Marlin_main.cpp 312 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef FILAMENT_SENSOR
  80. #include "fsensor.h"
  81. #endif //FILAMENT_SENSOR
  82. #ifdef TMC2130
  83. #include "tmc2130.h"
  84. #endif //TMC2130
  85. #ifdef W25X20CL
  86. #include "w25x20cl.h"
  87. #include "optiboot_w25x20cl.h"
  88. #endif //W25X20CL
  89. #ifdef BLINKM
  90. #include "BlinkM.h"
  91. #include "Wire.h"
  92. #endif
  93. #ifdef ULTRALCD
  94. #include "ultralcd.h"
  95. #endif
  96. #if NUM_SERVOS > 0
  97. #include "Servo.h"
  98. #endif
  99. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  100. #include <SPI.h>
  101. #endif
  102. #include "mmu.h"
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "sound.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. //filament types
  116. #define FILAMENT_DEFAULT 0
  117. #define FILAMENT_FLEX 1
  118. #define FILAMENT_PVA 2
  119. #define FILAMENT_UNDEFINED 255
  120. //Stepper Movement Variables
  121. //===========================================================================
  122. //=============================imported variables============================
  123. //===========================================================================
  124. //===========================================================================
  125. //=============================public variables=============================
  126. //===========================================================================
  127. #ifdef SDSUPPORT
  128. CardReader card;
  129. #endif
  130. unsigned long PingTime = millis();
  131. unsigned long NcTime;
  132. //used for PINDA temp calibration and pause print
  133. #define DEFAULT_RETRACTION 1
  134. #define DEFAULT_RETRACTION_MM 4 //MM
  135. float default_retraction = DEFAULT_RETRACTION;
  136. float homing_feedrate[] = HOMING_FEEDRATE;
  137. // Currently only the extruder axis may be switched to a relative mode.
  138. // Other axes are always absolute or relative based on the common relative_mode flag.
  139. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  140. int feedmultiply=100; //100->1 200->2
  141. int extrudemultiply=100; //100->1 200->2
  142. int extruder_multiply[EXTRUDERS] = {100
  143. #if EXTRUDERS > 1
  144. , 100
  145. #if EXTRUDERS > 2
  146. , 100
  147. #endif
  148. #endif
  149. };
  150. int bowden_length[4] = {385, 385, 385, 385};
  151. bool is_usb_printing = false;
  152. bool homing_flag = false;
  153. bool temp_cal_active = false;
  154. unsigned long kicktime = millis()+100000;
  155. unsigned int usb_printing_counter;
  156. int8_t lcd_change_fil_state = 0;
  157. unsigned long pause_time = 0;
  158. unsigned long start_pause_print = millis();
  159. unsigned long t_fan_rising_edge = millis();
  160. LongTimer safetyTimer;
  161. static LongTimer crashDetTimer;
  162. //unsigned long load_filament_time;
  163. bool mesh_bed_leveling_flag = false;
  164. bool mesh_bed_run_from_menu = false;
  165. int8_t FarmMode = 0;
  166. bool prusa_sd_card_upload = false;
  167. unsigned int status_number = 0;
  168. unsigned long total_filament_used;
  169. unsigned int heating_status;
  170. unsigned int heating_status_counter;
  171. bool loading_flag = false;
  172. char snmm_filaments_used = 0;
  173. bool fan_state[2];
  174. int fan_edge_counter[2];
  175. int fan_speed[2];
  176. char dir_names[3][9];
  177. bool sortAlpha = false;
  178. float extruder_multiplier[EXTRUDERS] = {1.0
  179. #if EXTRUDERS > 1
  180. , 1.0
  181. #if EXTRUDERS > 2
  182. , 1.0
  183. #endif
  184. #endif
  185. };
  186. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  187. //shortcuts for more readable code
  188. #define _x current_position[X_AXIS]
  189. #define _y current_position[Y_AXIS]
  190. #define _z current_position[Z_AXIS]
  191. #define _e current_position[E_AXIS]
  192. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  193. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  194. bool axis_known_position[3] = {false, false, false};
  195. // Extruder offset
  196. #if EXTRUDERS > 1
  197. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  198. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  199. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  200. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  201. #endif
  202. };
  203. #endif
  204. uint8_t active_extruder = 0;
  205. int fanSpeed=0;
  206. #ifdef FWRETRACT
  207. bool retracted[EXTRUDERS]={false
  208. #if EXTRUDERS > 1
  209. , false
  210. #if EXTRUDERS > 2
  211. , false
  212. #endif
  213. #endif
  214. };
  215. bool retracted_swap[EXTRUDERS]={false
  216. #if EXTRUDERS > 1
  217. , false
  218. #if EXTRUDERS > 2
  219. , false
  220. #endif
  221. #endif
  222. };
  223. float retract_length_swap = RETRACT_LENGTH_SWAP;
  224. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  225. #endif
  226. #ifdef PS_DEFAULT_OFF
  227. bool powersupply = false;
  228. #else
  229. bool powersupply = true;
  230. #endif
  231. bool cancel_heatup = false ;
  232. #ifdef HOST_KEEPALIVE_FEATURE
  233. int busy_state = NOT_BUSY;
  234. static long prev_busy_signal_ms = -1;
  235. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  236. #else
  237. #define host_keepalive();
  238. #define KEEPALIVE_STATE(n);
  239. #endif
  240. const char errormagic[] PROGMEM = "Error:";
  241. const char echomagic[] PROGMEM = "echo:";
  242. bool no_response = false;
  243. uint8_t important_status;
  244. uint8_t saved_filament_type;
  245. // save/restore printing in case that mmu was not responding
  246. bool mmu_print_saved = false;
  247. // storing estimated time to end of print counted by slicer
  248. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  249. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  250. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  251. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  252. bool wizard_active = false; //autoload temporarily disabled during wizard
  253. //===========================================================================
  254. //=============================Private Variables=============================
  255. //===========================================================================
  256. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  257. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  258. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  259. // For tracing an arc
  260. static float offset[3] = {0.0, 0.0, 0.0};
  261. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  262. // Determines Absolute or Relative Coordinates.
  263. // Also there is bool axis_relative_modes[] per axis flag.
  264. static bool relative_mode = false;
  265. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  266. //static float tt = 0;
  267. //static float bt = 0;
  268. //Inactivity shutdown variables
  269. static unsigned long previous_millis_cmd = 0;
  270. unsigned long max_inactive_time = 0;
  271. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  272. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  273. unsigned long starttime=0;
  274. unsigned long stoptime=0;
  275. unsigned long _usb_timer = 0;
  276. bool extruder_under_pressure = true;
  277. bool Stopped=false;
  278. #if NUM_SERVOS > 0
  279. Servo servos[NUM_SERVOS];
  280. #endif
  281. bool CooldownNoWait = true;
  282. bool target_direction;
  283. //Insert variables if CHDK is defined
  284. #ifdef CHDK
  285. unsigned long chdkHigh = 0;
  286. boolean chdkActive = false;
  287. #endif
  288. //! @name RAM save/restore printing
  289. //! @{
  290. bool saved_printing = false; //!< Print is paused and saved in RAM
  291. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  292. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  293. static float saved_pos[4] = { 0, 0, 0, 0 };
  294. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  295. static float saved_feedrate2 = 0;
  296. static uint8_t saved_active_extruder = 0;
  297. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  298. static bool saved_extruder_under_pressure = false;
  299. static bool saved_extruder_relative_mode = false;
  300. static int saved_fanSpeed = 0; //!< Print fan speed
  301. //! @}
  302. static int saved_feedmultiply_mm = 100;
  303. //===========================================================================
  304. //=============================Routines======================================
  305. //===========================================================================
  306. static void get_arc_coordinates();
  307. static bool setTargetedHotend(int code, uint8_t &extruder);
  308. static void print_time_remaining_init();
  309. static void wait_for_heater(long codenum, uint8_t extruder);
  310. uint16_t gcode_in_progress = 0;
  311. uint16_t mcode_in_progress = 0;
  312. void serial_echopair_P(const char *s_P, float v)
  313. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  314. void serial_echopair_P(const char *s_P, double v)
  315. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  316. void serial_echopair_P(const char *s_P, unsigned long v)
  317. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  318. #ifdef SDSUPPORT
  319. #include "SdFatUtil.h"
  320. int freeMemory() { return SdFatUtil::FreeRam(); }
  321. #else
  322. extern "C" {
  323. extern unsigned int __bss_end;
  324. extern unsigned int __heap_start;
  325. extern void *__brkval;
  326. int freeMemory() {
  327. int free_memory;
  328. if ((int)__brkval == 0)
  329. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  330. else
  331. free_memory = ((int)&free_memory) - ((int)__brkval);
  332. return free_memory;
  333. }
  334. }
  335. #endif //!SDSUPPORT
  336. void setup_killpin()
  337. {
  338. #if defined(KILL_PIN) && KILL_PIN > -1
  339. SET_INPUT(KILL_PIN);
  340. WRITE(KILL_PIN,HIGH);
  341. #endif
  342. }
  343. // Set home pin
  344. void setup_homepin(void)
  345. {
  346. #if defined(HOME_PIN) && HOME_PIN > -1
  347. SET_INPUT(HOME_PIN);
  348. WRITE(HOME_PIN,HIGH);
  349. #endif
  350. }
  351. void setup_photpin()
  352. {
  353. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  354. SET_OUTPUT(PHOTOGRAPH_PIN);
  355. WRITE(PHOTOGRAPH_PIN, LOW);
  356. #endif
  357. }
  358. void setup_powerhold()
  359. {
  360. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  361. SET_OUTPUT(SUICIDE_PIN);
  362. WRITE(SUICIDE_PIN, HIGH);
  363. #endif
  364. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  365. SET_OUTPUT(PS_ON_PIN);
  366. #if defined(PS_DEFAULT_OFF)
  367. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  368. #else
  369. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  370. #endif
  371. #endif
  372. }
  373. void suicide()
  374. {
  375. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  376. SET_OUTPUT(SUICIDE_PIN);
  377. WRITE(SUICIDE_PIN, LOW);
  378. #endif
  379. }
  380. void servo_init()
  381. {
  382. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  383. servos[0].attach(SERVO0_PIN);
  384. #endif
  385. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  386. servos[1].attach(SERVO1_PIN);
  387. #endif
  388. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  389. servos[2].attach(SERVO2_PIN);
  390. #endif
  391. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  392. servos[3].attach(SERVO3_PIN);
  393. #endif
  394. #if (NUM_SERVOS >= 5)
  395. #error "TODO: enter initalisation code for more servos"
  396. #endif
  397. }
  398. bool fans_check_enabled = true;
  399. #ifdef TMC2130
  400. extern int8_t CrashDetectMenu;
  401. void crashdet_enable()
  402. {
  403. tmc2130_sg_stop_on_crash = true;
  404. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  405. CrashDetectMenu = 1;
  406. }
  407. void crashdet_disable()
  408. {
  409. tmc2130_sg_stop_on_crash = false;
  410. tmc2130_sg_crash = 0;
  411. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  412. CrashDetectMenu = 0;
  413. }
  414. void crashdet_stop_and_save_print()
  415. {
  416. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  417. }
  418. void crashdet_restore_print_and_continue()
  419. {
  420. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  421. // babystep_apply();
  422. }
  423. void crashdet_stop_and_save_print2()
  424. {
  425. cli();
  426. planner_abort_hard(); //abort printing
  427. cmdqueue_reset(); //empty cmdqueue
  428. card.sdprinting = false;
  429. card.closefile();
  430. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  431. st_reset_timer();
  432. sei();
  433. }
  434. void crashdet_detected(uint8_t mask)
  435. {
  436. st_synchronize();
  437. static uint8_t crashDet_counter = 0;
  438. bool automatic_recovery_after_crash = true;
  439. if (crashDet_counter++ == 0) {
  440. crashDetTimer.start();
  441. }
  442. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  443. crashDetTimer.stop();
  444. crashDet_counter = 0;
  445. }
  446. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  447. automatic_recovery_after_crash = false;
  448. crashDetTimer.stop();
  449. crashDet_counter = 0;
  450. }
  451. else {
  452. crashDetTimer.start();
  453. }
  454. lcd_update_enable(true);
  455. lcd_clear();
  456. lcd_update(2);
  457. if (mask & X_AXIS_MASK)
  458. {
  459. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  460. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  461. }
  462. if (mask & Y_AXIS_MASK)
  463. {
  464. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  465. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  466. }
  467. lcd_update_enable(true);
  468. lcd_update(2);
  469. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  470. gcode_G28(true, true, false); //home X and Y
  471. st_synchronize();
  472. if (automatic_recovery_after_crash) {
  473. enquecommand_P(PSTR("CRASH_RECOVER"));
  474. }else{
  475. setTargetHotend(0, active_extruder);
  476. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  477. lcd_update_enable(true);
  478. if (yesno)
  479. {
  480. enquecommand_P(PSTR("CRASH_RECOVER"));
  481. }
  482. else
  483. {
  484. enquecommand_P(PSTR("CRASH_CANCEL"));
  485. }
  486. }
  487. }
  488. void crashdet_recover()
  489. {
  490. crashdet_restore_print_and_continue();
  491. tmc2130_sg_stop_on_crash = true;
  492. }
  493. void crashdet_cancel()
  494. {
  495. saved_printing = false;
  496. tmc2130_sg_stop_on_crash = true;
  497. if (saved_printing_type == PRINTING_TYPE_SD) {
  498. lcd_print_stop();
  499. }else if(saved_printing_type == PRINTING_TYPE_USB){
  500. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  501. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  502. }
  503. }
  504. #endif //TMC2130
  505. void failstats_reset_print()
  506. {
  507. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  508. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  511. }
  512. #ifdef MESH_BED_LEVELING
  513. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  514. #endif
  515. // Factory reset function
  516. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  517. // Level input parameter sets depth of reset
  518. int er_progress = 0;
  519. static void factory_reset(char level)
  520. {
  521. lcd_clear();
  522. switch (level) {
  523. // Level 0: Language reset
  524. case 0:
  525. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  526. WRITE(BEEPER, HIGH);
  527. _delay_ms(100);
  528. WRITE(BEEPER, LOW);
  529. lang_reset();
  530. break;
  531. //Level 1: Reset statistics
  532. case 1:
  533. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  534. WRITE(BEEPER, HIGH);
  535. _delay_ms(100);
  536. WRITE(BEEPER, LOW);
  537. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  538. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  539. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  540. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  541. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  542. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  543. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  544. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  546. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  547. lcd_menu_statistics();
  548. break;
  549. // Level 2: Prepare for shipping
  550. case 2:
  551. //lcd_puts_P(PSTR("Factory RESET"));
  552. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  553. // Force language selection at the next boot up.
  554. lang_reset();
  555. // Force the "Follow calibration flow" message at the next boot up.
  556. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  557. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  558. farm_no = 0;
  559. farm_mode = false;
  560. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  561. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  562. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  563. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  564. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  565. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  566. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  567. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  568. #ifdef FILAMENT_SENSOR
  569. fsensor_enable();
  570. fsensor_autoload_set(true);
  571. #endif //FILAMENT_SENSOR
  572. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  573. WRITE(BEEPER, HIGH);
  574. _delay_ms(100);
  575. WRITE(BEEPER, LOW);
  576. //_delay_ms(2000);
  577. break;
  578. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  579. case 3:
  580. lcd_puts_P(PSTR("Factory RESET"));
  581. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  582. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  583. WRITE(BEEPER, HIGH);
  584. _delay_ms(100);
  585. WRITE(BEEPER, LOW);
  586. er_progress = 0;
  587. lcd_puts_at_P(3, 3, PSTR(" "));
  588. lcd_set_cursor(3, 3);
  589. lcd_print(er_progress);
  590. // Erase EEPROM
  591. for (int i = 0; i < 4096; i++) {
  592. eeprom_update_byte((uint8_t*)i, 0xFF);
  593. if (i % 41 == 0) {
  594. er_progress++;
  595. lcd_puts_at_P(3, 3, PSTR(" "));
  596. lcd_set_cursor(3, 3);
  597. lcd_print(er_progress);
  598. lcd_puts_P(PSTR("%"));
  599. }
  600. }
  601. break;
  602. case 4:
  603. bowden_menu();
  604. break;
  605. default:
  606. break;
  607. }
  608. }
  609. extern "C" {
  610. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  611. }
  612. int uart_putchar(char c, FILE *)
  613. {
  614. MYSERIAL.write(c);
  615. return 0;
  616. }
  617. void lcd_splash()
  618. {
  619. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  620. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  621. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  622. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  623. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  624. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  625. }
  626. void factory_reset()
  627. {
  628. KEEPALIVE_STATE(PAUSED_FOR_USER);
  629. if (!READ(BTN_ENC))
  630. {
  631. _delay_ms(1000);
  632. if (!READ(BTN_ENC))
  633. {
  634. lcd_clear();
  635. lcd_puts_P(PSTR("Factory RESET"));
  636. SET_OUTPUT(BEEPER);
  637. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  638. WRITE(BEEPER, HIGH);
  639. while (!READ(BTN_ENC));
  640. WRITE(BEEPER, LOW);
  641. _delay_ms(2000);
  642. char level = reset_menu();
  643. factory_reset(level);
  644. switch (level) {
  645. case 0: _delay_ms(0); break;
  646. case 1: _delay_ms(0); break;
  647. case 2: _delay_ms(0); break;
  648. case 3: _delay_ms(0); break;
  649. }
  650. }
  651. }
  652. KEEPALIVE_STATE(IN_HANDLER);
  653. }
  654. void show_fw_version_warnings() {
  655. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  656. switch (FW_DEV_VERSION) {
  657. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  658. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  659. case(FW_VERSION_DEVEL):
  660. case(FW_VERSION_DEBUG):
  661. lcd_update_enable(false);
  662. lcd_clear();
  663. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  664. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  665. #else
  666. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  667. #endif
  668. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  669. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  670. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  671. lcd_wait_for_click();
  672. break;
  673. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  674. }
  675. lcd_update_enable(true);
  676. }
  677. uint8_t check_printer_version()
  678. {
  679. uint8_t version_changed = 0;
  680. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  681. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  682. if (printer_type != PRINTER_TYPE) {
  683. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  684. else version_changed |= 0b10;
  685. }
  686. if (motherboard != MOTHERBOARD) {
  687. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  688. else version_changed |= 0b01;
  689. }
  690. return version_changed;
  691. }
  692. #ifdef BOOTAPP
  693. #include "bootapp.h" //bootloader support
  694. #endif //BOOTAPP
  695. #if (LANG_MODE != 0) //secondary language support
  696. #ifdef W25X20CL
  697. // language update from external flash
  698. #define LANGBOOT_BLOCKSIZE 0x1000u
  699. #define LANGBOOT_RAMBUFFER 0x0800
  700. void update_sec_lang_from_external_flash()
  701. {
  702. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  703. {
  704. uint8_t lang = boot_reserved >> 4;
  705. uint8_t state = boot_reserved & 0xf;
  706. lang_table_header_t header;
  707. uint32_t src_addr;
  708. if (lang_get_header(lang, &header, &src_addr))
  709. {
  710. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  711. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  712. delay(100);
  713. boot_reserved = (state + 1) | (lang << 4);
  714. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  715. {
  716. cli();
  717. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  718. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  719. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  720. if (state == 0)
  721. {
  722. //TODO - check header integrity
  723. }
  724. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  725. }
  726. else
  727. {
  728. //TODO - check sec lang data integrity
  729. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  730. }
  731. }
  732. }
  733. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  734. }
  735. #ifdef DEBUG_W25X20CL
  736. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  737. {
  738. lang_table_header_t header;
  739. uint8_t count = 0;
  740. uint32_t addr = 0x00000;
  741. while (1)
  742. {
  743. printf_P(_n("LANGTABLE%d:"), count);
  744. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  745. if (header.magic != LANG_MAGIC)
  746. {
  747. printf_P(_n("NG!\n"));
  748. break;
  749. }
  750. printf_P(_n("OK\n"));
  751. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  752. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  753. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  754. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  755. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  756. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  757. addr += header.size;
  758. codes[count] = header.code;
  759. count ++;
  760. }
  761. return count;
  762. }
  763. void list_sec_lang_from_external_flash()
  764. {
  765. uint16_t codes[8];
  766. uint8_t count = lang_xflash_enum_codes(codes);
  767. printf_P(_n("XFlash lang count = %hhd\n"), count);
  768. }
  769. #endif //DEBUG_W25X20CL
  770. #endif //W25X20CL
  771. #endif //(LANG_MODE != 0)
  772. // "Setup" function is called by the Arduino framework on startup.
