Marlin_main.cpp 400 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #include "config.h"
  48. #include "macros.h"
  49. #ifdef ENABLE_AUTO_BED_LEVELING
  50. #include "vector_3.h"
  51. #ifdef AUTO_BED_LEVELING_GRID
  52. #include "qr_solve.h"
  53. #endif
  54. #endif // ENABLE_AUTO_BED_LEVELING
  55. #ifdef MESH_BED_LEVELING
  56. #include "mesh_bed_leveling.h"
  57. #include "mesh_bed_calibration.h"
  58. #endif
  59. #include "printers.h"
  60. #include "menu.h"
  61. #include "ultralcd.h"
  62. #include "conv2str.h"
  63. #include "backlight.h"
  64. #include "planner.h"
  65. #include "stepper.h"
  66. #include "temperature.h"
  67. #include "fancheck.h"
  68. #include "motion_control.h"
  69. #include "cardreader.h"
  70. #include "ConfigurationStore.h"
  71. #include "language.h"
  72. #include "pins_arduino.h"
  73. #include "math.h"
  74. #include "util.h"
  75. #include "Timer.h"
  76. #include "Prusa_farm.h"
  77. #include <avr/wdt.h>
  78. #include <avr/pgmspace.h>
  79. #include "Dcodes.h"
  80. #include "AutoDeplete.h"
  81. #ifndef LA_NOCOMPAT
  82. #include "la10compat.h"
  83. #endif
  84. #include "spi.h"
  85. #ifdef FILAMENT_SENSOR
  86. #include "fsensor.h"
  87. #ifdef IR_SENSOR
  88. #include "pat9125.h" // for pat9125_probe
  89. #endif
  90. #endif //FILAMENT_SENSOR
  91. #ifdef TMC2130
  92. #include "tmc2130.h"
  93. #endif //TMC2130
  94. #ifdef XFLASH
  95. #include "xflash.h"
  96. #include "optiboot_xflash.h"
  97. #endif //XFLASH
  98. #include "xflash_dump.h"
  99. #ifdef BLINKM
  100. #include "BlinkM.h"
  101. #include "Wire.h"
  102. #endif
  103. #ifdef ULTRALCD
  104. #include "ultralcd.h"
  105. #endif
  106. #if NUM_SERVOS > 0
  107. #include "Servo.h"
  108. #endif
  109. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  110. #include <SPI.h>
  111. #endif
  112. #include "mmu.h"
  113. #define VERSION_STRING "1.0.2"
  114. #include "ultralcd.h"
  115. #include "sound.h"
  116. #include "cmdqueue.h"
  117. //Macro for print fan speed
  118. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  119. //filament types
  120. #define FILAMENT_DEFAULT 0
  121. #define FILAMENT_FLEX 1
  122. #define FILAMENT_PVA 2
  123. #define FILAMENT_UNDEFINED 255
  124. //Stepper Movement Variables
  125. //===========================================================================
  126. //=============================imported variables============================
  127. //===========================================================================
  128. //===========================================================================
  129. //=============================public variables=============================
  130. //===========================================================================
  131. #ifdef SDSUPPORT
  132. CardReader card;
  133. #endif
  134. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  135. //used for PINDA temp calibration and pause print
  136. #define DEFAULT_RETRACTION 1
  137. #define DEFAULT_RETRACTION_MM 4 //MM
  138. float default_retraction = DEFAULT_RETRACTION;
  139. float homing_feedrate[] = HOMING_FEEDRATE;
  140. //Although this flag and many others like this could be represented with a struct/bitfield for each axis (more readable and efficient code), the implementation
  141. //would not be standard across all platforms. That being said, the code will continue to use bitmasks for independent axis.
  142. //Moreover, according to C/C++ standard, the ordering of bits is platform/compiler dependent and the compiler is allowed to align the bits arbitrarily,
  143. //thus bit operations like shifting and masking may stop working and will be very hard to fix.
  144. uint8_t axis_relative_modes = 0;
  145. int feedmultiply=100; //100->1 200->2
  146. int extrudemultiply=100; //100->1 200->2
  147. int extruder_multiply[EXTRUDERS] = {100
  148. #if EXTRUDERS > 1
  149. , 100
  150. #if EXTRUDERS > 2
  151. , 100
  152. #endif
  153. #endif
  154. };
  155. bool homing_flag = false;
  156. int8_t lcd_change_fil_state = 0;
  157. unsigned long pause_time = 0;
  158. unsigned long start_pause_print = _millis();
  159. unsigned long t_fan_rising_edge = _millis();
  160. LongTimer safetyTimer;
  161. static LongTimer crashDetTimer;
  162. //unsigned long load_filament_time;
  163. bool mesh_bed_leveling_flag = false;
  164. #ifdef PRUSA_M28
  165. bool prusa_sd_card_upload = false;
  166. #endif
  167. unsigned long total_filament_used;
  168. HeatingStatus heating_status;
  169. uint8_t heating_status_counter;
  170. bool loading_flag = false;
  171. #define XY_NO_RESTORE_FLAG (mesh_bed_leveling_flag || homing_flag)
  172. bool fan_state[2];
  173. int fan_edge_counter[2];
  174. int fan_speed[2];
  175. float extruder_multiplier[EXTRUDERS] = {1.0
  176. #if EXTRUDERS > 1
  177. , 1.0
  178. #if EXTRUDERS > 2
  179. , 1.0
  180. #endif
  181. #endif
  182. };
  183. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  184. //shortcuts for more readable code
  185. #define _x current_position[X_AXIS]
  186. #define _y current_position[Y_AXIS]
  187. #define _z current_position[Z_AXIS]
  188. #define _e current_position[E_AXIS]
  189. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  190. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  191. bool axis_known_position[3] = {false, false, false};
  192. // Extruder offset
  193. #if EXTRUDERS > 1
  194. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  195. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  196. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  197. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  198. #endif
  199. };
  200. #endif
  201. uint8_t active_extruder = 0;
  202. int fanSpeed=0;
  203. uint8_t newFanSpeed = 0;
  204. #ifdef FWRETRACT
  205. bool retracted[EXTRUDERS]={false
  206. #if EXTRUDERS > 1
  207. , false
  208. #if EXTRUDERS > 2
  209. , false
  210. #endif
  211. #endif
  212. };
  213. bool retracted_swap[EXTRUDERS]={false
  214. #if EXTRUDERS > 1
  215. , false
  216. #if EXTRUDERS > 2
  217. , false
  218. #endif
  219. #endif
  220. };
  221. float retract_length_swap = RETRACT_LENGTH_SWAP;
  222. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  223. #endif
  224. #ifdef PS_DEFAULT_OFF
  225. bool powersupply = false;
  226. #else
  227. bool powersupply = true;
  228. #endif
  229. bool cancel_heatup = false;
  230. int8_t busy_state = NOT_BUSY;
  231. static long prev_busy_signal_ms = -1;
  232. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  233. const char errormagic[] PROGMEM = "Error:";
  234. const char echomagic[] PROGMEM = "echo:";
  235. const char G28W0[] PROGMEM = "G28 W0";
  236. // Define some coordinates outside the clamp limits (making them invalid past the parsing stage) so
  237. // that they can be used later for various logical checks
  238. #define X_COORD_INVALID (X_MIN_POS-1)
  239. #define SAVED_START_POSITION_UNSET X_COORD_INVALID
  240. float saved_start_position[NUM_AXIS] = {SAVED_START_POSITION_UNSET, 0, 0, 0};
  241. uint16_t saved_segment_idx = 0;
  242. // save/restore printing in case that mmu was not responding
  243. bool mmu_print_saved = false;
  244. // storing estimated time to end of print counted by slicer
  245. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  246. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  247. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  248. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  249. uint16_t print_time_to_change_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining time to next change in minutes
  250. uint16_t print_time_to_change_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining time to next change in minutes
  251. uint32_t IP_address = 0;
  252. //===========================================================================
  253. //=============================Private Variables=============================
  254. //===========================================================================
  255. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  256. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  257. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  258. // For tracing an arc
  259. static float offset[3] = {0.0, 0.0, 0.0};
  260. // Current feedrate
  261. float feedrate = 1500.0;
  262. // Feedrate for the next move
  263. static float next_feedrate;
  264. // Original feedrate saved during homing moves
  265. static float saved_feedrate;
  266. const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS; // Sensitive pin list for M42
  267. //static float tt = 0;
  268. //static float bt = 0;
  269. //Inactivity shutdown variables
  270. static LongTimer previous_millis_cmd;
  271. unsigned long max_inactive_time = 0;
  272. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  273. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  274. unsigned long starttime=0;
  275. unsigned long stoptime=0;
  276. ShortTimer usb_timer;
  277. bool Stopped=false;
  278. #if NUM_SERVOS > 0
  279. Servo servos[NUM_SERVOS];
  280. #endif
  281. bool target_direction;
  282. //Insert variables if CHDK is defined
  283. #ifdef CHDK
  284. unsigned long chdkHigh = 0;
  285. bool chdkActive = false;
  286. #endif
  287. //! @name RAM save/restore printing
  288. //! @{
  289. bool saved_printing = false; //!< Print is paused and saved in RAM
  290. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  291. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  292. static float saved_pos[4] = { X_COORD_INVALID, 0, 0, 0 };
  293. static uint16_t saved_feedrate2 = 0; //!< Default feedrate (truncated from float)
  294. static int saved_feedmultiply2 = 0;
  295. static uint8_t saved_active_extruder = 0;
  296. float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  297. float saved_bed_temperature = 0.0; //!< Bed temperature
  298. static bool saved_extruder_relative_mode = false;
  299. int saved_fan_speed = 0; //!< Print fan speed
  300. //! @}
  301. static int saved_feedmultiply_mm = 100;
  302. class AutoReportFeatures {
  303. union {
  304. struct {
  305. uint8_t temp : 1; //Temperature flag
  306. uint8_t fans : 1; //Fans flag
  307. uint8_t pos: 1; //Position flag
  308. uint8_t ar4 : 1; //Unused
  309. uint8_t ar5 : 1; //Unused
  310. uint8_t ar6 : 1; //Unused
  311. uint8_t ar7 : 1; //Unused
  312. } __attribute__((packed)) bits;
  313. uint8_t byte;
  314. } arFunctionsActive;
  315. uint8_t auto_report_period;
  316. public:
  317. LongTimer auto_report_timer;
  318. AutoReportFeatures():auto_report_period(0){
  319. #if defined(AUTO_REPORT)
  320. arFunctionsActive.byte = 0xff;
  321. #else
  322. arFunctionsActive.byte = 0;
  323. #endif //AUTO_REPORT
  324. }
  325. inline bool Temp()const { return arFunctionsActive.bits.temp != 0; }
  326. inline void SetTemp(uint8_t v){ arFunctionsActive.bits.temp = v; }
  327. inline bool Fans()const { return arFunctionsActive.bits.fans != 0; }
  328. inline void SetFans(uint8_t v){ arFunctionsActive.bits.fans = v; }
  329. inline bool Pos()const { return arFunctionsActive.bits.pos != 0; }
  330. inline void SetPos(uint8_t v){ arFunctionsActive.bits.pos = v; }
  331. inline void SetMask(uint8_t mask){ arFunctionsActive.byte = mask; }
  332. /// sets the autoreporting timer's period
  333. /// setting it to zero stops the timer
  334. void SetPeriod(uint8_t p){
  335. auto_report_period = p;
  336. if (auto_report_period != 0){
  337. auto_report_timer.start();
  338. } else{
  339. auto_report_timer.stop();
  340. }
  341. }
  342. inline void TimerStart() { auto_report_timer.start(); }
  343. inline bool TimerRunning()const { return auto_report_timer.running(); }
  344. inline bool TimerExpired() { return auto_report_timer.expired(auto_report_period * 1000ul); }
  345. };
  346. AutoReportFeatures autoReportFeatures;
  347. //===========================================================================
  348. //=============================Routines======================================
  349. //===========================================================================
  350. static bool setTargetedHotend(int code, uint8_t &extruder);
  351. static void print_time_remaining_init();
  352. static void wait_for_heater(long codenum, uint8_t extruder);
  353. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  354. static void gcode_M105(uint8_t extruder);
  355. #ifndef PINDA_THERMISTOR
  356. static void temp_compensation_start();
  357. static void temp_compensation_apply();
  358. #endif
  359. #ifdef PRUSA_SN_SUPPORT
  360. static uint8_t get_PRUSA_SN(char* SN);
  361. #endif //PRUSA_SN_SUPPORT
  362. uint16_t gcode_in_progress = 0;
  363. uint16_t mcode_in_progress = 0;
  364. void serial_echopair_P(const char *s_P, float v)
  365. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  366. void serial_echopair_P(const char *s_P, double v)
  367. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  368. void serial_echopair_P(const char *s_P, unsigned long v)
  369. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  370. void serialprintPGM(const char *str) {
  371. while(uint8_t ch = pgm_read_byte(str)) {
  372. MYSERIAL.write((char)ch);
  373. ++str;
  374. }
  375. }
  376. void serialprintlnPGM(const char *str) {
  377. serialprintPGM(str);
  378. MYSERIAL.println();
  379. }
  380. #ifdef SDSUPPORT
  381. #include "SdFatUtil.h"
  382. int freeMemory() { return SdFatUtil::FreeRam(); }
  383. #else
  384. extern "C" {
  385. extern unsigned int __bss_end;
  386. extern unsigned int __heap_start;
  387. extern void *__brkval;
  388. int freeMemory() {
  389. int free_memory;
  390. if ((int)__brkval == 0)
  391. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  392. else
  393. free_memory = ((int)&free_memory) - ((int)__brkval);
  394. return free_memory;
  395. }
  396. }
  397. #endif //!SDSUPPORT
  398. void setup_killpin()
  399. {
  400. #if defined(KILL_PIN) && KILL_PIN > -1
  401. SET_INPUT(KILL_PIN);
  402. WRITE(KILL_PIN,HIGH);
  403. #endif
  404. }
  405. // Set home pin
  406. void setup_homepin(void)
  407. {
  408. #if defined(HOME_PIN) && HOME_PIN > -1
  409. SET_INPUT(HOME_PIN);
  410. WRITE(HOME_PIN,HIGH);
  411. #endif
  412. }
  413. void setup_photpin()
  414. {
  415. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  416. SET_OUTPUT(PHOTOGRAPH_PIN);
  417. WRITE(PHOTOGRAPH_PIN, LOW);
  418. #endif
  419. }
  420. void setup_powerhold()
  421. {
  422. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  423. SET_OUTPUT(SUICIDE_PIN);
  424. WRITE(SUICIDE_PIN, HIGH);
  425. #endif
  426. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  427. SET_OUTPUT(PS_ON_PIN);
  428. #if defined(PS_DEFAULT_OFF)
  429. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  430. #else
  431. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  432. #endif
  433. #endif
  434. }
  435. void suicide()
  436. {
  437. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  438. SET_OUTPUT(SUICIDE_PIN);
  439. WRITE(SUICIDE_PIN, LOW);
  440. #endif
  441. }
  442. void servo_init()
  443. {
  444. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  445. servos[0].attach(SERVO0_PIN);
  446. #endif
  447. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  448. servos[1].attach(SERVO1_PIN);
  449. #endif
  450. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  451. servos[2].attach(SERVO2_PIN);
  452. #endif
  453. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  454. servos[3].attach(SERVO3_PIN);
  455. #endif
  456. #if (NUM_SERVOS >= 5)
  457. #error "TODO: enter initalisation code for more servos"
  458. #endif
  459. }
  460. bool printer_active()
  461. {
  462. return PRINTER_ACTIVE;
  463. }
  464. bool fans_check_enabled = true;
  465. #ifdef TMC2130
  466. void crashdet_stop_and_save_print()
  467. {
  468. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  469. }
  470. void crashdet_restore_print_and_continue()
  471. {
  472. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  473. // babystep_apply();
  474. }
  475. void crashdet_fmt_error(char* buf, uint8_t mask)
  476. {
  477. if(mask & X_AXIS_MASK) *buf++ = axis_codes[X_AXIS];
  478. if(mask & Y_AXIS_MASK) *buf++ = axis_codes[Y_AXIS];
  479. *buf++ = ' ';
  480. strcpy_P(buf, _T(MSG_CRASH_DETECTED));
  481. }
  482. void crashdet_detected(uint8_t mask)
  483. {
  484. st_synchronize();
  485. static uint8_t crashDet_counter = 0;
  486. static uint8_t crashDet_axes = 0;
  487. bool automatic_recovery_after_crash = true;
  488. char msg[LCD_WIDTH+1] = "";
  489. if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)) {
  490. crashDet_counter = 0;
  491. }
  492. if(++crashDet_counter >= CRASHDET_COUNTER_MAX) {
  493. automatic_recovery_after_crash = false;
  494. }
  495. crashDetTimer.start();
  496. crashDet_axes |= mask;
  497. lcd_update_enable(true);
  498. lcd_clear();
  499. lcd_update(2);
  500. if (mask & X_AXIS_MASK)
  501. {
  502. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  503. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  504. }
  505. if (mask & Y_AXIS_MASK)
  506. {
  507. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  508. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  509. }
  510. lcd_update_enable(true);
  511. lcd_update(2);
  512. // prepare the status message with the _current_ axes status
  513. crashdet_fmt_error(msg, mask);
  514. lcd_setstatus(msg);
  515. gcode_G28(true, true, false); //home X and Y
  516. if (automatic_recovery_after_crash) {
  517. enquecommand_P(PSTR("CRASH_RECOVER"));
  518. }else{
  519. setTargetHotend(0, active_extruder);
  520. // notify the user of *all* the axes previously affected, not just the last one
  521. lcd_update_enable(false);
  522. lcd_clear();
  523. crashdet_fmt_error(msg, crashDet_axes);
  524. crashDet_axes = 0;
  525. lcd_print(msg);
  526. // ask whether to resume printing
  527. lcd_set_cursor(0, 1);
  528. lcd_puts_P(_T(MSG_RESUME_PRINT));
  529. lcd_putc('?');
  530. bool yesno = lcd_show_yes_no_and_wait(false);
  531. lcd_update_enable(true);
  532. if (yesno)
  533. {
  534. enquecommand_P(PSTR("CRASH_RECOVER"));
  535. }
  536. else
  537. {
  538. enquecommand_P(PSTR("CRASH_CANCEL"));
  539. }
  540. }
  541. }
  542. void crashdet_recover()
  543. {
  544. crashdet_restore_print_and_continue();
  545. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  546. }
  547. void crashdet_cancel()
  548. {
  549. saved_printing = false;
  550. tmc2130_sg_stop_on_crash = true;
  551. if (saved_printing_type == PRINTING_TYPE_SD) {
  552. lcd_print_stop();
  553. }else if(saved_printing_type == PRINTING_TYPE_USB){
  554. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  555. cmdqueue_reset();
  556. }
  557. }
  558. #endif //TMC2130
  559. void failstats_reset_print()
  560. {
  561. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  562. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  563. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  564. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  565. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  566. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  567. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  568. fsensor_softfail = 0;
  569. #endif
  570. }
  571. void softReset()
  572. {
  573. cli();
  574. wdt_enable(WDTO_15MS);
  575. while(1);
  576. }
  577. #ifdef MESH_BED_LEVELING
  578. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  579. #endif
  580. static void factory_reset_stats(){
  581. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  582. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  583. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  584. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  585. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  586. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  587. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  588. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  589. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  590. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  591. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  592. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  593. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  594. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  595. }
  596. // Factory reset function
  597. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  598. // Level input parameter sets depth of reset
  599. static void factory_reset(char level)
  600. {
  601. lcd_clear();
  602. Sound_MakeCustom(100,0,false);
  603. switch (level) {
  604. case 0: // Level 0: Language reset
  605. lang_reset();
  606. break;
  607. case 1: //Level 1: Reset statistics
  608. factory_reset_stats();
  609. lcd_menu_statistics();
  610. break;
  611. case 2: // Level 2: Prepare for shipping
  612. factory_reset_stats();
  613. // FALLTHRU
  614. case 3: // Level 3: Preparation after being serviced
  615. // Force language selection at the next boot up.
  616. lang_reset();
  617. // Force the "Follow calibration flow" message at the next boot up.
  618. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  619. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 2); //run wizard
  620. farm_disable();
  621. #ifdef FILAMENT_SENSOR
  622. fsensor_enable();
  623. fsensor_autoload_set(true);
  624. #endif //FILAMENT_SENSOR
  625. break;
  626. case 4:
  627. menu_progressbar_init(EEPROM_TOP, PSTR("ERASING all data"));
  628. // Erase EEPROM
  629. for (uint16_t i = 0; i < EEPROM_TOP; i++) {
  630. eeprom_update_byte((uint8_t*)i, 0xFF);
  631. menu_progressbar_update(i);
  632. }
  633. menu_progressbar_finish();
  634. softReset();
  635. break;
  636. default:
  637. break;
  638. }
  639. }
  640. extern "C" {
  641. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  642. }
  643. int uart_putchar(char c, FILE *)
  644. {
  645. MYSERIAL.write(c);
  646. return 0;
  647. }
  648. void lcd_splash()
  649. {
  650. lcd_clear(); // clears display and homes screen
  651. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  652. }
  653. void factory_reset()
  654. {
  655. KEEPALIVE_STATE(PAUSED_FOR_USER);
  656. if (!READ(BTN_ENC))
  657. {
  658. _delay_ms(1000);
  659. if (!READ(BTN_ENC))
  660. {
  661. lcd_clear();
  662. lcd_puts_P(PSTR("Factory RESET"));
  663. SET_OUTPUT(BEEPER);
  664. if(eSoundMode!=e_SOUND_MODE_SILENT)
  665. WRITE(BEEPER, HIGH);
  666. while (!READ(BTN_ENC));
  667. WRITE(BEEPER, LOW);
  668. _delay_ms(2000);
  669. char level = reset_menu();
  670. factory_reset(level);
  671. switch (level) {
  672. case 0:
  673. case 1:
  674. case 2:
  675. case 3:
  676. case 4: _delay_ms(0); break;
  677. }
  678. }
  679. }
  680. KEEPALIVE_STATE(IN_HANDLER);
  681. }
  682. void show_fw_version_warnings() {
  683. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  684. switch (FW_DEV_VERSION) {
  685. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  686. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  687. case(FW_VERSION_DEVEL):
  688. case(FW_VERSION_DEBUG):
  689. lcd_update_enable(false);
  690. lcd_clear();
  691. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  692. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  693. #else
  694. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  695. #endif
  696. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  697. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  698. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  699. lcd_wait_for_click();
  700. break;
  701. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  702. }
  703. lcd_update_enable(true);
  704. }
  705. //! @brief try to check if firmware is on right type of printer
  706. static void check_if_fw_is_on_right_printer(){
  707. #ifdef FILAMENT_SENSOR
  708. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  709. #ifdef IR_SENSOR
  710. if (pat9125_probe()){
  711. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}////MSG_MK3S_FIRMWARE_ON_MK3 c=20 r=4
  712. #endif //IR_SENSOR
  713. #ifdef PAT9125
  714. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  715. const uint8_t ir_detected = !READ(IR_SENSOR_PIN);
  716. if (ir_detected){
  717. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}////MSG_MK3_FIRMWARE_ON_MK3S c=20 r=4
  718. #endif //PAT9125
  719. }
  720. #endif //FILAMENT_SENSOR
  721. }
  722. uint8_t check_printer_version()
  723. {
  724. uint8_t version_changed = 0;
  725. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  726. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  727. if (printer_type != PRINTER_TYPE) {
  728. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  729. else version_changed |= 0b10;
  730. }
  731. if (motherboard != MOTHERBOARD) {
  732. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  733. else version_changed |= 0b01;
  734. }
  735. return version_changed;
  736. }
  737. #ifdef BOOTAPP
  738. #include "bootapp.h" //bootloader support
  739. #endif //BOOTAPP
  740. #if (LANG_MODE != 0) //secondary language support
  741. #ifdef XFLASH
  742. // language update from external flash
  743. #define LANGBOOT_BLOCKSIZE 0x1000u
  744. #define LANGBOOT_RAMBUFFER 0x0800
  745. void update_sec_lang_from_external_flash()
  746. {
  747. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  748. {
  749. uint8_t lang = boot_reserved >> 3;
  750. uint8_t state = boot_reserved & 0x07;
  751. lang_table_header_t header;
  752. uint32_t src_addr;
  753. if (lang_get_header(lang, &header, &src_addr))
  754. {
  755. lcd_puts_at_P(1,3,PSTR("Language update."));
  756. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  757. _delay(100);
  758. boot_reserved = (boot_reserved & 0xF8) | ((state + 1) & 0x07);
  759. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  760. {
  761. cli();
  762. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  763. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  764. xflash_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  765. if (state == 0)
  766. {
  767. //TODO - check header integrity
  768. }
  769. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  770. }
  771. else
  772. {
  773. //TODO - check sec lang data integrity
  774. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  775. }
  776. }
  777. }
  778. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  779. }
  780. #ifdef DEBUG_XFLASH
  781. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  782. {
  783. lang_table_header_t header;
  784. uint8_t count = 0;
  785. uint32_t addr = 0x00000;
  786. while (1)
  787. {
  788. printf_P(_n("LANGTABLE%d:"), count);
  789. xflash_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  790. if (header.magic != LANG_MAGIC)
  791. {
  792. puts_P(_n("NG!"));
  793. break;
  794. }
  795. puts_P(_n("OK"));
  796. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  797. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  798. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  799. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  800. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  801. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  802. addr += header.size;
  803. codes[count] = header.code;
  804. count ++;
  805. }
  806. return count;
  807. }
  808. void list_sec_lang_from_external_flash()
  809. {
  810. uint16_t codes[8];
  811. uint8_t count = lang_xflash_enum_codes(codes);
  812. printf_P(_n("XFlash lang count = %hhd\n"), count);
  813. }
  814. #endif //DEBUG_XFLASH
  815. #endif //XFLASH
  816. #endif //(LANG_MODE != 0)
  817. static void fw_crash_init()
  818. {
  819. #ifdef XFLASH_DUMP
  820. dump_crash_reason crash_reason;
  821. if(xfdump_check_state(&crash_reason))
  822. {
  823. // always signal to the host that a dump is available for retrieval
  824. puts_P(_N("// action:dump_available"));
  825. #ifdef EMERGENCY_DUMP
  826. if(crash_reason != dump_crash_reason::manual &&
  827. eeprom_read_byte((uint8_t*)EEPROM_FW_CRASH_FLAG) != 0xFF)
  828. {
  829. lcd_show_fullscreen_message_and_wait_P(
  830. _n("FW crash detected! "
  831. "You can continue printing. "
  832. "Debug data available for analysis. "
  833. "Contact support to submit details."));
  834. }
  835. #endif
  836. }
  837. #else //XFLASH_DUMP
  838. dump_crash_reason crash_reason = (dump_crash_reason)eeprom_read_byte((uint8_t*)EEPROM_FW_CRASH_FLAG);
  839. if(crash_reason != dump_crash_reason::manual && (uint8_t)crash_reason != 0xFF)
  840. {
  841. lcd_beeper_quick_feedback();
  842. lcd_clear();
  843. lcd_puts_P(_n("FIRMWARE CRASH!\nCrash reason:\n"));
  844. switch(crash_reason)
  845. {
  846. case dump_crash_reason::stack_error:
  847. lcd_puts_P(_n("Static memory has\nbeen overwritten"));
  848. break;
  849. case dump_crash_reason::watchdog:
  850. lcd_puts_P(_n("Watchdog timeout"));
  851. break;
  852. case dump_crash_reason::bad_isr:
  853. lcd_puts_P(_n("Bad interrupt"));
  854. break;
  855. default:
  856. lcd_print((uint8_t)crash_reason);
  857. break;
  858. }
  859. lcd_wait_for_click();
  860. }
  861. #endif //XFLASH_DUMP
  862. // prevent crash prompts to reappear once acknowledged
  863. eeprom_update_byte((uint8_t*)EEPROM_FW_CRASH_FLAG, 0xFF);
  864. }
  865. static void xflash_err_msg()
  866. {
  867. puts_P(_n("XFLASH not responding."));
  868. lcd_show_fullscreen_message_and_wait_P(_n("External SPI flash\nXFLASH is not res-\nponding. Language\nswitch unavailable."));
  869. }
  870. // "Setup" function is called by the Arduino framework on startup.
  871. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  872. // are initialized by the main() routine provided by the Arduino framework.
  873. void setup()
  874. {
  875. timer2_init(); // enables functional millis
  876. mmu_init();
  877. ultralcd_init();
  878. spi_init();
  879. lcd_splash();
  880. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  881. selectedSerialPort = eeprom_read_byte((uint8_t *)EEPROM_SECOND_SERIAL_ACTIVE);
  882. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  883. eeprom_update_byte((uint8_t *)EEPROM_SECOND_SERIAL_ACTIVE, selectedSerialPort);
  884. MYSERIAL.begin(BAUDRATE);
  885. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  886. stdout = uartout;
  887. #ifdef XFLASH
  888. bool xflash_success = xflash_init();
  889. uint8_t optiboot_status = 1;
  890. if (xflash_success)
  891. {
  892. optiboot_status = optiboot_xflash_enter();
  893. #if (LANG_MODE != 0) //secondary language support
  894. update_sec_lang_from_external_flash();
  895. #endif //(LANG_MODE != 0)
  896. }
  897. #else
  898. const bool xflash_success = true;
  899. #endif //XFLASH
  900. setup_killpin();
  901. setup_powerhold();
  902. farm_mode_init();
  903. #ifdef TMC2130
  904. if( FarmOrUserECool() ){
  905. //increased extruder current (PFW363)
  906. tmc2130_current_h[E_AXIS] = TMC2130_CURRENTS_FARM;
  907. tmc2130_current_r[E_AXIS] = TMC2130_CURRENTS_FARM;
  908. }
  909. #endif //TMC2130
  910. #ifdef PRUSA_SN_SUPPORT
  911. //Check for valid SN in EEPROM. Try to retrieve it in case it's invalid.
  912. //SN is valid only if it is NULL terminated and starts with "CZPX".
  913. {
  914. char SN[20];
  915. eeprom_read_block(SN, (uint8_t*)EEPROM_PRUSA_SN, 20);
  916. if (SN[19] || strncmp_P(SN, PSTR("CZPX"), 4))
  917. {
  918. if (!get_PRUSA_SN(SN))
  919. {
  920. eeprom_update_block(SN, (uint8_t*)EEPROM_PRUSA_SN, 20);
  921. puts_P(PSTR("SN updated"));
  922. }
  923. else
  924. puts_P(PSTR("SN update failed"));
  925. }
  926. }
  927. #endif //PRUSA_SN_SUPPORT
  928. #ifndef XFLASH
  929. SERIAL_PROTOCOLLNPGM("start");
  930. #else
  931. if ((optiboot_status != 0) || (selectedSerialPort != 0))
  932. SERIAL_PROTOCOLLNPGM("start");
  933. #endif
  934. SERIAL_ECHO_START;
  935. puts_P(PSTR(" " FW_VERSION_FULL));
  936. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  937. #ifdef DEBUG_SEC_LANG
  938. lang_table_header_t header;
  939. uint32_t src_addr = 0x00000;
  940. if (lang_get_header(1, &header, &src_addr))
  941. {
  942. printf_P(
  943. _n(
  944. " _src_addr = 0x%08lx\n"
  945. " _lt_magic = 0x%08lx %S\n"
  946. " _lt_size = 0x%04x (%d)\n"
  947. " _lt_count = 0x%04x (%d)\n"
  948. " _lt_chsum = 0x%04x\n"
  949. " _lt_code = 0x%04x (%c%c)\n"
  950. " _lt_resv1 = 0x%08lx\n"
  951. ),
  952. src_addr,
  953. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  954. header.size, header.size,
  955. header.count, header.count,
  956. header.checksum,
  957. header.code, header.code >> 8, header.code & 0xff,
  958. header.signature
  959. );
  960. #if 0
  961. xflash_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  962. for (uint16_t i = 0; i < 1024; i++)
  963. {
  964. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  965. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  966. if ((i % 16) == 15) putchar('\n');
  967. }
  968. #endif
  969. uint16_t sum = 0;
  970. for (uint16_t i = 0; i < header.size; i++)
  971. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  972. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  973. sum -= header.checksum; //subtract checksum
  974. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  975. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  976. if (sum == header.checksum)
  977. puts_P(_n("Checksum OK"));
  978. else
  979. puts_P(_n("Checksum NG"));
  980. }
  981. else
  982. puts_P(_n("lang_get_header failed!"));
  983. #if 0
  984. for (uint16_t i = 0; i < 1024*10; i++)
  985. {
  986. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  987. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  988. if ((i % 16) == 15) putchar('\n');
  989. }
  990. #endif
  991. #if 0
  992. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  993. for (int i = 0; i < 4096; ++i) {
  994. int b = eeprom_read_byte((unsigned char*)i);
  995. if (b != 255) {
  996. SERIAL_ECHO(i);
  997. SERIAL_ECHO(":");
  998. SERIAL_ECHO(b);
  999. SERIAL_ECHOLN("");
  1000. }
  1001. }
  1002. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1003. #endif
  1004. #endif //DEBUG_SEC_LANG
  1005. // Check startup - does nothing if bootloader sets MCUSR to 0
  1006. byte mcu = MCUSR;
  1007. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  1008. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1009. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1010. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1011. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1012. if (mcu & 1) puts_P(MSG_POWERUP);
  1013. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1014. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1015. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1016. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1017. MCUSR = 0;
  1018. //SERIAL_ECHORPGM(MSG_MARLIN);
  1019. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1020. #ifdef STRING_VERSION_CONFIG_H
  1021. #ifdef STRING_CONFIG_H_AUTHOR
  1022. SERIAL_ECHO_START;
  1023. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  1024. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1025. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  1026. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1027. SERIAL_ECHOPGM("Compiled: ");
  1028. SERIAL_ECHOLNPGM(__DATE__);
  1029. #endif
  1030. #endif
  1031. SERIAL_ECHO_START;
  1032. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1033. SERIAL_ECHO(freeMemory());
  1034. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1035. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1036. //lcd_update_enable(false); // why do we need this?? - andre
  1037. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1038. bool previous_settings_retrieved = false;
  1039. uint8_t hw_changed = check_printer_version();
  1040. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1041. previous_settings_retrieved = Config_RetrieveSettings();
  1042. }
  1043. else { //printer version was changed so use default settings
  1044. Config_ResetDefault();
  1045. }
  1046. // writes a magic number at the end of static variables to monitor against incorrect overwriting
  1047. // of static memory by stack (this needs to be done before soft_pwm_init, since the check is
  1048. // performed inside the soft_pwm_isr)
  1049. SdFatUtil::set_stack_guard();
  1050. // Initialize pwm/temperature loops
  1051. soft_pwm_init();
  1052. temp_mgr_init();
  1053. #ifdef EXTRUDER_ALTFAN_DETECT
  1054. SERIAL_ECHORPGM(_n("Extruder fan type: "));
  1055. if (extruder_altfan_detect())
  1056. SERIAL_ECHOLNRPGM(PSTR("ALTFAN"));
  1057. else
  1058. SERIAL_ECHOLNRPGM(PSTR("NOCTUA"));
  1059. #endif //EXTRUDER_ALTFAN_DETECT
  1060. plan_init(); // Initialize planner;
  1061. factory_reset();
  1062. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1063. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff)
  1064. {
  1065. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1066. // where all the EEPROM entries are set to 0x0ff.
  1067. // Once a firmware boots up, it forces at least a language selection, which changes
  1068. // EEPROM_LANG to number lower than 0x0ff.
  1069. // 1) Set a high power mode.
  1070. eeprom_update_byte((uint8_t*)EEPROM_SILENT, SILENT_MODE_OFF);
  1071. #ifdef TMC2130
  1072. tmc2130_mode = TMC2130_MODE_NORMAL;
  1073. #endif //TMC2130
  1074. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1075. }
  1076. lcd_encoder_diff=0;
  1077. #ifdef TMC2130
  1078. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1079. if (silentMode == 0xff) silentMode = 0;
  1080. tmc2130_mode = TMC2130_MODE_NORMAL;
  1081. if (lcd_crash_detect_enabled() && !farm_mode)
  1082. {
  1083. lcd_crash_detect_enable();
  1084. puts_P(_N("CrashDetect ENABLED!"));
  1085. }
  1086. else
  1087. {
  1088. lcd_crash_detect_disable();
  1089. puts_P(_N("CrashDetect DISABLED"));
  1090. }
  1091. #ifdef TMC2130_LINEARITY_CORRECTION
  1092. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1093. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1094. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1095. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1096. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1097. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1098. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1099. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1100. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1101. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1102. #endif //TMC2130_LINEARITY_CORRECTION
  1103. #ifdef TMC2130_VARIABLE_RESOLUTION
  1104. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1105. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1106. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1107. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1108. #else //TMC2130_VARIABLE_RESOLUTION
  1109. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1110. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1111. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1112. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1113. #endif //TMC2130_VARIABLE_RESOLUTION
  1114. #endif //TMC2130
  1115. st_init(); // Initialize stepper, this enables interrupts!
  1116. #ifdef TMC2130
  1117. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1118. update_mode_profile();
  1119. tmc2130_init(TMCInitParams(false, FarmOrUserECool() ));
  1120. #endif //TMC2130
  1121. #ifdef PSU_Delta
  1122. init_force_z(); // ! important for correct Z-axis initialization
  1123. #endif // PSU_Delta
  1124. setup_photpin();
  1125. #if 0
  1126. servo_init();
  1127. #endif
  1128. // Reset the machine correction matrix.
  1129. // It does not make sense to load the correction matrix until the machine is homed.
  1130. world2machine_reset();
  1131. // Initialize current_position accounting for software endstops to
  1132. // avoid unexpected initial shifts on the first move
  1133. clamp_to_software_endstops(current_position);
  1134. plan_set_position_curposXYZE();
  1135. // Show the xflash error message now that serial, lcd and encoder are available
  1136. if (!xflash_success)
  1137. xflash_err_msg();
  1138. #ifdef FILAMENT_SENSOR
  1139. fsensor_init();
  1140. #endif //FILAMENT_SENSOR
  1141. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1142. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1143. #endif
  1144. setup_homepin();
  1145. #if defined(Z_AXIS_ALWAYS_ON)
  1146. enable_z();
  1147. #endif
  1148. // The farm monitoring SW may accidentally expect
  1149. // 2 messages of "printer started" to consider a printer working.
  1150. prusa_statistics(8);
  1151. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1152. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1153. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1154. // but this times out if a blocking dialog is shown in setup().
  1155. card.initsd();
  1156. #ifdef DEBUG_SD_SPEED_TEST
  1157. if (card.cardOK)
  1158. {
  1159. uint8_t* buff = (uint8_t*)block_buffer;
  1160. uint32_t block = 0;
  1161. uint32_t sumr = 0;
  1162. uint32_t sumw = 0;
  1163. for (int i = 0; i < 1024; i++)
  1164. {
  1165. uint32_t u = _micros();
  1166. bool res = card.card.readBlock(i, buff);
  1167. u = _micros() - u;
  1168. if (res)
  1169. {
  1170. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1171. sumr += u;
  1172. u = _micros();
  1173. res = card.card.writeBlock(i, buff);
  1174. u = _micros() - u;
  1175. if (res)
  1176. {
  1177. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1178. sumw += u;
  1179. }
  1180. else
  1181. {
  1182. printf_P(PSTR("writeBlock %4d error\n"), i);
  1183. break;
  1184. }
  1185. }
  1186. else
  1187. {
  1188. printf_P(PSTR("readBlock %4d error\n"), i);
  1189. break;
  1190. }
  1191. }
  1192. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1193. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1194. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1195. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1196. }
  1197. else
  1198. printf_P(PSTR("Card NG!\n"));
  1199. #endif //DEBUG_SD_SPEED_TEST
  1200. eeprom_init();
  1201. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1202. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1203. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1204. #if (LANG_MODE != 0) //secondary language support
  1205. #ifdef DEBUG_XFLASH
  1206. XFLASH_SPI_ENTER();
  1207. uint8_t uid[8]; // 64bit unique id
  1208. xflash_rd_uid(uid);
  1209. puts_P(_n("XFLASH UID="));
  1210. for (uint8_t i = 0; i < 8; i ++)
  1211. printf_P(PSTR("%02x"), uid[i]);
  1212. putchar('\n');
  1213. list_sec_lang_from_external_flash();
  1214. #endif //DEBUG_XFLASH
  1215. // lang_reset();
  1216. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1217. lcd_language();
  1218. #ifdef DEBUG_SEC_LANG
  1219. uint16_t sec_lang_code = lang_get_code(1);
  1220. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1221. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1222. lang_print_sec_lang(uartout);
  1223. #endif //DEBUG_SEC_LANG
  1224. #endif //(LANG_MODE != 0)
  1225. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1226. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1227. }
  1228. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1229. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1230. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1231. int16_t z_shift = 0;
  1232. for (uint8_t i = 0; i < 5; i++) {
  1233. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i, z_shift);
  1234. }
  1235. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1236. }
  1237. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1238. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1239. }
  1240. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1241. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1242. }
  1243. //mbl_mode_init();
  1244. mbl_settings_init();
  1245. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1246. if (SilentModeMenu_MMU == 255) {
  1247. SilentModeMenu_MMU = 1;
  1248. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1249. }
  1250. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1251. setup_fan_interrupt();
  1252. #endif //DEBUG_DISABLE_FANCHECK
  1253. #ifdef PAT9125
  1254. fsensor_setup_interrupt();
  1255. #endif //PAT9125
  1256. #ifndef DEBUG_DISABLE_STARTMSGS
  1257. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1258. if (!farm_mode) {
  1259. check_if_fw_is_on_right_printer();
  1260. show_fw_version_warnings();
  1261. }
  1262. switch (hw_changed) {
  1263. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1264. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1265. case(0b01):
  1266. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1267. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1268. break;
  1269. case(0b10):
  1270. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1271. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1272. break;
  1273. case(0b11):
  1274. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1275. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1276. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1277. break;
  1278. default: break; //no change, show no message
  1279. }
  1280. if (!previous_settings_retrieved) {
  1281. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=6
  1282. Config_StoreSettings();
  1283. }
  1284. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) >= 1) {
  1285. lcd_wizard(WizState::Run);
  1286. }
  1287. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1288. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1289. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1290. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1291. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1292. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  1293. // Show the message.
  1294. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1295. }
  1296. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1297. // Show the message.
  1298. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1299. lcd_update_enable(true);
  1300. }
  1301. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() == false) {
  1302. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1303. lcd_update_enable(true);
  1304. }
  1305. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1306. // Show the message.
  1307. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1308. }
  1309. }
  1310. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1311. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1312. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1313. update_current_firmware_version_to_eeprom();
  1314. lcd_selftest();
  1315. }
  1316. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1317. KEEPALIVE_STATE(IN_PROCESS);
  1318. #endif //DEBUG_DISABLE_STARTMSGS
  1319. lcd_update_enable(true);
  1320. lcd_clear();
  1321. lcd_update(2);
  1322. // Store the currently running firmware into an eeprom,
  1323. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1324. update_current_firmware_version_to_eeprom();
  1325. #ifdef TMC2130
  1326. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1327. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1328. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1329. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1330. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1331. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1332. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1333. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1334. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1335. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1336. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1337. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1338. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1339. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1340. #endif //TMC2130
  1341. // report crash failures
  1342. fw_crash_init();
  1343. #ifdef UVLO_SUPPORT
  1344. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1345. /*
  1346. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1347. else {
  1348. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1349. lcd_update_enable(true);
  1350. lcd_update(2);
  1351. lcd_setstatuspgm(MSG_WELCOME);
  1352. }
  1353. */
  1354. manage_heater(); // Update temperatures
  1355. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1356. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1357. #endif
  1358. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1359. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1360. puts_P(_N("Automatic recovery!"));
  1361. #endif
  1362. recover_print(1);
  1363. }
  1364. else{
  1365. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1366. puts_P(_N("Normal recovery!"));
  1367. #endif
  1368. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1369. else {
  1370. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1371. lcd_update_enable(true);
  1372. lcd_update(2);
  1373. lcd_setstatuspgm(MSG_WELCOME);
  1374. }
  1375. }
  1376. }
  1377. // Only arm the uvlo interrupt _after_ a recovering print has been initialized and
  1378. // the entire state machine initialized.
  1379. setup_uvlo_interrupt();
  1380. #endif //UVLO_SUPPORT
  1381. fCheckModeInit();
  1382. fSetMmuMode(mmu_enabled);
  1383. KEEPALIVE_STATE(NOT_BUSY);
  1384. #ifdef WATCHDOG
  1385. wdt_enable(WDTO_4S);
  1386. #ifdef EMERGENCY_HANDLERS
  1387. WDTCSR |= (1 << WDIE);
  1388. #endif //EMERGENCY_HANDLERS
  1389. #endif //WATCHDOG
  1390. }
  1391. static inline void crash_and_burn(dump_crash_reason reason)
  1392. {
  1393. WRITE(BEEPER, HIGH);
  1394. eeprom_update_byte((uint8_t*)EEPROM_FW_CRASH_FLAG, (uint8_t)reason);
  1395. #ifdef EMERGENCY_DUMP
  1396. xfdump_full_dump_and_reset(reason);
  1397. #elif defined(EMERGENCY_SERIAL_DUMP)
  1398. if(emergency_serial_dump)
  1399. serial_dump_and_reset(reason);
  1400. #endif
  1401. softReset();
  1402. }
  1403. #ifdef EMERGENCY_HANDLERS
  1404. #ifdef WATCHDOG
  1405. ISR(WDT_vect)
  1406. {
  1407. crash_and_burn(dump_crash_reason::watchdog);
  1408. }
  1409. #endif
  1410. ISR(BADISR_vect)
  1411. {
  1412. crash_and_burn(dump_crash_reason::bad_isr);
  1413. }
  1414. #endif //EMERGENCY_HANDLERS
  1415. void stack_error() {
  1416. crash_and_burn(dump_crash_reason::stack_error);
  1417. }
  1418. #ifdef PRUSA_M28
  1419. void trace();
  1420. #define CHUNK_SIZE 64 // bytes
  1421. #define SAFETY_MARGIN 1
  1422. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1423. void serial_read_stream() {
  1424. setAllTargetHotends(0);
  1425. setTargetBed(0);
  1426. lcd_clear();
  1427. lcd_puts_P(PSTR(" Upload in progress"));
  1428. // first wait for how many bytes we will receive
  1429. uint32_t bytesToReceive;
  1430. // receive the four bytes
  1431. char bytesToReceiveBuffer[4];
  1432. for (int i=0; i<4; i++) {
  1433. int data;
  1434. while ((data = MYSERIAL.read()) == -1) {};
  1435. bytesToReceiveBuffer[i] = data;
  1436. }
  1437. // make it a uint32
  1438. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1439. // we're ready, notify the sender
  1440. MYSERIAL.write('+');
  1441. // lock in the routine
  1442. uint32_t receivedBytes = 0;
  1443. while (prusa_sd_card_upload) {
  1444. int i;
  1445. for (i=0; i<CHUNK_SIZE; i++) {
  1446. int data;
  1447. // check if we're not done
  1448. if (receivedBytes == bytesToReceive) {
  1449. break;
  1450. }
  1451. // read the next byte
  1452. while ((data = MYSERIAL.read()) == -1) {};
  1453. receivedBytes++;
  1454. // save it to the chunk
  1455. chunk[i] = data;
  1456. }
  1457. // write the chunk to SD
  1458. card.write_command_no_newline(&chunk[0]);
  1459. // notify the sender we're ready for more data
  1460. MYSERIAL.write('+');
  1461. // for safety
  1462. manage_heater();
  1463. // check if we're done
  1464. if(receivedBytes == bytesToReceive) {
  1465. trace(); // beep
  1466. card.closefile();
  1467. prusa_sd_card_upload = false;
  1468. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1469. }
  1470. }
  1471. }
  1472. #endif //PRUSA_M28
  1473. /**
  1474. * Output autoreport values according to features requested in M155
  1475. */
  1476. #if defined(AUTO_REPORT)
  1477. void host_autoreport()
  1478. {
  1479. if (autoReportFeatures.TimerExpired())
  1480. {
  1481. if(autoReportFeatures.Temp()){
  1482. gcode_M105(active_extruder);
  1483. }
  1484. if(autoReportFeatures.Pos()){
  1485. gcode_M114();
  1486. }
  1487. #if defined(AUTO_REPORT) && (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  1488. if(autoReportFeatures.Fans()){
  1489. gcode_M123();
  1490. }
  1491. #endif //AUTO_REPORT and (FANCHECK and TACH_0 or TACH_1)
  1492. autoReportFeatures.TimerStart();
  1493. }
  1494. }
  1495. #endif //AUTO_REPORT
  1496. /**
  1497. * Output a "busy" message at regular intervals
  1498. * while the machine is not accepting commands.
