `Y` - Y axis offset
  6154. - `Z` - Z axis offset
  6155. */
  6156. case 206:
  6157. for(int8_t i=0; i < 3; i++)
  6158. {
  6159. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  6160. }
  6161. break;
  6162. #ifdef FWRETRACT
  6163. /*!
  6164. ### M207 - Set firmware retraction <a href="https://reprap.org/wiki/G-code#M207:_Set_retract_length">M207: Set retract length</a>
  6165. #### Usage
  6166. M207 [ S | F | Z ]
  6167. #### Parameters
  6168. - `S` - positive length to retract, in mm
  6169. - `F` - retraction feedrate, in mm/min
  6170. - `Z` - additional zlift/hop
  6171. */
  6172. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  6173. {
  6174. if(code_seen('S'))
  6175. {
  6176. cs.retract_length = code_value() ;
  6177. }
  6178. if(code_seen('F'))
  6179. {
  6180. cs.retract_feedrate = code_value()/60 ;
  6181. }
  6182. if(code_seen('Z'))
  6183. {
  6184. cs.retract_zlift = code_value() ;
  6185. }
  6186. }break;
  6187. /*!
  6188. ### M208 - Set retract recover length <a href="https://reprap.org/wiki/G-code#M208:_Set_unretract_length">M208: Set unretract length</a>
  6189. #### Usage
  6190. M208 [ S | F ]
  6191. #### Parameters
  6192. - `S` - positive length surplus to the M207 Snnn, in mm
  6193. - `F` - feedrate, in mm/sec
  6194. */
  6195. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  6196. {
  6197. if(code_seen('S'))
  6198. {
  6199. cs.retract_recover_length = code_value() ;
  6200. }
  6201. if(code_seen('F'))
  6202. {
  6203. cs.retract_recover_feedrate = code_value()/60 ;
  6204. }
  6205. }break;
  6206. /*!
  6207. ### M209 - Enable/disable automatict retract <a href="https://reprap.org/wiki/G-code#M209:_Enable_automatic_retract">M209: Enable automatic retract</a>
  6208. This boolean value S 1=true or 0=false enables automatic retract detect if the slicer did not support G10/G11: every normal extrude-only move will be classified as retract depending on the direction.
  6209. #### Usage
  6210. M209 [ S ]
  6211. #### Parameters
  6212. - `S` - 1=true or 0=false
  6213. */
  6214. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  6215. {
  6216. if(code_seen('S'))
  6217. {
  6218. int t= code_value() ;
  6219. switch(t)
  6220. {
  6221. case 0:
  6222. {
  6223. cs.autoretract_enabled=false;
  6224. retracted[0]=false;
  6225. #if EXTRUDERS > 1
  6226. retracted[1]=false;
  6227. #endif
  6228. #if EXTRUDERS > 2
  6229. retracted[2]=false;
  6230. #endif
  6231. }break;
  6232. case 1:
  6233. {
  6234. cs.autoretract_enabled=true;
  6235. retracted[0]=false;
  6236. #if EXTRUDERS > 1
  6237. retracted[1]=false;
  6238. #endif
  6239. #if EXTRUDERS > 2
  6240. retracted[2]=false;
  6241. #endif
  6242. }break;
  6243. default:
  6244. SERIAL_ECHO_START;
  6245. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6246. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6247. SERIAL_ECHOLNPGM("\"(1)");
  6248. }
  6249. }
  6250. }break;
  6251. #endif // FWRETRACT
  6252. #if EXTRUDERS > 1
  6253. /*!
  6254. ### M218 - Set hotend offset <a href="https://reprap.org/wiki/G-code#M218:_Set_Hotend_Offset">M218: Set Hotend Offset</a>
  6255. In Prusa Firmware this G-code is only active if `EXTRUDERS` is higher then 1 in the source code. On Original i3 Prusa MK2/s MK2.5/s MK3/s it is not active.
  6256. #### Usage
  6257. M218 [ X | Y ]
  6258. #### Parameters
  6259. - `X` - X offset
  6260. - `Y` - Y offset
  6261. */
  6262. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  6263. {
  6264. uint8_t extruder;
  6265. if(setTargetedHotend(218, extruder)){
  6266. break;
  6267. }
  6268. if(code_seen('X'))
  6269. {
  6270. extruder_offset[X_AXIS][extruder] = code_value();
  6271. }
  6272. if(code_seen('Y'))
  6273. {
  6274. extruder_offset[Y_AXIS][extruder] = code_value();
  6275. }
  6276. SERIAL_ECHO_START;
  6277. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  6278. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  6279. {
  6280. SERIAL_ECHO(" ");
  6281. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  6282. SERIAL_ECHO(",");
  6283. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  6284. }
  6285. SERIAL_ECHOLN("");
  6286. }break;
  6287. #endif
  6288. /*!
  6289. ### M220 Set feedrate percentage <a href="https://reprap.org/wiki/G-code#M220:_Set_speed_factor_override_percentage">M220: Set speed factor override percentage</a>
  6290. #### Usage
  6291. M220 [ B | S | R ]
  6292. #### Parameters
  6293. - `B` - Backup current speed factor
  6294. - `S` - Speed factor override percentage (0..100 or higher)
  6295. - `R` - Restore previous speed factor
  6296. */
  6297. case 220: // M220 S<factor in percent>- set speed factor override percentage
  6298. {
  6299. if (code_seen('B')) //backup current speed factor
  6300. {
  6301. saved_feedmultiply_mm = feedmultiply;
  6302. }
  6303. if(code_seen('S'))
  6304. {
  6305. feedmultiply = code_value() ;
  6306. }
  6307. if (code_seen('R')) { //restore previous feedmultiply
  6308. feedmultiply = saved_feedmultiply_mm;
  6309. }
  6310. }
  6311. break;
  6312. /*!
  6313. ### M221 - Set extrude factor override percentage <a href="https://reprap.org/wiki/G-code#M221:_Set_extrude_factor_override_percentage">M221: Set extrude factor override percentage</a>
  6314. #### Usage
  6315. M221 [ S | T ]
  6316. #### Parameters
  6317. - `S` - Extrude factor override percentage (0..100 or higher), default 100%
  6318. - `T` - Extruder drive number (Prusa Firmware only), default 0 if not set.
  6319. */
  6320. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  6321. {
  6322. if(code_seen('S'))
  6323. {
  6324. int tmp_code = code_value();
  6325. if (code_seen('T'))
  6326. {
  6327. uint8_t extruder;
  6328. if(setTargetedHotend(221, extruder)){
  6329. break;
  6330. }
  6331. extruder_multiply[extruder] = tmp_code;
  6332. }
  6333. else
  6334. {
  6335. extrudemultiply = tmp_code ;
  6336. }
  6337. }
  6338. calculate_extruder_multipliers();
  6339. }
  6340. break;
  6341. /*!
  6342. ### M226 - Wait for Pin state <a href="https://reprap.org/wiki/G-code#M226:_Wait_for_pin_state">M226: Wait for pin state</a>
  6343. Wait until the specified pin reaches the state required
  6344. #### Usage
  6345. M226 [ P | S ]
  6346. #### Parameters
  6347. - `P` - pin number
  6348. - `S` - pin state
  6349. */
  6350. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6351. {
  6352. if(code_seen('P')){
  6353. int pin_number = code_value(); // pin number
  6354. int pin_state = -1; // required pin state - default is inverted
  6355. if(code_seen('S')) pin_state = code_value(); // required pin state
  6356. if(pin_state >= -1 && pin_state <= 1){
  6357. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  6358. {
  6359. if (sensitive_pins[i] == pin_number)
  6360. {
  6361. pin_number = -1;
  6362. break;
  6363. }
  6364. }
  6365. if (pin_number > -1)
  6366. {
  6367. int target = LOW;
  6368. st_synchronize();
  6369. pinMode(pin_number, INPUT);
  6370. switch(pin_state){
  6371. case 1:
  6372. target = HIGH;
  6373. break;
  6374. case 0:
  6375. target = LOW;
  6376. break;
  6377. case -1:
  6378. target = !digitalRead(pin_number);
  6379. break;
  6380. }
  6381. while(digitalRead(pin_number) != target){
  6382. manage_heater();
  6383. manage_inactivity();
  6384. lcd_update(0);
  6385. }
  6386. }
  6387. }
  6388. }
  6389. }
  6390. break;
  6391. #if NUM_SERVOS > 0
  6392. /*!
  6393. ### M280 - Set/Get servo position <a href="https://reprap.org/wiki/G-code#M280:_Set_servo_position">M280: Set servo position</a>
  6394. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6395. #### Usage
  6396. M280 [ P | S ]
  6397. #### Parameters
  6398. - `P` - Servo index (id)
  6399. - `S` - Target position
  6400. */
  6401. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6402. {
  6403. int servo_index = -1;
  6404. int servo_position = 0;
  6405. if (code_seen('P'))
  6406. servo_index = code_value();
  6407. if (code_seen('S')) {
  6408. servo_position = code_value();
  6409. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  6410. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6411. servos[servo_index].attach(0);
  6412. #endif
  6413. servos[servo_index].write(servo_position);
  6414. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6415. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  6416. servos[servo_index].detach();
  6417. #endif
  6418. }
  6419. else {
  6420. SERIAL_ECHO_START;
  6421. SERIAL_ECHO("Servo ");
  6422. SERIAL_ECHO(servo_index);
  6423. SERIAL_ECHOLN(" out of range");
  6424. }
  6425. }
  6426. else if (servo_index >= 0) {
  6427. SERIAL_PROTOCOL(MSG_OK);
  6428. SERIAL_PROTOCOL(" Servo ");
  6429. SERIAL_PROTOCOL(servo_index);
  6430. SERIAL_PROTOCOL(": ");
  6431. SERIAL_PROTOCOL(servos[servo_index].read());
  6432. SERIAL_PROTOCOLLN("");
  6433. }
  6434. }
  6435. break;
  6436. #endif // NUM_SERVOS > 0
  6437. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  6438. /*!
  6439. ### M300 - Play tone <a href="https://reprap.org/wiki/G-code#M300:_Play_beep_sound">M300: Play beep sound</a>
  6440. In Prusa Firmware the defaults are `100Hz` and `1000ms`, so that `M300` without parameters will beep for a second.
  6441. #### Usage
  6442. M300 [ S | P ]
  6443. #### Parameters
  6444. - `S` - frequency in Hz. Not all firmware versions support this parameter
  6445. - `P` - duration in milliseconds
  6446. */
  6447. case 300: // M300
  6448. {
  6449. int beepS = code_seen('S') ? code_value() : 110;
  6450. int beepP = code_seen('P') ? code_value() : 1000;
  6451. if (beepS > 0)
  6452. {
  6453. #if BEEPER > 0
  6454. Sound_MakeCustom(beepP,beepS,false);
  6455. #endif
  6456. }
  6457. else
  6458. {
  6459. _delay(beepP);
  6460. }
  6461. }
  6462. break;
  6463. #endif // M300
  6464. #ifdef PIDTEMP
  6465. /*!
  6466. ### M301 - Set hotend PID <a href="https://reprap.org/wiki/G-code#M301:_Set_PID_parameters">M301: Set PID parameters</a>
  6467. Sets Proportional (P), Integral (I) and Derivative (D) values for hot end.
  6468. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6469. #### Usage
  6470. M301 [ P | I | D | C ]
  6471. #### Parameters
  6472. - `P` - proportional (Kp)
  6473. - `I` - integral (Ki)
  6474. - `D` - derivative (Kd)
  6475. - `C` - heating power=Kc*(e_speed0)
  6476. */
  6477. case 301:
  6478. {
  6479. if(code_seen('P')) cs.Kp = code_value();
  6480. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  6481. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  6482. #ifdef PID_ADD_EXTRUSION_RATE
  6483. if(code_seen('C')) Kc = code_value();
  6484. #endif
  6485. updatePID();
  6486. SERIAL_PROTOCOLRPGM(MSG_OK);
  6487. SERIAL_PROTOCOL(" p:");
  6488. SERIAL_PROTOCOL(cs.Kp);
  6489. SERIAL_PROTOCOL(" i:");
  6490. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6491. SERIAL_PROTOCOL(" d:");
  6492. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6493. #ifdef PID_ADD_EXTRUSION_RATE
  6494. SERIAL_PROTOCOL(" c:");
  6495. //Kc does not have scaling applied above, or in resetting defaults
  6496. SERIAL_PROTOCOL(Kc);
  6497. #endif
  6498. SERIAL_PROTOCOLLN("");
  6499. }
  6500. break;
  6501. #endif //PIDTEMP
  6502. #ifdef PIDTEMPBED
  6503. /*!
  6504. ### M304 - Set bed PID <a href="https://reprap.org/wiki/G-code#M304:_Set_PID_parameters_-_Bed">M304: Set PID parameters - Bed</a>
  6505. Sets Proportional (P), Integral (I) and Derivative (D) values for bed.
  6506. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6507. #### Usage
  6508. M304 [ P | I | D ]
  6509. #### Parameters
  6510. - `P` - proportional (Kp)
  6511. - `I` - integral (Ki)
  6512. - `D` - derivative (Kd)
  6513. */
  6514. case 304:
  6515. {
  6516. if(code_seen('P')) cs.bedKp = code_value();
  6517. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6518. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6519. updatePID();
  6520. SERIAL_PROTOCOLRPGM(MSG_OK);
  6521. SERIAL_PROTOCOL(" p:");
  6522. SERIAL_PROTOCOL(cs.bedKp);
  6523. SERIAL_PROTOCOL(" i:");
  6524. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6525. SERIAL_PROTOCOL(" d:");
  6526. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  6527. SERIAL_PROTOCOLLN("");
  6528. }
  6529. break;
  6530. #endif //PIDTEMP
  6531. /*!
  6532. ### M240 - Trigger camera <a href="https://reprap.org/wiki/G-code#M240:_Trigger_camera">M240: Trigger camera</a>
  6533. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6534. You need to (re)define and assign `CHDK` or `PHOTOGRAPH_PIN` the correct pin number to be able to use the feature.
  6535. */
  6536. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6537. {
  6538. #ifdef CHDK
  6539. SET_OUTPUT(CHDK);
  6540. WRITE(CHDK, HIGH);
  6541. chdkHigh = _millis();
  6542. chdkActive = true;
  6543. #else
  6544. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6545. const uint8_t NUM_PULSES=16;
  6546. const float PULSE_LENGTH=0.01524;
  6547. for(int i=0; i < NUM_PULSES; i++) {
  6548. WRITE(PHOTOGRAPH_PIN, HIGH);
  6549. _delay_ms(PULSE_LENGTH);
  6550. WRITE(PHOTOGRAPH_PIN, LOW);
  6551. _delay_ms(PULSE_LENGTH);
  6552. }
  6553. _delay(7.33);
  6554. for(int i=0; i < NUM_PULSES; i++) {
  6555. WRITE(PHOTOGRAPH_PIN, HIGH);
  6556. _delay_ms(PULSE_LENGTH);
  6557. WRITE(PHOTOGRAPH_PIN, LOW);
  6558. _delay_ms(PULSE_LENGTH);
  6559. }
  6560. #endif
  6561. #endif //chdk end if
  6562. }
  6563. break;
  6564. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6565. /*!
  6566. ### M302 - Allow cold extrude, or set minimum extrude temperature <a href="https://reprap.org/wiki/G-code#M302:_Allow_cold_extrudes">M302: Allow cold extrudes</a>
  6567. This tells the printer to allow movement of the extruder motor above a certain temperature, or if disabled, to allow extruder movement when the hotend is below a safe printing temperature.
  6568. #### Usage
  6569. M302 [ S ]
  6570. #### Parameters
  6571. - `S` - Cold extrude minimum temperature
  6572. */
  6573. case 302:
  6574. {
  6575. float temp = .0;
  6576. if (code_seen('S')) temp=code_value();
  6577. set_extrude_min_temp(temp);
  6578. }
  6579. break;
  6580. #endif
  6581. /*!
  6582. ### M303 - PID autotune <a href="https://reprap.org/wiki/G-code#M303:_Run_PID_tuning">M303: Run PID tuning</a>
  6583. PID Tuning refers to a control algorithm used in some repraps to tune heating behavior for hot ends and heated beds. This command generates Proportional (Kp), Integral (Ki), and Derivative (Kd) values for the hotend or bed. Send the appropriate code and wait for the output to update the firmware values.
  6584. #### Usage
  6585. M303 [ E | S | C ]
  6586. #### Parameters
  6587. - `E` - Extruder, default `E0`. Use `E-1` to calibrate the bed PID
  6588. - `S` - Target temperature, default `210°C` for hotend, 70 for bed
  6589. - `C` - Cycles, default `5`
  6590. */
  6591. case 303:
  6592. {
  6593. float temp = 150.0;
  6594. int e=0;
  6595. int c=5;
  6596. if (code_seen('E')) e=code_value();
  6597. if (e<0)
  6598. temp=70;
  6599. if (code_seen('S')) temp=code_value();
  6600. if (code_seen('C')) c=code_value();
  6601. PID_autotune(temp, e, c);
  6602. }
  6603. break;
  6604. /*!
  6605. ### M400 - Wait for all moves to finish <a href="https://reprap.org/wiki/G-code#M400:_Wait_for_current_moves_to_finish">M400: Wait for current moves to finish</a>
  6606. Finishes all current moves and and thus clears the buffer.
  6607. Equivalent to `G4` with no parameters.
  6608. */
  6609. case 400:
  6610. {
  6611. st_synchronize();
  6612. }
  6613. break;
  6614. /*!
  6615. ### M403 - Set filament type (material) for particular extruder and notify the MMU <a href="https://reprap.org/wiki/G-code#M403:_Set_filament_type_.28material.29_for_particular_extruder_and_notify_the_MMU.">M403 - Set filament type (material) for particular extruder and notify the MMU</a>
  6616. Currently three different materials are needed (default, flex and PVA).
  6617. And storing this information for different load/unload profiles etc. in the future firmware does not have to wait for "ok" from MMU.
  6618. #### Usage
  6619. M403 [ E | F ]
  6620. #### Parameters
  6621. - `E` - Extruder number. 0-indexed.
  6622. - `F` - Filament type
  6623. */
  6624. case 403:
  6625. {
  6626. // currently three different materials are needed (default, flex and PVA)
  6627. // add storing this information for different load/unload profiles etc. in the future
  6628. // firmware does not wait for "ok" from mmu
  6629. if (mmu_enabled)
  6630. {
  6631. uint8_t extruder = 255;
  6632. uint8_t filament = FILAMENT_UNDEFINED;
  6633. if(code_seen('E')) extruder = code_value();
  6634. if(code_seen('F')) filament = code_value();
  6635. mmu_set_filament_type(extruder, filament);
  6636. }
  6637. }
  6638. break;
  6639. /*!