  773. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  774. // are initialized by the main() routine provided by the Arduino framework.
  775. void setup()
  776. {
  777. mmu_init();
  778. ultralcd_init();
  779. spi_init();
  780. lcd_splash();
  781. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  782. #ifdef W25X20CL
  783. if (!w25x20cl_init())
  784. kill(_i("External SPI flash W25X20CL not responding."));
  785. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  786. optiboot_w25x20cl_enter();
  787. #endif
  788. #if (LANG_MODE != 0) //secondary language support
  789. #ifdef W25X20CL
  790. if (w25x20cl_init())
  791. update_sec_lang_from_external_flash();
  792. #endif //W25X20CL
  793. #endif //(LANG_MODE != 0)
  794. setup_killpin();
  795. setup_powerhold();
  796. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  797. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  798. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  799. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  800. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  801. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  802. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  803. if (farm_mode)
  804. {
  805. no_response = true; //we need confirmation by recieving PRUSA thx
  806. important_status = 8;
  807. prusa_statistics(8);
  808. selectedSerialPort = 1;
  809. #ifdef TMC2130
  810. //increased extruder current (PFW363)
  811. tmc2130_current_h[E_AXIS] = 36;
  812. tmc2130_current_r[E_AXIS] = 36;
  813. #endif //TMC2130
  814. #ifdef FILAMENT_SENSOR
  815. //disabled filament autoload (PFW360)
  816. fsensor_autoload_set(false);
  817. #endif //FILAMENT_SENSOR
  818. }
  819. MYSERIAL.begin(BAUDRATE);
  820. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  821. #ifndef W25X20CL
  822. SERIAL_PROTOCOLLNPGM("start");
  823. #endif //W25X20CL
  824. stdout = uartout;
  825. SERIAL_ECHO_START;
  826. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  827. #ifdef DEBUG_SEC_LANG
  828. lang_table_header_t header;
  829. uint32_t src_addr = 0x00000;
  830. if (lang_get_header(1, &header, &src_addr))
  831. {
  832. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  833. #define LT_PRINT_TEST 2
  834. // flash usage
  835. // total p.test
  836. //0 252718 t+c text code
  837. //1 253142 424 170 254
  838. //2 253040 322 164 158
  839. //3 253248 530 135 395
  840. #if (LT_PRINT_TEST==1) //not optimized printf
  841. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  842. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  843. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  844. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  845. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  846. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  847. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  848. #elif (LT_PRINT_TEST==2) //optimized printf
  849. printf_P(
  850. _n(
  851. " _src_addr = 0x%08lx\n"
  852. " _lt_magic = 0x%08lx %S\n"
  853. " _lt_size = 0x%04x (%d)\n"
  854. " _lt_count = 0x%04x (%d)\n"
  855. " _lt_chsum = 0x%04x\n"
  856. " _lt_code = 0x%04x (%c%c)\n"
  857. " _lt_resv1 = 0x%08lx\n"
  858. ),
  859. src_addr,
  860. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  861. header.size, header.size,
  862. header.count, header.count,
  863. header.checksum,
  864. header.code, header.code >> 8, header.code & 0xff,
  865. header.signature
  866. );
  867. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  868. MYSERIAL.print(" _src_addr = 0x");
  869. MYSERIAL.println(src_addr, 16);
  870. MYSERIAL.print(" _lt_magic = 0x");
  871. MYSERIAL.print(header.magic, 16);
  872. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  873. MYSERIAL.print(" _lt_size = 0x");
  874. MYSERIAL.print(header.size, 16);
  875. MYSERIAL.print(" (");
  876. MYSERIAL.print(header.size, 10);
  877. MYSERIAL.println(")");
  878. MYSERIAL.print(" _lt_count = 0x");
  879. MYSERIAL.print(header.count, 16);
  880. MYSERIAL.print(" (");
  881. MYSERIAL.print(header.count, 10);
  882. MYSERIAL.println(")");
  883. MYSERIAL.print(" _lt_chsum = 0x");
  884. MYSERIAL.println(header.checksum, 16);
  885. MYSERIAL.print(" _lt_code = 0x");
  886. MYSERIAL.print(header.code, 16);
  887. MYSERIAL.print(" (");
  888. MYSERIAL.print((char)(header.code >> 8), 0);
  889. MYSERIAL.print((char)(header.code & 0xff), 0);
  890. MYSERIAL.println(")");
  891. MYSERIAL.print(" _lt_resv1 = 0x");
  892. MYSERIAL.println(header.signature, 16);
  893. #endif //(LT_PRINT_TEST==)
  894. #undef LT_PRINT_TEST
  895. #if 0
  896. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  897. for (uint16_t i = 0; i < 1024; i++)
  898. {
  899. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  900. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  901. if ((i % 16) == 15) putchar('\n');
  902. }
  903. #endif
  904. uint16_t sum = 0;
  905. for (uint16_t i = 0; i < header.size; i++)
  906. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  907. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  908. sum -= header.checksum; //subtract checksum
  909. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  910. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  911. if (sum == header.checksum)
  912. printf_P(_n("Checksum OK\n"), sum);
  913. else
  914. printf_P(_n("Checksum NG\n"), sum);
  915. }
  916. else
  917. printf_P(_n("lang_get_header failed!\n"));
  918. #if 0
  919. for (uint16_t i = 0; i < 1024*10; i++)
  920. {
  921. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  922. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  923. if ((i % 16) == 15) putchar('\n');
  924. }
  925. #endif
  926. #if 0
  927. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  928. for (int i = 0; i < 4096; ++i) {
  929. int b = eeprom_read_byte((unsigned char*)i);
  930. if (b != 255) {
  931. SERIAL_ECHO(i);
  932. SERIAL_ECHO(":");
  933. SERIAL_ECHO(b);
  934. SERIAL_ECHOLN("");
  935. }
  936. }
  937. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  938. #endif
  939. #endif //DEBUG_SEC_LANG
  940. // Check startup - does nothing if bootloader sets MCUSR to 0
  941. byte mcu = MCUSR;
  942. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  943. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  944. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  945. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  946. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  947. if (mcu & 1) puts_P(MSG_POWERUP);
  948. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  949. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  950. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  951. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  952. MCUSR = 0;
  953. //SERIAL_ECHORPGM(MSG_MARLIN);
  954. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  955. #ifdef STRING_VERSION_CONFIG_H
  956. #ifdef STRING_CONFIG_H_AUTHOR
  957. SERIAL_ECHO_START;
  958. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  959. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  960. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  961. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  962. SERIAL_ECHOPGM("Compiled: ");
  963. SERIAL_ECHOLNPGM(__DATE__);
  964. #endif
  965. #endif
  966. SERIAL_ECHO_START;
  967. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  968. SERIAL_ECHO(freeMemory());
  969. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  970. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  971. //lcd_update_enable(false); // why do we need this?? - andre
  972. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  973. bool previous_settings_retrieved = false;
  974. uint8_t hw_changed = check_printer_version();
  975. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  976. previous_settings_retrieved = Config_RetrieveSettings();
  977. }
  978. else { //printer version was changed so use default settings
  979. Config_ResetDefault();
  980. }
  981. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  982. tp_init(); // Initialize temperature loop
  983. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  984. plan_init(); // Initialize planner;
  985. factory_reset();
  986. lcd_encoder_diff=0;
  987. #ifdef TMC2130
  988. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  989. if (silentMode == 0xff) silentMode = 0;
  990. tmc2130_mode = TMC2130_MODE_NORMAL;
  991. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  992. if (crashdet && !farm_mode)
  993. {
  994. crashdet_enable();
  995. puts_P(_N("CrashDetect ENABLED!"));
  996. }
  997. else
  998. {
  999. crashdet_disable();
  1000. puts_P(_N("CrashDetect DISABLED"));
  1001. }
  1002. #ifdef TMC2130_LINEARITY_CORRECTION
  1003. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1004. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1005. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1006. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1007. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1008. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1009. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1010. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1011. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1012. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1013. #endif //TMC2130_LINEARITY_CORRECTION
  1014. #ifdef TMC2130_VARIABLE_RESOLUTION
  1015. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1016. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1017. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1018. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1019. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1020. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1021. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1022. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1023. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1024. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1025. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1026. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1027. #else //TMC2130_VARIABLE_RESOLUTION
  1028. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1029. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1030. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1031. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1032. #endif //TMC2130_VARIABLE_RESOLUTION
  1033. #endif //TMC2130
  1034. st_init(); // Initialize stepper, this enables interrupts!
  1035. #ifdef TMC2130
  1036. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1037. update_mode_profile();
  1038. tmc2130_init();
  1039. #endif //TMC2130
  1040. setup_photpin();
  1041. servo_init();
  1042. // Reset the machine correction matrix.
  1043. // It does not make sense to load the correction matrix until the machine is homed.
  1044. world2machine_reset();
  1045. #ifdef FILAMENT_SENSOR
  1046. fsensor_init();
  1047. #endif //FILAMENT_SENSOR
  1048. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1049. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1050. #endif
  1051. setup_homepin();
  1052. #ifdef TMC2130
  1053. if (1) {
  1054. // try to run to zero phase before powering the Z motor.
  1055. // Move in negative direction
  1056. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1057. // Round the current micro-micro steps to micro steps.
  1058. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1059. // Until the phase counter is reset to zero.
  1060. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1061. delay(2);
  1062. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1063. delay(2);
  1064. }
  1065. }
  1066. #endif //TMC2130
  1067. #if defined(Z_AXIS_ALWAYS_ON)
  1068. enable_z();
  1069. #endif
  1070. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1071. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1072. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1073. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1074. if (farm_mode)
  1075. {
  1076. prusa_statistics(8);
  1077. }
  1078. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1079. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1080. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1081. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1082. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1083. // where all the EEPROM entries are set to 0x0ff.
  1084. // Once a firmware boots up, it forces at least a language selection, which changes
  1085. // EEPROM_LANG to number lower than 0x0ff.
  1086. // 1) Set a high power mode.
  1087. #ifdef TMC2130
  1088. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1089. tmc2130_mode = TMC2130_MODE_NORMAL;
  1090. #endif //TMC2130
  1091. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1092. }
  1093. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1094. // but this times out if a blocking dialog is shown in setup().
  1095. card.initsd();
  1096. #ifdef DEBUG_SD_SPEED_TEST
  1097. if (card.cardOK)
  1098. {
  1099. uint8_t* buff = (uint8_t*)block_buffer;
  1100. uint32_t block = 0;
  1101. uint32_t sumr = 0;
  1102. uint32_t sumw = 0;
  1103. for (int i = 0; i < 1024; i++)
  1104. {
  1105. uint32_t u = micros();
  1106. bool res = card.card.readBlock(i, buff);
  1107. u = micros() - u;
  1108. if (res)
  1109. {
  1110. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1111. sumr += u;
  1112. u = micros();
  1113. res = card.card.writeBlock(i, buff);
  1114. u = micros() - u;
  1115. if (res)
  1116. {
  1117. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1118. sumw += u;
  1119. }
  1120. else
  1121. {
  1122. printf_P(PSTR("writeBlock %4d error\n"), i);
  1123. break;
  1124. }
  1125. }
  1126. else
  1127. {
  1128. printf_P(PSTR("readBlock %4d error\n"), i);
  1129. break;
  1130. }
  1131. }
  1132. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1133. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1134. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1135. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1136. }
  1137. else
  1138. printf_P(PSTR("Card NG!\n"));
  1139. #endif //DEBUG_SD_SPEED_TEST
  1140. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1141. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1142. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1143. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1144. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1145. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1146. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1147. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1148. #ifdef SNMM
  1149. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1150. int _z = BOWDEN_LENGTH;
  1151. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1152. }
  1153. #endif
  1154. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1155. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1156. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1157. #if (LANG_MODE != 0) //secondary language support
  1158. #ifdef DEBUG_W25X20CL
  1159. W25X20CL_SPI_ENTER();
  1160. uint8_t uid[8]; // 64bit unique id
  1161. w25x20cl_rd_uid(uid);
  1162. puts_P(_n("W25X20CL UID="));
  1163. for (uint8_t i = 0; i < 8; i ++)
  1164. printf_P(PSTR("%02hhx"), uid[i]);
  1165. putchar('\n');
  1166. list_sec_lang_from_external_flash();
  1167. #endif //DEBUG_W25X20CL
  1168. // lang_reset();
  1169. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1170. lcd_language();
  1171. #ifdef DEBUG_SEC_LANG
  1172. uint16_t sec_lang_code = lang_get_code(1);
  1173. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1174. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1175. lang_print_sec_lang(uartout);
  1176. #endif //DEBUG_SEC_LANG
  1177. #endif //(LANG_MODE != 0)
  1178. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1179. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1180. temp_cal_active = false;
  1181. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1182. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1183. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1184. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1185. int16_t z_shift = 0;
  1186. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1187. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1188. temp_cal_active = false;
  1189. }
  1190. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1191. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1192. }
  1193. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1194. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1195. }
  1196. check_babystep(); //checking if Z babystep is in allowed range
  1197. #ifdef UVLO_SUPPORT
  1198. setup_uvlo_interrupt();
  1199. #endif //UVLO_SUPPORT
  1200. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1201. setup_fan_interrupt();
  1202. #endif //DEBUG_DISABLE_FANCHECK
  1203. #ifdef FILAMENT_SENSOR
  1204. fsensor_setup_interrupt();
  1205. #endif //FILAMENT_SENSOR
  1206. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1207. #ifndef DEBUG_DISABLE_STARTMSGS
  1208. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1209. show_fw_version_warnings();
  1210. switch (hw_changed) {
  1211. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1212. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1213. case(0b01):
  1214. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1215. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1216. break;
  1217. case(0b10):
  1218. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1219. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1220. break;
  1221. case(0b11):
  1222. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1223. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1224. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1225. break;
  1226. default: break; //no change, show no message
  1227. }
  1228. if (!previous_settings_retrieved) {
  1229. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1230. Config_StoreSettings();
  1231. }
  1232. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1233. lcd_wizard(WizState::Run);
  1234. }
  1235. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1236. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1237. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1238. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1239. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1240. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1241. // Show the message.
  1242. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1243. }
  1244. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1245. // Show the message.
  1246. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1247. lcd_update_enable(true);
  1248. }
  1249. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1250. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1251. lcd_update_enable(true);
  1252. }
  1253. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1254. // Show the message.
  1255. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1256. }
  1257. }
  1258. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1259. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1260. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1261. update_current_firmware_version_to_eeprom();
  1262. lcd_selftest();
  1263. }
  1264. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1265. KEEPALIVE_STATE(IN_PROCESS);
  1266. #endif //DEBUG_DISABLE_STARTMSGS
  1267. lcd_update_enable(true);
  1268. lcd_clear();
  1269. lcd_update(2);
  1270. // Store the currently running firmware into an eeprom,
  1271. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1272. update_current_firmware_version_to_eeprom();
  1273. #ifdef TMC2130
  1274. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1275. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1276. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1277. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1278. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1279. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1280. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1281. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1282. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1283. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1284. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1285. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1286. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1287. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1288. #endif //TMC2130
  1289. #ifdef UVLO_SUPPORT
  1290. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1291. /*
  1292. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1293. else {
  1294. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1295. lcd_update_enable(true);
  1296. lcd_update(2);
  1297. lcd_setstatuspgm(_T(WELCOME_MSG));
  1298. }
  1299. */
  1300. manage_heater(); // Update temperatures
  1301. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1302. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1303. #endif
  1304. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1305. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1306. puts_P(_N("Automatic recovery!"));
  1307. #endif
  1308. recover_print(1);
  1309. }
  1310. else{
  1311. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1312. puts_P(_N("Normal recovery!"));
  1313. #endif
  1314. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1315. else {
  1316. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1317. lcd_update_enable(true);
  1318. lcd_update(2);
  1319. lcd_setstatuspgm(_T(WELCOME_MSG));
  1320. }
  1321. }
  1322. }
  1323. #endif //UVLO_SUPPORT
  1324. KEEPALIVE_STATE(NOT_BUSY);
  1325. #ifdef WATCHDOG
  1326. wdt_enable(WDTO_4S);
  1327. #endif //WATCHDOG
  1328. }
  1329. void trace();
  1330. #define CHUNK_SIZE 64 // bytes
  1331. #define SAFETY_MARGIN 1
  1332. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1333. int chunkHead = 0;
  1334. void serial_read_stream() {
  1335. setAllTargetHotends(0);
  1336. setTargetBed(0);
  1337. lcd_clear();
  1338. lcd_puts_P(PSTR(" Upload in progress"));
  1339. // first wait for how many bytes we will receive
  1340. uint32_t bytesToReceive;
  1341. // receive the four bytes
  1342. char bytesToReceiveBuffer[4];
  1343. for (int i=0; i<4; i++) {
  1344. int data;
  1345. while ((data = MYSERIAL.read()) == -1) {};
  1346. bytesToReceiveBuffer[i] = data;
  1347. }
  1348. // make it a uint32
  1349. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1350. // we're ready, notify the sender
  1351. MYSERIAL.write('+');
  1352. // lock in the routine
  1353. uint32_t receivedBytes = 0;
  1354. while (prusa_sd_card_upload) {
  1355. int i;
  1356. for (i=0; i<CHUNK_SIZE; i++) {
  1357. int data;
  1358. // check if we're not done
  1359. if (receivedBytes == bytesToReceive) {
  1360. break;
  1361. }
  1362. // read the next byte
  1363. while ((data = MYSERIAL.read()) == -1) {};
  1364. receivedBytes++;
  1365. // save it to the chunk
  1366. chunk[i] = data;
  1367. }
  1368. // write the chunk to SD
  1369. card.write_command_no_newline(&chunk[0]);
  1370. // notify the sender we're ready for more data
  1371. MYSERIAL.write('+');
  1372. // for safety
  1373. manage_heater();
  1374. // check if we're done
  1375. if(receivedBytes == bytesToReceive) {
  1376. trace(); // beep
  1377. card.closefile();
  1378. prusa_sd_card_upload = false;
  1379. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1380. }
  1381. }
  1382. }
  1383. #ifdef HOST_KEEPALIVE_FEATURE
  1384. /**
  1385. * Output a "busy" message at regular intervals
  1386. * while the machine is not accepting commands.
  1387. */
  1388. void host_keepalive() {
  1389. if (farm_mode) return;
  1390. long ms = millis();
  1391. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1392. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1393. switch (busy_state) {
  1394. case IN_HANDLER:
  1395. case IN_PROCESS:
  1396. SERIAL_ECHO_START;
  1397. SERIAL_ECHOLNPGM("busy: processing");
  1398. break;
  1399. case PAUSED_FOR_USER:
  1400. SERIAL_ECHO_START;
  1401. SERIAL_ECHOLNPGM("busy: paused for user");
  1402. break;
  1403. case PAUSED_FOR_INPUT:
  1404. SERIAL_ECHO_START;
  1405. SERIAL_ECHOLNPGM("busy: paused for input");
  1406. break;
  1407. default:
  1408. break;
  1409. }
  1410. }
  1411. prev_busy_signal_ms = ms;
  1412. }
  1413. #endif
  1414. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1415. // Before loop(), the setup() function is called by the main() routine.