  1499. */
  1500. void host_keepalive() {
  1501. #ifndef HOST_KEEPALIVE_FEATURE
  1502. return;
  1503. #endif //HOST_KEEPALIVE_FEATURE
  1504. if (farm_mode) return;
  1505. long ms = _millis();
  1506. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1507. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1508. switch (busy_state) {
  1509. case IN_HANDLER:
  1510. case IN_PROCESS:
  1511. SERIAL_ECHO_START;
  1512. SERIAL_ECHOLNPGM("busy: processing");
  1513. break;
  1514. case PAUSED_FOR_USER:
  1515. SERIAL_ECHO_START;
  1516. SERIAL_ECHOLNPGM("busy: paused for user");
  1517. break;
  1518. case PAUSED_FOR_INPUT:
  1519. SERIAL_ECHO_START;
  1520. SERIAL_ECHOLNPGM("busy: paused for input");
  1521. break;
  1522. default:
  1523. break;
  1524. }
  1525. }
  1526. prev_busy_signal_ms = ms;
  1527. }
  1528. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1529. // Before loop(), the setup() function is called by the main() routine.
  1530. void loop()
  1531. {
  1532. // Reset a previously aborted command, we can now start processing motion again
  1533. planner_aborted = false;
  1534. if(Stopped) {
  1535. // Currently Stopped (possibly due to an error) and not accepting new serial commands.
  1536. // Signal to the host that we're currently busy waiting for supervision.
  1537. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1538. } else {
  1539. // Printer is available for processing, reset state
  1540. KEEPALIVE_STATE(NOT_BUSY);
  1541. }
  1542. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) { //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1543. usb_timer.start();
  1544. }
  1545. else if (usb_timer.expired(10000)) { //just need to check if it expired. Nothing else is needed to be done.
  1546. ;
  1547. }
  1548. #ifdef PRUSA_M28
  1549. if (prusa_sd_card_upload)
  1550. {
  1551. //we read byte-by byte
  1552. serial_read_stream();
  1553. }
  1554. else
  1555. #endif
  1556. {
  1557. get_command();
  1558. #ifdef SDSUPPORT
  1559. card.checkautostart(false);
  1560. #endif
  1561. if(buflen)
  1562. {
  1563. cmdbuffer_front_already_processed = false;
  1564. #ifdef SDSUPPORT
  1565. if(card.saving)
  1566. {
  1567. // Saving a G-code file onto an SD-card is in progress.
  1568. // Saving starts with M28, saving until M29 is seen.
  1569. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1570. card.write_command(CMDBUFFER_CURRENT_STRING);
  1571. if(card.logging)
  1572. process_commands();
  1573. else
  1574. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1575. } else {
  1576. card.closefile();
  1577. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1578. }
  1579. } else {
  1580. process_commands();
  1581. }
  1582. #else
  1583. process_commands();
  1584. #endif //SDSUPPORT
  1585. if (! cmdbuffer_front_already_processed && buflen)
  1586. {
  1587. // ptr points to the start of the block currently being processed.
  1588. // The first character in the block is the block type.
  1589. char *ptr = cmdbuffer + bufindr;
  1590. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1591. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1592. union {
  1593. struct {
  1594. char lo;
  1595. char hi;
  1596. } lohi;
  1597. uint16_t value;
  1598. } sdlen;
  1599. sdlen.value = 0;
  1600. {
  1601. // This block locks the interrupts globally for 3.25 us,
  1602. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1603. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1604. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1605. cli();
  1606. // Reset the command to something, which will be ignored by the power panic routine,
  1607. // so this buffer length will not be counted twice.
  1608. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1609. // Extract the current buffer length.
  1610. sdlen.lohi.lo = *ptr ++;
  1611. sdlen.lohi.hi = *ptr;
  1612. // and pass it to the planner queue.
  1613. planner_add_sd_length(sdlen.value);
  1614. sei();
  1615. }
  1616. }
  1617. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1618. cli();
  1619. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1620. // and one for each command to previous block in the planner queue.
  1621. planner_add_sd_length(1);
  1622. sei();
  1623. }
  1624. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1625. // this block's SD card length will not be counted twice as its command type has been replaced
  1626. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1627. cmdqueue_pop_front();
  1628. }
  1629. host_keepalive();
  1630. }
  1631. }
  1632. //check heater every n milliseconds
  1633. manage_heater();
  1634. manage_inactivity(isPrintPaused);
  1635. checkHitEndstops();
  1636. lcd_update(0);
  1637. #ifdef TMC2130
  1638. tmc2130_check_overtemp();
  1639. if (tmc2130_sg_crash)
  1640. {
  1641. uint8_t crash = tmc2130_sg_crash;
  1642. tmc2130_sg_crash = 0;
  1643. // crashdet_stop_and_save_print();
  1644. switch (crash)
  1645. {
  1646. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1647. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1648. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1649. }
  1650. }
  1651. #endif //TMC2130
  1652. mmu_loop();
  1653. }
  1654. #define DEFINE_PGM_READ_ANY(type, reader) \
  1655. static inline type pgm_read_any(const type *p) \
  1656. { return pgm_read_##reader##_near(p); }
  1657. DEFINE_PGM_READ_ANY(float, float);
  1658. DEFINE_PGM_READ_ANY(signed char, byte);
  1659. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1660. static const PROGMEM type array##_P[3] = \
  1661. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1662. static inline type array(uint8_t axis) \
  1663. { return pgm_read_any(&array##_P[axis]); } \
  1664. type array##_ext(uint8_t axis) \
  1665. { return pgm_read_any(&array##_P[axis]); }
  1666. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1667. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1668. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1669. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1670. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1671. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1672. static void axis_is_at_home(uint8_t axis) {
  1673. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1674. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1675. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1676. }
  1677. //! @return original feedmultiply
  1678. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1679. saved_feedrate = feedrate;
  1680. int l_feedmultiply = feedmultiply;
  1681. feedmultiply = 100;
  1682. previous_millis_cmd.start();
  1683. enable_endstops(enable_endstops_now);
  1684. return l_feedmultiply;
  1685. }
  1686. //! @param original_feedmultiply feedmultiply to restore
  1687. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1688. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1689. enable_endstops(false);
  1690. #endif
  1691. feedrate = saved_feedrate;
  1692. feedmultiply = original_feedmultiply;
  1693. previous_millis_cmd.start();
  1694. }
  1695. #ifdef ENABLE_AUTO_BED_LEVELING
  1696. #ifdef AUTO_BED_LEVELING_GRID
  1697. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1698. {
  1699. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1700. planeNormal.debug("planeNormal");
  1701. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1702. //bedLevel.debug("bedLevel");
  1703. //plan_bed_level_matrix.debug("bed level before");
  1704. //vector_3 uncorrected_position = plan_get_position_mm();
  1705. //uncorrected_position.debug("position before");
  1706. vector_3 corrected_position = plan_get_position();
  1707. // corrected_position.debug("position after");
  1708. current_position[X_AXIS] = corrected_position.x;
  1709. current_position[Y_AXIS] = corrected_position.y;
  1710. current_position[Z_AXIS] = corrected_position.z;
  1711. // put the bed at 0 so we don't go below it.
  1712. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1713. plan_set_position_curposXYZE();
  1714. }
  1715. #else // not AUTO_BED_LEVELING_GRID
  1716. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1717. plan_bed_level_matrix.set_to_identity();
  1718. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1719. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1720. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1721. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1722. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1723. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1724. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1725. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1726. vector_3 corrected_position = plan_get_position();
  1727. current_position[X_AXIS] = corrected_position.x;
  1728. current_position[Y_AXIS] = corrected_position.y;
  1729. current_position[Z_AXIS] = corrected_position.z;
  1730. // put the bed at 0 so we don't go below it.
  1731. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1732. plan_set_position_curposXYZE();
  1733. }
  1734. #endif // AUTO_BED_LEVELING_GRID
  1735. static void run_z_probe() {
  1736. plan_bed_level_matrix.set_to_identity();
  1737. feedrate = homing_feedrate[Z_AXIS];
  1738. // move down until you find the bed
  1739. float zPosition = -10;
  1740. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1741. st_synchronize();
  1742. // we have to let the planner know where we are right now as it is not where we said to go.
  1743. zPosition = st_get_position_mm(Z_AXIS);
  1744. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1745. // move up the retract distance
  1746. zPosition += home_retract_mm(Z_AXIS);
  1747. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1748. st_synchronize();
  1749. // move back down slowly to find bed
  1750. feedrate = homing_feedrate[Z_AXIS]/4;
  1751. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1752. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1753. st_synchronize();
  1754. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1755. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1756. plan_set_position_curposXYZE();
  1757. }
  1758. static void do_blocking_move_to(float x, float y, float z) {
  1759. float oldFeedRate = feedrate;
  1760. feedrate = homing_feedrate[Z_AXIS];
  1761. current_position[Z_AXIS] = z;
  1762. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1763. st_synchronize();
  1764. feedrate = XY_TRAVEL_SPEED;
  1765. current_position[X_AXIS] = x;
  1766. current_position[Y_AXIS] = y;
  1767. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1768. st_synchronize();
  1769. feedrate = oldFeedRate;
  1770. }
  1771. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1772. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1773. }
  1774. /// Probe bed height at position (x,y), returns the measured z value
  1775. static float probe_pt(float x, float y, float z_before) {
  1776. // move to right place
  1777. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1778. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1779. run_z_probe();
  1780. float measured_z = current_position[Z_AXIS];
  1781. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1782. SERIAL_PROTOCOLPGM(" x: ");
  1783. SERIAL_PROTOCOL(x);
  1784. SERIAL_PROTOCOLPGM(" y: ");
  1785. SERIAL_PROTOCOL(y);
  1786. SERIAL_PROTOCOLPGM(" z: ");
  1787. SERIAL_PROTOCOL(measured_z);
  1788. SERIAL_PROTOCOLPGM("\n");
  1789. return measured_z;
  1790. }
  1791. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1792. #ifdef LIN_ADVANCE
  1793. /**
  1794. * M900: Set and/or Get advance K factor
  1795. *
  1796. * K<factor> Set advance K factor
  1797. */
  1798. inline void gcode_M900() {
  1799. float newK = code_seen('K') ? code_value_float() : -2;
  1800. #ifdef LA_NOCOMPAT
  1801. if (newK >= 0 && newK < LA_K_MAX)
  1802. extruder_advance_K = newK;
  1803. else
  1804. SERIAL_ECHOLNPGM("K out of allowed range!");
  1805. #else
  1806. if (newK == 0)
  1807. {
  1808. extruder_advance_K = 0;
  1809. la10c_reset();
  1810. }
  1811. else
  1812. {
  1813. newK = la10c_value(newK);
  1814. if (newK < 0)
  1815. SERIAL_ECHOLNPGM("K out of allowed range!");
  1816. else
  1817. extruder_advance_K = newK;
  1818. }
  1819. #endif
  1820. SERIAL_ECHO_START;
  1821. SERIAL_ECHOPGM("Advance K=");
  1822. SERIAL_ECHOLN(extruder_advance_K);
  1823. }
  1824. #endif // LIN_ADVANCE
  1825. bool check_commands() {
  1826. bool end_command_found = false;
  1827. while (buflen)
  1828. {
  1829. if ((code_seen_P(PSTR("M84"))) || (code_seen_P(PSTR("M 84")))) end_command_found = true;
  1830. if (!cmdbuffer_front_already_processed)
  1831. cmdqueue_pop_front();
  1832. cmdbuffer_front_already_processed = false;
  1833. }
  1834. return end_command_found;
  1835. }
  1836. // raise_z_above: slowly raise Z to the requested height
  1837. //
  1838. // contrarily to a simple move, this function will carefully plan a move
  1839. // when the current Z position is unknown. In such cases, stallguard is
  1840. // enabled and will prevent prolonged pushing against the Z tops
  1841. void raise_z_above(float target, bool plan)
  1842. {
  1843. if (current_position[Z_AXIS] >= target)
  1844. return;
  1845. // Z needs raising
  1846. current_position[Z_AXIS] = target;
  1847. clamp_to_software_endstops(current_position);
  1848. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  1849. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1850. #else
  1851. bool z_min_endstop = false;
  1852. #endif
  1853. if (axis_known_position[Z_AXIS] || z_min_endstop)
  1854. {
  1855. // current position is known or very low, it's safe to raise Z
  1856. if(plan) plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  1857. return;
  1858. }
  1859. // ensure Z is powered in normal mode to overcome initial load
  1860. enable_z();
  1861. st_synchronize();
  1862. // rely on crashguard to limit damage
  1863. bool z_endstop_enabled = enable_z_endstop(true);
  1864. #ifdef TMC2130
  1865. tmc2130_home_enter(Z_AXIS_MASK);
  1866. #endif //TMC2130
  1867. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60);
  1868. st_synchronize();
  1869. #ifdef TMC2130
  1870. if (endstop_z_hit_on_purpose())
  1871. {
  1872. // not necessarily exact, but will avoid further vertical moves
  1873. current_position[Z_AXIS] = max_pos[Z_AXIS];
  1874. plan_set_position_curposXYZE();
  1875. }
  1876. tmc2130_home_exit();
  1877. #endif //TMC2130
  1878. enable_z_endstop(z_endstop_enabled);
  1879. }
  1880. #ifdef TMC2130
  1881. bool calibrate_z_auto()
  1882. {
  1883. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1884. lcd_clear();
  1885. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1886. bool endstops_enabled = enable_endstops(true);
  1887. int axis_up_dir = -home_dir(Z_AXIS);
  1888. tmc2130_home_enter(Z_AXIS_MASK);
  1889. current_position[Z_AXIS] = 0;
  1890. plan_set_position_curposXYZE();
  1891. set_destination_to_current();
  1892. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1893. feedrate = homing_feedrate[Z_AXIS];
  1894. plan_buffer_line_destinationXYZE(feedrate / 60);
  1895. st_synchronize();
  1896. // current_position[axis] = 0;
  1897. // plan_set_position_curposXYZE();
  1898. tmc2130_home_exit();
  1899. enable_endstops(false);
  1900. current_position[Z_AXIS] = 0;
  1901. plan_set_position_curposXYZE();
  1902. set_destination_to_current();
  1903. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1904. feedrate = homing_feedrate[Z_AXIS] / 2;
  1905. plan_buffer_line_destinationXYZE(feedrate / 60);
  1906. st_synchronize();
  1907. enable_endstops(endstops_enabled);
  1908. if (PRINTER_TYPE == PRINTER_MK3) {
  1909. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1910. }
  1911. else {
  1912. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1913. }
  1914. plan_set_position_curposXYZE();
  1915. return true;
  1916. }
  1917. #endif //TMC2130
  1918. #ifdef TMC2130
  1919. static void check_Z_crash(void)
  1920. {
  1921. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1922. FORCE_HIGH_POWER_END;
  1923. current_position[Z_AXIS] = 0;
  1924. plan_set_position_curposXYZE();
  1925. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  1926. plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  1927. st_synchronize();
  1928. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1929. }
  1930. }
  1931. #endif //TMC2130
  1932. #ifdef TMC2130
  1933. void homeaxis(uint8_t axis, uint8_t cnt, uint8_t* pstep)
  1934. #else
  1935. void homeaxis(uint8_t axis, uint8_t cnt)
  1936. #endif //TMC2130
  1937. {
  1938. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1939. #define HOMEAXIS_DO(LETTER) \
  1940. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1941. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1942. {
  1943. int axis_home_dir = home_dir(axis);
  1944. feedrate = homing_feedrate[axis];
  1945. #ifdef TMC2130
  1946. tmc2130_home_enter(X_AXIS_MASK << axis);
  1947. #endif //TMC2130
  1948. // Move away a bit, so that the print head does not touch the end position,
  1949. // and the following movement to endstop has a chance to achieve the required velocity
  1950. // for the stall guard to work.
  1951. current_position[axis] = 0;
  1952. plan_set_position_curposXYZE();
  1953. set_destination_to_current();
  1954. // destination[axis] = 11.f;
  1955. destination[axis] = -3.f * axis_home_dir;
  1956. plan_buffer_line_destinationXYZE(feedrate/60);
  1957. st_synchronize();
  1958. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1959. endstops_hit_on_purpose();
  1960. enable_endstops(false);
  1961. current_position[axis] = 0;
  1962. plan_set_position_curposXYZE();
  1963. destination[axis] = 1. * axis_home_dir;
  1964. plan_buffer_line_destinationXYZE(feedrate/60);
  1965. st_synchronize();
  1966. // Now continue to move up to the left end stop with the collision detection enabled.
  1967. enable_endstops(true);
  1968. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1969. plan_buffer_line_destinationXYZE(feedrate/60);
  1970. st_synchronize();
  1971. for (uint8_t i = 0; i < cnt; i++)
  1972. {
  1973. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1974. endstops_hit_on_purpose();
  1975. enable_endstops(false);
  1976. current_position[axis] = 0;
  1977. plan_set_position_curposXYZE();
  1978. destination[axis] = -10.f * axis_home_dir;
  1979. plan_buffer_line_destinationXYZE(feedrate/60);
  1980. st_synchronize();
  1981. endstops_hit_on_purpose();
  1982. // Now move left up to the collision, this time with a repeatable velocity.
  1983. enable_endstops(true);
  1984. destination[axis] = 11.f * axis_home_dir;
  1985. #ifdef TMC2130
  1986. feedrate = homing_feedrate[axis];
  1987. #else //TMC2130
  1988. feedrate = homing_feedrate[axis] / 2;
  1989. #endif //TMC2130
  1990. plan_buffer_line_destinationXYZE(feedrate/60);
  1991. st_synchronize();
  1992. #ifdef TMC2130
  1993. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1994. if (pstep) pstep[i] = mscnt >> 4;
  1995. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1996. #endif //TMC2130
  1997. }
  1998. endstops_hit_on_purpose();
  1999. enable_endstops(false);
  2000. #ifdef TMC2130
  2001. uint8_t orig = tmc2130_home_origin[axis];
  2002. uint8_t back = tmc2130_home_bsteps[axis];
  2003. if (tmc2130_home_enabled && (orig <= 63))
  2004. {
  2005. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  2006. if (back > 0)
  2007. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  2008. }
  2009. else
  2010. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  2011. tmc2130_home_exit();
  2012. #endif //TMC2130
  2013. axis_is_at_home(axis);
  2014. axis_known_position[axis] = true;
  2015. // Move from minimum
  2016. #ifdef TMC2130
  2017. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  2018. #else //TMC2130
  2019. float dist = - axis_home_dir * 0.01f * 64;
  2020. #endif //TMC2130
  2021. current_position[axis] -= dist;
  2022. plan_set_position_curposXYZE();
  2023. current_position[axis] += dist;
  2024. destination[axis] = current_position[axis];
  2025. plan_buffer_line_destinationXYZE(0.5f*feedrate/60);
  2026. st_synchronize();
  2027. feedrate = 0.0;
  2028. }
  2029. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2030. {
  2031. #ifdef TMC2130
  2032. FORCE_HIGH_POWER_START;
  2033. #endif
  2034. int axis_home_dir = home_dir(axis);
  2035. current_position[axis] = 0;
  2036. plan_set_position_curposXYZE();
  2037. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2038. feedrate = homing_feedrate[axis];
  2039. plan_buffer_line_destinationXYZE(feedrate/60);
  2040. st_synchronize();
  2041. #ifdef TMC2130
  2042. check_Z_crash();
  2043. #endif //TMC2130
  2044. current_position[axis] = 0;
  2045. plan_set_position_curposXYZE();
  2046. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2047. plan_buffer_line_destinationXYZE(feedrate/60);
  2048. st_synchronize();
  2049. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2050. feedrate = homing_feedrate[axis]/2 ;
  2051. plan_buffer_line_destinationXYZE(feedrate/60);
  2052. st_synchronize();
  2053. #ifdef TMC2130
  2054. check_Z_crash();
  2055. #endif //TMC2130
  2056. axis_is_at_home(axis);
  2057. destination[axis] = current_position[axis];
  2058. feedrate = 0.0;
  2059. endstops_hit_on_purpose();
  2060. axis_known_position[axis] = true;
  2061. #ifdef TMC2130
  2062. FORCE_HIGH_POWER_END;
  2063. #endif
  2064. }
  2065. enable_endstops(endstops_enabled);
  2066. }
  2067. /**/
  2068. void home_xy()
  2069. {
  2070. set_destination_to_current();
  2071. homeaxis(X_AXIS);
  2072. homeaxis(Y_AXIS);
  2073. plan_set_position_curposXYZE();
  2074. endstops_hit_on_purpose();
  2075. }
  2076. void refresh_cmd_timeout(void)
  2077. {
  2078. previous_millis_cmd.start();
  2079. }
  2080. #ifdef FWRETRACT
  2081. void retract(bool retracting, bool swapretract = false) {
  2082. // Perform FW retraction, just if needed, but behave as if the move has never took place in
  2083. // order to keep E/Z coordinates unchanged. This is done by manipulating the internal planner
  2084. // position, which requires a sync
  2085. if(retracting && !retracted[active_extruder]) {
  2086. st_synchronize();
  2087. set_destination_to_current();
  2088. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  2089. plan_set_e_position(current_position[E_AXIS]);
  2090. float oldFeedrate = feedrate;
  2091. feedrate=cs.retract_feedrate*60;
  2092. retracted[active_extruder]=true;
  2093. prepare_move();
  2094. if(cs.retract_zlift) {
  2095. st_synchronize();
  2096. current_position[Z_AXIS]-=cs.retract_zlift;
  2097. plan_set_position_curposXYZE();
  2098. prepare_move();
  2099. }
  2100. feedrate = oldFeedrate;
  2101. } else if(!retracting && retracted[active_extruder]) {
  2102. st_synchronize();
  2103. set_destination_to_current();
  2104. float oldFeedrate = feedrate;
  2105. feedrate=cs.retract_recover_feedrate*60;
  2106. if(cs.retract_zlift) {
  2107. current_position[Z_AXIS]+=cs.retract_zlift;
  2108. plan_set_position_curposXYZE();
  2109. prepare_move();
  2110. st_synchronize();
  2111. }
  2112. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  2113. plan_set_e_position(current_position[E_AXIS]);
  2114. retracted[active_extruder]=false;
  2115. prepare_move();
  2116. feedrate = oldFeedrate;
  2117. }
  2118. } //retract
  2119. #endif //FWRETRACT
  2120. #ifdef PRUSA_M28
  2121. void trace() {
  2122. Sound_MakeCustom(25,440,true);
  2123. }
  2124. #endif
  2125. /*
  2126. void ramming() {
  2127. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2128. if (current_temperature[0] < 230) {
  2129. //PLA
  2130. max_feedrate[E_AXIS] = 50;
  2131. //current_position[E_AXIS] -= 8;
  2132. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2133. //current_position[E_AXIS] += 8;
  2134. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2135. current_position[E_AXIS] += 5.4;
  2136. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  2137. current_position[E_AXIS] += 3.2;
  2138. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2139. current_position[E_AXIS] += 3;
  2140. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  2141. st_synchronize();
  2142. max_feedrate[E_AXIS] = 80;
  2143. current_position[E_AXIS] -= 82;
  2144. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2145. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2146. current_position[E_AXIS] -= 20;
  2147. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2148. current_position[E_AXIS] += 5;
  2149. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2150. current_position[E_AXIS] += 5;
  2151. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2152. current_position[E_AXIS] -= 10;
  2153. st_synchronize();
  2154. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2155. current_position[E_AXIS] += 10;
  2156. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2157. current_position[E_AXIS] -= 10;
  2158. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2159. current_position[E_AXIS] += 10;
  2160. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2161. current_position[E_AXIS] -= 10;
  2162. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2163. st_synchronize();
  2164. }
  2165. else {
  2166. //ABS
  2167. max_feedrate[E_AXIS] = 50;
  2168. //current_position[E_AXIS] -= 8;
  2169. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2170. //current_position[E_AXIS] += 8;
  2171. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2172. current_position[E_AXIS] += 3.1;
  2173. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2174. current_position[E_AXIS] += 3.1;
  2175. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2176. current_position[E_AXIS] += 4;
  2177. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2178. st_synchronize();
  2179. //current_position[X_AXIS] += 23; //delay
  2180. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2181. //current_position[X_AXIS] -= 23; //delay
  2182. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2183. _delay(4700);
  2184. max_feedrate[E_AXIS] = 80;
  2185. current_position[E_AXIS] -= 92;
  2186. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2187. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2188. current_position[E_AXIS] -= 5;
  2189. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2190. current_position[E_AXIS] += 5;
  2191. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2192. current_position[E_AXIS] -= 5;
  2193. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2194. st_synchronize();
  2195. current_position[E_AXIS] += 5;
  2196. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2197. current_position[E_AXIS] -= 5;
  2198. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2199. current_position[E_AXIS] += 5;
  2200. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2201. current_position[E_AXIS] -= 5;
  2202. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2203. st_synchronize();
  2204. }
  2205. }
  2206. */
  2207. #ifdef TMC2130
  2208. void force_high_power_mode(bool start_high_power_section) {
  2209. #ifdef PSU_Delta
  2210. if (start_high_power_section == true) enable_force_z();
  2211. #endif //PSU_Delta
  2212. uint8_t silent;
  2213. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2214. if (silent == 1) {
  2215. //we are in silent mode, set to normal mode to enable crash detection
  2216. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2217. st_synchronize();
  2218. cli();
  2219. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2220. update_mode_profile();
  2221. tmc2130_init(TMCInitParams(FarmOrUserECool()));
  2222. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2223. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2224. st_reset_timer();
  2225. sei();
  2226. }
  2227. }
  2228. #endif //TMC2130
  2229. void gcode_M105(uint8_t extruder)
  2230. {
  2231. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2232. SERIAL_PROTOCOLPGM("T:");
  2233. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  2234. SERIAL_PROTOCOLPGM(" /");
  2235. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  2236. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2237. SERIAL_PROTOCOLPGM(" B:");
  2238. SERIAL_PROTOCOL_F(degBed(),1);
  2239. SERIAL_PROTOCOLPGM(" /");
  2240. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2241. #endif //TEMP_BED_PIN
  2242. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2243. SERIAL_PROTOCOLPGM(" T");
  2244. SERIAL_PROTOCOL(cur_extruder);
  2245. SERIAL_PROTOCOL(':');
  2246. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2247. SERIAL_PROTOCOLPGM(" /");
  2248. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2249. }
  2250. #else
  2251. SERIAL_ERROR_START;
  2252. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  2253. #endif
  2254. SERIAL_PROTOCOLPGM(" @:");
  2255. #ifdef EXTRUDER_WATTS
  2256. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2257. SERIAL_PROTOCOLPGM("W");
  2258. #else
  2259. SERIAL_PROTOCOL(getHeaterPower(extruder));
  2260. #endif
  2261. SERIAL_PROTOCOLPGM(" B@:");
  2262. #ifdef BED_WATTS
  2263. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2264. SERIAL_PROTOCOLPGM("W");
  2265. #else
  2266. SERIAL_PROTOCOL(getHeaterPower(-1));
  2267. #endif
  2268. #ifdef PINDA_THERMISTOR
  2269. SERIAL_PROTOCOLPGM(" P:");
  2270. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  2271. #endif //PINDA_THERMISTOR
  2272. #ifdef AMBIENT_THERMISTOR
  2273. SERIAL_PROTOCOLPGM(" A:");
  2274. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  2275. #endif //AMBIENT_THERMISTOR
  2276. #ifdef SHOW_TEMP_ADC_VALUES
  2277. {
  2278. float raw = 0.0;
  2279. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2280. SERIAL_PROTOCOLPGM(" ADC B:");
  2281. SERIAL_PROTOCOL_F(degBed(),1);
  2282. SERIAL_PROTOCOLPGM("C->");
  2283. raw = rawBedTemp();
  2284. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  2285. SERIAL_PROTOCOLPGM(" Rb->");
  2286. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  2287. SERIAL_PROTOCOLPGM(" Rxb->");
  2288. SERIAL_PROTOCOL_F(raw, 5);
  2289. #endif
  2290. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2291. SERIAL_PROTOCOLPGM(" T");
  2292. SERIAL_PROTOCOL(cur_extruder);
  2293. SERIAL_PROTOCOLPGM(":");
  2294. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2295. SERIAL_PROTOCOLPGM("C->");
  2296. raw = rawHotendTemp(cur_extruder);
  2297. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  2298. SERIAL_PROTOCOLPGM(" Rt");
  2299. SERIAL_PROTOCOL(cur_extruder);
  2300. SERIAL_PROTOCOLPGM("->");
  2301. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  2302. SERIAL_PROTOCOLPGM(" Rx");
  2303. SERIAL_PROTOCOL(cur_extruder);
  2304. SERIAL_PROTOCOLPGM("->");
  2305. SERIAL_PROTOCOL_F(raw, 5);
  2306. }
  2307. }
  2308. #endif
  2309. SERIAL_PROTOCOLLN();
  2310. }
  2311. #ifdef TMC2130
  2312. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2313. #else
  2314. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2315. #endif //TMC2130
  2316. {
  2317. // Flag for the display update routine and to disable the print cancelation during homing.
  2318. st_synchronize();
  2319. homing_flag = true;
  2320. #if 0
  2321. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2322. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2323. #endif
  2324. // Which axes should be homed?
  2325. bool home_x = home_x_axis;
  2326. bool home_y = home_y_axis;
  2327. bool home_z = home_z_axis;
  2328. // Either all X,Y,Z codes are present, or none of them.
  2329. bool home_all_axes = home_x == home_y && home_x == home_z;
  2330. if (home_all_axes)
  2331. // No X/Y/Z code provided means to home all axes.
  2332. home_x = home_y = home_z = true;
  2333. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2334. if (home_all_axes) {
  2335. raise_z_above(MESH_HOME_Z_SEARCH);
  2336. st_synchronize();
  2337. }
  2338. #ifdef ENABLE_AUTO_BED_LEVELING
  2339. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2340. #endif //ENABLE_AUTO_BED_LEVELING
  2341. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2342. // the planner will not perform any adjustments in the XY plane.
  2343. // Wait for the motors to stop and update the current position with the absolute values.
  2344. world2machine_revert_to_uncorrected();
  2345. // For mesh bed leveling deactivate the matrix temporarily.
  2346. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2347. // in a single axis only.
  2348. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2349. #ifdef MESH_BED_LEVELING
  2350. uint8_t mbl_was_active = mbl.active;
  2351. mbl.active = 0;
  2352. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2353. #endif
  2354. // Reset baby stepping to zero, if the babystepping has already been loaded before.
  2355. if (home_z)
  2356. babystep_undo();
  2357. int l_feedmultiply = setup_for_endstop_move();
  2358. set_destination_to_current();
  2359. feedrate = 0.0;
  2360. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2361. if(home_z)
  2362. homeaxis(Z_AXIS);
  2363. #endif
  2364. #ifdef QUICK_HOME
  2365. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2366. if(home_x && home_y) //first diagonal move
  2367. {
  2368. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2369. uint8_t x_axis_home_dir = home_dir(X_AXIS);
  2370. plan_set_position_curposXYZE();
  2371. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2372. feedrate = homing_feedrate[X_AXIS];
  2373. if(homing_feedrate[Y_AXIS]<feedrate)
  2374. feedrate = homing_feedrate[Y_AXIS];
  2375. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2376. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2377. } else {
  2378. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2379. }
  2380. plan_buffer_line_destinationXYZE(feedrate/60);
  2381. st_synchronize();
  2382. axis_is_at_home(X_AXIS);
  2383. axis_is_at_home(Y_AXIS);
  2384. plan_set_position_curposXYZE();
  2385. destination[X_AXIS] = current_position[X_AXIS];
  2386. destination[Y_AXIS] = current_position[Y_AXIS];
  2387. plan_buffer_line_destinationXYZE(feedrate/60);
  2388. feedrate = 0.0;
  2389. st_synchronize();
  2390. endstops_hit_on_purpose();
  2391. current_position[X_AXIS] = destination[X_AXIS];
  2392. current_position[Y_AXIS] = destination[Y_AXIS];
  2393. current_position[Z_AXIS] = destination[Z_AXIS];
  2394. }
  2395. #endif /* QUICK_HOME */
  2396. #ifdef TMC2130
  2397. if(home_x)
  2398. {
  2399. if (!calib)
  2400. homeaxis(X_AXIS);
  2401. else
  2402. tmc2130_home_calibrate(X_AXIS);
  2403. }
  2404. if(home_y)
  2405. {
  2406. if (!calib)
  2407. homeaxis(Y_AXIS);
  2408. else
  2409. tmc2130_home_calibrate(Y_AXIS);
  2410. }
  2411. #else //TMC2130
  2412. if(home_x) homeaxis(X_AXIS);
  2413. if(home_y) homeaxis(Y_AXIS);
  2414. #endif //TMC2130
  2415. if(home_x_axis && home_x_value != 0)
  2416. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2417. if(home_y_axis && home_y_value != 0)
  2418. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2419. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2420. #ifndef Z_SAFE_HOMING
  2421. if(home_z) {
  2422. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2423. raise_z_above(Z_RAISE_BEFORE_HOMING);
  2424. st_synchronize();
  2425. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2426. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, move X&Y to safe position for home
  2427. raise_z_above(MESH_HOME_Z_SEARCH);
  2428. st_synchronize();
  2429. if (!axis_known_position[X_AXIS]) homeaxis(X_AXIS);
  2430. if (!axis_known_position[Y_AXIS]) homeaxis(Y_AXIS);
  2431. // 1st mesh bed leveling measurement point, corrected.
  2432. world2machine_initialize();
  2433. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2434. world2machine_reset();
  2435. if (destination[Y_AXIS] < Y_MIN_POS)
  2436. destination[Y_AXIS] = Y_MIN_POS;
  2437. feedrate = homing_feedrate[X_AXIS] / 20;
  2438. enable_endstops(false);
  2439. #ifdef DEBUG_BUILD
  2440. SERIAL_ECHOLNPGM("plan_set_position()");
  2441. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2442. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2443. #endif
  2444. plan_set_position_curposXYZE();
  2445. #ifdef DEBUG_BUILD
  2446. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2447. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2448. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2449. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2450. #endif
  2451. plan_buffer_line_destinationXYZE(feedrate);
  2452. st_synchronize();
  2453. current_position[X_AXIS] = destination[X_AXIS];
  2454. current_position[Y_AXIS] = destination[Y_AXIS];
  2455. enable_endstops(true);
  2456. endstops_hit_on_purpose();
  2457. homeaxis(Z_AXIS);
  2458. #else // MESH_BED_LEVELING
  2459. homeaxis(Z_AXIS);
  2460. #endif // MESH_BED_LEVELING
  2461. }
  2462. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2463. if(home_all_axes) {
  2464. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2465. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2466. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2467. feedrate = XY_TRAVEL_SPEED/60;
  2468. current_position[Z_AXIS] = 0;
  2469. plan_set_position_curposXYZE();
  2470. plan_buffer_line_destinationXYZE(feedrate);
  2471. st_synchronize();
  2472. current_position[X_AXIS] = destination[X_AXIS];
  2473. current_position[Y_AXIS] = destination[Y_AXIS];
  2474. homeaxis(Z_AXIS);
  2475. }
  2476. // Let's see if X and Y are homed and probe is inside bed area.
  2477. if(home_z) {
  2478. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2479. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2480. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2481. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2482. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2483. current_position[Z_AXIS] = 0;
  2484. plan_set_position_curposXYZE();
  2485. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2486. feedrate = max_feedrate[Z_AXIS];
  2487. plan_buffer_line_destinationXYZE(feedrate);
  2488. st_synchronize();
  2489. homeaxis(Z_AXIS);
  2490. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2491. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2492. SERIAL_ECHO_START;
  2493. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2494. } else {
  2495. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2496. SERIAL_ECHO_START;
  2497. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2498. }
  2499. }
  2500. #endif // Z_SAFE_HOMING
  2501. #endif // Z_HOME_DIR < 0
  2502. if(home_z_axis && home_z_value != 0)
  2503. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2504. #ifdef ENABLE_AUTO_BED_LEVELING
  2505. if(home_z)
  2506. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2507. #endif
  2508. // Set the planner and stepper routine positions.
  2509. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2510. // contains the machine coordinates.
  2511. plan_set_position_curposXYZE();
  2512. clean_up_after_endstop_move(l_feedmultiply);
  2513. endstops_hit_on_purpose();
  2514. #ifndef MESH_BED_LEVELING
  2515. //-// Oct 2019 :: this part of code is (from) now probably un-compilable
  2516. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2517. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2518. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2519. lcd_adjust_z();
  2520. #endif
  2521. // Load the machine correction matrix
  2522. world2machine_initialize();
  2523. // and correct the current_position XY axes to match the transformed coordinate system.
  2524. world2machine_update_current();
  2525. #ifdef MESH_BED_LEVELING
  2526. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2527. {
  2528. if (! home_z && mbl_was_active) {
  2529. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2530. mbl.active = true;
  2531. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2532. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2533. }
  2534. }
  2535. #endif
  2536. prusa_statistics(20);
  2537. st_synchronize();
  2538. homing_flag = false;
  2539. #if 0
  2540. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2541. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2542. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2543. #endif
  2544. }
  2545. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2546. {
  2547. #ifdef TMC2130
  2548. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2549. #else
  2550. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2551. #endif //TMC2130
  2552. }
  2553. // G80 - Automatic mesh bed leveling
  2554. static void gcode_G80()
  2555. {
  2556. st_synchronize();
  2557. if (planner_aborted)
  2558. return;
  2559. mesh_bed_leveling_flag = true;
  2560. #ifndef PINDA_THERMISTOR
  2561. static bool run = false; // thermistor-less PINDA temperature compensation is running
  2562. #endif // ndef PINDA_THERMISTOR
  2563. #ifdef SUPPORT_VERBOSITY
  2564. int8_t verbosity_level = 0;
  2565. if (code_seen('V')) {
  2566. // Just 'V' without a number counts as V1.
  2567. char c = strchr_pointer[1];
  2568. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2569. }
  2570. #endif //SUPPORT_VERBOSITY
  2571. // Firstly check if we know where we are
  2572. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2573. // We don't know where we are! HOME!
  2574. // Push the commands to the front of the message queue in the reverse order!
  2575. // There shall be always enough space reserved for these commands.
  2576. repeatcommand_front(); // repeat G80 with all its parameters
  2577. enquecommand_front_P(G28W0);
  2578. return;
  2579. }
  2580. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  2581. if (code_seen('N')) {
  2582. nMeasPoints = code_value_uint8();
  2583. if (nMeasPoints != 7) {
  2584. nMeasPoints = 3;
  2585. }
  2586. }
  2587. else {
  2588. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  2589. }
  2590. uint8_t nProbeRetry = 3;
  2591. if (code_seen('R')) {
  2592. nProbeRetry = code_value_uint8();
  2593. if (nProbeRetry > 10) {
  2594. nProbeRetry = 10;
  2595. }
  2596. }
  2597. else {
  2598. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  2599. }
  2600. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  2601. #ifndef PINDA_THERMISTOR
  2602. if (run == false && eeprom_read_byte((uint8_t *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() == true && target_temperature_bed >= 50)
  2603. {
  2604. temp_compensation_start();
  2605. run = true;
  2606. repeatcommand_front(); // repeat G80 with all its parameters
  2607. enquecommand_front_P(G28W0);
  2608. break;
  2609. }
  2610. run = false;
  2611. #endif //PINDA_THERMISTOR
  2612. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2613. CustomMsg custom_message_type_old = custom_message_type;
  2614. uint8_t custom_message_state_old = custom_message_state;
  2615. custom_message_type = CustomMsg::MeshBedLeveling;
  2616. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  2617. lcd_update(1);
  2618. mbl.reset(); //reset mesh bed leveling
  2619. // Reset baby stepping to zero, if the babystepping has already been loaded before.
  2620. babystep_undo();
  2621. // Cycle through all points and probe them
  2622. // First move up. During this first movement, the babystepping will be reverted.
  2623. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2624. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60);
  2625. // The move to the first calibration point.
  2626. current_position[X_AXIS] = BED_X0;
  2627. current_position[Y_AXIS] = BED_Y0;
  2628. #ifdef SUPPORT_VERBOSITY
  2629. if (verbosity_level >= 1)
  2630. {
  2631. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2632. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2633. }
  2634. #else //SUPPORT_VERBOSITY
  2635. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2636. #endif //SUPPORT_VERBOSITY
  2637. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2638. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE);
  2639. // Wait until the move is finished.
  2640. st_synchronize();
  2641. if (planner_aborted)
  2642. {
  2643. custom_message_type = custom_message_type_old;
  2644. custom_message_state = custom_message_state_old;
  2645. return;
  2646. }
  2647. uint8_t mesh_point = 0; //index number of calibration point
  2648. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2649. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2650. #ifdef SUPPORT_VERBOSITY
  2651. if (verbosity_level >= 1) {
  2652. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2653. }
  2654. #endif // SUPPORT_VERBOSITY
  2655. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2656. while (mesh_point != nMeasPoints * nMeasPoints) {
  2657. // Get coords of a measuring point.
  2658. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  2659. uint8_t iy = mesh_point / nMeasPoints;
  2660. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  2661. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  2662. custom_message_state--;
  2663. mesh_point++;
  2664. continue; //skip
  2665. }*/
  2666. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  2667. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  2668. {
  2669. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  2670. }
  2671. float z0 = 0.f;
  2672. if (has_z && (mesh_point > 0)) {
  2673. uint16_t z_offset_u = 0;
  2674. if (nMeasPoints == 7) {
  2675. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  2676. }
  2677. else {
  2678. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2679. }
  2680. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2681. #ifdef SUPPORT_VERBOSITY
  2682. if (verbosity_level >= 1) {
  2683. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  2684. }
  2685. #endif // SUPPORT_VERBOSITY
  2686. }
  2687. // Move Z up to MESH_HOME_Z_SEARCH.
  2688. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2689. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  2690. float init_z_bckp = current_position[Z_AXIS];
  2691. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  2692. st_synchronize();
  2693. // Move to XY position of the sensor point.
  2694. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  2695. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  2696. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  2697. #ifdef SUPPORT_VERBOSITY
  2698. if (verbosity_level >= 1) {
  2699. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2700. SERIAL_PROTOCOL(mesh_point);
  2701. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2702. }
  2703. #else //SUPPORT_VERBOSITY
  2704. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2705. #endif // SUPPORT_VERBOSITY
  2706. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  2707. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE);
  2708. st_synchronize();
  2709. if (planner_aborted)
  2710. {
  2711. custom_message_type = custom_message_type_old;
  2712. custom_message_state = custom_message_state_old;
  2713. return;
  2714. }
  2715. // Go down until endstop is hit
  2716. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2717. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2718. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2719. break;
  2720. }
  2721. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  2722. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  2723. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2724. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  2725. st_synchronize();
  2726. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2727. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2728. break;
  2729. }
  2730. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2731. puts_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken."));
  2732. break;
  2733. }
  2734. }
  2735. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2736. puts_P(PSTR("Bed leveling failed. Sensor triggered too high."));
  2737. break;
  2738. }
  2739. #ifdef SUPPORT_VERBOSITY
  2740. if (verbosity_level >= 10) {
  2741. SERIAL_ECHOPGM("X: ");
  2742. MYSERIAL.print(current_position[X_AXIS], 5);
  2743. SERIAL_ECHOLNPGM("");
  2744. SERIAL_ECHOPGM("Y: ");
  2745. MYSERIAL.print(current_position[Y_AXIS], 5);
  2746. SERIAL_PROTOCOLPGM("\n");
  2747. }
  2748. #endif // SUPPORT_VERBOSITY
  2749. float offset_z = 0;
  2750. #ifdef PINDA_THERMISTOR
  2751. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  2752. #endif //PINDA_THERMISTOR
  2753. // #ifdef SUPPORT_VERBOSITY
  2754. /* if (verbosity_level >= 1)
  2755. {
  2756. SERIAL_ECHOPGM("mesh bed leveling: ");
  2757. MYSERIAL.print(current_position[Z_AXIS], 5);
  2758. SERIAL_ECHOPGM(" offset: ");
  2759. MYSERIAL.print(offset_z, 5);
  2760. SERIAL_ECHOLNPGM("");
  2761. }*/
  2762. // #endif // SUPPORT_VERBOSITY
  2763. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2764. custom_message_state--;
  2765. mesh_point++;
  2766. lcd_update(1);
  2767. }
  2768. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2769. #ifdef SUPPORT_VERBOSITY
  2770. if (verbosity_level >= 20) {
  2771. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2772. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2773. MYSERIAL.print(current_position[Z_AXIS], 5);
  2774. }
  2775. #endif // SUPPORT_VERBOSITY
  2776. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  2777. st_synchronize();
  2778. if (mesh_point != nMeasPoints * nMeasPoints) {
  2779. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  2780. bool bState;
  2781. do { // repeat until Z-leveling o.k.
  2782. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ...")); ////MSG_ZLEVELING_ENFORCED c=20 r=4
  2783. #ifdef TMC2130
  2784. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  2785. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  2786. #else // TMC2130
  2787. lcd_wait_for_click_delay(0); // ~ no timeout
  2788. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  2789. #endif // TMC2130
  2790. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  2791. bState=enable_z_endstop(false);
  2792. current_position[Z_AXIS] -= 1;
  2793. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2794. st_synchronize();
  2795. enable_z_endstop(true);
  2796. #ifdef TMC2130
  2797. tmc2130_home_enter(Z_AXIS_MASK);
  2798. #endif // TMC2130
  2799. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2800. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2801. st_synchronize();
  2802. #ifdef TMC2130
  2803. tmc2130_home_exit();
  2804. #endif // TMC2130
  2805. enable_z_endstop(bState);
  2806. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  2807. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  2808. custom_message_type = custom_message_type_old;
  2809. custom_message_state = custom_message_state_old;
  2810. lcd_update_enable(true); // display / status-line recovery
  2811. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  2812. repeatcommand_front(); // re-run (i.e. of "G80")
  2813. return;
  2814. }
  2815. clean_up_after_endstop_move(l_feedmultiply);
  2816. // SERIAL_ECHOLNPGM("clean up finished ");
  2817. #ifndef PINDA_THERMISTOR
  2818. if(eeprom_read_byte((uint8_t *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2819. #endif
  2820. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2821. // SERIAL_ECHOLNPGM("babystep applied");
  2822. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2823. #ifdef SUPPORT_VERBOSITY
  2824. if (verbosity_level >= 1) {
  2825. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2826. }
  2827. #endif // SUPPORT_VERBOSITY
  2828. for (uint8_t i = 0; i < 4; ++i) {
  2829. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2830. long correction = 0;
  2831. if (code_seen(codes[i]))
  2832. correction = code_value_long();
  2833. else if (eeprom_bed_correction_valid) {
  2834. unsigned char *addr = (i < 2) ?
  2835. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2836. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2837. correction = eeprom_read_int8(addr);
  2838. }
  2839. if (correction == 0)
  2840. continue;
  2841. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  2842. SERIAL_ERROR_START;
  2843. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2844. SERIAL_ECHO(correction);
  2845. SERIAL_ECHOLNPGM(" microns");
  2846. }
  2847. else {
  2848. float offset = float(correction) * 0.001f;
  2849. switch (i) {
  2850. case 0:
  2851. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  2852. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  2853. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  2854. }
  2855. }
  2856. break;
  2857. case 1:
  2858. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  2859. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  2860. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  2861. }
  2862. }
  2863. break;
  2864. case 2:
  2865. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  2866. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  2867. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  2868. }
  2869. }
  2870. break;
  2871. case 3:
  2872. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  2873. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  2874. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  2875. }
  2876. }
  2877. break;
  2878. }
  2879. }
  2880. }
  2881. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2882. if (nMeasPoints == 3) {
  2883. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2884. }
  2885. /*
  2886. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2887. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2888. SERIAL_PROTOCOLPGM(",");
  2889. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2890. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2891. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2892. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2893. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2894. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2895. SERIAL_PROTOCOLPGM(" ");
  2896. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2897. }
  2898. SERIAL_PROTOCOLPGM("\n");
  2899. }
  2900. */
  2901. if (nMeasPoints == 7 && magnet_elimination) {
  2902. mbl_interpolation(nMeasPoints);
  2903. }
  2904. /*
  2905. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2906. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2907. SERIAL_PROTOCOLPGM(",");
  2908. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2909. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2910. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2911. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2912. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2913. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2914. SERIAL_PROTOCOLPGM(" ");
  2915. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2916. }
  2917. SERIAL_PROTOCOLPGM("\n");
  2918. }
  2919. */
  2920. // SERIAL_ECHOLNPGM("Upsample finished");
  2921. mbl.active = 1; //activate mesh bed leveling
  2922. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2923. go_home_with_z_lift();
  2924. // SERIAL_ECHOLNPGM("Go home finished");
  2925. //unretract (after PINDA preheat retraction)
  2926. if (((int)degHotend(active_extruder) > extrude_min_temp) && eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() && (target_temperature_bed >= 50)) {
  2927. current_position[E_AXIS] += default_retraction;
  2928. plan_buffer_line_curposXYZE(400);
  2929. }
  2930. KEEPALIVE_STATE(NOT_BUSY);
  2931. // Restore custom message state
  2932. lcd_setstatuspgm(MSG_WELCOME);
  2933. custom_message_type = custom_message_type_old;
  2934. custom_message_state = custom_message_state_old;
  2935. lcd_update(2);
  2936. st_synchronize();
  2937. mesh_bed_leveling_flag = false;
  2938. }
  2939. void adjust_bed_reset()
  2940. {
  2941. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2942. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2943. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2944. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2945. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2946. }
  2947. //! @brief Calibrate XYZ
  2948. //! @param onlyZ if true, calibrate only Z axis
  2949. //! @param verbosity_level
  2950. //! @retval true Succeeded
  2951. //! @retval false Failed
  2952. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2953. {
  2954. bool final_result = false;
  2955. #ifdef TMC2130
  2956. FORCE_HIGH_POWER_START;
  2957. #endif // TMC2130
  2958. FORCE_BL_ON_START;
  2959. // Only Z calibration?