  6640. ### M500 - Store settings in EEPROM <a href="https://reprap.org/wiki/G-code#M500:_Store_parameters_in_non-volatile_storage">M500: Store parameters in non-volatile storage</a>
  6641. Save current parameters to EEPROM.
  6642. */
  6643. case 500:
  6644. {
  6645. Config_StoreSettings();
  6646. }
  6647. break;
  6648. /*!
  6649. ### M501 - Read settings from EEPROM <a href="https://reprap.org/wiki/G-code#M501:_Read_parameters_from_EEPROM">M501: Read parameters from EEPROM</a>
  6650. Set the active parameters to those stored in the EEPROM. This is useful to revert parameters after experimenting with them.
  6651. */
  6652. case 501:
  6653. {
  6654. Config_RetrieveSettings();
  6655. }
  6656. break;
  6657. /*!
  6658. ### M502 - Revert all settings to factory default <a href="https://reprap.org/wiki/G-code#M502:_Restore_Default_Settings">M502: Restore Default Settings</a>
  6659. This command resets all tunable parameters to their default values, as set in the firmware's configuration files. This doesn't reset any parameters stored in the EEPROM, so it must be followed by M500 to write the default settings.
  6660. */
  6661. case 502:
  6662. {
  6663. Config_ResetDefault();
  6664. }
  6665. break;
  6666. /*!
  6667. ### M503 - Repport all settings currently in memory <a href="https://reprap.org/wiki/G-code#M503:_Report_Current_Settings">M503: Report Current Settings</a>
  6668. This command asks the firmware to reply with the current print settings as set in memory. Settings will differ from EEPROM contents if changed since the last load / save. The reply output includes the G-Code commands to produce each setting. For example, Steps-Per-Unit values are displayed as an M92 command.
  6669. */
  6670. case 503:
  6671. {
  6672. Config_PrintSettings();
  6673. }
  6674. break;
  6675. /*!
  6676. ### M509 - Force language selection <a href="https://reprap.org/wiki/G-code#M509:_Force_language_selection">M509: Force language selection</a>
  6677. Resets the language to English.
  6678. Only on Original Prusa i3 MK2.5/s and MK3/s with multiple languages.
  6679. */
  6680. case 509:
  6681. {
  6682. lang_reset();
  6683. SERIAL_ECHO_START;
  6684. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6685. }
  6686. break;
  6687. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6688. /*!
  6689. ### M540 - Abort print on endstop hit (enable/disable) <a href="https://reprap.org/wiki/G-code#M540_in_Marlin:_Enable.2FDisable_.22Stop_SD_Print_on_Endstop_Hit.22">M540 in Marlin: Enable/Disable "Stop SD Print on Endstop Hit"</a>
  6690. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. You must define `ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED`.
  6691. #### Usage
  6692. M540 [ S ]
  6693. #### Parameters
  6694. - `S` - disabled=0, enabled=1
  6695. */
  6696. case 540:
  6697. {
  6698. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6699. }
  6700. break;
  6701. #endif
  6702. /*!
  6703. ### M851 - Set Z-Probe Offset <a href="https://reprap.org/wiki/G-code#M851:_Set_Z-Probe_Offset">M851: Set Z-Probe Offset"</a>
  6704. Sets the Z-probe Z offset. This offset is used to determine the actual Z position of the nozzle when using a probe to home Z with G28. This value may also be used by G81 (Prusa) / G29 (Marlin) to apply correction to the Z position.
  6705. This value represents the distance from nozzle to the bed surface at the point where the probe is triggered. This value will be negative for typical switch probes, inductive probes, and setups where the nozzle makes a circuit with a raised metal contact. This setting will be greater than zero on machines where the nozzle itself is used as the probe, pressing down on the bed to press a switch. (This is a common setup on delta machines.)
  6706. #### Usage
  6707. M851 [ Z ]
  6708. #### Parameters
  6709. - `Z` - Z offset probe to nozzle.
  6710. */
  6711. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6712. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6713. {
  6714. float value;
  6715. if (code_seen('Z'))
  6716. {
  6717. value = code_value();
  6718. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6719. {
  6720. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6721. SERIAL_ECHO_START;
  6722. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6723. SERIAL_PROTOCOLLN("");
  6724. }
  6725. else
  6726. {
  6727. SERIAL_ECHO_START;
  6728. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6729. SERIAL_ECHORPGM(MSG_Z_MIN);
  6730. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6731. SERIAL_ECHORPGM(MSG_Z_MAX);
  6732. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6733. SERIAL_PROTOCOLLN("");
  6734. }
  6735. }
  6736. else
  6737. {
  6738. SERIAL_ECHO_START;
  6739. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6740. SERIAL_ECHO(-cs.zprobe_zoffset);
  6741. SERIAL_PROTOCOLLN("");
  6742. }
  6743. break;
  6744. }
  6745. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6746. #ifdef FILAMENTCHANGEENABLE
  6747. /*!
  6748. ### M600 - Initiate Filament change procedure <a href="https://reprap.org/wiki/G-code#M600:_Filament_change_pause">M600: Filament change pause</a>
  6749. Initiates Filament change, it is also used during Filament Runout Sensor process.
  6750. If the `M600` is triggered under 25mm it will do a Z-lift of 25mm to prevent a filament blob.
  6751. #### Usage
  6752. M600 [ X | Y | Z | E | L | AUTO ]
  6753. - `X` - X position, default 211
  6754. - `Y` - Y position, default 0
  6755. - `Z` - relative lift Z, default 2.
  6756. - `E` - initial retract, default -2
  6757. - `L` - later retract distance for removal, default -80
  6758. - `AUTO` - Automatically (only with MMU)
  6759. */
  6760. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6761. {
  6762. st_synchronize();
  6763. float x_position = current_position[X_AXIS];
  6764. float y_position = current_position[Y_AXIS];
  6765. float z_shift = 0; // is it necessary to be a float?
  6766. float e_shift_init = 0;
  6767. float e_shift_late = 0;
  6768. bool automatic = false;
  6769. //Retract extruder
  6770. if(code_seen('E'))
  6771. {
  6772. e_shift_init = code_value();
  6773. }
  6774. else
  6775. {
  6776. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6777. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6778. #endif
  6779. }
  6780. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6781. if (code_seen('L'))
  6782. {
  6783. e_shift_late = code_value();
  6784. }
  6785. else
  6786. {
  6787. #ifdef FILAMENTCHANGE_FINALRETRACT
  6788. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6789. #endif
  6790. }
  6791. //Lift Z
  6792. if(code_seen('Z'))
  6793. {
  6794. z_shift = code_value();
  6795. }
  6796. else
  6797. {
  6798. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6799. }
  6800. //Move XY to side
  6801. if(code_seen('X'))
  6802. {
  6803. x_position = code_value();
  6804. }
  6805. else
  6806. {
  6807. #ifdef FILAMENTCHANGE_XPOS
  6808. x_position = FILAMENTCHANGE_XPOS;
  6809. #endif
  6810. }
  6811. if(code_seen('Y'))
  6812. {
  6813. y_position = code_value();
  6814. }
  6815. else
  6816. {
  6817. #ifdef FILAMENTCHANGE_YPOS
  6818. y_position = FILAMENTCHANGE_YPOS ;
  6819. #endif
  6820. }
  6821. if (mmu_enabled && code_seen("AUTO"))
  6822. automatic = true;
  6823. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  6824. }
  6825. break;
  6826. #endif //FILAMENTCHANGEENABLE
  6827. /*!
  6828. ### M601 - Pause print <a href="https://reprap.org/wiki/G-code#M601:_Pause_print">M601: Pause print</a>
  6829. */
  6830. /*!
  6831. ### M125 - Pause print (TODO: not implemented)
  6832. */
  6833. /*!
  6834. ### M25 - Pause SD print <a href="https://reprap.org/wiki/G-code#M25:_Pause_SD_print">M25: Pause SD print</a>
  6835. */
  6836. case 25:
  6837. case 601:
  6838. {
  6839. if (!isPrintPaused)
  6840. {
  6841. st_synchronize();
  6842. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  6843. lcd_pause_print();
  6844. }
  6845. }
  6846. break;
  6847. /*!
  6848. ### M602 - Resume print <a href="https://reprap.org/wiki/G-code#M602:_Resume_print">M602: Resume print</a>
  6849. */
  6850. case 602: {
  6851. if (isPrintPaused)
  6852. lcd_resume_print();
  6853. }
  6854. break;
  6855. /*!
  6856. ### M603 - Stop print <a href="https://reprap.org/wiki/G-code#M603:_Stop_print">M603: Stop print</a>
  6857. */
  6858. case 603: {
  6859. lcd_print_stop();
  6860. }
  6861. break;
  6862. #ifdef PINDA_THERMISTOR
  6863. /*!
  6864. ### M860 - Wait for extruder temperature (PINDA) <a href="https://reprap.org/wiki/G-code#M860_Wait_for_Probe_Temperature">M860 Wait for Probe Temperature</a>
  6865. Wait for PINDA thermistor to reach target temperature
  6866. #### Usage
  6867. M860 [ S ]
  6868. #### Parameters
  6869. - `S` - Target temperature
  6870. */
  6871. case 860:
  6872. {
  6873. int set_target_pinda = 0;
  6874. if (code_seen('S')) {
  6875. set_target_pinda = code_value();
  6876. }
  6877. else {
  6878. break;
  6879. }
  6880. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  6881. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  6882. SERIAL_PROTOCOL(set_target_pinda);
  6883. SERIAL_PROTOCOLLN("");
  6884. codenum = _millis();
  6885. cancel_heatup = false;
  6886. bool is_pinda_cooling = false;
  6887. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  6888. is_pinda_cooling = true;
  6889. }
  6890. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  6891. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  6892. {
  6893. SERIAL_PROTOCOLPGM("P:");
  6894. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  6895. SERIAL_PROTOCOL('/');
  6896. SERIAL_PROTOCOLLN(set_target_pinda);
  6897. codenum = _millis();
  6898. }
  6899. manage_heater();
  6900. manage_inactivity();
  6901. lcd_update(0);
  6902. }
  6903. LCD_MESSAGERPGM(MSG_OK);
  6904. break;
  6905. }
  6906. /*!
  6907. ### M861 - Set/Get PINDA temperature compensation offsets <a href="https://reprap.org/wiki/G-code#M861_Set_Probe_Thermal_Compensation">M861 Set Probe Thermal Compensation</a>
  6908. Set compensation ustep value `S` for compensation table index `I`.
  6909. #### Usage
  6910. M861 [ ? | ! | Z | S | I ]
  6911. #### Parameters
  6912. - `?` - Print current EEPROM offset values
  6913. - `!` - Set factory default values
  6914. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6915. - `S` - Microsteps
  6916. - `I` - Table index
  6917. */
  6918. case 861:
  6919. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  6920. uint8_t cal_status = calibration_status_pinda();
  6921. int16_t usteps = 0;
  6922. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  6923. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6924. for (uint8_t i = 0; i < 6; i++)
  6925. {
  6926. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  6927. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6928. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6929. SERIAL_PROTOCOLPGM(", ");
  6930. SERIAL_PROTOCOL(35 + (i * 5));
  6931. SERIAL_PROTOCOLPGM(", ");
  6932. SERIAL_PROTOCOL(usteps);
  6933. SERIAL_PROTOCOLPGM(", ");
  6934. SERIAL_PROTOCOL(mm * 1000);
  6935. SERIAL_PROTOCOLLN("");
  6936. }
  6937. }
  6938. else if (code_seen('!')) { // ! - Set factory default values
  6939. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6940. int16_t z_shift = 8; //40C - 20um - 8usteps
  6941. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  6942. z_shift = 24; //45C - 60um - 24usteps
  6943. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  6944. z_shift = 48; //50C - 120um - 48usteps
  6945. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  6946. z_shift = 80; //55C - 200um - 80usteps
  6947. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  6948. z_shift = 120; //60C - 300um - 120usteps
  6949. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  6950. SERIAL_PROTOCOLLN("factory restored");
  6951. }
  6952. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6953. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6954. int16_t z_shift = 0;
  6955. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6956. SERIAL_PROTOCOLLN("zerorized");
  6957. }
  6958. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6959. int16_t usteps = code_value();
  6960. if (code_seen('I')) {
  6961. uint8_t index = code_value();
  6962. if (index < 5) {
  6963. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6964. SERIAL_PROTOCOLLN("OK");
  6965. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6966. for (uint8_t i = 0; i < 6; i++)
  6967. {
  6968. usteps = 0;
  6969. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6970. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6971. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6972. SERIAL_PROTOCOLPGM(", ");
  6973. SERIAL_PROTOCOL(35 + (i * 5));
  6974. SERIAL_PROTOCOLPGM(", ");
  6975. SERIAL_PROTOCOL(usteps);
  6976. SERIAL_PROTOCOLPGM(", ");
  6977. SERIAL_PROTOCOL(mm * 1000);
  6978. SERIAL_PROTOCOLLN("");
  6979. }
  6980. }
  6981. }
  6982. }
  6983. else {
  6984. SERIAL_PROTOCOLPGM("no valid command");
  6985. }
  6986. break;
  6987. #endif //PINDA_THERMISTOR
  6988. /*!
  6989. ### M862 - Print checking <a href="https://reprap.org/wiki/G-code#M862:_Print_checking">M862: Print checking</a>
  6990. Checks the parameters of the printer and gcode and performs compatibility check
  6991. - M862.1 { P<nozzle_diameter> | Q } 0.25/0.40/0.60
  6992. - M862.2 { P<model_code> | Q }
  6993. - M862.3 { P"<model_name>" | Q }
  6994. - M862.4 { P<fw_version> | Q }
  6995. - M862.5 { P<gcode_level> | Q }
  6996. When run with P<> argument, the check is performed against the input value.
  6997. When run with Q argument, the current value is shown.
  6998. M862.3 accepts text identifiers of printer types too.
  6999. The syntax of M862.3 is (note the quotes around the type):
  7000. M862.3 P "MK3S"
  7001. Accepted printer type identifiers and their numeric counterparts:
  7002. - MK1 (100)
  7003. - MK2 (200)
  7004. - MK2MM (201)
  7005. - MK2S (202)
  7006. - MK2SMM (203)
  7007. - MK2.5 (250)
  7008. - MK2.5MMU2 (20250)
  7009. - MK2.5S (252)
  7010. - MK2.5SMMU2S (20252)
  7011. - MK3 (300)
  7012. - MK3MMU2 (20300)
  7013. - MK3S (302)
  7014. - MK3SMMU2S (20302)
  7015. */
  7016. case 862: // M862: print checking
  7017. float nDummy;
  7018. uint8_t nCommand;
  7019. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  7020. switch((ClPrintChecking)nCommand)
  7021. {
  7022. case ClPrintChecking::_Nozzle: // ~ .1
  7023. uint16_t nDiameter;
  7024. if(code_seen('P'))
  7025. {
  7026. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  7027. nozzle_diameter_check(nDiameter);
  7028. }
  7029. /*
  7030. else if(code_seen('S')&&farm_mode)
  7031. {
  7032. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  7033. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  7034. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  7035. }
  7036. */
  7037. else if(code_seen('Q'))
  7038. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  7039. break;
  7040. case ClPrintChecking::_Model: // ~ .2
  7041. if(code_seen('P'))
  7042. {
  7043. uint16_t nPrinterModel;
  7044. nPrinterModel=(uint16_t)code_value_long();
  7045. printer_model_check(nPrinterModel);
  7046. }
  7047. else if(code_seen('Q'))
  7048. SERIAL_PROTOCOLLN(nPrinterType);
  7049. break;
  7050. case ClPrintChecking::_Smodel: // ~ .3
  7051. if(code_seen('P'))
  7052. printer_smodel_check(strchr_pointer);
  7053. else if(code_seen('Q'))
  7054. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  7055. break;
  7056. case ClPrintChecking::_Version: // ~ .4
  7057. if(code_seen('P'))
  7058. fw_version_check(++strchr_pointer);
  7059. else if(code_seen('Q'))
  7060. SERIAL_PROTOCOLLN(FW_VERSION);
  7061. break;
  7062. case ClPrintChecking::_Gcode: // ~ .5
  7063. if(code_seen('P'))
  7064. {
  7065. uint16_t nGcodeLevel;
  7066. nGcodeLevel=(uint16_t)code_value_long();
  7067. gcode_level_check(nGcodeLevel);
  7068. }
  7069. else if(code_seen('Q'))
  7070. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  7071. break;
  7072. }
  7073. break;
  7074. #ifdef LIN_ADVANCE
  7075. /*!
  7076. ### M900 - Set Linear advance options <a href="https://reprap.org/wiki/G-code#M900_Set_Linear_Advance_Scaling_Factors">M900 Set Linear Advance Scaling Factors</a>
  7077. Sets the advance extrusion factors for Linear Advance. If any of the R, W, H, or D parameters are set to zero the ratio will be computed dynamically during printing.
  7078. #### Usage
  7079. M900 [ K | R | W | H | D]
  7080. #### Parameters
  7081. - `K` - Advance K factor
  7082. - `R` - Set ratio directly (overrides WH/D)
  7083. - `W` - Width
  7084. - `H` - Height
  7085. - `D` - Diameter Set ratio from WH/D
  7086. */
  7087. case 900:
  7088. gcode_M900();
  7089. break;
  7090. #endif
  7091. /*!
  7092. ### M907 - Set digital trimpot motor current in mA using axis codes <a href="https://reprap.org/wiki/G-code#M907:_Set_digital_trimpot_motor">M907: Set digital trimpot motor</a>
  7093. Set digital trimpot motor current using axis codes (X, Y, Z, E, B, S).
  7094. #### Usage
  7095. M907 [ X | Y | Z | E | B | S ]
  7096. #### Parameters
  7097. - `X` - X motor driver
  7098. - `Y` - Y motor driver
  7099. - `Z` - Z motor driver
  7100. - `E` - Extruder motor driver
  7101. - `B` - Second Extruder motor driver
  7102. - `S` - All motors
  7103. */
  7104. case 907:
  7105. {
  7106. #ifdef TMC2130
  7107. // See tmc2130_cur2val() for translation to 0 .. 63 range
  7108. for (int i = 0; i < NUM_AXIS; i++)
  7109. if(code_seen(axis_codes[i]))
  7110. {
  7111. long cur_mA = code_value_long();
  7112. uint8_t val = tmc2130_cur2val(cur_mA);
  7113. tmc2130_set_current_h(i, val);
  7114. tmc2130_set_current_r(i, val);
  7115. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  7116. }
  7117. #else //TMC2130
  7118. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  7119. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  7120. if(code_seen('B')) st_current_set(4,code_value());
  7121. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  7122. #endif
  7123. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  7124. if(code_seen('X')) st_current_set(0, code_value());
  7125. #endif
  7126. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  7127. if(code_seen('Z')) st_current_set(1, code_value());
  7128. #endif
  7129. #ifdef MOTOR_CURRENT_PWM_E_PIN
  7130. if(code_seen('E')) st_current_set(2, code_value());
  7131. #endif
  7132. #endif //TMC2130
  7133. }
  7134. break;
  7135. /*!