  1416. void loop()
  1417. {
  1418. KEEPALIVE_STATE(NOT_BUSY);
  1419. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1420. {
  1421. is_usb_printing = true;
  1422. usb_printing_counter--;
  1423. _usb_timer = millis();
  1424. }
  1425. if (usb_printing_counter == 0)
  1426. {
  1427. is_usb_printing = false;
  1428. }
  1429. if (prusa_sd_card_upload)
  1430. {
  1431. //we read byte-by byte
  1432. serial_read_stream();
  1433. } else
  1434. {
  1435. get_command();
  1436. #ifdef SDSUPPORT
  1437. card.checkautostart(false);
  1438. #endif
  1439. if(buflen)
  1440. {
  1441. cmdbuffer_front_already_processed = false;
  1442. #ifdef SDSUPPORT
  1443. if(card.saving)
  1444. {
  1445. // Saving a G-code file onto an SD-card is in progress.
  1446. // Saving starts with M28, saving until M29 is seen.
  1447. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1448. card.write_command(CMDBUFFER_CURRENT_STRING);
  1449. if(card.logging)
  1450. process_commands();
  1451. else
  1452. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1453. } else {
  1454. card.closefile();
  1455. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1456. }
  1457. } else {
  1458. process_commands();
  1459. }
  1460. #else
  1461. process_commands();
  1462. #endif //SDSUPPORT
  1463. if (! cmdbuffer_front_already_processed && buflen)
  1464. {
  1465. // ptr points to the start of the block currently being processed.
  1466. // The first character in the block is the block type.
  1467. char *ptr = cmdbuffer + bufindr;
  1468. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1469. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1470. union {
  1471. struct {
  1472. char lo;
  1473. char hi;
  1474. } lohi;
  1475. uint16_t value;
  1476. } sdlen;
  1477. sdlen.value = 0;
  1478. {
  1479. // This block locks the interrupts globally for 3.25 us,
  1480. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1481. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1482. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1483. cli();
  1484. // Reset the command to something, which will be ignored by the power panic routine,
  1485. // so this buffer length will not be counted twice.
  1486. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1487. // Extract the current buffer length.
  1488. sdlen.lohi.lo = *ptr ++;
  1489. sdlen.lohi.hi = *ptr;
  1490. // and pass it to the planner queue.
  1491. planner_add_sd_length(sdlen.value);
  1492. sei();
  1493. }
  1494. }
  1495. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1496. cli();
  1497. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1498. // and one for each command to previous block in the planner queue.
  1499. planner_add_sd_length(1);
  1500. sei();
  1501. }
  1502. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1503. // this block's SD card length will not be counted twice as its command type has been replaced
  1504. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1505. cmdqueue_pop_front();
  1506. }
  1507. host_keepalive();
  1508. }
  1509. }
  1510. //check heater every n milliseconds
  1511. manage_heater();
  1512. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1513. checkHitEndstops();
  1514. lcd_update(0);
  1515. #ifdef TMC2130
  1516. tmc2130_check_overtemp();
  1517. if (tmc2130_sg_crash)
  1518. {
  1519. uint8_t crash = tmc2130_sg_crash;
  1520. tmc2130_sg_crash = 0;
  1521. // crashdet_stop_and_save_print();
  1522. switch (crash)
  1523. {
  1524. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1525. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1526. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1527. }
  1528. }
  1529. #endif //TMC2130
  1530. mmu_loop();
  1531. }
  1532. #define DEFINE_PGM_READ_ANY(type, reader) \
  1533. static inline type pgm_read_any(const type *p) \
  1534. { return pgm_read_##reader##_near(p); }
  1535. DEFINE_PGM_READ_ANY(float, float);
  1536. DEFINE_PGM_READ_ANY(signed char, byte);
  1537. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1538. static const PROGMEM type array##_P[3] = \
  1539. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1540. static inline type array(int axis) \
  1541. { return pgm_read_any(&array##_P[axis]); } \
  1542. type array##_ext(int axis) \
  1543. { return pgm_read_any(&array##_P[axis]); }
  1544. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1545. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1546. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1547. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1548. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1549. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1550. static void axis_is_at_home(int axis) {
  1551. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1552. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1553. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1554. }
  1555. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1556. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1557. //! @return original feedmultiply
  1558. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1559. saved_feedrate = feedrate;
  1560. int l_feedmultiply = feedmultiply;
  1561. feedmultiply = 100;
  1562. previous_millis_cmd = millis();
  1563. enable_endstops(enable_endstops_now);
  1564. return l_feedmultiply;
  1565. }
  1566. //! @param original_feedmultiply feedmultiply to restore
  1567. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1568. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1569. enable_endstops(false);
  1570. #endif
  1571. feedrate = saved_feedrate;
  1572. feedmultiply = original_feedmultiply;
  1573. previous_millis_cmd = millis();
  1574. }
  1575. #ifdef ENABLE_AUTO_BED_LEVELING
  1576. #ifdef AUTO_BED_LEVELING_GRID
  1577. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1578. {
  1579. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1580. planeNormal.debug("planeNormal");
  1581. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1582. //bedLevel.debug("bedLevel");
  1583. //plan_bed_level_matrix.debug("bed level before");
  1584. //vector_3 uncorrected_position = plan_get_position_mm();
  1585. //uncorrected_position.debug("position before");
  1586. vector_3 corrected_position = plan_get_position();
  1587. // corrected_position.debug("position after");
  1588. current_position[X_AXIS] = corrected_position.x;
  1589. current_position[Y_AXIS] = corrected_position.y;
  1590. current_position[Z_AXIS] = corrected_position.z;
  1591. // put the bed at 0 so we don't go below it.
  1592. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1593. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1594. }
  1595. #else // not AUTO_BED_LEVELING_GRID
  1596. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1597. plan_bed_level_matrix.set_to_identity();
  1598. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1599. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1600. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1601. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1602. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1603. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1604. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1605. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1606. vector_3 corrected_position = plan_get_position();
  1607. current_position[X_AXIS] = corrected_position.x;
  1608. current_position[Y_AXIS] = corrected_position.y;
  1609. current_position[Z_AXIS] = corrected_position.z;
  1610. // put the bed at 0 so we don't go below it.
  1611. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1612. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1613. }
  1614. #endif // AUTO_BED_LEVELING_GRID
  1615. static void run_z_probe() {
  1616. plan_bed_level_matrix.set_to_identity();
  1617. feedrate = homing_feedrate[Z_AXIS];
  1618. // move down until you find the bed
  1619. float zPosition = -10;
  1620. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1621. st_synchronize();
  1622. // we have to let the planner know where we are right now as it is not where we said to go.
  1623. zPosition = st_get_position_mm(Z_AXIS);
  1624. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1625. // move up the retract distance
  1626. zPosition += home_retract_mm(Z_AXIS);
  1627. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1628. st_synchronize();
  1629. // move back down slowly to find bed
  1630. feedrate = homing_feedrate[Z_AXIS]/4;
  1631. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1632. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1633. st_synchronize();
  1634. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1635. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1636. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1637. }
  1638. static void do_blocking_move_to(float x, float y, float z) {
  1639. float oldFeedRate = feedrate;
  1640. feedrate = homing_feedrate[Z_AXIS];
  1641. current_position[Z_AXIS] = z;
  1642. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1643. st_synchronize();
  1644. feedrate = XY_TRAVEL_SPEED;
  1645. current_position[X_AXIS] = x;
  1646. current_position[Y_AXIS] = y;
  1647. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1648. st_synchronize();
  1649. feedrate = oldFeedRate;
  1650. }
  1651. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1652. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1653. }
  1654. /// Probe bed height at position (x,y), returns the measured z value
  1655. static float probe_pt(float x, float y, float z_before) {
  1656. // move to right place
  1657. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1658. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1659. run_z_probe();
  1660. float measured_z = current_position[Z_AXIS];
  1661. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1662. SERIAL_PROTOCOLPGM(" x: ");
  1663. SERIAL_PROTOCOL(x);
  1664. SERIAL_PROTOCOLPGM(" y: ");
  1665. SERIAL_PROTOCOL(y);
  1666. SERIAL_PROTOCOLPGM(" z: ");
  1667. SERIAL_PROTOCOL(measured_z);
  1668. SERIAL_PROTOCOLPGM("\n");
  1669. return measured_z;
  1670. }
  1671. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1672. #ifdef LIN_ADVANCE
  1673. /**
  1674. * M900: Set and/or Get advance K factor and WH/D ratio
  1675. *
  1676. * K<factor> Set advance K factor
  1677. * R<ratio> Set ratio directly (overrides WH/D)
  1678. * W<width> H<height> D<diam> Set ratio from WH/D
  1679. */
  1680. inline void gcode_M900() {
  1681. st_synchronize();
  1682. const float newK = code_seen('K') ? code_value_float() : -1;
  1683. if (newK >= 0) extruder_advance_k = newK;
  1684. float newR = code_seen('R') ? code_value_float() : -1;
  1685. if (newR < 0) {
  1686. const float newD = code_seen('D') ? code_value_float() : -1,
  1687. newW = code_seen('W') ? code_value_float() : -1,
  1688. newH = code_seen('H') ? code_value_float() : -1;
  1689. if (newD >= 0 && newW >= 0 && newH >= 0)
  1690. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1691. }
  1692. if (newR >= 0) advance_ed_ratio = newR;
  1693. SERIAL_ECHO_START;
  1694. SERIAL_ECHOPGM("Advance K=");
  1695. SERIAL_ECHOLN(extruder_advance_k);
  1696. SERIAL_ECHOPGM(" E/D=");
  1697. const float ratio = advance_ed_ratio;
  1698. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1699. }
  1700. #endif // LIN_ADVANCE
  1701. bool check_commands() {
  1702. bool end_command_found = false;
  1703. while (buflen)
  1704. {
  1705. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1706. if (!cmdbuffer_front_already_processed)
  1707. cmdqueue_pop_front();
  1708. cmdbuffer_front_already_processed = false;
  1709. }
  1710. return end_command_found;
  1711. }
  1712. #ifdef TMC2130
  1713. bool calibrate_z_auto()
  1714. {
  1715. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1716. lcd_clear();
  1717. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1718. bool endstops_enabled = enable_endstops(true);
  1719. int axis_up_dir = -home_dir(Z_AXIS);
  1720. tmc2130_home_enter(Z_AXIS_MASK);
  1721. current_position[Z_AXIS] = 0;
  1722. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1723. set_destination_to_current();
  1724. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1725. feedrate = homing_feedrate[Z_AXIS];
  1726. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1727. st_synchronize();
  1728. // current_position[axis] = 0;
  1729. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1730. tmc2130_home_exit();
  1731. enable_endstops(false);
  1732. current_position[Z_AXIS] = 0;
  1733. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1734. set_destination_to_current();
  1735. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1736. feedrate = homing_feedrate[Z_AXIS] / 2;
  1737. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1738. st_synchronize();
  1739. enable_endstops(endstops_enabled);
  1740. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1741. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1742. return true;
  1743. }
  1744. #endif //TMC2130
  1745. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1746. {
  1747. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1748. #define HOMEAXIS_DO(LETTER) \
  1749. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1750. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1751. {
  1752. int axis_home_dir = home_dir(axis);
  1753. feedrate = homing_feedrate[axis];
  1754. #ifdef TMC2130
  1755. tmc2130_home_enter(X_AXIS_MASK << axis);
  1756. #endif //TMC2130
  1757. // Move away a bit, so that the print head does not touch the end position,
  1758. // and the following movement to endstop has a chance to achieve the required velocity
  1759. // for the stall guard to work.
  1760. current_position[axis] = 0;
  1761. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1762. set_destination_to_current();
  1763. // destination[axis] = 11.f;
  1764. destination[axis] = -3.f * axis_home_dir;
  1765. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1766. st_synchronize();
  1767. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1768. endstops_hit_on_purpose();
  1769. enable_endstops(false);
  1770. current_position[axis] = 0;
  1771. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1772. destination[axis] = 1. * axis_home_dir;
  1773. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1774. st_synchronize();
  1775. // Now continue to move up to the left end stop with the collision detection enabled.
  1776. enable_endstops(true);
  1777. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1778. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1779. st_synchronize();
  1780. for (uint8_t i = 0; i < cnt; i++)
  1781. {
  1782. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1783. endstops_hit_on_purpose();
  1784. enable_endstops(false);
  1785. current_position[axis] = 0;
  1786. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1787. destination[axis] = -10.f * axis_home_dir;
  1788. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1789. st_synchronize();
  1790. endstops_hit_on_purpose();
  1791. // Now move left up to the collision, this time with a repeatable velocity.
  1792. enable_endstops(true);
  1793. destination[axis] = 11.f * axis_home_dir;
  1794. #ifdef TMC2130
  1795. feedrate = homing_feedrate[axis];
  1796. #else //TMC2130
  1797. feedrate = homing_feedrate[axis] / 2;
  1798. #endif //TMC2130
  1799. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1800. st_synchronize();
  1801. #ifdef TMC2130
  1802. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1803. if (pstep) pstep[i] = mscnt >> 4;
  1804. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1805. #endif //TMC2130
  1806. }
  1807. endstops_hit_on_purpose();
  1808. enable_endstops(false);
  1809. #ifdef TMC2130
  1810. uint8_t orig = tmc2130_home_origin[axis];
  1811. uint8_t back = tmc2130_home_bsteps[axis];
  1812. if (tmc2130_home_enabled && (orig <= 63))
  1813. {
  1814. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1815. if (back > 0)
  1816. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1817. }
  1818. else
  1819. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1820. tmc2130_home_exit();
  1821. #endif //TMC2130
  1822. axis_is_at_home(axis);
  1823. axis_known_position[axis] = true;
  1824. // Move from minimum
  1825. #ifdef TMC2130
  1826. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1827. #else //TMC2130
  1828. float dist = - axis_home_dir * 0.01f * 64;
  1829. #endif //TMC2130
  1830. current_position[axis] -= dist;
  1831. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1832. current_position[axis] += dist;
  1833. destination[axis] = current_position[axis];
  1834. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1835. st_synchronize();
  1836. feedrate = 0.0;
  1837. }
  1838. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1839. {
  1840. #ifdef TMC2130
  1841. FORCE_HIGH_POWER_START;
  1842. #endif
  1843. int axis_home_dir = home_dir(axis);
  1844. current_position[axis] = 0;
  1845. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1846. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1847. feedrate = homing_feedrate[axis];
  1848. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1849. st_synchronize();
  1850. #ifdef TMC2130
  1851. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1852. FORCE_HIGH_POWER_END;
  1853. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1854. return;
  1855. }
  1856. #endif //TMC2130
  1857. current_position[axis] = 0;
  1858. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1859. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1860. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1861. st_synchronize();
  1862. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1863. feedrate = homing_feedrate[axis]/2 ;
  1864. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1865. st_synchronize();
  1866. #ifdef TMC2130
  1867. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1868. FORCE_HIGH_POWER_END;
  1869. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1870. return;
  1871. }
  1872. #endif //TMC2130
  1873. axis_is_at_home(axis);
  1874. destination[axis] = current_position[axis];
  1875. feedrate = 0.0;
  1876. endstops_hit_on_purpose();
  1877. axis_known_position[axis] = true;
  1878. #ifdef TMC2130
  1879. FORCE_HIGH_POWER_END;
  1880. #endif
  1881. }
  1882. enable_endstops(endstops_enabled);
  1883. }
  1884. /**/
  1885. void home_xy()
  1886. {
  1887. set_destination_to_current();
  1888. homeaxis(X_AXIS);
  1889. homeaxis(Y_AXIS);
  1890. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1891. endstops_hit_on_purpose();
  1892. }
  1893. void refresh_cmd_timeout(void)
  1894. {
  1895. previous_millis_cmd = millis();
  1896. }
  1897. #ifdef FWRETRACT
  1898. void retract(bool retracting, bool swapretract = false) {
  1899. if(retracting && !retracted[active_extruder]) {
  1900. destination[X_AXIS]=current_position[X_AXIS];
  1901. destination[Y_AXIS]=current_position[Y_AXIS];
  1902. destination[Z_AXIS]=current_position[Z_AXIS];
  1903. destination[E_AXIS]=current_position[E_AXIS];
  1904. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1905. plan_set_e_position(current_position[E_AXIS]);
  1906. float oldFeedrate = feedrate;
  1907. feedrate=cs.retract_feedrate*60;
  1908. retracted[active_extruder]=true;
  1909. prepare_move();
  1910. current_position[Z_AXIS]-=cs.retract_zlift;
  1911. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1912. prepare_move();
  1913. feedrate = oldFeedrate;
  1914. } else if(!retracting && retracted[active_extruder]) {
  1915. destination[X_AXIS]=current_position[X_AXIS];
  1916. destination[Y_AXIS]=current_position[Y_AXIS];
  1917. destination[Z_AXIS]=current_position[Z_AXIS];
  1918. destination[E_AXIS]=current_position[E_AXIS];
  1919. current_position[Z_AXIS]+=cs.retract_zlift;
  1920. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1921. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1922. plan_set_e_position(current_position[E_AXIS]);
  1923. float oldFeedrate = feedrate;
  1924. feedrate=cs.retract_recover_feedrate*60;
  1925. retracted[active_extruder]=false;
  1926. prepare_move();
  1927. feedrate = oldFeedrate;
  1928. }
  1929. } //retract
  1930. #endif //FWRETRACT
  1931. void trace() {
  1932. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  1933. tone(BEEPER, 440);
  1934. delay(25);
  1935. noTone(BEEPER);
  1936. delay(20);
  1937. }
  1938. /*
  1939. void ramming() {
  1940. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1941. if (current_temperature[0] < 230) {
  1942. //PLA
  1943. max_feedrate[E_AXIS] = 50;
  1944. //current_position[E_AXIS] -= 8;
  1945. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1946. //current_position[E_AXIS] += 8;
  1947. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1948. current_position[E_AXIS] += 5.4;
  1949. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1950. current_position[E_AXIS] += 3.2;
  1951. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1952. current_position[E_AXIS] += 3;
  1953. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1954. st_synchronize();
  1955. max_feedrate[E_AXIS] = 80;
  1956. current_position[E_AXIS] -= 82;
  1957. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1958. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1959. current_position[E_AXIS] -= 20;
  1960. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1961. current_position[E_AXIS] += 5;
  1962. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1963. current_position[E_AXIS] += 5;
  1964. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1965. current_position[E_AXIS] -= 10;
  1966. st_synchronize();
  1967. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1968. current_position[E_AXIS] += 10;
  1969. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1970. current_position[E_AXIS] -= 10;
  1971. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1972. current_position[E_AXIS] += 10;
  1973. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1974. current_position[E_AXIS] -= 10;
  1975. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1976. st_synchronize();
  1977. }
  1978. else {
  1979. //ABS
  1980. max_feedrate[E_AXIS] = 50;
  1981. //current_position[E_AXIS] -= 8;
  1982. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1983. //current_position[E_AXIS] += 8;
  1984. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1985. current_position[E_AXIS] += 3.1;
  1986. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1987. current_position[E_AXIS] += 3.1;
  1988. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1989. current_position[E_AXIS] += 4;
  1990. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1991. st_synchronize();
  1992. //current_position[X_AXIS] += 23; //delay
  1993. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1994. //current_position[X_AXIS] -= 23; //delay
  1995. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1996. delay(4700);
  1997. max_feedrate[E_AXIS] = 80;
  1998. current_position[E_AXIS] -= 92;
  1999. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2000. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2001. current_position[E_AXIS] -= 5;
  2002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2003. current_position[E_AXIS] += 5;
  2004. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2005. current_position[E_AXIS] -= 5;
  2006. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2007. st_synchronize();
  2008. current_position[E_AXIS] += 5;
  2009. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2010. current_position[E_AXIS] -= 5;
  2011. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2012. current_position[E_AXIS] += 5;
  2013. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2014. current_position[E_AXIS] -= 5;
  2015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2016. st_synchronize();
  2017. }
  2018. }
  2019. */
  2020. #ifdef TMC2130
  2021. void force_high_power_mode(bool start_high_power_section) {
  2022. uint8_t silent;
  2023. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2024. if (silent == 1) {
  2025. //we are in silent mode, set to normal mode to enable crash detection
  2026. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2027. st_synchronize();
  2028. cli();
  2029. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2030. update_mode_profile();
  2031. tmc2130_init();
  2032. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2033. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2034. st_reset_timer();
  2035. sei();
  2036. }
  2037. }
  2038. #endif //TMC2130
  2039. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2040. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2041. }
  2042. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2043. st_synchronize();
  2044. #if 0
  2045. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2046. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2047. #endif
  2048. // Flag for the display update routine and to disable the print cancelation during homing.