  2960. if (!onlyZ)
  2961. {
  2962. setTargetBed(0);
  2963. setAllTargetHotends(0);
  2964. adjust_bed_reset(); //reset bed level correction
  2965. }
  2966. // Disable the default update procedure of the display. We will do a modal dialog.
  2967. lcd_update_enable(false);
  2968. // Let the planner use the uncorrected coordinates.
  2969. mbl.reset();
  2970. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2971. // the planner will not perform any adjustments in the XY plane.
  2972. // Wait for the motors to stop and update the current position with the absolute values.
  2973. world2machine_revert_to_uncorrected();
  2974. // Reset the baby step value applied without moving the axes.
  2975. babystep_reset();
  2976. // Mark all axes as in a need for homing.
  2977. memset(axis_known_position, 0, sizeof(axis_known_position));
  2978. // Home in the XY plane.
  2979. //set_destination_to_current();
  2980. int l_feedmultiply = setup_for_endstop_move();
  2981. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2982. raise_z_above(MESH_HOME_Z_SEARCH);
  2983. st_synchronize();
  2984. home_xy();
  2985. enable_endstops(false);
  2986. current_position[X_AXIS] += 5;
  2987. current_position[Y_AXIS] += 5;
  2988. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2989. st_synchronize();
  2990. // Let the user move the Z axes up to the end stoppers.
  2991. #ifdef TMC2130
  2992. if (calibrate_z_auto())
  2993. {
  2994. #else //TMC2130
  2995. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2996. {
  2997. #endif //TMC2130
  2998. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2999. if(onlyZ){
  3000. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  3001. lcd_puts_at_P(0,3,_n("1/9"));
  3002. }else{
  3003. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  3004. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  3005. lcd_puts_at_P(0,3,_n("1/4"));
  3006. }
  3007. refresh_cmd_timeout();
  3008. #ifndef STEEL_SHEET
  3009. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  3010. {
  3011. lcd_wait_for_cool_down();
  3012. }
  3013. #endif //STEEL_SHEET
  3014. if(!onlyZ)
  3015. {
  3016. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3017. #ifdef STEEL_SHEET
  3018. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3019. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3020. #endif //STEEL_SHEET
  3021. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  3022. KEEPALIVE_STATE(IN_HANDLER);
  3023. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  3024. lcd_puts_at_P(0,3,_n("1/4"));
  3025. }
  3026. bool endstops_enabled = enable_endstops(false);
  3027. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  3028. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  3029. st_synchronize();
  3030. // Move the print head close to the bed.
  3031. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3032. enable_endstops(true);
  3033. #ifdef TMC2130
  3034. tmc2130_home_enter(Z_AXIS_MASK);
  3035. #endif //TMC2130
  3036. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  3037. st_synchronize();
  3038. #ifdef TMC2130
  3039. tmc2130_home_exit();
  3040. #endif //TMC2130
  3041. enable_endstops(endstops_enabled);
  3042. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  3043. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  3044. {
  3045. if (onlyZ)
  3046. {
  3047. clean_up_after_endstop_move(l_feedmultiply);
  3048. // Z only calibration.
  3049. // Load the machine correction matrix
  3050. world2machine_initialize();
  3051. // and correct the current_position to match the transformed coordinate system.
  3052. world2machine_update_current();
  3053. //FIXME
  3054. bool result = sample_mesh_and_store_reference();
  3055. if (result)
  3056. {
  3057. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3058. {
  3059. // Shipped, the nozzle height has been set already. The user can start printing now.
  3060. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3061. }
  3062. final_result = true;
  3063. // babystep_apply();
  3064. }
  3065. }
  3066. else
  3067. {
  3068. // Reset the baby step value and the baby step applied flag.
  3069. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  3070. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3071. // Complete XYZ calibration.
  3072. uint8_t point_too_far_mask = 0;
  3073. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3074. clean_up_after_endstop_move(l_feedmultiply);
  3075. // Print head up.
  3076. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3077. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  3078. st_synchronize();
  3079. //#ifndef NEW_XYZCAL
  3080. if (result >= 0)
  3081. {
  3082. #ifdef HEATBED_V2
  3083. sample_z();
  3084. #else //HEATBED_V2
  3085. point_too_far_mask = 0;
  3086. // Second half: The fine adjustment.
  3087. // Let the planner use the uncorrected coordinates.
  3088. mbl.reset();
  3089. world2machine_reset();
  3090. // Home in the XY plane.
  3091. int l_feedmultiply = setup_for_endstop_move();
  3092. home_xy();
  3093. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3094. clean_up_after_endstop_move(l_feedmultiply);
  3095. // Print head up.
  3096. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3097. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  3098. st_synchronize();
  3099. // if (result >= 0) babystep_apply();
  3100. #endif //HEATBED_V2
  3101. }
  3102. //#endif //NEW_XYZCAL
  3103. lcd_update_enable(true);
  3104. lcd_update(2);
  3105. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3106. if (result >= 0)
  3107. {
  3108. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3109. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3110. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  3111. final_result = true;
  3112. }
  3113. }
  3114. #ifdef TMC2130
  3115. tmc2130_home_exit();
  3116. #endif
  3117. }
  3118. else
  3119. {
  3120. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  3121. final_result = false;
  3122. }
  3123. }
  3124. else
  3125. {
  3126. // Timeouted.
  3127. }
  3128. lcd_update_enable(true);
  3129. #ifdef TMC2130
  3130. FORCE_HIGH_POWER_END;
  3131. #endif // TMC2130
  3132. FORCE_BL_ON_END;
  3133. return final_result;
  3134. }
  3135. void gcode_M114()
  3136. {
  3137. SERIAL_PROTOCOLPGM("X:");
  3138. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3139. SERIAL_PROTOCOLPGM(" Y:");
  3140. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3141. SERIAL_PROTOCOLPGM(" Z:");
  3142. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3143. SERIAL_PROTOCOLPGM(" E:");
  3144. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3145. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  3146. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  3147. SERIAL_PROTOCOLPGM(" Y:");
  3148. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  3149. SERIAL_PROTOCOLPGM(" Z:");
  3150. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  3151. SERIAL_PROTOCOLPGM(" E:");
  3152. SERIAL_PROTOCOLLN(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  3153. }
  3154. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  3155. void gcode_M123()
  3156. {
  3157. printf_P(_N("E0:%d RPM PRN1:%d RPM E0@:%u PRN1@:%d\n"), 60*fan_speed[active_extruder], 60*fan_speed[1], newFanSpeed, fanSpeed);
  3158. }
  3159. #endif //FANCHECK and TACH_0 or TACH_1
  3160. //! extracted code to compute z_shift for M600 in case of filament change operation
  3161. //! requested from fsensors.
  3162. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  3163. //! unlike the previous implementation, which was adding 25mm even when the head was
  3164. //! printing at e.g. 24mm height.
  3165. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  3166. //! the printout.
  3167. //! This function is templated to enable fast change of computation data type.
  3168. //! @return new z_shift value
  3169. template<typename T>
  3170. static T gcode_M600_filament_change_z_shift()
  3171. {
  3172. #ifdef FILAMENTCHANGE_ZADD
  3173. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  3174. // avoid floating point arithmetics when not necessary - results in shorter code
  3175. T z_shift = T(FILAMENTCHANGE_ZADD); // always move above printout
  3176. T ztmp = T( current_position[Z_AXIS] );
  3177. if((ztmp + z_shift) < T(MIN_Z_FOR_SWAP)){
  3178. z_shift = T(MIN_Z_FOR_SWAP) - ztmp; // make sure to be at least 25mm above the heat bed
  3179. }
  3180. return z_shift;
  3181. #else
  3182. return T(0);
  3183. #endif
  3184. }
  3185. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  3186. {
  3187. st_synchronize();
  3188. float lastpos[4];
  3189. prusa_statistics(22);
  3190. //First backup current position and settings
  3191. int feedmultiplyBckp = feedmultiply;
  3192. float HotendTempBckp = degTargetHotend(active_extruder);
  3193. int fanSpeedBckp = fanSpeed;
  3194. lastpos[X_AXIS] = current_position[X_AXIS];
  3195. lastpos[Y_AXIS] = current_position[Y_AXIS];
  3196. lastpos[Z_AXIS] = current_position[Z_AXIS];
  3197. lastpos[E_AXIS] = current_position[E_AXIS];
  3198. //Retract E
  3199. current_position[E_AXIS] += e_shift;
  3200. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED);
  3201. st_synchronize();
  3202. //Lift Z
  3203. current_position[Z_AXIS] += z_shift;
  3204. clamp_to_software_endstops(current_position);
  3205. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED);
  3206. st_synchronize();
  3207. //Move XY to side
  3208. current_position[X_AXIS] = x_position;
  3209. current_position[Y_AXIS] = y_position;
  3210. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED);
  3211. st_synchronize();
  3212. //Beep, manage nozzle heater and wait for user to start unload filament
  3213. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  3214. lcd_change_fil_state = 0;
  3215. // Unload filament
  3216. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  3217. else unload_filament(true); //unload filament for single material (used also in M702)
  3218. //finish moves
  3219. st_synchronize();
  3220. if (!mmu_enabled)
  3221. {
  3222. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3223. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(
  3224. _i("Was filament unload successful?"), ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  3225. false, true);
  3226. if (lcd_change_fil_state == 0)
  3227. {
  3228. lcd_clear();
  3229. lcd_puts_at_P(0, 2, _T(MSG_PLEASE_WAIT));
  3230. current_position[X_AXIS] -= 100;
  3231. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED);
  3232. st_synchronize();
  3233. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=5
  3234. }
  3235. }
  3236. if (mmu_enabled)
  3237. {
  3238. if (!automatic) {
  3239. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  3240. mmu_M600_wait_and_beep();
  3241. if (saved_printing) {
  3242. lcd_clear();
  3243. lcd_puts_at_P(0, 2, _T(MSG_PLEASE_WAIT));
  3244. mmu_command(MmuCmd::R0);
  3245. manage_response(false, false);
  3246. }
  3247. }
  3248. mmu_M600_load_filament(automatic, HotendTempBckp);
  3249. }
  3250. else
  3251. M600_load_filament();
  3252. if (!automatic) M600_check_state(HotendTempBckp);
  3253. lcd_update_enable(true);
  3254. //Not let's go back to print
  3255. fanSpeed = fanSpeedBckp;
  3256. //Feed a little of filament to stabilize pressure
  3257. if (!automatic)
  3258. {
  3259. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  3260. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EXFEED);
  3261. }
  3262. //Move XY back
  3263. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  3264. FILAMENTCHANGE_XYFEED, active_extruder);
  3265. st_synchronize();
  3266. //Move Z back
  3267. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  3268. FILAMENTCHANGE_ZFEED, active_extruder);
  3269. st_synchronize();
  3270. //Set E position to original
  3271. plan_set_e_position(lastpos[E_AXIS]);
  3272. memcpy(current_position, lastpos, sizeof(lastpos));
  3273. set_destination_to_current();
  3274. //Recover feed rate
  3275. feedmultiply = feedmultiplyBckp;
  3276. char cmd[9];
  3277. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3278. enquecommand(cmd);
  3279. #ifdef IR_SENSOR
  3280. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  3281. fsensor_check_autoload();
  3282. #endif //IR_SENSOR
  3283. lcd_setstatuspgm(MSG_WELCOME);
  3284. custom_message_type = CustomMsg::Status;
  3285. }
  3286. void gcode_M701()
  3287. {
  3288. printf_P(PSTR("gcode_M701 begin\n"));
  3289. prusa_statistics(22);
  3290. if (mmu_enabled)
  3291. {
  3292. extr_adj(tmp_extruder);//loads current extruder
  3293. mmu_extruder = tmp_extruder;
  3294. }
  3295. else
  3296. {
  3297. enable_z();
  3298. custom_message_type = CustomMsg::FilamentLoading;
  3299. #ifdef FSENSOR_QUALITY
  3300. fsensor_oq_meassure_start(40);
  3301. #endif //FSENSOR_QUALITY
  3302. const int feed_mm_before_raising = 30;
  3303. static_assert(feed_mm_before_raising <= FILAMENTCHANGE_FIRSTFEED);
  3304. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  3305. current_position[E_AXIS] += FILAMENTCHANGE_FIRSTFEED - feed_mm_before_raising;
  3306. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST); //fast sequence
  3307. st_synchronize();
  3308. raise_z_above(MIN_Z_FOR_LOAD, false);
  3309. current_position[E_AXIS] += feed_mm_before_raising;
  3310. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST); //fast sequence
  3311. load_filament_final_feed(); //slow sequence
  3312. st_synchronize();
  3313. Sound_MakeCustom(50,500,false);
  3314. if (!farm_mode && loading_flag) {
  3315. lcd_load_filament_color_check();
  3316. }
  3317. lcd_update_enable(true);
  3318. lcd_update(2);
  3319. lcd_setstatuspgm(MSG_WELCOME);
  3320. disable_z();
  3321. loading_flag = false;
  3322. custom_message_type = CustomMsg::Status;
  3323. #ifdef FSENSOR_QUALITY
  3324. fsensor_oq_meassure_stop();
  3325. if (!fsensor_oq_result())
  3326. {
  3327. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  3328. lcd_update_enable(true);
  3329. lcd_update(2);
  3330. if (disable)
  3331. fsensor_disable();
  3332. }
  3333. #endif //FSENSOR_QUALITY
  3334. }
  3335. }
  3336. /**
  3337. * @brief Get serial number from 32U2 processor
  3338. *
  3339. * Typical format of S/N is:CZPX0917X003XC13518
  3340. *
  3341. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  3342. * reply is stored in *SN.
  3343. * Operation takes typically 23 ms. If no valid SN can be retrieved within the 250ms window, the function aborts
  3344. * and returns a general failure flag.
  3345. * The command will fail if the 32U2 processor is unpowered via USB since it is isolated from the rest of the electronics.
  3346. * In that case the value that is stored in the EEPROM should be used instead.
  3347. *
  3348. * @return 0 on success
  3349. * @return 1 on general failure
  3350. */
  3351. #ifdef PRUSA_SN_SUPPORT
  3352. static uint8_t get_PRUSA_SN(char* SN)
  3353. {
  3354. uint8_t selectedSerialPort_bak = selectedSerialPort;
  3355. uint8_t rxIndex;
  3356. bool SN_valid = false;
  3357. ShortTimer timeout;
  3358. selectedSerialPort = 0;
  3359. timeout.start();
  3360. while (!SN_valid)
  3361. {
  3362. rxIndex = 0;
  3363. _delay(50);
  3364. MYSERIAL.flush(); //clear RX buffer
  3365. SERIAL_ECHOLNRPGM(PSTR(";S"));
  3366. while (rxIndex < 19)
  3367. {
  3368. if (timeout.expired(250u))
  3369. goto exit;
  3370. if (MYSERIAL.available() > 0)
  3371. {
  3372. SN[rxIndex] = MYSERIAL.read();
  3373. rxIndex++;
  3374. }
  3375. }
  3376. SN[rxIndex] = 0;
  3377. // printf_P(PSTR("SN:%s\n"), SN);
  3378. SN_valid = (strncmp_P(SN, PSTR("CZPX"), 4) == 0);
  3379. }
  3380. exit:
  3381. selectedSerialPort = selectedSerialPort_bak;
  3382. return !SN_valid;
  3383. }
  3384. #endif //PRUSA_SN_SUPPORT
  3385. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  3386. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  3387. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  3388. //! it may even interfere with other functions of the printer! You have been warned!
  3389. //! The test idea is to measure the time necessary to charge the capacitor.
  3390. //! So the algorithm is as follows:
  3391. //! 1. Set TACH_1 pin to INPUT mode and LOW
  3392. //! 2. Wait a few ms
  3393. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  3394. //! Repeat 1.-3. several times
  3395. //! Good RAMBo's times are in the range of approx. 260-320 us
  3396. //! Bad RAMBo's times are approx. 260-1200 us
  3397. //! So basically we are interested in maximum time, the minima are mostly the same.
  3398. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  3399. static void gcode_PRUSA_BadRAMBoFanTest(){
  3400. //printf_P(PSTR("Enter fan pin test\n"));
  3401. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  3402. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  3403. unsigned long tach1max = 0;
  3404. uint8_t tach1cntr = 0;
  3405. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  3406. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  3407. SET_OUTPUT(TACH_1);
  3408. WRITE(TACH_1, LOW);
  3409. _delay(20); // the delay may be lower
  3410. unsigned long tachMeasure = _micros();
  3411. cli();
  3412. SET_INPUT(TACH_1);
  3413. // just wait brutally in an endless cycle until we reach HIGH
  3414. // if this becomes a problem it may be improved to non-endless cycle
  3415. while( READ(TACH_1) == 0 ) ;
  3416. sei();
  3417. tachMeasure = _micros() - tachMeasure;
  3418. if( tach1max < tachMeasure )
  3419. tach1max = tachMeasure;
  3420. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  3421. }
  3422. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  3423. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  3424. if( tach1max > 500 ){
  3425. // bad RAMBo
  3426. SERIAL_PROTOCOLLNPGM("BAD");
  3427. } else {
  3428. SERIAL_PROTOCOLLNPGM("OK");
  3429. }
  3430. // cleanup after the test function
  3431. SET_INPUT(TACH_1);
  3432. WRITE(TACH_1, HIGH);
  3433. #endif
  3434. }
  3435. // G92 - Set current position to coordinates given
  3436. static void gcode_G92()
  3437. {
  3438. bool codes[NUM_AXIS];
  3439. float values[NUM_AXIS];
  3440. // Check which axes need to be set
  3441. for(uint8_t i = 0; i < NUM_AXIS; ++i)
  3442. {
  3443. codes[i] = code_seen(axis_codes[i]);
  3444. if(codes[i])
  3445. values[i] = code_value();
  3446. }
  3447. if((codes[E_AXIS] && values[E_AXIS] == 0) &&
  3448. (!codes[X_AXIS] && !codes[Y_AXIS] && !codes[Z_AXIS]))
  3449. {
  3450. // As a special optimization, when _just_ clearing the E position
  3451. // we schedule a flag asynchronously along with the next block to
  3452. // reset the starting E position instead of stopping the planner
  3453. current_position[E_AXIS] = 0;
  3454. plan_reset_next_e();
  3455. }
  3456. else
  3457. {
  3458. // In any other case we're forced to synchronize
  3459. st_synchronize();
  3460. for(uint8_t i = 0; i < 3; ++i)
  3461. {
  3462. if(codes[i])
  3463. current_position[i] = values[i] + cs.add_homing[i];
  3464. }
  3465. if(codes[E_AXIS])
  3466. current_position[E_AXIS] = values[E_AXIS];
  3467. // Set all at once
  3468. plan_set_position_curposXYZE();
  3469. }
  3470. }
  3471. #ifdef EXTENDED_CAPABILITIES_REPORT
  3472. static void cap_line(const char* name, bool ena = false) {
  3473. printf_P(PSTR("Cap:%S:%c\n"), name, (char)ena + '0');
  3474. }
  3475. static void extended_capabilities_report()
  3476. {
  3477. // AUTOREPORT_TEMP (M155)
  3478. cap_line(PSTR("AUTOREPORT_TEMP"), ENABLED(AUTO_REPORT));
  3479. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  3480. // AUTOREPORT_FANS (M123)
  3481. cap_line(PSTR("AUTOREPORT_FANS"), ENABLED(AUTO_REPORT));
  3482. #endif //FANCHECK and TACH_0 or TACH_1
  3483. // AUTOREPORT_POSITION (M114)
  3484. cap_line(PSTR("AUTOREPORT_POSITION"), ENABLED(AUTO_REPORT));
  3485. // EXTENDED_M20 (support for L and T parameters)
  3486. cap_line(PSTR("EXTENDED_M20"), 1);
  3487. cap_line(PSTR("PRUSA_MMU2"), 1); //this will soon change to ENABLED(PRUSA_MMU2_SUPPORT)
  3488. }
  3489. #endif //EXTENDED_CAPABILITIES_REPORT
  3490. #ifdef BACKLASH_X
  3491. extern uint8_t st_backlash_x;
  3492. #endif //BACKLASH_X
  3493. #ifdef BACKLASH_Y
  3494. extern uint8_t st_backlash_y;
  3495. #endif //BACKLASH_Y
  3496. //! \ingroup marlin_main
  3497. //! @brief Parse and process commands
  3498. //!
  3499. //! look here for descriptions of G-codes: https://reprap.org/wiki/G-code
  3500. //!
  3501. //!
  3502. //! Implemented Codes
  3503. //! -------------------
  3504. //!
  3505. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  3506. //!
  3507. //!@n PRUSA CODES
  3508. //!@n P F - Returns FW versions
  3509. //!@n P R - Returns revision of printer
  3510. //!
  3511. //!@n G0 -> G1
  3512. //!@n G1 - Coordinated Movement X Y Z E
  3513. //!@n G2 - CW ARC
  3514. //!@n G3 - CCW ARC
  3515. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  3516. //!@n G10 - retract filament according to settings of M207
  3517. //!@n G11 - retract recover filament according to settings of M208
  3518. //!@n G28 - Home all Axes
  3519. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  3520. //!@n G30 - Single Z Probe, probes bed at current XY location.
  3521. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  3522. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  3523. //!@n G80 - Automatic mesh bed leveling
  3524. //!@n G81 - Print bed profile
  3525. //!@n G90 - Use Absolute Coordinates
  3526. //!@n G91 - Use Relative Coordinates
  3527. //!@n G92 - Set current position to coordinates given
  3528. //!
  3529. //!@n M Codes
  3530. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  3531. //!@n M1 - Same as M0
  3532. //!@n M17 - Enable/Power all stepper motors
  3533. //!@n M18 - Disable all stepper motors; same as M84
  3534. //!@n M20 - List SD card
  3535. //!@n M21 - Init SD card
  3536. //!@n M22 - Release SD card
  3537. //!@n M23 - Select SD file (M23 filename.g)
  3538. //!@n M24 - Start/resume SD print
  3539. //!@n M25 - Pause SD print
  3540. //!@n M26 - Set SD position in bytes (M26 S12345)
  3541. //!@n M27 - Report SD print status
  3542. //!@n M28 - Start SD write (M28 filename.g)
  3543. //!@n M29 - Stop SD write
  3544. //!@n M30 - Delete file from SD (M30 filename.g)
  3545. //!@n M31 - Output time since last M109 or SD card start to serial
  3546. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  3547. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  3548. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  3549. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  3550. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  3551. //!@n M73 - Show percent done and print time remaining
  3552. //!@n M80 - Turn on Power Supply
  3553. //!@n M81 - Turn off Power Supply
  3554. //!@n M82 - Set E codes absolute (default)
  3555. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  3556. //!@n M84 - Disable steppers until next move,
  3557. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  3558. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3559. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  3560. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  3561. //!@n M104 - Set extruder target temp
  3562. //!@n M105 - Read current temp
  3563. //!@n M106 - Fan on
  3564. //!@n M107 - Fan off
  3565. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  3566. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  3567. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  3568. //!@n M112 - Emergency stop
  3569. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  3570. //!@n M114 - Output current position to serial port
  3571. //!@n M115 - Capabilities string
  3572. //!@n M117 - display message
  3573. //!@n M119 - Output Endstop status to serial port
  3574. //!@n M123 - Tachometer value
  3575. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  3576. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  3577. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3578. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3579. //!@n M140 - Set bed target temp
  3580. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  3581. //!@n M155 - Automatically send temperatures, fan speeds, position
  3582. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3583. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3584. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3585. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3586. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  3587. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3588. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3589. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  3590. //!@n M206 - set additional homing offset
  3591. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  3592. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  3593. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3594. //!@n M214 - Set Arc Parameters (Use M500 to store in eeprom) P<MM_PER_ARC_SEGMENT> S<MIN_MM_PER_ARC_SEGMENT> R<MIN_ARC_SEGMENTS> F<ARC_SEGMENTS_PER_SEC>
  3595. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3596. //!@n M220 S<factor in percent>- set speed factor override percentage
  3597. //!@n M221 S<factor in percent>- set extrude factor override percentage
  3598. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3599. //!@n M240 - Trigger a camera to take a photograph
  3600. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  3601. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3602. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  3603. //!@n M301 - Set PID parameters P I and D
  3604. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  3605. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  3606. //!@n M304 - Set bed PID parameters P I and D
  3607. //!@n M310 - Temperature model settings
  3608. //!@n M400 - Finish all moves
  3609. //!@n M401 - Lower z-probe if present
  3610. //!@n M402 - Raise z-probe if present
  3611. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  3612. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  3613. //!@n M406 - Turn off Filament Sensor extrusion control
  3614. //!@n M407 - Displays measured filament diameter
  3615. //!@n M500 - stores parameters in EEPROM
  3616. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  3617. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  3618. //!@n M503 - print the current settings (from memory not from EEPROM)
  3619. //!@n M509 - force language selection on next restart
  3620. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  3621. //!@n M552 - Set IP address
  3622. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3623. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  3624. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  3625. //!@n M861 - Set / Read PINDA temperature compensation offsets
  3626. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  3627. //!@n M907 - Set digital trimpot motor current using axis codes.
  3628. //!@n M908 - Control digital trimpot directly.
  3629. //!@n M350 - Set microstepping mode.
  3630. //!@n M351 - Toggle MS1 MS2 pins directly.
  3631. //!
  3632. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  3633. //!@n M999 - Restart after being stopped by error
  3634. //! <br><br>
  3635. /** @defgroup marlin_main Marlin main */
  3636. /** \ingroup GCodes */
  3637. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)._
  3638. /**
  3639. They are shown in order of appearance in the code.
  3640. There are reasons why some G Codes aren't in numerical order.
  3641. */
  3642. void process_commands()
  3643. {
  3644. if (!buflen) return; //empty command
  3645. #ifdef CMDBUFFER_DEBUG
  3646. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3647. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3648. SERIAL_ECHOLNPGM("");
  3649. SERIAL_ECHOPGM("In cmdqueue: ");
  3650. SERIAL_ECHO(buflen);
  3651. SERIAL_ECHOLNPGM("");
  3652. #endif /* CMDBUFFER_DEBUG */
  3653. unsigned long codenum; //throw away variable
  3654. char *starpos = NULL;
  3655. #ifdef ENABLE_AUTO_BED_LEVELING
  3656. float x_tmp, y_tmp, z_tmp, real_z;
  3657. #endif
  3658. // PRUSA GCODES
  3659. KEEPALIVE_STATE(IN_HANDLER);
  3660. /*!
  3661. ---------------------------------------------------------------------------------
  3662. ### M117 - Display Message <a href="https://reprap.org/wiki/G-code#M117:_Display_Message">M117: Display Message</a>
  3663. This causes the given message to be shown in the status line on an attached LCD.
  3664. It is processed early as to allow printing messages that contain G, M, N or T.
  3665. ---------------------------------------------------------------------------------
  3666. ### Special internal commands
  3667. These are used by internal functions to process certain actions in the right order. Some of these are also usable by the user.
  3668. They are processed early as the commands are complex (strings).
  3669. These are only available on the MK3(S) as these require TMC2130 drivers:
  3670. - CRASH DETECTED
  3671. - CRASH RECOVER
  3672. - CRASH_CANCEL
  3673. - TMC_SET_WAVE
  3674. - TMC_SET_STEP
  3675. - TMC_SET_CHOP
  3676. */
  3677. if (code_seen_P(PSTR("M117"))) //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3678. {
  3679. starpos = (strchr(strchr_pointer + 5, '*'));
  3680. if (starpos != NULL)
  3681. *(starpos) = '\0';
  3682. lcd_setstatus(strchr_pointer + 5);
  3683. custom_message_type = CustomMsg::M117;
  3684. }
  3685. /*!
  3686. ### M0, M1 - Stop the printer <a href="https://reprap.org/wiki/G-code#M0:_Stop_or_Unconditional_stop">M0: Stop or Unconditional stop</a>
  3687. #### Usage
  3688. M0 [P<ms<] [S<sec>] [string]
  3689. M1 [P<ms>] [S<sec>] [string]
  3690. #### Parameters
  3691. - `P<ms>` - Expire time, in milliseconds
  3692. - `S<sec>` - Expire time, in seconds
  3693. - `string` - Must for M1 and optional for M0 message to display on the LCD
  3694. */
  3695. else if (code_seen_P(PSTR("M0")) || code_seen_P(PSTR("M1 "))) {// M0 and M1 - (Un)conditional stop - Wait for user button press on LCD
  3696. const char *src = strchr_pointer + 2;
  3697. codenum = 0;
  3698. bool hasP = false, hasS = false;
  3699. if (code_seen('P')) {
  3700. codenum = code_value_long(); // milliseconds to wait
  3701. hasP = codenum > 0;
  3702. }
  3703. if (code_seen('S')) {
  3704. codenum = code_value_long() * 1000; // seconds to wait
  3705. hasS = codenum > 0;
  3706. }
  3707. starpos = strchr(src, '*');
  3708. if (starpos != NULL) *(starpos) = '\0';
  3709. while (*src == ' ') ++src;
  3710. custom_message_type = CustomMsg::M0Wait;
  3711. if (!hasP && !hasS && *src != '\0') {
  3712. lcd_setstatus(src);
  3713. } else {
  3714. // farmers want to abuse a bug from the previous firmware releases
  3715. // - they need to see the filename on the status screen instead of "Wait for user..."
  3716. // So we won't update the message in farm mode...
  3717. if( ! farm_mode){
  3718. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=20
  3719. } else {
  3720. custom_message_type = CustomMsg::Status; // let the lcd display the name of the printed G-code file in farm mode
  3721. }
  3722. }
  3723. lcd_ignore_click(); //call lcd_ignore_click also for else ???
  3724. st_synchronize();
  3725. previous_millis_cmd.start();
  3726. if (codenum > 0 ) {
  3727. codenum += _millis(); // keep track of when we started waiting
  3728. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3729. while(_millis() < codenum && !lcd_clicked()) {
  3730. manage_heater();
  3731. manage_inactivity(true);
  3732. lcd_update(0);
  3733. }
  3734. KEEPALIVE_STATE(IN_HANDLER);
  3735. lcd_ignore_click(false);
  3736. } else {
  3737. marlin_wait_for_click();
  3738. }
  3739. if (IS_SD_PRINTING)
  3740. custom_message_type = CustomMsg::Status;
  3741. else
  3742. LCD_MESSAGERPGM(MSG_WELCOME);
  3743. }
  3744. #ifdef TMC2130
  3745. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3746. {
  3747. // ### CRASH_DETECTED - TMC2130
  3748. // ---------------------------------
  3749. if(code_seen_P(PSTR("CRASH_DETECTED")))
  3750. {
  3751. uint8_t mask = 0;
  3752. if (code_seen('X')) mask |= X_AXIS_MASK;
  3753. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3754. crashdet_detected(mask);
  3755. }
  3756. // ### CRASH_RECOVER - TMC2130
  3757. // ----------------------------------
  3758. else if(code_seen_P(PSTR("CRASH_RECOVER")))
  3759. crashdet_recover();
  3760. // ### CRASH_CANCEL - TMC2130
  3761. // ----------------------------------
  3762. else if(code_seen_P(PSTR("CRASH_CANCEL")))
  3763. crashdet_cancel();
  3764. }
  3765. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3766. {
  3767. // ### TMC_SET_WAVE_
  3768. // --------------------
  3769. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3770. {
  3771. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3772. axis = (axis == 'E')?3:(axis - 'X');
  3773. if (axis < 4)
  3774. {
  3775. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3776. tmc2130_set_wave(axis, 247, fac);
  3777. }
  3778. }
  3779. // ### TMC_SET_STEP_
  3780. // ------------------
  3781. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3782. {
  3783. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3784. axis = (axis == 'E')?3:(axis - 'X');
  3785. if (axis < 4)
  3786. {
  3787. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3788. uint16_t res = tmc2130_get_res(axis);
  3789. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3790. }
  3791. }
  3792. // ### TMC_SET_CHOP_
  3793. // -------------------
  3794. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3795. {
  3796. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3797. axis = (axis == 'E')?3:(axis - 'X');
  3798. if (axis < 4)
  3799. {
  3800. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3801. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3802. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3803. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3804. char* str_end = 0;
  3805. if (CMDBUFFER_CURRENT_STRING[14])
  3806. {
  3807. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3808. if (str_end && *str_end)
  3809. {
  3810. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3811. if (str_end && *str_end)
  3812. {
  3813. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3814. if (str_end && *str_end)
  3815. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3816. }
  3817. }
  3818. }
  3819. tmc2130_chopper_config[axis].toff = chop0;
  3820. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3821. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3822. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3823. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3824. //printf_P(_N("TMC_SET_CHOP_%c %d %d %d %d\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3825. }
  3826. }
  3827. }
  3828. #ifdef BACKLASH_X
  3829. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3830. {
  3831. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3832. st_backlash_x = bl;
  3833. printf_P(_N("st_backlash_x = %d\n"), st_backlash_x);
  3834. }
  3835. #endif //BACKLASH_X
  3836. #ifdef BACKLASH_Y
  3837. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3838. {
  3839. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3840. st_backlash_y = bl;
  3841. printf_P(_N("st_backlash_y = %d\n"), st_backlash_y);
  3842. }
  3843. #endif //BACKLASH_Y
  3844. #endif //TMC2130
  3845. else if(code_seen_P(PSTR("PRUSA"))){
  3846. /*!
  3847. ---------------------------------------------------------------------------------
  3848. ### PRUSA - Internal command set <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode - Notes</a>
  3849. Set of internal PRUSA commands
  3850. #### Usage
  3851. PRUSA [ Ping | PRN | FAN | thx | uvlo | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | FR ]
  3852. #### Parameters
  3853. - `Ping`
  3854. - `PRN` - Prints revision of the printer
  3855. - `FAN` - Prints fan details
  3856. - `thx`
  3857. - `uvlo`
  3858. - `MMURES` - Reset MMU
  3859. - `RESET` - (Careful!)
  3860. - `fv` - ?
  3861. - `M28`
  3862. - `SN`
  3863. - `Fir` - Prints firmware version
  3864. - `Rev`- Prints filament size, elelectronics, nozzle type
  3865. - `Lang` - Reset the language
  3866. - `Lz`
  3867. - `FR` - Full factory reset
  3868. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3869. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3870. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3871. */
  3872. if (farm_prusa_code_seen()) {}
  3873. else if( code_seen_P(PSTR("FANPINTST"))) {
  3874. gcode_PRUSA_BadRAMBoFanTest();
  3875. }
  3876. else if (code_seen_P(PSTR("FAN"))) { // PRUSA FAN
  3877. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3878. }
  3879. else if (code_seen_P(PSTR("uvlo"))) { // PRUSA uvlo
  3880. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3881. enquecommand_P(PSTR("M24"));
  3882. }
  3883. else if (code_seen_P(PSTR("MMURES"))) // PRUSA MMURES
  3884. {
  3885. mmu_reset();
  3886. }
  3887. else if (code_seen_P(PSTR("RESET"))) { // PRUSA RESET
  3888. #ifdef WATCHDOG
  3889. #if defined(XFLASH) && defined(BOOTAPP)
  3890. boot_app_magic = BOOT_APP_MAGIC;
  3891. boot_app_flags = BOOT_APP_FLG_RUN;
  3892. #endif //defined(XFLASH) && defined(BOOTAPP)
  3893. softReset();
  3894. #elif defined(BOOTAPP) //this is a safety precaution. This is because the new bootloader turns off the heaters, but the old one doesn't. The watchdog should be used most of the time.
  3895. asm volatile("jmp 0x3E000");
  3896. #endif
  3897. } else if (code_seen_P(PSTR("fv"))) { // PRUSA fv
  3898. // get file version
  3899. #ifdef SDSUPPORT
  3900. card.openFileReadFilteredGcode(strchr_pointer + 3,true);
  3901. while (true) {
  3902. uint16_t readByte = card.getFilteredGcodeChar();
  3903. MYSERIAL.write(readByte);
  3904. if (readByte=='\n') {
  3905. break;
  3906. }
  3907. }
  3908. card.closefile();
  3909. #endif // SDSUPPORT
  3910. }
  3911. #ifdef PRUSA_M28
  3912. else if (code_seen_P(PSTR("M28"))) { // PRUSA M28
  3913. trace();
  3914. prusa_sd_card_upload = true;
  3915. card.openFileWrite(strchr_pointer+4);
  3916. }
  3917. #endif //PRUSA_M28
  3918. #ifdef PRUSA_SN_SUPPORT
  3919. else if (code_seen_P(PSTR("SN"))) { // PRUSA SN
  3920. char SN[20];
  3921. eeprom_read_block(SN, (uint8_t*)EEPROM_PRUSA_SN, 20);
  3922. if (SN[19])
  3923. puts_P(PSTR("SN invalid"));
  3924. else
  3925. puts(SN);
  3926. }
  3927. #endif //PRUSA_SN_SUPPORT
  3928. else if(code_seen_P(PSTR("Fir"))){ // PRUSA Fir
  3929. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3930. } else if(code_seen_P(PSTR("Rev"))){ // PRUSA Rev
  3931. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3932. } else if(code_seen_P(PSTR("Lang"))) { // PRUSA Lang
  3933. lang_reset();
  3934. } else if(code_seen_P(PSTR("Lz"))) { // PRUSA Lz
  3935. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3936. } else if(code_seen_P(PSTR("FR"))) { // PRUSA FR
  3937. // Factory full reset
  3938. factory_reset(0);
  3939. } else if(code_seen_P(PSTR("MBL"))) { // PRUSA MBL
  3940. // Change the MBL status without changing the logical Z position.
  3941. if(code_seen('V')) {
  3942. bool value = code_value_short();
  3943. st_synchronize();
  3944. if(value != mbl.active) {
  3945. mbl.active = value;
  3946. // Use plan_set_z_position to reset the physical values
  3947. plan_set_z_position(current_position[Z_AXIS]);
  3948. }
  3949. }
  3950. //-//
  3951. /*
  3952. } else if(code_seen("rrr")) {
  3953. MYSERIAL.println("=== checking ===");
  3954. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3955. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3956. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3957. MYSERIAL.println(farm_mode,DEC);
  3958. MYSERIAL.println(eCheckMode,DEC);
  3959. } else if(code_seen("www")) {
  3960. MYSERIAL.println("=== @ FF ===");
  3961. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3962. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3963. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3964. */
  3965. } else if (code_seen_P(PSTR("nozzle"))) { // PRUSA nozzle
  3966. uint16_t nDiameter;
  3967. if(code_seen('D'))
  3968. {
  3969. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3970. nozzle_diameter_check(nDiameter);
  3971. }
  3972. else if(code_seen_P(PSTR("set")) && farm_mode)
  3973. {
  3974. strchr_pointer++; // skip 1st char (~ 's')
  3975. strchr_pointer++; // skip 2nd char (~ 'e')
  3976. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3977. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3978. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3979. }
  3980. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3981. //-// !!! SupportMenu
  3982. /*
  3983. // musi byt PRED "PRUSA model"
  3984. } else if (code_seen("smodel")) { //! PRUSA smodel
  3985. size_t nOffset;
  3986. // ! -> "l"
  3987. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3988. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3989. if(*(strchr_pointer+1+nOffset))
  3990. printer_smodel_check(strchr_pointer);
  3991. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3992. } else if (code_seen("model")) { //! PRUSA model
  3993. uint16_t nPrinterModel;
  3994. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3995. nPrinterModel=(uint16_t)code_value_long();
  3996. if(nPrinterModel!=0)
  3997. printer_model_check(nPrinterModel);
  3998. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3999. } else if (code_seen("version")) { //! PRUSA version
  4000. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  4001. while(*strchr_pointer==' ') // skip leading spaces
  4002. strchr_pointer++;
  4003. if(*strchr_pointer!=0)
  4004. fw_version_check(strchr_pointer);
  4005. else SERIAL_PROTOCOLLN(FW_VERSION);
  4006. } else if (code_seen("gcode")) { //! PRUSA gcode
  4007. uint16_t nGcodeLevel;
  4008. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  4009. nGcodeLevel=(uint16_t)code_value_long();
  4010. if(nGcodeLevel!=0)
  4011. gcode_level_check(nGcodeLevel);
  4012. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  4013. */
  4014. }
  4015. //else if (code_seen('Cal')) {
  4016. // lcd_calibration();
  4017. // }
  4018. }
  4019. // This prevents reading files with "^" in their names.
  4020. // Since it is unclear, if there is some usage of this construct,
  4021. // it will be deprecated in 3.9 alpha a possibly completely removed in the future:
  4022. // else if (code_seen('^')) {
  4023. // // nothing, this is a version line
  4024. // }
  4025. else if(code_seen('G'))
  4026. {
  4027. gcode_in_progress = code_value_short();
  4028. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  4029. switch (gcode_in_progress)
  4030. {
  4031. /*!
  4032. ---------------------------------------------------------------------------------
  4033. # G Codes
  4034. ### G0, G1 - Coordinated movement X Y Z E <a href="https://reprap.org/wiki/G-code#G0_.26_G1:_Move">G0 & G1: Move</a>
  4035. In Prusa Firmware G0 and G1 are the same.
  4036. #### Usage
  4037. G0 [ X | Y | Z | E | F | S ]
  4038. G1 [ X | Y | Z | E | F | S ]
  4039. #### Parameters
  4040. - `X` - The position to move to on the X axis
  4041. - `Y` - The position to move to on the Y axis
  4042. - `Z` - The position to move to on the Z axis
  4043. - `E` - The amount to extrude between the starting point and ending point
  4044. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  4045. */
  4046. case 0: // G0 -> G1
  4047. case 1: // G1
  4048. {
  4049. uint16_t start_segment_idx = restore_interrupted_gcode();
  4050. get_coordinates(); // For X Y Z E F
  4051. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  4052. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  4053. }
  4054. #ifdef FWRETRACT
  4055. if(cs.autoretract_enabled) {
  4056. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  4057. float echange=destination[E_AXIS]-current_position[E_AXIS];
  4058. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  4059. st_synchronize();
  4060. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  4061. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  4062. retract(!retracted[active_extruder]);
  4063. return;
  4064. }
  4065. }
  4066. }
  4067. #endif //FWRETRACT
  4068. prepare_move(start_segment_idx);
  4069. //ClearToSend();
  4070. }
  4071. break;
  4072. /*!
  4073. ### G2, G3 - Controlled Arc Move <a href="https://reprap.org/wiki/G-code#G2_.26_G3:_Controlled_Arc_Move">G2 & G3: Controlled Arc Move</a>
  4074. These commands don't propperly work with MBL enabled. The compensation only happens at the end of the move, so avoid long arcs.
  4075. #### Usage
  4076. G2 [ X | Y | I | E | F ] (Clockwise Arc)
  4077. G3 [ X | Y | I | E | F ] (Counter-Clockwise Arc)
  4078. #### Parameters
  4079. - `X` - The position to move to on the X axis
  4080. - `Y` - The position to move to on the Y axis
  4081. - 'Z' - The position to move to on the Z axis
  4082. - `I` - The point in X space from the current X position to maintain a constant distance from
  4083. - `J` - The point in Y space from the current Y position to maintain a constant distance from
  4084. - `E` - The amount to extrude between the starting point and ending point
  4085. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  4086. */
  4087. case 2:
  4088. case 3:
  4089. {
  4090. uint16_t start_segment_idx = restore_interrupted_gcode();
  4091. #ifdef SF_ARC_FIX
  4092. bool relative_mode_backup = relative_mode;
  4093. relative_mode = true;
  4094. #endif
  4095. get_coordinates(); // For X Y Z E F
  4096. #ifdef SF_ARC_FIX
  4097. relative_mode=relative_mode_backup;
  4098. #endif
  4099. offset[0] = code_seen('I') ? code_value() : 0.f;
  4100. offset[1] = code_seen('J') ? code_value() : 0.f;
  4101. prepare_arc_move((gcode_in_progress == 2), start_segment_idx);
  4102. } break;
  4103. /*!
  4104. ### G4 - Dwell <a href="https://reprap.org/wiki/G-code#G4:_Dwell">G4: Dwell</a>
  4105. Pause the machine for a period of time.
  4106. #### Usage
  4107. G4 [ P | S ]
  4108. #### Parameters
  4109. - `P` - Time to wait, in milliseconds
  4110. - `S` - Time to wait, in seconds
  4111. */
  4112. case 4:
  4113. codenum = 0;
  4114. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  4115. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  4116. if(codenum != 0)
  4117. {
  4118. if(custom_message_type != CustomMsg::M117)
  4119. {
  4120. LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  4121. }
  4122. }
  4123. st_synchronize();
  4124. codenum += _millis(); // keep track of when we started waiting
  4125. previous_millis_cmd.start();
  4126. while(_millis() < codenum) {
  4127. manage_heater();
  4128. manage_inactivity();
  4129. lcd_update(0);
  4130. }
  4131. break;
  4132. #ifdef FWRETRACT
  4133. /*!
  4134. ### G10 - Retract <a href="https://reprap.org/wiki/G-code#G10:_Retract">G10: Retract</a>
  4135. Retracts filament according to settings of `M207`
  4136. */
  4137. case 10:
  4138. #if EXTRUDERS > 1
  4139. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  4140. retract(true,retracted_swap[active_extruder]);
  4141. #else
  4142. retract(true);
  4143. #endif
  4144. break;
  4145. /*!
  4146. ### G11 - Retract recover <a href="https://reprap.org/wiki/G-code#G11:_Unretract">G11: Unretract</a>
  4147. Unretracts/recovers filament according to settings of `M208`
  4148. */
  4149. case 11:
  4150. #if EXTRUDERS > 1
  4151. retract(false,retracted_swap[active_extruder]);
  4152. #else
  4153. retract(false);
  4154. #endif
  4155. break;
  4156. #endif //FWRETRACT
  4157. /*!
  4158. ### G21 - Sets Units to Millimters <a href="https://reprap.org/wiki/G-code#G21:_Set_Units_to_Millimeters">G21: Set Units to Millimeters</a>
  4159. Units are in millimeters. Prusa doesn't support inches.
  4160. */
  4161. case 21:
  4162. break; //Doing nothing. This is just to prevent serial UNKOWN warnings.
  4163. /*!
  4164. ### G28 - Home all Axes one at a time <a href="https://reprap.org/wiki/G-code#G28:_Move_to_Origin_.28Home.29">G28: Move to Origin (Home)</a>
  4165. Using `G28` without any parameters will perfom homing of all axes AND mesh bed leveling, while `G28 W` will just home all axes (no mesh bed leveling).
  4166. #### Usage
  4167. G28 [ X | Y | Z | W | C ]
  4168. #### Parameters
  4169. - `X` - Flag to go back to the X axis origin
  4170. - `Y` - Flag to go back to the Y axis origin
  4171. - `Z` - Flag to go back to the Z axis origin
  4172. - `W` - Suppress mesh bed leveling if `X`, `Y` or `Z` are not provided
  4173. - `C` - Calibrate X and Y origin (home) - Only on MK3/s
  4174. */
  4175. case 28:
  4176. {
  4177. long home_x_value = 0;
  4178. long home_y_value = 0;
  4179. long home_z_value = 0;
  4180. // Which axes should be homed?
  4181. bool home_x = code_seen(axis_codes[X_AXIS]);
  4182. if (home_x) home_x_value = code_value_long();
  4183. bool home_y = code_seen(axis_codes[Y_AXIS]);
  4184. if (home_y) home_y_value = code_value_long();
  4185. bool home_z = code_seen(axis_codes[Z_AXIS]);
  4186. if (home_z) home_z_value = code_value_long();
  4187. bool without_mbl = code_seen('W');
  4188. // calibrate?