  7136. ### M908 - Control digital trimpot directly <a href="https://reprap.org/wiki/G-code#M908:_Control_digital_trimpot_directly">M908: Control digital trimpot directly</a>
  7137. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. Not usable on Prusa printers.
  7138. #### Usage
  7139. M908 [ P | S ]
  7140. #### Parameters
  7141. - `P` - channel
  7142. - `S` - current
  7143. */
  7144. case 908:
  7145. {
  7146. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  7147. uint8_t channel,current;
  7148. if(code_seen('P')) channel=code_value();
  7149. if(code_seen('S')) current=code_value();
  7150. digitalPotWrite(channel, current);
  7151. #endif
  7152. }
  7153. break;
  7154. #ifdef TMC2130_SERVICE_CODES_M910_M918
  7155. /*!
  7156. ### M910 - TMC2130 init <a href="https://reprap.org/wiki/G-code#M910:_TMC2130_init">M910: TMC2130 init</a>
  7157. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7158. */
  7159. case 910:
  7160. {
  7161. tmc2130_init();
  7162. }
  7163. break;
  7164. /*!
  7165. ### M911 - Set TMC2130 holding currents <a href="https://reprap.org/wiki/G-code#M911:_Set_TMC2130_holding_currents">M911: Set TMC2130 holding currents</a>
  7166. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7167. #### Usage
  7168. M911 [ X | Y | Z | E ]
  7169. #### Parameters
  7170. - `X` - X stepper driver holding current value
  7171. - `Y` - Y stepper driver holding current value
  7172. - `Z` - Z stepper driver holding current value
  7173. - `E` - Extruder stepper driver holding current value
  7174. */
  7175. case 911:
  7176. {
  7177. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  7178. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  7179. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  7180. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  7181. }
  7182. break;
  7183. /*!
  7184. ### M912 - Set TMC2130 running currents <a href="https://reprap.org/wiki/G-code#M912:_Set_TMC2130_running_currents">M912: Set TMC2130 running currents</a>
  7185. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7186. #### Usage
  7187. M912 [ X | Y | Z | E ]
  7188. #### Parameters
  7189. - `X` - X stepper driver running current value
  7190. - `Y` - Y stepper driver running current value
  7191. - `Z` - Z stepper driver running current value
  7192. - `E` - Extruder stepper driver running current value
  7193. */
  7194. case 912:
  7195. {
  7196. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  7197. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  7198. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  7199. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  7200. }
  7201. break;
  7202. /*!
  7203. ### M913 - Print TMC2130 currents <a href="https://reprap.org/wiki/G-code#M913:_Print_TMC2130_currents">M913: Print TMC2130 currents</a>
  7204. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7205. Shows TMC2130 currents.
  7206. */
  7207. case 913:
  7208. {
  7209. tmc2130_print_currents();
  7210. }
  7211. break;
  7212. /*!
  7213. ### M914 - Set TMC2130 normal mode <a href="https://reprap.org/wiki/G-code#M914:_Set_TMC2130_normal_mode">M914: Set TMC2130 normal mode</a>
  7214. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7215. */
  7216. case 914:
  7217. {
  7218. tmc2130_mode = TMC2130_MODE_NORMAL;
  7219. update_mode_profile();
  7220. tmc2130_init();
  7221. }
  7222. break;
  7223. /*!
  7224. ### M915 - Set TMC2130 silent mode <a href="https://reprap.org/wiki/G-code#M915:_Set_TMC2130_silent_mode">M915: Set TMC2130 silent mode</a>
  7225. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7226. */
  7227. case 915:
  7228. {
  7229. tmc2130_mode = TMC2130_MODE_SILENT;
  7230. update_mode_profile();
  7231. tmc2130_init();
  7232. }
  7233. break;
  7234. /*!
  7235. ### M916 - Set TMC2130 Stallguard sensitivity threshold <a href="https://reprap.org/wiki/G-code#M916:_Set_TMC2130_Stallguard_sensitivity_threshold">M916: Set TMC2130 Stallguard sensitivity threshold</a>
  7236. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7237. #### Usage
  7238. M916 [ X | Y | Z | E ]
  7239. #### Parameters
  7240. - `X` - X stepper driver stallguard sensitivity threshold value
  7241. - `Y` - Y stepper driver stallguard sensitivity threshold value
  7242. - `Z` - Z stepper driver stallguard sensitivity threshold value
  7243. - `E` - Extruder stepper driver stallguard sensitivity threshold value
  7244. */
  7245. case 916:
  7246. {
  7247. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  7248. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  7249. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  7250. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  7251. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  7252. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  7253. }
  7254. break;
  7255. /*!
  7256. ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl) <a href="https://reprap.org/wiki/G-code#M917:_Set_TMC2130_PWM_amplitude_offset_.28pwm_ampl.29">M917: Set TMC2130 PWM amplitude offset (pwm_ampl)</a>
  7257. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7258. #### Usage
  7259. M917 [ X | Y | Z | E ]
  7260. #### Parameters
  7261. - `X` - X stepper driver PWM amplitude offset value
  7262. - `Y` - Y stepper driver PWM amplitude offset value
  7263. - `Z` - Z stepper driver PWM amplitude offset value
  7264. - `E` - Extruder stepper driver PWM amplitude offset value
  7265. */
  7266. case 917:
  7267. {
  7268. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  7269. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  7270. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  7271. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  7272. }
  7273. break;
  7274. /*!
  7275. ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad) <a href="https://reprap.org/wiki/G-code#M918:_Set_TMC2130_PWM_amplitude_gradient_.28pwm_grad.29">M918: Set TMC2130 PWM amplitude gradient (pwm_grad)</a>
  7276. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7277. #### Usage
  7278. M918 [ X | Y | Z | E ]
  7279. #### Parameters
  7280. - `X` - X stepper driver PWM amplitude gradient value
  7281. - `Y` - Y stepper driver PWM amplitude gradient value
  7282. - `Z` - Z stepper driver PWM amplitude gradient value
  7283. - `E` - Extruder stepper driver PWM amplitude gradient value
  7284. */
  7285. case 918:
  7286. {
  7287. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  7288. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  7289. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  7290. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  7291. }
  7292. break;
  7293. #endif //TMC2130_SERVICE_CODES_M910_M918
  7294. /*!
  7295. ### M350 - Set microstepping mode <a href="https://reprap.org/wiki/G-code#M350:_Set_microstepping_mode">M350: Set microstepping mode</a>
  7296. Printers with TMC2130 drivers have `X`, `Y`, `Z` and `E` as options. The steps-per-unit value is updated accordingly. Not all resolutions are valid!
  7297. Printers without TMC2130 drivers also have `B` and `S` options. In this case, the steps-per-unit value in not changed!
  7298. #### Usage
  7299. M350 [ X | Y | Z | E | B | S ]
  7300. #### Parameters
  7301. - `X` - X new resolution
  7302. - `Y` - Y new resolution
  7303. - `Z` - Z new resolution
  7304. - `E` - E new resolution
  7305. Only valid for MK2.5(S) or printers without TMC2130 drivers
  7306. - `B` - Second extruder new resolution
  7307. - `S` - All axes new resolution
  7308. */
  7309. case 350:
  7310. {
  7311. #ifdef TMC2130
  7312. for (int i=0; i<NUM_AXIS; i++)
  7313. {
  7314. if(code_seen(axis_codes[i]))
  7315. {
  7316. uint16_t res_new = code_value();
  7317. bool res_valid = (res_new == 8) || (res_new == 16) || (res_new == 32); // resolutions valid for all axis
  7318. res_valid |= (i != E_AXIS) && ((res_new == 1) || (res_new == 2) || (res_new == 4)); // resolutions valid for X Y Z only
  7319. res_valid |= (i == E_AXIS) && ((res_new == 64) || (res_new == 128)); // resolutions valid for E only
  7320. if (res_valid)
  7321. {
  7322. st_synchronize();
  7323. uint16_t res = tmc2130_get_res(i);
  7324. tmc2130_set_res(i, res_new);
  7325. cs.axis_ustep_resolution[i] = res_new;
  7326. if (res_new > res)
  7327. {
  7328. uint16_t fac = (res_new / res);
  7329. cs.axis_steps_per_unit[i] *= fac;
  7330. position[i] *= fac;
  7331. }
  7332. else
  7333. {
  7334. uint16_t fac = (res / res_new);
  7335. cs.axis_steps_per_unit[i] /= fac;
  7336. position[i] /= fac;
  7337. }
  7338. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  7339. if (i == E_AXIS)
  7340. fsensor_set_axis_steps_per_unit(cs.axis_steps_per_unit[i]);
  7341. #endif
  7342. }
  7343. }
  7344. }
  7345. #else //TMC2130
  7346. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7347. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  7348. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  7349. if(code_seen('B')) microstep_mode(4,code_value());
  7350. microstep_readings();
  7351. #endif
  7352. #endif //TMC2130
  7353. }
  7354. break;
  7355. /*!
  7356. ### M351 - Toggle Microstep Pins <a href="https://reprap.org/wiki/G-code#M351:_Toggle_MS1_MS2_pins_directly">M351: Toggle MS1 MS2 pins directly</a>
  7357. Toggle MS1 MS2 pins directly.
  7358. #### Usage
  7359. M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  7360. #### Parameters
  7361. - `X` - Update X axis
  7362. - `Y` - Update Y axis
  7363. - `Z` - Update Z axis
  7364. - `E` - Update E axis
  7365. - `S` - which MSx pin to toggle
  7366. - `B` - new pin value
  7367. */
  7368. case 351:
  7369. {
  7370. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7371. if(code_seen('S')) switch((int)code_value())
  7372. {
  7373. case 1:
  7374. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  7375. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  7376. break;
  7377. case 2:
  7378. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  7379. if(code_seen('B')) microstep_ms(4,-1,code_value());
  7380. break;
  7381. }
  7382. microstep_readings();
  7383. #endif
  7384. }
  7385. break;
  7386. /*!
  7387. ### M701 - Load filament <a href="https://reprap.org/wiki/G-code#M701:_Load_filament">M701: Load filament</a>
  7388. */
  7389. case 701:
  7390. {
  7391. if (mmu_enabled && code_seen('E'))
  7392. tmp_extruder = code_value();
  7393. gcode_M701();
  7394. }
  7395. break;
  7396. /*!
  7397. ### M702 - Unload filament <a href="https://reprap.org/wiki/G-code#M702:_Unload_filament">G32: Undock Z Probe sled</a>
  7398. #### Usage
  7399. M702 [ U | C ]
  7400. #### Parameters
  7401. - `U` - Unload all filaments used in current print
  7402. - `C` - Unload just current filament
  7403. - without any parameters unload all filaments
  7404. */
  7405. case 702:
  7406. {
  7407. #ifdef SNMM
  7408. if (code_seen('U'))
  7409. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  7410. else if (code_seen('C'))
  7411. extr_unload(); //! if "C" unload just current filament
  7412. else
  7413. extr_unload_all(); //! otherwise unload all filaments
  7414. #else
  7415. if (code_seen('C')) {
  7416. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  7417. }
  7418. else {
  7419. if(mmu_enabled) extr_unload(); //! unload current filament
  7420. else unload_filament();
  7421. }
  7422. #endif //SNMM
  7423. }
  7424. break;
  7425. /*!
  7426. ### M999 - Restart after being stopped <a href="https://reprap.org/wiki/G-code#M999:_Restart_after_being_stopped_by_error">M999: Restart after being stopped by error</a>
  7427. @todo Usually doesn't work. Should be fixed or removed. Most of the time, if `Stopped` it set, the print fails and is unrecoverable.
  7428. */
  7429. case 999:
  7430. Stopped = false;
  7431. lcd_reset_alert_level();
  7432. gcode_LastN = Stopped_gcode_LastN;
  7433. FlushSerialRequestResend();
  7434. break;
  7435. /*!
  7436. #### End of M-Commands
  7437. */
  7438. default:
  7439. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  7440. }
  7441. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  7442. mcode_in_progress = 0;
  7443. }
  7444. }
  7445. // end if(code_seen('M')) (end of M codes)
  7446. /*!
  7447. -----------------------------------------------------------------------------------------
  7448. # T Codes
  7449. T<extruder nr.> - select extruder in case of multi extruder printer. select filament in case of MMU_V2.
  7450. #### For MMU_V2:
  7451. T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  7452. @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  7453. @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  7454. @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  7455. */
  7456. else if(code_seen('T'))
  7457. {
  7458. int index;
  7459. bool load_to_nozzle = false;
  7460. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  7461. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  7462. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  7463. SERIAL_ECHOLNPGM("Invalid T code.");
  7464. }
  7465. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  7466. if (mmu_enabled)
  7467. {
  7468. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  7469. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7470. {
  7471. printf_P(PSTR("Duplicate T-code ignored.\n"));
  7472. }
  7473. else
  7474. {
  7475. st_synchronize();
  7476. mmu_command(MmuCmd::T0 + tmp_extruder);
  7477. manage_response(true, true, MMU_TCODE_MOVE);
  7478. }
  7479. }
  7480. }
  7481. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  7482. if (mmu_enabled)
  7483. {
  7484. st_synchronize();
  7485. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  7486. mmu_extruder = tmp_extruder; //filament change is finished
  7487. mmu_load_to_nozzle();
  7488. }
  7489. }
  7490. else {
  7491. if (*(strchr_pointer + index) == '?')
  7492. {
  7493. if(mmu_enabled)
  7494. {
  7495. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  7496. load_to_nozzle = true;
  7497. } else
  7498. {
  7499. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  7500. }
  7501. }
  7502. else {
  7503. tmp_extruder = code_value();
  7504. if (mmu_enabled && lcd_autoDepleteEnabled())
  7505. {
  7506. tmp_extruder = ad_getAlternative(tmp_extruder);
  7507. }
  7508. }
  7509. st_synchronize();
  7510. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  7511. if (mmu_enabled)
  7512. {
  7513. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7514. {
  7515. printf_P(PSTR("Duplicate T-code ignored.\n"));
  7516. }
  7517. else
  7518. {
  7519. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7520. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  7521. {
  7522. mmu_command(MmuCmd::K0 + tmp_extruder);
  7523. manage_response(true, true, MMU_UNLOAD_MOVE);
  7524. }
  7525. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7526. mmu_command(MmuCmd::T0 + tmp_extruder);
  7527. manage_response(true, true, MMU_TCODE_MOVE);
  7528. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  7529. mmu_extruder = tmp_extruder; //filament change is finished
  7530. if (load_to_nozzle)// for single material usage with mmu
  7531. {
  7532. mmu_load_to_nozzle();
  7533. }
  7534. }
  7535. }
  7536. else
  7537. {
  7538. #ifdef SNMM
  7539. mmu_extruder = tmp_extruder;
  7540. _delay(100);
  7541. disable_e0();
  7542. disable_e1();
  7543. disable_e2();
  7544. pinMode(E_MUX0_PIN, OUTPUT);
  7545. pinMode(E_MUX1_PIN, OUTPUT);
  7546. _delay(100);
  7547. SERIAL_ECHO_START;
  7548. SERIAL_ECHO("T:");
  7549. SERIAL_ECHOLN((int)tmp_extruder);
  7550. switch (tmp_extruder) {
  7551. case 1:
  7552. WRITE(E_MUX0_PIN, HIGH);
  7553. WRITE(E_MUX1_PIN, LOW);
  7554. break;
  7555. case 2:
  7556. WRITE(E_MUX0_PIN, LOW);
  7557. WRITE(E_MUX1_PIN, HIGH);
  7558. break;
  7559. case 3:
  7560. WRITE(E_MUX0_PIN, HIGH);
  7561. WRITE(E_MUX1_PIN, HIGH);
  7562. break;
  7563. default:
  7564. WRITE(E_MUX0_PIN, LOW);
  7565. WRITE(E_MUX1_PIN, LOW);
  7566. break;
  7567. }
  7568. _delay(100);
  7569. #else //SNMM
  7570. if (tmp_extruder >= EXTRUDERS) {
  7571. SERIAL_ECHO_START;
  7572. SERIAL_ECHO('T');
  7573. SERIAL_PROTOCOLLN((int)tmp_extruder);
  7574. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  7575. }
  7576. else {
  7577. #if EXTRUDERS > 1
  7578. boolean make_move = false;
  7579. #endif
  7580. if (code_seen('F')) {
  7581. #if EXTRUDERS > 1
  7582. make_move = true;
  7583. #endif
  7584. next_feedrate = code_value();
  7585. if (next_feedrate > 0.0) {
  7586. feedrate = next_feedrate;
  7587. }
  7588. }
  7589. #if EXTRUDERS > 1
  7590. if (tmp_extruder != active_extruder) {
  7591. // Save current position to return to after applying extruder offset
  7592. memcpy(destination, current_position, sizeof(destination));
  7593. // Offset extruder (only by XY)
  7594. int i;
  7595. for (i = 0; i < 2; i++) {
  7596. current_position[i] = current_position[i] -
  7597. extruder_offset[i][active_extruder] +
  7598. extruder_offset[i][tmp_extruder];
  7599. }
  7600. // Set the new active extruder and position
  7601. active_extruder = tmp_extruder;
  7602. plan_set_position_curposXYZE();
  7603. // Move to the old position if 'F' was in the parameters
  7604. if (make_move && Stopped == false) {
  7605. prepare_move();
  7606. }
  7607. }
  7608. #endif
  7609. SERIAL_ECHO_START;
  7610. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  7611. SERIAL_PROTOCOLLN((int)active_extruder);
  7612. }
  7613. #endif //SNMM
  7614. }
  7615. }
  7616. } // end if(code_seen('T')) (end of T codes)
  7617. /*!
  7618. #### End of T-Codes
  7619. */
  7620. /**
  7621. *---------------------------------------------------------------------------------
  7622. *# D codes
  7623. */
  7624. else if (code_seen('D')) // D codes (debug)
  7625. {
  7626. switch((int)code_value())
  7627. {
  7628. /*!
  7629. ### D-1 - Endless Loop <a href="https://reprap.org/wiki/G-code#D-1:_Endless_Loop">D-1: Endless Loop</a>
  7630. */
  7631. case -1:
  7632. dcode__1(); break;
  7633. #ifdef DEBUG_DCODES
  7634. /*!