  2049. homing_flag = true;
  2050. // Which axes should be homed?
  2051. bool home_x = home_x_axis;
  2052. bool home_y = home_y_axis;
  2053. bool home_z = home_z_axis;
  2054. // Either all X,Y,Z codes are present, or none of them.
  2055. bool home_all_axes = home_x == home_y && home_x == home_z;
  2056. if (home_all_axes)
  2057. // No X/Y/Z code provided means to home all axes.
  2058. home_x = home_y = home_z = true;
  2059. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2060. if (home_all_axes) {
  2061. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2062. feedrate = homing_feedrate[Z_AXIS];
  2063. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2064. st_synchronize();
  2065. }
  2066. #ifdef ENABLE_AUTO_BED_LEVELING
  2067. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2068. #endif //ENABLE_AUTO_BED_LEVELING
  2069. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2070. // the planner will not perform any adjustments in the XY plane.
  2071. // Wait for the motors to stop and update the current position with the absolute values.
  2072. world2machine_revert_to_uncorrected();
  2073. // For mesh bed leveling deactivate the matrix temporarily.
  2074. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2075. // in a single axis only.
  2076. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2077. #ifdef MESH_BED_LEVELING
  2078. uint8_t mbl_was_active = mbl.active;
  2079. mbl.active = 0;
  2080. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2081. #endif
  2082. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2083. // consumed during the first movements following this statement.
  2084. if (home_z)
  2085. babystep_undo();
  2086. saved_feedrate = feedrate;
  2087. int l_feedmultiply = feedmultiply;
  2088. feedmultiply = 100;
  2089. previous_millis_cmd = millis();
  2090. enable_endstops(true);
  2091. memcpy(destination, current_position, sizeof(destination));
  2092. feedrate = 0.0;
  2093. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2094. if(home_z)
  2095. homeaxis(Z_AXIS);
  2096. #endif
  2097. #ifdef QUICK_HOME
  2098. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2099. if(home_x && home_y) //first diagonal move
  2100. {
  2101. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2102. int x_axis_home_dir = home_dir(X_AXIS);
  2103. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2104. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2105. feedrate = homing_feedrate[X_AXIS];
  2106. if(homing_feedrate[Y_AXIS]<feedrate)
  2107. feedrate = homing_feedrate[Y_AXIS];
  2108. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2109. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2110. } else {
  2111. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2112. }
  2113. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2114. st_synchronize();
  2115. axis_is_at_home(X_AXIS);
  2116. axis_is_at_home(Y_AXIS);
  2117. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2118. destination[X_AXIS] = current_position[X_AXIS];
  2119. destination[Y_AXIS] = current_position[Y_AXIS];
  2120. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2121. feedrate = 0.0;
  2122. st_synchronize();
  2123. endstops_hit_on_purpose();
  2124. current_position[X_AXIS] = destination[X_AXIS];
  2125. current_position[Y_AXIS] = destination[Y_AXIS];
  2126. current_position[Z_AXIS] = destination[Z_AXIS];
  2127. }
  2128. #endif /* QUICK_HOME */
  2129. #ifdef TMC2130
  2130. if(home_x)
  2131. {
  2132. if (!calib)
  2133. homeaxis(X_AXIS);
  2134. else
  2135. tmc2130_home_calibrate(X_AXIS);
  2136. }
  2137. if(home_y)
  2138. {
  2139. if (!calib)
  2140. homeaxis(Y_AXIS);
  2141. else
  2142. tmc2130_home_calibrate(Y_AXIS);
  2143. }
  2144. #else //TMC2130
  2145. if(home_x) homeaxis(X_AXIS);
  2146. if(home_y) homeaxis(Y_AXIS);
  2147. #endif //TMC2130
  2148. if(home_x_axis && home_x_value != 0)
  2149. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2150. if(home_y_axis && home_y_value != 0)
  2151. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2152. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2153. #ifndef Z_SAFE_HOMING
  2154. if(home_z) {
  2155. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2156. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2157. feedrate = max_feedrate[Z_AXIS];
  2158. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2159. st_synchronize();
  2160. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2161. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2162. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2163. {
  2164. homeaxis(X_AXIS);
  2165. homeaxis(Y_AXIS);
  2166. }
  2167. // 1st mesh bed leveling measurement point, corrected.
  2168. world2machine_initialize();
  2169. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2170. world2machine_reset();
  2171. if (destination[Y_AXIS] < Y_MIN_POS)
  2172. destination[Y_AXIS] = Y_MIN_POS;
  2173. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2174. feedrate = homing_feedrate[Z_AXIS]/10;
  2175. current_position[Z_AXIS] = 0;
  2176. enable_endstops(false);
  2177. #ifdef DEBUG_BUILD
  2178. SERIAL_ECHOLNPGM("plan_set_position()");
  2179. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2180. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2181. #endif
  2182. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2183. #ifdef DEBUG_BUILD
  2184. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2185. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2186. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2187. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2188. #endif
  2189. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2190. st_synchronize();
  2191. current_position[X_AXIS] = destination[X_AXIS];
  2192. current_position[Y_AXIS] = destination[Y_AXIS];
  2193. enable_endstops(true);
  2194. endstops_hit_on_purpose();
  2195. homeaxis(Z_AXIS);
  2196. #else // MESH_BED_LEVELING
  2197. homeaxis(Z_AXIS);
  2198. #endif // MESH_BED_LEVELING
  2199. }
  2200. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2201. if(home_all_axes) {
  2202. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2203. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2204. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2205. feedrate = XY_TRAVEL_SPEED/60;
  2206. current_position[Z_AXIS] = 0;
  2207. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2208. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2209. st_synchronize();
  2210. current_position[X_AXIS] = destination[X_AXIS];
  2211. current_position[Y_AXIS] = destination[Y_AXIS];
  2212. homeaxis(Z_AXIS);
  2213. }
  2214. // Let's see if X and Y are homed and probe is inside bed area.
  2215. if(home_z) {
  2216. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2217. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2218. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2219. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2220. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2221. current_position[Z_AXIS] = 0;
  2222. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2223. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2224. feedrate = max_feedrate[Z_AXIS];
  2225. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2226. st_synchronize();
  2227. homeaxis(Z_AXIS);
  2228. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2229. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2230. SERIAL_ECHO_START;
  2231. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2232. } else {
  2233. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2234. SERIAL_ECHO_START;
  2235. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2236. }
  2237. }
  2238. #endif // Z_SAFE_HOMING
  2239. #endif // Z_HOME_DIR < 0
  2240. if(home_z_axis && home_z_value != 0)
  2241. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2242. #ifdef ENABLE_AUTO_BED_LEVELING
  2243. if(home_z)
  2244. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2245. #endif
  2246. // Set the planner and stepper routine positions.
  2247. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2248. // contains the machine coordinates.
  2249. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2250. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2251. enable_endstops(false);
  2252. #endif
  2253. feedrate = saved_feedrate;
  2254. feedmultiply = l_feedmultiply;
  2255. previous_millis_cmd = millis();
  2256. endstops_hit_on_purpose();
  2257. #ifndef MESH_BED_LEVELING
  2258. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2259. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2260. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2261. lcd_adjust_z();
  2262. #endif
  2263. // Load the machine correction matrix
  2264. world2machine_initialize();
  2265. // and correct the current_position XY axes to match the transformed coordinate system.
  2266. world2machine_update_current();
  2267. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2268. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2269. {
  2270. if (! home_z && mbl_was_active) {
  2271. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2272. mbl.active = true;
  2273. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2274. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2275. }
  2276. }
  2277. else
  2278. {
  2279. st_synchronize();
  2280. homing_flag = false;
  2281. }
  2282. #endif
  2283. if (farm_mode) { prusa_statistics(20); };
  2284. homing_flag = false;
  2285. #if 0
  2286. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2287. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2288. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2289. #endif
  2290. }
  2291. void adjust_bed_reset()
  2292. {
  2293. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2294. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2295. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2296. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2297. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2298. }
  2299. //! @brief Calibrate XYZ
  2300. //! @param onlyZ if true, calibrate only Z axis
  2301. //! @param verbosity_level
  2302. //! @retval true Succeeded
  2303. //! @retval false Failed
  2304. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2305. {
  2306. bool final_result = false;
  2307. #ifdef TMC2130
  2308. FORCE_HIGH_POWER_START;
  2309. #endif // TMC2130
  2310. // Only Z calibration?
  2311. if (!onlyZ)
  2312. {
  2313. setTargetBed(0);
  2314. setAllTargetHotends(0);
  2315. adjust_bed_reset(); //reset bed level correction
  2316. }
  2317. // Disable the default update procedure of the display. We will do a modal dialog.
  2318. lcd_update_enable(false);
  2319. // Let the planner use the uncorrected coordinates.
  2320. mbl.reset();
  2321. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2322. // the planner will not perform any adjustments in the XY plane.
  2323. // Wait for the motors to stop and update the current position with the absolute values.
  2324. world2machine_revert_to_uncorrected();
  2325. // Reset the baby step value applied without moving the axes.
  2326. babystep_reset();
  2327. // Mark all axes as in a need for homing.
  2328. memset(axis_known_position, 0, sizeof(axis_known_position));
  2329. // Home in the XY plane.
  2330. //set_destination_to_current();
  2331. int l_feedmultiply = setup_for_endstop_move();
  2332. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2333. home_xy();
  2334. enable_endstops(false);
  2335. current_position[X_AXIS] += 5;
  2336. current_position[Y_AXIS] += 5;
  2337. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2338. st_synchronize();
  2339. // Let the user move the Z axes up to the end stoppers.
  2340. #ifdef TMC2130
  2341. if (calibrate_z_auto())
  2342. {
  2343. #else //TMC2130
  2344. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2345. {
  2346. #endif //TMC2130
  2347. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2348. if(onlyZ){
  2349. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2350. lcd_set_cursor(0, 3);
  2351. lcd_print(1);
  2352. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2353. }else{
  2354. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2355. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2356. lcd_set_cursor(0, 2);
  2357. lcd_print(1);
  2358. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2359. }
  2360. refresh_cmd_timeout();
  2361. #ifndef STEEL_SHEET
  2362. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2363. {
  2364. lcd_wait_for_cool_down();
  2365. }
  2366. #endif //STEEL_SHEET
  2367. if(!onlyZ)
  2368. {
  2369. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2370. #ifdef STEEL_SHEET
  2371. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2372. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2373. #endif //STEEL_SHEET
  2374. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2375. KEEPALIVE_STATE(IN_HANDLER);
  2376. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2377. lcd_set_cursor(0, 2);
  2378. lcd_print(1);
  2379. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2380. }
  2381. bool endstops_enabled = enable_endstops(false);
  2382. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2383. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2384. st_synchronize();
  2385. // Move the print head close to the bed.
  2386. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2387. enable_endstops(true);
  2388. #ifdef TMC2130
  2389. tmc2130_home_enter(Z_AXIS_MASK);
  2390. #endif //TMC2130
  2391. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2392. st_synchronize();
  2393. #ifdef TMC2130
  2394. tmc2130_home_exit();
  2395. #endif //TMC2130
  2396. enable_endstops(endstops_enabled);
  2397. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2398. {
  2399. if (onlyZ)
  2400. {
  2401. clean_up_after_endstop_move(l_feedmultiply);
  2402. // Z only calibration.
  2403. // Load the machine correction matrix
  2404. world2machine_initialize();
  2405. // and correct the current_position to match the transformed coordinate system.
  2406. world2machine_update_current();
  2407. //FIXME
  2408. bool result = sample_mesh_and_store_reference();
  2409. if (result)
  2410. {
  2411. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2412. // Shipped, the nozzle height has been set already. The user can start printing now.
  2413. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2414. final_result = true;
  2415. // babystep_apply();
  2416. }
  2417. }
  2418. else
  2419. {
  2420. // Reset the baby step value and the baby step applied flag.
  2421. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2422. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2423. // Complete XYZ calibration.
  2424. uint8_t point_too_far_mask = 0;
  2425. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2426. clean_up_after_endstop_move(l_feedmultiply);
  2427. // Print head up.
  2428. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2429. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2430. st_synchronize();
  2431. //#ifndef NEW_XYZCAL
  2432. if (result >= 0)
  2433. {
  2434. #ifdef HEATBED_V2
  2435. sample_z();
  2436. #else //HEATBED_V2
  2437. point_too_far_mask = 0;
  2438. // Second half: The fine adjustment.
  2439. // Let the planner use the uncorrected coordinates.
  2440. mbl.reset();
  2441. world2machine_reset();
  2442. // Home in the XY plane.
  2443. int l_feedmultiply = setup_for_endstop_move();
  2444. home_xy();
  2445. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2446. clean_up_after_endstop_move(l_feedmultiply);
  2447. // Print head up.
  2448. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2449. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2450. st_synchronize();
  2451. // if (result >= 0) babystep_apply();
  2452. #endif //HEATBED_V2
  2453. }
  2454. //#endif //NEW_XYZCAL
  2455. lcd_update_enable(true);
  2456. lcd_update(2);
  2457. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2458. if (result >= 0)
  2459. {
  2460. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2461. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2462. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2463. final_result = true;
  2464. }
  2465. }
  2466. #ifdef TMC2130
  2467. tmc2130_home_exit();
  2468. #endif
  2469. }
  2470. else
  2471. {
  2472. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2473. final_result = false;
  2474. }
  2475. }
  2476. else
  2477. {
  2478. // Timeouted.
  2479. }
  2480. lcd_update_enable(true);
  2481. #ifdef TMC2130
  2482. FORCE_HIGH_POWER_END;
  2483. #endif // TMC2130
  2484. return final_result;
  2485. }
  2486. void gcode_M114()
  2487. {
  2488. SERIAL_PROTOCOLPGM("X:");
  2489. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2490. SERIAL_PROTOCOLPGM(" Y:");
  2491. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2492. SERIAL_PROTOCOLPGM(" Z:");
  2493. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2494. SERIAL_PROTOCOLPGM(" E:");
  2495. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2496. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2497. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2498. SERIAL_PROTOCOLPGM(" Y:");
  2499. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2500. SERIAL_PROTOCOLPGM(" Z:");
  2501. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2502. SERIAL_PROTOCOLPGM(" E:");
  2503. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2504. SERIAL_PROTOCOLLN("");
  2505. }
  2506. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2507. {
  2508. st_synchronize();
  2509. float lastpos[4];
  2510. if (farm_mode)
  2511. {
  2512. prusa_statistics(22);
  2513. }
  2514. //First backup current position and settings
  2515. int feedmultiplyBckp = feedmultiply;
  2516. float HotendTempBckp = degTargetHotend(active_extruder);
  2517. int fanSpeedBckp = fanSpeed;
  2518. lastpos[X_AXIS] = current_position[X_AXIS];
  2519. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2520. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2521. lastpos[E_AXIS] = current_position[E_AXIS];
  2522. //Retract E
  2523. current_position[E_AXIS] += e_shift;
  2524. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2525. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2526. st_synchronize();
  2527. //Lift Z
  2528. current_position[Z_AXIS] += z_shift;
  2529. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2530. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2531. st_synchronize();
  2532. //Move XY to side
  2533. current_position[X_AXIS] = x_position;
  2534. current_position[Y_AXIS] = y_position;
  2535. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2536. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2537. st_synchronize();
  2538. //Beep, manage nozzle heater and wait for user to start unload filament
  2539. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2540. lcd_change_fil_state = 0;
  2541. // Unload filament
  2542. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2543. else unload_filament(); //unload filament for single material (used also in M702)
  2544. //finish moves
  2545. st_synchronize();
  2546. if (!mmu_enabled)
  2547. {
  2548. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2549. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2550. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2551. if (lcd_change_fil_state == 0)
  2552. {
  2553. lcd_clear();
  2554. lcd_set_cursor(0, 2);
  2555. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2556. current_position[X_AXIS] -= 100;
  2557. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2558. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2559. st_synchronize();
  2560. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2561. }
  2562. }
  2563. if (mmu_enabled)
  2564. {
  2565. if (!automatic) {
  2566. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2567. mmu_M600_wait_and_beep();
  2568. if (saved_printing) {
  2569. lcd_clear();
  2570. lcd_set_cursor(0, 2);
  2571. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2572. mmu_command(MMU_CMD_R0);
  2573. manage_response(false, false);
  2574. }
  2575. }
  2576. mmu_M600_load_filament(automatic);
  2577. }
  2578. else
  2579. M600_load_filament();
  2580. if (!automatic) M600_check_state();
  2581. lcd_update_enable(true);
  2582. //Not let's go back to print
  2583. fanSpeed = fanSpeedBckp;
  2584. //Feed a little of filament to stabilize pressure
  2585. if (!automatic)
  2586. {
  2587. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2588. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2589. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2590. }
  2591. //Move XY back
  2592. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2593. FILAMENTCHANGE_XYFEED, active_extruder);
  2594. st_synchronize();
  2595. //Move Z back
  2596. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2597. FILAMENTCHANGE_ZFEED, active_extruder);
  2598. st_synchronize();
  2599. //Set E position to original
  2600. plan_set_e_position(lastpos[E_AXIS]);
  2601. memcpy(current_position, lastpos, sizeof(lastpos));
  2602. memcpy(destination, current_position, sizeof(current_position));
  2603. //Recover feed rate
  2604. feedmultiply = feedmultiplyBckp;
  2605. char cmd[9];
  2606. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2607. enquecommand(cmd);
  2608. lcd_setstatuspgm(_T(WELCOME_MSG));
  2609. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2610. }
  2611. void gcode_M701()
  2612. {
  2613. printf_P(PSTR("gcode_M701 begin\n"));
  2614. if (mmu_enabled)
  2615. {
  2616. extr_adj(tmp_extruder);//loads current extruder
  2617. mmu_extruder = tmp_extruder;
  2618. }
  2619. else
  2620. {
  2621. enable_z();
  2622. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2623. #ifdef FSENSOR_QUALITY
  2624. fsensor_oq_meassure_start(40);
  2625. #endif //FSENSOR_QUALITY
  2626. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2627. current_position[E_AXIS] += 40;
  2628. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2629. st_synchronize();
  2630. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2631. current_position[E_AXIS] += 30;
  2632. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2633. load_filament_final_feed(); //slow sequence
  2634. st_synchronize();
  2635. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) tone(BEEPER, 500);
  2636. delay_keep_alive(50);
  2637. noTone(BEEPER);
  2638. if (!farm_mode && loading_flag) {
  2639. lcd_load_filament_color_check();
  2640. }
  2641. lcd_update_enable(true);
  2642. lcd_update(2);
  2643. lcd_setstatuspgm(_T(WELCOME_MSG));
  2644. disable_z();
  2645. loading_flag = false;
  2646. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2647. #ifdef FSENSOR_QUALITY
  2648. fsensor_oq_meassure_stop();
  2649. if (!fsensor_oq_result())
  2650. {
  2651. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2652. lcd_update_enable(true);
  2653. lcd_update(2);
  2654. if (disable)
  2655. fsensor_disable();
  2656. }
  2657. #endif //FSENSOR_QUALITY
  2658. }
  2659. }
  2660. /**
  2661. * @brief Get serial number from 32U2 processor
  2662. *
  2663. * Typical format of S/N is:CZPX0917X003XC13518
  2664. *
  2665. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2666. *
  2667. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2668. * reply is transmitted to serial port 1 character by character.
  2669. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2670. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2671. * in any case.