  4189. #ifdef TMC2130
  4190. bool calib = code_seen('C');
  4191. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  4192. #else
  4193. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  4194. #endif //TMC2130
  4195. if ((home_x || home_y || without_mbl || home_z) == false) {
  4196. gcode_G80();
  4197. }
  4198. break;
  4199. }
  4200. #ifdef ENABLE_AUTO_BED_LEVELING
  4201. /*!
  4202. ### G29 - Detailed Z-Probe <a href="https://reprap.org/wiki/G-code#G29:_Detailed_Z-Probe">G29: Detailed Z-Probe</a>
  4203. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4204. See `G81`
  4205. */
  4206. case 29:
  4207. {
  4208. #if Z_MIN_PIN == -1
  4209. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  4210. #endif
  4211. // Prevent user from running a G29 without first homing in X and Y
  4212. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  4213. {
  4214. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  4215. SERIAL_ECHO_START;
  4216. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  4217. break; // abort G29, since we don't know where we are
  4218. }
  4219. st_synchronize();
  4220. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  4221. //vector_3 corrected_position = plan_get_position_mm();
  4222. //corrected_position.debug("position before G29");
  4223. plan_bed_level_matrix.set_to_identity();
  4224. vector_3 uncorrected_position = plan_get_position();
  4225. //uncorrected_position.debug("position durring G29");
  4226. current_position[X_AXIS] = uncorrected_position.x;
  4227. current_position[Y_AXIS] = uncorrected_position.y;
  4228. current_position[Z_AXIS] = uncorrected_position.z;
  4229. plan_set_position_curposXYZE();
  4230. int l_feedmultiply = setup_for_endstop_move();
  4231. feedrate = homing_feedrate[Z_AXIS];
  4232. #ifdef AUTO_BED_LEVELING_GRID
  4233. // probe at the points of a lattice grid
  4234. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  4235. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  4236. // solve the plane equation ax + by + d = z
  4237. // A is the matrix with rows [x y 1] for all the probed points
  4238. // B is the vector of the Z positions
  4239. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4240. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4241. // "A" matrix of the linear system of equations
  4242. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  4243. // "B" vector of Z points
  4244. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  4245. int probePointCounter = 0;
  4246. bool zig = true;
  4247. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  4248. {
  4249. int xProbe, xInc;
  4250. if (zig)
  4251. {
  4252. xProbe = LEFT_PROBE_BED_POSITION;
  4253. //xEnd = RIGHT_PROBE_BED_POSITION;
  4254. xInc = xGridSpacing;
  4255. zig = false;
  4256. } else // zag
  4257. {
  4258. xProbe = RIGHT_PROBE_BED_POSITION;
  4259. //xEnd = LEFT_PROBE_BED_POSITION;
  4260. xInc = -xGridSpacing;
  4261. zig = true;
  4262. }
  4263. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  4264. {
  4265. float z_before;
  4266. if (probePointCounter == 0)
  4267. {
  4268. // raise before probing
  4269. z_before = Z_RAISE_BEFORE_PROBING;
  4270. } else
  4271. {
  4272. // raise extruder
  4273. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  4274. }
  4275. float measured_z = probe_pt(xProbe, yProbe, z_before);
  4276. eqnBVector[probePointCounter] = measured_z;
  4277. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  4278. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  4279. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  4280. probePointCounter++;
  4281. xProbe += xInc;
  4282. }
  4283. }
  4284. clean_up_after_endstop_move(l_feedmultiply);
  4285. // solve lsq problem
  4286. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  4287. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4288. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  4289. SERIAL_PROTOCOLPGM(" b: ");
  4290. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  4291. SERIAL_PROTOCOLPGM(" d: ");
  4292. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  4293. set_bed_level_equation_lsq(plane_equation_coefficients);
  4294. free(plane_equation_coefficients);
  4295. #else // AUTO_BED_LEVELING_GRID not defined
  4296. // Probe at 3 arbitrary points
  4297. // probe 1
  4298. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  4299. // probe 2
  4300. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  4301. // probe 3
  4302. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  4303. clean_up_after_endstop_move(l_feedmultiply);
  4304. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  4305. #endif // AUTO_BED_LEVELING_GRID
  4306. st_synchronize();
  4307. // The following code correct the Z height difference from z-probe position and hotend tip position.
  4308. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  4309. // When the bed is uneven, this height must be corrected.
  4310. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  4311. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  4312. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4313. z_tmp = current_position[Z_AXIS];
  4314. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  4315. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  4316. plan_set_position_curposXYZE();
  4317. }
  4318. break;
  4319. #ifndef Z_PROBE_SLED
  4320. /*!
  4321. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  4322. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4323. */
  4324. case 30:
  4325. {
  4326. st_synchronize();
  4327. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  4328. int l_feedmultiply = setup_for_endstop_move();
  4329. feedrate = homing_feedrate[Z_AXIS];
  4330. run_z_probe();
  4331. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  4332. SERIAL_PROTOCOLPGM(" X: ");
  4333. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4334. SERIAL_PROTOCOLPGM(" Y: ");
  4335. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4336. SERIAL_PROTOCOLPGM(" Z: ");
  4337. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4338. SERIAL_PROTOCOLPGM("\n");
  4339. clean_up_after_endstop_move(l_feedmultiply);
  4340. }
  4341. break;
  4342. #else
  4343. /*!
  4344. ### G31 - Dock the sled <a href="https://reprap.org/wiki/G-code#G31:_Dock_Z_Probe_sled">G31: Dock Z Probe sled</a>
  4345. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4346. */
  4347. case 31:
  4348. dock_sled(true);
  4349. break;
  4350. /*!
  4351. ### G32 - Undock the sled <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4352. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4353. */
  4354. case 32:
  4355. dock_sled(false);
  4356. break;
  4357. #endif // Z_PROBE_SLED
  4358. #endif // ENABLE_AUTO_BED_LEVELING
  4359. #ifdef MESH_BED_LEVELING
  4360. /*!
  4361. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  4362. Sensor must be over the bed.
  4363. The maximum travel distance before an error is triggered is 10mm.
  4364. */
  4365. case 30:
  4366. {
  4367. st_synchronize();
  4368. homing_flag = true;
  4369. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  4370. int l_feedmultiply = setup_for_endstop_move();
  4371. feedrate = homing_feedrate[Z_AXIS];
  4372. find_bed_induction_sensor_point_z(-10.f, 3);
  4373. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  4374. clean_up_after_endstop_move(l_feedmultiply);
  4375. homing_flag = false;
  4376. }
  4377. break;
  4378. /*!
  4379. ### G75 - Print temperature interpolation <a href="https://reprap.org/wiki/G-code#G75:_Print_temperature_interpolation">G75: Print temperature interpolation</a>
  4380. Show/print PINDA temperature interpolating.
  4381. */
  4382. case 75:
  4383. {
  4384. for (uint8_t i = 40; i <= 110; i++)
  4385. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  4386. }
  4387. break;
  4388. /*!
  4389. ### G76 - PINDA probe temperature calibration <a href="https://reprap.org/wiki/G-code#G76:_PINDA_probe_temperature_calibration">G76: PINDA probe temperature calibration</a>
  4390. This G-code is used to calibrate the temperature drift of the PINDA (inductive Sensor).
  4391. The PINDAv2 sensor has a built-in thermistor which has the advantage that the calibration can be done once for all materials.
  4392. The Original i3 Prusa MK2/s uses PINDAv1 and this calibration improves the temperature drift, but not as good as the PINDAv2.
  4393. superPINDA sensor has internal temperature compensation and no thermistor output. There is no point of doing temperature calibration in such case.
  4394. If PINDA_THERMISTOR and SUPERPINDA_SUPPORT is defined during compilation, calibration is skipped with serial message "No PINDA thermistor".
  4395. This can be caused also if PINDA thermistor connection is broken or PINDA temperature is lower than PINDA_MINTEMP.
  4396. #### Example
  4397. ```
  4398. G76
  4399. echo PINDA probe calibration start
  4400. echo start temperature: 35.0°
  4401. echo ...
  4402. echo PINDA temperature -- Z shift (mm): 0.---
  4403. ```
  4404. */
  4405. case 76:
  4406. {
  4407. #ifdef PINDA_THERMISTOR
  4408. if (!has_temperature_compensation())
  4409. {
  4410. SERIAL_ECHOLNPGM("No PINDA thermistor");
  4411. break;
  4412. }
  4413. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  4414. //we need to know accurate position of first calibration point
  4415. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  4416. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first.")); ////MSG_RUN_XYZ c=20 r=4
  4417. break;
  4418. }
  4419. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  4420. {
  4421. // We don't know where we are! HOME!
  4422. // Push the commands to the front of the message queue in the reverse order!
  4423. // There shall be always enough space reserved for these commands.
  4424. repeatcommand_front(); // repeat G76 with all its parameters
  4425. enquecommand_front_P(G28W0);
  4426. break;
  4427. }
  4428. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  4429. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  4430. if (result)
  4431. {
  4432. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4433. plan_buffer_line_curposXYZE(3000 / 60);
  4434. current_position[Z_AXIS] = 50;
  4435. current_position[Y_AXIS] = 180;
  4436. plan_buffer_line_curposXYZE(3000 / 60);
  4437. st_synchronize();
  4438. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  4439. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4440. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4441. plan_buffer_line_curposXYZE(3000 / 60);
  4442. st_synchronize();
  4443. gcode_G28(false, false, true);
  4444. }
  4445. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  4446. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  4447. current_position[Z_AXIS] = 100;
  4448. plan_buffer_line_curposXYZE(3000 / 60);
  4449. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  4450. lcd_temp_cal_show_result(false);
  4451. break;
  4452. }
  4453. }
  4454. st_synchronize();
  4455. homing_flag = true; // keep homing on to avoid babystepping while the LCD is enabled
  4456. lcd_update_enable(true);
  4457. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  4458. float zero_z;
  4459. int z_shift = 0; //unit: steps
  4460. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  4461. if (start_temp < 35) start_temp = 35;
  4462. if (start_temp < current_temperature_pinda) start_temp += 5;
  4463. printf_P(_N("start temperature: %.1f\n"), start_temp);
  4464. // setTargetHotend(200, 0);
  4465. setTargetBed(70 + (start_temp - 30));
  4466. custom_message_type = CustomMsg::TempCal;
  4467. custom_message_state = 1;
  4468. lcd_setstatuspgm(_T(MSG_PINDA_CALIBRATION));
  4469. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4470. plan_buffer_line_curposXYZE(3000 / 60);
  4471. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4472. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4473. plan_buffer_line_curposXYZE(3000 / 60);
  4474. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4475. plan_buffer_line_curposXYZE(3000 / 60);
  4476. st_synchronize();
  4477. while (current_temperature_pinda < start_temp)
  4478. {
  4479. delay_keep_alive(1000);
  4480. serialecho_temperatures();
  4481. }
  4482. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4483. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4484. plan_buffer_line_curposXYZE(3000 / 60);
  4485. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4486. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4487. plan_buffer_line_curposXYZE(3000 / 60);
  4488. st_synchronize();
  4489. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  4490. if (find_z_result == false) {
  4491. lcd_temp_cal_show_result(find_z_result);
  4492. homing_flag = false;
  4493. break;
  4494. }
  4495. zero_z = current_position[Z_AXIS];
  4496. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4497. int i = -1; for (; i < 5; i++)
  4498. {
  4499. float temp = (40 + i * 5);
  4500. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  4501. if (i >= 0) {
  4502. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i, z_shift);
  4503. }
  4504. if (start_temp <= temp) break;
  4505. }
  4506. for (i++; i < 5; i++)
  4507. {
  4508. float temp = (40 + i * 5);
  4509. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4510. custom_message_state = i + 2;
  4511. setTargetBed(50 + 10 * (temp - 30) / 5);
  4512. // setTargetHotend(255, 0);
  4513. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4514. plan_buffer_line_curposXYZE(3000 / 60);
  4515. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4516. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4517. plan_buffer_line_curposXYZE(3000 / 60);
  4518. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4519. plan_buffer_line_curposXYZE(3000 / 60);
  4520. st_synchronize();
  4521. while (current_temperature_pinda < temp)
  4522. {
  4523. delay_keep_alive(1000);
  4524. serialecho_temperatures();
  4525. }
  4526. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4527. plan_buffer_line_curposXYZE(3000 / 60);
  4528. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4529. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4530. plan_buffer_line_curposXYZE(3000 / 60);
  4531. st_synchronize();
  4532. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  4533. if (find_z_result == false) {
  4534. lcd_temp_cal_show_result(find_z_result);
  4535. break;
  4536. }
  4537. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4538. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  4539. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i, z_shift);
  4540. }
  4541. lcd_temp_cal_show_result(true);
  4542. homing_flag = false;
  4543. #else //PINDA_THERMISTOR
  4544. setTargetBed(PINDA_MIN_T);
  4545. float zero_z;
  4546. int z_shift = 0; //unit: steps
  4547. int t_c; // temperature
  4548. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4549. // We don't know where we are! HOME!
  4550. // Push the commands to the front of the message queue in the reverse order!
  4551. // There shall be always enough space reserved for these commands.
  4552. repeatcommand_front(); // repeat G76 with all its parameters
  4553. enquecommand_front_P(G28W0);
  4554. break;
  4555. }
  4556. puts_P(_N("PINDA probe calibration start"));
  4557. custom_message_type = CustomMsg::TempCal;
  4558. custom_message_state = 1;
  4559. lcd_setstatuspgm(_T(MSG_PINDA_CALIBRATION));
  4560. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4561. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4562. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4563. plan_buffer_line_curposXYZE(3000 / 60);
  4564. st_synchronize();
  4565. while (fabs(degBed() - PINDA_MIN_T) > 1) {
  4566. delay_keep_alive(1000);
  4567. serialecho_temperatures();
  4568. }
  4569. //enquecommand_P(PSTR("M190 S50"));
  4570. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4571. delay_keep_alive(1000);
  4572. serialecho_temperatures();
  4573. }
  4574. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4575. current_position[Z_AXIS] = 5;
  4576. plan_buffer_line_curposXYZE(3000 / 60);
  4577. current_position[X_AXIS] = BED_X0;
  4578. current_position[Y_AXIS] = BED_Y0;
  4579. plan_buffer_line_curposXYZE(3000 / 60);
  4580. st_synchronize();
  4581. find_bed_induction_sensor_point_z(-1.f);
  4582. zero_z = current_position[Z_AXIS];
  4583. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4584. for (int i = 0; i<5; i++) {
  4585. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4586. custom_message_state = i + 2;
  4587. t_c = 60 + i * 10;
  4588. setTargetBed(t_c);
  4589. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4590. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4591. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4592. plan_buffer_line_curposXYZE(3000 / 60);
  4593. st_synchronize();
  4594. while (degBed() < t_c) {
  4595. delay_keep_alive(1000);
  4596. serialecho_temperatures();
  4597. }
  4598. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4599. delay_keep_alive(1000);
  4600. serialecho_temperatures();
  4601. }
  4602. current_position[Z_AXIS] = 5;
  4603. plan_buffer_line_curposXYZE(3000 / 60);
  4604. current_position[X_AXIS] = BED_X0;
  4605. current_position[Y_AXIS] = BED_Y0;
  4606. plan_buffer_line_curposXYZE(3000 / 60);
  4607. st_synchronize();
  4608. find_bed_induction_sensor_point_z(-1.f);
  4609. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4610. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  4611. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i, z_shift);
  4612. }
  4613. custom_message_type = CustomMsg::Status;
  4614. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  4615. puts_P(_N("Temperature calibration done."));
  4616. disable_x();
  4617. disable_y();
  4618. disable_z();
  4619. disable_e0();
  4620. disable_e1();
  4621. disable_e2();
  4622. setTargetBed(0); //set bed target temperature back to 0
  4623. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PINDA_CALIBRATION_DONE));
  4624. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  4625. lcd_update_enable(true);
  4626. lcd_update(2);
  4627. #endif //PINDA_THERMISTOR
  4628. }
  4629. break;
  4630. /*!
  4631. ### G80 - Mesh-based Z probe <a href="https://reprap.org/wiki/G-code#G80:_Mesh-based_Z_probe">G80: Mesh-based Z probe</a>
  4632. Default 3x3 grid can be changed on MK2.5/s and MK3/s to 7x7 grid.
  4633. #### Usage
  4634. G80 [ N | R | V | L | R | F | B ]
  4635. #### Parameters
  4636. - `N` - Number of mesh points on x axis. Default is 3. Valid values are 3 and 7.
  4637. - `R` - Probe retries. Default 3 max. 10
  4638. - `V` - Verbosity level 1=low, 10=mid, 20=high. It only can be used if the firmware has been compiled with SUPPORT_VERBOSITY active.
  4639. Using the following parameters enables additional "manual" bed leveling correction. Valid values are -100 microns to 100 microns.
  4640. #### Additional Parameters
  4641. - `L` - Left Bed Level correct value in um.
  4642. - `R` - Right Bed Level correct value in um.
  4643. - `F` - Front Bed Level correct value in um.
  4644. - `B` - Back Bed Level correct value in um.
  4645. */
  4646. /*
  4647. * Probes a grid and produces a mesh to compensate for variable bed height
  4648. * The S0 report the points as below
  4649. * +----> X-axis
  4650. * |
  4651. * |
  4652. * v Y-axis
  4653. */
  4654. case 80: {
  4655. gcode_G80();
  4656. }
  4657. break;
  4658. /*!
  4659. ### G81 - Mesh bed leveling status <a href="https://reprap.org/wiki/G-code#G81:_Mesh_bed_leveling_status">G81: Mesh bed leveling status</a>
  4660. Prints mesh bed leveling status and bed profile if activated.
  4661. */
  4662. case 81:
  4663. if (mbl.active) {
  4664. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4665. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4666. SERIAL_PROTOCOL(',');
  4667. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4668. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4669. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4670. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4671. for (uint8_t y = MESH_NUM_Y_POINTS; y-- > 0;) {
  4672. for (uint8_t x = 0; x < MESH_NUM_X_POINTS; x++) {
  4673. SERIAL_PROTOCOLPGM(" ");
  4674. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4675. }
  4676. SERIAL_PROTOCOLLN();
  4677. }
  4678. }
  4679. else
  4680. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4681. break;
  4682. #if 0
  4683. /*!
  4684. ### G82: Single Z probe at current location - Not active <a href="https://reprap.org/wiki/G-code#G82:_Single_Z_probe_at_current_location">G82: Single Z probe at current location</a>
  4685. WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4686. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4687. */
  4688. case 82:
  4689. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4690. int l_feedmultiply = setup_for_endstop_move();
  4691. find_bed_induction_sensor_point_z();
  4692. clean_up_after_endstop_move(l_feedmultiply);
  4693. SERIAL_PROTOCOLPGM("Bed found at: ");
  4694. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4695. SERIAL_PROTOCOLPGM("\n");
  4696. break;
  4697. /*!
  4698. ### G83: Babystep in Z and store to EEPROM - Not active <a href="https://reprap.org/wiki/G-code#G83:_Babystep_in_Z_and_store_to_EEPROM">G83: Babystep in Z and store to EEPROM</a>
  4699. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4700. */
  4701. case 83:
  4702. {
  4703. int babystepz = code_seen('S') ? code_value() : 0;
  4704. int BabyPosition = code_seen('P') ? code_value() : 0;
  4705. if (babystepz != 0) {
  4706. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4707. // Is the axis indexed starting with zero or one?
  4708. if (BabyPosition > 4) {
  4709. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4710. }else{
  4711. // Save it to the eeprom
  4712. babystepLoadZ = babystepz;
  4713. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z0 + BabyPosition, babystepLoadZ);
  4714. // adjust the Z
  4715. babystepsTodoZadd(babystepLoadZ);
  4716. }
  4717. }
  4718. }
  4719. break;
  4720. /*!
  4721. ### G84: UNDO Babystep Z (move Z axis back) - Not active <a href="https://reprap.org/wiki/G-code#G84:_UNDO_Babystep_Z_.28move_Z_axis_back.29">G84: UNDO Babystep Z (move Z axis back)</a>
  4722. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4723. */
  4724. case 84:
  4725. babystepsTodoZsubtract(babystepLoadZ);
  4726. // babystepLoadZ = 0;
  4727. break;
  4728. /*!
  4729. ### G85: Pick best babystep - Not active <a href="https://reprap.org/wiki/G-code#G85:_Pick_best_babystep">G85: Pick best babystep</a>
  4730. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4731. */
  4732. case 85:
  4733. lcd_pick_babystep();
  4734. break;
  4735. #endif
  4736. /*!
  4737. ### G86 - Disable babystep correction after home <a href="https://reprap.org/wiki/G-code#G86:_Disable_babystep_correction_after_home">G86: Disable babystep correction after home</a>
  4738. This G-code will be performed at the start of a calibration script.
  4739. (Prusa3D specific)
  4740. */
  4741. case 86:
  4742. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4743. break;
  4744. /*!
  4745. ### G87 - Enable babystep correction after home <a href="https://reprap.org/wiki/G-code#G87:_Enable_babystep_correction_after_home">G87: Enable babystep correction after home</a>
  4746. This G-code will be performed at the end of a calibration script.
  4747. (Prusa3D specific)
  4748. */
  4749. case 87:
  4750. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4751. break;
  4752. /*!
  4753. ### G88 - Reserved <a href="https://reprap.org/wiki/G-code#G88:_Reserved">G88: Reserved</a>
  4754. Currently has no effect.
  4755. */
  4756. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4757. case 88:
  4758. break;
  4759. #endif // ENABLE_MESH_BED_LEVELING
  4760. /*!
  4761. ### G90 - Switch off relative mode <a href="https://reprap.org/wiki/G-code#G90:_Set_to_Absolute_Positioning">G90: Set to Absolute Positioning</a>
  4762. All coordinates from now on are absolute relative to the origin of the machine. E axis is left intact.
  4763. */
  4764. case 90: {
  4765. axis_relative_modes &= ~(X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK);
  4766. }
  4767. break;
  4768. /*!
  4769. ### G91 - Switch on relative mode <a href="https://reprap.org/wiki/G-code#G91:_Set_to_Relative_Positioning">G91: Set to Relative Positioning</a>
  4770. All coordinates from now on are relative to the last position. E axis is left intact.
  4771. */
  4772. case 91: {
  4773. axis_relative_modes |= X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK;
  4774. }
  4775. break;
  4776. /*!
  4777. ### G92 - Set position <a href="https://reprap.org/wiki/G-code#G92:_Set_Position">G92: Set Position</a>
  4778. It is used for setting the current position of each axis. The parameters are always absolute to the origin.
  4779. If a parameter is omitted, that axis will not be affected.
  4780. If `X`, `Y`, or `Z` axis are specified, the move afterwards might stutter because of Mesh Bed Leveling. `E` axis is not affected if the target position is 0 (`G92 E0`).
  4781. A G92 without coordinates will reset all axes to zero on some firmware. This is not the case for Prusa-Firmware!
  4782. #### Usage
  4783. G92 [ X | Y | Z | E ]
  4784. #### Parameters
  4785. - `X` - new X axis position
  4786. - `Y` - new Y axis position
  4787. - `Z` - new Z axis position
  4788. - `E` - new extruder position
  4789. */
  4790. case 92: {
  4791. gcode_G92();
  4792. }
  4793. break;
  4794. #ifdef PRUSA_FARM
  4795. /*!
  4796. ### G98 - Activate farm mode <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode</a>
  4797. Enable Prusa-specific Farm functions and g-code.
  4798. See Internal Prusa commands.
  4799. */
  4800. case 98:
  4801. farm_gcode_g98();
  4802. break;
  4803. /*! ### G99 - Deactivate farm mode <a href="https://reprap.org/wiki/G-code#G99:_Deactivate_farm_mode">G99: Deactivate farm mode</a>
  4804. Disables Prusa-specific Farm functions and g-code.
  4805. */
  4806. case 99:
  4807. farm_gcode_g99();
  4808. break;
  4809. #endif //PRUSA_FARM
  4810. default:
  4811. printf_P(MSG_UNKNOWN_CODE, 'G', cmdbuffer + bufindr + CMDHDRSIZE);
  4812. }
  4813. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4814. gcode_in_progress = 0;
  4815. } // end if(code_seen('G'))
  4816. /*!
  4817. ### End of G-Codes
  4818. */
  4819. /*!
  4820. ---------------------------------------------------------------------------------
  4821. # M Commands
  4822. */
  4823. else if(code_seen('M'))
  4824. {
  4825. int index;
  4826. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4827. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4828. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4829. printf_P(PSTR("Invalid M code: %s\n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4830. } else
  4831. {
  4832. mcode_in_progress = code_value_short();
  4833. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4834. switch(mcode_in_progress)
  4835. {
  4836. /*!
  4837. ### M17 - Enable all axes <a href="https://reprap.org/wiki/G-code#M17:_Enable.2FPower_all_stepper_motors">M17: Enable/Power all stepper motors</a>
  4838. */
  4839. case 17:
  4840. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=20
  4841. enable_x();
  4842. enable_y();
  4843. enable_z();
  4844. enable_e0();
  4845. enable_e1();
  4846. enable_e2();
  4847. break;
  4848. #ifdef SDSUPPORT
  4849. /*!
  4850. ### M20 - SD Card file list <a href="https://reprap.org/wiki/G-code#M20:_List_SD_card">M20: List SD card</a>
  4851. #### Usage
  4852. M20 [ L | T ]
  4853. #### Parameters
  4854. - `T` - Report timestamps as well. The value is one uint32_t encoded as hex. Requires host software parsing (Cap:EXTENDED_M20).
  4855. - `L` - Reports long filenames instead of just short filenames. Requires host software parsing (Cap:EXTENDED_M20).
  4856. */
  4857. case 20:
  4858. KEEPALIVE_STATE(NOT_BUSY); // do not send busy messages during listing. Inhibits the output of manage_heater()
  4859. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4860. card.ls(CardReader::ls_param(code_seen('L'), code_seen('T')));
  4861. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4862. break;
  4863. /*!
  4864. ### M21 - Init SD card <a href="https://reprap.org/wiki/G-code#M21:_Initialize_SD_card">M21: Initialize SD card</a>
  4865. */
  4866. case 21:
  4867. card.initsd();
  4868. break;
  4869. /*!
  4870. ### M22 - Release SD card <a href="https://reprap.org/wiki/G-code#M22:_Release_SD_card">M22: Release SD card</a>
  4871. */
  4872. case 22:
  4873. card.release();
  4874. break;
  4875. /*!
  4876. ### M23 - Select file <a href="https://reprap.org/wiki/G-code#M23:_Select_SD_file">M23: Select SD file</a>
  4877. #### Usage
  4878. M23 [filename]
  4879. */
  4880. case 23:
  4881. starpos = (strchr(strchr_pointer + 4,'*'));
  4882. if(starpos!=NULL)
  4883. *(starpos)='\0';
  4884. card.openFileReadFilteredGcode(strchr_pointer + 4, true);
  4885. break;
  4886. /*!
  4887. ### M24 - Start SD print <a href="https://reprap.org/wiki/G-code#M24:_Start.2Fresume_SD_print">M24: Start/resume SD print</a>
  4888. */
  4889. case 24:
  4890. if (isPrintPaused)
  4891. lcd_resume_print();
  4892. else
  4893. {
  4894. if (!card.get_sdpos())
  4895. {
  4896. // A new print has started from scratch, reset stats
  4897. failstats_reset_print();
  4898. sdpos_atomic = 0;
  4899. #ifndef LA_NOCOMPAT
  4900. la10c_reset();
  4901. #endif
  4902. }
  4903. card.startFileprint();
  4904. starttime=_millis();
  4905. }
  4906. break;
  4907. /*!
  4908. ### M26 - Set SD index <a href="https://reprap.org/wiki/G-code#M26:_Set_SD_position">M26: Set SD position</a>
  4909. Set position in SD card file to index in bytes.
  4910. This command is expected to be called after M23 and before M24.
  4911. Otherwise effect of this command is undefined.
  4912. #### Usage
  4913. M26 [ S ]
  4914. #### Parameters
  4915. - `S` - Index in bytes
  4916. */
  4917. case 26:
  4918. if(card.cardOK && code_seen('S')) {
  4919. long index = code_value_long();
  4920. card.setIndex(index);
  4921. // We don't disable interrupt during update of sdpos_atomic
  4922. // as we expect, that SD card print is not active in this moment
  4923. sdpos_atomic = index;
  4924. }
  4925. break;
  4926. /*!
  4927. ### M27 - Get SD status <a href="https://reprap.org/wiki/G-code#M27:_Report_SD_print_status">M27: Report SD print status</a>
  4928. #### Usage
  4929. M27 [ P ]
  4930. #### Parameters
  4931. - `P` - Show full SFN path instead of LFN only.
  4932. */
  4933. case 27:
  4934. card.getStatus(code_seen('P'));
  4935. break;
  4936. /*!
  4937. ### M28 - Start SD write <a href="https://reprap.org/wiki/G-code#M28:_Begin_write_to_SD_card">M28: Begin write to SD card</a>
  4938. */
  4939. case 28:
  4940. starpos = (strchr(strchr_pointer + 4,'*'));
  4941. if(starpos != NULL){
  4942. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4943. strchr_pointer = strchr(npos,' ') + 1;
  4944. *(starpos) = '\0';
  4945. }
  4946. card.openFileWrite(strchr_pointer+4);
  4947. break;
  4948. /*! ### M29 - Stop SD write <a href="https://reprap.org/wiki/G-code#M29:_Stop_writing_to_SD_card">M29: Stop writing to SD card</a>
  4949. Stops writing to the SD file signaling the end of the uploaded file. It is processed very early and it's not written to the card.
  4950. */
  4951. case 29:
  4952. //processed in write to file routine above
  4953. //card,saving = false;
  4954. break;
  4955. /*!
  4956. ### M30 - Delete file <a href="https://reprap.org/wiki/G-code#M30:_Delete_a_file_on_the_SD_card">M30: Delete a file on the SD card</a>
  4957. #### Usage
  4958. M30 [filename]
  4959. */
  4960. case 30:
  4961. if (card.cardOK){
  4962. card.closefile();
  4963. starpos = (strchr(strchr_pointer + 4,'*'));
  4964. if(starpos != NULL){
  4965. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4966. strchr_pointer = strchr(npos,' ') + 1;
  4967. *(starpos) = '\0';
  4968. }
  4969. card.removeFile(strchr_pointer + 4);
  4970. }
  4971. break;
  4972. /*!
  4973. ### M32 - Select file and start SD print <a href="https://reprap.org/wiki/G-code#M32:_Select_file_and_start_SD_print">M32: Select file and start SD print</a>
  4974. @todo What are the parameters P and S for in M32?
  4975. */
  4976. case 32:
  4977. {
  4978. if(card.sdprinting) {
  4979. st_synchronize();
  4980. }
  4981. starpos = (strchr(strchr_pointer + 4,'*'));
  4982. const char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4983. if(namestartpos==NULL)
  4984. {
  4985. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4986. }
  4987. else
  4988. namestartpos++; //to skip the '!'
  4989. if(starpos!=NULL)
  4990. *(starpos)='\0';
  4991. bool call_procedure=(code_seen('P'));
  4992. if(strchr_pointer>namestartpos)
  4993. call_procedure=false; //false alert, 'P' found within filename
  4994. if( card.cardOK )
  4995. {
  4996. card.openFileReadFilteredGcode(namestartpos,!call_procedure);
  4997. if(code_seen('S'))
  4998. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4999. card.setIndex(code_value_long());
  5000. card.startFileprint();
  5001. if(!call_procedure)
  5002. {
  5003. if(!card.get_sdpos())
  5004. {
  5005. // A new print has started from scratch, reset stats
  5006. failstats_reset_print();
  5007. sdpos_atomic = 0;
  5008. #ifndef LA_NOCOMPAT
  5009. la10c_reset();
  5010. #endif
  5011. }
  5012. starttime=_millis(); // procedure calls count as normal print time.
  5013. }
  5014. }
  5015. } break;
  5016. /*!
  5017. ### M928 - Start SD logging <a href="https://reprap.org/wiki/G-code#M928:_Start_SD_logging">M928: Start SD logging</a>
  5018. #### Usage
  5019. M928 [filename]
  5020. */
  5021. case 928:
  5022. starpos = (strchr(strchr_pointer + 5,'*'));
  5023. if(starpos != NULL){
  5024. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  5025. strchr_pointer = strchr(npos,' ') + 1;
  5026. *(starpos) = '\0';
  5027. }
  5028. card.openLogFile(strchr_pointer+5);
  5029. break;
  5030. #endif //SDSUPPORT
  5031. /*!
  5032. ### M31 - Report current print time <a href="https://reprap.org/wiki/G-code#M31:_Output_time_since_last_M109_or_SD_card_start_to_serial">M31: Output time since last M109 or SD card start to serial</a>
  5033. */
  5034. case 31: //M31 take time since the start of the SD print or an M109 command
  5035. {
  5036. stoptime=_millis();
  5037. char time[30];
  5038. unsigned long t=(stoptime-starttime)/1000;
  5039. int sec,min;
  5040. min=t/60;
  5041. sec=t%60;
  5042. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  5043. SERIAL_ECHO_START;
  5044. SERIAL_ECHOLN(time);
  5045. lcd_setstatus(time);
  5046. autotempShutdown();
  5047. }
  5048. break;
  5049. /*!
  5050. ### M42 - Set pin state <a href="https://reprap.org/wiki/G-code#M42:_Switch_I.2FO_pin">M42: Switch I/O pin</a>
  5051. #### Usage
  5052. M42 [ P | S ]
  5053. #### Parameters
  5054. - `P` - Pin number.
  5055. - `S` - Pin value. If the pin is analog, values are from 0 to 255. If the pin is digital, values are from 0 to 1.
  5056. */
  5057. case 42:
  5058. if (code_seen('S'))
  5059. {
  5060. uint8_t pin_status = code_value_uint8();
  5061. int8_t pin_number = LED_PIN;
  5062. if (code_seen('P'))
  5063. pin_number = code_value_uint8();
  5064. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(sensitive_pins[0])); i++)
  5065. {
  5066. if ((int8_t)pgm_read_byte(&sensitive_pins[i]) == pin_number)
  5067. {
  5068. pin_number = -1;
  5069. break;
  5070. }
  5071. }
  5072. #if defined(FAN_PIN) && FAN_PIN > -1
  5073. if (pin_number == FAN_PIN)
  5074. fanSpeed = pin_status;
  5075. #endif
  5076. if (pin_number > -1)
  5077. {
  5078. pinMode(pin_number, OUTPUT);
  5079. digitalWrite(pin_number, pin_status);
  5080. analogWrite(pin_number, pin_status);
  5081. }
  5082. }
  5083. break;
  5084. /*!
  5085. ### M44 - Reset the bed skew and offset calibration <a href="https://reprap.org/wiki/G-code#M44:_Reset_the_bed_skew_and_offset_calibration">M44: Reset the bed skew and offset calibration</a>
  5086. */
  5087. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  5088. // Reset the baby step value and the baby step applied flag.
  5089. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  5090. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  5091. // Reset the skew and offset in both RAM and EEPROM.
  5092. reset_bed_offset_and_skew();
  5093. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  5094. // the planner will not perform any adjustments in the XY plane.
  5095. // Wait for the motors to stop and update the current position with the absolute values.
  5096. world2machine_revert_to_uncorrected();
  5097. break;
  5098. /*!
  5099. ### M45 - Bed skew and offset with manual Z up <a href="https://reprap.org/wiki/G-code#M45:_Bed_skew_and_offset_with_manual_Z_up">M45: Bed skew and offset with manual Z up</a>
  5100. #### Usage
  5101. M45 [ V ]
  5102. #### Parameters
  5103. - `V` - Verbosity level 1, 10 and 20 (low, mid, high). Only when SUPPORT_VERBOSITY is defined. Optional.
  5104. - `Z` - If it is provided, only Z calibration will run. Otherwise full calibration is executed.
  5105. */
  5106. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  5107. {
  5108. int8_t verbosity_level = 0;
  5109. bool only_Z = code_seen('Z');
  5110. #ifdef SUPPORT_VERBOSITY
  5111. if (code_seen('V'))
  5112. {
  5113. // Just 'V' without a number counts as V1.
  5114. char c = strchr_pointer[1];
  5115. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5116. }
  5117. #endif //SUPPORT_VERBOSITY
  5118. gcode_M45(only_Z, verbosity_level);
  5119. }
  5120. break;
  5121. /*!
  5122. ### M46 - Show the assigned IP address <a href="https://reprap.org/wiki/G-code#M46:_Show_the_assigned_IP_address">M46: Show the assigned IP address.</a>
  5123. */
  5124. case 46:
  5125. {
  5126. // M46: Prusa3D: Show the assigned IP address.
  5127. if (card.ToshibaFlashAir_isEnabled()) {
  5128. uint8_t ip[4];
  5129. if (card.ToshibaFlashAir_GetIP(ip)) {
  5130. // SERIAL_PROTOCOLPGM("Toshiba FlashAir current IP: ");
  5131. SERIAL_PROTOCOL(uint8_t(ip[0]));
  5132. SERIAL_PROTOCOL('.');
  5133. SERIAL_PROTOCOL(uint8_t(ip[1]));
  5134. SERIAL_PROTOCOL('.');
  5135. SERIAL_PROTOCOL(uint8_t(ip[2]));
  5136. SERIAL_PROTOCOL('.');
  5137. SERIAL_PROTOCOLLN(uint8_t(ip[3]));
  5138. } else {
  5139. SERIAL_PROTOCOLPGM("?Toshiba FlashAir GetIP failed\n");
  5140. }
  5141. } else {
  5142. SERIAL_PROTOCOLLNPGM("n/a");
  5143. }
  5144. break;
  5145. }
  5146. /*!
  5147. ### M47 - Show end stops dialog on the display <a href="https://reprap.org/wiki/G-code#M47:_Show_end_stops_dialog_on_the_display">M47: Show end stops dialog on the display</a>
  5148. */
  5149. case 47:
  5150. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5151. lcd_diag_show_end_stops();
  5152. KEEPALIVE_STATE(IN_HANDLER);
  5153. break;
  5154. #if 0
  5155. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  5156. {
  5157. // Disable the default update procedure of the display. We will do a modal dialog.
  5158. lcd_update_enable(false);
  5159. // Let the planner use the uncorrected coordinates.
  5160. mbl.reset();
  5161. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  5162. // the planner will not perform any adjustments in the XY plane.
  5163. // Wait for the motors to stop and update the current position with the absolute values.
  5164. world2machine_revert_to_uncorrected();
  5165. // Move the print head close to the bed.
  5166. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5167. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5168. st_synchronize();
  5169. // Home in the XY plane.
  5170. set_destination_to_current();
  5171. int l_feedmultiply = setup_for_endstop_move();
  5172. home_xy();
  5173. int8_t verbosity_level = 0;
  5174. if (code_seen('V')) {
  5175. // Just 'V' without a number counts as V1.
  5176. char c = strchr_pointer[1];
  5177. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5178. }
  5179. bool success = scan_bed_induction_points(verbosity_level);
  5180. clean_up_after_endstop_move(l_feedmultiply);
  5181. // Print head up.
  5182. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5183. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5184. st_synchronize();
  5185. lcd_update_enable(true);
  5186. break;
  5187. }
  5188. #endif
  5189. #ifdef ENABLE_AUTO_BED_LEVELING
  5190. #ifdef Z_PROBE_REPEATABILITY_TEST
  5191. /*!
  5192. ### M48 - Z-Probe repeatability measurement function <a href="https://reprap.org/wiki/G-code#M48:_Measure_Z-Probe_repeatability">M48: Measure Z-Probe repeatability</a>
  5193. This function assumes the bed has been homed. Specifically, that a G28 command as been issued prior to invoking the M48 Z-Probe repeatability measurement function. Any information generated by a prior G29 Bed leveling command will be lost and needs to be regenerated.
  5194. The number of samples will default to 10 if not specified. You can use upper or lower case letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital N for its communication protocol and will get horribly confused if you send it a capital N.
  5195. @todo Why would you check for both uppercase and lowercase? Seems wasteful.
  5196. #### Usage
  5197. M48 [ n | X | Y | V | L ]
  5198. #### Parameters
  5199. - `n` - Number of samples. Valid values 4-50
  5200. - `X` - X position for samples
  5201. - `Y` - Y position for samples
  5202. - `V` - Verbose level. Valid values 1-4
  5203. - `L` - Legs of movementprior to doing probe. Valid values 1-15
  5204. */
  5205. case 48: // M48 Z-Probe repeatability
  5206. {
  5207. #if Z_MIN_PIN == -1
  5208. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  5209. #endif
  5210. double sum=0.0;
  5211. double mean=0.0;
  5212. double sigma=0.0;
  5213. double sample_set[50];
  5214. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  5215. double X_current, Y_current, Z_current;
  5216. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  5217. if (code_seen('V') || code_seen('v')) {
  5218. verbose_level = code_value();
  5219. if (verbose_level<0 || verbose_level>4 ) {
  5220. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  5221. goto Sigma_Exit;
  5222. }
  5223. }
  5224. if (verbose_level > 0) {
  5225. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  5226. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  5227. }
  5228. if (code_seen('n')) {
  5229. n_samples = code_value();
  5230. if (n_samples<4 || n_samples>50 ) {
  5231. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  5232. goto Sigma_Exit;
  5233. }
  5234. }
  5235. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  5236. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  5237. Z_current = st_get_position_mm(Z_AXIS);
  5238. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5239. ext_position = st_get_position_mm(E_AXIS);
  5240. if (code_seen('X') || code_seen('x') ) {
  5241. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  5242. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  5243. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  5244. goto Sigma_Exit;
  5245. }
  5246. }
  5247. if (code_seen('Y') || code_seen('y') ) {
  5248. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  5249. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  5250. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  5251. goto Sigma_Exit;
  5252. }
  5253. }
  5254. if (code_seen('L') || code_seen('l') ) {
  5255. n_legs = code_value();
  5256. if ( n_legs==1 )
  5257. n_legs = 2;
  5258. if ( n_legs<0 || n_legs>15 ) {
  5259. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  5260. goto Sigma_Exit;
  5261. }
  5262. }
  5263. //
  5264. // Do all the preliminary setup work. First raise the probe.
  5265. //
  5266. st_synchronize();
  5267. plan_bed_level_matrix.set_to_identity();
  5268. plan_buffer_line( X_current, Y_current, Z_start_location,
  5269. ext_position,
  5270. homing_feedrate[Z_AXIS]/60,
  5271. active_extruder);
  5272. st_synchronize();
  5273. //
  5274. // Now get everything to the specified probe point So we can safely do a probe to
  5275. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  5276. // use that as a starting point for each probe.
  5277. //
  5278. if (verbose_level > 2)
  5279. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  5280. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5281. ext_position,
  5282. homing_feedrate[X_AXIS]/60,
  5283. active_extruder);
  5284. st_synchronize();
  5285. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  5286. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  5287. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5288. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  5289. //
  5290. // OK, do the inital probe to get us close to the bed.
  5291. // Then retrace the right amount and use that in subsequent probes
  5292. //
  5293. int l_feedmultiply = setup_for_endstop_move();
  5294. run_z_probe();
  5295. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5296. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5297. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5298. ext_position,
  5299. homing_feedrate[X_AXIS]/60,
  5300. active_extruder);
  5301. st_synchronize();
  5302. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5303. for( n=0; n<n_samples; n++) {
  5304. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  5305. if ( n_legs) {
  5306. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  5307. int rotational_direction, l;
  5308. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  5309. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  5310. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  5311. //SERIAL_ECHOPAIR("starting radius: ",radius);
  5312. //SERIAL_ECHOPAIR(" theta: ",theta);
  5313. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  5314. //SERIAL_PROTOCOLLNPGM("");
  5315. for( l=0; l<n_legs-1; l++) {
  5316. if (rotational_direction==1)
  5317. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5318. else
  5319. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5320. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  5321. if ( radius<0.0 )
  5322. radius = -radius;
  5323. X_current = X_probe_location + cos(theta) * radius;
  5324. Y_current = Y_probe_location + sin(theta) * radius;
  5325. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  5326. X_current = X_MIN_POS;
  5327. if ( X_current>X_MAX_POS)
  5328. X_current = X_MAX_POS;
  5329. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  5330. Y_current = Y_MIN_POS;
  5331. if ( Y_current>Y_MAX_POS)
  5332. Y_current = Y_MAX_POS;
  5333. if (verbose_level>3 ) {
  5334. SERIAL_ECHOPAIR("x: ", X_current);
  5335. SERIAL_ECHOPAIR("y: ", Y_current);
  5336. SERIAL_PROTOCOLLNPGM("");
  5337. }
  5338. do_blocking_move_to( X_current, Y_current, Z_current );
  5339. }
  5340. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5341. }
  5342. int l_feedmultiply = setup_for_endstop_move();
  5343. run_z_probe();
  5344. sample_set[n] = current_position[Z_AXIS];
  5345. //
  5346. // Get the current mean for the data points we have so far
  5347. //
  5348. sum=0.0;
  5349. for( j=0; j<=n; j++) {
  5350. sum = sum + sample_set[j];
  5351. }
  5352. mean = sum / (double (n+1));
  5353. //
  5354. // Now, use that mean to calculate the standard deviation for the
  5355. // data points we have so far
  5356. //
  5357. sum=0.0;
  5358. for( j=0; j<=n; j++) {
  5359. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5360. }
  5361. sigma = sqrt( sum / (double (n+1)) );
  5362. if (verbose_level > 1) {
  5363. SERIAL_PROTOCOL(n+1);
  5364. SERIAL_PROTOCOL(" of ");
  5365. SERIAL_PROTOCOL(n_samples);
  5366. SERIAL_PROTOCOLPGM(" z: ");
  5367. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5368. }
  5369. if (verbose_level > 2) {
  5370. SERIAL_PROTOCOL(" mean: ");
  5371. SERIAL_PROTOCOL_F(mean,6);
  5372. SERIAL_PROTOCOL(" sigma: ");
  5373. SERIAL_PROTOCOL_F(sigma,6);
  5374. }
  5375. if (verbose_level > 0)
  5376. SERIAL_PROTOCOLPGM("\n");
  5377. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5378. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5379. st_synchronize();
  5380. }
  5381. _delay(1000);
  5382. clean_up_after_endstop_move(l_feedmultiply);
  5383. // enable_endstops(true);
  5384. if (verbose_level > 0) {
  5385. SERIAL_PROTOCOLPGM("Mean: ");
  5386. SERIAL_PROTOCOL_F(mean, 6);
  5387. SERIAL_PROTOCOLPGM("\n");
  5388. }
  5389. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5390. SERIAL_PROTOCOL_F(sigma, 6);
  5391. SERIAL_PROTOCOLPGM("\n\n");
  5392. Sigma_Exit:
  5393. break;
  5394. }
  5395. #endif // Z_PROBE_REPEATABILITY_TEST
  5396. #endif // ENABLE_AUTO_BED_LEVELING
  5397. /*!
  5398. ### M73 - Set/get print progress <a href="https://reprap.org/wiki/G-code#M73:_Set.2FGet_build_percentage">M73: Set/Get build percentage</a>
  5399. #### Usage
  5400. M73 [ P | R | Q | S | C | D ]
  5401. #### Parameters
  5402. - `P` - Percent in normal mode
  5403. - `R` - Time remaining in normal mode
  5404. - `Q` - Percent in silent mode
  5405. - `S` - Time in silent mode
  5406. - `C` - Time to change/pause/user interaction in normal mode
  5407. - `D` - Time to change/pause/user interaction in silent mode
  5408. */
  5409. case 73: //M73 show percent done, time remaining and time to change/pause
  5410. {
  5411. if(code_seen('P')) print_percent_done_normal = code_value_uint8();
  5412. if(code_seen('R')) print_time_remaining_normal = code_value();
  5413. if(code_seen('Q')) print_percent_done_silent = code_value_uint8();
  5414. if(code_seen('S')) print_time_remaining_silent = code_value();
  5415. if(code_seen('C')){
  5416. float print_time_to_change_normal_f = code_value_float();
  5417. print_time_to_change_normal = ( print_time_to_change_normal_f <= 0 ) ? PRINT_TIME_REMAINING_INIT : print_time_to_change_normal_f;
  5418. }
  5419. if(code_seen('D')){
  5420. float print_time_to_change_silent_f = code_value_float();
  5421. print_time_to_change_silent = ( print_time_to_change_silent_f <= 0 ) ? PRINT_TIME_REMAINING_INIT : print_time_to_change_silent_f;
  5422. }
  5423. {
  5424. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %hhd; print time remaining in mins: %d; Change in mins: %d\n");
  5425. printf_P(_msg_mode_done_remain, _N("NORMAL"), int8_t(print_percent_done_normal), print_time_remaining_normal, print_time_to_change_normal);
  5426. printf_P(_msg_mode_done_remain, _N("SILENT"), int8_t(print_percent_done_silent), print_time_remaining_silent, print_time_to_change_silent);
  5427. }
  5428. break;
  5429. }
  5430. /*!