  7635. ### D0 - Reset <a href="https://reprap.org/wiki/G-code#D0:_Reset">D0: Reset</a>
  7636. #### Usage
  7637. D0 [ B ]
  7638. #### Parameters
  7639. - `B` - Bootloader
  7640. */
  7641. case 0:
  7642. dcode_0(); break;
  7643. /*!
  7644. *
  7645. ### D1 - Clear EEPROM and RESET <a href="https://reprap.org/wiki/G-code#D1:_Clear_EEPROM_and_RESET">D1: Clear EEPROM and RESET</a>
  7646. D1
  7647. *
  7648. */
  7649. case 1:
  7650. dcode_1(); break;
  7651. /*!
  7652. ### D2 - Read/Write RAM <a href="https://reprap.org/wiki/G-code#D2:_Read.2FWrite_RAM">D3: Read/Write RAM</a>
  7653. This command can be used without any additional parameters. It will read the entire RAM.
  7654. #### Usage
  7655. D2 [ A | C | X ]
  7656. #### Parameters
  7657. - `A` - Address (x0000-x1fff)
  7658. - `C` - Count (1-8192)
  7659. - `X` - Data
  7660. #### Notes
  7661. - The hex address needs to be lowercase without the 0 before the x
  7662. - Count is decimal
  7663. - The hex data needs to be lowercase
  7664. */
  7665. case 2:
  7666. dcode_2(); break;
  7667. #endif //DEBUG_DCODES
  7668. #if defined DEBUG_DCODE3 || defined DEBUG_DCODES
  7669. /*!
  7670. ### D3 - Read/Write EEPROM <a href="https://reprap.org/wiki/G-code#D3:_Read.2FWrite_EEPROM">D3: Read/Write EEPROM</a>
  7671. This command can be used without any additional parameters. It will read the entire eeprom.
  7672. #### Usage
  7673. D3 [ A | C | X ]
  7674. #### Parameters
  7675. - `A` - Address (x0000-x0fff)
  7676. - `C` - Count (1-4096)
  7677. - `X` - Data (hex)
  7678. #### Notes
  7679. - The hex address needs to be lowercase without the 0 before the x
  7680. - Count is decimal
  7681. - The hex data needs to be lowercase
  7682. */
  7683. case 3:
  7684. dcode_3(); break;
  7685. #endif //DEBUG_DCODE3
  7686. #ifdef DEBUG_DCODES
  7687. /*!
  7688. ### D4 - Read/Write PIN <a href="https://reprap.org/wiki/G-code#D4:_Read.2FWrite_PIN">D4: Read/Write PIN</a>
  7689. To read the digital value of a pin you need only to define the pin number.
  7690. #### Usage
  7691. D4 [ P | F | V ]
  7692. #### Parameters
  7693. - `P` - Pin (0-255)
  7694. - `F` - Function in/out (0/1)
  7695. - `V` - Value (0/1)
  7696. */
  7697. case 4:
  7698. dcode_4(); break;
  7699. #endif //DEBUG_DCODES
  7700. #if defined DEBUG_DCODE5 || defined DEBUG_DCODES
  7701. /*!
  7702. ### D5 - Read/Write FLASH <a href="https://reprap.org/wiki/G-code#D5:_Read.2FWrite_FLASH">D5: Read/Write Flash</a>
  7703. This command can be used without any additional parameters. It will read the 1kb FLASH.
  7704. #### Usage
  7705. D5 [ A | C | X | E ]
  7706. #### Parameters
  7707. - `A` - Address (x00000-x3ffff)
  7708. - `C` - Count (1-8192)
  7709. - `X` - Data (hex)
  7710. - `E` - Erase
  7711. #### Notes
  7712. - The hex address needs to be lowercase without the 0 before the x
  7713. - Count is decimal
  7714. - The hex data needs to be lowercase
  7715. */
  7716. case 5:
  7717. dcode_5(); break;
  7718. #endif //DEBUG_DCODE5
  7719. #ifdef DEBUG_DCODES
  7720. /*!
  7721. ### D6 - Read/Write external FLASH <a href="https://reprap.org/wiki/G-code#D6:_Read.2FWrite_external_FLASH">D6: Read/Write external Flash</a>
  7722. Reserved
  7723. */
  7724. case 6:
  7725. dcode_6(); break;
  7726. /*!
  7727. ### D7 - Read/Write Bootloader <a href="https://reprap.org/wiki/G-code#D7:_Read.2FWrite_Bootloader">D7: Read/Write Bootloader</a>
  7728. Reserved
  7729. */
  7730. case 7:
  7731. dcode_7(); break;
  7732. /*!
  7733. ### D8 - Read/Write PINDA <a href="https://reprap.org/wiki/G-code#D8:_Read.2FWrite_PINDA">D8: Read/Write PINDA</a>
  7734. #### Usage
  7735. D8 [ ? | ! | P | Z ]
  7736. #### Parameters
  7737. - `?` - Read PINDA temperature shift values
  7738. - `!` - Reset PINDA temperature shift values to default
  7739. - `P` - Pinda temperature [C]
  7740. - `Z` - Z Offset [mm]
  7741. */
  7742. case 8:
  7743. dcode_8(); break;
  7744. /*!
  7745. ### D9 - Read ADC <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9: Read ADC</a>
  7746. #### Usage
  7747. D9 [ I | V ]
  7748. #### Parameters
  7749. - `I` - ADC channel index
  7750. - `0` - Heater 0 temperature
  7751. - `1` - Heater 1 temperature
  7752. - `2` - Bed temperature
  7753. - `3` - PINDA temperature
  7754. - `4` - PWR voltage
  7755. - `5` - Ambient temperature
  7756. - `6` - BED voltage
  7757. - `V` Value to be written as simulated
  7758. */
  7759. case 9:
  7760. dcode_9(); break;
  7761. /*!
  7762. ### D10 - Set XYZ calibration = OK <a href="https://reprap.org/wiki/G-code#D10:_Set_XYZ_calibration_.3D_OK">D10: Set XYZ calibration = OK</a>
  7763. */
  7764. case 10:
  7765. dcode_10(); break;
  7766. /*!
  7767. ### D12 - Time <a href="https://reprap.org/wiki/G-code#D12:_Time">D12: Time</a>
  7768. Writes the current time in the log file.
  7769. */
  7770. #endif //DEBUG_DCODES
  7771. #ifdef HEATBED_ANALYSIS
  7772. /*!
  7773. ### D80 - Bed check <a href="https://reprap.org/wiki/G-code#D80:_Bed_check">D80: Bed check</a>
  7774. This command will log data to SD card file "mesh.txt".
  7775. #### Usage
  7776. D80 [ E | F | G | H | I | J ]
  7777. #### Parameters
  7778. - `E` - Dimension X (default 40)
  7779. - `F` - Dimention Y (default 40)
  7780. - `G` - Points X (default 40)
  7781. - `H` - Points Y (default 40)
  7782. - `I` - Offset X (default 74)
  7783. - `J` - Offset Y (default 34)
  7784. */
  7785. case 80:
  7786. dcode_80(); break;
  7787. /*!
  7788. ### D81 - Bed analysis <a href="https://reprap.org/wiki/G-code#D81:_Bed_analysis">D80: Bed analysis</a>
  7789. This command will log data to SD card file "wldsd.txt".
  7790. #### Usage
  7791. D81 [ E | F | G | H | I | J ]
  7792. #### Parameters
  7793. - `E` - Dimension X (default 40)
  7794. - `F` - Dimention Y (default 40)
  7795. - `G` - Points X (default 40)
  7796. - `H` - Points Y (default 40)
  7797. - `I` - Offset X (default 74)
  7798. - `J` - Offset Y (default 34)
  7799. */
  7800. case 81:
  7801. dcode_81(); break;
  7802. #endif //HEATBED_ANALYSIS
  7803. #ifdef DEBUG_DCODES
  7804. /*!
  7805. ### D106 - Print measured fan speed for different pwm values <a href="https://reprap.org/wiki/G-code#D106:_Print_measured_fan_speed_for_different_pwm_values">D106: Print measured fan speed for different pwm values</a>
  7806. */
  7807. case 106:
  7808. dcode_106(); break;
  7809. #ifdef TMC2130
  7810. /*!
  7811. ### D2130 - Trinamic stepper controller <a href="https://reprap.org/wiki/G-code#D2130:_Trinamic_stepper_controller">D2130: Trinamic stepper controller</a>
  7812. @todo Please review by owner of the code. RepRap Wiki Gcode needs to be updated after review of owner as well.
  7813. #### Usage
  7814. D2130 [ Axis | Command | Subcommand | Value ]
  7815. #### Parameters
  7816. - Axis
  7817. - `X` - X stepper driver
  7818. - `Y` - Y stepper driver
  7819. - `Z` - Z stepper driver
  7820. - `E` - Extruder stepper driver
  7821. - Commands
  7822. - `0` - Current off
  7823. - `1` - Current on
  7824. - `+` - Single step
  7825. - `-` - Single step oposite direction
  7826. - `NNN` - Value sereval steps
  7827. - `?` - Read register
  7828. - Subcommands for read register
  7829. - `mres` - Micro step resolution. More information in datasheet '5.5.2 CHOPCONF – Chopper Configuration'
  7830. - `step` - Step
  7831. - `mscnt` - Microstep counter. More information in datasheet '5.5 Motor Driver Registers'
  7832. - `mscuract` - Actual microstep current for motor. More information in datasheet '5.5 Motor Driver Registers'
  7833. - `wave` - Microstep linearity compensation curve
  7834. - `!` - Set register
  7835. - Subcommands for set register
  7836. - `mres` - Micro step resolution
  7837. - `step` - Step
  7838. - `wave` - Microstep linearity compensation curve
  7839. - Values for set register
  7840. - `0, 180 --> 250` - Off
  7841. - `0.9 --> 1.25` - Valid values (recommended is 1.1)
  7842. - `@` - Home calibrate axis
  7843. Examples:
  7844. D2130E?wave
  7845. Print extruder microstep linearity compensation curve
  7846. D2130E!wave0
  7847. Disable extruder linearity compensation curve, (sine curve is used)
  7848. D2130E!wave220
  7849. (sin(x))^1.1 extruder microstep compensation curve used
  7850. Notes:
  7851. For more information see https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2130_datasheet.pdf
  7852. *
  7853. */
  7854. case 2130:
  7855. dcode_2130(); break;
  7856. #endif //TMC2130
  7857. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  7858. /*!
  7859. ### D9125 - PAT9125 filament sensor <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9125: PAT9125 filament sensor</a>
  7860. #### Usage
  7861. D9125 [ ? | ! | R | X | Y | L ]
  7862. #### Parameters
  7863. - `?` - Print values
  7864. - `!` - Print values
  7865. - `R` - Resolution. Not active in code
  7866. - `X` - X values
  7867. - `Y` - Y values
  7868. - `L` - Activate filament sensor log
  7869. */
  7870. case 9125:
  7871. dcode_9125(); break;
  7872. #endif //FILAMENT_SENSOR
  7873. #endif //DEBUG_DCODES
  7874. }
  7875. }
  7876. else
  7877. {
  7878. SERIAL_ECHO_START;
  7879. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  7880. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  7881. SERIAL_ECHOLNPGM("\"(2)");
  7882. }
  7883. KEEPALIVE_STATE(NOT_BUSY);
  7884. ClearToSend();
  7885. }
  7886. /*!
  7887. #### End of D-Codes
  7888. */
  7889. /** @defgroup GCodes G-Code List
  7890. */
  7891. // ---------------------------------------------------
  7892. void FlushSerialRequestResend()
  7893. {
  7894. //char cmdbuffer[bufindr][100]="Resend:";
  7895. MYSERIAL.flush();
  7896. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  7897. }
  7898. // Confirm the execution of a command, if sent from a serial line.
  7899. // Execution of a command from a SD card will not be confirmed.
  7900. void ClearToSend()
  7901. {
  7902. previous_millis_cmd = _millis();
  7903. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  7904. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7905. }
  7906. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7907. void update_currents() {
  7908. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7909. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7910. float tmp_motor[3];
  7911. //SERIAL_ECHOLNPGM("Currents updated: ");
  7912. if (destination[Z_AXIS] < Z_SILENT) {
  7913. //SERIAL_ECHOLNPGM("LOW");
  7914. for (uint8_t i = 0; i < 3; i++) {
  7915. st_current_set(i, current_low[i]);
  7916. /*MYSERIAL.print(int(i));
  7917. SERIAL_ECHOPGM(": ");
  7918. MYSERIAL.println(current_low[i]);*/
  7919. }
  7920. }
  7921. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  7922. //SERIAL_ECHOLNPGM("HIGH");
  7923. for (uint8_t i = 0; i < 3; i++) {
  7924. st_current_set(i, current_high[i]);
  7925. /*MYSERIAL.print(int(i));
  7926. SERIAL_ECHOPGM(": ");
  7927. MYSERIAL.println(current_high[i]);*/
  7928. }
  7929. }
  7930. else {
  7931. for (uint8_t i = 0; i < 3; i++) {
  7932. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  7933. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  7934. st_current_set(i, tmp_motor[i]);
  7935. /*MYSERIAL.print(int(i));
  7936. SERIAL_ECHOPGM(": ");
  7937. MYSERIAL.println(tmp_motor[i]);*/
  7938. }
  7939. }
  7940. }
  7941. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7942. void get_coordinates()
  7943. {
  7944. bool seen[4]={false,false,false,false};
  7945. for(int8_t i=0; i < NUM_AXIS; i++) {
  7946. if(code_seen(axis_codes[i]))
  7947. {
  7948. bool relative = axis_relative_modes & (1 << i);
  7949. destination[i] = (float)code_value();
  7950. if (i == E_AXIS) {
  7951. float emult = extruder_multiplier[active_extruder];
  7952. if (emult != 1.) {
  7953. if (! relative) {
  7954. destination[i] -= current_position[i];
  7955. relative = true;
  7956. }
  7957. destination[i] *= emult;
  7958. }
  7959. }
  7960. if (relative)
  7961. destination[i] += current_position[i];
  7962. seen[i]=true;
  7963. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7964. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  7965. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7966. }
  7967. else destination[i] = current_position[i]; //Are these else lines really needed?
  7968. }
  7969. if(code_seen('F')) {
  7970. next_feedrate = code_value();
  7971. #ifdef MAX_SILENT_FEEDRATE
  7972. if (tmc2130_mode == TMC2130_MODE_SILENT)
  7973. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  7974. #endif //MAX_SILENT_FEEDRATE
  7975. if(next_feedrate > 0.0) feedrate = next_feedrate;
  7976. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  7977. {
  7978. // float e_max_speed =
  7979. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  7980. }
  7981. }
  7982. }
  7983. void get_arc_coordinates()
  7984. {
  7985. #ifdef SF_ARC_FIX
  7986. bool relative_mode_backup = relative_mode;
  7987. relative_mode = true;
  7988. #endif
  7989. get_coordinates();
  7990. #ifdef SF_ARC_FIX
  7991. relative_mode=relative_mode_backup;
  7992. #endif
  7993. if(code_seen('I')) {
  7994. offset[0] = code_value();
  7995. }
  7996. else {
  7997. offset[0] = 0.0;
  7998. }
  7999. if(code_seen('J')) {
  8000. offset[1] = code_value();
  8001. }
  8002. else {
  8003. offset[1] = 0.0;
  8004. }
  8005. }
  8006. void clamp_to_software_endstops(float target[3])
  8007. {
  8008. #ifdef DEBUG_DISABLE_SWLIMITS
  8009. return;
  8010. #endif //DEBUG_DISABLE_SWLIMITS
  8011. world2machine_clamp(target[0], target[1]);
  8012. // Clamp the Z coordinate.
  8013. if (min_software_endstops) {
  8014. float negative_z_offset = 0;
  8015. #ifdef ENABLE_AUTO_BED_LEVELING
  8016. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  8017. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  8018. #endif
  8019. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  8020. }
  8021. if (max_software_endstops) {
  8022. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  8023. }
  8024. }
  8025. #ifdef MESH_BED_LEVELING
  8026. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  8027. float dx = x - current_position[X_AXIS];
  8028. float dy = y - current_position[Y_AXIS];
  8029. int n_segments = 0;
  8030. if (mbl.active) {
  8031. float len = abs(dx) + abs(dy);
  8032. if (len > 0)
  8033. // Split to 3cm segments or shorter.
  8034. n_segments = int(ceil(len / 30.f));
  8035. }
  8036. if (n_segments > 1) {
  8037. // In a multi-segment move explicitly set the final target in the plan
  8038. // as the move will be recalculated in it's entirety
  8039. float gcode_target[NUM_AXIS];
  8040. gcode_target[X_AXIS] = x;
  8041. gcode_target[Y_AXIS] = y;
  8042. gcode_target[Z_AXIS] = z;
  8043. gcode_target[E_AXIS] = e;
  8044. float dz = z - current_position[Z_AXIS];
  8045. float de = e - current_position[E_AXIS];
  8046. for (int i = 1; i < n_segments; ++ i) {
  8047. float t = float(i) / float(n_segments);
  8048. plan_buffer_line(current_position[X_AXIS] + t * dx,
  8049. current_position[Y_AXIS] + t * dy,
  8050. current_position[Z_AXIS] + t * dz,
  8051. current_position[E_AXIS] + t * de,
  8052. feed_rate, extruder, gcode_target);
  8053. if (waiting_inside_plan_buffer_line_print_aborted)
  8054. return;
  8055. }
  8056. }
  8057. // The rest of the path.
  8058. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  8059. }
  8060. #endif // MESH_BED_LEVELING
  8061. void prepare_move()
  8062. {
  8063. clamp_to_software_endstops(destination);
  8064. previous_millis_cmd = _millis();
  8065. // Do not use feedmultiply for E or Z only moves
  8066. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  8067. plan_buffer_line_destinationXYZE(feedrate/60);
  8068. }
  8069. else {
  8070. #ifdef MESH_BED_LEVELING
  8071. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  8072. #else
  8073. plan_buffer_line_destinationXYZE(feedrate*feedmultiply*(1./(60.f*100.f)));
  8074. #endif
  8075. }
  8076. set_current_to_destination();
  8077. }
  8078. void prepare_arc_move(char isclockwise) {
  8079. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  8080. // Trace the arc
  8081. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  8082. // As far as the parser is concerned, the position is now == target. In reality the
  8083. // motion control system might still be processing the action and the real tool position
  8084. // in any intermediate location.