  2672. */
  2673. static void gcode_PRUSA_SN()
  2674. {
  2675. if (farm_mode) {
  2676. selectedSerialPort = 0;
  2677. putchar(';');
  2678. putchar('S');
  2679. int numbersRead = 0;
  2680. ShortTimer timeout;
  2681. timeout.start();
  2682. while (numbersRead < 19) {
  2683. while (MSerial.available() > 0) {
  2684. uint8_t serial_char = MSerial.read();
  2685. selectedSerialPort = 1;
  2686. putchar(serial_char);
  2687. numbersRead++;
  2688. selectedSerialPort = 0;
  2689. }
  2690. if (timeout.expired(100u)) break;
  2691. }
  2692. selectedSerialPort = 1;
  2693. putchar('\n');
  2694. #if 0
  2695. for (int b = 0; b < 3; b++) {
  2696. tone(BEEPER, 110);
  2697. delay(50);
  2698. noTone(BEEPER);
  2699. delay(50);
  2700. }
  2701. #endif
  2702. } else {
  2703. puts_P(_N("Not in farm mode."));
  2704. }
  2705. }
  2706. #ifdef BACKLASH_X
  2707. extern uint8_t st_backlash_x;
  2708. #endif //BACKLASH_X
  2709. #ifdef BACKLASH_Y
  2710. extern uint8_t st_backlash_y;
  2711. #endif //BACKLASH_Y
  2712. //! @brief Parse and process commands
  2713. //!
  2714. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2715. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2716. //!
  2717. //! Implemented Codes
  2718. //! -------------------
  2719. //!
  2720. //!@n PRUSA CODES
  2721. //!@n P F - Returns FW versions
  2722. //!@n P R - Returns revision of printer
  2723. //!
  2724. //!@n G0 -> G1
  2725. //!@n G1 - Coordinated Movement X Y Z E
  2726. //!@n G2 - CW ARC
  2727. //!@n G3 - CCW ARC
  2728. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2729. //!@n G10 - retract filament according to settings of M207
  2730. //!@n G11 - retract recover filament according to settings of M208
  2731. //!@n G28 - Home all Axis
  2732. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2733. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2734. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2735. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2736. //!@n G80 - Automatic mesh bed leveling
  2737. //!@n G81 - Print bed profile
  2738. //!@n G90 - Use Absolute Coordinates
  2739. //!@n G91 - Use Relative Coordinates
  2740. //!@n G92 - Set current position to coordinates given
  2741. //!
  2742. //!@n M Codes
  2743. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2744. //!@n M1 - Same as M0
  2745. //!@n M17 - Enable/Power all stepper motors
  2746. //!@n M18 - Disable all stepper motors; same as M84
  2747. //!@n M20 - List SD card
  2748. //!@n M21 - Init SD card
  2749. //!@n M22 - Release SD card
  2750. //!@n M23 - Select SD file (M23 filename.g)
  2751. //!@n M24 - Start/resume SD print
  2752. //!@n M25 - Pause SD print
  2753. //!@n M26 - Set SD position in bytes (M26 S12345)
  2754. //!@n M27 - Report SD print status
  2755. //!@n M28 - Start SD write (M28 filename.g)
  2756. //!@n M29 - Stop SD write
  2757. //!@n M30 - Delete file from SD (M30 filename.g)
  2758. //!@n M31 - Output time since last M109 or SD card start to serial
  2759. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2760. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2761. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2762. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2763. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2764. //!@n M73 - Show percent done and print time remaining
  2765. //!@n M80 - Turn on Power Supply
  2766. //!@n M81 - Turn off Power Supply
  2767. //!@n M82 - Set E codes absolute (default)
  2768. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2769. //!@n M84 - Disable steppers until next move,
  2770. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2771. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2772. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2773. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2774. //!@n M104 - Set extruder target temp
  2775. //!@n M105 - Read current temp
  2776. //!@n M106 - Fan on
  2777. //!@n M107 - Fan off
  2778. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2779. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2780. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2781. //!@n M112 - Emergency stop
  2782. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2783. //!@n M114 - Output current position to serial port
  2784. //!@n M115 - Capabilities string
  2785. //!@n M117 - display message
  2786. //!@n M119 - Output Endstop status to serial port
  2787. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2788. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2789. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2790. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2791. //!@n M140 - Set bed target temp
  2792. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2793. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2794. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2795. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2796. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2797. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2798. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2799. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2800. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2801. //!@n M206 - set additional homing offset
  2802. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2803. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2804. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2805. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2806. //!@n M220 S<factor in percent>- set speed factor override percentage
  2807. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2808. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2809. //!@n M240 - Trigger a camera to take a photograph
  2810. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2811. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2812. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2813. //!@n M301 - Set PID parameters P I and D
  2814. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2815. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2816. //!@n M304 - Set bed PID parameters P I and D
  2817. //!@n M400 - Finish all moves
  2818. //!@n M401 - Lower z-probe if present
  2819. //!@n M402 - Raise z-probe if present
  2820. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2821. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2822. //!@n M406 - Turn off Filament Sensor extrusion control
  2823. //!@n M407 - Displays measured filament diameter
  2824. //!@n M500 - stores parameters in EEPROM
  2825. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2826. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2827. //!@n M503 - print the current settings (from memory not from EEPROM)
  2828. //!@n M509 - force language selection on next restart
  2829. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2830. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2831. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2832. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2833. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2834. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2835. //!@n M907 - Set digital trimpot motor current using axis codes.
  2836. //!@n M908 - Control digital trimpot directly.
  2837. //!@n M350 - Set microstepping mode.
  2838. //!@n M351 - Toggle MS1 MS2 pins directly.
  2839. //!
  2840. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2841. //!@n M999 - Restart after being stopped by error
  2842. void process_commands()
  2843. {
  2844. if (!buflen) return; //empty command
  2845. #ifdef FILAMENT_RUNOUT_SUPPORT
  2846. SET_INPUT(FR_SENS);
  2847. #endif
  2848. #ifdef CMDBUFFER_DEBUG
  2849. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2850. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2851. SERIAL_ECHOLNPGM("");
  2852. SERIAL_ECHOPGM("In cmdqueue: ");
  2853. SERIAL_ECHO(buflen);
  2854. SERIAL_ECHOLNPGM("");
  2855. #endif /* CMDBUFFER_DEBUG */
  2856. unsigned long codenum; //throw away variable
  2857. char *starpos = NULL;
  2858. #ifdef ENABLE_AUTO_BED_LEVELING
  2859. float x_tmp, y_tmp, z_tmp, real_z;
  2860. #endif
  2861. // PRUSA GCODES
  2862. KEEPALIVE_STATE(IN_HANDLER);
  2863. #ifdef SNMM
  2864. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2865. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2866. int8_t SilentMode;
  2867. #endif
  2868. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2869. starpos = (strchr(strchr_pointer + 5, '*'));
  2870. if (starpos != NULL)
  2871. *(starpos) = '\0';
  2872. lcd_setstatus(strchr_pointer + 5);
  2873. }
  2874. #ifdef TMC2130
  2875. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2876. {
  2877. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2878. {
  2879. uint8_t mask = 0;
  2880. if (code_seen('X')) mask |= X_AXIS_MASK;
  2881. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2882. crashdet_detected(mask);
  2883. }
  2884. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2885. crashdet_recover();
  2886. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  2887. crashdet_cancel();
  2888. }
  2889. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2890. {
  2891. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  2892. {
  2893. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2894. axis = (axis == 'E')?3:(axis - 'X');
  2895. if (axis < 4)
  2896. {
  2897. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2898. tmc2130_set_wave(axis, 247, fac);
  2899. }
  2900. }
  2901. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  2902. {
  2903. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2904. axis = (axis == 'E')?3:(axis - 'X');
  2905. if (axis < 4)
  2906. {
  2907. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2908. uint16_t res = tmc2130_get_res(axis);
  2909. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2910. }
  2911. }
  2912. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  2913. {
  2914. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2915. axis = (axis == 'E')?3:(axis - 'X');
  2916. if (axis < 4)
  2917. {
  2918. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2919. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2920. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2921. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2922. char* str_end = 0;
  2923. if (CMDBUFFER_CURRENT_STRING[14])
  2924. {
  2925. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2926. if (str_end && *str_end)
  2927. {
  2928. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2929. if (str_end && *str_end)
  2930. {
  2931. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2932. if (str_end && *str_end)
  2933. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2934. }
  2935. }
  2936. }
  2937. tmc2130_chopper_config[axis].toff = chop0;
  2938. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2939. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2940. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2941. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2942. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2943. }
  2944. }
  2945. }
  2946. #ifdef BACKLASH_X
  2947. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2948. {
  2949. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2950. st_backlash_x = bl;
  2951. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2952. }
  2953. #endif //BACKLASH_X
  2954. #ifdef BACKLASH_Y
  2955. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2956. {
  2957. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2958. st_backlash_y = bl;
  2959. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2960. }
  2961. #endif //BACKLASH_Y
  2962. #endif //TMC2130
  2963. #ifdef PAT9125
  2964. else if (code_seen("FSENSOR_RECOVER")) { //! FSENSOR_RECOVER
  2965. fsensor_restore_print_and_continue();
  2966. }
  2967. #endif //PAT9125
  2968. else if(code_seen("PRUSA")){
  2969. if (code_seen("Ping")) { //! PRUSA Ping
  2970. if (farm_mode) {
  2971. PingTime = millis();
  2972. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2973. }
  2974. }
  2975. else if (code_seen("PRN")) { //! PRUSA PRN
  2976. printf_P(_N("%d"), status_number);
  2977. }else if (code_seen("FAN")) { //! PRUSA FAN
  2978. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2979. }else if (code_seen("fn")) { //! PRUSA fn
  2980. if (farm_mode) {
  2981. printf_P(_N("%d"), farm_no);
  2982. }
  2983. else {
  2984. puts_P(_N("Not in farm mode."));
  2985. }
  2986. }
  2987. else if (code_seen("thx")) //! PRUSA thx
  2988. {
  2989. no_response = false;
  2990. }
  2991. else if (code_seen("uvlo")) //! PRUSA uvlo
  2992. {
  2993. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  2994. enquecommand_P(PSTR("M24"));
  2995. }
  2996. else if (code_seen("MMURES")) //! PRUSA MMURES
  2997. {
  2998. mmu_reset();
  2999. }
  3000. else if (code_seen("RESET")) { //! PRUSA RESET
  3001. // careful!
  3002. if (farm_mode) {
  3003. #ifdef WATCHDOG
  3004. boot_app_magic = BOOT_APP_MAGIC;
  3005. boot_app_flags = BOOT_APP_FLG_RUN;
  3006. wdt_enable(WDTO_15MS);
  3007. cli();
  3008. while(1);
  3009. #else //WATCHDOG
  3010. asm volatile("jmp 0x3E000");
  3011. #endif //WATCHDOG
  3012. }
  3013. else {
  3014. MYSERIAL.println("Not in farm mode.");
  3015. }
  3016. }else if (code_seen("fv")) { //! PRUSA fv
  3017. // get file version
  3018. #ifdef SDSUPPORT
  3019. card.openFile(strchr_pointer + 3,true);
  3020. while (true) {
  3021. uint16_t readByte = card.get();
  3022. MYSERIAL.write(readByte);
  3023. if (readByte=='\n') {
  3024. break;
  3025. }
  3026. }
  3027. card.closefile();
  3028. #endif // SDSUPPORT
  3029. } else if (code_seen("M28")) { //! PRUSA M28
  3030. trace();
  3031. prusa_sd_card_upload = true;
  3032. card.openFile(strchr_pointer+4,false);
  3033. } else if (code_seen("SN")) { //! PRUSA SN
  3034. gcode_PRUSA_SN();
  3035. } else if(code_seen("Fir")){ //! PRUSA Fir
  3036. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3037. } else if(code_seen("Rev")){ //! PRUSA Rev
  3038. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3039. } else if(code_seen("Lang")) { //! PRUSA Lang
  3040. lang_reset();
  3041. } else if(code_seen("Lz")) { //! PRUSA Lz
  3042. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3043. } else if(code_seen("Beat")) { //! PRUSA Beat
  3044. // Kick farm link timer
  3045. kicktime = millis();
  3046. } else if(code_seen("FR")) { //! PRUSA FR
  3047. // Factory full reset
  3048. factory_reset(0);
  3049. }
  3050. //else if (code_seen('Cal')) {
  3051. // lcd_calibration();
  3052. // }
  3053. }
  3054. else if (code_seen('^')) {
  3055. // nothing, this is a version line
  3056. } else if(code_seen('G'))
  3057. {
  3058. gcode_in_progress = (int)code_value();
  3059. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3060. switch (gcode_in_progress)
  3061. {
  3062. case 0: // G0 -> G1
  3063. case 1: // G1
  3064. if(Stopped == false) {
  3065. #ifdef FILAMENT_RUNOUT_SUPPORT
  3066. if(READ(FR_SENS)){
  3067. int feedmultiplyBckp=feedmultiply;
  3068. float target[4];
  3069. float lastpos[4];
  3070. target[X_AXIS]=current_position[X_AXIS];
  3071. target[Y_AXIS]=current_position[Y_AXIS];
  3072. target[Z_AXIS]=current_position[Z_AXIS];
  3073. target[E_AXIS]=current_position[E_AXIS];
  3074. lastpos[X_AXIS]=current_position[X_AXIS];
  3075. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3076. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3077. lastpos[E_AXIS]=current_position[E_AXIS];
  3078. //retract by E
  3079. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3080. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3081. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3082. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3083. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3084. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3085. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3086. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3087. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3088. //finish moves
  3089. st_synchronize();
  3090. //disable extruder steppers so filament can be removed
  3091. disable_e0();
  3092. disable_e1();
  3093. disable_e2();
  3094. delay(100);
  3095. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3096. uint8_t cnt=0;
  3097. int counterBeep = 0;
  3098. lcd_wait_interact();
  3099. while(!lcd_clicked()){
  3100. cnt++;
  3101. manage_heater();
  3102. manage_inactivity(true);
  3103. //lcd_update(0);
  3104. if(cnt==0)
  3105. {
  3106. #if BEEPER > 0
  3107. if (counterBeep== 500){
  3108. counterBeep = 0;
  3109. }
  3110. SET_OUTPUT(BEEPER);
  3111. if (counterBeep== 0){
  3112. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3113. WRITE(BEEPER,HIGH);
  3114. }
  3115. if (counterBeep== 20){
  3116. WRITE(BEEPER,LOW);
  3117. }
  3118. counterBeep++;
  3119. #else
  3120. #endif
  3121. }
  3122. }
  3123. WRITE(BEEPER,LOW);
  3124. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3125. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3126. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3127. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3128. lcd_change_fil_state = 0;
  3129. lcd_loading_filament();
  3130. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3131. lcd_change_fil_state = 0;
  3132. lcd_alright();
  3133. switch(lcd_change_fil_state){
  3134. case 2:
  3135. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3136. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3137. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3138. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3139. lcd_loading_filament();
  3140. break;
  3141. case 3:
  3142. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3143. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3144. lcd_loading_color();
  3145. break;
  3146. default:
  3147. lcd_change_success();
  3148. break;
  3149. }
  3150. }
  3151. target[E_AXIS]+= 5;
  3152. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3153. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3154. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3155. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3156. //plan_set_e_position(current_position[E_AXIS]);
  3157. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3158. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3159. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3160. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3161. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3162. plan_set_e_position(lastpos[E_AXIS]);
  3163. feedmultiply=feedmultiplyBckp;
  3164. char cmd[9];
  3165. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3166. enquecommand(cmd);
  3167. }
  3168. #endif
  3169. get_coordinates(); // For X Y Z E F
  3170. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3171. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3172. }
  3173. #ifdef FWRETRACT
  3174. if(cs.autoretract_enabled)
  3175. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3176. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3177. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3178. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3179. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3180. retract(!retracted[active_extruder]);
  3181. return;
  3182. }
  3183. }
  3184. #endif //FWRETRACT
  3185. prepare_move();
  3186. //ClearToSend();
  3187. }
  3188. break;
  3189. case 2: // G2 - CW ARC
  3190. if(Stopped == false) {
  3191. get_arc_coordinates();
  3192. prepare_arc_move(true);
  3193. }
  3194. break;
  3195. case 3: // G3 - CCW ARC
  3196. if(Stopped == false) {
  3197. get_arc_coordinates();
  3198. prepare_arc_move(false);
  3199. }
  3200. break;
  3201. case 4: // G4 dwell
  3202. codenum = 0;
  3203. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3204. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3205. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL c=0 r=0
  3206. st_synchronize();
  3207. codenum += millis(); // keep track of when we started waiting
  3208. previous_millis_cmd = millis();
  3209. while(millis() < codenum) {
  3210. manage_heater();
  3211. manage_inactivity();
  3212. lcd_update(0);
  3213. }
  3214. break;
  3215. #ifdef FWRETRACT
  3216. case 10: // G10 retract
  3217. #if EXTRUDERS > 1
  3218. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3219. retract(true,retracted_swap[active_extruder]);
  3220. #else
  3221. retract(true);
  3222. #endif
  3223. break;
  3224. case 11: // G11 retract_recover
  3225. #if EXTRUDERS > 1
  3226. retract(false,retracted_swap[active_extruder]);
  3227. #else
  3228. retract(false);
  3229. #endif
  3230. break;
  3231. #endif //FWRETRACT
  3232. case 28: //G28 Home all Axis one at a time
  3233. {
  3234. long home_x_value = 0;
  3235. long home_y_value = 0;
  3236. long home_z_value = 0;
  3237. // Which axes should be homed?
  3238. bool home_x = code_seen(axis_codes[X_AXIS]);
  3239. home_x_value = code_value_long();
  3240. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3241. home_y_value = code_value_long();
  3242. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3243. home_z_value = code_value_long();
  3244. bool without_mbl = code_seen('W');
  3245. // calibrate?
  3246. bool calib = code_seen('C');
  3247. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3248. if ((home_x || home_y || without_mbl || home_z) == false) {
  3249. // Push the commands to the front of the message queue in the reverse order!
  3250. // There shall be always enough space reserved for these commands.
  3251. goto case_G80;
  3252. }
  3253. break;
  3254. }
  3255. #ifdef ENABLE_AUTO_BED_LEVELING
  3256. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3257. {
  3258. #if Z_MIN_PIN == -1
  3259. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3260. #endif
  3261. // Prevent user from running a G29 without first homing in X and Y
  3262. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3263. {
  3264. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3265. SERIAL_ECHO_START;
  3266. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3267. break; // abort G29, since we don't know where we are
  3268. }
  3269. st_synchronize();
  3270. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3271. //vector_3 corrected_position = plan_get_position_mm();
  3272. //corrected_position.debug("position before G29");
  3273. plan_bed_level_matrix.set_to_identity();
  3274. vector_3 uncorrected_position = plan_get_position();
  3275. //uncorrected_position.debug("position durring G29");
  3276. current_position[X_AXIS] = uncorrected_position.x;
  3277. current_position[Y_AXIS] = uncorrected_position.y;
  3278. current_position[Z_AXIS] = uncorrected_position.z;
  3279. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3280. int l_feedmultiply = setup_for_endstop_move();
  3281. feedrate = homing_feedrate[Z_AXIS];
  3282. #ifdef AUTO_BED_LEVELING_GRID
  3283. // probe at the points of a lattice grid
  3284. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3285. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3286. // solve the plane equation ax + by + d = z
  3287. // A is the matrix with rows [x y 1] for all the probed points
  3288. // B is the vector of the Z positions
  3289. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3290. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3291. // "A" matrix of the linear system of equations
  3292. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3293. // "B" vector of Z points
  3294. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3295. int probePointCounter = 0;
  3296. bool zig = true;
  3297. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3298. {
  3299. int xProbe, xInc;
  3300. if (zig)
  3301. {
  3302. xProbe = LEFT_PROBE_BED_POSITION;
  3303. //xEnd = RIGHT_PROBE_BED_POSITION;
  3304. xInc = xGridSpacing;
  3305. zig = false;
  3306. } else // zag
  3307. {
  3308. xProbe = RIGHT_PROBE_BED_POSITION;
  3309. //xEnd = LEFT_PROBE_BED_POSITION;
  3310. xInc = -xGridSpacing;
  3311. zig = true;
  3312. }
  3313. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3314. {
  3315. float z_before;
  3316. if (probePointCounter == 0)
  3317. {
  3318. // raise before probing
  3319. z_before = Z_RAISE_BEFORE_PROBING;
  3320. } else
  3321. {
  3322. // raise extruder
  3323. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3324. }
  3325. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3326. eqnBVector[probePointCounter] = measured_z;
  3327. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3328. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3329. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3330. probePointCounter++;
  3331. xProbe += xInc;
  3332. }
  3333. }
  3334. clean_up_after_endstop_move(l_feedmultiply);
  3335. // solve lsq problem
  3336. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3337. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3338. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3339. SERIAL_PROTOCOLPGM(" b: ");
  3340. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3341. SERIAL_PROTOCOLPGM(" d: ");
  3342. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3343. set_bed_level_equation_lsq(plane_equation_coefficients);
  3344. free(plane_equation_coefficients);
  3345. #else // AUTO_BED_LEVELING_GRID not defined
  3346. // Probe at 3 arbitrary points
  3347. // probe 1
  3348. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3349. // probe 2
  3350. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3351. // probe 3
  3352. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3353. clean_up_after_endstop_move(l_feedmultiply);
  3354. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3355. #endif // AUTO_BED_LEVELING_GRID
  3356. st_synchronize();
  3357. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3358. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3359. // When the bed is uneven, this height must be corrected.