  5431. ### M104 - Set hotend temperature <a href="https://reprap.org/wiki/G-code#M104:_Set_Extruder_Temperature">M104: Set Extruder Temperature</a>
  5432. #### Usage
  5433. M104 [ S ]
  5434. #### Parameters
  5435. - `S` - Target temperature
  5436. */
  5437. case 104: // M104
  5438. {
  5439. uint8_t extruder;
  5440. if(setTargetedHotend(104,extruder)){
  5441. break;
  5442. }
  5443. if (code_seen('S'))
  5444. {
  5445. setTargetHotendSafe(code_value(), extruder);
  5446. }
  5447. break;
  5448. }
  5449. /*!
  5450. ### M112 - Emergency stop <a href="https://reprap.org/wiki/G-code#M112:_Full_.28Emergency.29_Stop">M112: Full (Emergency) Stop</a>
  5451. It is processed much earlier as to bypass the cmdqueue.
  5452. */
  5453. case 112:
  5454. kill(MSG_M112_KILL, 3);
  5455. break;
  5456. /*!
  5457. ### M140 - Set bed temperature <a href="https://reprap.org/wiki/G-code#M140:_Set_Bed_Temperature_.28Fast.29">M140: Set Bed Temperature (Fast)</a>
  5458. #### Usage
  5459. M140 [ S ]
  5460. #### Parameters
  5461. - `S` - Target temperature
  5462. */
  5463. case 140:
  5464. if (code_seen('S')) setTargetBed(code_value());
  5465. break;
  5466. /*!
  5467. ### M105 - Report temperatures <a href="https://reprap.org/wiki/G-code#M105:_Get_Extruder_Temperature">M105: Get Extruder Temperature</a>
  5468. Prints temperatures:
  5469. - `T:` - Hotend (actual / target)
  5470. - `B:` - Bed (actual / target)
  5471. - `Tx:` - x Tool (actual / target)
  5472. - `@:` - Hotend power
  5473. - `B@:` - Bed power
  5474. - `P:` - PINDAv2 actual (only MK2.5/s and MK3/s)
  5475. - `A:` - Ambient actual (only MK3/s)
  5476. _Example:_
  5477. ok T:20.2 /0.0 B:19.1 /0.0 T0:20.2 /0.0 @:0 B@:0 P:19.8 A:26.4
  5478. */
  5479. case 105:
  5480. {
  5481. uint8_t extruder;
  5482. if(setTargetedHotend(105, extruder)){
  5483. break;
  5484. }
  5485. SERIAL_PROTOCOLPGM("ok ");
  5486. gcode_M105(extruder);
  5487. cmdqueue_pop_front(); //prevent an ok after the command since this command uses an ok at the beginning.
  5488. cmdbuffer_front_already_processed = true;
  5489. break;
  5490. }
  5491. #if defined(AUTO_REPORT)
  5492. /*!
  5493. ### M155 - Automatically send status <a href="https://reprap.org/wiki/G-code#M155:_Automatically_send_temperatures">M155: Automatically send temperatures</a>
  5494. #### Usage
  5495. M155 [ S ] [ C ]
  5496. #### Parameters
  5497. - `S` - Set autoreporting interval in seconds. 0 to disable. Maximum: 255
  5498. - `C` - Activate auto-report function (bit mask). Default is temperature.
  5499. bit 0 = Auto-report temperatures
  5500. bit 1 = Auto-report fans
  5501. bit 2 = Auto-report position
  5502. bit 3 = free
  5503. bit 4 = free
  5504. bit 5 = free
  5505. bit 6 = free
  5506. bit 7 = free
  5507. */
  5508. case 155:
  5509. {
  5510. if (code_seen('S')){
  5511. autoReportFeatures.SetPeriod( code_value_uint8() );
  5512. }
  5513. if (code_seen('C')){
  5514. autoReportFeatures.SetMask(code_value_uint8());
  5515. } else{
  5516. autoReportFeatures.SetMask(1); //Backwards compability to host systems like Octoprint to send only temp if paramerter `C`isn't used.
  5517. }
  5518. }
  5519. break;
  5520. #endif //AUTO_REPORT
  5521. /*!
  5522. ### M109 - Wait for extruder temperature <a href="https://reprap.org/wiki/G-code#M109:_Set_Extruder_Temperature_and_Wait">M109: Set Extruder Temperature and Wait</a>
  5523. #### Usage
  5524. M104 [ B | R | S ]
  5525. #### Parameters (not mandatory)
  5526. - `S` - Set extruder temperature
  5527. - `R` - Set extruder temperature
  5528. - `B` - Set max. extruder temperature, while `S` is min. temperature. Not active in default, only if AUTOTEMP is defined in source code.
  5529. Parameters S and R are treated identically.
  5530. Command always waits for both cool down and heat up.
  5531. If no parameters are supplied waits for previously set extruder temperature.
  5532. */
  5533. case 109:
  5534. {
  5535. uint8_t extruder;
  5536. if(setTargetedHotend(109, extruder)){
  5537. break;
  5538. }
  5539. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5540. heating_status = HeatingStatus::EXTRUDER_HEATING;
  5541. prusa_statistics(1);
  5542. #ifdef AUTOTEMP
  5543. autotemp_enabled=false;
  5544. #endif
  5545. if (code_seen('S')) {
  5546. setTargetHotendSafe(code_value(), extruder);
  5547. } else if (code_seen('R')) {
  5548. setTargetHotendSafe(code_value(), extruder);
  5549. }
  5550. #ifdef AUTOTEMP
  5551. if (code_seen('S')) autotemp_min=code_value();
  5552. if (code_seen('B')) autotemp_max=code_value();
  5553. if (code_seen('F'))
  5554. {
  5555. autotemp_factor=code_value();
  5556. autotemp_enabled=true;
  5557. }
  5558. #endif
  5559. codenum = _millis();
  5560. /* See if we are heating up or cooling down */
  5561. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5562. cancel_heatup = false;
  5563. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5564. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5565. heating_status = HeatingStatus::EXTRUDER_HEATING_COMPLETE;
  5566. prusa_statistics(2);
  5567. //starttime=_millis();
  5568. previous_millis_cmd.start();
  5569. }
  5570. break;
  5571. /*!
  5572. ### M190 - Wait for bed temperature <a href="https://reprap.org/wiki/G-code#M190:_Wait_for_bed_temperature_to_reach_target_temp">M190: Wait for bed temperature to reach target temp</a>
  5573. #### Usage
  5574. M190 [ R | S ]
  5575. #### Parameters (not mandatory)
  5576. - `S` - Set extruder temperature and wait for heating
  5577. - `R` - Set extruder temperature and wait for heating or cooling
  5578. If no parameter is supplied, waits for heating or cooling to previously set temperature.
  5579. */
  5580. case 190:
  5581. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5582. {
  5583. bool CooldownNoWait = false;
  5584. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5585. heating_status = HeatingStatus::BED_HEATING;
  5586. prusa_statistics(1);
  5587. if (code_seen('S'))
  5588. {
  5589. setTargetBed(code_value());
  5590. CooldownNoWait = true;
  5591. }
  5592. else if (code_seen('R'))
  5593. {
  5594. setTargetBed(code_value());
  5595. }
  5596. codenum = _millis();
  5597. cancel_heatup = false;
  5598. target_direction = isHeatingBed(); // true if heating, false if cooling
  5599. while ( (!cancel_heatup) && (target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false))) )
  5600. {
  5601. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5602. {
  5603. if (!farm_mode) {
  5604. float tt = degHotend(active_extruder);
  5605. SERIAL_PROTOCOLPGM("T:");
  5606. SERIAL_PROTOCOL(tt);
  5607. SERIAL_PROTOCOLPGM(" E:");
  5608. SERIAL_PROTOCOL((int)active_extruder);
  5609. SERIAL_PROTOCOLPGM(" B:");
  5610. SERIAL_PROTOCOL_F(degBed(), 1);
  5611. SERIAL_PROTOCOLLN();
  5612. }
  5613. codenum = _millis();
  5614. }
  5615. manage_heater();
  5616. manage_inactivity();
  5617. lcd_update(0);
  5618. }
  5619. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5620. heating_status = HeatingStatus::BED_HEATING_COMPLETE;
  5621. previous_millis_cmd.start();
  5622. }
  5623. #endif
  5624. break;
  5625. #if defined(FAN_PIN) && FAN_PIN > -1
  5626. /*!
  5627. ### M106 - Set fan speed <a href="https://reprap.org/wiki/G-code#M106:_Fan_On">M106: Fan On</a>
  5628. #### Usage
  5629. M106 [ S ]
  5630. #### Parameters
  5631. - `S` - Specifies the duty cycle of the print fan. Allowed values are 0-255. If it's omitted, a value of 255 is used.
  5632. */
  5633. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5634. if (code_seen('S')){
  5635. fanSpeed = code_value_uint8();
  5636. }
  5637. else {
  5638. fanSpeed = 255;
  5639. }
  5640. break;
  5641. /*!
  5642. ### M107 - Fan off <a href="https://reprap.org/wiki/G-code#M107:_Fan_Off">M107: Fan Off</a>
  5643. */
  5644. case 107:
  5645. fanSpeed = 0;
  5646. break;
  5647. #endif //FAN_PIN
  5648. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5649. /*!
  5650. ### M80 - Turn on the Power Supply <a href="https://reprap.org/wiki/G-code#M80:_ATX_Power_On">M80: ATX Power On</a>
  5651. Only works if the firmware is compiled with PS_ON_PIN defined.
  5652. */
  5653. case 80:
  5654. SET_OUTPUT(PS_ON_PIN); //GND
  5655. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5656. // If you have a switch on suicide pin, this is useful
  5657. // if you want to start another print with suicide feature after
  5658. // a print without suicide...
  5659. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5660. SET_OUTPUT(SUICIDE_PIN);
  5661. WRITE(SUICIDE_PIN, HIGH);
  5662. #endif
  5663. powersupply = true;
  5664. LCD_MESSAGERPGM(MSG_WELCOME);
  5665. lcd_update(0);
  5666. break;
  5667. /*!
  5668. ### M81 - Turn off Power Supply <a href="https://reprap.org/wiki/G-code#M81:_ATX_Power_Off">M81: ATX Power Off</a>
  5669. Only works if the firmware is compiled with PS_ON_PIN defined.
  5670. */
  5671. case 81:
  5672. disable_heater();
  5673. st_synchronize();
  5674. disable_e0();
  5675. disable_e1();
  5676. disable_e2();
  5677. finishAndDisableSteppers();
  5678. fanSpeed = 0;
  5679. _delay(1000); // Wait a little before to switch off
  5680. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5681. st_synchronize();
  5682. suicide();
  5683. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5684. SET_OUTPUT(PS_ON_PIN);
  5685. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5686. #endif
  5687. powersupply = false;
  5688. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5689. lcd_update(0);
  5690. break;
  5691. #endif
  5692. /*!
  5693. ### M82 - Set E axis to absolute mode <a href="https://reprap.org/wiki/G-code#M82:_Set_extruder_to_absolute_mode">M82: Set extruder to absolute mode</a>
  5694. Makes the extruder interpret extrusion as absolute positions.
  5695. */
  5696. case 82:
  5697. axis_relative_modes &= ~E_AXIS_MASK;
  5698. break;
  5699. /*!
  5700. ### M83 - Set E axis to relative mode <a href="https://reprap.org/wiki/G-code#M83:_Set_extruder_to_relative_mode">M83: Set extruder to relative mode</a>
  5701. Makes the extruder interpret extrusion values as relative positions.
  5702. */
  5703. case 83:
  5704. axis_relative_modes |= E_AXIS_MASK;
  5705. break;
  5706. /*!
  5707. ### M84 - Disable steppers <a href="https://reprap.org/wiki/G-code#M84:_Stop_idle_hold">M84: Stop idle hold</a>
  5708. This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5709. This command can be used without any additional parameters. In that case all steppers are disabled.
  5710. The file completeness check uses this parameter to detect an incomplete file. It has to be present at the end of a file with no parameters.
  5711. M84 [ S | X | Y | Z | E ]
  5712. - `S` - Seconds
  5713. - `X` - X axis
  5714. - `Y` - Y axis
  5715. - `Z` - Z axis
  5716. - `E` - Extruder
  5717. ### M18 - Disable steppers <a href="https://reprap.org/wiki/G-code#M18:_Disable_all_stepper_motors">M18: Disable all stepper motors</a>
  5718. Equal to M84 (compatibility)
  5719. */
  5720. case 18: //compatibility
  5721. case 84: // M84
  5722. if(code_seen('S')){
  5723. stepper_inactive_time = code_value() * 1000;
  5724. }
  5725. else
  5726. {
  5727. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5728. if(all_axis)
  5729. {
  5730. st_synchronize();
  5731. disable_e0();
  5732. disable_e1();
  5733. disable_e2();
  5734. finishAndDisableSteppers();
  5735. }
  5736. else
  5737. {
  5738. st_synchronize();
  5739. if (code_seen('X')) disable_x();
  5740. if (code_seen('Y')) disable_y();
  5741. if (code_seen('Z')) disable_z();
  5742. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5743. if (code_seen('E')) {
  5744. disable_e0();
  5745. disable_e1();
  5746. disable_e2();
  5747. }
  5748. #endif
  5749. }
  5750. }
  5751. break;
  5752. /*!
  5753. ### M85 - Set max inactive time <a href="https://reprap.org/wiki/G-code#M85:_Set_Inactivity_Shutdown_Timer">M85: Set Inactivity Shutdown Timer</a>
  5754. #### Usage
  5755. M85 [ S ]
  5756. #### Parameters
  5757. - `S` - specifies the time in seconds. If a value of 0 is specified, the timer is disabled.
  5758. */
  5759. case 85: // M85
  5760. if(code_seen('S')) {
  5761. max_inactive_time = code_value() * 1000;
  5762. }
  5763. break;
  5764. #ifdef SAFETYTIMER
  5765. /*!
  5766. ### M86 - Set safety timer expiration time <a href="https://reprap.org/wiki/G-code#M86:_Set_Safety_Timer_expiration_time">M86: Set Safety Timer expiration time</a>
  5767. When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5768. #### Usage
  5769. M86 [ S ]
  5770. #### Parameters
  5771. - `S` - specifies the time in seconds. If a value of 0 is specified, the timer is disabled.
  5772. */
  5773. case 86:
  5774. if (code_seen('S')) {
  5775. safetytimer_inactive_time = code_value() * 1000;
  5776. safetyTimer.start();
  5777. }
  5778. break;
  5779. #endif
  5780. /*!
  5781. ### M92 Set Axis steps-per-unit <a href="https://reprap.org/wiki/G-code#M92:_Set_axis_steps_per_unit">M92: Set axis_steps_per_unit</a>
  5782. Allows programming of steps per unit (usually mm) for motor drives. These values are reset to firmware defaults on power on, unless saved to EEPROM if available (M500 in Marlin)
  5783. #### Usage
  5784. M92 [ X | Y | Z | E ]
  5785. #### Parameters
  5786. - `X` - Steps per unit for the X drive
  5787. - `Y` - Steps per unit for the Y drive
  5788. - `Z` - Steps per unit for the Z drive
  5789. - `E` - Steps per unit for the extruder drive
  5790. */
  5791. case 92:
  5792. for(int8_t i=0; i < NUM_AXIS; i++)
  5793. {
  5794. if(code_seen(axis_codes[i]))
  5795. {
  5796. if(i == E_AXIS) { // E
  5797. float value = code_value();
  5798. if(value < 20.0) {
  5799. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5800. cs.max_jerk[E_AXIS] *= factor;
  5801. max_feedrate[i] *= factor;
  5802. axis_steps_per_sqr_second[i] *= factor;
  5803. }
  5804. cs.axis_steps_per_unit[i] = value;
  5805. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  5806. fsensor_set_axis_steps_per_unit(value);
  5807. #endif
  5808. }
  5809. else {
  5810. cs.axis_steps_per_unit[i] = code_value();
  5811. }
  5812. }
  5813. }
  5814. reset_acceleration_rates();
  5815. break;
  5816. /*!
  5817. ### M110 - Set Line number <a href="https://reprap.org/wiki/G-code#M110:_Set_Current_Line_Number">M110: Set Current Line Number</a>
  5818. Sets the line number in G-code
  5819. #### Usage
  5820. M110 [ N ]
  5821. #### Parameters
  5822. - `N` - Line number
  5823. */
  5824. case 110:
  5825. if (code_seen('N'))
  5826. gcode_LastN = code_value_long();
  5827. break;
  5828. /*!
  5829. ### M113 - Get or set host keep-alive interval <a href="https://reprap.org/wiki/G-code#M113:_Host_Keepalive">M113: Host Keepalive</a>
  5830. During some lengthy processes, such as G29, Marlin may appear to the host to have “gone away.” The “host keepalive” feature will send messages to the host when Marlin is busy or waiting for user response so the host won’t try to reconnect (or disconnect).
  5831. #### Usage
  5832. M113 [ S ]
  5833. #### Parameters
  5834. - `S` - Seconds. Default is 2 seconds between "busy" messages
  5835. */
  5836. case 113:
  5837. if (code_seen('S')) {
  5838. host_keepalive_interval = code_value_uint8();
  5839. // NOMORE(host_keepalive_interval, 60);
  5840. }
  5841. else {
  5842. SERIAL_ECHO_START;
  5843. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5844. SERIAL_PROTOCOLLN();
  5845. }
  5846. break;
  5847. /*!
  5848. ### M115 - Firmware info <a href="https://reprap.org/wiki/G-code#M115:_Get_Firmware_Version_and_Capabilities">M115: Get Firmware Version and Capabilities</a>
  5849. Print the firmware info and capabilities
  5850. Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5851. `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware, it will pause the print for 30s and ask the user to upgrade the firmware.
  5852. _Examples:_
  5853. `M115` results:
  5854. `FIRMWARE_NAME:Prusa-Firmware 3.8.1 based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:1.0 MACHINE_TYPE:Prusa i3 MK3S EXTRUDER_COUNT:1 UUID:00000000-0000-0000-0000-000000000000`
  5855. `M115 V` results:
  5856. `3.8.1`
  5857. `M115 U3.8.2-RC1` results on LCD display for 30s or user interaction:
  5858. `New firmware version available: 3.8.2-RC1 Please upgrade.`
  5859. #### Usage
  5860. M115 [ V | U ]
  5861. #### Parameters
  5862. - V - Report current installed firmware version
  5863. - U - Firmware version provided by G-code to be compared to current one.
  5864. */
  5865. case 115: // M115
  5866. if (code_seen('V')) {
  5867. // Report the Prusa version number.
  5868. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5869. } else if (code_seen('U')) {
  5870. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5871. // pause the print for 30s and ask the user to upgrade the firmware.
  5872. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5873. } else {
  5874. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5875. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5876. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5877. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5878. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5879. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5880. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5881. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5882. SERIAL_ECHOPGM(" UUID:");
  5883. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5884. #ifdef EXTENDED_CAPABILITIES_REPORT
  5885. extended_capabilities_report();
  5886. #endif //EXTENDED_CAPABILITIES_REPORT
  5887. }
  5888. break;
  5889. /*!
  5890. ### M114 - Get current position <a href="https://reprap.org/wiki/G-code#M114:_Get_Current_Position">M114: Get Current Position</a>
  5891. */
  5892. case 114:
  5893. gcode_M114();
  5894. break;
  5895. /*
  5896. M117 moved up to get the high priority
  5897. case 117: // M117 display message
  5898. starpos = (strchr(strchr_pointer + 5,'*'));
  5899. if(starpos!=NULL)
  5900. *(starpos)='\0';
  5901. lcd_setstatus(strchr_pointer + 5);
  5902. break;*/
  5903. #ifdef M120_M121_ENABLED
  5904. /*!
  5905. ### M120 - Enable endstops <a href="https://reprap.org/wiki/G-code#M120:_Enable_endstop_detection">M120: Enable endstop detection</a>
  5906. */
  5907. case 120:
  5908. enable_endstops(true) ;
  5909. break;
  5910. /*!
  5911. ### M121 - Disable endstops <a href="https://reprap.org/wiki/G-code#M121:_Disable_endstop_detection">M121: Disable endstop detection</a>
  5912. */
  5913. case 121:
  5914. enable_endstops(false) ;
  5915. break;
  5916. #endif //M120_M121_ENABLED
  5917. /*!
  5918. ### M119 - Get endstop states <a href="https://reprap.org/wiki/G-code#M119:_Get_Endstop_Status">M119: Get Endstop Status</a>
  5919. Returns the current state of the configured X, Y, Z endstops. Takes into account any 'inverted endstop' settings, so one can confirm that the machine is interpreting the endstops correctly.
  5920. */
  5921. case 119:
  5922. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5923. SERIAL_PROTOCOLLN();
  5924. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5925. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5926. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5927. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5928. }else{
  5929. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5930. }
  5931. SERIAL_PROTOCOLLN();
  5932. #endif
  5933. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5934. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5935. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5936. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5937. }else{
  5938. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5939. }
  5940. SERIAL_PROTOCOLLN();
  5941. #endif
  5942. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5943. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5944. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5945. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5946. }else{
  5947. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5948. }
  5949. SERIAL_PROTOCOLLN();
  5950. #endif
  5951. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5952. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5953. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5954. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5955. }else{
  5956. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5957. }
  5958. SERIAL_PROTOCOLLN();
  5959. #endif
  5960. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5961. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5962. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5963. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5964. }else{
  5965. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5966. }
  5967. SERIAL_PROTOCOLLN();
  5968. #endif
  5969. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5970. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5971. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5972. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5973. }else{
  5974. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5975. }
  5976. SERIAL_PROTOCOLLN();
  5977. #endif
  5978. break;
  5979. //!@todo update for all axes, use for loop
  5980. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  5981. /*!
  5982. ### M123 - Tachometer value <a href="https://www.reprap.org/wiki/G-code#M123:_Tachometer_value_.28RepRap_.26_Prusa.29">M123: Tachometer value</a>
  5983. This command is used to report fan speeds and fan pwm values.
  5984. #### Usage
  5985. M123
  5986. - E0: - Hotend fan speed in RPM
  5987. - PRN1: - Part cooling fans speed in RPM
  5988. - E0@: - Hotend fan PWM value
  5989. - PRN1@: -Part cooling fan PWM value
  5990. _Example:_
  5991. E0:3240 RPM PRN1:4560 RPM E0@:255 PRN1@:255
  5992. */
  5993. case 123:
  5994. gcode_M123();
  5995. break;
  5996. #endif //FANCHECK and TACH_0 and TACH_1
  5997. #ifdef BLINKM
  5998. /*!
  5999. ### M150 - Set RGB(W) Color <a href="https://reprap.org/wiki/G-code#M150:_Set_LED_color">M150: Set LED color</a>
  6000. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code by defining BLINKM and its dependencies.
  6001. #### Usage
  6002. M150 [ R | U | B ]
  6003. #### Parameters
  6004. - `R` - Red color value
  6005. - `U` - Green color value. It is NOT `G`!
  6006. - `B` - Blue color value
  6007. */
  6008. case 150:
  6009. {
  6010. byte red;
  6011. byte grn;
  6012. byte blu;
  6013. if(code_seen('R')) red = code_value();
  6014. if(code_seen('U')) grn = code_value();
  6015. if(code_seen('B')) blu = code_value();
  6016. SendColors(red,grn,blu);
  6017. }
  6018. break;
  6019. #endif //BLINKM
  6020. /*!
  6021. ### M200 - Set filament diameter <a href="https://reprap.org/wiki/G-code#M200:_Set_filament_diameter">M200: Set filament diameter</a>
  6022. #### Usage
  6023. M200 [ D | T ]
  6024. #### Parameters
  6025. - `D` - Diameter in mm
  6026. - `T` - Number of extruder (MMUs)
  6027. */
  6028. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  6029. {
  6030. uint8_t extruder = active_extruder;
  6031. if(code_seen('T')) {
  6032. extruder = code_value_uint8();
  6033. if(extruder >= EXTRUDERS) {
  6034. SERIAL_ECHO_START;
  6035. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  6036. break;
  6037. }
  6038. }
  6039. if(code_seen('D')) {
  6040. float diameter = code_value();
  6041. if (diameter == 0.0) {
  6042. // setting any extruder filament size disables volumetric on the assumption that
  6043. // slicers either generate in extruder values as cubic mm or as as filament feeds
  6044. // for all extruders
  6045. cs.volumetric_enabled = false;
  6046. } else {
  6047. cs.filament_size[extruder] = code_value();
  6048. // make sure all extruders have some sane value for the filament size
  6049. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  6050. #if EXTRUDERS > 1
  6051. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  6052. #if EXTRUDERS > 2
  6053. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  6054. #endif
  6055. #endif
  6056. cs.volumetric_enabled = true;
  6057. }
  6058. } else {
  6059. //reserved for setting filament diameter via UFID or filament measuring device
  6060. break;
  6061. }
  6062. calculate_extruder_multipliers();
  6063. }
  6064. break;
  6065. /*!
  6066. ### M201 - Set Print Max Acceleration <a href="https://reprap.org/wiki/G-code#M201:_Set_max_acceleration">M201: Set max printing acceleration</a>
  6067. For each axis individually.
  6068. ##### Usage
  6069. M201 [ X | Y | Z | E ]
  6070. ##### Parameters
  6071. - `X` - Acceleration for X axis in units/s^2
  6072. - `Y` - Acceleration for Y axis in units/s^2
  6073. - `Z` - Acceleration for Z axis in units/s^2
  6074. - `E` - Acceleration for the active or specified extruder in units/s^2
  6075. */
  6076. case 201:
  6077. for (int8_t i = 0; i < NUM_AXIS; i++)
  6078. {
  6079. if (code_seen(axis_codes[i]))
  6080. {
  6081. unsigned long val = code_value();
  6082. #ifdef TMC2130
  6083. unsigned long val_silent = val;
  6084. if ((i == X_AXIS) || (i == Y_AXIS))
  6085. {
  6086. if (val > NORMAL_MAX_ACCEL_XY)
  6087. val = NORMAL_MAX_ACCEL_XY;
  6088. if (val_silent > SILENT_MAX_ACCEL_XY)
  6089. val_silent = SILENT_MAX_ACCEL_XY;
  6090. }
  6091. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  6092. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  6093. #else //TMC2130
  6094. max_acceleration_units_per_sq_second[i] = val;
  6095. #endif //TMC2130
  6096. }
  6097. }
  6098. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  6099. reset_acceleration_rates();
  6100. break;
  6101. #if 0 // Not used for Sprinter/grbl gen6
  6102. case 202: // M202
  6103. for(int8_t i=0; i < NUM_AXIS; i++) {
  6104. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  6105. }
  6106. break;
  6107. #endif
  6108. /*!
  6109. ### M203 - Set Max Feedrate <a href="https://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate">M203: Set maximum feedrate</a>
  6110. For each axis individually.
  6111. ##### Usage
  6112. M203 [ X | Y | Z | E ]
  6113. ##### Parameters
  6114. - `X` - Maximum feedrate for X axis
  6115. - `Y` - Maximum feedrate for Y axis
  6116. - `Z` - Maximum feedrate for Z axis
  6117. - `E` - Maximum feedrate for extruder drives
  6118. */
  6119. case 203: // M203 max feedrate mm/sec
  6120. for (uint8_t i = 0; i < NUM_AXIS; i++)
  6121. {
  6122. if (code_seen(axis_codes[i]))
  6123. {
  6124. float val = code_value();
  6125. #ifdef TMC2130
  6126. float val_silent = val;
  6127. if ((i == X_AXIS) || (i == Y_AXIS))
  6128. {
  6129. if (val > NORMAL_MAX_FEEDRATE_XY)
  6130. val = NORMAL_MAX_FEEDRATE_XY;
  6131. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  6132. val_silent = SILENT_MAX_FEEDRATE_XY;
  6133. }
  6134. cs.max_feedrate_normal[i] = val;
  6135. cs.max_feedrate_silent[i] = val_silent;
  6136. #else //TMC2130
  6137. max_feedrate[i] = val;
  6138. #endif //TMC2130
  6139. }
  6140. }
  6141. break;
  6142. /*!
  6143. ### M204 - Acceleration settings <a href="https://reprap.org/wiki/G-code#M204:_Set_default_acceleration">M204: Set default acceleration</a>
  6144. #### Old format:
  6145. ##### Usage
  6146. M204 [ S | T ]
  6147. ##### Parameters
  6148. - `S` - normal moves
  6149. - `T` - filmanent only moves
  6150. #### New format:
  6151. ##### Usage
  6152. M204 [ P | R | T ]
  6153. ##### Parameters
  6154. - `P` - printing moves
  6155. - `R` - filmanent only moves
  6156. - `T` - travel moves (as of now T is ignored)
  6157. */
  6158. case 204:
  6159. {
  6160. if(code_seen('S')) {
  6161. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  6162. // and it is also generated by Slic3r to control acceleration per extrusion type
  6163. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  6164. cs.acceleration = cs.travel_acceleration = code_value();
  6165. // Interpret the T value as retract acceleration in the old Marlin format.
  6166. if(code_seen('T'))
  6167. cs.retract_acceleration = code_value();
  6168. } else {
  6169. // New acceleration format, compatible with the upstream Marlin.
  6170. if(code_seen('P'))
  6171. cs.acceleration = code_value();
  6172. if(code_seen('R'))
  6173. cs.retract_acceleration = code_value();
  6174. if(code_seen('T'))
  6175. cs.travel_acceleration = code_value();
  6176. }
  6177. }
  6178. break;
  6179. /*!
  6180. ### M205 - Set advanced settings <a href="https://reprap.org/wiki/G-code#M205:_Advanced_settings">M205: Advanced settings</a>
  6181. Set some advanced settings related to movement.
  6182. #### Usage
  6183. M205 [ S | T | B | X | Y | Z | E ]
  6184. #### Parameters
  6185. - `S` - Minimum feedrate for print moves (unit/s)
  6186. - `T` - Minimum feedrate for travel moves (units/s)
  6187. - `B` - Minimum segment time (us)
  6188. - `X` - Maximum X jerk (units/s)
  6189. - `Y` - Maximum Y jerk (units/s)
  6190. - `Z` - Maximum Z jerk (units/s)
  6191. - `E` - Maximum E jerk (units/s)
  6192. */
  6193. case 205:
  6194. {
  6195. if(code_seen('S')) cs.minimumfeedrate = code_value();
  6196. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  6197. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  6198. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  6199. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  6200. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  6201. if(code_seen('E'))
  6202. {
  6203. float e = code_value();
  6204. #ifndef LA_NOCOMPAT
  6205. e = la10c_jerk(e);
  6206. #endif
  6207. cs.max_jerk[E_AXIS] = e;
  6208. }
  6209. }
  6210. break;
  6211. /*!
  6212. ### M206 - Set additional homing offsets <a href="https://reprap.org/wiki/G-code#M206:_Offset_axes">M206: Offset axes</a>
  6213. #### Usage
  6214. M206 [ X | Y | Z ]
  6215. #### Parameters
  6216. - `X` - X axis offset
  6217. - `Y` - Y axis offset
  6218. - `Z` - Z axis offset
  6219. */
  6220. case 206:
  6221. for(uint8_t i=0; i < 3; i++)
  6222. {
  6223. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  6224. }
  6225. break;
  6226. #ifdef FWRETRACT
  6227. /*!
  6228. ### M207 - Set firmware retraction <a href="https://reprap.org/wiki/G-code#M207:_Set_retract_length">M207: Set retract length</a>
  6229. #### Usage
  6230. M207 [ S | F | Z ]
  6231. #### Parameters
  6232. - `S` - positive length to retract, in mm
  6233. - `F` - retraction feedrate, in mm/min
  6234. - `Z` - additional zlift/hop
  6235. */
  6236. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  6237. {
  6238. if(code_seen('S'))
  6239. {
  6240. cs.retract_length = code_value() ;
  6241. }
  6242. if(code_seen('F'))
  6243. {
  6244. cs.retract_feedrate = code_value()/60 ;
  6245. }
  6246. if(code_seen('Z'))
  6247. {
  6248. cs.retract_zlift = code_value() ;
  6249. }
  6250. }break;
  6251. /*!
  6252. ### M208 - Set retract recover length <a href="https://reprap.org/wiki/G-code#M208:_Set_unretract_length">M208: Set unretract length</a>
  6253. #### Usage
  6254. M208 [ S | F ]
  6255. #### Parameters
  6256. - `S` - positive length surplus to the M207 Snnn, in mm
  6257. - `F` - feedrate, in mm/sec
  6258. */
  6259. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  6260. {
  6261. if(code_seen('S'))
  6262. {
  6263. cs.retract_recover_length = code_value() ;
  6264. }
  6265. if(code_seen('F'))
  6266. {
  6267. cs.retract_recover_feedrate = code_value()/60 ;
  6268. }
  6269. }break;
  6270. /*!
  6271. ### M209 - Enable/disable automatict retract <a href="https://reprap.org/wiki/G-code#M209:_Enable_automatic_retract">M209: Enable automatic retract</a>
  6272. This boolean value S 1=true or 0=false enables automatic retract detect if the slicer did not support G10/G11: every normal extrude-only move will be classified as retract depending on the direction.
  6273. #### Usage
  6274. M209 [ S ]
  6275. #### Parameters
  6276. - `S` - 1=true or 0=false
  6277. */
  6278. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  6279. {
  6280. if(code_seen('S'))
  6281. {
  6282. switch(code_value_uint8())
  6283. {
  6284. case 0:
  6285. {
  6286. cs.autoretract_enabled=false;
  6287. retracted[0]=false;
  6288. #if EXTRUDERS > 1
  6289. retracted[1]=false;
  6290. #endif
  6291. #if EXTRUDERS > 2
  6292. retracted[2]=false;
  6293. #endif
  6294. }break;
  6295. case 1:
  6296. {
  6297. cs.autoretract_enabled=true;
  6298. retracted[0]=false;
  6299. #if EXTRUDERS > 1
  6300. retracted[1]=false;
  6301. #endif
  6302. #if EXTRUDERS > 2
  6303. retracted[2]=false;
  6304. #endif
  6305. }break;
  6306. default:
  6307. SERIAL_ECHO_START;
  6308. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6309. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6310. SERIAL_ECHOLNPGM("\"(1)");
  6311. }
  6312. }
  6313. }break;
  6314. #endif // FWRETRACT
  6315. /*!
  6316. ### M214 - Set Arc configuration values (Use M500 to store in eeprom)
  6317. #### Usage
  6318. M214 [P] [S] [N] [R] [F]
  6319. #### Parameters
  6320. - `P` - A float representing the max and default millimeters per arc segment. Must be greater than 0.
  6321. - `S` - A float representing the minimum allowable millimeters per arc segment. Set to 0 to disable
  6322. - `N` - An int representing the number of arcs to draw before correcting the small angle approximation. Set to 0 to disable.
  6323. - `R` - An int representing the minimum number of segments per arcs of any radius,
  6324. except when the results in segment lengths greater than or less than the minimum
  6325. and maximum segment length. Set to 0 to disable.
  6326. - 'F' - An int representing the number of segments per second, unless this results in segment lengths
  6327. greater than or less than the minimum and maximum segment length. Set to 0 to disable.
  6328. */
  6329. case 214: //!@n M214 - Set Arc Parameters (Use M500 to store in eeprom) P<MM_PER_ARC_SEGMENT> S<MIN_MM_PER_ARC_SEGMENT> R<MIN_ARC_SEGMENTS> F<ARC_SEGMENTS_PER_SEC>
  6330. {
  6331. // Extract all possible parameters if they appear
  6332. float p = code_seen('P') ? code_value_float() : cs.mm_per_arc_segment;
  6333. float s = code_seen('S') ? code_value_float() : cs.min_mm_per_arc_segment;
  6334. unsigned char n = code_seen('N') ? code_value() : cs.n_arc_correction;
  6335. unsigned short r = code_seen('R') ? code_value() : cs.min_arc_segments;
  6336. unsigned short f = code_seen('F') ? code_value() : cs.arc_segments_per_sec;
  6337. // Ensure mm_per_arc_segment is greater than 0, and that min_mm_per_arc_segment is sero or greater than or equal to mm_per_arc_segment
  6338. if (p <=0 || s < 0 || p < s)
  6339. {
  6340. // Should we display some error here?
  6341. break;
  6342. }
  6343. cs.mm_per_arc_segment = p;
  6344. cs.min_mm_per_arc_segment = s;
  6345. cs.n_arc_correction = n;
  6346. cs.min_arc_segments = r;
  6347. cs.arc_segments_per_sec = f;
  6348. }break;
  6349. #if EXTRUDERS > 1
  6350. /*!
  6351. ### M218 - Set hotend offset <a href="https://reprap.org/wiki/G-code#M218:_Set_Hotend_Offset">M218: Set Hotend Offset</a>
  6352. In Prusa Firmware this G-code is only active if `EXTRUDERS` is higher then 1 in the source code. On Original i3 Prusa MK2/s MK2.5/s MK3/s it is not active.
  6353. #### Usage
  6354. M218 [ X | Y ]
  6355. #### Parameters
  6356. - `X` - X offset
  6357. - `Y` - Y offset
  6358. */
  6359. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  6360. {
  6361. uint8_t extruder;
  6362. if(setTargetedHotend(218, extruder)){
  6363. break;
  6364. }
  6365. if(code_seen('X'))
  6366. {
  6367. extruder_offset[X_AXIS][extruder] = code_value();
  6368. }
  6369. if(code_seen('Y'))
  6370. {
  6371. extruder_offset[Y_AXIS][extruder] = code_value();
  6372. }
  6373. SERIAL_ECHO_START;
  6374. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  6375. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  6376. {
  6377. SERIAL_ECHO(" ");
  6378. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  6379. SERIAL_ECHO(",");
  6380. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  6381. }
  6382. SERIAL_ECHOLN("");
  6383. }break;
  6384. #endif
  6385. /*!
  6386. ### M220 Set feedrate percentage <a href="https://reprap.org/wiki/G-code#M220:_Set_speed_factor_override_percentage">M220: Set speed factor override percentage</a>
  6387. #### Usage
  6388. M220 [ B | S | R ]
  6389. #### Parameters
  6390. - `B` - Backup current speed factor
  6391. - `S` - Speed factor override percentage (0..100 or higher)
  6392. - `R` - Restore previous speed factor
  6393. */
  6394. case 220: // M220 S<factor in percent>- set speed factor override percentage
  6395. {
  6396. bool codesWereSeen = false;
  6397. if (code_seen('B')) //backup current speed factor
  6398. {
  6399. saved_feedmultiply_mm = feedmultiply;
  6400. codesWereSeen = true;
  6401. }
  6402. if (code_seen('S'))
  6403. {
  6404. feedmultiply = code_value_short();
  6405. codesWereSeen = true;
  6406. }
  6407. if (code_seen('R')) //restore previous feedmultiply
  6408. {
  6409. feedmultiply = saved_feedmultiply_mm;
  6410. codesWereSeen = true;
  6411. }
  6412. if (!codesWereSeen)
  6413. {
  6414. printf_P(PSTR("%i%%\n"), feedmultiply);
  6415. }
  6416. }
  6417. break;
  6418. /*!
  6419. ### M221 - Set extrude factor override percentage <a href="https://reprap.org/wiki/G-code#M221:_Set_extrude_factor_override_percentage">M221: Set extrude factor override percentage</a>
  6420. #### Usage
  6421. M221 [ S | T ]
  6422. #### Parameters
  6423. - `S` - Extrude factor override percentage (0..100 or higher), default 100%
  6424. - `T` - Extruder drive number (Prusa Firmware only), default 0 if not set.
  6425. */
  6426. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  6427. {
  6428. if (code_seen('S'))
  6429. {
  6430. int tmp_code = code_value_short();
  6431. if (code_seen('T'))
  6432. {
  6433. uint8_t extruder;
  6434. if (setTargetedHotend(221, extruder))
  6435. break;
  6436. extruder_multiply[extruder] = tmp_code;
  6437. }
  6438. else
  6439. {
  6440. extrudemultiply = tmp_code ;
  6441. }
  6442. }
  6443. else
  6444. {
  6445. printf_P(PSTR("%i%%\n"), extrudemultiply);
  6446. }
  6447. calculate_extruder_multipliers();
  6448. }
  6449. break;
  6450. /*!
  6451. ### M226 - Wait for Pin state <a href="https://reprap.org/wiki/G-code#M226:_Wait_for_pin_state">M226: Wait for pin state</a>
  6452. Wait until the specified pin reaches the state required
  6453. #### Usage
  6454. M226 [ P | S ]
  6455. #### Parameters
  6456. - `P` - pin number
  6457. - `S` - pin state
  6458. */
  6459. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6460. {
  6461. if(code_seen('P')){
  6462. int pin_number = code_value_short(); // pin number
  6463. int pin_state = -1; // required pin state - default is inverted
  6464. if(code_seen('S')) pin_state = code_value_short(); // required pin state
  6465. if(pin_state >= -1 && pin_state <= 1){
  6466. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(sensitive_pins[0])); i++)
  6467. {
  6468. if (((int8_t)pgm_read_byte(&sensitive_pins[i]) == pin_number))
  6469. {
  6470. pin_number = -1;
  6471. break;
  6472. }
  6473. }
  6474. if (pin_number > -1)
  6475. {
  6476. int target = LOW;
  6477. st_synchronize();
  6478. pinMode(pin_number, INPUT);
  6479. switch(pin_state){
  6480. case 1:
  6481. target = HIGH;
  6482. break;
  6483. case 0:
  6484. target = LOW;
  6485. break;
  6486. case -1:
  6487. target = !digitalRead(pin_number);
  6488. break;
  6489. }
  6490. while(digitalRead(pin_number) != target){
  6491. manage_heater();
  6492. manage_inactivity();
  6493. lcd_update(0);
  6494. }
  6495. }
  6496. }
  6497. }
  6498. }
  6499. break;
  6500. #if NUM_SERVOS > 0
  6501. /*!
  6502. ### M280 - Set/Get servo position <a href="https://reprap.org/wiki/G-code#M280:_Set_servo_position">M280: Set servo position</a>
  6503. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6504. #### Usage
  6505. M280 [ P | S ]
  6506. #### Parameters
  6507. - `P` - Servo index (id)
  6508. - `S` - Target position
  6509. */
  6510. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6511. {
  6512. int servo_index = -1;
  6513. int servo_position = 0;
  6514. if (code_seen('P'))
  6515. servo_index = code_value();
  6516. if (code_seen('S')) {
  6517. servo_position = code_value();
  6518. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  6519. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6520. servos[servo_index].attach(0);
  6521. #endif
  6522. servos[servo_index].write(servo_position);
  6523. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6524. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  6525. servos[servo_index].detach();
  6526. #endif
  6527. }
  6528. else {
  6529. SERIAL_ECHO_START;
  6530. SERIAL_ECHO("Servo ");
  6531. SERIAL_ECHO(servo_index);
  6532. SERIAL_ECHOLN(" out of range");
  6533. }
  6534. }
  6535. else if (servo_index >= 0) {
  6536. SERIAL_PROTOCOL(MSG_OK);
  6537. SERIAL_PROTOCOL(" Servo ");
  6538. SERIAL_PROTOCOL(servo_index);
  6539. SERIAL_PROTOCOL(": ");
  6540. SERIAL_PROTOCOLLN(servos[servo_index].read());
  6541. }
  6542. }
  6543. break;
  6544. #endif // NUM_SERVOS > 0
  6545. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  6546. /*!
  6547. ### M300 - Play tone <a href="https://reprap.org/wiki/G-code#M300:_Play_beep_sound">M300: Play beep sound</a>
  6548. In Prusa Firmware the defaults are `100Hz` and `1000ms`, so that `M300` without parameters will beep for a second.
  6549. #### Usage
  6550. M300 [ S | P ]
  6551. #### Parameters
  6552. - `S` - frequency in Hz. Not all firmware versions support this parameter
  6553. - `P` - duration in milliseconds
  6554. */
  6555. case 300: // M300
  6556. {
  6557. uint16_t beepS = code_seen('S') ? code_value() : 0;
  6558. uint16_t beepP = code_seen('P') ? code_value() : 1000;
  6559. #if BEEPER > 0
  6560. if (beepP > 0)
  6561. Sound_MakeCustom(beepP,beepS,false);
  6562. #endif
  6563. }
  6564. break;
  6565. #endif // M300
  6566. #ifdef PIDTEMP
  6567. /*!
  6568. ### M301 - Set hotend PID <a href="https://reprap.org/wiki/G-code#M301:_Set_PID_parameters">M301: Set PID parameters</a>
  6569. Sets Proportional (P), Integral (I) and Derivative (D) values for hot end.
  6570. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6571. #### Usage
  6572. M301 [ P | I | D ]
  6573. #### Parameters
  6574. - `P` - proportional (Kp)
  6575. - `I` - integral (Ki)
  6576. - `D` - derivative (Kd)
  6577. */
  6578. case 301:
  6579. {
  6580. if(code_seen('P')) cs.Kp = code_value();
  6581. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  6582. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  6583. updatePID();
  6584. SERIAL_PROTOCOLRPGM(MSG_OK);
  6585. SERIAL_PROTOCOLPGM(" p:");
  6586. SERIAL_PROTOCOL(cs.Kp);
  6587. SERIAL_PROTOCOLPGM(" i:");
  6588. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6589. SERIAL_PROTOCOLPGM(" d:");
  6590. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6591. SERIAL_PROTOCOLLN();
  6592. }
  6593. break;
  6594. #endif //PIDTEMP
  6595. #ifdef PIDTEMPBED
  6596. /*!
  6597. ### M304 - Set bed PID <a href="https://reprap.org/wiki/G-code#M304:_Set_PID_parameters_-_Bed">M304: Set PID parameters - Bed</a>
  6598. Sets Proportional (P), Integral (I) and Derivative (D) values for bed.
  6599. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6600. #### Usage
  6601. M304 [ P | I | D ]
  6602. #### Parameters
  6603. - `P` - proportional (Kp)
  6604. - `I` - integral (Ki)
  6605. - `D` - derivative (Kd)
  6606. */
  6607. case 304:
  6608. {
  6609. if(code_seen('P')) cs.bedKp = code_value();
  6610. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6611. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6612. updatePID();
  6613. SERIAL_PROTOCOLRPGM(MSG_OK);
  6614. SERIAL_PROTOCOLPGM(" p:");
  6615. SERIAL_PROTOCOL(cs.bedKp);
  6616. SERIAL_PROTOCOLPGM(" i:");
  6617. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6618. SERIAL_PROTOCOLPGM(" d:");
  6619. SERIAL_PROTOCOLLN(unscalePID_d(cs.bedKd));
  6620. }
  6621. break;
  6622. #endif //PIDTEMP
  6623. /*!
  6624. ### M240 - Trigger camera <a href="https://reprap.org/wiki/G-code#M240:_Trigger_camera">M240: Trigger camera</a>
  6625. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6626. You need to (re)define and assign `CHDK` or `PHOTOGRAPH_PIN` the correct pin number to be able to use the feature.
  6627. */
  6628. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6629. {
  6630. #ifdef CHDK
  6631. SET_OUTPUT(CHDK);
  6632. WRITE(CHDK, HIGH);
  6633. chdkHigh = _millis();
  6634. chdkActive = true;
  6635. #else
  6636. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6637. const uint8_t NUM_PULSES=16;
  6638. const float PULSE_LENGTH=0.01524;
  6639. for(int i=0; i < NUM_PULSES; i++) {
  6640. WRITE(PHOTOGRAPH_PIN, HIGH);
  6641. _delay_ms(PULSE_LENGTH);
  6642. WRITE(PHOTOGRAPH_PIN, LOW);
  6643. _delay_ms(PULSE_LENGTH);
  6644. }
  6645. _delay(7.33);
  6646. for(int i=0; i < NUM_PULSES; i++) {
  6647. WRITE(PHOTOGRAPH_PIN, HIGH);
  6648. _delay_ms(PULSE_LENGTH);
  6649. WRITE(PHOTOGRAPH_PIN, LOW);
  6650. _delay_ms(PULSE_LENGTH);
  6651. }
  6652. #endif
  6653. #endif //chdk end if
  6654. }
  6655. break;
  6656. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6657. /*!
  6658. ### M302 - Allow cold extrude, or set minimum extrude temperature <a href="https://reprap.org/wiki/G-code#M302:_Allow_cold_extrudes">M302: Allow cold extrudes</a>
  6659. This tells the printer to allow movement of the extruder motor above a certain temperature, or if disabled, to allow extruder movement when the hotend is below a safe printing temperature.
  6660. #### Usage
  6661. M302 [ S ]
  6662. #### Parameters
  6663. - `S` - Cold extrude minimum temperature
  6664. */
  6665. case 302:
  6666. {
  6667. int temp = 0;
  6668. if (code_seen('S')) temp=code_value_short();
  6669. set_extrude_min_temp(temp);
  6670. }
  6671. break;
  6672. #endif
  6673. /*!