  8085. for(int8_t i=0; i < NUM_AXIS; i++) {
  8086. current_position[i] = destination[i];
  8087. }
  8088. previous_millis_cmd = _millis();
  8089. }
  8090. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8091. #if defined(FAN_PIN)
  8092. #if CONTROLLERFAN_PIN == FAN_PIN
  8093. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  8094. #endif
  8095. #endif
  8096. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  8097. unsigned long lastMotorCheck = 0;
  8098. void controllerFan()
  8099. {
  8100. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  8101. {
  8102. lastMotorCheck = _millis();
  8103. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  8104. #if EXTRUDERS > 2
  8105. || !READ(E2_ENABLE_PIN)
  8106. #endif
  8107. #if EXTRUDER > 1
  8108. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  8109. || !READ(X2_ENABLE_PIN)
  8110. #endif
  8111. || !READ(E1_ENABLE_PIN)
  8112. #endif
  8113. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  8114. {
  8115. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  8116. }
  8117. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  8118. {
  8119. digitalWrite(CONTROLLERFAN_PIN, 0);
  8120. analogWrite(CONTROLLERFAN_PIN, 0);
  8121. }
  8122. else
  8123. {
  8124. // allows digital or PWM fan output to be used (see M42 handling)
  8125. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  8126. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  8127. }
  8128. }
  8129. }
  8130. #endif
  8131. #ifdef TEMP_STAT_LEDS
  8132. static bool blue_led = false;
  8133. static bool red_led = false;
  8134. static uint32_t stat_update = 0;
  8135. void handle_status_leds(void) {
  8136. float max_temp = 0.0;
  8137. if(_millis() > stat_update) {
  8138. stat_update += 500; // Update every 0.5s
  8139. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  8140. max_temp = max(max_temp, degHotend(cur_extruder));
  8141. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  8142. }
  8143. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  8144. max_temp = max(max_temp, degTargetBed());
  8145. max_temp = max(max_temp, degBed());
  8146. #endif
  8147. if((max_temp > 55.0) && (red_led == false)) {
  8148. digitalWrite(STAT_LED_RED, 1);
  8149. digitalWrite(STAT_LED_BLUE, 0);
  8150. red_led = true;
  8151. blue_led = false;
  8152. }
  8153. if((max_temp < 54.0) && (blue_led == false)) {
  8154. digitalWrite(STAT_LED_RED, 0);
  8155. digitalWrite(STAT_LED_BLUE, 1);
  8156. red_led = false;
  8157. blue_led = true;
  8158. }
  8159. }
  8160. }
  8161. #endif
  8162. #ifdef SAFETYTIMER
  8163. /**
  8164. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  8165. *
  8166. * Full screen blocking notification message is shown after heater turning off.
  8167. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  8168. * damage print.
  8169. *
  8170. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  8171. */
  8172. static void handleSafetyTimer()
  8173. {
  8174. #if (EXTRUDERS > 1)
  8175. #error Implemented only for one extruder.
  8176. #endif //(EXTRUDERS > 1)
  8177. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  8178. {
  8179. safetyTimer.stop();
  8180. }
  8181. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  8182. {
  8183. safetyTimer.start();
  8184. }
  8185. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  8186. {
  8187. setTargetBed(0);
  8188. setAllTargetHotends(0);
  8189. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  8190. }
  8191. }
  8192. #endif //SAFETYTIMER
  8193. #ifdef IR_SENSOR_ANALOG
  8194. #define FS_CHECK_COUNT 16
  8195. /// Switching mechanism of the fsensor type.
  8196. /// Called from 2 spots which have a very similar behavior
  8197. /// 1: ClFsensorPCB::_Old -> ClFsensorPCB::_Rev04 and print _i("FS v0.4 or newer")
  8198. /// 2: ClFsensorPCB::_Rev04 -> oFsensorPCB=ClFsensorPCB::_Old and print _i("FS v0.3 or older")
  8199. void manage_inactivity_IR_ANALOG_Check(uint16_t &nFSCheckCount, ClFsensorPCB isVersion, ClFsensorPCB switchTo, const char *statusLineTxt_P) {
  8200. bool bTemp = (!CHECK_ALL_HEATERS);
  8201. bTemp = bTemp && (menu_menu == lcd_status_screen);
  8202. bTemp = bTemp && ((oFsensorPCB == isVersion) || (oFsensorPCB == ClFsensorPCB::_Undef));
  8203. bTemp = bTemp && fsensor_enabled;
  8204. if (bTemp) {
  8205. nFSCheckCount++;
  8206. if (nFSCheckCount > FS_CHECK_COUNT) {
  8207. nFSCheckCount = 0; // not necessary
  8208. oFsensorPCB = switchTo;
  8209. eeprom_update_byte((uint8_t *)EEPROM_FSENSOR_PCB, (uint8_t)oFsensorPCB);
  8210. printf_IRSensorAnalogBoardChange();
  8211. lcd_setstatuspgm(statusLineTxt_P);
  8212. }
  8213. } else {
  8214. nFSCheckCount = 0;
  8215. }
  8216. }
  8217. #endif
  8218. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  8219. {
  8220. #ifdef FILAMENT_SENSOR
  8221. bool bInhibitFlag;
  8222. #ifdef IR_SENSOR_ANALOG
  8223. static uint16_t nFSCheckCount=0;
  8224. #endif // IR_SENSOR_ANALOG
  8225. if (mmu_enabled == false)
  8226. {
  8227. //-// if (mcode_in_progress != 600) //M600 not in progress
  8228. #ifdef PAT9125
  8229. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  8230. #endif // PAT9125
  8231. #ifdef IR_SENSOR
  8232. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  8233. #ifdef IR_SENSOR_ANALOG
  8234. bInhibitFlag=bInhibitFlag||bMenuFSDetect; // Settings::HWsetup::FSdetect menu active
  8235. #endif // IR_SENSOR_ANALOG
  8236. #endif // IR_SENSOR
  8237. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  8238. {
  8239. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && ! eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))
  8240. {
  8241. #ifdef IR_SENSOR_ANALOG
  8242. static uint16_t minVolt = Voltage2Raw(6.F), maxVolt = 0;
  8243. // detect min-max, some long term sliding window for filtration may be added
  8244. // avoiding floating point operations, thus computing in raw
  8245. if( current_voltage_raw_IR > maxVolt )maxVolt = current_voltage_raw_IR;
  8246. if( current_voltage_raw_IR < minVolt )minVolt = current_voltage_raw_IR;
  8247. #if 0 // Start: IR Sensor debug info
  8248. { // debug print
  8249. static uint16_t lastVolt = ~0U;
  8250. if( current_voltage_raw_IR != lastVolt ){
  8251. printf_P(PSTR("fs volt=%4.2fV (min=%4.2f max=%4.2f)\n"), Raw2Voltage(current_voltage_raw_IR), Raw2Voltage(minVolt), Raw2Voltage(maxVolt) );
  8252. lastVolt = current_voltage_raw_IR;
  8253. }
  8254. }
  8255. #endif // End: IR Sensor debug info
  8256. //! The trouble is, I can hold the filament in the hole in such a way, that it creates the exact voltage
  8257. //! to be detected as the new fsensor
  8258. //! We can either fake it by extending the detection window to a looooong time
  8259. //! or do some other countermeasures
  8260. //! what we want to detect:
  8261. //! if minvolt gets below ~0.3V, it means there is an old fsensor
  8262. //! if maxvolt gets above 4.6V, it means we either have an old fsensor or broken cables/fsensor
  8263. //! So I'm waiting for a situation, when minVolt gets to range <0, 1.5> and maxVolt gets into range <3.0, 5>
  8264. //! If and only if minVolt is in range <0.3, 1.5> and maxVolt is in range <3.0, 4.6>, I'm considering a situation with the new fsensor
  8265. if( minVolt >= IRsensor_Ldiode_TRESHOLD && minVolt <= IRsensor_Lmax_TRESHOLD
  8266. && maxVolt >= IRsensor_Hmin_TRESHOLD && maxVolt <= IRsensor_Hopen_TRESHOLD
  8267. ){
  8268. manage_inactivity_IR_ANALOG_Check(nFSCheckCount, ClFsensorPCB::_Old, ClFsensorPCB::_Rev04, _i("FS v0.4 or newer") ); ////c=18
  8269. }
  8270. //! If and only if minVolt is in range <0.0, 0.3> and maxVolt is in range <4.6, 5.0V>, I'm considering a situation with the old fsensor
  8271. //! Note, we are not relying on one voltage here - getting just +5V can mean an old fsensor or a broken new sensor - that's why
  8272. //! we need to have both voltages detected correctly to allow switching back to the old fsensor.
  8273. else if( minVolt < IRsensor_Ldiode_TRESHOLD
  8274. && maxVolt > IRsensor_Hopen_TRESHOLD && maxVolt <= IRsensor_VMax_TRESHOLD
  8275. ){
  8276. manage_inactivity_IR_ANALOG_Check(nFSCheckCount, ClFsensorPCB::_Rev04, oFsensorPCB=ClFsensorPCB::_Old, _i("FS v0.3 or older")); ////c=18
  8277. }
  8278. #endif // IR_SENSOR_ANALOG
  8279. if (fsensor_check_autoload())
  8280. {
  8281. #ifdef PAT9125
  8282. fsensor_autoload_check_stop();
  8283. #endif //PAT9125
  8284. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  8285. if(0)
  8286. {
  8287. Sound_MakeCustom(50,1000,false);
  8288. loading_flag = true;
  8289. enquecommand_front_P((PSTR("M701")));
  8290. }
  8291. else
  8292. {
  8293. /*
  8294. lcd_update_enable(false);
  8295. show_preheat_nozzle_warning();
  8296. lcd_update_enable(true);
  8297. */
  8298. eFilamentAction=FilamentAction::AutoLoad;
  8299. bFilamentFirstRun=false;
  8300. if(target_temperature[0]>=EXTRUDE_MINTEMP){
  8301. bFilamentPreheatState=true;
  8302. // mFilamentItem(target_temperature[0],target_temperature_bed);
  8303. menu_submenu(mFilamentItemForce);
  8304. } else {
  8305. menu_submenu(lcd_generic_preheat_menu);
  8306. lcd_timeoutToStatus.start();
  8307. }
  8308. }
  8309. }
  8310. }
  8311. else
  8312. {
  8313. #ifdef PAT9125
  8314. fsensor_autoload_check_stop();
  8315. #endif //PAT9125
  8316. if (fsensor_enabled && !saved_printing)
  8317. fsensor_update();
  8318. }
  8319. }
  8320. }
  8321. #endif //FILAMENT_SENSOR
  8322. #ifdef SAFETYTIMER
  8323. handleSafetyTimer();
  8324. #endif //SAFETYTIMER
  8325. #if defined(KILL_PIN) && KILL_PIN > -1
  8326. static int killCount = 0; // make the inactivity button a bit less responsive
  8327. const int KILL_DELAY = 10000;
  8328. #endif
  8329. if(buflen < (BUFSIZE-1)){
  8330. get_command();
  8331. }
  8332. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  8333. if(max_inactive_time)
  8334. kill(_n("Inactivity Shutdown"), 4);
  8335. if(stepper_inactive_time) {
  8336. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  8337. {
  8338. if(blocks_queued() == false && ignore_stepper_queue == false) {
  8339. disable_x();
  8340. disable_y();
  8341. disable_z();
  8342. disable_e0();
  8343. disable_e1();
  8344. disable_e2();
  8345. }
  8346. }
  8347. }
  8348. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  8349. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  8350. {
  8351. chdkActive = false;
  8352. WRITE(CHDK, LOW);
  8353. }
  8354. #endif
  8355. #if defined(KILL_PIN) && KILL_PIN > -1
  8356. // Check if the kill button was pressed and wait just in case it was an accidental
  8357. // key kill key press
  8358. // -------------------------------------------------------------------------------
  8359. if( 0 == READ(KILL_PIN) )
  8360. {
  8361. killCount++;
  8362. }
  8363. else if (killCount > 0)
  8364. {
  8365. killCount--;
  8366. }
  8367. // Exceeded threshold and we can confirm that it was not accidental
  8368. // KILL the machine
  8369. // ----------------------------------------------------------------
  8370. if ( killCount >= KILL_DELAY)
  8371. {
  8372. kill(NULL, 5);
  8373. }
  8374. #endif
  8375. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8376. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  8377. #endif
  8378. #ifdef EXTRUDER_RUNOUT_PREVENT
  8379. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  8380. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  8381. {
  8382. bool oldstatus=READ(E0_ENABLE_PIN);
  8383. enable_e0();
  8384. float oldepos=current_position[E_AXIS];
  8385. float oldedes=destination[E_AXIS];
  8386. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  8387. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  8388. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  8389. current_position[E_AXIS]=oldepos;
  8390. destination[E_AXIS]=oldedes;
  8391. plan_set_e_position(oldepos);
  8392. previous_millis_cmd=_millis();
  8393. st_synchronize();
  8394. WRITE(E0_ENABLE_PIN,oldstatus);
  8395. }
  8396. #endif
  8397. #ifdef TEMP_STAT_LEDS
  8398. handle_status_leds();
  8399. #endif
  8400. check_axes_activity();
  8401. mmu_loop();
  8402. }
  8403. void kill(const char *full_screen_message, unsigned char id)
  8404. {
  8405. printf_P(_N("KILL: %d\n"), id);
  8406. //return;
  8407. cli(); // Stop interrupts
  8408. disable_heater();
  8409. disable_x();
  8410. // SERIAL_ECHOLNPGM("kill - disable Y");
  8411. disable_y();
  8412. poweroff_z();
  8413. disable_e0();
  8414. disable_e1();
  8415. disable_e2();
  8416. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  8417. pinMode(PS_ON_PIN,INPUT);
  8418. #endif
  8419. SERIAL_ERROR_START;
  8420. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  8421. if (full_screen_message != NULL) {
  8422. SERIAL_ERRORLNRPGM(full_screen_message);
  8423. lcd_display_message_fullscreen_P(full_screen_message);
  8424. } else {
  8425. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  8426. }
  8427. // FMC small patch to update the LCD before ending
  8428. sei(); // enable interrupts
  8429. for ( int i=5; i--; lcd_update(0))
  8430. {
  8431. _delay(200);
  8432. }
  8433. cli(); // disable interrupts
  8434. suicide();
  8435. while(1)
  8436. {
  8437. #ifdef WATCHDOG
  8438. wdt_reset();
  8439. #endif //WATCHDOG
  8440. /* Intentionally left empty */
  8441. } // Wait for reset
  8442. }
  8443. // Stop: Emergency stop used by overtemp functions which allows recovery
  8444. //
  8445. // In addition to stopping the print, this prevents subsequent G[0-3] commands to be
  8446. // processed via USB (using "Stopped") until the print is resumed via M999 or
  8447. // manually started from scratch with the LCD.
  8448. //
  8449. // Note that the current instruction is completely discarded, so resuming from Stop()
  8450. // will introduce either over/under extrusion on the current segment, and will not
  8451. // survive a power panic. Switching Stop() to use the pause machinery instead (with
  8452. // the addition of disabling the headers) could allow true recovery in the future.
  8453. void Stop()
  8454. {
  8455. disable_heater();
  8456. if(Stopped == false) {
  8457. Stopped = true;
  8458. lcd_print_stop();
  8459. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  8460. SERIAL_ERROR_START;
  8461. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  8462. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  8463. }
  8464. }
  8465. bool IsStopped() { return Stopped; };
  8466. void finishAndDisableSteppers()
  8467. {
  8468. st_synchronize();
  8469. disable_x();
  8470. disable_y();
  8471. disable_z();
  8472. disable_e0();
  8473. disable_e1();
  8474. disable_e2();
  8475. #ifndef LA_NOCOMPAT
  8476. // Steppers are disabled both when a print is stopped and also via M84 (which is additionally
  8477. // checked-for to indicate a complete file), so abuse this function to reset the LA detection
  8478. // state for the next print.
  8479. la10c_reset();
  8480. #endif
  8481. }
  8482. #ifdef FAST_PWM_FAN
  8483. void setPwmFrequency(uint8_t pin, int val)
  8484. {
  8485. val &= 0x07;
  8486. switch(digitalPinToTimer(pin))
  8487. {
  8488. #if defined(TCCR0A)
  8489. case TIMER0A:
  8490. case TIMER0B:
  8491. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8492. // TCCR0B |= val;
  8493. break;
  8494. #endif
  8495. #if defined(TCCR1A)
  8496. case TIMER1A:
  8497. case TIMER1B:
  8498. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8499. // TCCR1B |= val;
  8500. break;
  8501. #endif
  8502. #if defined(TCCR2)
  8503. case TIMER2:
  8504. case TIMER2:
  8505. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8506. TCCR2 |= val;
  8507. break;
  8508. #endif
  8509. #if defined(TCCR2A)
  8510. case TIMER2A:
  8511. case TIMER2B:
  8512. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8513. TCCR2B |= val;
  8514. break;
  8515. #endif
  8516. #if defined(TCCR3A)
  8517. case TIMER3A:
  8518. case TIMER3B:
  8519. case TIMER3C:
  8520. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8521. TCCR3B |= val;
  8522. break;
  8523. #endif
  8524. #if defined(TCCR4A)
  8525. case TIMER4A:
  8526. case TIMER4B:
  8527. case TIMER4C:
  8528. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8529. TCCR4B |= val;
  8530. break;
  8531. #endif
  8532. #if defined(TCCR5A)
  8533. case TIMER5A:
  8534. case TIMER5B:
  8535. case TIMER5C:
  8536. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8537. TCCR5B |= val;
  8538. break;
  8539. #endif
  8540. }
  8541. }
  8542. #endif //FAST_PWM_FAN
  8543. //! @brief Get and validate extruder number
  8544. //!
  8545. //! If it is not specified, active_extruder is returned in parameter extruder.
  8546. //! @param [in] code M code number
  8547. //! @param [out] extruder
  8548. //! @return error
  8549. //! @retval true Invalid extruder specified in T code
  8550. //! @retval false Valid extruder specified in T code, or not specifiead
  8551. bool setTargetedHotend(int code, uint8_t &extruder)
  8552. {
  8553. extruder = active_extruder;
  8554. if(code_seen('T')) {
  8555. extruder = code_value();
  8556. if(extruder >= EXTRUDERS) {
  8557. SERIAL_ECHO_START;
  8558. switch(code){
  8559. case 104:
  8560. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  8561. break;
  8562. case 105:
  8563. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  8564. break;
  8565. case 109:
  8566. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  8567. break;
  8568. case 218:
  8569. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  8570. break;
  8571. case 221:
  8572. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  8573. break;
  8574. }
  8575. SERIAL_PROTOCOLLN((int)extruder);
  8576. return true;
  8577. }
  8578. }
  8579. return false;
  8580. }
  8581. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  8582. {
  8583. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  8584. {
  8585. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  8586. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  8587. }
  8588. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  8589. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  8590. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  8591. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  8592. total_filament_used = 0;
  8593. }
  8594. float calculate_extruder_multiplier(float diameter) {
  8595. float out = 1.f;
  8596. if (cs.volumetric_enabled && diameter > 0.f) {
  8597. float area = M_PI * diameter * diameter * 0.25;
  8598. out = 1.f / area;
  8599. }
  8600. if (extrudemultiply != 100)
  8601. out *= float(extrudemultiply) * 0.01f;
  8602. return out;
  8603. }
  8604. void calculate_extruder_multipliers() {
  8605. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  8606. #if EXTRUDERS > 1
  8607. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  8608. #if EXTRUDERS > 2
  8609. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  8610. #endif
  8611. #endif
  8612. }
  8613. void delay_keep_alive(unsigned int ms)
  8614. {
  8615. for (;;) {
  8616. manage_heater();
  8617. // Manage inactivity, but don't disable steppers on timeout.