  3360. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3361. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3362. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3363. z_tmp = current_position[Z_AXIS];
  3364. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3365. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3366. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3367. }
  3368. break;
  3369. #ifndef Z_PROBE_SLED
  3370. case 30: // G30 Single Z Probe
  3371. {
  3372. st_synchronize();
  3373. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3374. int l_feedmultiply = setup_for_endstop_move();
  3375. feedrate = homing_feedrate[Z_AXIS];
  3376. run_z_probe();
  3377. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3378. SERIAL_PROTOCOLPGM(" X: ");
  3379. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3380. SERIAL_PROTOCOLPGM(" Y: ");
  3381. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3382. SERIAL_PROTOCOLPGM(" Z: ");
  3383. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3384. SERIAL_PROTOCOLPGM("\n");
  3385. clean_up_after_endstop_move(l_feedmultiply);
  3386. }
  3387. break;
  3388. #else
  3389. case 31: // dock the sled
  3390. dock_sled(true);
  3391. break;
  3392. case 32: // undock the sled
  3393. dock_sled(false);
  3394. break;
  3395. #endif // Z_PROBE_SLED
  3396. #endif // ENABLE_AUTO_BED_LEVELING
  3397. #ifdef MESH_BED_LEVELING
  3398. case 30: // G30 Single Z Probe
  3399. {
  3400. st_synchronize();
  3401. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3402. int l_feedmultiply = setup_for_endstop_move();
  3403. feedrate = homing_feedrate[Z_AXIS];
  3404. find_bed_induction_sensor_point_z(-10.f, 3);
  3405. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3406. clean_up_after_endstop_move(l_feedmultiply);
  3407. }
  3408. break;
  3409. case 75:
  3410. {
  3411. for (int i = 40; i <= 110; i++)
  3412. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3413. }
  3414. break;
  3415. case 76: //! G76 - PINDA probe temperature calibration
  3416. {
  3417. #ifdef PINDA_THERMISTOR
  3418. if (true)
  3419. {
  3420. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3421. //we need to know accurate position of first calibration point
  3422. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3423. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3424. break;
  3425. }
  3426. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3427. {
  3428. // We don't know where we are! HOME!
  3429. // Push the commands to the front of the message queue in the reverse order!
  3430. // There shall be always enough space reserved for these commands.
  3431. repeatcommand_front(); // repeat G76 with all its parameters
  3432. enquecommand_front_P((PSTR("G28 W0")));
  3433. break;
  3434. }
  3435. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3436. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3437. if (result)
  3438. {
  3439. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3440. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3441. current_position[Z_AXIS] = 50;
  3442. current_position[Y_AXIS] = 180;
  3443. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3444. st_synchronize();
  3445. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3446. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3447. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3448. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3449. st_synchronize();
  3450. gcode_G28(false, false, true);
  3451. }
  3452. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3453. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3454. current_position[Z_AXIS] = 100;
  3455. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3456. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3457. lcd_temp_cal_show_result(false);
  3458. break;
  3459. }
  3460. }
  3461. lcd_update_enable(true);
  3462. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3463. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3464. float zero_z;
  3465. int z_shift = 0; //unit: steps
  3466. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3467. if (start_temp < 35) start_temp = 35;
  3468. if (start_temp < current_temperature_pinda) start_temp += 5;
  3469. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3470. // setTargetHotend(200, 0);
  3471. setTargetBed(70 + (start_temp - 30));
  3472. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3473. custom_message_state = 1;
  3474. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3475. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3476. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3477. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3478. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3479. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3480. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3481. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3482. st_synchronize();
  3483. while (current_temperature_pinda < start_temp)
  3484. {
  3485. delay_keep_alive(1000);
  3486. serialecho_temperatures();
  3487. }
  3488. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3489. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3490. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3491. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3492. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3493. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3494. st_synchronize();
  3495. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3496. if (find_z_result == false) {
  3497. lcd_temp_cal_show_result(find_z_result);
  3498. break;
  3499. }
  3500. zero_z = current_position[Z_AXIS];
  3501. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3502. int i = -1; for (; i < 5; i++)
  3503. {
  3504. float temp = (40 + i * 5);
  3505. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3506. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3507. if (start_temp <= temp) break;
  3508. }
  3509. for (i++; i < 5; i++)
  3510. {
  3511. float temp = (40 + i * 5);
  3512. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3513. custom_message_state = i + 2;
  3514. setTargetBed(50 + 10 * (temp - 30) / 5);
  3515. // setTargetHotend(255, 0);
  3516. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3518. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3519. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3520. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3521. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3522. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3523. st_synchronize();
  3524. while (current_temperature_pinda < temp)
  3525. {
  3526. delay_keep_alive(1000);
  3527. serialecho_temperatures();
  3528. }
  3529. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3530. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3531. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3532. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3533. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3534. st_synchronize();
  3535. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3536. if (find_z_result == false) {
  3537. lcd_temp_cal_show_result(find_z_result);
  3538. break;
  3539. }
  3540. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3541. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3542. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3543. }
  3544. lcd_temp_cal_show_result(true);
  3545. break;
  3546. }
  3547. #endif //PINDA_THERMISTOR
  3548. setTargetBed(PINDA_MIN_T);
  3549. float zero_z;
  3550. int z_shift = 0; //unit: steps
  3551. int t_c; // temperature
  3552. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3553. // We don't know where we are! HOME!
  3554. // Push the commands to the front of the message queue in the reverse order!
  3555. // There shall be always enough space reserved for these commands.
  3556. repeatcommand_front(); // repeat G76 with all its parameters
  3557. enquecommand_front_P((PSTR("G28 W0")));
  3558. break;
  3559. }
  3560. puts_P(_N("PINDA probe calibration start"));
  3561. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3562. custom_message_state = 1;
  3563. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3564. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3565. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3566. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3567. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3568. st_synchronize();
  3569. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3570. delay_keep_alive(1000);
  3571. serialecho_temperatures();
  3572. }
  3573. //enquecommand_P(PSTR("M190 S50"));
  3574. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3575. delay_keep_alive(1000);
  3576. serialecho_temperatures();
  3577. }
  3578. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3579. current_position[Z_AXIS] = 5;
  3580. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3581. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3582. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3583. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3584. st_synchronize();
  3585. find_bed_induction_sensor_point_z(-1.f);
  3586. zero_z = current_position[Z_AXIS];
  3587. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3588. for (int i = 0; i<5; i++) {
  3589. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3590. custom_message_state = i + 2;
  3591. t_c = 60 + i * 10;
  3592. setTargetBed(t_c);
  3593. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3594. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3595. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3596. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3597. st_synchronize();
  3598. while (degBed() < t_c) {
  3599. delay_keep_alive(1000);
  3600. serialecho_temperatures();
  3601. }
  3602. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3603. delay_keep_alive(1000);
  3604. serialecho_temperatures();
  3605. }
  3606. current_position[Z_AXIS] = 5;
  3607. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3608. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3609. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3610. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3611. st_synchronize();
  3612. find_bed_induction_sensor_point_z(-1.f);
  3613. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3614. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3615. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3616. }
  3617. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3618. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3619. puts_P(_N("Temperature calibration done."));
  3620. disable_x();
  3621. disable_y();
  3622. disable_z();
  3623. disable_e0();
  3624. disable_e1();
  3625. disable_e2();
  3626. setTargetBed(0); //set bed target temperature back to 0
  3627. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3628. temp_cal_active = true;
  3629. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3630. lcd_update_enable(true);
  3631. lcd_update(2);
  3632. }
  3633. break;
  3634. #ifdef DIS
  3635. case 77:
  3636. {
  3637. //! G77 X200 Y150 XP100 YP15 XO10 Y015
  3638. //! for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3639. //! G77 X232 Y218 XP116 YP109 XO-11 YO0
  3640. float dimension_x = 40;
  3641. float dimension_y = 40;
  3642. int points_x = 40;
  3643. int points_y = 40;
  3644. float offset_x = 74;
  3645. float offset_y = 33;
  3646. if (code_seen('X')) dimension_x = code_value();
  3647. if (code_seen('Y')) dimension_y = code_value();
  3648. if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
  3649. if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
  3650. if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
  3651. if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
  3652. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3653. } break;
  3654. #endif
  3655. case 79: {
  3656. for (int i = 255; i > 0; i = i - 5) {
  3657. fanSpeed = i;
  3658. //delay_keep_alive(2000);
  3659. for (int j = 0; j < 100; j++) {
  3660. delay_keep_alive(100);
  3661. }
  3662. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3663. }
  3664. }break;
  3665. /**
  3666. * G80: Mesh-based Z probe, probes a grid and produces a
  3667. * mesh to compensate for variable bed height
  3668. *
  3669. * The S0 report the points as below
  3670. * @code{.unparsed}
  3671. * +----> X-axis
  3672. * |
  3673. * |
  3674. * v Y-axis
  3675. * @endcode
  3676. */
  3677. case 80:
  3678. #ifdef MK1BP
  3679. break;
  3680. #endif //MK1BP
  3681. case_G80:
  3682. {
  3683. mesh_bed_leveling_flag = true;
  3684. static bool run = false;
  3685. #ifdef SUPPORT_VERBOSITY
  3686. int8_t verbosity_level = 0;
  3687. if (code_seen('V')) {
  3688. // Just 'V' without a number counts as V1.
  3689. char c = strchr_pointer[1];
  3690. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3691. }
  3692. #endif //SUPPORT_VERBOSITY
  3693. // Firstly check if we know where we are
  3694. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3695. // We don't know where we are! HOME!
  3696. // Push the commands to the front of the message queue in the reverse order!
  3697. // There shall be always enough space reserved for these commands.
  3698. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3699. repeatcommand_front(); // repeat G80 with all its parameters
  3700. enquecommand_front_P((PSTR("G28 W0")));
  3701. }
  3702. else {
  3703. mesh_bed_leveling_flag = false;
  3704. }
  3705. break;
  3706. }
  3707. bool temp_comp_start = true;
  3708. #ifdef PINDA_THERMISTOR
  3709. temp_comp_start = false;
  3710. #endif //PINDA_THERMISTOR
  3711. if (temp_comp_start)
  3712. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3713. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3714. temp_compensation_start();
  3715. run = true;
  3716. repeatcommand_front(); // repeat G80 with all its parameters
  3717. enquecommand_front_P((PSTR("G28 W0")));
  3718. }
  3719. else {
  3720. mesh_bed_leveling_flag = false;
  3721. }
  3722. break;
  3723. }
  3724. run = false;
  3725. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3726. mesh_bed_leveling_flag = false;
  3727. break;
  3728. }
  3729. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3730. unsigned int custom_message_type_old = custom_message_type;
  3731. unsigned int custom_message_state_old = custom_message_state;
  3732. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3733. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3734. lcd_update(1);
  3735. mbl.reset(); //reset mesh bed leveling
  3736. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3737. // consumed during the first movements following this statement.
  3738. babystep_undo();
  3739. // Cycle through all points and probe them
  3740. // First move up. During this first movement, the babystepping will be reverted.
  3741. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3742. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3743. // The move to the first calibration point.
  3744. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3745. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3746. #ifdef SUPPORT_VERBOSITY
  3747. if (verbosity_level >= 1)
  3748. {
  3749. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3750. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3751. }
  3752. #endif //SUPPORT_VERBOSITY
  3753. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3755. // Wait until the move is finished.
  3756. st_synchronize();
  3757. int mesh_point = 0; //index number of calibration point
  3758. int ix = 0;
  3759. int iy = 0;
  3760. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3761. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3762. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3763. #ifdef SUPPORT_VERBOSITY
  3764. if (verbosity_level >= 1) {
  3765. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3766. }
  3767. #endif // SUPPORT_VERBOSITY
  3768. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3769. const char *kill_message = NULL;
  3770. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3771. // Get coords of a measuring point.
  3772. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3773. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3774. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3775. float z0 = 0.f;
  3776. if (has_z && mesh_point > 0) {
  3777. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3778. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3779. //#if 0
  3780. #ifdef SUPPORT_VERBOSITY
  3781. if (verbosity_level >= 1) {
  3782. SERIAL_ECHOLNPGM("");
  3783. SERIAL_ECHOPGM("Bed leveling, point: ");
  3784. MYSERIAL.print(mesh_point);
  3785. SERIAL_ECHOPGM(", calibration z: ");
  3786. MYSERIAL.print(z0, 5);
  3787. SERIAL_ECHOLNPGM("");
  3788. }
  3789. #endif // SUPPORT_VERBOSITY
  3790. //#endif
  3791. }
  3792. // Move Z up to MESH_HOME_Z_SEARCH.
  3793. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3794. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3795. st_synchronize();
  3796. // Move to XY position of the sensor point.
  3797. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3798. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3799. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3800. #ifdef SUPPORT_VERBOSITY
  3801. if (verbosity_level >= 1) {
  3802. SERIAL_PROTOCOL(mesh_point);
  3803. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3804. }
  3805. #endif // SUPPORT_VERBOSITY
  3806. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3807. st_synchronize();
  3808. // Go down until endstop is hit
  3809. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3810. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3811. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3812. break;
  3813. }
  3814. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3815. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3816. break;
  3817. }
  3818. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3819. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3820. break;
  3821. }
  3822. #ifdef SUPPORT_VERBOSITY
  3823. if (verbosity_level >= 10) {
  3824. SERIAL_ECHOPGM("X: ");
  3825. MYSERIAL.print(current_position[X_AXIS], 5);
  3826. SERIAL_ECHOLNPGM("");
  3827. SERIAL_ECHOPGM("Y: ");
  3828. MYSERIAL.print(current_position[Y_AXIS], 5);
  3829. SERIAL_PROTOCOLPGM("\n");
  3830. }
  3831. #endif // SUPPORT_VERBOSITY
  3832. float offset_z = 0;
  3833. #ifdef PINDA_THERMISTOR
  3834. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3835. #endif //PINDA_THERMISTOR
  3836. // #ifdef SUPPORT_VERBOSITY
  3837. /* if (verbosity_level >= 1)
  3838. {
  3839. SERIAL_ECHOPGM("mesh bed leveling: ");
  3840. MYSERIAL.print(current_position[Z_AXIS], 5);
  3841. SERIAL_ECHOPGM(" offset: ");
  3842. MYSERIAL.print(offset_z, 5);
  3843. SERIAL_ECHOLNPGM("");
  3844. }*/
  3845. // #endif // SUPPORT_VERBOSITY
  3846. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3847. custom_message_state--;
  3848. mesh_point++;
  3849. lcd_update(1);
  3850. }
  3851. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3852. #ifdef SUPPORT_VERBOSITY
  3853. if (verbosity_level >= 20) {
  3854. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3855. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3856. MYSERIAL.print(current_position[Z_AXIS], 5);
  3857. }
  3858. #endif // SUPPORT_VERBOSITY
  3859. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3860. st_synchronize();
  3861. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3862. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  3863. bool bState;
  3864. do { // repeat until Z-leveling o.k.
  3865. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  3866. #ifdef TMC2130
  3867. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  3868. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  3869. #else // TMC2130
  3870. lcd_wait_for_click_delay(0); // ~ no timeout
  3871. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  3872. #endif // TMC2130
  3873. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  3874. bState=enable_z_endstop(false);
  3875. current_position[Z_AXIS] -= 1;
  3876. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3877. st_synchronize();
  3878. enable_z_endstop(true);
  3879. #ifdef TMC2130
  3880. tmc2130_home_enter(Z_AXIS_MASK);
  3881. #endif // TMC2130
  3882. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3883. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3884. st_synchronize();
  3885. #ifdef TMC2130
  3886. tmc2130_home_exit();
  3887. #endif // TMC2130
  3888. enable_z_endstop(bState);
  3889. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  3890. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  3891. custom_message_type=CUSTOM_MSG_TYPE_STATUS; // display / status-line recovery
  3892. lcd_update_enable(true); // display / status-line recovery
  3893. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  3894. repeatcommand_front(); // re-run (i.e. of "G80")
  3895. break;
  3896. }
  3897. clean_up_after_endstop_move(l_feedmultiply);
  3898. // SERIAL_ECHOLNPGM("clean up finished ");
  3899. bool apply_temp_comp = true;
  3900. #ifdef PINDA_THERMISTOR
  3901. apply_temp_comp = false;
  3902. #endif
  3903. if (apply_temp_comp)
  3904. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3905. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3906. // SERIAL_ECHOLNPGM("babystep applied");
  3907. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3908. #ifdef SUPPORT_VERBOSITY
  3909. if (verbosity_level >= 1) {
  3910. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3911. }
  3912. #endif // SUPPORT_VERBOSITY
  3913. for (uint8_t i = 0; i < 4; ++i) {
  3914. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3915. long correction = 0;
  3916. if (code_seen(codes[i]))
  3917. correction = code_value_long();
  3918. else if (eeprom_bed_correction_valid) {
  3919. unsigned char *addr = (i < 2) ?
  3920. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3921. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3922. correction = eeprom_read_int8(addr);
  3923. }
  3924. if (correction == 0)
  3925. continue;
  3926. float offset = float(correction) * 0.001f;
  3927. if (fabs(offset) > 0.101f) {
  3928. SERIAL_ERROR_START;
  3929. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3930. SERIAL_ECHO(offset);
  3931. SERIAL_ECHOLNPGM(" microns");
  3932. }
  3933. else {
  3934. switch (i) {
  3935. case 0:
  3936. for (uint8_t row = 0; row < 3; ++row) {
  3937. mbl.z_values[row][1] += 0.5f * offset;
  3938. mbl.z_values[row][0] += offset;
  3939. }
  3940. break;
  3941. case 1:
  3942. for (uint8_t row = 0; row < 3; ++row) {
  3943. mbl.z_values[row][1] += 0.5f * offset;
  3944. mbl.z_values[row][2] += offset;
  3945. }
  3946. break;
  3947. case 2:
  3948. for (uint8_t col = 0; col < 3; ++col) {
  3949. mbl.z_values[1][col] += 0.5f * offset;
  3950. mbl.z_values[0][col] += offset;
  3951. }
  3952. break;
  3953. case 3:
  3954. for (uint8_t col = 0; col < 3; ++col) {
  3955. mbl.z_values[1][col] += 0.5f * offset;
  3956. mbl.z_values[2][col] += offset;
  3957. }
  3958. break;
  3959. }
  3960. }
  3961. }
  3962. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3963. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3964. // SERIAL_ECHOLNPGM("Upsample finished");
  3965. mbl.active = 1; //activate mesh bed leveling
  3966. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3967. go_home_with_z_lift();
  3968. // SERIAL_ECHOLNPGM("Go home finished");
  3969. //unretract (after PINDA preheat retraction)
  3970. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3971. current_position[E_AXIS] += default_retraction;
  3972. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3973. }
  3974. KEEPALIVE_STATE(NOT_BUSY);
  3975. // Restore custom message state
  3976. lcd_setstatuspgm(_T(WELCOME_MSG));
  3977. custom_message_type = custom_message_type_old;
  3978. custom_message_state = custom_message_state_old;
  3979. mesh_bed_leveling_flag = false;
  3980. mesh_bed_run_from_menu = false;
  3981. lcd_update(2);
  3982. }
  3983. break;
  3984. /**
  3985. * G81: Print mesh bed leveling status and bed profile if activated
  3986. */
  3987. case 81:
  3988. if (mbl.active) {
  3989. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3990. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3991. SERIAL_PROTOCOLPGM(",");
  3992. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3993. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3994. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3995. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3996. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3997. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3998. SERIAL_PROTOCOLPGM(" ");
  3999. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4000. }
  4001. SERIAL_PROTOCOLPGM("\n");
  4002. }
  4003. }
  4004. else
  4005. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4006. break;
  4007. #if 0
  4008. /**
  4009. * G82: Single Z probe at current location
  4010. *
  4011. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4012. *
  4013. */
  4014. case 82:
  4015. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4016. int l_feedmultiply = setup_for_endstop_move();
  4017. find_bed_induction_sensor_point_z();
  4018. clean_up_after_endstop_move(l_feedmultiply);
  4019. SERIAL_PROTOCOLPGM("Bed found at: ");
  4020. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4021. SERIAL_PROTOCOLPGM("\n");
  4022. break;
  4023. /**
  4024. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4025. */
  4026. case 83:
  4027. {
  4028. int babystepz = code_seen('S') ? code_value() : 0;
  4029. int BabyPosition = code_seen('P') ? code_value() : 0;
  4030. if (babystepz != 0) {
  4031. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4032. // Is the axis indexed starting with zero or one?