  6674. ### M303 - PID autotune <a href="https://reprap.org/wiki/G-code#M303:_Run_PID_tuning">M303: Run PID tuning</a>
  6675. PID Tuning refers to a control algorithm used in some repraps to tune heating behavior for hot ends and heated beds. This command generates Proportional (Kp), Integral (Ki), and Derivative (Kd) values for the hotend or bed. Send the appropriate code and wait for the output to update the firmware values.
  6676. #### Usage
  6677. M303 [ E | S | C ]
  6678. #### Parameters
  6679. - `E` - Extruder, default `E0`. Use `E-1` to calibrate the bed PID
  6680. - `S` - Target temperature, default `210°C` for hotend, 70 for bed
  6681. - `C` - Cycles, default `5`
  6682. */
  6683. case 303:
  6684. {
  6685. float temp = 150.0;
  6686. int e = 0;
  6687. int c = 5;
  6688. if (code_seen('E')) e = code_value_short();
  6689. if (e < 0)
  6690. temp = 70;
  6691. if (code_seen('S')) temp = code_value();
  6692. if (code_seen('C')) c = code_value_short();
  6693. PID_autotune(temp, e, c);
  6694. }
  6695. break;
  6696. #ifdef TEMP_MODEL
  6697. /*!
  6698. ### M310 - Temperature model settings <a href="https://reprap.org/wiki/G-code#M310:_Temperature_model_settings">M310: Temperature model settings</a>
  6699. #### Usage
  6700. M310 ; report values
  6701. M310 [ A ] ; autotune
  6702. M310 [ S ] ; set 0=disable 1=enable
  6703. M310 [ I ] [ R ] ; set resistance at index
  6704. M310 [ P | C ] ; set power, capacitance
  6705. M310 [ B | E | W ] ; set beeper, warning and error threshold
  6706. M310 [ T ] ; set ambient temperature correction
  6707. #### Parameters
  6708. - `I` - resistance index position (0-15)
  6709. - `R` - resistance value at index (K/W; requires `I`)
  6710. - `P` - power (W)
  6711. - `C` - capacitance (J/K)
  6712. - `S` - set 0=disable 1=enable
  6713. - `B` - beep and warn when reaching warning threshold 0=disable 1=enable (default: 1)
  6714. - `E` - error threshold (K/s; default in variant)
  6715. - `W` - warning threshold (K/s; default in variant)
  6716. - `T` - ambient temperature correction (K; default in variant)
  6717. - `A` - autotune C+R values
  6718. */
  6719. case 310:
  6720. {
  6721. // parse all parameters
  6722. float P = NAN, C = NAN, R = NAN, E = NAN, W = NAN, T = NAN;
  6723. int8_t I = -1, S = -1, B = -1, A = -1;
  6724. if(code_seen('C')) C = code_value();
  6725. if(code_seen('P')) P = code_value();
  6726. if(code_seen('I')) I = code_value_short();
  6727. if(code_seen('R')) R = code_value();
  6728. if(code_seen('S')) S = code_value_short();
  6729. if(code_seen('B')) B = code_value_short();
  6730. if(code_seen('E')) E = code_value();
  6731. if(code_seen('W')) W = code_value();
  6732. if(code_seen('T')) T = code_value();
  6733. if(code_seen('A')) A = code_value_short();
  6734. // report values if nothing has been requested
  6735. if(isnan(C) && isnan(P) && isnan(R) && isnan(E) && isnan(W) && isnan(T) && I < 0 && S < 0 && B < 0 && A < 0) {
  6736. temp_model_report_settings();
  6737. break;
  6738. }
  6739. // update all parameters
  6740. if(B >= 0) temp_model_set_warn_beep(B);
  6741. if(!isnan(C) || !isnan(P) || !isnan(T) || !isnan(W) || !isnan(E)) temp_model_set_params(C, P, T, W, E);
  6742. if(I >= 0 && !isnan(R)) temp_model_set_resistance(I, R);
  6743. // enable the model last, if requested
  6744. if(S >= 0) temp_model_set_enabled(S);
  6745. // run autotune
  6746. if(A >= 0) temp_model_autotune(A);
  6747. }
  6748. break;
  6749. #endif
  6750. /*!
  6751. ### M400 - Wait for all moves to finish <a href="https://reprap.org/wiki/G-code#M400:_Wait_for_current_moves_to_finish">M400: Wait for current moves to finish</a>
  6752. Finishes all current moves and and thus clears the buffer.
  6753. Equivalent to `G4` with no parameters.
  6754. */
  6755. case 400:
  6756. {
  6757. st_synchronize();
  6758. }
  6759. break;
  6760. /*!
  6761. ### M403 - Set filament type (material) for particular extruder and notify the MMU <a href="https://reprap.org/wiki/G-code#M403:_Set_filament_type_.28material.29_for_particular_extruder_and_notify_the_MMU.">M403 - Set filament type (material) for particular extruder and notify the MMU</a>
  6762. Currently three different materials are needed (default, flex and PVA).
  6763. And storing this information for different load/unload profiles etc. in the future firmware does not have to wait for "ok" from MMU.
  6764. #### Usage
  6765. M403 [ E | F ]
  6766. #### Parameters
  6767. - `E` - Extruder number. 0-indexed.
  6768. - `F` - Filament type
  6769. */
  6770. case 403:
  6771. {
  6772. // currently three different materials are needed (default, flex and PVA)
  6773. // add storing this information for different load/unload profiles etc. in the future
  6774. // firmware does not wait for "ok" from mmu
  6775. if (mmu_enabled)
  6776. {
  6777. uint8_t extruder = 255;
  6778. uint8_t filament = FILAMENT_UNDEFINED;
  6779. if(code_seen('E')) extruder = code_value_uint8();
  6780. if(code_seen('F')) filament = code_value_uint8();
  6781. mmu_set_filament_type(extruder, filament);
  6782. }
  6783. }
  6784. break;
  6785. /*!
  6786. ### M500 - Store settings in EEPROM <a href="https://reprap.org/wiki/G-code#M500:_Store_parameters_in_non-volatile_storage">M500: Store parameters in non-volatile storage</a>
  6787. Save current parameters to EEPROM.
  6788. */
  6789. case 500:
  6790. {
  6791. Config_StoreSettings();
  6792. }
  6793. break;
  6794. /*!
  6795. ### M501 - Read settings from EEPROM <a href="https://reprap.org/wiki/G-code#M501:_Read_parameters_from_EEPROM">M501: Read parameters from EEPROM</a>
  6796. Set the active parameters to those stored in the EEPROM. This is useful to revert parameters after experimenting with them.
  6797. */
  6798. case 501:
  6799. {
  6800. Config_RetrieveSettings();
  6801. }
  6802. break;
  6803. /*!
  6804. ### M502 - Revert all settings to factory default <a href="https://reprap.org/wiki/G-code#M502:_Restore_Default_Settings">M502: Restore Default Settings</a>
  6805. This command resets all tunable parameters to their default values, as set in the firmware's configuration files. This doesn't reset any parameters stored in the EEPROM, so it must be followed by M500 to write the default settings.
  6806. */
  6807. case 502:
  6808. {
  6809. Config_ResetDefault();
  6810. }
  6811. break;
  6812. /*!
  6813. ### M503 - Repport all settings currently in memory <a href="https://reprap.org/wiki/G-code#M503:_Report_Current_Settings">M503: Report Current Settings</a>
  6814. This command asks the firmware to reply with the current print settings as set in memory. Settings will differ from EEPROM contents if changed since the last load / save. The reply output includes the G-Code commands to produce each setting. For example, Steps-Per-Unit values are displayed as an M92 command.
  6815. */
  6816. case 503:
  6817. {
  6818. Config_PrintSettings();
  6819. }
  6820. break;
  6821. /*!
  6822. ### M509 - Force language selection <a href="https://reprap.org/wiki/G-code#M509:_Force_language_selection">M509: Force language selection</a>
  6823. Resets the language to English.
  6824. Only on Original Prusa i3 MK2.5/s and MK3/s with multiple languages.
  6825. */
  6826. case 509:
  6827. {
  6828. lang_reset();
  6829. SERIAL_ECHO_START;
  6830. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6831. }
  6832. break;
  6833. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6834. /*!
  6835. ### M540 - Abort print on endstop hit (enable/disable) <a href="https://reprap.org/wiki/G-code#M540_in_Marlin:_Enable.2FDisable_.22Stop_SD_Print_on_Endstop_Hit.22">M540 in Marlin: Enable/Disable "Stop SD Print on Endstop Hit"</a>
  6836. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. You must define `ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED`.
  6837. #### Usage
  6838. M540 [ S ]
  6839. #### Parameters
  6840. - `S` - disabled=0, enabled=1
  6841. */
  6842. case 540:
  6843. {
  6844. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6845. }
  6846. break;
  6847. #endif
  6848. #ifdef ENABLE_AUTO_BED_LEVELING
  6849. /*!
  6850. ### M851 - Set Z-Probe Offset <a href="https://reprap.org/wiki/G-code#M851:_Set_Z-Probe_Offset">M851: Set Z-Probe Offset"</a>
  6851. Sets the Z-probe Z offset. This offset is used to determine the actual Z position of the nozzle when using a probe to home Z with G28. This value may also be used by G81 (Prusa) / G29 (Marlin) to apply correction to the Z position.
  6852. This value represents the distance from nozzle to the bed surface at the point where the probe is triggered. This value will be negative for typical switch probes, inductive probes, and setups where the nozzle makes a circuit with a raised metal contact. This setting will be greater than zero on machines where the nozzle itself is used as the probe, pressing down on the bed to press a switch. (This is a common setup on delta machines.)
  6853. #### Usage
  6854. M851 [ Z ]
  6855. #### Parameters
  6856. - `Z` - Z offset probe to nozzle.
  6857. */
  6858. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6859. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6860. {
  6861. float value;
  6862. if (code_seen('Z'))
  6863. {
  6864. value = code_value();
  6865. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6866. {
  6867. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6868. SERIAL_ECHO_START;
  6869. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6870. SERIAL_PROTOCOLLN();
  6871. }
  6872. else
  6873. {
  6874. SERIAL_ECHO_START;
  6875. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6876. SERIAL_ECHORPGM(MSG_Z_MIN);
  6877. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6878. SERIAL_ECHORPGM(MSG_Z_MAX);
  6879. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6880. SERIAL_PROTOCOLLN();
  6881. }
  6882. }
  6883. else
  6884. {
  6885. SERIAL_ECHO_START;
  6886. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6887. SERIAL_ECHO(-cs.zprobe_zoffset);
  6888. SERIAL_PROTOCOLLN();
  6889. }
  6890. break;
  6891. }
  6892. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6893. #endif // ENABLE_AUTO_BED_LEVELING
  6894. /*!
  6895. ### M552 - Set IP address <a href="https://reprap.org/wiki/G-code#M552:_Set_IP_address.2C_enable.2Fdisable_network_interface">M552: Set IP address, enable/disable network interface"</a>
  6896. Sets the printer IP address that is shown in the support menu. Designed to be used with the help of host software.
  6897. If P is not specified nothing happens.
  6898. If the structure of the IP address is invalid, 0.0.0.0 is assumed and nothing is shown on the screen in the Support menu.
  6899. #### Usage
  6900. M552 [ P<IP_address> ]
  6901. #### Parameters
  6902. - `P` - The IP address in xxx.xxx.xxx.xxx format. Eg: P192.168.1.14
  6903. */
  6904. case 552:
  6905. {
  6906. if (code_seen('P'))
  6907. {
  6908. uint8_t valCnt = 0;
  6909. IP_address = 0;
  6910. do
  6911. {
  6912. *strchr_pointer = '*';
  6913. ((uint8_t*)&IP_address)[valCnt] = code_value_short();
  6914. valCnt++;
  6915. } while ((valCnt < 4) && code_seen('.'));
  6916. if (valCnt != 4)
  6917. IP_address = 0;
  6918. }
  6919. } break;
  6920. #ifdef FILAMENTCHANGEENABLE
  6921. /*!
  6922. ### M600 - Initiate Filament change procedure <a href="https://reprap.org/wiki/G-code#M600:_Filament_change_pause">M600: Filament change pause</a>
  6923. Initiates Filament change, it is also used during Filament Runout Sensor process.
  6924. If the `M600` is triggered under 25mm it will do a Z-lift of 25mm to prevent a filament blob.
  6925. #### Usage
  6926. M600 [ X | Y | Z | E | L | AUTO ]
  6927. - `X` - X position, default 211
  6928. - `Y` - Y position, default 0
  6929. - `Z` - relative lift Z, default 2.
  6930. - `E` - initial retract, default -2
  6931. - `L` - later retract distance for removal, default -80
  6932. - `AUTO` - Automatically (only with MMU)
  6933. */
  6934. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6935. {
  6936. st_synchronize();
  6937. float x_position = current_position[X_AXIS];
  6938. float y_position = current_position[Y_AXIS];
  6939. float z_shift = 0; // is it necessary to be a float?
  6940. float e_shift_init = 0;
  6941. float e_shift_late = 0;
  6942. bool automatic = false;
  6943. //Retract extruder
  6944. if(code_seen('E'))
  6945. {
  6946. e_shift_init = code_value();
  6947. }
  6948. else
  6949. {
  6950. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6951. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6952. #endif
  6953. }
  6954. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6955. if (code_seen('L'))
  6956. {
  6957. e_shift_late = code_value();
  6958. }
  6959. else
  6960. {
  6961. #ifdef FILAMENTCHANGE_FINALRETRACT
  6962. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6963. #endif
  6964. }
  6965. //Lift Z
  6966. if(code_seen('Z'))
  6967. {
  6968. z_shift = code_value();
  6969. }
  6970. else
  6971. {
  6972. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6973. }
  6974. //Move XY to side
  6975. if(code_seen('X'))
  6976. {
  6977. x_position = code_value();
  6978. }
  6979. else
  6980. {
  6981. #ifdef FILAMENTCHANGE_XPOS
  6982. x_position = FILAMENTCHANGE_XPOS;
  6983. #endif
  6984. }
  6985. if(code_seen('Y'))
  6986. {
  6987. y_position = code_value();
  6988. }
  6989. else
  6990. {
  6991. #ifdef FILAMENTCHANGE_YPOS
  6992. y_position = FILAMENTCHANGE_YPOS ;
  6993. #endif
  6994. }
  6995. if (mmu_enabled && code_seen_P(PSTR("AUTO")))
  6996. automatic = true;
  6997. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  6998. }
  6999. break;
  7000. #endif //FILAMENTCHANGEENABLE
  7001. /*!
  7002. ### M601 - Pause print <a href="https://reprap.org/wiki/G-code#M601:_Pause_print">M601: Pause print</a>
  7003. */
  7004. /*!
  7005. ### M125 - Pause print (TODO: not implemented)
  7006. */
  7007. /*!
  7008. ### M25 - Pause SD print <a href="https://reprap.org/wiki/G-code#M25:_Pause_SD_print">M25: Pause SD print</a>
  7009. */
  7010. case 25:
  7011. case 601:
  7012. {
  7013. if (!isPrintPaused) {
  7014. st_synchronize();
  7015. ClearToSend(); //send OK even before the command finishes executing because we want to make sure it is not skipped because of cmdqueue_pop_front();
  7016. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  7017. lcd_pause_print();
  7018. }
  7019. }
  7020. break;
  7021. /*!
  7022. ### M602 - Resume print <a href="https://reprap.org/wiki/G-code#M602:_Resume_print">M602: Resume print</a>
  7023. */
  7024. case 602:
  7025. {
  7026. if (isPrintPaused) lcd_resume_print();
  7027. }
  7028. break;
  7029. /*!
  7030. ### M603 - Stop print <a href="https://reprap.org/wiki/G-code#M603:_Stop_print">M603: Stop print</a>
  7031. */
  7032. case 603: {
  7033. lcd_print_stop();
  7034. }
  7035. break;
  7036. #ifdef PINDA_THERMISTOR
  7037. /*!
  7038. ### M860 - Wait for extruder temperature (PINDA) <a href="https://reprap.org/wiki/G-code#M860_Wait_for_Probe_Temperature">M860 Wait for Probe Temperature</a>
  7039. Wait for PINDA thermistor to reach target temperature
  7040. #### Usage
  7041. M860 [ S ]
  7042. #### Parameters
  7043. - `S` - Target temperature
  7044. */
  7045. case 860:
  7046. {
  7047. int set_target_pinda = 0;
  7048. if (code_seen('S')) {
  7049. set_target_pinda = code_value_short();
  7050. }
  7051. else {
  7052. break;
  7053. }
  7054. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  7055. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  7056. SERIAL_PROTOCOLLN(set_target_pinda);
  7057. codenum = _millis();
  7058. cancel_heatup = false;
  7059. bool is_pinda_cooling = false;
  7060. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  7061. is_pinda_cooling = true;
  7062. }
  7063. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  7064. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  7065. {
  7066. SERIAL_PROTOCOLPGM("P:");
  7067. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  7068. SERIAL_PROTOCOL('/');
  7069. SERIAL_PROTOCOLLN(set_target_pinda);
  7070. codenum = _millis();
  7071. }
  7072. manage_heater();
  7073. manage_inactivity();
  7074. lcd_update(0);
  7075. }
  7076. LCD_MESSAGERPGM(MSG_OK);
  7077. break;
  7078. }
  7079. /*!
  7080. ### M861 - Set/Get PINDA temperature compensation offsets <a href="https://reprap.org/wiki/G-code#M861_Set_Probe_Thermal_Compensation">M861 Set Probe Thermal Compensation</a>
  7081. Set compensation ustep value `S` for compensation table index `I`.
  7082. #### Usage
  7083. M861 [ ? | ! | Z | S | I ]
  7084. #### Parameters
  7085. - `?` - Print current EEPROM offset values
  7086. - `!` - Set factory default values
  7087. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  7088. - `S` - Microsteps
  7089. - `I` - Table index
  7090. */
  7091. case 861: {
  7092. const char * const _header = PSTR("index, temp, ustep, um");
  7093. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  7094. int16_t usteps = 0;
  7095. SERIAL_PROTOCOLPGM("PINDA cal status: ");
  7096. SERIAL_PROTOCOLLN(calibration_status_pinda());
  7097. SERIAL_PROTOCOLLNRPGM(_header);
  7098. for (uint8_t i = 0; i < 6; i++)
  7099. {
  7100. if(i > 0) {
  7101. usteps = eeprom_read_word((uint16_t*) EEPROM_PROBE_TEMP_SHIFT + (i - 1));
  7102. }
  7103. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  7104. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  7105. SERIAL_PROTOCOLPGM(", ");
  7106. SERIAL_PROTOCOL(35 + (i * 5));
  7107. SERIAL_PROTOCOLPGM(", ");
  7108. SERIAL_PROTOCOL(usteps);
  7109. SERIAL_PROTOCOLPGM(", ");
  7110. SERIAL_PROTOCOLLN(mm * 1000);
  7111. }
  7112. }
  7113. else if (code_seen('!')) { // ! - Set factory default values
  7114. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  7115. int16_t z_shift = 8; //40C - 20um - 8usteps
  7116. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT, z_shift);
  7117. z_shift = 24; //45C - 60um - 24usteps
  7118. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + 1, z_shift);
  7119. z_shift = 48; //50C - 120um - 48usteps
  7120. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + 2, z_shift);
  7121. z_shift = 80; //55C - 200um - 80usteps
  7122. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + 3, z_shift);
  7123. z_shift = 120; //60C - 300um - 120usteps
  7124. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + 4, z_shift);
  7125. SERIAL_PROTOCOLLNPGM("factory restored");
  7126. }
  7127. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  7128. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  7129. int16_t z_shift = 0;
  7130. for (uint8_t i = 0; i < 5; i++) {
  7131. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i, z_shift);
  7132. }
  7133. SERIAL_PROTOCOLLNPGM("zerorized");
  7134. }
  7135. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  7136. int16_t usteps = code_value_short();
  7137. if (code_seen('I')) {
  7138. uint8_t index = code_value_uint8();
  7139. if (index < 5) {
  7140. eeprom_update_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + index, usteps);
  7141. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7142. SERIAL_PROTOCOLLNRPGM(_header);
  7143. for (uint8_t i = 0; i < 6; i++)
  7144. {
  7145. usteps = 0;
  7146. if (i > 0) {
  7147. usteps = eeprom_read_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + (i - 1));
  7148. }
  7149. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  7150. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  7151. SERIAL_PROTOCOLPGM(", ");
  7152. SERIAL_PROTOCOL(35 + (i * 5));
  7153. SERIAL_PROTOCOLPGM(", ");
  7154. SERIAL_PROTOCOL(usteps);
  7155. SERIAL_PROTOCOLPGM(", ");
  7156. SERIAL_PROTOCOLLN(mm * 1000);
  7157. }
  7158. }
  7159. }
  7160. }
  7161. else {
  7162. SERIAL_PROTOCOLLNPGM("no valid command");
  7163. }
  7164. } break;
  7165. #endif //PINDA_THERMISTOR
  7166. /*!
  7167. ### M862 - Print checking <a href="https://reprap.org/wiki/G-code#M862:_Print_checking">M862: Print checking</a>
  7168. Checks the parameters of the printer and gcode and performs compatibility check
  7169. - M862.1 { P<nozzle_diameter> | Q } 0.25/0.40/0.60
  7170. - M862.2 { P<model_code> | Q }
  7171. - M862.3 { P"<model_name>" | Q }
  7172. - M862.4 { P<fw_version> | Q }
  7173. - M862.5 { P<gcode_level> | Q }
  7174. When run with P<> argument, the check is performed against the input value.
  7175. When run with Q argument, the current value is shown.
  7176. M862.3 accepts text identifiers of printer types too.
  7177. The syntax of M862.3 is (note the quotes around the type):
  7178. M862.3 P "MK3S"
  7179. Accepted printer type identifiers and their numeric counterparts:
  7180. - MK1 (100)
  7181. - MK2 (200)
  7182. - MK2MM (201)
  7183. - MK2S (202)
  7184. - MK2SMM (203)
  7185. - MK2.5 (250)
  7186. - MK2.5MMU2 (20250)
  7187. - MK2.5S (252)
  7188. - MK2.5SMMU2S (20252)
  7189. - MK3 (300)
  7190. - MK3MMU2 (20300)
  7191. - MK3S (302)
  7192. - MK3SMMU2S (20302)
  7193. */
  7194. case 862: // M862: print checking
  7195. float nDummy;
  7196. uint8_t nCommand;
  7197. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  7198. switch((ClPrintChecking)nCommand)
  7199. {
  7200. case ClPrintChecking::_Nozzle: // ~ .1
  7201. uint16_t nDiameter;
  7202. if(code_seen('P'))
  7203. {
  7204. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  7205. nozzle_diameter_check(nDiameter);
  7206. }
  7207. else if(code_seen('Q'))
  7208. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  7209. break;
  7210. case ClPrintChecking::_Model: // ~ .2
  7211. if(code_seen('P'))
  7212. {
  7213. uint16_t nPrinterModel;
  7214. nPrinterModel=(uint16_t)code_value_long();
  7215. printer_model_check(nPrinterModel);
  7216. }
  7217. else if(code_seen('Q'))
  7218. SERIAL_PROTOCOLLN(nPrinterType);
  7219. break;
  7220. case ClPrintChecking::_Smodel: // ~ .3
  7221. if(code_seen('P'))
  7222. printer_smodel_check(strchr_pointer);
  7223. else if(code_seen('Q'))
  7224. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  7225. break;
  7226. case ClPrintChecking::_Version: // ~ .4
  7227. if(code_seen('P'))
  7228. fw_version_check(++strchr_pointer);
  7229. else if(code_seen('Q'))
  7230. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  7231. break;
  7232. case ClPrintChecking::_Gcode: // ~ .5
  7233. if(code_seen('P'))
  7234. {
  7235. uint16_t nGcodeLevel;
  7236. nGcodeLevel=(uint16_t)code_value_long();
  7237. gcode_level_check(nGcodeLevel);
  7238. }
  7239. else if(code_seen('Q'))
  7240. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  7241. break;
  7242. }
  7243. break;
  7244. #ifdef LIN_ADVANCE
  7245. /*!
  7246. ### M900 - Set Linear advance options <a href="https://reprap.org/wiki/G-code#M900_Set_Linear_Advance_Scaling_Factors">M900 Set Linear Advance Scaling Factors</a>
  7247. Sets the advance extrusion factors for Linear Advance. If any of the R, W, H, or D parameters are set to zero the ratio will be computed dynamically during printing.
  7248. #### Usage
  7249. M900 [ K | R | W | H | D]
  7250. #### Parameters
  7251. - `K` - Advance K factor
  7252. - `R` - Set ratio directly (overrides WH/D)
  7253. - `W` - Width
  7254. - `H` - Height
  7255. - `D` - Diameter Set ratio from WH/D
  7256. */
  7257. case 900:
  7258. gcode_M900();
  7259. break;
  7260. #endif
  7261. /*!
  7262. ### M907 - Set digital trimpot motor current in mA using axis codes <a href="https://reprap.org/wiki/G-code#M907:_Set_digital_trimpot_motor">M907: Set digital trimpot motor</a>
  7263. Set digital trimpot motor current using axis codes (X, Y, Z, E, B, S).
  7264. M907 has no effect when the experimental Extruder motor current scaling mode is active (that applies to farm printing as well)
  7265. #### Usage
  7266. M907 [ X | Y | Z | E | B | S ]
  7267. #### Parameters
  7268. - `X` - X motor driver
  7269. - `Y` - Y motor driver
  7270. - `Z` - Z motor driver
  7271. - `E` - Extruder motor driver
  7272. - `B` - Second Extruder motor driver
  7273. - `S` - All motors
  7274. */
  7275. case 907:
  7276. {
  7277. #ifdef TMC2130
  7278. // See tmc2130_cur2val() for translation to 0 .. 63 range
  7279. for (uint_least8_t i = 0; i < NUM_AXIS; i++){
  7280. if(code_seen(axis_codes[i])){
  7281. if( i == E_AXIS && FarmOrUserECool() ){
  7282. SERIAL_ECHORPGM(eMotorCurrentScalingEnabled);
  7283. SERIAL_ECHOLNPGM(", M907 E ignored");
  7284. continue;
  7285. }
  7286. long cur_mA = code_value_long();
  7287. uint8_t val = tmc2130_cur2val(cur_mA);
  7288. tmc2130_set_current_h(i, val);
  7289. tmc2130_set_current_r(i, val);
  7290. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  7291. }
  7292. }
  7293. #else //TMC2130
  7294. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  7295. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  7296. if(code_seen('B')) st_current_set(4,code_value());
  7297. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  7298. #endif
  7299. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  7300. if(code_seen('X')) st_current_set(0, code_value());
  7301. #endif
  7302. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  7303. if(code_seen('Z')) st_current_set(1, code_value());
  7304. #endif
  7305. #ifdef MOTOR_CURRENT_PWM_E_PIN
  7306. if(code_seen('E')) st_current_set(2, code_value());
  7307. #endif
  7308. #endif //TMC2130
  7309. }
  7310. break;
  7311. /*!
  7312. ### M908 - Control digital trimpot directly <a href="https://reprap.org/wiki/G-code#M908:_Control_digital_trimpot_directly">M908: Control digital trimpot directly</a>
  7313. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. Not usable on Prusa printers.
  7314. #### Usage
  7315. M908 [ P | S ]
  7316. #### Parameters
  7317. - `P` - channel
  7318. - `S` - current
  7319. */
  7320. case 908:
  7321. {
  7322. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  7323. uint8_t channel,current;
  7324. if(code_seen('P')) channel=code_value();
  7325. if(code_seen('S')) current=code_value();
  7326. digitalPotWrite(channel, current);
  7327. #endif
  7328. }
  7329. break;
  7330. #ifdef TMC2130_SERVICE_CODES_M910_M918
  7331. /*!
  7332. ### M910 - TMC2130 init <a href="https://reprap.org/wiki/G-code#M910:_TMC2130_init">M910: TMC2130 init</a>
  7333. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7334. */
  7335. case 910:
  7336. {
  7337. tmc2130_init(TMCInitParams(false, FarmOrUserECool()));
  7338. }
  7339. break;
  7340. /*!
  7341. ### M911 - Set TMC2130 holding currents <a href="https://reprap.org/wiki/G-code#M911:_Set_TMC2130_holding_currents">M911: Set TMC2130 holding currents</a>
  7342. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7343. #### Usage
  7344. M911 [ X | Y | Z | E ]
  7345. #### Parameters
  7346. - `X` - X stepper driver holding current value
  7347. - `Y` - Y stepper driver holding current value
  7348. - `Z` - Z stepper driver holding current value
  7349. - `E` - Extruder stepper driver holding current value
  7350. */
  7351. case 911:
  7352. {
  7353. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  7354. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  7355. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  7356. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  7357. }
  7358. break;
  7359. /*!
  7360. ### M912 - Set TMC2130 running currents <a href="https://reprap.org/wiki/G-code#M912:_Set_TMC2130_running_currents">M912: Set TMC2130 running currents</a>
  7361. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7362. #### Usage
  7363. M912 [ X | Y | Z | E ]
  7364. #### Parameters
  7365. - `X` - X stepper driver running current value
  7366. - `Y` - Y stepper driver running current value
  7367. - `Z` - Z stepper driver running current value
  7368. - `E` - Extruder stepper driver running current value
  7369. */
  7370. case 912:
  7371. {
  7372. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  7373. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  7374. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  7375. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  7376. }
  7377. break;
  7378. /*!
  7379. ### M913 - Print TMC2130 currents <a href="https://reprap.org/wiki/G-code#M913:_Print_TMC2130_currents">M913: Print TMC2130 currents</a>
  7380. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7381. Shows TMC2130 currents.
  7382. */
  7383. case 913:
  7384. {
  7385. tmc2130_print_currents();
  7386. }
  7387. break;
  7388. /*!
  7389. ### M914 - Set TMC2130 normal mode <a href="https://reprap.org/wiki/G-code#M914:_Set_TMC2130_normal_mode">M914: Set TMC2130 normal mode</a>
  7390. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7391. */
  7392. case 914:
  7393. {
  7394. tmc2130_mode = TMC2130_MODE_NORMAL;
  7395. update_mode_profile();
  7396. tmc2130_init(TMCInitParams(false, FarmOrUserECool()));
  7397. }
  7398. break;
  7399. /*!
  7400. ### M915 - Set TMC2130 silent mode <a href="https://reprap.org/wiki/G-code#M915:_Set_TMC2130_silent_mode">M915: Set TMC2130 silent mode</a>
  7401. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7402. */
  7403. case 915:
  7404. {
  7405. tmc2130_mode = TMC2130_MODE_SILENT;
  7406. update_mode_profile();
  7407. tmc2130_init(TMCInitParams(false, FarmOrUserECool()));
  7408. }
  7409. break;
  7410. /*!
  7411. ### M916 - Set TMC2130 Stallguard sensitivity threshold <a href="https://reprap.org/wiki/G-code#M916:_Set_TMC2130_Stallguard_sensitivity_threshold">M916: Set TMC2130 Stallguard sensitivity threshold</a>
  7412. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7413. #### Usage
  7414. M916 [ X | Y | Z | E ]
  7415. #### Parameters
  7416. - `X` - X stepper driver stallguard sensitivity threshold value
  7417. - `Y` - Y stepper driver stallguard sensitivity threshold value
  7418. - `Z` - Z stepper driver stallguard sensitivity threshold value
  7419. - `E` - Extruder stepper driver stallguard sensitivity threshold value
  7420. */
  7421. case 916:
  7422. {
  7423. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  7424. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  7425. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  7426. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  7427. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  7428. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  7429. }
  7430. break;
  7431. /*!
  7432. ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl) <a href="https://reprap.org/wiki/G-code#M917:_Set_TMC2130_PWM_amplitude_offset_.28pwm_ampl.29">M917: Set TMC2130 PWM amplitude offset (pwm_ampl)</a>
  7433. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7434. #### Usage
  7435. M917 [ X | Y | Z | E ]
  7436. #### Parameters
  7437. - `X` - X stepper driver PWM amplitude offset value
  7438. - `Y` - Y stepper driver PWM amplitude offset value
  7439. - `Z` - Z stepper driver PWM amplitude offset value
  7440. - `E` - Extruder stepper driver PWM amplitude offset value
  7441. */
  7442. case 917:
  7443. {
  7444. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  7445. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  7446. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  7447. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  7448. }
  7449. break;
  7450. /*!
  7451. ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad) <a href="https://reprap.org/wiki/G-code#M918:_Set_TMC2130_PWM_amplitude_gradient_.28pwm_grad.29">M918: Set TMC2130 PWM amplitude gradient (pwm_grad)</a>
  7452. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7453. #### Usage
  7454. M918 [ X | Y | Z | E ]
  7455. #### Parameters
  7456. - `X` - X stepper driver PWM amplitude gradient value
  7457. - `Y` - Y stepper driver PWM amplitude gradient value
  7458. - `Z` - Z stepper driver PWM amplitude gradient value
  7459. - `E` - Extruder stepper driver PWM amplitude gradient value
  7460. */
  7461. case 918:
  7462. {
  7463. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  7464. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  7465. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  7466. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  7467. }
  7468. break;
  7469. #endif //TMC2130_SERVICE_CODES_M910_M918
  7470. /*!
  7471. ### M350 - Set microstepping mode <a href="https://reprap.org/wiki/G-code#M350:_Set_microstepping_mode">M350: Set microstepping mode</a>
  7472. Printers with TMC2130 drivers have `X`, `Y`, `Z` and `E` as options. The steps-per-unit value is updated accordingly. Not all resolutions are valid!
  7473. Printers without TMC2130 drivers also have `B` and `S` options. In this case, the steps-per-unit value in not changed!
  7474. #### Usage
  7475. M350 [ X | Y | Z | E | B | S ]
  7476. #### Parameters
  7477. - `X` - X new resolution
  7478. - `Y` - Y new resolution
  7479. - `Z` - Z new resolution
  7480. - `E` - E new resolution
  7481. Only valid for MK2.5(S) or printers without TMC2130 drivers
  7482. - `B` - Second extruder new resolution
  7483. - `S` - All axes new resolution
  7484. */
  7485. case 350:
  7486. {
  7487. #ifdef TMC2130
  7488. for (uint_least8_t i=0; i<NUM_AXIS; i++)
  7489. {
  7490. if(code_seen(axis_codes[i]))
  7491. {
  7492. uint16_t res_new = code_value();
  7493. #ifdef ALLOW_ALL_MRES
  7494. bool res_valid = res_new > 0 && res_new <= 256 && !(res_new & (res_new - 1)); // must be a power of two
  7495. #else
  7496. bool res_valid = (res_new == 8) || (res_new == 16) || (res_new == 32); // resolutions valid for all axis
  7497. res_valid |= (i != E_AXIS) && ((res_new == 1) || (res_new == 2) || (res_new == 4)); // resolutions valid for X Y Z only
  7498. res_valid |= (i == E_AXIS) && ((res_new == 64) || (res_new == 128)); // resolutions valid for E only
  7499. #endif
  7500. if (res_valid)
  7501. {
  7502. st_synchronize();
  7503. uint16_t res = tmc2130_get_res(i);
  7504. tmc2130_set_res(i, res_new);
  7505. cs.axis_ustep_resolution[i] = res_new;
  7506. if (res_new > res)
  7507. {
  7508. uint16_t fac = (res_new / res);
  7509. cs.axis_steps_per_unit[i] *= fac;
  7510. position[i] *= fac;
  7511. }
  7512. else
  7513. {
  7514. uint16_t fac = (res / res_new);
  7515. cs.axis_steps_per_unit[i] /= fac;
  7516. position[i] /= fac;
  7517. }
  7518. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  7519. if (i == E_AXIS)
  7520. fsensor_set_axis_steps_per_unit(cs.axis_steps_per_unit[i]);
  7521. #endif
  7522. }
  7523. }
  7524. }
  7525. reset_acceleration_rates();
  7526. #else //TMC2130
  7527. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7528. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  7529. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  7530. if(code_seen('B')) microstep_mode(4,code_value());
  7531. microstep_readings();
  7532. #endif
  7533. #endif //TMC2130
  7534. }
  7535. break;
  7536. /*!
  7537. ### M351 - Toggle Microstep Pins <a href="https://reprap.org/wiki/G-code#M351:_Toggle_MS1_MS2_pins_directly">M351: Toggle MS1 MS2 pins directly</a>
  7538. Toggle MS1 MS2 pins directly.
  7539. #### Usage
  7540. M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  7541. #### Parameters
  7542. - `X` - Update X axis
  7543. - `Y` - Update Y axis
  7544. - `Z` - Update Z axis
  7545. - `E` - Update E axis
  7546. - `S` - which MSx pin to toggle
  7547. - `B` - new pin value
  7548. */
  7549. case 351:
  7550. {
  7551. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7552. if(code_seen('S')) switch((int)code_value())
  7553. {
  7554. case 1:
  7555. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  7556. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  7557. break;
  7558. case 2:
  7559. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  7560. if(code_seen('B')) microstep_ms(4,-1,code_value());
  7561. break;
  7562. }
  7563. microstep_readings();
  7564. #endif
  7565. }
  7566. break;
  7567. /*!
  7568. ### M701 - Load filament <a href="https://reprap.org/wiki/G-code#M701:_Load_filament">M701: Load filament</a>
  7569. #### Usage
  7570. M701 [ E | T ]
  7571. #### Parameters
  7572. - `E` - ID of filament to load, ranges from 0 to 4
  7573. - `T` - Alias of `E`. Used for compatibility with Marlin
  7574. */
  7575. case 701:
  7576. {
  7577. if (mmu_enabled && (code_seen('E') || code_seen('T')))
  7578. tmp_extruder = code_value_uint8();
  7579. gcode_M701();
  7580. }
  7581. break;
  7582. /*!
  7583. ### M702 - Unload filament <a href="https://reprap.org/wiki/G-code#M702:_Unload_filament">G32: Undock Z Probe sled</a>
  7584. #### Usage
  7585. M702 [ C ]
  7586. #### Parameters
  7587. - `C` - Unload just current filament
  7588. - without any parameters unload all filaments
  7589. */
  7590. case 702:
  7591. {
  7592. if (code_seen('C')) {
  7593. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  7594. }
  7595. else {
  7596. if(mmu_enabled) extr_unload(); //! unload current filament
  7597. else unload_filament();
  7598. }
  7599. }
  7600. break;
  7601. /*!
  7602. #### End of M-Commands
  7603. */
  7604. default:
  7605. printf_P(MSG_UNKNOWN_CODE, 'M', cmdbuffer + bufindr + CMDHDRSIZE);
  7606. }
  7607. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  7608. mcode_in_progress = 0;
  7609. }
  7610. }
  7611. // end if(code_seen('M')) (end of M codes)
  7612. /*!
  7613. -----------------------------------------------------------------------------------------
  7614. # T Codes
  7615. T<extruder nr.> - select extruder in case of multi extruder printer. select filament in case of MMU_V2.
  7616. #### For MMU_V2:
  7617. T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  7618. @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  7619. @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  7620. @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  7621. */
  7622. else if(code_seen('T'))
  7623. {
  7624. static const char duplicate_Tcode_ignored[] PROGMEM = "Duplicate T-code ignored.";
  7625. int index;
  7626. bool load_to_nozzle = false;
  7627. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  7628. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  7629. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  7630. SERIAL_ECHOLNPGM("Invalid T code.");
  7631. }
  7632. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  7633. if (mmu_enabled)
  7634. {
  7635. tmp_extruder = choose_menu_P(_T(MSG_SELECT_FILAMENT), _T(MSG_FILAMENT));
  7636. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7637. {
  7638. puts_P(duplicate_Tcode_ignored);
  7639. }
  7640. else
  7641. {
  7642. st_synchronize();
  7643. mmu_command(MmuCmd::T0 + tmp_extruder);
  7644. manage_response(true, true, MMU_TCODE_MOVE);
  7645. }
  7646. }
  7647. }
  7648. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  7649. if (mmu_enabled)
  7650. {
  7651. st_synchronize();
  7652. mmu_continue_loading(usb_timer.running() || (lcd_commands_type == LcdCommands::Layer1Cal));
  7653. mmu_extruder = tmp_extruder; //filament change is finished
  7654. mmu_load_to_nozzle();
  7655. }
  7656. }
  7657. else {
  7658. if (*(strchr_pointer + index) == '?')
  7659. {
  7660. if(mmu_enabled)
  7661. {
  7662. tmp_extruder = choose_menu_P(_T(MSG_SELECT_FILAMENT), _T(MSG_FILAMENT));
  7663. load_to_nozzle = true;
  7664. } else
  7665. {
  7666. tmp_extruder = choose_menu_P(_T(MSG_SELECT_EXTRUDER), _T(MSG_EXTRUDER));
  7667. }
  7668. }
  7669. else {
  7670. tmp_extruder = code_value();
  7671. if (mmu_enabled && lcd_autoDepleteEnabled())
  7672. {
  7673. tmp_extruder = ad_getAlternative(tmp_extruder);
  7674. }
  7675. }
  7676. st_synchronize();
  7677. if (mmu_enabled)
  7678. {
  7679. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7680. {
  7681. puts_P(duplicate_Tcode_ignored);
  7682. }
  7683. else
  7684. {
  7685. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7686. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  7687. {
  7688. mmu_command(MmuCmd::K0 + tmp_extruder);
  7689. manage_response(true, true, MMU_UNLOAD_MOVE);
  7690. }
  7691. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7692. mmu_command(MmuCmd::T0 + tmp_extruder);
  7693. manage_response(true, true, MMU_TCODE_MOVE);
  7694. mmu_continue_loading(usb_timer.running() || (lcd_commands_type == LcdCommands::Layer1Cal));
  7695. mmu_extruder = tmp_extruder; //filament change is finished
  7696. if (load_to_nozzle)// for single material usage with mmu
  7697. {
  7698. mmu_load_to_nozzle();
  7699. }
  7700. }
  7701. }
  7702. else
  7703. {
  7704. if (tmp_extruder >= EXTRUDERS) {
  7705. SERIAL_ECHO_START;
  7706. SERIAL_ECHO('T');
  7707. SERIAL_PROTOCOLLN((int)tmp_extruder);
  7708. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  7709. }
  7710. else {
  7711. #if EXTRUDERS > 1
  7712. bool make_move = false;
  7713. #endif
  7714. if (code_seen('F')) {
  7715. #if EXTRUDERS > 1
  7716. make_move = true;
  7717. #endif
  7718. next_feedrate = code_value();
  7719. if (next_feedrate > 0.0) {
  7720. feedrate = next_feedrate;
  7721. }
  7722. }
  7723. #if EXTRUDERS > 1
  7724. if (tmp_extruder != active_extruder) {
  7725. // Save current position to return to after applying extruder offset
  7726. set_destination_to_current();
  7727. // Offset extruder (only by XY)
  7728. int i;
  7729. for (i = 0; i < 2; i++) {
  7730. current_position[i] = current_position[i] -
  7731. extruder_offset[i][active_extruder] +
  7732. extruder_offset[i][tmp_extruder];
  7733. }
  7734. // Set the new active extruder and position
  7735. active_extruder = tmp_extruder;
  7736. plan_set_position_curposXYZE();
  7737. // Move to the old position if 'F' was in the parameters
  7738. if (make_move) {
  7739. prepare_move();
  7740. }
  7741. }
  7742. #endif
  7743. SERIAL_ECHO_START;
  7744. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  7745. SERIAL_PROTOCOLLN((int)active_extruder);
  7746. }
  7747. }
  7748. }
  7749. } // end if(code_seen('T')) (end of T codes)
  7750. /*!
  7751. #### End of T-Codes
  7752. */
  7753. /**
  7754. *---------------------------------------------------------------------------------
  7755. *# D codes
  7756. */
  7757. else if (code_seen('D')) // D codes (debug)
  7758. {
  7759. switch(code_value_short())
  7760. {
  7761. /*!
  7762. ### D-1 - Endless Loop <a href="https://reprap.org/wiki/G-code#D-1:_Endless_Loop">D-1: Endless Loop</a>
  7763. */
  7764. case -1:
  7765. dcode__1(); break;
  7766. #ifdef DEBUG_DCODES
  7767. /*!
  7768. ### D0 - Reset <a href="https://reprap.org/wiki/G-code#D0:_Reset">D0: Reset</a>
  7769. #### Usage
  7770. D0 [ B ]
  7771. #### Parameters
  7772. - `B` - Bootloader
  7773. */
  7774. case 0:
  7775. dcode_0(); break;
  7776. /*!
  7777. *
  7778. ### D1 - Clear EEPROM and RESET <a href="https://reprap.org/wiki/G-code#D1:_Clear_EEPROM_and_RESET">D1: Clear EEPROM and RESET</a>
  7779. D1
  7780. *
  7781. */
  7782. case 1:
  7783. dcode_1(); break;
  7784. #endif
  7785. #if defined DEBUG_DCODE2 || defined DEBUG_DCODES
  7786. /*!
  7787. ### D2 - Read/Write RAM <a href="https://reprap.org/wiki/G-code#D2:_Read.2FWrite_RAM">D3: Read/Write RAM</a>
  7788. This command can be used without any additional parameters. It will read the entire RAM.
  7789. #### Usage
  7790. D2 [ A | C | X ]
  7791. #### Parameters
  7792. - `A` - Address (x0000-x1fff)
  7793. - `C` - Count (1-8192)
  7794. - `X` - Data
  7795. #### Notes
  7796. - The hex address needs to be lowercase without the 0 before the x
  7797. - Count is decimal
  7798. - The hex data needs to be lowercase
  7799. */
  7800. case 2:
  7801. dcode_2(); break;
  7802. #endif //DEBUG_DCODES
  7803. #if defined DEBUG_DCODE3 || defined DEBUG_DCODES
  7804. /*!
  7805. ### D3 - Read/Write EEPROM <a href="https://reprap.org/wiki/G-code#D3:_Read.2FWrite_EEPROM">D3: Read/Write EEPROM</a>
  7806. This command can be used without any additional parameters. It will read the entire eeprom.
  7807. #### Usage
  7808. D3 [ A | C | X ]
  7809. #### Parameters
  7810. - `A` - Address (x0000-x0fff)
  7811. - `C` - Count (1-4096)
  7812. - `X` - Data (hex)
  7813. #### Notes
  7814. - The hex address needs to be lowercase without the 0 before the x
  7815. - Count is decimal
  7816. - The hex data needs to be lowercase
  7817. */
  7818. case 3:
  7819. dcode_3(); break;
  7820. #endif //DEBUG_DCODE3
  7821. #ifdef DEBUG_DCODES
  7822. /*!
  7823. ### D4 - Read/Write PIN <a href="https://reprap.org/wiki/G-code#D4:_Read.2FWrite_PIN">D4: Read/Write PIN</a>
  7824. To read the digital value of a pin you need only to define the pin number.
  7825. #### Usage
  7826. D4 [ P | F | V ]
  7827. #### Parameters
  7828. - `P` - Pin (0-255)
  7829. - `F` - Function in/out (0/1)
  7830. - `V` - Value (0/1)
  7831. */
  7832. case 4:
  7833. dcode_4(); break;
  7834. #endif //DEBUG_DCODES
  7835. #if defined DEBUG_DCODE5 || defined DEBUG_DCODES
  7836. /*!
  7837. ### D5 - Read/Write FLASH <a href="https://reprap.org/wiki/G-code#D5:_Read.2FWrite_FLASH">D5: Read/Write Flash</a>
  7838. This command can be used without any additional parameters. It will read the 1kb FLASH.
  7839. #### Usage
  7840. D5 [ A | C | X | E ]
  7841. #### Parameters
  7842. - `A` - Address (x00000-x3ffff)
  7843. - `C` - Count (1-8192)
  7844. - `X` - Data (hex)
  7845. - `E` - Erase
  7846. #### Notes
  7847. - The hex address needs to be lowercase without the 0 before the x
  7848. - Count is decimal
  7849. - The hex data needs to be lowercase
  7850. */
  7851. case 5:
  7852. dcode_5(); break;
  7853. #endif //DEBUG_DCODE5
  7854. #if defined DEBUG_DCODE6 || defined DEBUG_DCODES
  7855. /*!
  7856. ### D6 - Read/Write external FLASH <a href="https://reprap.org/wiki/G-code#D6:_Read.2FWrite_external_FLASH">D6: Read/Write external Flash</a>
  7857. Reserved
  7858. */
  7859. case 6:
  7860. dcode_6(); break;
  7861. #endif
  7862. #ifdef DEBUG_DCODES
  7863. /*!