  8618. manage_inactivity(true);
  8619. lcd_update(0);
  8620. if (ms == 0)
  8621. break;
  8622. else if (ms >= 50) {
  8623. _delay(50);
  8624. ms -= 50;
  8625. } else {
  8626. _delay(ms);
  8627. ms = 0;
  8628. }
  8629. }
  8630. }
  8631. static void wait_for_heater(long codenum, uint8_t extruder) {
  8632. if (!degTargetHotend(extruder))
  8633. return;
  8634. #ifdef TEMP_RESIDENCY_TIME
  8635. long residencyStart;
  8636. residencyStart = -1;
  8637. /* continue to loop until we have reached the target temp
  8638. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  8639. cancel_heatup = false;
  8640. while ((!cancel_heatup) && ((residencyStart == -1) ||
  8641. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  8642. #else
  8643. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  8644. #endif //TEMP_RESIDENCY_TIME
  8645. if ((_millis() - codenum) > 1000UL)
  8646. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  8647. if (!farm_mode) {
  8648. SERIAL_PROTOCOLPGM("T:");
  8649. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  8650. SERIAL_PROTOCOLPGM(" E:");
  8651. SERIAL_PROTOCOL((int)extruder);
  8652. #ifdef TEMP_RESIDENCY_TIME
  8653. SERIAL_PROTOCOLPGM(" W:");
  8654. if (residencyStart > -1)
  8655. {
  8656. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  8657. SERIAL_PROTOCOLLN(codenum);
  8658. }
  8659. else
  8660. {
  8661. SERIAL_PROTOCOLLN('?');
  8662. }
  8663. }
  8664. #else
  8665. SERIAL_PROTOCOLLN("");
  8666. #endif
  8667. codenum = _millis();
  8668. }
  8669. manage_heater();
  8670. manage_inactivity(true); //do not disable steppers
  8671. lcd_update(0);
  8672. #ifdef TEMP_RESIDENCY_TIME
  8673. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  8674. or when current temp falls outside the hysteresis after target temp was reached */
  8675. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  8676. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  8677. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  8678. {
  8679. residencyStart = _millis();
  8680. }
  8681. #endif //TEMP_RESIDENCY_TIME
  8682. }
  8683. }
  8684. void check_babystep()
  8685. {
  8686. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8687. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  8688. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  8689. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  8690. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  8691. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8692. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  8693. babystep_z);
  8694. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  8695. lcd_update_enable(true);
  8696. }
  8697. }
  8698. #ifdef HEATBED_ANALYSIS
  8699. void d_setup()
  8700. {
  8701. pinMode(D_DATACLOCK, INPUT_PULLUP);
  8702. pinMode(D_DATA, INPUT_PULLUP);
  8703. pinMode(D_REQUIRE, OUTPUT);
  8704. digitalWrite(D_REQUIRE, HIGH);
  8705. }
  8706. float d_ReadData()
  8707. {
  8708. int digit[13];
  8709. String mergeOutput;
  8710. float output;
  8711. digitalWrite(D_REQUIRE, HIGH);
  8712. for (int i = 0; i<13; i++)
  8713. {
  8714. for (int j = 0; j < 4; j++)
  8715. {
  8716. while (digitalRead(D_DATACLOCK) == LOW) {}
  8717. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8718. bitWrite(digit[i], j, digitalRead(D_DATA));
  8719. }
  8720. }
  8721. digitalWrite(D_REQUIRE, LOW);
  8722. mergeOutput = "";
  8723. output = 0;
  8724. for (int r = 5; r <= 10; r++) //Merge digits
  8725. {
  8726. mergeOutput += digit[r];
  8727. }
  8728. output = mergeOutput.toFloat();
  8729. if (digit[4] == 8) //Handle sign
  8730. {
  8731. output *= -1;
  8732. }
  8733. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8734. {
  8735. output /= 10;
  8736. }
  8737. return output;
  8738. }
  8739. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8740. int t1 = 0;
  8741. int t_delay = 0;
  8742. int digit[13];
  8743. int m;
  8744. char str[3];
  8745. //String mergeOutput;
  8746. char mergeOutput[15];
  8747. float output;
  8748. int mesh_point = 0; //index number of calibration point
  8749. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8750. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8751. float mesh_home_z_search = 4;
  8752. float measure_z_height = 0.2f;
  8753. float row[x_points_num];
  8754. int ix = 0;
  8755. int iy = 0;
  8756. const char* filename_wldsd = "mesh.txt";
  8757. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  8758. char numb_wldsd[8]; // (" -A.BCD" + null)
  8759. #ifdef MICROMETER_LOGGING
  8760. d_setup();
  8761. #endif //MICROMETER_LOGGING
  8762. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8763. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8764. unsigned int custom_message_type_old = custom_message_type;
  8765. unsigned int custom_message_state_old = custom_message_state;
  8766. custom_message_type = CustomMsg::MeshBedLeveling;
  8767. custom_message_state = (x_points_num * y_points_num) + 10;
  8768. lcd_update(1);
  8769. //mbl.reset();
  8770. babystep_undo();
  8771. card.openFile(filename_wldsd, false);
  8772. /*destination[Z_AXIS] = mesh_home_z_search;
  8773. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  8774. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8775. for(int8_t i=0; i < NUM_AXIS; i++) {
  8776. current_position[i] = destination[i];
  8777. }
  8778. st_synchronize();
  8779. */
  8780. destination[Z_AXIS] = measure_z_height;
  8781. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8782. for(int8_t i=0; i < NUM_AXIS; i++) {
  8783. current_position[i] = destination[i];
  8784. }
  8785. st_synchronize();
  8786. /*int l_feedmultiply = */setup_for_endstop_move(false);
  8787. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8788. SERIAL_PROTOCOL(x_points_num);
  8789. SERIAL_PROTOCOLPGM(",");
  8790. SERIAL_PROTOCOL(y_points_num);
  8791. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8792. SERIAL_PROTOCOL(mesh_home_z_search);
  8793. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8794. SERIAL_PROTOCOL(x_dimension);
  8795. SERIAL_PROTOCOLPGM(",");
  8796. SERIAL_PROTOCOL(y_dimension);
  8797. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8798. while (mesh_point != x_points_num * y_points_num) {
  8799. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8800. iy = mesh_point / x_points_num;
  8801. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8802. float z0 = 0.f;
  8803. /*destination[Z_AXIS] = mesh_home_z_search;
  8804. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  8805. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8806. for(int8_t i=0; i < NUM_AXIS; i++) {
  8807. current_position[i] = destination[i];
  8808. }
  8809. st_synchronize();*/
  8810. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8811. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8812. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  8813. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  8814. mesh_plan_buffer_line_destinationXYZE(XY_AXIS_FEEDRATE/6);
  8815. set_current_to_destination();
  8816. st_synchronize();
  8817. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8818. delay_keep_alive(1000);
  8819. #ifdef MICROMETER_LOGGING
  8820. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8821. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8822. //strcat(data_wldsd, numb_wldsd);
  8823. //MYSERIAL.println(data_wldsd);
  8824. //delay(1000);
  8825. //delay(3000);
  8826. //t1 = millis();
  8827. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8828. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8829. memset(digit, 0, sizeof(digit));
  8830. //cli();
  8831. digitalWrite(D_REQUIRE, LOW);
  8832. for (int i = 0; i<13; i++)
  8833. {
  8834. //t1 = millis();
  8835. for (int j = 0; j < 4; j++)
  8836. {
  8837. while (digitalRead(D_DATACLOCK) == LOW) {}
  8838. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8839. //printf_P(PSTR("Done %d\n"), j);
  8840. bitWrite(digit[i], j, digitalRead(D_DATA));
  8841. }
  8842. //t_delay = (millis() - t1);
  8843. //SERIAL_PROTOCOLPGM(" ");
  8844. //SERIAL_PROTOCOL_F(t_delay, 5);
  8845. //SERIAL_PROTOCOLPGM(" ");
  8846. }
  8847. //sei();
  8848. digitalWrite(D_REQUIRE, HIGH);
  8849. mergeOutput[0] = '\0';
  8850. output = 0;
  8851. for (int r = 5; r <= 10; r++) //Merge digits
  8852. {
  8853. sprintf(str, "%d", digit[r]);
  8854. strcat(mergeOutput, str);
  8855. }
  8856. output = atof(mergeOutput);
  8857. if (digit[4] == 8) //Handle sign
  8858. {
  8859. output *= -1;
  8860. }
  8861. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8862. {
  8863. output *= 0.1;
  8864. }
  8865. //output = d_ReadData();
  8866. //row[ix] = current_position[Z_AXIS];
  8867. //row[ix] = d_ReadData();
  8868. row[ix] = output;
  8869. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8870. memset(data_wldsd, 0, sizeof(data_wldsd));
  8871. for (int i = 0; i < x_points_num; i++) {
  8872. SERIAL_PROTOCOLPGM(" ");
  8873. SERIAL_PROTOCOL_F(row[i], 5);
  8874. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8875. dtostrf(row[i], 7, 3, numb_wldsd);
  8876. strcat(data_wldsd, numb_wldsd);
  8877. }
  8878. card.write_command(data_wldsd);
  8879. SERIAL_PROTOCOLPGM("\n");
  8880. }
  8881. custom_message_state--;
  8882. mesh_point++;
  8883. lcd_update(1);
  8884. }
  8885. #endif //MICROMETER_LOGGING
  8886. card.closefile();
  8887. //clean_up_after_endstop_move(l_feedmultiply);
  8888. }
  8889. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8890. int t1 = 0;
  8891. int t_delay = 0;
  8892. int digit[13];
  8893. int m;
  8894. char str[3];
  8895. //String mergeOutput;
  8896. char mergeOutput[15];
  8897. float output;
  8898. int mesh_point = 0; //index number of calibration point
  8899. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8900. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8901. float mesh_home_z_search = 4;
  8902. float row[x_points_num];
  8903. int ix = 0;
  8904. int iy = 0;
  8905. const char* filename_wldsd = "wldsd.txt";
  8906. char data_wldsd[70];
  8907. char numb_wldsd[10];
  8908. d_setup();
  8909. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  8910. // We don't know where we are! HOME!
  8911. // Push the commands to the front of the message queue in the reverse order!
  8912. // There shall be always enough space reserved for these commands.
  8913. repeatcommand_front(); // repeat G80 with all its parameters
  8914. enquecommand_front_P((PSTR("G28 W0")));
  8915. enquecommand_front_P((PSTR("G1 Z5")));
  8916. return;
  8917. }
  8918. unsigned int custom_message_type_old = custom_message_type;
  8919. unsigned int custom_message_state_old = custom_message_state;
  8920. custom_message_type = CustomMsg::MeshBedLeveling;
  8921. custom_message_state = (x_points_num * y_points_num) + 10;
  8922. lcd_update(1);
  8923. mbl.reset();
  8924. babystep_undo();
  8925. card.openFile(filename_wldsd, false);
  8926. current_position[Z_AXIS] = mesh_home_z_search;
  8927. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  8928. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8929. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8930. int l_feedmultiply = setup_for_endstop_move(false);
  8931. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8932. SERIAL_PROTOCOL(x_points_num);
  8933. SERIAL_PROTOCOLPGM(",");
  8934. SERIAL_PROTOCOL(y_points_num);
  8935. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8936. SERIAL_PROTOCOL(mesh_home_z_search);
  8937. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8938. SERIAL_PROTOCOL(x_dimension);
  8939. SERIAL_PROTOCOLPGM(",");
  8940. SERIAL_PROTOCOL(y_dimension);
  8941. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8942. while (mesh_point != x_points_num * y_points_num) {
  8943. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8944. iy = mesh_point / x_points_num;
  8945. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8946. float z0 = 0.f;
  8947. current_position[Z_AXIS] = mesh_home_z_search;
  8948. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8949. st_synchronize();
  8950. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8951. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8952. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  8953. st_synchronize();
  8954. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  8955. break;
  8956. card.closefile();
  8957. }
  8958. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8959. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8960. //strcat(data_wldsd, numb_wldsd);
  8961. //MYSERIAL.println(data_wldsd);
  8962. //_delay(1000);
  8963. //_delay(3000);
  8964. //t1 = _millis();
  8965. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8966. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8967. memset(digit, 0, sizeof(digit));
  8968. //cli();
  8969. digitalWrite(D_REQUIRE, LOW);
  8970. for (int i = 0; i<13; i++)
  8971. {
  8972. //t1 = _millis();
  8973. for (int j = 0; j < 4; j++)
  8974. {
  8975. while (digitalRead(D_DATACLOCK) == LOW) {}
  8976. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8977. bitWrite(digit[i], j, digitalRead(D_DATA));
  8978. }
  8979. //t_delay = (_millis() - t1);
  8980. //SERIAL_PROTOCOLPGM(" ");
  8981. //SERIAL_PROTOCOL_F(t_delay, 5);
  8982. //SERIAL_PROTOCOLPGM(" ");
  8983. }
  8984. //sei();
  8985. digitalWrite(D_REQUIRE, HIGH);
  8986. mergeOutput[0] = '\0';
  8987. output = 0;
  8988. for (int r = 5; r <= 10; r++) //Merge digits
  8989. {
  8990. sprintf(str, "%d", digit[r]);
  8991. strcat(mergeOutput, str);
  8992. }
  8993. output = atof(mergeOutput);
  8994. if (digit[4] == 8) //Handle sign
  8995. {
  8996. output *= -1;
  8997. }
  8998. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8999. {
  9000. output *= 0.1;
  9001. }
  9002. //output = d_ReadData();
  9003. //row[ix] = current_position[Z_AXIS];
  9004. memset(data_wldsd, 0, sizeof(data_wldsd));
  9005. for (int i = 0; i <3; i++) {
  9006. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9007. dtostrf(current_position[i], 8, 5, numb_wldsd);
  9008. strcat(data_wldsd, numb_wldsd);
  9009. strcat(data_wldsd, ";");
  9010. }
  9011. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9012. dtostrf(output, 8, 5, numb_wldsd);
  9013. strcat(data_wldsd, numb_wldsd);
  9014. //strcat(data_wldsd, ";");
  9015. card.write_command(data_wldsd);
  9016. //row[ix] = d_ReadData();
  9017. row[ix] = output; // current_position[Z_AXIS];
  9018. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  9019. for (int i = 0; i < x_points_num; i++) {
  9020. SERIAL_PROTOCOLPGM(" ");
  9021. SERIAL_PROTOCOL_F(row[i], 5);
  9022. }
  9023. SERIAL_PROTOCOLPGM("\n");
  9024. }
  9025. custom_message_state--;
  9026. mesh_point++;
  9027. lcd_update(1);
  9028. }
  9029. card.closefile();
  9030. clean_up_after_endstop_move(l_feedmultiply);
  9031. }
  9032. #endif //HEATBED_ANALYSIS
  9033. #ifndef PINDA_THERMISTOR
  9034. static void temp_compensation_start() {
  9035. custom_message_type = CustomMsg::TempCompPreheat;
  9036. custom_message_state = PINDA_HEAT_T + 1;
  9037. lcd_update(2);
  9038. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  9039. current_position[E_AXIS] -= default_retraction;
  9040. }
  9041. plan_buffer_line_curposXYZE(400, active_extruder);
  9042. current_position[X_AXIS] = PINDA_PREHEAT_X;
  9043. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  9044. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  9045. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  9046. st_synchronize();
  9047. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  9048. for (int i = 0; i < PINDA_HEAT_T; i++) {
  9049. delay_keep_alive(1000);
  9050. custom_message_state = PINDA_HEAT_T - i;
  9051. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  9052. else lcd_update(1);
  9053. }
  9054. custom_message_type = CustomMsg::Status;
  9055. custom_message_state = 0;
  9056. }
  9057. static void temp_compensation_apply() {
  9058. int i_add;
  9059. int z_shift = 0;
  9060. float z_shift_mm;
  9061. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  9062. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  9063. i_add = (target_temperature_bed - 60) / 10;
  9064. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  9065. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  9066. }else {
  9067. //interpolation
  9068. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  9069. }
  9070. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  9071. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  9072. st_synchronize();
  9073. plan_set_z_position(current_position[Z_AXIS]);
  9074. }
  9075. else {
  9076. //we have no temp compensation data
  9077. }
  9078. }
  9079. #endif //ndef PINDA_THERMISTOR
  9080. float temp_comp_interpolation(float inp_temperature) {
  9081. //cubic spline interpolation
  9082. int n, i, j;
  9083. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  9084. int shift[10];
  9085. int temp_C[10];
  9086. n = 6; //number of measured points
  9087. shift[0] = 0;
  9088. for (i = 0; i < n; i++) {
  9089. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  9090. temp_C[i] = 50 + i * 10; //temperature in C
  9091. #ifdef PINDA_THERMISTOR
  9092. temp_C[i] = 35 + i * 5; //temperature in C
  9093. #else
  9094. temp_C[i] = 50 + i * 10; //temperature in C
  9095. #endif
  9096. x[i] = (float)temp_C[i];
  9097. f[i] = (float)shift[i];
  9098. }
  9099. if (inp_temperature < x[0]) return 0;
  9100. for (i = n - 1; i>0; i--) {
  9101. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  9102. h[i - 1] = x[i] - x[i - 1];
  9103. }
  9104. //*********** formation of h, s , f matrix **************
  9105. for (i = 1; i<n - 1; i++) {
  9106. m[i][i] = 2 * (h[i - 1] + h[i]);
  9107. if (i != 1) {
  9108. m[i][i - 1] = h[i - 1];
  9109. m[i - 1][i] = h[i - 1];
  9110. }
  9111. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  9112. }
  9113. //*********** forward elimination **************
  9114. for (i = 1; i<n - 2; i++) {
  9115. temp = (m[i + 1][i] / m[i][i]);
  9116. for (j = 1; j <= n - 1; j++)
  9117. m[i + 1][j] -= temp*m[i][j];
  9118. }
  9119. //*********** backward substitution *********
  9120. for (i = n - 2; i>0; i--) {
  9121. sum = 0;
  9122. for (j = i; j <= n - 2; j++)
  9123. sum += m[i][j] * s[j];
  9124. s[i] = (m[i][n - 1] - sum) / m[i][i];
  9125. }
  9126. for (i = 0; i<n - 1; i++)
  9127. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  9128. a = (s[i + 1] - s[i]) / (6 * h[i]);
  9129. b = s[i] / 2;
  9130. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  9131. d = f[i];
  9132. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  9133. }
  9134. return sum;
  9135. }
  9136. #ifdef PINDA_THERMISTOR
  9137. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  9138. {
  9139. if (!temp_cal_active) return 0;
  9140. if (!calibration_status_pinda()) return 0;
  9141. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  9142. }
  9143. #endif //PINDA_THERMISTOR
  9144. void long_pause() //long pause print
  9145. {
  9146. st_synchronize();
  9147. start_pause_print = _millis();
  9148. // Stop heaters
  9149. setAllTargetHotends(0);
  9150. //lift z
  9151. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  9152. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  9153. plan_buffer_line_curposXYZE(15);
  9154. //Move XY to side
  9155. current_position[X_AXIS] = X_PAUSE_POS;
  9156. current_position[Y_AXIS] = Y_PAUSE_POS;
  9157. plan_buffer_line_curposXYZE(50);
  9158. // Turn off the print fan
  9159. fanSpeed = 0;
  9160. }
  9161. void serialecho_temperatures() {
  9162. float tt = degHotend(active_extruder);
  9163. SERIAL_PROTOCOLPGM("T:");
  9164. SERIAL_PROTOCOL(tt);
  9165. SERIAL_PROTOCOLPGM(" E:");
  9166. SERIAL_PROTOCOL((int)active_extruder);
  9167. SERIAL_PROTOCOLPGM(" B:");
  9168. SERIAL_PROTOCOL_F(degBed(), 1);
  9169. SERIAL_PROTOCOLLN("");
  9170. }
  9171. #ifdef UVLO_SUPPORT
  9172. void uvlo_drain_reset()
  9173. {
  9174. // burn all that residual power
  9175. wdt_enable(WDTO_1S);
  9176. WRITE(BEEPER,HIGH);
  9177. lcd_clear();
  9178. lcd_puts_at_P(0, 1, MSG_POWERPANIC_DETECTED);
  9179. while(1);
  9180. }
  9181. void uvlo_()
  9182. {
  9183. unsigned long time_start = _millis();
  9184. bool sd_print = card.sdprinting;
  9185. // Conserve power as soon as possible.