  4033. if (BabyPosition > 4) {
  4034. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4035. }else{
  4036. // Save it to the eeprom
  4037. babystepLoadZ = babystepz;
  4038. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4039. // adjust the Z
  4040. babystepsTodoZadd(babystepLoadZ);
  4041. }
  4042. }
  4043. }
  4044. break;
  4045. /**
  4046. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4047. */
  4048. case 84:
  4049. babystepsTodoZsubtract(babystepLoadZ);
  4050. // babystepLoadZ = 0;
  4051. break;
  4052. /**
  4053. * G85: Prusa3D specific: Pick best babystep
  4054. */
  4055. case 85:
  4056. lcd_pick_babystep();
  4057. break;
  4058. #endif
  4059. /**
  4060. * G86: Prusa3D specific: Disable babystep correction after home.
  4061. * This G-code will be performed at the start of a calibration script.
  4062. */
  4063. case 86:
  4064. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4065. break;
  4066. /**
  4067. * G87: Prusa3D specific: Enable babystep correction after home
  4068. * This G-code will be performed at the end of a calibration script.
  4069. */
  4070. case 87:
  4071. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4072. break;
  4073. /**
  4074. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4075. */
  4076. case 88:
  4077. break;
  4078. #endif // ENABLE_MESH_BED_LEVELING
  4079. case 90: // G90
  4080. relative_mode = false;
  4081. break;
  4082. case 91: // G91
  4083. relative_mode = true;
  4084. break;
  4085. case 92: // G92
  4086. if(!code_seen(axis_codes[E_AXIS]))
  4087. st_synchronize();
  4088. for(int8_t i=0; i < NUM_AXIS; i++) {
  4089. if(code_seen(axis_codes[i])) {
  4090. if(i == E_AXIS) {
  4091. current_position[i] = code_value();
  4092. plan_set_e_position(current_position[E_AXIS]);
  4093. }
  4094. else {
  4095. current_position[i] = code_value()+cs.add_homing[i];
  4096. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4097. }
  4098. }
  4099. }
  4100. break;
  4101. case 98: //! G98 (activate farm mode)
  4102. farm_mode = 1;
  4103. PingTime = millis();
  4104. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4105. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4106. SilentModeMenu = SILENT_MODE_OFF;
  4107. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4108. break;
  4109. case 99: //! G99 (deactivate farm mode)
  4110. farm_mode = 0;
  4111. lcd_printer_connected();
  4112. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4113. lcd_update(2);
  4114. break;
  4115. default:
  4116. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4117. }
  4118. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4119. gcode_in_progress = 0;
  4120. } // end if(code_seen('G'))
  4121. else if(code_seen('M'))
  4122. {
  4123. int index;
  4124. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4125. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4126. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4127. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4128. } else
  4129. {
  4130. mcode_in_progress = (int)code_value();
  4131. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4132. switch(mcode_in_progress)
  4133. {
  4134. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4135. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4136. {
  4137. char *src = strchr_pointer + 2;
  4138. codenum = 0;
  4139. bool hasP = false, hasS = false;
  4140. if (code_seen('P')) {
  4141. codenum = code_value(); // milliseconds to wait
  4142. hasP = codenum > 0;
  4143. }
  4144. if (code_seen('S')) {
  4145. codenum = code_value() * 1000; // seconds to wait
  4146. hasS = codenum > 0;
  4147. }
  4148. starpos = strchr(src, '*');
  4149. if (starpos != NULL) *(starpos) = '\0';
  4150. while (*src == ' ') ++src;
  4151. if (!hasP && !hasS && *src != '\0') {
  4152. lcd_setstatus(src);
  4153. } else {
  4154. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4155. }
  4156. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4157. st_synchronize();
  4158. previous_millis_cmd = millis();
  4159. if (codenum > 0){
  4160. codenum += millis(); // keep track of when we started waiting
  4161. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4162. while(millis() < codenum && !lcd_clicked()){
  4163. manage_heater();
  4164. manage_inactivity(true);
  4165. lcd_update(0);
  4166. }
  4167. KEEPALIVE_STATE(IN_HANDLER);
  4168. lcd_ignore_click(false);
  4169. }else{
  4170. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4171. while(!lcd_clicked()){
  4172. manage_heater();
  4173. manage_inactivity(true);
  4174. lcd_update(0);
  4175. }
  4176. KEEPALIVE_STATE(IN_HANDLER);
  4177. }
  4178. if (IS_SD_PRINTING)
  4179. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4180. else
  4181. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4182. }
  4183. break;
  4184. case 17:
  4185. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4186. enable_x();
  4187. enable_y();
  4188. enable_z();
  4189. enable_e0();
  4190. enable_e1();
  4191. enable_e2();
  4192. break;
  4193. #ifdef SDSUPPORT
  4194. case 20: // M20 - list SD card
  4195. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4196. card.ls();
  4197. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4198. break;
  4199. case 21: // M21 - init SD card
  4200. card.initsd();
  4201. break;
  4202. case 22: //M22 - release SD card
  4203. card.release();
  4204. break;
  4205. case 23: //M23 - Select file
  4206. starpos = (strchr(strchr_pointer + 4,'*'));
  4207. if(starpos!=NULL)
  4208. *(starpos)='\0';
  4209. card.openFile(strchr_pointer + 4,true);
  4210. break;
  4211. case 24: //M24 - Start SD print
  4212. if (!card.paused)
  4213. failstats_reset_print();
  4214. card.startFileprint();
  4215. starttime=millis();
  4216. break;
  4217. case 25: //M25 - Pause SD print
  4218. card.pauseSDPrint();
  4219. break;
  4220. case 26: //M26 - Set SD index
  4221. if(card.cardOK && code_seen('S')) {
  4222. card.setIndex(code_value_long());
  4223. }
  4224. break;
  4225. case 27: //M27 - Get SD status
  4226. card.getStatus();
  4227. break;
  4228. case 28: //M28 - Start SD write
  4229. starpos = (strchr(strchr_pointer + 4,'*'));
  4230. if(starpos != NULL){
  4231. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4232. strchr_pointer = strchr(npos,' ') + 1;
  4233. *(starpos) = '\0';
  4234. }
  4235. card.openFile(strchr_pointer+4,false);
  4236. break;
  4237. case 29: //M29 - Stop SD write
  4238. //processed in write to file routine above
  4239. //card,saving = false;
  4240. break;
  4241. case 30: //M30 <filename> Delete File
  4242. if (card.cardOK){
  4243. card.closefile();
  4244. starpos = (strchr(strchr_pointer + 4,'*'));
  4245. if(starpos != NULL){
  4246. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4247. strchr_pointer = strchr(npos,' ') + 1;
  4248. *(starpos) = '\0';
  4249. }
  4250. card.removeFile(strchr_pointer + 4);
  4251. }
  4252. break;
  4253. case 32: //M32 - Select file and start SD print
  4254. {
  4255. if(card.sdprinting) {
  4256. st_synchronize();
  4257. }
  4258. starpos = (strchr(strchr_pointer + 4,'*'));
  4259. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4260. if(namestartpos==NULL)
  4261. {
  4262. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4263. }
  4264. else
  4265. namestartpos++; //to skip the '!'
  4266. if(starpos!=NULL)
  4267. *(starpos)='\0';
  4268. bool call_procedure=(code_seen('P'));
  4269. if(strchr_pointer>namestartpos)
  4270. call_procedure=false; //false alert, 'P' found within filename
  4271. if( card.cardOK )
  4272. {
  4273. card.openFile(namestartpos,true,!call_procedure);
  4274. if(code_seen('S'))
  4275. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4276. card.setIndex(code_value_long());
  4277. card.startFileprint();
  4278. if(!call_procedure)
  4279. starttime=millis(); //procedure calls count as normal print time.
  4280. }
  4281. } break;
  4282. case 928: //M928 - Start SD write
  4283. starpos = (strchr(strchr_pointer + 5,'*'));
  4284. if(starpos != NULL){
  4285. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4286. strchr_pointer = strchr(npos,' ') + 1;
  4287. *(starpos) = '\0';
  4288. }
  4289. card.openLogFile(strchr_pointer+5);
  4290. break;
  4291. #endif //SDSUPPORT
  4292. case 31: //M31 take time since the start of the SD print or an M109 command
  4293. {
  4294. stoptime=millis();
  4295. char time[30];
  4296. unsigned long t=(stoptime-starttime)/1000;
  4297. int sec,min;
  4298. min=t/60;
  4299. sec=t%60;
  4300. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4301. SERIAL_ECHO_START;
  4302. SERIAL_ECHOLN(time);
  4303. lcd_setstatus(time);
  4304. autotempShutdown();
  4305. }
  4306. break;
  4307. case 42: //M42 -Change pin status via gcode
  4308. if (code_seen('S'))
  4309. {
  4310. int pin_status = code_value();
  4311. int pin_number = LED_PIN;
  4312. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4313. pin_number = code_value();
  4314. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4315. {
  4316. if (sensitive_pins[i] == pin_number)
  4317. {
  4318. pin_number = -1;
  4319. break;
  4320. }
  4321. }
  4322. #if defined(FAN_PIN) && FAN_PIN > -1
  4323. if (pin_number == FAN_PIN)
  4324. fanSpeed = pin_status;
  4325. #endif
  4326. if (pin_number > -1)
  4327. {
  4328. pinMode(pin_number, OUTPUT);
  4329. digitalWrite(pin_number, pin_status);
  4330. analogWrite(pin_number, pin_status);
  4331. }
  4332. }
  4333. break;
  4334. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4335. // Reset the baby step value and the baby step applied flag.
  4336. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4337. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4338. // Reset the skew and offset in both RAM and EEPROM.
  4339. reset_bed_offset_and_skew();
  4340. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4341. // the planner will not perform any adjustments in the XY plane.
  4342. // Wait for the motors to stop and update the current position with the absolute values.
  4343. world2machine_revert_to_uncorrected();
  4344. break;
  4345. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4346. {
  4347. int8_t verbosity_level = 0;
  4348. bool only_Z = code_seen('Z');
  4349. #ifdef SUPPORT_VERBOSITY
  4350. if (code_seen('V'))
  4351. {
  4352. // Just 'V' without a number counts as V1.
  4353. char c = strchr_pointer[1];
  4354. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4355. }
  4356. #endif //SUPPORT_VERBOSITY
  4357. gcode_M45(only_Z, verbosity_level);
  4358. }
  4359. break;
  4360. /*
  4361. case 46:
  4362. {
  4363. // M46: Prusa3D: Show the assigned IP address.
  4364. uint8_t ip[4];
  4365. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4366. if (hasIP) {
  4367. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4368. SERIAL_ECHO(int(ip[0]));
  4369. SERIAL_ECHOPGM(".");
  4370. SERIAL_ECHO(int(ip[1]));
  4371. SERIAL_ECHOPGM(".");
  4372. SERIAL_ECHO(int(ip[2]));
  4373. SERIAL_ECHOPGM(".");
  4374. SERIAL_ECHO(int(ip[3]));
  4375. SERIAL_ECHOLNPGM("");
  4376. } else {
  4377. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4378. }
  4379. break;
  4380. }
  4381. */
  4382. case 47:
  4383. //! M47: Prusa3D: Show end stops dialog on the display.
  4384. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4385. lcd_diag_show_end_stops();
  4386. KEEPALIVE_STATE(IN_HANDLER);
  4387. break;
  4388. #if 0
  4389. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4390. {
  4391. // Disable the default update procedure of the display. We will do a modal dialog.
  4392. lcd_update_enable(false);
  4393. // Let the planner use the uncorrected coordinates.
  4394. mbl.reset();
  4395. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4396. // the planner will not perform any adjustments in the XY plane.
  4397. // Wait for the motors to stop and update the current position with the absolute values.
  4398. world2machine_revert_to_uncorrected();
  4399. // Move the print head close to the bed.
  4400. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4401. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4402. st_synchronize();
  4403. // Home in the XY plane.
  4404. set_destination_to_current();
  4405. int l_feedmultiply = setup_for_endstop_move();
  4406. home_xy();
  4407. int8_t verbosity_level = 0;
  4408. if (code_seen('V')) {
  4409. // Just 'V' without a number counts as V1.
  4410. char c = strchr_pointer[1];
  4411. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4412. }
  4413. bool success = scan_bed_induction_points(verbosity_level);
  4414. clean_up_after_endstop_move(l_feedmultiply);
  4415. // Print head up.
  4416. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4417. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4418. st_synchronize();
  4419. lcd_update_enable(true);
  4420. break;
  4421. }
  4422. #endif
  4423. #ifdef ENABLE_AUTO_BED_LEVELING
  4424. #ifdef Z_PROBE_REPEATABILITY_TEST
  4425. //! M48 Z-Probe repeatability measurement function.
  4426. //!
  4427. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4428. //!
  4429. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4430. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4431. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4432. //! regenerated.
  4433. //!
  4434. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4435. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4436. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4437. //!
  4438. case 48: // M48 Z-Probe repeatability
  4439. {
  4440. #if Z_MIN_PIN == -1
  4441. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4442. #endif
  4443. double sum=0.0;
  4444. double mean=0.0;
  4445. double sigma=0.0;
  4446. double sample_set[50];
  4447. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4448. double X_current, Y_current, Z_current;
  4449. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4450. if (code_seen('V') || code_seen('v')) {
  4451. verbose_level = code_value();
  4452. if (verbose_level<0 || verbose_level>4 ) {
  4453. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4454. goto Sigma_Exit;
  4455. }
  4456. }
  4457. if (verbose_level > 0) {
  4458. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4459. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4460. }
  4461. if (code_seen('n')) {
  4462. n_samples = code_value();
  4463. if (n_samples<4 || n_samples>50 ) {
  4464. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4465. goto Sigma_Exit;
  4466. }
  4467. }
  4468. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4469. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4470. Z_current = st_get_position_mm(Z_AXIS);
  4471. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4472. ext_position = st_get_position_mm(E_AXIS);
  4473. if (code_seen('X') || code_seen('x') ) {
  4474. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4475. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4476. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4477. goto Sigma_Exit;
  4478. }
  4479. }
  4480. if (code_seen('Y') || code_seen('y') ) {
  4481. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4482. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4483. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4484. goto Sigma_Exit;
  4485. }
  4486. }
  4487. if (code_seen('L') || code_seen('l') ) {
  4488. n_legs = code_value();
  4489. if ( n_legs==1 )
  4490. n_legs = 2;
  4491. if ( n_legs<0 || n_legs>15 ) {
  4492. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4493. goto Sigma_Exit;
  4494. }
  4495. }
  4496. //
  4497. // Do all the preliminary setup work. First raise the probe.
  4498. //
  4499. st_synchronize();
  4500. plan_bed_level_matrix.set_to_identity();
  4501. plan_buffer_line( X_current, Y_current, Z_start_location,
  4502. ext_position,
  4503. homing_feedrate[Z_AXIS]/60,
  4504. active_extruder);
  4505. st_synchronize();
  4506. //
  4507. // Now get everything to the specified probe point So we can safely do a probe to
  4508. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4509. // use that as a starting point for each probe.
  4510. //
  4511. if (verbose_level > 2)
  4512. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4513. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4514. ext_position,
  4515. homing_feedrate[X_AXIS]/60,
  4516. active_extruder);
  4517. st_synchronize();
  4518. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4519. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4520. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4521. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4522. //
  4523. // OK, do the inital probe to get us close to the bed.