  7864. ### D7 - Read/Write Bootloader <a href="https://reprap.org/wiki/G-code#D7:_Read.2FWrite_Bootloader">D7: Read/Write Bootloader</a>
  7865. Reserved
  7866. */
  7867. case 7:
  7868. dcode_7(); break;
  7869. /*!
  7870. ### D8 - Read/Write PINDA <a href="https://reprap.org/wiki/G-code#D8:_Read.2FWrite_PINDA">D8: Read/Write PINDA</a>
  7871. #### Usage
  7872. D8 [ ? | ! | P | Z ]
  7873. #### Parameters
  7874. - `?` - Read PINDA temperature shift values
  7875. - `!` - Reset PINDA temperature shift values to default
  7876. - `P` - Pinda temperature [C]
  7877. - `Z` - Z Offset [mm]
  7878. */
  7879. case 8:
  7880. dcode_8(); break;
  7881. /*!
  7882. ### D9 - Read ADC <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9: Read ADC</a>
  7883. #### Usage
  7884. D9 [ I | V ]
  7885. #### Parameters
  7886. - `I` - ADC channel index
  7887. - `0` - Heater 0 temperature
  7888. - `1` - Heater 1 temperature
  7889. - `2` - Bed temperature
  7890. - `3` - PINDA temperature
  7891. - `4` - PWR voltage
  7892. - `5` - Ambient temperature
  7893. - `6` - BED voltage
  7894. - `V` Value to be written as simulated
  7895. */
  7896. case 9:
  7897. dcode_9(); break;
  7898. /*!
  7899. ### D10 - Set XYZ calibration = OK <a href="https://reprap.org/wiki/G-code#D10:_Set_XYZ_calibration_.3D_OK">D10: Set XYZ calibration = OK</a>
  7900. */
  7901. case 10:
  7902. dcode_10(); break;
  7903. /*!
  7904. ### D12 - Time <a href="https://reprap.org/wiki/G-code#D12:_Time">D12: Time</a>
  7905. Writes the current time in the log file.
  7906. */
  7907. #endif //DEBUG_DCODES
  7908. #ifdef XFLASH_DUMP
  7909. /*!
  7910. ### D20 - Generate an offline crash dump <a href="https://reprap.org/wiki/G-code#D20:_Generate_an_offline_crash_dump">D20: Generate an offline crash dump</a>
  7911. Generate a crash dump for later retrival.
  7912. #### Usage
  7913. D20 [E]
  7914. ### Parameters
  7915. - `E` - Perform an emergency crash dump (resets the printer).
  7916. ### Notes
  7917. - A crash dump can be later recovered with D21, or cleared with D22.
  7918. - An emergency crash dump includes register data, but will cause the printer to reset after the dump
  7919. is completed.
  7920. */
  7921. case 20: {
  7922. dcode_20();
  7923. break;
  7924. };
  7925. /*!
  7926. ### D21 - Print crash dump to serial <a href="https://reprap.org/wiki/G-code#D21:_Print_crash_dump_to_serial">D21: Print crash dump to serial</a>
  7927. Output the complete crash dump (if present) to the serial.
  7928. #### Usage
  7929. D21
  7930. ### Notes
  7931. - The starting address can vary between builds, but it's always at the beginning of the data section.
  7932. */
  7933. case 21: {
  7934. dcode_21();
  7935. break;
  7936. };
  7937. /*!
  7938. ### D22 - Clear crash dump state <a href="https://reprap.org/wiki/G-code#D22:_Clear_crash_dump_state">D22: Clear crash dump state</a>
  7939. Clear an existing internal crash dump.
  7940. #### Usage
  7941. D22
  7942. */
  7943. case 22: {
  7944. dcode_22();
  7945. break;
  7946. };
  7947. #endif //XFLASH_DUMP
  7948. #ifdef EMERGENCY_SERIAL_DUMP
  7949. /*!
  7950. ### D23 - Request emergency dump on serial <a href="https://reprap.org/wiki/G-code#D23:_Request_emergency_dump_on_serial">D23: Request emergency dump on serial</a>
  7951. On boards without offline dump support, request online dumps to the serial port on firmware faults.
  7952. When online dumps are enabled, the FW will dump memory on the serial before resetting.
  7953. #### Usage
  7954. D23 [E] [R]
  7955. #### Parameters
  7956. - `E` - Perform an emergency crash dump (resets the printer).
  7957. - `R` - Disable online dumps.
  7958. */
  7959. case 23: {
  7960. dcode_23();
  7961. break;
  7962. };
  7963. #endif
  7964. #ifdef TEMP_MODEL_DEBUG
  7965. /*!
  7966. ## D70 - Enable low-level temperature model logging for offline simulation
  7967. #### Usage
  7968. D70 [ I ]
  7969. #### Parameters
  7970. - `I` - Enable 0-1 (default 0)
  7971. */
  7972. case 70: {
  7973. if(code_seen('I'))
  7974. temp_model_log_enable(code_value_short());
  7975. break;
  7976. }
  7977. #endif
  7978. #ifdef HEATBED_ANALYSIS
  7979. /*!
  7980. ### D80 - Bed check <a href="https://reprap.org/wiki/G-code#D80:_Bed_check">D80: Bed check</a>
  7981. This command will log data to SD card file "mesh.txt".
  7982. #### Usage
  7983. D80 [ E | F | G | H | I | J ]
  7984. #### Parameters
  7985. - `E` - Dimension X (default 40)
  7986. - `F` - Dimention Y (default 40)
  7987. - `G` - Points X (default 40)
  7988. - `H` - Points Y (default 40)
  7989. - `I` - Offset X (default 74)
  7990. - `J` - Offset Y (default 34)
  7991. */
  7992. case 80:
  7993. dcode_80(); break;
  7994. /*!
  7995. ### D81 - Bed analysis <a href="https://reprap.org/wiki/G-code#D81:_Bed_analysis">D80: Bed analysis</a>
  7996. This command will log data to SD card file "wldsd.txt".
  7997. #### Usage
  7998. D81 [ E | F | G | H | I | J ]
  7999. #### Parameters
  8000. - `E` - Dimension X (default 40)
  8001. - `F` - Dimention Y (default 40)
  8002. - `G` - Points X (default 40)
  8003. - `H` - Points Y (default 40)
  8004. - `I` - Offset X (default 74)
  8005. - `J` - Offset Y (default 34)
  8006. */
  8007. case 81:
  8008. dcode_81(); break;
  8009. #endif //HEATBED_ANALYSIS
  8010. #ifdef DEBUG_DCODES
  8011. /*!
  8012. ### D106 - Print measured fan speed for different pwm values <a href="https://reprap.org/wiki/G-code#D106:_Print_measured_fan_speed_for_different_pwm_values">D106: Print measured fan speed for different pwm values</a>
  8013. */
  8014. case 106:
  8015. dcode_106(); break;
  8016. #ifdef TMC2130
  8017. /*!
  8018. ### D2130 - Trinamic stepper controller <a href="https://reprap.org/wiki/G-code#D2130:_Trinamic_stepper_controller">D2130: Trinamic stepper controller</a>
  8019. @todo Please review by owner of the code. RepRap Wiki Gcode needs to be updated after review of owner as well.
  8020. #### Usage
  8021. D2130 [ Axis | Command | Subcommand | Value ]
  8022. #### Parameters
  8023. - Axis
  8024. - `X` - X stepper driver
  8025. - `Y` - Y stepper driver
  8026. - `Z` - Z stepper driver
  8027. - `E` - Extruder stepper driver
  8028. - Commands
  8029. - `0` - Current off
  8030. - `1` - Current on
  8031. - `+` - Single step
  8032. - `-` - Single step oposite direction
  8033. - `NNN` - Value sereval steps
  8034. - `?` - Read register
  8035. - Subcommands for read register
  8036. - `mres` - Micro step resolution. More information in datasheet '5.5.2 CHOPCONF – Chopper Configuration'
  8037. - `step` - Step
  8038. - `mscnt` - Microstep counter. More information in datasheet '5.5 Motor Driver Registers'
  8039. - `mscuract` - Actual microstep current for motor. More information in datasheet '5.5 Motor Driver Registers'
  8040. - `wave` - Microstep linearity compensation curve
  8041. - `!` - Set register
  8042. - Subcommands for set register
  8043. - `mres` - Micro step resolution
  8044. - `step` - Step
  8045. - `wave` - Microstep linearity compensation curve
  8046. - Values for set register
  8047. - `0, 180 --> 250` - Off
  8048. - `0.9 --> 1.25` - Valid values (recommended is 1.1)
  8049. - `@` - Home calibrate axis
  8050. Examples:
  8051. D2130E?wave
  8052. Print extruder microstep linearity compensation curve
  8053. D2130E!wave0
  8054. Disable extruder linearity compensation curve, (sine curve is used)
  8055. D2130E!wave220
  8056. (sin(x))^1.1 extruder microstep compensation curve used
  8057. Notes:
  8058. For more information see https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2130_datasheet.pdf
  8059. *
  8060. */
  8061. case 2130:
  8062. dcode_2130(); break;
  8063. #endif //TMC2130
  8064. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  8065. /*!
  8066. ### D9125 - PAT9125 filament sensor <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9125: PAT9125 filament sensor</a>
  8067. #### Usage
  8068. D9125 [ ? | ! | R | X | Y | L ]
  8069. #### Parameters
  8070. - `?` - Print values
  8071. - `!` - Print values
  8072. - `R` - Resolution. Not active in code
  8073. - `X` - X values
  8074. - `Y` - Y values
  8075. - `L` - Activate filament sensor log
  8076. */
  8077. case 9125:
  8078. dcode_9125(); break;
  8079. #endif //FILAMENT_SENSOR
  8080. #endif //DEBUG_DCODES
  8081. default:
  8082. printf_P(MSG_UNKNOWN_CODE, 'D', cmdbuffer + bufindr + CMDHDRSIZE);
  8083. }
  8084. }
  8085. else
  8086. {
  8087. SERIAL_ECHO_START;
  8088. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  8089. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  8090. SERIAL_ECHOLNPGM("\"(2)");
  8091. }
  8092. KEEPALIVE_STATE(NOT_BUSY);
  8093. ClearToSend();
  8094. }
  8095. /*!
  8096. #### End of D-Codes
  8097. */
  8098. /** @defgroup GCodes G-Code List
  8099. */
  8100. // ---------------------------------------------------
  8101. void FlushSerialRequestResend()
  8102. {
  8103. //char cmdbuffer[bufindr][100]="Resend:";
  8104. MYSERIAL.flush();
  8105. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  8106. }
  8107. // Confirm the execution of a command, if sent from a serial line.
  8108. // Execution of a command from a SD card will not be confirmed.
  8109. void ClearToSend()
  8110. {
  8111. previous_millis_cmd.start();
  8112. if (buflen && ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)))
  8113. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  8114. }
  8115. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8116. void update_currents() {
  8117. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  8118. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  8119. float tmp_motor[3];
  8120. //SERIAL_ECHOLNPGM("Currents updated: ");
  8121. if (destination[Z_AXIS] < Z_SILENT) {
  8122. //SERIAL_ECHOLNPGM("LOW");
  8123. for (uint8_t i = 0; i < 3; i++) {
  8124. st_current_set(i, current_low[i]);
  8125. /*MYSERIAL.print(int(i));
  8126. SERIAL_ECHOPGM(": ");
  8127. MYSERIAL.println(current_low[i]);*/
  8128. }
  8129. }
  8130. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  8131. //SERIAL_ECHOLNPGM("HIGH");
  8132. for (uint8_t i = 0; i < 3; i++) {
  8133. st_current_set(i, current_high[i]);
  8134. /*MYSERIAL.print(int(i));
  8135. SERIAL_ECHOPGM(": ");
  8136. MYSERIAL.println(current_high[i]);*/
  8137. }
  8138. }
  8139. else {
  8140. for (uint8_t i = 0; i < 3; i++) {
  8141. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  8142. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  8143. st_current_set(i, tmp_motor[i]);
  8144. /*MYSERIAL.print(int(i));
  8145. SERIAL_ECHOPGM(": ");
  8146. MYSERIAL.println(tmp_motor[i]);*/
  8147. }
  8148. }
  8149. }
  8150. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8151. void get_coordinates() {
  8152. bool seen[4]={false,false,false,false};
  8153. for(int8_t i=0; i < NUM_AXIS; i++) {
  8154. if(code_seen(axis_codes[i]))
  8155. {
  8156. bool relative = axis_relative_modes & (1 << i);
  8157. destination[i] = code_value();
  8158. if (i == E_AXIS) {
  8159. float emult = extruder_multiplier[active_extruder];
  8160. if (emult != 1.) {
  8161. if (! relative) {
  8162. destination[i] -= current_position[i];
  8163. relative = true;
  8164. }
  8165. destination[i] *= emult;
  8166. }
  8167. }
  8168. if (relative)
  8169. destination[i] += current_position[i];
  8170. seen[i]=true;
  8171. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8172. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  8173. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8174. }
  8175. else destination[i] = current_position[i]; //Are these else lines really needed?
  8176. }
  8177. if(code_seen('F')) {
  8178. next_feedrate = code_value();
  8179. if(next_feedrate > 0.0) feedrate = next_feedrate;
  8180. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  8181. {
  8182. // float e_max_speed =
  8183. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  8184. }
  8185. }
  8186. }
  8187. void clamp_to_software_endstops(float target[3])
  8188. {
  8189. #ifdef DEBUG_DISABLE_SWLIMITS
  8190. return;
  8191. #endif //DEBUG_DISABLE_SWLIMITS
  8192. world2machine_clamp(target[0], target[1]);
  8193. // Clamp the Z coordinate.
  8194. if (min_software_endstops) {
  8195. float negative_z_offset = 0;
  8196. #ifdef ENABLE_AUTO_BED_LEVELING
  8197. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  8198. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  8199. #endif
  8200. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  8201. }
  8202. if (max_software_endstops) {
  8203. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  8204. }
  8205. }
  8206. uint16_t restore_interrupted_gcode() {
  8207. // When recovering from a previous print move, restore the originally
  8208. // calculated start position on the first USB/SD command. This accounts
  8209. // properly for relative moves
  8210. if (
  8211. (saved_start_position[0] != SAVED_START_POSITION_UNSET) && (
  8212. (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) ||
  8213. (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)
  8214. )
  8215. ) {
  8216. memcpy(current_position, saved_start_position, sizeof(current_position));
  8217. saved_start_position[0] = SAVED_START_POSITION_UNSET;
  8218. return saved_segment_idx;
  8219. }
  8220. else
  8221. return 1; //begin with the first segment
  8222. }
  8223. #ifdef MESH_BED_LEVELING
  8224. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder, uint16_t start_segment_idx = 0) {
  8225. float dx = x - current_position[X_AXIS];
  8226. float dy = y - current_position[Y_AXIS];
  8227. uint16_t n_segments = 0;
  8228. if (mbl.active) {
  8229. float len = fabs(dx) + fabs(dy);
  8230. if (len > 0)
  8231. // Split to 3cm segments or shorter.
  8232. n_segments = uint16_t(ceil(len / 30.f));
  8233. }
  8234. if (n_segments > 1 && start_segment_idx) {
  8235. float dz = z - current_position[Z_AXIS];
  8236. float de = e - current_position[E_AXIS];
  8237. for (uint16_t i = start_segment_idx; i < n_segments; ++ i) {
  8238. float t = float(i) / float(n_segments);
  8239. plan_buffer_line(current_position[X_AXIS] + t * dx,
  8240. current_position[Y_AXIS] + t * dy,
  8241. current_position[Z_AXIS] + t * dz,
  8242. current_position[E_AXIS] + t * de,
  8243. feed_rate, extruder, current_position, i);
  8244. if (planner_aborted)
  8245. return;
  8246. }
  8247. }
  8248. // The rest of the path.
  8249. plan_buffer_line(x, y, z, e, feed_rate, extruder, current_position);
  8250. }
  8251. #endif // MESH_BED_LEVELING
  8252. void prepare_move(uint16_t start_segment_idx)
  8253. {
  8254. clamp_to_software_endstops(destination);
  8255. previous_millis_cmd.start();
  8256. // Do not use feedmultiply for E or Z only moves
  8257. if((current_position[X_AXIS] == destination[X_AXIS]) && (current_position[Y_AXIS] == destination[Y_AXIS])) {
  8258. plan_buffer_line_destinationXYZE(feedrate/60);
  8259. }
  8260. else {
  8261. #ifdef MESH_BED_LEVELING
  8262. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder, start_segment_idx);
  8263. #else
  8264. plan_buffer_line_destinationXYZE(feedrate*feedmultiply*(1./(60.f*100.f)));
  8265. #endif
  8266. }
  8267. set_current_to_destination();
  8268. }
  8269. void prepare_arc_move(bool isclockwise, uint16_t start_segment_idx) {
  8270. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  8271. // Trace the arc
  8272. mc_arc(current_position, destination, offset, feedrate * feedmultiply / 60 / 100.0, r, isclockwise, active_extruder, start_segment_idx);
  8273. // As far as the parser is concerned, the position is now == target. In reality the
  8274. // motion control system might still be processing the action and the real tool position
  8275. // in any intermediate location.
  8276. set_current_to_destination();
  8277. previous_millis_cmd.start();
  8278. }
  8279. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8280. #if defined(FAN_PIN)
  8281. #if CONTROLLERFAN_PIN == FAN_PIN
  8282. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  8283. #endif
  8284. #endif
  8285. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  8286. unsigned long lastMotorCheck = 0;
  8287. void controllerFan()
  8288. {
  8289. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  8290. {
  8291. lastMotorCheck = _millis();
  8292. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  8293. #if EXTRUDERS > 2
  8294. || !READ(E2_ENABLE_PIN)
  8295. #endif
  8296. #if EXTRUDER > 1
  8297. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  8298. || !READ(X2_ENABLE_PIN)
  8299. #endif
  8300. || !READ(E1_ENABLE_PIN)
  8301. #endif
  8302. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  8303. {
  8304. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  8305. }
  8306. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  8307. {
  8308. digitalWrite(CONTROLLERFAN_PIN, 0);
  8309. analogWrite(CONTROLLERFAN_PIN, 0);
  8310. }
  8311. else
  8312. {
  8313. // allows digital or PWM fan output to be used (see M42 handling)
  8314. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  8315. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  8316. }
  8317. }
  8318. }
  8319. #endif
  8320. #ifdef SAFETYTIMER
  8321. /**
  8322. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  8323. *
  8324. * Full screen blocking notification message is shown after heater turning off.
  8325. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  8326. * damage print.
  8327. *
  8328. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  8329. */
  8330. static void handleSafetyTimer()
  8331. {
  8332. #if (EXTRUDERS > 1)
  8333. #error Implemented only for one extruder.
  8334. #endif //(EXTRUDERS > 1)
  8335. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  8336. {
  8337. safetyTimer.stop();
  8338. }
  8339. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  8340. {
  8341. safetyTimer.start();
  8342. }
  8343. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  8344. {
  8345. setTargetBed(0);
  8346. setAllTargetHotends(0);
  8347. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=20 r=4
  8348. }
  8349. }
  8350. #endif //SAFETYTIMER
  8351. #ifdef IR_SENSOR_ANALOG
  8352. #define FS_CHECK_COUNT 16
  8353. /// Switching mechanism of the fsensor type.
  8354. /// Called from 2 spots which have a very similar behavior
  8355. /// 1: ClFsensorPCB::_Old -> ClFsensorPCB::_Rev04 and print _i("FS v0.4 or newer")
  8356. /// 2: ClFsensorPCB::_Rev04 -> oFsensorPCB=ClFsensorPCB::_Old and print _i("FS v0.3 or older")
  8357. void manage_inactivity_IR_ANALOG_Check(uint16_t &nFSCheckCount, ClFsensorPCB isVersion, ClFsensorPCB switchTo, const char *statusLineTxt_P) {
  8358. bool bTemp = (!CHECK_ALL_HEATERS);
  8359. bTemp = bTemp && (menu_menu == lcd_status_screen);
  8360. bTemp = bTemp && ((oFsensorPCB == isVersion) || (oFsensorPCB == ClFsensorPCB::_Undef));
  8361. bTemp = bTemp && fsensor_enabled;
  8362. if (bTemp) {
  8363. nFSCheckCount++;
  8364. if (nFSCheckCount > FS_CHECK_COUNT) {
  8365. nFSCheckCount = 0; // not necessary
  8366. oFsensorPCB = switchTo;
  8367. eeprom_update_byte((uint8_t *)EEPROM_FSENSOR_PCB, (uint8_t)oFsensorPCB);
  8368. printf_IRSensorAnalogBoardChange();
  8369. lcd_setstatuspgm(statusLineTxt_P);
  8370. }
  8371. } else {
  8372. nFSCheckCount = 0;
  8373. }
  8374. }
  8375. #endif
  8376. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  8377. {
  8378. #ifdef FILAMENT_SENSOR
  8379. bool bInhibitFlag = false;
  8380. #ifdef IR_SENSOR_ANALOG
  8381. static uint16_t nFSCheckCount=0;
  8382. #endif // IR_SENSOR_ANALOG
  8383. if (mmu_enabled == false)
  8384. {
  8385. //-// if (mcode_in_progress != 600) //M600 not in progress
  8386. if (!PRINTER_ACTIVE) bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); //Block Filament sensor actions if PRINTER is not active and Support::SensorInfo menu active
  8387. #ifdef IR_SENSOR_ANALOG
  8388. bInhibitFlag=bInhibitFlag||bMenuFSDetect; // Block Filament sensor actions if Settings::HWsetup::FSdetect menu active
  8389. #endif // IR_SENSOR_ANALOG
  8390. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag) && (menu_menu != lcd_move_e)) //M600 not in progress, preHeat @ autoLoad menu not active
  8391. {
  8392. if (!moves_planned() && !IS_SD_PRINTING && !usb_timer.running() && (lcd_commands_type != LcdCommands::Layer1Cal) && ! eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))
  8393. {
  8394. #ifdef IR_SENSOR_ANALOG
  8395. static uint16_t minVolt = Voltage2Raw(6.F), maxVolt = 0;
  8396. // detect min-max, some long term sliding window for filtration may be added
  8397. // avoiding floating point operations, thus computing in raw
  8398. if( current_voltage_raw_IR > maxVolt )maxVolt = current_voltage_raw_IR;
  8399. if( current_voltage_raw_IR < minVolt )minVolt = current_voltage_raw_IR;
  8400. #if 0 // Start: IR Sensor debug info
  8401. { // debug print
  8402. static uint16_t lastVolt = ~0U;
  8403. if( current_voltage_raw_IR != lastVolt ){
  8404. printf_P(PSTR("fs volt=%4.2fV (min=%4.2f max=%4.2f)\n"), Raw2Voltage(current_voltage_raw_IR), Raw2Voltage(minVolt), Raw2Voltage(maxVolt) );
  8405. lastVolt = current_voltage_raw_IR;
  8406. }
  8407. }
  8408. #endif // End: IR Sensor debug info
  8409. //! The trouble is, I can hold the filament in the hole in such a way, that it creates the exact voltage
  8410. //! to be detected as the new fsensor
  8411. //! We can either fake it by extending the detection window to a looooong time
  8412. //! or do some other countermeasures
  8413. //! what we want to detect:
  8414. //! if minvolt gets below ~0.3V, it means there is an old fsensor
  8415. //! if maxvolt gets above 4.6V, it means we either have an old fsensor or broken cables/fsensor
  8416. //! So I'm waiting for a situation, when minVolt gets to range <0, 1.5> and maxVolt gets into range <3.0, 5>
  8417. //! If and only if minVolt is in range <0.3, 1.5> and maxVolt is in range <3.0, 4.6>, I'm considering a situation with the new fsensor
  8418. if( minVolt >= IRsensor_Ldiode_TRESHOLD && minVolt <= IRsensor_Lmax_TRESHOLD
  8419. && maxVolt >= IRsensor_Hmin_TRESHOLD && maxVolt <= IRsensor_Hopen_TRESHOLD
  8420. ){
  8421. manage_inactivity_IR_ANALOG_Check(nFSCheckCount, ClFsensorPCB::_Old, ClFsensorPCB::_Rev04, _i("FS v0.4 or newer") ); ////MSG_FS_V_04_OR_NEWER c=18
  8422. }
  8423. //! If and only if minVolt is in range <0.0, 0.3> and maxVolt is in range <4.6, 5.0V>, I'm considering a situation with the old fsensor
  8424. //! Note, we are not relying on one voltage here - getting just +5V can mean an old fsensor or a broken new sensor - that's why
  8425. //! we need to have both voltages detected correctly to allow switching back to the old fsensor.
  8426. else if( minVolt < IRsensor_Ldiode_TRESHOLD
  8427. && maxVolt > IRsensor_Hopen_TRESHOLD && maxVolt <= IRsensor_VMax_TRESHOLD
  8428. ){
  8429. manage_inactivity_IR_ANALOG_Check(nFSCheckCount, ClFsensorPCB::_Rev04, oFsensorPCB=ClFsensorPCB::_Old, _i("FS v0.3 or older")); ////MSG_FS_V_03_OR_OLDER c=18
  8430. }
  8431. #endif // IR_SENSOR_ANALOG
  8432. if (fsensor_check_autoload())
  8433. {
  8434. #ifdef PAT9125
  8435. fsensor_autoload_check_stop();
  8436. #endif //PAT9125
  8437. //-// if ((int)degHotend0() > extrude_min_temp)
  8438. if(0)
  8439. {
  8440. Sound_MakeCustom(50,1000,false);
  8441. loading_flag = true;
  8442. enquecommand_front_P((PSTR("M701")));
  8443. }
  8444. else
  8445. {
  8446. /*
  8447. lcd_update_enable(false);
  8448. show_preheat_nozzle_warning();
  8449. lcd_update_enable(true);
  8450. */
  8451. eFilamentAction=FilamentAction::AutoLoad;
  8452. if(target_temperature[0] >= extrude_min_temp){
  8453. bFilamentPreheatState=true;
  8454. // mFilamentItem(target_temperature[0],target_temperature_bed);
  8455. menu_submenu(mFilamentItemForce);
  8456. } else {
  8457. menu_submenu(lcd_generic_preheat_menu);
  8458. lcd_timeoutToStatus.start();
  8459. }
  8460. }
  8461. }
  8462. }
  8463. else
  8464. {
  8465. #ifdef PAT9125
  8466. fsensor_autoload_check_stop();
  8467. #endif //PAT9125
  8468. if (fsensor_enabled && !saved_printing)
  8469. fsensor_update();
  8470. }
  8471. }
  8472. }
  8473. #endif //FILAMENT_SENSOR
  8474. #ifdef SAFETYTIMER
  8475. handleSafetyTimer();
  8476. #endif //SAFETYTIMER
  8477. #if defined(KILL_PIN) && KILL_PIN > -1
  8478. static int killCount = 0; // make the inactivity button a bit less responsive
  8479. const int KILL_DELAY = 10000;
  8480. #endif
  8481. if(buflen < (BUFSIZE-1)){
  8482. get_command();
  8483. }
  8484. if(previous_millis_cmd.expired(max_inactive_time))
  8485. if(max_inactive_time)
  8486. kill(_n("Inactivity Shutdown"), 4);
  8487. if(stepper_inactive_time) {
  8488. if(previous_millis_cmd.expired(stepper_inactive_time))
  8489. {
  8490. if(blocks_queued() == false && ignore_stepper_queue == false) {
  8491. disable_x();
  8492. disable_y();
  8493. disable_z();
  8494. disable_e0();
  8495. disable_e1();
  8496. disable_e2();
  8497. }
  8498. }
  8499. }
  8500. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  8501. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  8502. {
  8503. chdkActive = false;
  8504. WRITE(CHDK, LOW);
  8505. }
  8506. #endif
  8507. #if defined(KILL_PIN) && KILL_PIN > -1
  8508. // Check if the kill button was pressed and wait just in case it was an accidental
  8509. // key kill key press
  8510. // -------------------------------------------------------------------------------
  8511. if( 0 == READ(KILL_PIN) )
  8512. {
  8513. killCount++;
  8514. }
  8515. else if (killCount > 0)
  8516. {
  8517. killCount--;
  8518. }
  8519. // Exceeded threshold and we can confirm that it was not accidental
  8520. // KILL the machine
  8521. // ----------------------------------------------------------------
  8522. if ( killCount >= KILL_DELAY)
  8523. {
  8524. kill(NULL, 5);
  8525. }
  8526. #endif
  8527. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8528. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  8529. #endif
  8530. #ifdef EXTRUDER_RUNOUT_PREVENT
  8531. if(previous_millis_cmd.expired(EXTRUDER_RUNOUT_SECONDS*1000))
  8532. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  8533. {
  8534. bool oldstatus=READ(E0_ENABLE_PIN);
  8535. enable_e0();
  8536. float oldepos=current_position[E_AXIS];
  8537. float oldedes=destination[E_AXIS];
  8538. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  8539. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  8540. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  8541. current_position[E_AXIS]=oldepos;
  8542. destination[E_AXIS]=oldedes;
  8543. plan_set_e_position(oldepos);
  8544. previous_millis_cmd.start();
  8545. st_synchronize();
  8546. WRITE(E0_ENABLE_PIN,oldstatus);
  8547. }
  8548. #endif
  8549. check_axes_activity();
  8550. mmu_loop();
  8551. // handle longpress
  8552. if(lcd_longpress_trigger)
  8553. {
  8554. // long press is not possible in modal mode, wait until ready
  8555. if (lcd_longpress_func && lcd_update_enabled)
  8556. {
  8557. lcd_longpress_func();
  8558. lcd_longpress_trigger = 0;
  8559. }
  8560. }
  8561. #if defined(AUTO_REPORT)
  8562. host_autoreport();
  8563. #endif //AUTO_REPORT
  8564. host_keepalive();
  8565. }
  8566. void kill(const char *full_screen_message, unsigned char id)
  8567. {
  8568. printf_P(_N("KILL: %d\n"), id);
  8569. //return;
  8570. cli(); // Stop interrupts
  8571. disable_heater();
  8572. disable_x();
  8573. // SERIAL_ECHOLNPGM("kill - disable Y");
  8574. disable_y();
  8575. poweroff_z();
  8576. disable_e0();
  8577. disable_e1();
  8578. disable_e2();
  8579. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  8580. pinMode(PS_ON_PIN,INPUT);
  8581. #endif
  8582. SERIAL_ERROR_START;
  8583. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  8584. if (full_screen_message != NULL) {
  8585. SERIAL_ERRORLNRPGM(full_screen_message);
  8586. lcd_display_message_fullscreen_P(full_screen_message);
  8587. } else {
  8588. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  8589. }
  8590. // FMC small patch to update the LCD before ending
  8591. sei(); // enable interrupts
  8592. for ( int i=5; i--; lcd_update(0))
  8593. {
  8594. _delay(200);
  8595. }
  8596. cli(); // disable interrupts
  8597. suicide();
  8598. while(1)
  8599. {
  8600. #ifdef WATCHDOG
  8601. wdt_reset();
  8602. #endif //WATCHDOG
  8603. /* Intentionally left empty */
  8604. } // Wait for reset
  8605. }
  8606. void UnconditionalStop()
  8607. {
  8608. CRITICAL_SECTION_START;
  8609. // Disable all heaters and unroll the temperature wait loop stack
  8610. disable_heater();
  8611. cancel_heatup = true;
  8612. heating_status = HeatingStatus::NO_HEATING;
  8613. // Clear any saved printing state
  8614. cancel_saved_printing();
  8615. // Abort the planner
  8616. planner_abort_hard();
  8617. // Reset the queue
  8618. cmdqueue_reset();
  8619. cmdqueue_serial_disabled = false;
  8620. // Reset the sd status
  8621. card.sdprinting = false;
  8622. card.closefile();
  8623. st_reset_timer();
  8624. CRITICAL_SECTION_END;
  8625. }
  8626. // Emergency stop used by overtemp functions which allows recovery
  8627. // WARNING: This function is called *continuously* during a thermal failure.
  8628. //
  8629. // This either pauses (for thermal model errors) or stops *without recovery* depending on
  8630. // "allow_pause". If pause is allowed, this forces a printer-initiated instantanenous pause (just
  8631. // like an LCD pause) that bypasses the host pausing functionality. In this state the printer is
  8632. // kept in busy state and *must* be recovered from the LCD.
  8633. void ThermalStop(bool allow_pause)
  8634. {
  8635. if(Stopped == false) {
  8636. Stopped = true;
  8637. if(allow_pause && (IS_SD_PRINTING || usb_timer.running())) {
  8638. if (!isPrintPaused) {
  8639. // we cannot make a distinction for the host here, the pause must be instantaneous
  8640. // so we call the lcd_pause_print to save the print state internally. Thermal errors
  8641. // disable heaters and save the original temperatures to saved_*, which will get
  8642. // overwritten by stop_and_save_print_to_ram. For this corner-case, re-instate the
  8643. // original values after the pause handler is called.
  8644. float bed_temp = saved_bed_temperature;
  8645. float ext_temp = saved_extruder_temperature;
  8646. int fan_speed = saved_fan_speed;
  8647. lcd_pause_print();
  8648. saved_bed_temperature = bed_temp;
  8649. saved_extruder_temperature = ext_temp;
  8650. saved_fan_speed = fan_speed;
  8651. }
  8652. } else {
  8653. // We got a hard thermal error and/or there is no print going on. Just stop.
  8654. lcd_print_stop();
  8655. // Also prevent further menu entry
  8656. menu_set_block(MENU_BLOCK_THERMAL_ERROR);
  8657. }
  8658. // Report the status on the serial, switch to a busy state
  8659. SERIAL_ERROR_START;
  8660. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  8661. // Eventually report the stopped status on the lcd (though this is usually overridden by a
  8662. // higher-priority alert status message)
  8663. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  8664. // Make a warning sound! We cannot use Sound_MakeCustom as this would stop further moves.
  8665. // Turn on the speaker here (if not already), and turn it off when back in the main loop.
  8666. WRITE(BEEPER, HIGH);
  8667. }
  8668. // Return to the status screen to stop any pending menu action which could have been
  8669. // started by the user while stuck in the Stopped state. This also ensures the NEW
  8670. // error is immediately shown.
  8671. if (menu_menu != lcd_status_screen)
  8672. lcd_return_to_status();
  8673. }
  8674. bool IsStopped() { return Stopped; };
  8675. void finishAndDisableSteppers()
  8676. {
  8677. st_synchronize();
  8678. disable_x();
  8679. disable_y();
  8680. disable_z();
  8681. disable_e0();
  8682. disable_e1();
  8683. disable_e2();
  8684. #ifndef LA_NOCOMPAT
  8685. // Steppers are disabled both when a print is stopped and also via M84 (which is additionally
  8686. // checked-for to indicate a complete file), so abuse this function to reset the LA detection
  8687. // state for the next print.
  8688. la10c_reset();
  8689. #endif
  8690. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  8691. print_time_remaining_init();
  8692. }
  8693. #ifdef FAST_PWM_FAN
  8694. void setPwmFrequency(uint8_t pin, int val)
  8695. {
  8696. val &= 0x07;
  8697. switch(digitalPinToTimer(pin))
  8698. {
  8699. #if defined(TCCR0A)
  8700. case TIMER0A:
  8701. case TIMER0B:
  8702. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8703. // TCCR0B |= val;
  8704. break;
  8705. #endif
  8706. #if defined(TCCR1A)
  8707. case TIMER1A:
  8708. case TIMER1B:
  8709. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8710. // TCCR1B |= val;
  8711. break;
  8712. #endif
  8713. #if defined(TCCR2)
  8714. case TIMER2:
  8715. case TIMER2:
  8716. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8717. TCCR2 |= val;
  8718. break;
  8719. #endif
  8720. #if defined(TCCR2A)
  8721. case TIMER2A:
  8722. case TIMER2B:
  8723. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8724. TCCR2B |= val;
  8725. break;
  8726. #endif
  8727. #if defined(TCCR3A)
  8728. case TIMER3A:
  8729. case TIMER3B:
  8730. case TIMER3C:
  8731. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8732. TCCR3B |= val;
  8733. break;
  8734. #endif
  8735. #if defined(TCCR4A)
  8736. case TIMER4A:
  8737. case TIMER4B:
  8738. case TIMER4C:
  8739. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8740. TCCR4B |= val;
  8741. break;
  8742. #endif
  8743. #if defined(TCCR5A)
  8744. case TIMER5A:
  8745. case TIMER5B:
  8746. case TIMER5C:
  8747. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8748. TCCR5B |= val;
  8749. break;
  8750. #endif
  8751. }
  8752. }
  8753. #endif //FAST_PWM_FAN
  8754. //! @brief Get and validate extruder number
  8755. //!
  8756. //! If it is not specified, active_extruder is returned in parameter extruder.
  8757. //! @param [in] code M code number
  8758. //! @param [out] extruder
  8759. //! @return error
  8760. //! @retval true Invalid extruder specified in T code
  8761. //! @retval false Valid extruder specified in T code, or not specifiead
  8762. bool setTargetedHotend(int code, uint8_t &extruder)
  8763. {
  8764. extruder = active_extruder;
  8765. if(code_seen('T')) {
  8766. extruder = code_value_uint8();
  8767. if(extruder >= EXTRUDERS) {
  8768. SERIAL_ECHO_START;
  8769. switch(code){
  8770. case 104:
  8771. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  8772. break;
  8773. case 105:
  8774. SERIAL_ECHORPGM(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  8775. break;
  8776. case 109:
  8777. SERIAL_ECHORPGM(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  8778. break;
  8779. case 218:
  8780. SERIAL_ECHORPGM(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  8781. break;
  8782. case 221:
  8783. SERIAL_ECHORPGM(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  8784. break;
  8785. }
  8786. SERIAL_PROTOCOLLN((int)extruder);
  8787. return true;
  8788. }
  8789. }
  8790. return false;
  8791. }
  8792. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  8793. {
  8794. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  8795. {
  8796. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  8797. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  8798. }
  8799. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  8800. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  8801. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  8802. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  8803. total_filament_used = 0;
  8804. }
  8805. float calculate_extruder_multiplier(float diameter) {
  8806. float out = 1.f;
  8807. if (cs.volumetric_enabled && diameter > 0.f) {
  8808. float area = M_PI * diameter * diameter * 0.25;
  8809. out = 1.f / area;
  8810. }
  8811. if (extrudemultiply != 100)
  8812. out *= float(extrudemultiply) * 0.01f;
  8813. return out;
  8814. }
  8815. void calculate_extruder_multipliers() {
  8816. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  8817. #if EXTRUDERS > 1
  8818. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  8819. #if EXTRUDERS > 2
  8820. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  8821. #endif
  8822. #endif
  8823. }
  8824. void delay_keep_alive(unsigned int ms)
  8825. {
  8826. for (;;) {
  8827. manage_heater();
  8828. // Manage inactivity, but don't disable steppers on timeout.
  8829. manage_inactivity(true);
  8830. lcd_update(0);
  8831. if (ms == 0)
  8832. break;
  8833. else if (ms >= 50) {
  8834. _delay(50);
  8835. ms -= 50;
  8836. } else {
  8837. _delay(ms);
  8838. ms = 0;
  8839. }
  8840. }
  8841. }
  8842. static void wait_for_heater(long codenum, uint8_t extruder) {
  8843. if (!degTargetHotend(extruder))
  8844. return;
  8845. #ifdef TEMP_RESIDENCY_TIME
  8846. long residencyStart;
  8847. residencyStart = -1;
  8848. /* continue to loop until we have reached the target temp
  8849. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  8850. cancel_heatup = false;
  8851. while ((!cancel_heatup) && ((residencyStart == -1) ||
  8852. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  8853. #else
  8854. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  8855. #endif //TEMP_RESIDENCY_TIME
  8856. if ((_millis() - codenum) > 1000UL)
  8857. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  8858. if (!farm_mode) {
  8859. SERIAL_PROTOCOLPGM("T:");
  8860. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  8861. SERIAL_PROTOCOLPGM(" E:");
  8862. SERIAL_PROTOCOL((int)extruder);
  8863. #ifdef TEMP_RESIDENCY_TIME
  8864. SERIAL_PROTOCOLPGM(" W:");
  8865. if (residencyStart > -1)
  8866. {
  8867. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  8868. SERIAL_PROTOCOLLN(codenum);
  8869. }
  8870. else
  8871. {
  8872. SERIAL_PROTOCOLLN('?');
  8873. }
  8874. }
  8875. #else
  8876. SERIAL_PROTOCOLLN();
  8877. #endif
  8878. codenum = _millis();
  8879. }
  8880. manage_heater();
  8881. manage_inactivity(true); //do not disable steppers
  8882. lcd_update(0);
  8883. #ifdef TEMP_RESIDENCY_TIME
  8884. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  8885. or when current temp falls outside the hysteresis after target temp was reached */
  8886. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  8887. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  8888. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  8889. {
  8890. residencyStart = _millis();
  8891. }
  8892. #endif //TEMP_RESIDENCY_TIME
  8893. }
  8894. }
  8895. void check_babystep()
  8896. {
  8897. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8898. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  8899. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  8900. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  8901. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  8902. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8903. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  8904. babystep_z);
  8905. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  8906. lcd_update_enable(true);
  8907. }
  8908. }
  8909. #ifdef HEATBED_ANALYSIS
  8910. void d_setup()
  8911. {
  8912. pinMode(D_DATACLOCK, INPUT_PULLUP);
  8913. pinMode(D_DATA, INPUT_PULLUP);
  8914. pinMode(D_REQUIRE, OUTPUT);
  8915. digitalWrite(D_REQUIRE, HIGH);
  8916. }
  8917. float d_ReadData()
  8918. {
  8919. int digit[13];
  8920. String mergeOutput;
  8921. float output;
  8922. digitalWrite(D_REQUIRE, HIGH);
  8923. for (int i = 0; i<13; i++)
  8924. {
  8925. for (int j = 0; j < 4; j++)
  8926. {
  8927. while (digitalRead(D_DATACLOCK) == LOW) {}
  8928. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8929. bitWrite(digit[i], j, digitalRead(D_DATA));
  8930. }
  8931. }
  8932. digitalWrite(D_REQUIRE, LOW);
  8933. mergeOutput = "";
  8934. output = 0;
  8935. for (int r = 5; r <= 10; r++) //Merge digits
  8936. {
  8937. mergeOutput += digit[r];
  8938. }
  8939. output = mergeOutput.toFloat();
  8940. if (digit[4] == 8) //Handle sign
  8941. {
  8942. output *= -1;
  8943. }
  8944. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8945. {
  8946. output /= 10;
  8947. }
  8948. return output;
  8949. }
  8950. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8951. int t1 = 0;
  8952. int t_delay = 0;
  8953. int digit[13];
  8954. int m;
  8955. char str[3];
  8956. //String mergeOutput;
  8957. char mergeOutput[15];
  8958. float output;
  8959. int mesh_point = 0; //index number of calibration point
  8960. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8961. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8962. float mesh_home_z_search = 4;
  8963. float measure_z_height = 0.2f;
  8964. float row[x_points_num];
  8965. int ix = 0;
  8966. int iy = 0;
  8967. const char* filename_wldsd = "mesh.txt";
  8968. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  8969. char numb_wldsd[8]; // (" -A.BCD" + null)
  8970. #ifdef MICROMETER_LOGGING
  8971. d_setup();
  8972. #endif //MICROMETER_LOGGING
  8973. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8974. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8975. unsigned int custom_message_type_old = custom_message_type;
  8976. unsigned int custom_message_state_old = custom_message_state;
  8977. custom_message_type = CustomMsg::MeshBedLeveling;
  8978. custom_message_state = (x_points_num * y_points_num) + 10;
  8979. lcd_update(1);
  8980. //mbl.reset();
  8981. babystep_undo();
  8982. card.openFile(filename_wldsd, false);
  8983. /*destination[Z_AXIS] = mesh_home_z_search;
  8984. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  8985. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8986. for(int8_t i=0; i < NUM_AXIS; i++) {
  8987. current_position[i] = destination[i];
  8988. }
  8989. st_synchronize();
  8990. */
  8991. destination[Z_AXIS] = measure_z_height;
  8992. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8993. for(int8_t i=0; i < NUM_AXIS; i++) {
  8994. current_position[i] = destination[i];
  8995. }
  8996. st_synchronize();
  8997. /*int l_feedmultiply = */setup_for_endstop_move(false);
  8998. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8999. SERIAL_PROTOCOL(x_points_num);
  9000. SERIAL_PROTOCOLPGM(",");
  9001. SERIAL_PROTOCOL(y_points_num);
  9002. SERIAL_PROTOCOLPGM("\nZ search height: ");
  9003. SERIAL_PROTOCOL(mesh_home_z_search);
  9004. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  9005. SERIAL_PROTOCOL(x_dimension);
  9006. SERIAL_PROTOCOLPGM(",");
  9007. SERIAL_PROTOCOL(y_dimension);
  9008. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  9009. while (mesh_point != x_points_num * y_points_num) {
  9010. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  9011. iy = mesh_point / x_points_num;
  9012. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  9013. float z0 = 0.f;
  9014. /*destination[Z_AXIS] = mesh_home_z_search;
  9015. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  9016. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  9017. for(int8_t i=0; i < NUM_AXIS; i++) {
  9018. current_position[i] = destination[i];
  9019. }
  9020. st_synchronize();*/
  9021. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  9022. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  9023. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  9024. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  9025. mesh_plan_buffer_line_destinationXYZE(XY_AXIS_FEEDRATE/6);
  9026. set_current_to_destination();
  9027. st_synchronize();
  9028. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  9029. delay_keep_alive(1000);
  9030. #ifdef MICROMETER_LOGGING
  9031. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9032. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  9033. //strcat(data_wldsd, numb_wldsd);
  9034. //MYSERIAL.println(data_wldsd);
  9035. //delay(1000);
  9036. //delay(3000);
  9037. //t1 = millis();
  9038. //while (digitalRead(D_DATACLOCK) == LOW) {}
  9039. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  9040. memset(digit, 0, sizeof(digit));
  9041. //cli();
  9042. digitalWrite(D_REQUIRE, LOW);
  9043. for (int i = 0; i<13; i++)
  9044. {
  9045. //t1 = millis();
  9046. for (int j = 0; j < 4; j++)
  9047. {
  9048. while (digitalRead(D_DATACLOCK) == LOW) {}
  9049. while (digitalRead(D_DATACLOCK) == HIGH) {}
  9050. //printf_P(PSTR("Done %d\n"), j);
  9051. bitWrite(digit[i], j, digitalRead(D_DATA));
  9052. }
  9053. //t_delay = (millis() - t1);
  9054. //SERIAL_PROTOCOLPGM(" ");
  9055. //SERIAL_PROTOCOL_F(t_delay, 5);
  9056. //SERIAL_PROTOCOLPGM(" ");
  9057. }
  9058. //sei();
  9059. digitalWrite(D_REQUIRE, HIGH);
  9060. mergeOutput[0] = '\0';
  9061. output = 0;
  9062. for (int r = 5; r <= 10; r++) //Merge digits
  9063. {
  9064. sprintf(str, "%d", digit[r]);
  9065. strcat(mergeOutput, str);
  9066. }
  9067. output = atof(mergeOutput);
  9068. if (digit[4] == 8) //Handle sign
  9069. {
  9070. output *= -1;
  9071. }
  9072. for (int i = digit[11]; i > 0; i--) //Handle floating point
  9073. {
  9074. output *= 0.1;
  9075. }
  9076. //output = d_ReadData();
  9077. //row[ix] = current_position[Z_AXIS];
  9078. //row[ix] = d_ReadData();
  9079. row[ix] = output;
  9080. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  9081. memset(data_wldsd, 0, sizeof(data_wldsd));
  9082. for (int i = 0; i < x_points_num; i++) {
  9083. SERIAL_PROTOCOLPGM(" ");
  9084. SERIAL_PROTOCOL_F(row[i], 5);
  9085. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9086. dtostrf(row[i], 7, 3, numb_wldsd);
  9087. strcat(data_wldsd, numb_wldsd);
  9088. }
  9089. card.write_command(data_wldsd);
  9090. SERIAL_PROTOCOLPGM("\n");
  9091. }
  9092. custom_message_state--;
  9093. mesh_point++;
  9094. lcd_update(1);
  9095. }
  9096. #endif //MICROMETER_LOGGING
  9097. card.closefile();
  9098. //clean_up_after_endstop_move(l_feedmultiply);
  9099. }
  9100. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  9101. int t1 = 0;
  9102. int t_delay = 0;
  9103. int digit[13];
  9104. int m;
  9105. char str[3];
  9106. //String mergeOutput;
  9107. char mergeOutput[15];
  9108. float output;
  9109. int mesh_point = 0; //index number of calibration point
  9110. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  9111. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  9112. float mesh_home_z_search = 4;
  9113. float row[x_points_num];
  9114. int ix = 0;
  9115. int iy = 0;
  9116. const char* filename_wldsd = "wldsd.txt";
  9117. char data_wldsd[70];
  9118. char numb_wldsd[10];
  9119. d_setup();
  9120. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  9121. // We don't know where we are! HOME!