  9186. #ifdef LCD_BL_PIN
  9187. backlightMode = BACKLIGHT_MODE_DIM;
  9188. backlightLevel_LOW = 0;
  9189. backlight_update();
  9190. #endif //LCD_BL_PIN
  9191. disable_x();
  9192. disable_y();
  9193. #ifdef TMC2130
  9194. tmc2130_set_current_h(Z_AXIS, 20);
  9195. tmc2130_set_current_r(Z_AXIS, 20);
  9196. tmc2130_set_current_h(E_AXIS, 20);
  9197. tmc2130_set_current_r(E_AXIS, 20);
  9198. #endif //TMC2130
  9199. // Stop all heaters
  9200. uint8_t saved_target_temperature_bed = target_temperature_bed;
  9201. uint16_t saved_target_temperature_ext = target_temperature[active_extruder];
  9202. setAllTargetHotends(0);
  9203. setTargetBed(0);
  9204. // Calculate the file position, from which to resume this print.
  9205. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  9206. {
  9207. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9208. sd_position -= sdlen_planner;
  9209. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9210. sd_position -= sdlen_cmdqueue;
  9211. if (sd_position < 0) sd_position = 0;
  9212. }
  9213. // save the global state at planning time
  9214. uint16_t feedrate_bckp;
  9215. if (current_block)
  9216. {
  9217. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  9218. feedrate_bckp = current_block->gcode_feedrate;
  9219. }
  9220. else
  9221. {
  9222. saved_target[0] = SAVED_TARGET_UNSET;
  9223. feedrate_bckp = feedrate;
  9224. }
  9225. // From this point on and up to the print recovery, Z should not move during X/Y travels and
  9226. // should be controlled precisely. Reset the MBL status before planner_abort_hard in order to
  9227. // get the physical Z for further manipulation.
  9228. bool mbl_was_active = mbl.active;
  9229. mbl.active = false;
  9230. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  9231. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  9232. // are in action.
  9233. planner_abort_hard();
  9234. // Store the print logical Z position, which we need to recover (a slight error here would be
  9235. // recovered on the next Gcode instruction, while a physical location error would not)
  9236. float logical_z = current_position[Z_AXIS];
  9237. if(mbl_was_active) logical_z -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  9238. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z, logical_z);
  9239. // Store the print E position before we lose track
  9240. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), current_position[E_AXIS]);
  9241. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, (axis_relative_modes & E_AXIS_MASK)?0:1);
  9242. // Clean the input command queue, inhibit serial processing using saved_printing
  9243. cmdqueue_reset();
  9244. card.sdprinting = false;
  9245. saved_printing = true;
  9246. // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
  9247. // command queues are empty, SD card printing is disabled, usb is inhibited.
  9248. sei();
  9249. // Retract
  9250. current_position[E_AXIS] -= default_retraction;
  9251. plan_buffer_line_curposXYZE(95);
  9252. st_synchronize();
  9253. disable_e0();
  9254. // Read out the current Z motor microstep counter to move the axis up towards
  9255. // a full step before powering off. NOTE: we need to ensure to schedule more
  9256. // than "dropsegments" steps in order to move (this is always the case here
  9257. // due to UVLO_Z_AXIS_SHIFT being used)
  9258. uint16_t z_res = tmc2130_get_res(Z_AXIS);
  9259. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9260. current_position[Z_AXIS] += float(1024 - z_microsteps)
  9261. / (z_res * cs.axis_steps_per_unit[Z_AXIS])
  9262. + UVLO_Z_AXIS_SHIFT;
  9263. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60);
  9264. st_synchronize();
  9265. poweroff_z();
  9266. // Write the file position.
  9267. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  9268. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9269. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9270. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9271. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9272. // Scale the z value to 1u resolution.
  9273. int16_t v = mbl_was_active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  9274. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  9275. }
  9276. // Write the _final_ Z position and motor microstep counter (unused).
  9277. eeprom_update_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z, current_position[Z_AXIS]);
  9278. z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9279. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9280. // Store the current position.
  9281. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  9282. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  9283. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  9284. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDRATE, feedrate_bckp);
  9285. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY, feedmultiply);
  9286. eeprom_update_word((uint16_t*)EEPROM_UVLO_TARGET_HOTEND, saved_target_temperature_ext);
  9287. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, saved_target_temperature_bed);
  9288. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  9289. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  9290. #if EXTRUDERS > 1
  9291. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  9292. #if EXTRUDERS > 2
  9293. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  9294. #endif
  9295. #endif
  9296. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  9297. // Store the saved target
  9298. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4), saved_target[X_AXIS]);
  9299. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4), saved_target[Y_AXIS]);
  9300. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4), saved_target[Z_AXIS]);
  9301. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4), saved_target[E_AXIS]);
  9302. #ifdef LIN_ADVANCE
  9303. eeprom_update_float((float*)(EEPROM_UVLO_LA_K), extruder_advance_K);
  9304. #endif
  9305. // Finaly store the "power outage" flag.
  9306. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  9307. // Increment power failure counter
  9308. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9309. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9310. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  9311. WRITE(BEEPER,HIGH);
  9312. // All is set: with all the juice left, try to move extruder away to detach the nozzle completely from the print
  9313. poweron_z();
  9314. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  9315. plan_buffer_line_curposXYZE(500);
  9316. st_synchronize();
  9317. wdt_enable(WDTO_1S);
  9318. while(1);
  9319. }
  9320. void uvlo_tiny()
  9321. {
  9322. unsigned long time_start = _millis();
  9323. // Conserve power as soon as possible.
  9324. disable_x();
  9325. disable_y();
  9326. disable_e0();
  9327. #ifdef TMC2130
  9328. tmc2130_set_current_h(Z_AXIS, 20);
  9329. tmc2130_set_current_r(Z_AXIS, 20);
  9330. #endif //TMC2130
  9331. // Stop all heaters
  9332. setAllTargetHotends(0);
  9333. setTargetBed(0);
  9334. // When power is interrupted on the _first_ recovery an attempt can be made to raise the
  9335. // extruder, causing the Z position to change. Similarly, when recovering, the Z position is
  9336. // lowered. In such cases we cannot just save Z, we need to re-align the steppers to a fullstep.
  9337. // Disable MBL (if not already) to work with physical coordinates.
  9338. mbl.active = false;
  9339. planner_abort_hard();
  9340. // Allow for small roundoffs to be ignored
  9341. if(abs(current_position[Z_AXIS] - eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))) >= 1.f/cs.axis_steps_per_unit[Z_AXIS])
  9342. {
  9343. // Clean the input command queue, inhibit serial processing using saved_printing
  9344. cmdqueue_reset();
  9345. card.sdprinting = false;
  9346. saved_printing = true;
  9347. // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
  9348. // command queues are empty, SD card printing is disabled, usb is inhibited.
  9349. sei();
  9350. // The axis was moved: adjust Z as done on a regular UVLO.
  9351. uint16_t z_res = tmc2130_get_res(Z_AXIS);
  9352. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9353. current_position[Z_AXIS] += float(1024 - z_microsteps)
  9354. / (z_res * cs.axis_steps_per_unit[Z_AXIS])
  9355. + UVLO_TINY_Z_AXIS_SHIFT;
  9356. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60);
  9357. st_synchronize();
  9358. poweroff_z();
  9359. // Update Z position
  9360. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  9361. // Update the _final_ Z motor microstep counter (unused).
  9362. z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9363. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9364. }
  9365. // Update the the "power outage" flag.
  9366. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  9367. // Increment power failure counter
  9368. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9369. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9370. printf_P(_N("UVLO_TINY - end %d\n"), _millis() - time_start);
  9371. uvlo_drain_reset();
  9372. }
  9373. #endif //UVLO_SUPPORT
  9374. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  9375. void setup_fan_interrupt() {
  9376. //INT7
  9377. DDRE &= ~(1 << 7); //input pin
  9378. PORTE &= ~(1 << 7); //no internal pull-up
  9379. //start with sensing rising edge
  9380. EICRB &= ~(1 << 6);
  9381. EICRB |= (1 << 7);
  9382. //enable INT7 interrupt
  9383. EIMSK |= (1 << 7);
  9384. }
  9385. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  9386. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  9387. ISR(INT7_vect) {
  9388. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  9389. #ifdef FAN_SOFT_PWM
  9390. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  9391. #else //FAN_SOFT_PWM
  9392. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  9393. #endif //FAN_SOFT_PWM
  9394. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  9395. t_fan_rising_edge = millis_nc();
  9396. }
  9397. else { //interrupt was triggered by falling edge
  9398. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  9399. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  9400. }
  9401. }
  9402. EICRB ^= (1 << 6); //change edge
  9403. }
  9404. #endif
  9405. #ifdef UVLO_SUPPORT
  9406. void setup_uvlo_interrupt() {
  9407. DDRE &= ~(1 << 4); //input pin
  9408. PORTE &= ~(1 << 4); //no internal pull-up
  9409. // sensing falling edge
  9410. EICRB |= (1 << 0);
  9411. EICRB &= ~(1 << 1);
  9412. // enable INT4 interrupt
  9413. EIMSK |= (1 << 4);
  9414. // check if power was lost before we armed the interrupt
  9415. if(!(PINE & (1 << 4)) && eeprom_read_byte((uint8_t*)EEPROM_UVLO))
  9416. {
  9417. SERIAL_ECHOLNPGM("INT4");
  9418. uvlo_drain_reset();
  9419. }
  9420. }
  9421. ISR(INT4_vect) {
  9422. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  9423. SERIAL_ECHOLNPGM("INT4");
  9424. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  9425. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  9426. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  9427. }
  9428. void recover_print(uint8_t automatic) {
  9429. char cmd[30];
  9430. lcd_update_enable(true);
  9431. lcd_update(2);
  9432. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20
  9433. // Recover position, temperatures and extrude_multipliers
  9434. bool mbl_was_active = recover_machine_state_after_power_panic();
  9435. // Lift the print head 25mm, first to avoid collisions with oozed material with the print,
  9436. // and second also so one may remove the excess priming material.
  9437. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1)
  9438. {
  9439. sprintf_P(cmd, PSTR("G1 Z%.3f F800"), current_position[Z_AXIS] + 25);
  9440. enquecommand(cmd);
  9441. }
  9442. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine
  9443. // transformation status. G28 will not touch Z when MBL is off.
  9444. enquecommand_P(PSTR("G28 X Y"));
  9445. // Set the target bed and nozzle temperatures and wait.
  9446. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  9447. enquecommand(cmd);
  9448. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  9449. enquecommand(cmd);
  9450. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  9451. enquecommand(cmd);
  9452. enquecommand_P(PSTR("M83")); //E axis relative mode
  9453. // If not automatically recoreverd (long power loss)
  9454. if(automatic == 0){
  9455. //Extrude some filament to stabilize the pressure
  9456. enquecommand_P(PSTR("G1 E5 F120"));
  9457. // Retract to be consistent with a short pause
  9458. sprintf_P(cmd, PSTR("G1 E%-0.3f F2700"), default_retraction);
  9459. enquecommand(cmd);
  9460. }
  9461. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  9462. // Restart the print.
  9463. restore_print_from_eeprom(mbl_was_active);
  9464. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  9465. }
  9466. bool recover_machine_state_after_power_panic()
  9467. {
  9468. // 1) Preset some dummy values for the XY axes
  9469. current_position[X_AXIS] = 0;
  9470. current_position[Y_AXIS] = 0;
  9471. // 2) Restore the mesh bed leveling offsets, but not the MBL status.
  9472. // This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9473. bool mbl_was_active = false;
  9474. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9475. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9476. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9477. // Scale the z value to 10u resolution.
  9478. int16_t v;
  9479. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  9480. if (v != 0)
  9481. mbl_was_active = true;
  9482. mbl.z_values[iy][ix] = float(v) * 0.001f;
  9483. }
  9484. // Recover the physical coordinate of the Z axis at the time of the power panic.
  9485. // The current position after power panic is moved to the next closest 0th full step.
  9486. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z));
  9487. // Recover last E axis position
  9488. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9489. memcpy(destination, current_position, sizeof(destination));
  9490. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9491. print_world_coordinates();
  9492. // 3) Initialize the logical to physical coordinate system transformation.
  9493. world2machine_initialize();
  9494. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9495. // print_mesh_bed_leveling_table();
  9496. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  9497. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  9498. babystep_load();
  9499. // 5) Set the physical positions from the logical positions using the world2machine transformation
  9500. // This is only done to inizialize Z/E axes with physical locations, since X/Y are unknown.
  9501. plan_set_position_curposXYZE();
  9502. // 6) Power up the Z motors, mark their positions as known.
  9503. axis_known_position[Z_AXIS] = true;
  9504. enable_z();
  9505. // 7) Recover the target temperatures.
  9506. target_temperature[active_extruder] = eeprom_read_word((uint16_t*)EEPROM_UVLO_TARGET_HOTEND);
  9507. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  9508. // 8) Recover extruder multipilers
  9509. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  9510. #if EXTRUDERS > 1
  9511. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  9512. #if EXTRUDERS > 2
  9513. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  9514. #endif
  9515. #endif
  9516. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  9517. // 9) Recover the saved target
  9518. saved_target[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4));
  9519. saved_target[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4));
  9520. saved_target[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4));
  9521. saved_target[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4));
  9522. #ifdef LIN_ADVANCE
  9523. extruder_advance_K = eeprom_read_float((float*)EEPROM_UVLO_LA_K);
  9524. #endif
  9525. return mbl_was_active;
  9526. }
  9527. void restore_print_from_eeprom(bool mbl_was_active) {
  9528. int feedrate_rec;
  9529. int feedmultiply_rec;
  9530. uint8_t fan_speed_rec;
  9531. char cmd[30];
  9532. char filename[13];
  9533. uint8_t depth = 0;
  9534. char dir_name[9];
  9535. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  9536. feedrate_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDRATE);
  9537. feedmultiply_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY);
  9538. SERIAL_ECHOPGM("Feedrate:");
  9539. MYSERIAL.print(feedrate_rec);
  9540. SERIAL_ECHOPGM(", feedmultiply:");
  9541. MYSERIAL.println(feedmultiply_rec);
  9542. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  9543. MYSERIAL.println(int(depth));
  9544. for (int i = 0; i < depth; i++) {
  9545. for (int j = 0; j < 8; j++) {
  9546. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  9547. }
  9548. dir_name[8] = '\0';
  9549. MYSERIAL.println(dir_name);
  9550. strcpy(dir_names[i], dir_name);
  9551. card.chdir(dir_name);
  9552. }
  9553. for (int i = 0; i < 8; i++) {
  9554. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  9555. }
  9556. filename[8] = '\0';
  9557. MYSERIAL.print(filename);
  9558. strcat_P(filename, PSTR(".gco"));
  9559. sprintf_P(cmd, PSTR("M23 %s"), filename);
  9560. enquecommand(cmd);
  9561. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  9562. SERIAL_ECHOPGM("Position read from eeprom:");
  9563. MYSERIAL.println(position);
  9564. // Move to the XY print position in logical coordinates, where the print has been killed, but
  9565. // without shifting Z along the way. This requires performing the move without mbl.
  9566. sprintf_P(cmd, PSTR("G1 X%f Y%f F3000"),
  9567. eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0)),
  9568. eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4)));
  9569. enquecommand(cmd);
  9570. // Enable MBL and switch to logical positioning
  9571. if (mbl_was_active)
  9572. enquecommand_P(PSTR("PRUSA MBL V1"));
  9573. // Move the Z axis down to the print, in logical coordinates.
  9574. sprintf_P(cmd, PSTR("G1 Z%f"), eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)));
  9575. enquecommand(cmd);
  9576. // Unretract.
  9577. sprintf_P(cmd, PSTR("G1 E%0.3f F2700"), default_retraction);
  9578. enquecommand(cmd);
  9579. // Recover final E axis position and mode
  9580. float pos_e = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9581. sprintf_P(cmd, PSTR("G92 E"));
  9582. dtostrf(pos_e, 6, 3, cmd + strlen(cmd));
  9583. enquecommand(cmd);
  9584. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  9585. enquecommand_P(PSTR("M82")); //E axis abslute mode
  9586. // Set the feedrates saved at the power panic.
  9587. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  9588. enquecommand(cmd);
  9589. sprintf_P(cmd, PSTR("M220 S%d"), feedmultiply_rec);
  9590. enquecommand(cmd);
  9591. // Set the fan speed saved at the power panic.
  9592. strcpy_P(cmd, PSTR("M106 S"));
  9593. strcat(cmd, itostr3(int(fan_speed_rec)));
  9594. enquecommand(cmd);
  9595. // Set a position in the file.
  9596. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  9597. enquecommand(cmd);
  9598. enquecommand_P(PSTR("G4 S0"));
  9599. enquecommand_P(PSTR("PRUSA uvlo"));
  9600. }
  9601. #endif //UVLO_SUPPORT
  9602. //! @brief Immediately stop print moves
  9603. //!
  9604. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  9605. //! If printing from sd card, position in file is saved.
  9606. //! If printing from USB, line number is saved.
  9607. //!
  9608. //! @param z_move
  9609. //! @param e_move
  9610. void stop_and_save_print_to_ram(float z_move, float e_move)
  9611. {
  9612. if (saved_printing) return;
  9613. #if 0
  9614. unsigned char nplanner_blocks;
  9615. #endif
  9616. unsigned char nlines;
  9617. uint16_t sdlen_planner;
  9618. uint16_t sdlen_cmdqueue;
  9619. cli();
  9620. if (card.sdprinting) {
  9621. #if 0
  9622. nplanner_blocks = number_of_blocks();
  9623. #endif
  9624. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  9625. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9626. saved_sdpos -= sdlen_planner;
  9627. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9628. saved_sdpos -= sdlen_cmdqueue;
  9629. saved_printing_type = PRINTING_TYPE_SD;
  9630. }
  9631. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  9632. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  9633. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  9634. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  9635. saved_sdpos -= nlines;
  9636. saved_sdpos -= buflen; //number of blocks in cmd buffer
  9637. saved_printing_type = PRINTING_TYPE_USB;
  9638. }
  9639. else {
  9640. saved_printing_type = PRINTING_TYPE_NONE;
  9641. //not sd printing nor usb printing
  9642. }
  9643. #if 0
  9644. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  9645. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  9646. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  9647. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  9648. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  9649. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  9650. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  9651. {
  9652. card.setIndex(saved_sdpos);
  9653. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  9654. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  9655. MYSERIAL.print(char(card.get()));
  9656. SERIAL_ECHOLNPGM("Content of command buffer: ");
  9657. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  9658. MYSERIAL.print(char(card.get()));
  9659. SERIAL_ECHOLNPGM("End of command buffer");
  9660. }
  9661. {
  9662. // Print the content of the planner buffer, line by line:
  9663. card.setIndex(saved_sdpos);
  9664. int8_t iline = 0;
  9665. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  9666. SERIAL_ECHOPGM("Planner line (from file): ");
  9667. MYSERIAL.print(int(iline), DEC);
  9668. SERIAL_ECHOPGM(", length: ");
  9669. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  9670. SERIAL_ECHOPGM(", steps: (");
  9671. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  9672. SERIAL_ECHOPGM(",");
  9673. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  9674. SERIAL_ECHOPGM(",");
  9675. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  9676. SERIAL_ECHOPGM(",");
  9677. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  9678. SERIAL_ECHOPGM("), events: ");
  9679. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  9680. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  9681. MYSERIAL.print(char(card.get()));
  9682. }
  9683. }
  9684. {
  9685. // Print the content of the command buffer, line by line:
  9686. int8_t iline = 0;
  9687. union {
  9688. struct {
  9689. char lo;
  9690. char hi;
  9691. } lohi;
  9692. uint16_t value;
  9693. } sdlen_single;
  9694. int _bufindr = bufindr;
  9695. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  9696. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  9697. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  9698. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  9699. }
  9700. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  9701. MYSERIAL.print(int(iline), DEC);
  9702. SERIAL_ECHOPGM(", type: ");
  9703. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  9704. SERIAL_ECHOPGM(", len: ");
  9705. MYSERIAL.println(sdlen_single.value, DEC);
  9706. // Print the content of the buffer line.
  9707. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  9708. SERIAL_ECHOPGM("Buffer line (from file): ");
  9709. MYSERIAL.println(int(iline), DEC);
  9710. for (; sdlen_single.value > 0; -- sdlen_single.value)
  9711. MYSERIAL.print(char(card.get()));
  9712. if (-- _buflen == 0)
  9713. break;
  9714. // First skip the current command ID and iterate up to the end of the string.
  9715. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  9716. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  9717. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9718. // If the end of the buffer was empty,
  9719. if (_bufindr == sizeof(cmdbuffer)) {
  9720. // skip to the start and find the nonzero command.
  9721. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9722. }
  9723. }
  9724. }
  9725. #endif
  9726. // save the global state at planning time
  9727. if (current_block)
  9728. {
  9729. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  9730. saved_feedrate2 = current_block->gcode_feedrate;
  9731. }
  9732. else
  9733. {
  9734. saved_target[0] = SAVED_TARGET_UNSET;
  9735. saved_feedrate2 = feedrate;
  9736. }
  9737. planner_abort_hard(); //abort printing
  9738. memcpy(saved_pos, current_position, sizeof(saved_pos));
  9739. saved_feedmultiply2 = feedmultiply; //save feedmultiply
  9740. saved_active_extruder = active_extruder; //save active_extruder
  9741. saved_extruder_temperature = degTargetHotend(active_extruder);
  9742. saved_extruder_relative_mode = axis_relative_modes & E_AXIS_MASK;
  9743. saved_fanSpeed = fanSpeed;
  9744. cmdqueue_reset(); //empty cmdqueue
  9745. card.sdprinting = false;
  9746. // card.closefile();
  9747. saved_printing = true;
  9748. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  9749. st_reset_timer();
  9750. sei();
  9751. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  9752. #if 1
  9753. // Rather than calling plan_buffer_line directly, push the move into the command queue so that
  9754. // the caller can continue processing. This is used during powerpanic to save the state as we
  9755. // move away from the print.
  9756. char buf[48];
  9757. if(e_move)
  9758. {
  9759. // First unretract (relative extrusion)
  9760. if(!saved_extruder_relative_mode){
  9761. enquecommand(PSTR("M83"), true);
  9762. }
  9763. //retract 45mm/s
  9764. // A single sprintf may not be faster, but is definitely 20B shorter
  9765. // than a sequence of commands building the string piece by piece
  9766. // A snprintf would have been a safer call, but since it is not used
  9767. // in the whole program, its implementation would bring more bytes to the total size
  9768. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  9769. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  9770. enquecommand(buf, false);
  9771. }
  9772. if(z_move)
  9773. {
  9774. // Then lift Z axis
  9775. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  9776. enquecommand(buf, false);
  9777. }
  9778. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  9779. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  9780. repeatcommand_front();
  9781. #else
  9782. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  9783. st_synchronize(); //wait moving
  9784. memcpy(current_position, saved_pos, sizeof(saved_pos));
  9785. memcpy(destination, current_position, sizeof(destination));
  9786. #endif
  9787. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  9788. }
  9789. }
  9790. //! @brief Restore print from ram
  9791. //!
  9792. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  9793. //! print fan speed, waits for extruder temperature restore, then restores
  9794. //! position and continues print moves.
  9795. //!
  9796. //! Internally lcd_update() is called by wait_for_heater().
  9797. //!
  9798. //! @param e_move
  9799. void restore_print_from_ram_and_continue(float e_move)
  9800. {
  9801. if (!saved_printing) return;
  9802. #ifdef FANCHECK
  9803. // Do not allow resume printing if fans are still not ok
  9804. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  9805. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  9806. #endif
  9807. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  9808. // current_position[axis] = st_get_position_mm(axis);
  9809. active_extruder = saved_active_extruder; //restore active_extruder
  9810. fanSpeed = saved_fanSpeed;
  9811. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  9812. {
  9813. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  9814. heating_status = 1;
  9815. wait_for_heater(_millis(), saved_active_extruder);
  9816. heating_status = 2;
  9817. }
  9818. axis_relative_modes ^= (-saved_extruder_relative_mode ^ axis_relative_modes) & E_AXIS_MASK;
  9819. float e = saved_pos[E_AXIS] - e_move;
  9820. plan_set_e_position(e);
  9821. #ifdef FANCHECK
  9822. fans_check_enabled = false;
  9823. #endif
  9824. //first move print head in XY to the saved position:
  9825. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  9826. //then move Z
  9827. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  9828. //and finaly unretract (35mm/s)
  9829. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  9830. st_synchronize();
  9831. #ifdef FANCHECK
  9832. fans_check_enabled = true;
  9833. #endif
  9834. // restore original feedrate/feedmultiply _after_ restoring the extruder position
  9835. feedrate = saved_feedrate2;
  9836. feedmultiply = saved_feedmultiply2;
  9837. memcpy(current_position, saved_pos, sizeof(saved_pos));
  9838. memcpy(destination, current_position, sizeof(destination));
  9839. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  9840. card.setIndex(saved_sdpos);
  9841. sdpos_atomic = saved_sdpos;
  9842. card.sdprinting = true;
  9843. }
  9844. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  9845. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  9846. serial_count = 0;
  9847. FlushSerialRequestResend();
  9848. }
  9849. else {
  9850. //not sd printing nor usb printing
  9851. }
  9852. SERIAL_PROTOCOLLNRPGM(MSG_OK); //dummy response because of octoprint is waiting for this
  9853. lcd_setstatuspgm(_T(WELCOME_MSG));
  9854. saved_printing_type = PRINTING_TYPE_NONE;
  9855. saved_printing = false;
  9856. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  9857. }
  9858. // Cancel the state related to a currently saved print
  9859. void cancel_saved_printing()
  9860. {
  9861. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  9862. saved_target[0] = SAVED_TARGET_UNSET;
  9863. saved_printing_type = PRINTING_TYPE_NONE;
  9864. saved_printing = false;
  9865. }
  9866. void print_world_coordinates()
  9867. {
  9868. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  9869. }
  9870. void print_physical_coordinates()
  9871. {
  9872. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  9873. }
  9874. void print_mesh_bed_leveling_table()
  9875. {
  9876. SERIAL_ECHOPGM("mesh bed leveling: ");
  9877. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  9878. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  9879. MYSERIAL.print(mbl.z_values[y][x], 3);
  9880. SERIAL_ECHO(' ');
  9881. }
  9882. SERIAL_ECHOLN();
  9883. }
  9884. uint16_t print_time_remaining() {
  9885. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  9886. #ifdef TMC2130
  9887. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  9888. else print_t = print_time_remaining_silent;
  9889. #else
  9890. print_t = print_time_remaining_normal;
  9891. #endif //TMC2130
  9892. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  9893. return print_t;
  9894. }
  9895. uint8_t calc_percent_done()
  9896. {
  9897. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  9898. uint8_t percent_done = 0;
  9899. #ifdef TMC2130
  9900. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  9901. percent_done = print_percent_done_normal;
  9902. }
  9903. else if (print_percent_done_silent <= 100) {
  9904. percent_done = print_percent_done_silent;
  9905. }
  9906. #else
  9907. if (print_percent_done_normal <= 100) {
  9908. percent_done = print_percent_done_normal;
  9909. }
  9910. #endif //TMC2130
  9911. else {
  9912. percent_done = card.percentDone();
  9913. }
  9914. return percent_done;
  9915. }
  9916. static void print_time_remaining_init()
  9917. {
  9918. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  9919. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  9920. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  9921. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  9922. }
  9923. void load_filament_final_feed()
  9924. {
  9925. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  9926. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL);
  9927. }
  9928. //! @brief Wait for user to check the state
  9929. //! @par nozzle_temp nozzle temperature to load filament
  9930. void M600_check_state(float nozzle_temp)
  9931. {
  9932. lcd_change_fil_state = 0;
  9933. while (lcd_change_fil_state != 1)
  9934. {
  9935. lcd_change_fil_state = 0;
  9936. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9937. lcd_alright();
  9938. KEEPALIVE_STATE(IN_HANDLER);
  9939. switch(lcd_change_fil_state)
  9940. {
  9941. // Filament failed to load so load it again
  9942. case 2:
  9943. if (mmu_enabled)
  9944. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  9945. else
  9946. M600_load_filament_movements();
  9947. break;
  9948. // Filament loaded properly but color is not clear
  9949. case 3:
  9950. st_synchronize();
  9951. load_filament_final_feed();
  9952. lcd_loading_color();
  9953. st_synchronize();
  9954. break;
  9955. // Everything good
  9956. default:
  9957. lcd_change_success();
  9958. break;
  9959. }
  9960. }
  9961. }
  9962. //! @brief Wait for user action
  9963. //!
  9964. //! Beep, manage nozzle heater and wait for user to start unload filament
  9965. //! If times out, active extruder temperature is set to 0.
  9966. //!
  9967. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  9968. void M600_wait_for_user(float HotendTempBckp) {
  9969. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9970. int counterBeep = 0;
  9971. unsigned long waiting_start_time = _millis();
  9972. uint8_t wait_for_user_state = 0;
  9973. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9974. bool bFirst=true;
  9975. while (!(wait_for_user_state == 0 && lcd_clicked())){
  9976. manage_heater();
  9977. manage_inactivity(true);
  9978. #if BEEPER > 0
  9979. if (counterBeep == 500) {
  9980. counterBeep = 0;
  9981. }
  9982. SET_OUTPUT(BEEPER);
  9983. if (counterBeep == 0) {
  9984. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  9985. {
  9986. bFirst=false;
  9987. WRITE(BEEPER, HIGH);
  9988. }
  9989. }
  9990. if (counterBeep == 20) {
  9991. WRITE(BEEPER, LOW);
  9992. }
  9993. counterBeep++;
  9994. #endif //BEEPER > 0
  9995. switch (wait_for_user_state) {
  9996. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  9997. delay_keep_alive(4);
  9998. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  9999. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  10000. wait_for_user_state = 1;
  10001. setAllTargetHotends(0);
  10002. st_synchronize();
  10003. disable_e0();
  10004. disable_e1();
  10005. disable_e2();
  10006. }
  10007. break;
  10008. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  10009. delay_keep_alive(4);
  10010. if (lcd_clicked()) {
  10011. setTargetHotend(HotendTempBckp, active_extruder);
  10012. lcd_wait_for_heater();
  10013. wait_for_user_state = 2;
  10014. }
  10015. break;
  10016. case 2: //waiting for nozzle to reach target temperature
  10017. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  10018. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  10019. waiting_start_time = _millis();
  10020. wait_for_user_state = 0;
  10021. }
  10022. else {
  10023. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  10024. lcd_set_cursor(1, 4);
  10025. lcd_print(ftostr3(degHotend(active_extruder)));
  10026. }
  10027. break;
  10028. }
  10029. }
  10030. WRITE(BEEPER, LOW);
  10031. }
  10032. void M600_load_filament_movements()
  10033. {
  10034. #ifdef SNMM
  10035. display_loading();
  10036. do
  10037. {
  10038. current_position[E_AXIS] += 0.002;
  10039. plan_buffer_line_curposXYZE(500, active_extruder);
  10040. delay_keep_alive(2);
  10041. }
  10042. while (!lcd_clicked());
  10043. st_synchronize();
  10044. current_position[E_AXIS] += bowden_length[mmu_extruder];
  10045. plan_buffer_line_curposXYZE(3000, active_extruder);
  10046. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  10047. plan_buffer_line_curposXYZE(1400, active_extruder);
  10048. current_position[E_AXIS] += 40;
  10049. plan_buffer_line_curposXYZE(400, active_extruder);
  10050. current_position[E_AXIS] += 10;
  10051. plan_buffer_line_curposXYZE(50, active_extruder);
  10052. #else
  10053. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  10054. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST);
  10055. #endif
  10056. load_filament_final_feed();
  10057. lcd_loading_filament();
  10058. st_synchronize();
  10059. }
  10060. void M600_load_filament() {
  10061. //load filament for single material and SNMM
  10062. lcd_wait_interact();
  10063. //load_filament_time = _millis();
  10064. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10065. #ifdef PAT9125
  10066. fsensor_autoload_check_start();
  10067. #endif //PAT9125
  10068. while(!lcd_clicked())
  10069. {
  10070. manage_heater();
  10071. manage_inactivity(true);
  10072. #ifdef FILAMENT_SENSOR
  10073. if (fsensor_check_autoload())
  10074. {
  10075. Sound_MakeCustom(50,1000,false);
  10076. break;
  10077. }
  10078. #endif //FILAMENT_SENSOR
  10079. }
  10080. #ifdef PAT9125
  10081. fsensor_autoload_check_stop();
  10082. #endif //PAT9125
  10083. KEEPALIVE_STATE(IN_HANDLER);
  10084. #ifdef FSENSOR_QUALITY
  10085. fsensor_oq_meassure_start(70);
  10086. #endif //FSENSOR_QUALITY
  10087. M600_load_filament_movements();
  10088. Sound_MakeCustom(50,1000,false);
  10089. #ifdef FSENSOR_QUALITY
  10090. fsensor_oq_meassure_stop();
  10091. if (!fsensor_oq_result())
  10092. {
  10093. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  10094. lcd_update_enable(true);
  10095. lcd_update(2);
  10096. if (disable)
  10097. fsensor_disable();
  10098. }
  10099. #endif //FSENSOR_QUALITY
  10100. lcd_update_enable(false);
  10101. }
  10102. //! @brief Wait for click
  10103. //!
  10104. //! Set
  10105. void marlin_wait_for_click()
  10106. {
  10107. int8_t busy_state_backup = busy_state;
  10108. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10109. lcd_consume_click();
  10110. while(!lcd_clicked())
  10111. {
  10112. manage_heater();
  10113. manage_inactivity(true);
  10114. lcd_update(0);
  10115. }
  10116. KEEPALIVE_STATE(busy_state_backup);
  10117. }
  10118. #define FIL_LOAD_LENGTH 60
  10119. #ifdef PSU_Delta
  10120. bool bEnableForce_z;
  10121. void init_force_z()
  10122. {
  10123. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  10124. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  10125. disable_force_z();
  10126. }
  10127. void check_force_z()
  10128. {
  10129. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  10130. init_force_z(); // causes enforced switching into disable-state
  10131. }
  10132. void disable_force_z()
  10133. {
  10134. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  10135. bEnableForce_z=false;
  10136. // switching to silent mode
  10137. #ifdef TMC2130
  10138. tmc2130_mode=TMC2130_MODE_SILENT;
  10139. update_mode_profile();
  10140. tmc2130_init(true);
  10141. #endif // TMC2130
  10142. }
  10143. void enable_force_z()
  10144. {
  10145. if(bEnableForce_z)
  10146. return; // motor already enabled (may be ;-p )
  10147. bEnableForce_z=true;
  10148. // mode recovering
  10149. #ifdef TMC2130
  10150. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  10151. update_mode_profile();
  10152. tmc2130_init(true);
  10153. #endif // TMC2130
  10154. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  10155. }
  10156. #endif // PSU_Delta