  9122. // Push the commands to the front of the message queue in the reverse order!
  9123. // There shall be always enough space reserved for these commands.
  9124. repeatcommand_front(); // repeat G80 with all its parameters
  9125. enquecommand_front_P(G28W0);
  9126. enquecommand_front_P((PSTR("G1 Z5")));
  9127. return;
  9128. }
  9129. unsigned int custom_message_type_old = custom_message_type;
  9130. unsigned int custom_message_state_old = custom_message_state;
  9131. custom_message_type = CustomMsg::MeshBedLeveling;
  9132. custom_message_state = (x_points_num * y_points_num) + 10;
  9133. lcd_update(1);
  9134. mbl.reset();
  9135. babystep_undo();
  9136. card.openFile(filename_wldsd, false);
  9137. current_position[Z_AXIS] = mesh_home_z_search;
  9138. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  9139. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  9140. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  9141. int l_feedmultiply = setup_for_endstop_move(false);
  9142. SERIAL_PROTOCOLPGM("Num X,Y: ");
  9143. SERIAL_PROTOCOL(x_points_num);
  9144. SERIAL_PROTOCOLPGM(",");
  9145. SERIAL_PROTOCOL(y_points_num);
  9146. SERIAL_PROTOCOLPGM("\nZ search height: ");
  9147. SERIAL_PROTOCOL(mesh_home_z_search);
  9148. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  9149. SERIAL_PROTOCOL(x_dimension);
  9150. SERIAL_PROTOCOLPGM(",");
  9151. SERIAL_PROTOCOL(y_dimension);
  9152. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  9153. while (mesh_point != x_points_num * y_points_num) {
  9154. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  9155. iy = mesh_point / x_points_num;
  9156. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  9157. float z0 = 0.f;
  9158. current_position[Z_AXIS] = mesh_home_z_search;
  9159. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  9160. st_synchronize();
  9161. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  9162. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  9163. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  9164. st_synchronize();
  9165. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  9166. break;
  9167. card.closefile();
  9168. }
  9169. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9170. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  9171. //strcat(data_wldsd, numb_wldsd);
  9172. //MYSERIAL.println(data_wldsd);
  9173. //_delay(1000);
  9174. //_delay(3000);
  9175. //t1 = _millis();
  9176. //while (digitalRead(D_DATACLOCK) == LOW) {}
  9177. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  9178. memset(digit, 0, sizeof(digit));
  9179. //cli();
  9180. digitalWrite(D_REQUIRE, LOW);
  9181. for (int i = 0; i<13; i++)
  9182. {
  9183. //t1 = _millis();
  9184. for (int j = 0; j < 4; j++)
  9185. {
  9186. while (digitalRead(D_DATACLOCK) == LOW) {}
  9187. while (digitalRead(D_DATACLOCK) == HIGH) {}
  9188. bitWrite(digit[i], j, digitalRead(D_DATA));
  9189. }
  9190. //t_delay = (_millis() - t1);
  9191. //SERIAL_PROTOCOLPGM(" ");
  9192. //SERIAL_PROTOCOL_F(t_delay, 5);
  9193. //SERIAL_PROTOCOLPGM(" ");
  9194. }
  9195. //sei();
  9196. digitalWrite(D_REQUIRE, HIGH);
  9197. mergeOutput[0] = '\0';
  9198. output = 0;
  9199. for (int r = 5; r <= 10; r++) //Merge digits
  9200. {
  9201. sprintf(str, "%d", digit[r]);
  9202. strcat(mergeOutput, str);
  9203. }
  9204. output = atof(mergeOutput);
  9205. if (digit[4] == 8) //Handle sign
  9206. {
  9207. output *= -1;
  9208. }
  9209. for (int i = digit[11]; i > 0; i--) //Handle floating point
  9210. {
  9211. output *= 0.1;
  9212. }
  9213. //output = d_ReadData();
  9214. //row[ix] = current_position[Z_AXIS];
  9215. memset(data_wldsd, 0, sizeof(data_wldsd));
  9216. for (int i = 0; i <3; i++) {
  9217. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9218. dtostrf(current_position[i], 8, 5, numb_wldsd);
  9219. strcat(data_wldsd, numb_wldsd);
  9220. strcat(data_wldsd, ";");
  9221. }
  9222. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9223. dtostrf(output, 8, 5, numb_wldsd);
  9224. strcat(data_wldsd, numb_wldsd);
  9225. //strcat(data_wldsd, ";");
  9226. card.write_command(data_wldsd);
  9227. //row[ix] = d_ReadData();
  9228. row[ix] = output; // current_position[Z_AXIS];
  9229. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  9230. for (int i = 0; i < x_points_num; i++) {
  9231. SERIAL_PROTOCOLPGM(" ");
  9232. SERIAL_PROTOCOL_F(row[i], 5);
  9233. }
  9234. SERIAL_PROTOCOLPGM("\n");
  9235. }
  9236. custom_message_state--;
  9237. mesh_point++;
  9238. lcd_update(1);
  9239. }
  9240. card.closefile();
  9241. clean_up_after_endstop_move(l_feedmultiply);
  9242. }
  9243. #endif //HEATBED_ANALYSIS
  9244. #ifndef PINDA_THERMISTOR
  9245. static void temp_compensation_start() {
  9246. custom_message_type = CustomMsg::TempCompPreheat;
  9247. custom_message_state = PINDA_HEAT_T + 1;
  9248. lcd_update(2);
  9249. if ((int)degHotend(active_extruder) > extrude_min_temp) {
  9250. current_position[E_AXIS] -= default_retraction;
  9251. }
  9252. plan_buffer_line_curposXYZE(400, active_extruder);
  9253. current_position[X_AXIS] = PINDA_PREHEAT_X;
  9254. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  9255. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  9256. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  9257. st_synchronize();
  9258. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  9259. for (int i = 0; i < PINDA_HEAT_T; i++) {
  9260. delay_keep_alive(1000);
  9261. custom_message_state = PINDA_HEAT_T - i;
  9262. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  9263. else lcd_update(1);
  9264. }
  9265. custom_message_type = CustomMsg::Status;
  9266. custom_message_state = 0;
  9267. }
  9268. static void temp_compensation_apply() {
  9269. int i_add;
  9270. int z_shift = 0;
  9271. float z_shift_mm;
  9272. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  9273. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  9274. i_add = (target_temperature_bed - 60) / 10;
  9275. z_shift = eeprom_read_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + i_add);
  9276. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  9277. }else {
  9278. //interpolation
  9279. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  9280. }
  9281. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  9282. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  9283. st_synchronize();
  9284. plan_set_z_position(current_position[Z_AXIS]);
  9285. }
  9286. else {
  9287. //we have no temp compensation data
  9288. }
  9289. }
  9290. #endif //ndef PINDA_THERMISTOR
  9291. float temp_comp_interpolation(float inp_temperature) {
  9292. //cubic spline interpolation
  9293. int n, i, j;
  9294. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  9295. int shift[10];
  9296. int temp_C[10];
  9297. n = 6; //number of measured points
  9298. shift[0] = 0;
  9299. for (i = 0; i < n; i++) {
  9300. if (i > 0) {
  9301. //read shift in steps from EEPROM
  9302. shift[i] = eeprom_read_word((uint16_t*)EEPROM_PROBE_TEMP_SHIFT + (i - 1));
  9303. }
  9304. temp_C[i] = 50 + i * 10; //temperature in C
  9305. #ifdef PINDA_THERMISTOR
  9306. constexpr int start_compensating_temp = 35;
  9307. temp_C[i] = start_compensating_temp + i * 5; //temperature in degrees C
  9308. #ifdef SUPERPINDA_SUPPORT
  9309. static_assert(start_compensating_temp >= PINDA_MINTEMP, "Temperature compensation start point is lower than PINDA_MINTEMP.");
  9310. #endif //SUPERPINDA_SUPPORT
  9311. #else
  9312. temp_C[i] = 50 + i * 10; //temperature in C
  9313. #endif
  9314. x[i] = (float)temp_C[i];
  9315. f[i] = (float)shift[i];
  9316. }
  9317. if (inp_temperature < x[0]) return 0;
  9318. for (i = n - 1; i>0; i--) {
  9319. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  9320. h[i - 1] = x[i] - x[i - 1];
  9321. }
  9322. //*********** formation of h, s , f matrix **************
  9323. for (i = 1; i<n - 1; i++) {
  9324. m[i][i] = 2 * (h[i - 1] + h[i]);
  9325. if (i != 1) {
  9326. m[i][i - 1] = h[i - 1];
  9327. m[i - 1][i] = h[i - 1];
  9328. }
  9329. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  9330. }
  9331. //*********** forward elimination **************
  9332. for (i = 1; i<n - 2; i++) {
  9333. temp = (m[i + 1][i] / m[i][i]);
  9334. for (j = 1; j <= n - 1; j++)
  9335. m[i + 1][j] -= temp*m[i][j];
  9336. }
  9337. //*********** backward substitution *********
  9338. for (i = n - 2; i>0; i--) {
  9339. sum = 0;
  9340. for (j = i; j <= n - 2; j++)
  9341. sum += m[i][j] * s[j];
  9342. s[i] = (m[i][n - 1] - sum) / m[i][i];
  9343. }
  9344. for (i = 0; i<n - 1; i++)
  9345. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  9346. a = (s[i + 1] - s[i]) / (6 * h[i]);
  9347. b = s[i] / 2;
  9348. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  9349. d = f[i];
  9350. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  9351. }
  9352. return sum;
  9353. }
  9354. #ifdef PINDA_THERMISTOR
  9355. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  9356. {
  9357. if (!eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE)) return 0;
  9358. if (!calibration_status_pinda()) return 0;
  9359. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  9360. }
  9361. #endif //PINDA_THERMISTOR
  9362. void long_pause() //long pause print
  9363. {
  9364. st_synchronize();
  9365. start_pause_print = _millis();
  9366. // Stop heaters
  9367. heating_status = HeatingStatus::NO_HEATING;
  9368. setAllTargetHotends(0);
  9369. // Lift z
  9370. raise_z_above(current_position[Z_AXIS] + Z_PAUSE_LIFT, true);
  9371. // Move XY to side
  9372. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  9373. current_position[X_AXIS] = X_PAUSE_POS;
  9374. current_position[Y_AXIS] = Y_PAUSE_POS;
  9375. plan_buffer_line_curposXYZE(50);
  9376. }
  9377. // did we come here from a thermal error?
  9378. if(get_temp_error()) {
  9379. // time to stop the error beep
  9380. WRITE(BEEPER, LOW);
  9381. } else {
  9382. // Turn off the print fan
  9383. fanSpeed = 0;
  9384. }
  9385. }
  9386. void serialecho_temperatures() {
  9387. float tt = degHotend(active_extruder);
  9388. SERIAL_PROTOCOLPGM("T:");
  9389. SERIAL_PROTOCOL(tt);
  9390. SERIAL_PROTOCOLPGM(" E:");
  9391. SERIAL_PROTOCOL((int)active_extruder);
  9392. SERIAL_PROTOCOLPGM(" B:");
  9393. SERIAL_PROTOCOL_F(degBed(), 1);
  9394. SERIAL_PROTOCOLLN();
  9395. }
  9396. #ifdef UVLO_SUPPORT
  9397. void uvlo_drain_reset()
  9398. {
  9399. // burn all that residual power
  9400. wdt_enable(WDTO_1S);
  9401. WRITE(BEEPER,HIGH);
  9402. lcd_clear();
  9403. lcd_puts_at_P(0, 1, MSG_POWERPANIC_DETECTED);
  9404. while(1);
  9405. }
  9406. void uvlo_()
  9407. {
  9408. unsigned long time_start = _millis();
  9409. bool sd_print = card.sdprinting;
  9410. // Conserve power as soon as possible.
  9411. #ifdef LCD_BL_PIN
  9412. backlightMode = BACKLIGHT_MODE_DIM;
  9413. backlightLevel_LOW = 0;
  9414. backlight_update();
  9415. #endif //LCD_BL_PIN
  9416. disable_x();
  9417. disable_y();
  9418. #ifdef TMC2130
  9419. tmc2130_set_current_h(Z_AXIS, 20);
  9420. tmc2130_set_current_r(Z_AXIS, 20);
  9421. tmc2130_set_current_h(E_AXIS, 20);
  9422. tmc2130_set_current_r(E_AXIS, 20);
  9423. #endif //TMC2130
  9424. // Stop all heaters
  9425. uint8_t saved_target_temperature_bed = target_temperature_bed;
  9426. uint16_t saved_target_temperature_ext = target_temperature[active_extruder];
  9427. setAllTargetHotends(0);
  9428. setTargetBed(0);
  9429. // Calculate the file position, from which to resume this print.
  9430. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  9431. {
  9432. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9433. sd_position -= sdlen_planner;
  9434. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9435. sd_position -= sdlen_cmdqueue;
  9436. if (sd_position < 0) sd_position = 0;
  9437. }
  9438. // save the global state at planning time
  9439. bool pos_invalid = XY_NO_RESTORE_FLAG;
  9440. uint16_t feedrate_bckp;
  9441. if (current_block && !pos_invalid)
  9442. {
  9443. memcpy(saved_start_position, current_block->gcode_start_position, sizeof(saved_start_position));
  9444. feedrate_bckp = current_block->gcode_feedrate;
  9445. saved_segment_idx = current_block->segment_idx;
  9446. }
  9447. else
  9448. {
  9449. saved_start_position[0] = SAVED_START_POSITION_UNSET;
  9450. feedrate_bckp = feedrate;
  9451. saved_segment_idx = 0;
  9452. }
  9453. // From this point on and up to the print recovery, Z should not move during X/Y travels and
  9454. // should be controlled precisely. Reset the MBL status before planner_abort_hard in order to
  9455. // get the physical Z for further manipulation.
  9456. bool mbl_was_active = mbl.active;
  9457. mbl.active = false;
  9458. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  9459. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  9460. // are in action.
  9461. planner_abort_hard();
  9462. // Store the print logical Z position, which we need to recover (a slight error here would be
  9463. // recovered on the next Gcode instruction, while a physical location error would not)
  9464. float logical_z = current_position[Z_AXIS];
  9465. if(mbl_was_active) logical_z -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  9466. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z, logical_z);
  9467. // Store the print E position before we lose track
  9468. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), current_position[E_AXIS]);
  9469. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, (axis_relative_modes & E_AXIS_MASK)?0:1);
  9470. // Clean the input command queue, inhibit serial processing using saved_printing
  9471. cmdqueue_reset();
  9472. card.sdprinting = false;
  9473. saved_printing = true;
  9474. // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
  9475. // command queues are empty, SD card printing is disabled, usb is inhibited.
  9476. planner_aborted = false;
  9477. sei();
  9478. // Retract
  9479. current_position[E_AXIS] -= default_retraction;
  9480. plan_buffer_line_curposXYZE(95);
  9481. st_synchronize();
  9482. disable_e0();
  9483. // Read out the current Z motor microstep counter to move the axis up towards
  9484. // a full step before powering off. NOTE: we need to ensure to schedule more
  9485. // than "dropsegments" steps in order to move (this is always the case here
  9486. // due to UVLO_Z_AXIS_SHIFT being used)
  9487. uint16_t z_res = tmc2130_get_res(Z_AXIS);
  9488. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9489. current_position[Z_AXIS] += float(1024 - z_microsteps)
  9490. / (z_res * cs.axis_steps_per_unit[Z_AXIS])
  9491. + UVLO_Z_AXIS_SHIFT;
  9492. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60);
  9493. st_synchronize();
  9494. poweroff_z();
  9495. // Write the file position.
  9496. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  9497. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9498. for (uint8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9499. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9500. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9501. // Scale the z value to 1u resolution.
  9502. int16_t v = mbl_was_active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  9503. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  9504. }
  9505. // Write the _final_ Z position and motor microstep counter (unused).
  9506. eeprom_update_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z, current_position[Z_AXIS]);
  9507. z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9508. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9509. // Store the current position.
  9510. if (pos_invalid)
  9511. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), X_COORD_INVALID);
  9512. else
  9513. {
  9514. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  9515. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  9516. }
  9517. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  9518. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDRATE, feedrate_bckp);
  9519. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY, feedmultiply);
  9520. eeprom_update_word((uint16_t*)EEPROM_UVLO_TARGET_HOTEND, saved_target_temperature_ext);
  9521. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, saved_target_temperature_bed);
  9522. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  9523. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  9524. #if EXTRUDERS > 1
  9525. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  9526. #if EXTRUDERS > 2
  9527. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  9528. #endif
  9529. #endif
  9530. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  9531. eeprom_update_float((float*)(EEPROM_UVLO_ACCELL), cs.acceleration);
  9532. eeprom_update_float((float*)(EEPROM_UVLO_RETRACT_ACCELL), cs.retract_acceleration);
  9533. eeprom_update_float((float*)(EEPROM_UVLO_TRAVEL_ACCELL), cs.travel_acceleration);
  9534. // Store the saved target
  9535. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_START_POSITION+0*4), saved_start_position[X_AXIS]);
  9536. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_START_POSITION+1*4), saved_start_position[Y_AXIS]);
  9537. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_START_POSITION+2*4), saved_start_position[Z_AXIS]);
  9538. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_START_POSITION+3*4), saved_start_position[E_AXIS]);
  9539. eeprom_update_word((uint16_t*)EEPROM_UVLO_SAVED_SEGMENT_IDX, saved_segment_idx);
  9540. #ifdef LIN_ADVANCE
  9541. eeprom_update_float((float*)(EEPROM_UVLO_LA_K), extruder_advance_K);
  9542. #endif
  9543. // Finaly store the "power outage" flag.
  9544. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  9545. // Increment power failure counter
  9546. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9547. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9548. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  9549. WRITE(BEEPER,HIGH);
  9550. // All is set: with all the juice left, try to move extruder away to detach the nozzle completely from the print
  9551. poweron_z();
  9552. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  9553. plan_buffer_line_curposXYZE(500);
  9554. st_synchronize();
  9555. wdt_enable(WDTO_1S);
  9556. while(1);
  9557. }
  9558. void uvlo_tiny()
  9559. {
  9560. unsigned long time_start = _millis();
  9561. // Conserve power as soon as possible.
  9562. disable_x();
  9563. disable_y();
  9564. disable_e0();
  9565. #ifdef TMC2130
  9566. tmc2130_set_current_h(Z_AXIS, 20);
  9567. tmc2130_set_current_r(Z_AXIS, 20);
  9568. #endif //TMC2130
  9569. // Stop all heaters
  9570. setAllTargetHotends(0);
  9571. setTargetBed(0);
  9572. // When power is interrupted on the _first_ recovery an attempt can be made to raise the
  9573. // extruder, causing the Z position to change. Similarly, when recovering, the Z position is
  9574. // lowered. In such cases we cannot just save Z, we need to re-align the steppers to a fullstep.
  9575. // Disable MBL (if not already) to work with physical coordinates.
  9576. mbl.active = false;
  9577. planner_abort_hard();
  9578. // Allow for small roundoffs to be ignored
  9579. if(fabs(current_position[Z_AXIS] - eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))) >= 1.f/cs.axis_steps_per_unit[Z_AXIS])
  9580. {
  9581. // Clean the input command queue, inhibit serial processing using saved_printing
  9582. cmdqueue_reset();
  9583. card.sdprinting = false;
  9584. saved_printing = true;
  9585. // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
  9586. // command queues are empty, SD card printing is disabled, usb is inhibited.
  9587. planner_aborted = false;
  9588. sei();
  9589. // The axis was moved: adjust Z as done on a regular UVLO.
  9590. uint16_t z_res = tmc2130_get_res(Z_AXIS);
  9591. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9592. current_position[Z_AXIS] += float(1024 - z_microsteps)
  9593. / (z_res * cs.axis_steps_per_unit[Z_AXIS])
  9594. + UVLO_TINY_Z_AXIS_SHIFT;
  9595. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60);
  9596. st_synchronize();
  9597. poweroff_z();
  9598. // Update Z position
  9599. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  9600. // Update the _final_ Z motor microstep counter (unused).
  9601. z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9602. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9603. }
  9604. // Update the the "power outage" flag.
  9605. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  9606. // Increment power failure counter
  9607. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9608. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9609. printf_P(_N("UVLO_TINY - end %d\n"), _millis() - time_start);
  9610. uvlo_drain_reset();
  9611. }
  9612. #endif //UVLO_SUPPORT
  9613. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  9614. void setup_fan_interrupt() {
  9615. //INT7
  9616. DDRE &= ~(1 << 7); //input pin
  9617. PORTE &= ~(1 << 7); //no internal pull-up
  9618. //start with sensing rising edge
  9619. EICRB &= ~(1 << 6);
  9620. EICRB |= (1 << 7);
  9621. //enable INT7 interrupt
  9622. EIMSK |= (1 << 7);
  9623. }
  9624. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  9625. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  9626. ISR(INT7_vect) {
  9627. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  9628. #ifdef FAN_SOFT_PWM
  9629. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  9630. #else //FAN_SOFT_PWM
  9631. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  9632. #endif //FAN_SOFT_PWM
  9633. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  9634. t_fan_rising_edge = millis_nc();
  9635. }
  9636. else { //interrupt was triggered by falling edge
  9637. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  9638. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  9639. }
  9640. }
  9641. EICRB ^= (1 << 6); //change edge
  9642. }
  9643. #endif
  9644. #ifdef UVLO_SUPPORT
  9645. void setup_uvlo_interrupt() {
  9646. DDRE &= ~(1 << 4); //input pin
  9647. PORTE &= ~(1 << 4); //no internal pull-up
  9648. // sensing falling edge
  9649. EICRB |= (1 << 0);
  9650. EICRB &= ~(1 << 1);
  9651. // enable INT4 interrupt
  9652. EIMSK |= (1 << 4);
  9653. // check if power was lost before we armed the interrupt
  9654. if(!(PINE & (1 << 4)) && eeprom_read_byte((uint8_t*)EEPROM_UVLO))
  9655. {
  9656. SERIAL_ECHOLNPGM("INT4");
  9657. uvlo_drain_reset();
  9658. }
  9659. }
  9660. ISR(INT4_vect) {
  9661. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  9662. SERIAL_ECHOLNPGM("INT4");
  9663. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  9664. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  9665. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  9666. }
  9667. void recover_print(uint8_t automatic) {
  9668. char cmd[30];
  9669. lcd_update_enable(true);
  9670. lcd_update(2);
  9671. lcd_setstatuspgm(_i("Recovering print"));////MSG_RECOVERING_PRINT c=20
  9672. // Recover position, temperatures and extrude_multipliers
  9673. bool mbl_was_active = recover_machine_state_after_power_panic();
  9674. // Lift the print head 25mm, first to avoid collisions with oozed material with the print,
  9675. // and second also so one may remove the excess priming material.
  9676. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1)
  9677. {
  9678. sprintf_P(cmd, PSTR("G1 Z%.3f F800"), current_position[Z_AXIS] + 25);
  9679. enquecommand(cmd);
  9680. }
  9681. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine
  9682. // transformation status. G28 will not touch Z when MBL is off.
  9683. enquecommand_P(PSTR("G28 X Y"));
  9684. // Set the target bed and nozzle temperatures and wait.
  9685. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  9686. enquecommand(cmd);
  9687. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  9688. enquecommand(cmd);
  9689. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  9690. enquecommand(cmd);
  9691. enquecommand_P(PSTR("M83")); //E axis relative mode
  9692. // If not automatically recoreverd (long power loss)
  9693. if(automatic == 0){
  9694. //Extrude some filament to stabilize the pressure
  9695. enquecommand_P(PSTR("G1 E5 F120"));
  9696. // Retract to be consistent with a short pause
  9697. sprintf_P(cmd, PSTR("G1 E%-0.3f F2700"), default_retraction);
  9698. enquecommand(cmd);
  9699. }
  9700. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  9701. // Restart the print.
  9702. restore_print_from_eeprom(mbl_was_active);
  9703. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  9704. }
  9705. bool recover_machine_state_after_power_panic()
  9706. {
  9707. // 1) Preset some dummy values for the XY axes
  9708. current_position[X_AXIS] = 0;
  9709. current_position[Y_AXIS] = 0;
  9710. // 2) Restore the mesh bed leveling offsets, but not the MBL status.
  9711. // This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9712. bool mbl_was_active = false;
  9713. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9714. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9715. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9716. // Scale the z value to 10u resolution.
  9717. int16_t v;
  9718. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  9719. if (v != 0)
  9720. mbl_was_active = true;
  9721. mbl.z_values[iy][ix] = float(v) * 0.001f;
  9722. }
  9723. // Recover the physical coordinate of the Z axis at the time of the power panic.
  9724. // The current position after power panic is moved to the next closest 0th full step.
  9725. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z));
  9726. // Recover last E axis position
  9727. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9728. // 3) Initialize the logical to physical coordinate system transformation.
  9729. world2machine_initialize();
  9730. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9731. // print_mesh_bed_leveling_table();
  9732. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  9733. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  9734. babystep_load();
  9735. // 5) Set the physical positions from the logical positions using the world2machine transformation
  9736. // This is only done to inizialize Z/E axes with physical locations, since X/Y are unknown.
  9737. clamp_to_software_endstops(current_position);
  9738. set_destination_to_current();
  9739. plan_set_position_curposXYZE();
  9740. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9741. print_world_coordinates();
  9742. // 6) Power up the Z motors, mark their positions as known.
  9743. axis_known_position[Z_AXIS] = true;
  9744. enable_z();
  9745. // 7) Recover the target temperatures.
  9746. target_temperature[active_extruder] = eeprom_read_word((uint16_t*)EEPROM_UVLO_TARGET_HOTEND);
  9747. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  9748. // 8) Recover extruder multipilers
  9749. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  9750. #if EXTRUDERS > 1
  9751. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  9752. #if EXTRUDERS > 2
  9753. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  9754. #endif
  9755. #endif
  9756. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  9757. // 9) Recover the saved target
  9758. saved_start_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_START_POSITION+0*4));
  9759. saved_start_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_START_POSITION+1*4));
  9760. saved_start_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_START_POSITION+2*4));
  9761. saved_start_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_START_POSITION+3*4));
  9762. saved_segment_idx = eeprom_read_word((uint16_t*)EEPROM_UVLO_SAVED_SEGMENT_IDX);
  9763. #ifdef LIN_ADVANCE
  9764. extruder_advance_K = eeprom_read_float((float*)EEPROM_UVLO_LA_K);
  9765. #endif
  9766. return mbl_was_active;
  9767. }
  9768. void restore_print_from_eeprom(bool mbl_was_active) {
  9769. int feedrate_rec;
  9770. int feedmultiply_rec;
  9771. uint8_t fan_speed_rec;
  9772. char cmd[48];
  9773. char filename[FILENAME_LENGTH];
  9774. uint8_t depth = 0;
  9775. char dir_name[9];
  9776. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  9777. feedrate_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDRATE);
  9778. feedmultiply_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY);
  9779. SERIAL_ECHOPGM("Feedrate:");
  9780. MYSERIAL.print(feedrate_rec);
  9781. SERIAL_ECHOPGM(", feedmultiply:");
  9782. MYSERIAL.println(feedmultiply_rec);
  9783. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  9784. MYSERIAL.println(int(depth));
  9785. for (uint8_t i = 0; i < depth; i++) {
  9786. for (uint8_t j = 0; j < 8; j++) {
  9787. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  9788. }
  9789. dir_name[8] = '\0';
  9790. MYSERIAL.println(dir_name);
  9791. // strcpy(card.dir_names[i], dir_name);
  9792. card.chdir(dir_name, false);
  9793. }
  9794. for (uint8_t i = 0; i < 8; i++) {
  9795. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  9796. }
  9797. filename[8] = '\0';
  9798. MYSERIAL.print(filename);
  9799. strcat_P(filename, PSTR(".gco"));
  9800. sprintf_P(cmd, PSTR("M23 %s"), filename);
  9801. enquecommand(cmd);
  9802. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  9803. SERIAL_ECHOPGM("Position read from eeprom:");
  9804. MYSERIAL.println(position);
  9805. // Move to the XY print position in logical coordinates, where the print has been killed, but
  9806. // without shifting Z along the way. This requires performing the move without mbl.
  9807. float pos_x = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  9808. float pos_y = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  9809. if (pos_x != X_COORD_INVALID)
  9810. {
  9811. sprintf_P(cmd, PSTR("G1 X%f Y%f F3000"), pos_x, pos_y);
  9812. enquecommand(cmd);
  9813. }
  9814. // Enable MBL and switch to logical positioning
  9815. if (mbl_was_active)
  9816. enquecommand_P(PSTR("PRUSA MBL V1"));
  9817. // Move the Z axis down to the print, in logical coordinates.
  9818. sprintf_P(cmd, PSTR("G1 Z%f"), eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)));
  9819. enquecommand(cmd);
  9820. // Restore acceleration settings
  9821. float acceleration = eeprom_read_float((float*)(EEPROM_UVLO_ACCELL));
  9822. float retract_acceleration = eeprom_read_float((float*)(EEPROM_UVLO_RETRACT_ACCELL));
  9823. float travel_acceleration = eeprom_read_float((float*)(EEPROM_UVLO_TRAVEL_ACCELL));
  9824. sprintf_P(cmd, PSTR("M204 P%f R%f T%f"), acceleration, retract_acceleration, travel_acceleration);
  9825. enquecommand(cmd);
  9826. // Unretract.
  9827. sprintf_P(cmd, PSTR("G1 E%0.3f F2700"), default_retraction);
  9828. enquecommand(cmd);
  9829. // Recover final E axis position and mode
  9830. float pos_e = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9831. sprintf_P(cmd, PSTR("G92 E%6.3f"), pos_e);
  9832. enquecommand(cmd);
  9833. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  9834. enquecommand_P(PSTR("M82")); //E axis abslute mode
  9835. // Set the feedrates saved at the power panic.
  9836. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  9837. enquecommand(cmd);
  9838. sprintf_P(cmd, PSTR("M220 S%d"), feedmultiply_rec);
  9839. enquecommand(cmd);
  9840. // Set the fan speed saved at the power panic.
  9841. strcpy_P(cmd, PSTR("M106 S"));
  9842. strcat(cmd, itostr3(int(fan_speed_rec)));
  9843. enquecommand(cmd);
  9844. // Set a position in the file.
  9845. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  9846. enquecommand(cmd);
  9847. enquecommand_P(PSTR("G4 S0"));
  9848. enquecommand_P(PSTR("PRUSA uvlo"));
  9849. }
  9850. #endif //UVLO_SUPPORT
  9851. //! @brief Immediately stop print moves
  9852. //!
  9853. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  9854. //! If printing from sd card, position in file is saved.
  9855. //! If printing from USB, line number is saved.
  9856. //!
  9857. //! @param z_move
  9858. //! @param e_move
  9859. void stop_and_save_print_to_ram(float z_move, float e_move)
  9860. {
  9861. if (saved_printing) return;
  9862. #if 0
  9863. unsigned char nplanner_blocks;
  9864. #endif
  9865. unsigned char nlines;
  9866. uint16_t sdlen_planner;
  9867. uint16_t sdlen_cmdqueue;
  9868. cli();
  9869. if (card.sdprinting) {
  9870. #if 0
  9871. nplanner_blocks = number_of_blocks();
  9872. #endif
  9873. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  9874. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9875. saved_sdpos -= sdlen_planner;
  9876. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9877. saved_sdpos -= sdlen_cmdqueue;
  9878. saved_printing_type = PRINTING_TYPE_SD;
  9879. }
  9880. else if (usb_timer.running()) { //reuse saved_sdpos for storing line number
  9881. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  9882. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  9883. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  9884. saved_sdpos -= nlines;
  9885. saved_sdpos -= buflen; //number of blocks in cmd buffer
  9886. saved_printing_type = PRINTING_TYPE_USB;
  9887. }
  9888. else {
  9889. saved_printing_type = PRINTING_TYPE_NONE;
  9890. //not sd printing nor usb printing
  9891. }
  9892. #if 0
  9893. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  9894. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  9895. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  9896. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  9897. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  9898. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  9899. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  9900. {
  9901. card.setIndex(saved_sdpos);
  9902. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  9903. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  9904. MYSERIAL.print(char(card.get()));
  9905. SERIAL_ECHOLNPGM("Content of command buffer: ");
  9906. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  9907. MYSERIAL.print(char(card.get()));
  9908. SERIAL_ECHOLNPGM("End of command buffer");
  9909. }
  9910. {
  9911. // Print the content of the planner buffer, line by line:
  9912. card.setIndex(saved_sdpos);
  9913. int8_t iline = 0;
  9914. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  9915. SERIAL_ECHOPGM("Planner line (from file): ");
  9916. MYSERIAL.print(int(iline), DEC);
  9917. SERIAL_ECHOPGM(", length: ");
  9918. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  9919. SERIAL_ECHOPGM(", steps: (");
  9920. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  9921. SERIAL_ECHOPGM(",");
  9922. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  9923. SERIAL_ECHOPGM(",");
  9924. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  9925. SERIAL_ECHOPGM(",");
  9926. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  9927. SERIAL_ECHOPGM("), events: ");
  9928. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  9929. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  9930. MYSERIAL.print(char(card.get()));
  9931. }
  9932. }
  9933. {
  9934. // Print the content of the command buffer, line by line:
  9935. int8_t iline = 0;
  9936. union {
  9937. struct {
  9938. char lo;
  9939. char hi;
  9940. } lohi;
  9941. uint16_t value;
  9942. } sdlen_single;
  9943. int _bufindr = bufindr;
  9944. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  9945. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  9946. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  9947. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  9948. }
  9949. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  9950. MYSERIAL.print(int(iline), DEC);
  9951. SERIAL_ECHOPGM(", type: ");
  9952. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  9953. SERIAL_ECHOPGM(", len: ");
  9954. MYSERIAL.println(sdlen_single.value, DEC);
  9955. // Print the content of the buffer line.
  9956. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  9957. SERIAL_ECHOPGM("Buffer line (from file): ");
  9958. MYSERIAL.println(int(iline), DEC);
  9959. for (; sdlen_single.value > 0; -- sdlen_single.value)
  9960. MYSERIAL.print(char(card.get()));
  9961. if (-- _buflen == 0)
  9962. break;
  9963. // First skip the current command ID and iterate up to the end of the string.
  9964. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  9965. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  9966. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9967. // If the end of the buffer was empty,
  9968. if (_bufindr == sizeof(cmdbuffer)) {
  9969. // skip to the start and find the nonzero command.
  9970. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9971. }
  9972. }
  9973. }
  9974. #endif
  9975. // save the global state at planning time
  9976. bool pos_invalid = XY_NO_RESTORE_FLAG;
  9977. if (current_block && !pos_invalid)
  9978. {
  9979. memcpy(saved_start_position, current_block->gcode_start_position, sizeof(saved_start_position));
  9980. saved_feedrate2 = current_block->gcode_feedrate;
  9981. saved_segment_idx = current_block->segment_idx;
  9982. // printf_P(PSTR("stop_and_save_print_to_ram: %f, %f, %f, %f, %u\n"), saved_start_position[0], saved_start_position[1], saved_start_position[2], saved_start_position[3], saved_segment_idx);
  9983. }
  9984. else
  9985. {
  9986. saved_start_position[0] = SAVED_START_POSITION_UNSET;
  9987. saved_feedrate2 = feedrate;
  9988. saved_segment_idx = 0;
  9989. }
  9990. planner_abort_hard(); //abort printing
  9991. memcpy(saved_pos, current_position, sizeof(saved_pos));
  9992. if (pos_invalid) saved_pos[X_AXIS] = X_COORD_INVALID;
  9993. saved_feedmultiply2 = feedmultiply; //save feedmultiply
  9994. saved_active_extruder = active_extruder; //save active_extruder
  9995. saved_extruder_temperature = degTargetHotend(active_extruder);
  9996. saved_bed_temperature = degTargetBed();
  9997. saved_extruder_relative_mode = axis_relative_modes & E_AXIS_MASK;
  9998. saved_fan_speed = fanSpeed;
  9999. cmdqueue_reset(); //empty cmdqueue
  10000. card.sdprinting = false;
  10001. // card.closefile();
  10002. saved_printing = true;
  10003. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  10004. st_reset_timer();
  10005. sei();
  10006. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  10007. // Rather than calling plan_buffer_line directly, push the move into the command queue so that
  10008. // the caller can continue processing. This is used during powerpanic to save the state as we
  10009. // move away from the print.
  10010. char buf[48];
  10011. if(e_move)
  10012. {
  10013. // First unretract (relative extrusion)
  10014. if(!saved_extruder_relative_mode){
  10015. enquecommand(PSTR("M83"), true);
  10016. }
  10017. //retract 45mm/s
  10018. // A single sprintf may not be faster, but is definitely 20B shorter
  10019. // than a sequence of commands building the string piece by piece
  10020. // A snprintf would have been a safer call, but since it is not used
  10021. // in the whole program, its implementation would bring more bytes to the total size
  10022. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  10023. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  10024. enquecommand(buf, false);
  10025. }
  10026. if(z_move)
  10027. {
  10028. // Then lift Z axis
  10029. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  10030. enquecommand(buf, false);
  10031. }
  10032. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  10033. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  10034. repeatcommand_front();
  10035. }
  10036. }
  10037. //! @brief Restore print from ram
  10038. //!
  10039. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  10040. //! print fan speed, waits for extruder temperature restore, then restores
  10041. //! position and continues print moves.
  10042. //!
  10043. //! Internally lcd_update() is called by wait_for_heater().
  10044. //!
  10045. //! @param e_move
  10046. void restore_print_from_ram_and_continue(float e_move)
  10047. {
  10048. if (!saved_printing) return;
  10049. #ifdef FANCHECK
  10050. // Do not allow resume printing if fans are still not ok
  10051. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  10052. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  10053. #endif
  10054. // restore bed temperature (bed can be disabled during a thermal warning)
  10055. if (degBed() != saved_bed_temperature)
  10056. setTargetBed(saved_bed_temperature);
  10057. // restore active_extruder
  10058. active_extruder = saved_active_extruder;
  10059. fanSpeed = saved_fan_speed;
  10060. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  10061. {
  10062. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  10063. heating_status = HeatingStatus::EXTRUDER_HEATING;
  10064. wait_for_heater(_millis(), saved_active_extruder);
  10065. heating_status = HeatingStatus::EXTRUDER_HEATING_COMPLETE;
  10066. }
  10067. axis_relative_modes ^= (-saved_extruder_relative_mode ^ axis_relative_modes) & E_AXIS_MASK;
  10068. float e = saved_pos[E_AXIS] - e_move;
  10069. plan_set_e_position(e);
  10070. #ifdef FANCHECK
  10071. fans_check_enabled = false;
  10072. #endif
  10073. // do not restore XY for commands that do not require that
  10074. if (saved_pos[X_AXIS] == X_COORD_INVALID)
  10075. {
  10076. saved_pos[X_AXIS] = current_position[X_AXIS];
  10077. saved_pos[Y_AXIS] = current_position[Y_AXIS];
  10078. }
  10079. //first move print head in XY to the saved position:
  10080. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  10081. //then move Z
  10082. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  10083. //and finaly unretract (35mm/s)
  10084. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  10085. st_synchronize();
  10086. #ifdef FANCHECK
  10087. fans_check_enabled = true;
  10088. #endif
  10089. // restore original feedrate/feedmultiply _after_ restoring the extruder position
  10090. feedrate = saved_feedrate2;
  10091. feedmultiply = saved_feedmultiply2;
  10092. memcpy(current_position, saved_pos, sizeof(saved_pos));
  10093. set_destination_to_current();
  10094. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  10095. card.setIndex(saved_sdpos);
  10096. sdpos_atomic = saved_sdpos;
  10097. card.sdprinting = true;
  10098. }
  10099. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  10100. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  10101. serial_count = 0;
  10102. FlushSerialRequestResend();
  10103. }
  10104. else {
  10105. //not sd printing nor usb printing
  10106. }
  10107. lcd_setstatuspgm(MSG_WELCOME);
  10108. saved_printing_type = PRINTING_TYPE_NONE;
  10109. saved_printing = false;
  10110. planner_aborted = true; // unroll the stack
  10111. }
  10112. // Cancel the state related to a currently saved print
  10113. void cancel_saved_printing()
  10114. {
  10115. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  10116. saved_start_position[0] = SAVED_START_POSITION_UNSET;
  10117. saved_printing_type = PRINTING_TYPE_NONE;
  10118. saved_printing = false;
  10119. }
  10120. void print_world_coordinates()
  10121. {
  10122. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  10123. }
  10124. void print_physical_coordinates()
  10125. {
  10126. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  10127. }
  10128. void print_mesh_bed_leveling_table()
  10129. {
  10130. SERIAL_ECHOPGM("mesh bed leveling: ");
  10131. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  10132. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  10133. MYSERIAL.print(mbl.z_values[y][x], 3);
  10134. SERIAL_ECHO(' ');
  10135. }
  10136. SERIAL_ECHOLN();
  10137. }
  10138. uint8_t calc_percent_done()
  10139. {
  10140. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  10141. uint8_t percent_done = 0;
  10142. #ifdef TMC2130
  10143. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100)
  10144. {
  10145. percent_done = print_percent_done_normal;
  10146. }
  10147. else if (print_percent_done_silent <= 100)
  10148. {
  10149. percent_done = print_percent_done_silent;
  10150. }
  10151. #else
  10152. if (print_percent_done_normal <= 100)
  10153. {
  10154. percent_done = print_percent_done_normal;
  10155. }
  10156. #endif //TMC2130
  10157. else
  10158. {
  10159. percent_done = card.percentDone();
  10160. }
  10161. return percent_done;
  10162. }
  10163. static void print_time_remaining_init()
  10164. {
  10165. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  10166. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  10167. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  10168. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  10169. print_time_to_change_normal = PRINT_TIME_REMAINING_INIT;
  10170. print_time_to_change_silent = PRINT_TIME_REMAINING_INIT;
  10171. }
  10172. void load_filament_final_feed()
  10173. {
  10174. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  10175. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL);
  10176. }
  10177. //! @brief Wait for user to check the state
  10178. //! @par nozzle_temp nozzle temperature to load filament
  10179. void M600_check_state(float nozzle_temp)
  10180. {
  10181. lcd_change_fil_state = 0;
  10182. while (lcd_change_fil_state != 1)
  10183. {
  10184. lcd_change_fil_state = 0;
  10185. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10186. lcd_alright();
  10187. KEEPALIVE_STATE(IN_HANDLER);
  10188. switch(lcd_change_fil_state)
  10189. {
  10190. // Filament failed to load so load it again
  10191. case 2:
  10192. if (mmu_enabled)
  10193. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  10194. else
  10195. M600_load_filament_movements();
  10196. break;
  10197. // Filament loaded properly but color is not clear
  10198. case 3:
  10199. st_synchronize();
  10200. load_filament_final_feed();
  10201. lcd_loading_color();
  10202. st_synchronize();
  10203. break;
  10204. // Everything good
  10205. default:
  10206. lcd_change_success();
  10207. break;
  10208. }
  10209. }
  10210. }
  10211. //! @brief Wait for user action
  10212. //!
  10213. //! Beep, manage nozzle heater and wait for user to start unload filament
  10214. //! If times out, active extruder temperature is set to 0.
  10215. //!
  10216. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  10217. void M600_wait_for_user(float HotendTempBckp) {
  10218. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10219. int counterBeep = 0;
  10220. unsigned long waiting_start_time = _millis();
  10221. uint8_t wait_for_user_state = 0;
  10222. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  10223. bool bFirst=true;
  10224. while (!(wait_for_user_state == 0 && lcd_clicked())){
  10225. manage_heater();
  10226. manage_inactivity(true);
  10227. #if BEEPER > 0
  10228. if (counterBeep == 500) {
  10229. counterBeep = 0;
  10230. }
  10231. SET_OUTPUT(BEEPER);
  10232. if (counterBeep == 0) {
  10233. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  10234. {
  10235. bFirst=false;
  10236. WRITE(BEEPER, HIGH);
  10237. }
  10238. }
  10239. if (counterBeep == 20) {
  10240. WRITE(BEEPER, LOW);
  10241. }
  10242. counterBeep++;
  10243. #endif //BEEPER > 0
  10244. switch (wait_for_user_state) {
  10245. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  10246. delay_keep_alive(4);
  10247. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  10248. lcd_display_message_fullscreen_P(_i("Press the knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  10249. wait_for_user_state = 1;
  10250. setAllTargetHotends(0);
  10251. st_synchronize();
  10252. disable_e0();
  10253. disable_e1();
  10254. disable_e2();
  10255. }
  10256. break;
  10257. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  10258. delay_keep_alive(4);
  10259. if (lcd_clicked()) {
  10260. setTargetHotend(HotendTempBckp, active_extruder);
  10261. lcd_wait_for_heater();
  10262. wait_for_user_state = 2;
  10263. }
  10264. break;
  10265. case 2: //waiting for nozzle to reach target temperature
  10266. if (fabs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  10267. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  10268. waiting_start_time = _millis();
  10269. wait_for_user_state = 0;
  10270. }
  10271. else {
  10272. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  10273. lcd_set_cursor(1, 4);
  10274. lcd_printf_P(PSTR("%3d"), (int16_t)degHotend(active_extruder));
  10275. }
  10276. break;
  10277. }
  10278. }
  10279. WRITE(BEEPER, LOW);
  10280. }
  10281. void M600_load_filament_movements()
  10282. {
  10283. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED;
  10284. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST);
  10285. load_filament_final_feed();
  10286. lcd_loading_filament();
  10287. st_synchronize();
  10288. }
  10289. void M600_load_filament() {
  10290. //load filament for single material and MMU
  10291. lcd_wait_interact();
  10292. //load_filament_time = _millis();
  10293. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10294. #ifdef PAT9125
  10295. fsensor_autoload_check_start();
  10296. #endif //PAT9125
  10297. while(!lcd_clicked())
  10298. {
  10299. manage_heater();
  10300. manage_inactivity(true);
  10301. #ifdef FILAMENT_SENSOR
  10302. if (fsensor_check_autoload())
  10303. {
  10304. Sound_MakeCustom(50,1000,false);
  10305. break;
  10306. }
  10307. #endif //FILAMENT_SENSOR
  10308. }
  10309. #ifdef PAT9125
  10310. fsensor_autoload_check_stop();
  10311. #endif //PAT9125
  10312. KEEPALIVE_STATE(IN_HANDLER);
  10313. #ifdef FSENSOR_QUALITY
  10314. fsensor_oq_meassure_start(70);
  10315. #endif //FSENSOR_QUALITY
  10316. M600_load_filament_movements();
  10317. Sound_MakeCustom(50,1000,false);
  10318. #ifdef FSENSOR_QUALITY
  10319. fsensor_oq_meassure_stop();
  10320. if (!fsensor_oq_result())
  10321. {
  10322. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  10323. lcd_update_enable(true);
  10324. lcd_update(2);
  10325. if (disable)
  10326. fsensor_disable();
  10327. }
  10328. #endif //FSENSOR_QUALITY
  10329. lcd_update_enable(false);
  10330. }
  10331. //! @brief Wait for click
  10332. //!
  10333. //! Set
  10334. void marlin_wait_for_click()
  10335. {
  10336. int8_t busy_state_backup = busy_state;
  10337. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10338. lcd_consume_click();
  10339. while(!lcd_clicked())
  10340. {
  10341. manage_heater();
  10342. manage_inactivity(true);
  10343. lcd_update(0);
  10344. }
  10345. KEEPALIVE_STATE(busy_state_backup);
  10346. }
  10347. #define FIL_LOAD_LENGTH 60
  10348. #ifdef PSU_Delta
  10349. bool bEnableForce_z;
  10350. void init_force_z()
  10351. {
  10352. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  10353. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  10354. disable_force_z();
  10355. }
  10356. void check_force_z()
  10357. {
  10358. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  10359. init_force_z(); // causes enforced switching into disable-state
  10360. }
  10361. void disable_force_z()
  10362. {
  10363. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  10364. bEnableForce_z=false;
  10365. // switching to silent mode
  10366. #ifdef TMC2130
  10367. tmc2130_mode=TMC2130_MODE_SILENT;
  10368. update_mode_profile();
  10369. tmc2130_init(TMCInitParams(true, FarmOrUserECool()));
  10370. #endif // TMC2130
  10371. }
  10372. void enable_force_z()
  10373. {
  10374. if(bEnableForce_z)
  10375. return; // motor already enabled (may be ;-p )
  10376. bEnableForce_z=true;
  10377. // mode recovering
  10378. #ifdef TMC2130
  10379. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  10380. update_mode_profile();
  10381. tmc2130_init(TMCInitParams(true, FarmOrUserECool()));
  10382. #endif // TMC2130
  10383. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  10384. }
  10385. #endif // PSU_Delta