  4524. // Then retrace the right amount and use that in subsequent probes
  4525. //
  4526. int l_feedmultiply = setup_for_endstop_move();
  4527. run_z_probe();
  4528. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4529. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4530. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4531. ext_position,
  4532. homing_feedrate[X_AXIS]/60,
  4533. active_extruder);
  4534. st_synchronize();
  4535. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4536. for( n=0; n<n_samples; n++) {
  4537. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4538. if ( n_legs) {
  4539. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4540. int rotational_direction, l;
  4541. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4542. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4543. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4544. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4545. //SERIAL_ECHOPAIR(" theta: ",theta);
  4546. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4547. //SERIAL_PROTOCOLLNPGM("");
  4548. for( l=0; l<n_legs-1; l++) {
  4549. if (rotational_direction==1)
  4550. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4551. else
  4552. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4553. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4554. if ( radius<0.0 )
  4555. radius = -radius;
  4556. X_current = X_probe_location + cos(theta) * radius;
  4557. Y_current = Y_probe_location + sin(theta) * radius;
  4558. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4559. X_current = X_MIN_POS;
  4560. if ( X_current>X_MAX_POS)
  4561. X_current = X_MAX_POS;
  4562. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4563. Y_current = Y_MIN_POS;
  4564. if ( Y_current>Y_MAX_POS)
  4565. Y_current = Y_MAX_POS;
  4566. if (verbose_level>3 ) {
  4567. SERIAL_ECHOPAIR("x: ", X_current);
  4568. SERIAL_ECHOPAIR("y: ", Y_current);
  4569. SERIAL_PROTOCOLLNPGM("");
  4570. }
  4571. do_blocking_move_to( X_current, Y_current, Z_current );
  4572. }
  4573. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4574. }
  4575. int l_feedmultiply = setup_for_endstop_move();
  4576. run_z_probe();
  4577. sample_set[n] = current_position[Z_AXIS];
  4578. //
  4579. // Get the current mean for the data points we have so far
  4580. //
  4581. sum=0.0;
  4582. for( j=0; j<=n; j++) {
  4583. sum = sum + sample_set[j];
  4584. }
  4585. mean = sum / (double (n+1));
  4586. //
  4587. // Now, use that mean to calculate the standard deviation for the
  4588. // data points we have so far
  4589. //
  4590. sum=0.0;
  4591. for( j=0; j<=n; j++) {
  4592. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4593. }
  4594. sigma = sqrt( sum / (double (n+1)) );
  4595. if (verbose_level > 1) {
  4596. SERIAL_PROTOCOL(n+1);
  4597. SERIAL_PROTOCOL(" of ");
  4598. SERIAL_PROTOCOL(n_samples);
  4599. SERIAL_PROTOCOLPGM(" z: ");
  4600. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4601. }
  4602. if (verbose_level > 2) {
  4603. SERIAL_PROTOCOL(" mean: ");
  4604. SERIAL_PROTOCOL_F(mean,6);
  4605. SERIAL_PROTOCOL(" sigma: ");
  4606. SERIAL_PROTOCOL_F(sigma,6);
  4607. }
  4608. if (verbose_level > 0)
  4609. SERIAL_PROTOCOLPGM("\n");
  4610. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4611. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4612. st_synchronize();
  4613. }
  4614. delay(1000);
  4615. clean_up_after_endstop_move(l_feedmultiply);
  4616. // enable_endstops(true);
  4617. if (verbose_level > 0) {
  4618. SERIAL_PROTOCOLPGM("Mean: ");
  4619. SERIAL_PROTOCOL_F(mean, 6);
  4620. SERIAL_PROTOCOLPGM("\n");
  4621. }
  4622. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4623. SERIAL_PROTOCOL_F(sigma, 6);
  4624. SERIAL_PROTOCOLPGM("\n\n");
  4625. Sigma_Exit:
  4626. break;
  4627. }
  4628. #endif // Z_PROBE_REPEATABILITY_TEST
  4629. #endif // ENABLE_AUTO_BED_LEVELING
  4630. case 73: //M73 show percent done and time remaining
  4631. if(code_seen('P')) print_percent_done_normal = code_value();
  4632. if(code_seen('R')) print_time_remaining_normal = code_value();
  4633. if(code_seen('Q')) print_percent_done_silent = code_value();
  4634. if(code_seen('S')) print_time_remaining_silent = code_value();
  4635. {
  4636. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4637. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4638. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4639. }
  4640. break;
  4641. case 104: // M104
  4642. {
  4643. uint8_t extruder;
  4644. if(setTargetedHotend(104,extruder)){
  4645. break;
  4646. }
  4647. if (code_seen('S'))
  4648. {
  4649. setTargetHotendSafe(code_value(), extruder);
  4650. }
  4651. setWatch();
  4652. break;
  4653. }
  4654. case 112: // M112 -Emergency Stop
  4655. kill(_n(""), 3);
  4656. break;
  4657. case 140: // M140 set bed temp
  4658. if (code_seen('S')) setTargetBed(code_value());
  4659. break;
  4660. case 105 : // M105
  4661. {
  4662. uint8_t extruder;
  4663. if(setTargetedHotend(105, extruder)){
  4664. break;
  4665. }
  4666. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4667. SERIAL_PROTOCOLPGM("ok T:");
  4668. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4669. SERIAL_PROTOCOLPGM(" /");
  4670. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4671. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4672. SERIAL_PROTOCOLPGM(" B:");
  4673. SERIAL_PROTOCOL_F(degBed(),1);
  4674. SERIAL_PROTOCOLPGM(" /");
  4675. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4676. #endif //TEMP_BED_PIN
  4677. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4678. SERIAL_PROTOCOLPGM(" T");
  4679. SERIAL_PROTOCOL(cur_extruder);
  4680. SERIAL_PROTOCOLPGM(":");
  4681. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4682. SERIAL_PROTOCOLPGM(" /");
  4683. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4684. }
  4685. #else
  4686. SERIAL_ERROR_START;
  4687. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4688. #endif
  4689. SERIAL_PROTOCOLPGM(" @:");
  4690. #ifdef EXTRUDER_WATTS
  4691. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4692. SERIAL_PROTOCOLPGM("W");
  4693. #else
  4694. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4695. #endif
  4696. SERIAL_PROTOCOLPGM(" B@:");
  4697. #ifdef BED_WATTS
  4698. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4699. SERIAL_PROTOCOLPGM("W");
  4700. #else
  4701. SERIAL_PROTOCOL(getHeaterPower(-1));
  4702. #endif
  4703. #ifdef PINDA_THERMISTOR
  4704. SERIAL_PROTOCOLPGM(" P:");
  4705. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4706. #endif //PINDA_THERMISTOR
  4707. #ifdef AMBIENT_THERMISTOR
  4708. SERIAL_PROTOCOLPGM(" A:");
  4709. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4710. #endif //AMBIENT_THERMISTOR
  4711. #ifdef SHOW_TEMP_ADC_VALUES
  4712. {float raw = 0.0;
  4713. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4714. SERIAL_PROTOCOLPGM(" ADC B:");
  4715. SERIAL_PROTOCOL_F(degBed(),1);
  4716. SERIAL_PROTOCOLPGM("C->");
  4717. raw = rawBedTemp();
  4718. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4719. SERIAL_PROTOCOLPGM(" Rb->");
  4720. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4721. SERIAL_PROTOCOLPGM(" Rxb->");
  4722. SERIAL_PROTOCOL_F(raw, 5);
  4723. #endif
  4724. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4725. SERIAL_PROTOCOLPGM(" T");
  4726. SERIAL_PROTOCOL(cur_extruder);
  4727. SERIAL_PROTOCOLPGM(":");
  4728. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4729. SERIAL_PROTOCOLPGM("C->");
  4730. raw = rawHotendTemp(cur_extruder);
  4731. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4732. SERIAL_PROTOCOLPGM(" Rt");
  4733. SERIAL_PROTOCOL(cur_extruder);
  4734. SERIAL_PROTOCOLPGM("->");
  4735. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4736. SERIAL_PROTOCOLPGM(" Rx");
  4737. SERIAL_PROTOCOL(cur_extruder);
  4738. SERIAL_PROTOCOLPGM("->");
  4739. SERIAL_PROTOCOL_F(raw, 5);
  4740. }}
  4741. #endif
  4742. SERIAL_PROTOCOLLN("");
  4743. KEEPALIVE_STATE(NOT_BUSY);
  4744. return;
  4745. break;
  4746. }
  4747. case 109:
  4748. {// M109 - Wait for extruder heater to reach target.
  4749. uint8_t extruder;
  4750. if(setTargetedHotend(109, extruder)){
  4751. break;
  4752. }
  4753. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4754. heating_status = 1;
  4755. if (farm_mode) { prusa_statistics(1); };
  4756. #ifdef AUTOTEMP
  4757. autotemp_enabled=false;
  4758. #endif
  4759. if (code_seen('S')) {
  4760. setTargetHotendSafe(code_value(), extruder);
  4761. CooldownNoWait = true;
  4762. } else if (code_seen('R')) {
  4763. setTargetHotendSafe(code_value(), extruder);
  4764. CooldownNoWait = false;
  4765. }
  4766. #ifdef AUTOTEMP
  4767. if (code_seen('S')) autotemp_min=code_value();
  4768. if (code_seen('B')) autotemp_max=code_value();
  4769. if (code_seen('F'))
  4770. {
  4771. autotemp_factor=code_value();
  4772. autotemp_enabled=true;
  4773. }
  4774. #endif
  4775. setWatch();
  4776. codenum = millis();
  4777. /* See if we are heating up or cooling down */
  4778. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4779. KEEPALIVE_STATE(NOT_BUSY);
  4780. cancel_heatup = false;
  4781. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4782. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4783. KEEPALIVE_STATE(IN_HANDLER);
  4784. heating_status = 2;
  4785. if (farm_mode) { prusa_statistics(2); };
  4786. //starttime=millis();
  4787. previous_millis_cmd = millis();
  4788. }
  4789. break;
  4790. case 190: // M190 - Wait for bed heater to reach target.
  4791. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4792. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4793. heating_status = 3;
  4794. if (farm_mode) { prusa_statistics(1); };
  4795. if (code_seen('S'))
  4796. {
  4797. setTargetBed(code_value());
  4798. CooldownNoWait = true;
  4799. }
  4800. else if (code_seen('R'))
  4801. {
  4802. setTargetBed(code_value());
  4803. CooldownNoWait = false;
  4804. }
  4805. codenum = millis();
  4806. cancel_heatup = false;
  4807. target_direction = isHeatingBed(); // true if heating, false if cooling
  4808. KEEPALIVE_STATE(NOT_BUSY);
  4809. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4810. {
  4811. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4812. {
  4813. if (!farm_mode) {
  4814. float tt = degHotend(active_extruder);
  4815. SERIAL_PROTOCOLPGM("T:");
  4816. SERIAL_PROTOCOL(tt);
  4817. SERIAL_PROTOCOLPGM(" E:");
  4818. SERIAL_PROTOCOL((int)active_extruder);
  4819. SERIAL_PROTOCOLPGM(" B:");
  4820. SERIAL_PROTOCOL_F(degBed(), 1);
  4821. SERIAL_PROTOCOLLN("");
  4822. }
  4823. codenum = millis();
  4824. }
  4825. manage_heater();
  4826. manage_inactivity();
  4827. lcd_update(0);
  4828. }
  4829. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4830. KEEPALIVE_STATE(IN_HANDLER);
  4831. heating_status = 4;
  4832. previous_millis_cmd = millis();
  4833. #endif
  4834. break;
  4835. #if defined(FAN_PIN) && FAN_PIN > -1
  4836. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  4837. if (code_seen('S')){
  4838. fanSpeed=constrain(code_value(),0,255);
  4839. }
  4840. else {
  4841. fanSpeed=255;
  4842. }
  4843. break;
  4844. case 107: //M107 Fan Off
  4845. fanSpeed = 0;
  4846. break;
  4847. #endif //FAN_PIN
  4848. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4849. case 80: // M80 - Turn on Power Supply
  4850. SET_OUTPUT(PS_ON_PIN); //GND
  4851. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4852. // If you have a switch on suicide pin, this is useful
  4853. // if you want to start another print with suicide feature after
  4854. // a print without suicide...
  4855. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4856. SET_OUTPUT(SUICIDE_PIN);
  4857. WRITE(SUICIDE_PIN, HIGH);
  4858. #endif
  4859. powersupply = true;
  4860. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4861. lcd_update(0);
  4862. break;
  4863. #endif
  4864. case 81: // M81 - Turn off Power Supply
  4865. disable_heater();
  4866. st_synchronize();
  4867. disable_e0();
  4868. disable_e1();
  4869. disable_e2();
  4870. finishAndDisableSteppers();
  4871. fanSpeed = 0;
  4872. delay(1000); // Wait a little before to switch off
  4873. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4874. st_synchronize();
  4875. suicide();
  4876. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4877. SET_OUTPUT(PS_ON_PIN);
  4878. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4879. #endif
  4880. powersupply = false;
  4881. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4882. lcd_update(0);
  4883. break;
  4884. case 82:
  4885. axis_relative_modes[3] = false;
  4886. break;
  4887. case 83:
  4888. axis_relative_modes[3] = true;
  4889. break;
  4890. case 18: //compatibility
  4891. case 84: // M84
  4892. if(code_seen('S')){
  4893. stepper_inactive_time = code_value() * 1000;
  4894. }
  4895. else
  4896. {
  4897. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4898. if(all_axis)
  4899. {
  4900. st_synchronize();
  4901. disable_e0();
  4902. disable_e1();
  4903. disable_e2();
  4904. finishAndDisableSteppers();
  4905. }
  4906. else
  4907. {
  4908. st_synchronize();
  4909. if (code_seen('X')) disable_x();
  4910. if (code_seen('Y')) disable_y();
  4911. if (code_seen('Z')) disable_z();
  4912. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4913. if (code_seen('E')) {
  4914. disable_e0();
  4915. disable_e1();
  4916. disable_e2();
  4917. }
  4918. #endif
  4919. }
  4920. }
  4921. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4922. print_time_remaining_init();
  4923. snmm_filaments_used = 0;
  4924. break;
  4925. case 85: // M85
  4926. if(code_seen('S')) {
  4927. max_inactive_time = code_value() * 1000;
  4928. }
  4929. break;
  4930. #ifdef SAFETYTIMER
  4931. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4932. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4933. if (code_seen('S')) {
  4934. safetytimer_inactive_time = code_value() * 1000;
  4935. safetyTimer.start();
  4936. }
  4937. break;
  4938. #endif
  4939. case 92: // M92
  4940. for(int8_t i=0; i < NUM_AXIS; i++)
  4941. {
  4942. if(code_seen(axis_codes[i]))
  4943. {
  4944. if(i == 3) { // E
  4945. float value = code_value();
  4946. if(value < 20.0) {
  4947. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4948. cs.max_jerk[E_AXIS] *= factor;
  4949. max_feedrate[i] *= factor;
  4950. axis_steps_per_sqr_second[i] *= factor;
  4951. }
  4952. cs.axis_steps_per_unit[i] = value;
  4953. }
  4954. else {
  4955. cs.axis_steps_per_unit[i] = code_value();
  4956. }
  4957. }
  4958. }
  4959. break;
  4960. case 110: //! M110 N<line number> - reset line pos
  4961. if (code_seen('N'))
  4962. gcode_LastN = code_value_long();
  4963. break;
  4964. #ifdef HOST_KEEPALIVE_FEATURE
  4965. case 113: // M113 - Get or set Host Keepalive interval
  4966. if (code_seen('S')) {
  4967. host_keepalive_interval = (uint8_t)code_value_short();
  4968. // NOMORE(host_keepalive_interval, 60);
  4969. }
  4970. else {
  4971. SERIAL_ECHO_START;
  4972. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4973. SERIAL_PROTOCOLLN("");
  4974. }
  4975. break;
  4976. #endif
  4977. case 115: // M115
  4978. if (code_seen('V')) {
  4979. // Report the Prusa version number.
  4980. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4981. } else if (code_seen('U')) {
  4982. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4983. // pause the print and ask the user to upgrade the firmware.
  4984. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4985. } else {
  4986. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4987. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4988. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4989. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4990. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4991. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4992. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4993. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4994. SERIAL_ECHOPGM(" UUID:");
  4995. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4996. }
  4997. break;
  4998. /* case 117: // M117 display message
  4999. starpos = (strchr(strchr_pointer + 5,'*'));
  5000. if(starpos!=NULL)
  5001. *(starpos)='\0';
  5002. lcd_setstatus(strchr_pointer + 5);
  5003. break;*/
  5004. case 114: // M114
  5005. gcode_M114();
  5006. break;
  5007. case 120: //! M120 - Disable endstops
  5008. enable_endstops(false) ;
  5009. break;
  5010. case 121: //! M121 - Enable endstops
  5011. enable_endstops(true) ;
  5012. break;
  5013. case 119: // M119
  5014. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  5015. SERIAL_PROTOCOLLN("");
  5016. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5017. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  5018. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5019. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5020. }else{
  5021. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5022. }
  5023. SERIAL_PROTOCOLLN("");
  5024. #endif
  5025. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5026. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  5027. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5028. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5029. }else{
  5030. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5031. }
  5032. SERIAL_PROTOCOLLN("");
  5033. #endif
  5034. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5035. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  5036. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5037. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5038. }else{
  5039. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5040. }
  5041. SERIAL_PROTOCOLLN("");
  5042. #endif
  5043. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5044. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  5045. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5046. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5047. }else{
  5048. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5049. }
  5050. SERIAL_PROTOCOLLN("");
  5051. #endif
  5052. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5053. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5054. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5055. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5056. }else{
  5057. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5058. }
  5059. SERIAL_PROTOCOLLN("");
  5060. #endif
  5061. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5062. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5063. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5064. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5065. }else{
  5066. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5067. }
  5068. SERIAL_PROTOCOLLN("");
  5069. #endif
  5070. break;
  5071. //TODO: update for all axis, use for loop
  5072. #ifdef BLINKM
  5073. case 150: // M150
  5074. {
  5075. byte red;
  5076. byte grn;
  5077. byte blu;
  5078. if(code_seen('R')) red = code_value();
  5079. if(code_seen('U')) grn = code_value();
  5080. if(code_seen('B')) blu = code_value();
  5081. SendColors(red,grn,blu);
  5082. }
  5083. break;
  5084. #endif //BLINKM
  5085. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5086. {
  5087. uint8_t extruder = active_extruder;
  5088. if(code_seen('T')) {
  5089. extruder = code_value();
  5090. if(extruder >= EXTRUDERS) {
  5091. SERIAL_ECHO_START;
  5092. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5093. break;
  5094. }
  5095. }
  5096. if(code_seen('D')) {
  5097. float diameter = (float)code_value();
  5098. if (diameter == 0.0) {
  5099. // setting any extruder filament size disables volumetric on the assumption that
  5100. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5101. // for all extruders
  5102. cs.volumetric_enabled = false;
  5103. } else {
  5104. cs.filament_size[extruder] = (float)code_value();
  5105. // make sure all extruders have some sane value for the filament size
  5106. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5107. #if EXTRUDERS > 1
  5108. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5109. #if EXTRUDERS > 2
  5110. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5111. #endif
  5112. #endif
  5113. cs.volumetric_enabled = true;
  5114. }
  5115. } else {
  5116. //reserved for setting filament diameter via UFID or filament measuring device
  5117. break;
  5118. }
  5119. calculate_extruder_multipliers();
  5120. }
  5121. break;
  5122. case 201: // M201
  5123. for (int8_t i = 0; i < NUM_AXIS; i++)
  5124. {
  5125. if (code_seen(axis_codes[i]))
  5126. {
  5127. unsigned long val = code_value();
  5128. #ifdef TMC2130
  5129. unsigned long val_silent = val;
  5130. if ((i == X_AXIS) || (i == Y_AXIS))
  5131. {
  5132. if (val > NORMAL_MAX_ACCEL_XY)
  5133. val = NORMAL_MAX_ACCEL_XY;
  5134. if (val_silent > SILENT_MAX_ACCEL_XY)
  5135. val_silent = SILENT_MAX_ACCEL_XY;
  5136. }
  5137. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5138. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5139. #else //TMC2130
  5140. max_acceleration_units_per_sq_second[i] = val;
  5141. #endif //TMC2130
  5142. }
  5143. }
  5144. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5145. reset_acceleration_rates();
  5146. break;
  5147. #if 0 // Not used for Sprinter/grbl gen6
  5148. case 202: // M202
  5149. for(int8_t i=0; i < NUM_AXIS; i++) {
  5150. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5151. }
  5152. break;
  5153. #endif
  5154. case 203: // M203 max feedrate mm/sec
  5155. for (int8_t i = 0; i < NUM_AXIS; i++)
  5156. {
  5157. if (code_seen(axis_codes[i]))
  5158. {
  5159. float val = code_value();
  5160. #ifdef TMC2130
  5161. float val_silent = val;
  5162. if ((i == X_AXIS) || (i == Y_AXIS))
  5163. {
  5164. if (val > NORMAL_MAX_FEEDRATE_XY)
  5165. val = NORMAL_MAX_FEEDRATE_XY;
  5166. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5167. val_silent = SILENT_MAX_FEEDRATE_XY;
  5168. }
  5169. cs.max_feedrate_normal[i] = val;
  5170. cs.max_feedrate_silent[i] = val_silent;
  5171. #else //TMC2130
  5172. max_feedrate[i] = val;
  5173. #endif //TMC2130
  5174. }
  5175. }
  5176. break;
  5177. case 204:
  5178. //! M204 acclereration settings.
  5179. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5180. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5181. {
  5182. if(code_seen('S')) {
  5183. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5184. // and it is also generated by Slic3r to control acceleration per extrusion type
  5185. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5186. cs.acceleration = code_value();
  5187. // Interpret the T value as retract acceleration in the old Marlin format.
  5188. if(code_seen('T'))
  5189. cs.retract_acceleration = code_value();
  5190. } else {
  5191. // New acceleration format, compatible with the upstream Marlin.
  5192. if(code_seen('P'))
  5193. cs.acceleration = code_value();
  5194. if(code_seen('R'))
  5195. cs.retract_acceleration = code_value();
  5196. if(code_seen('T')) {
  5197. // Interpret the T value as the travel acceleration in the new Marlin format.
  5198. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5199. // travel_acceleration = code_value();
  5200. }
  5201. }
  5202. }
  5203. break;
  5204. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5205. {
  5206. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5207. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5208. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5209. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5210. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5211. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5212. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5213. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5214. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5215. }
  5216. break;
  5217. case 206: // M206 additional homing offset
  5218. for(int8_t i=0; i < 3; i++)
  5219. {
  5220. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5221. }
  5222. break;
  5223. #ifdef FWRETRACT
  5224. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5225. {
  5226. if(code_seen('S'))
  5227. {
  5228. cs.retract_length = code_value() ;
  5229. }
  5230. if(code_seen('F'))
  5231. {
  5232. cs.retract_feedrate = code_value()/60 ;
  5233. }
  5234. if(code_seen('Z'))
  5235. {
  5236. cs.retract_zlift = code_value() ;
  5237. }
  5238. }break;
  5239. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5240. {
  5241. if(code_seen('S'))
  5242. {
  5243. cs.retract_recover_length = code_value() ;
  5244. }
  5245. if(code_seen('F'))
  5246. {
  5247. cs.retract_recover_feedrate = code_value()/60 ;
  5248. }
  5249. }break;
  5250. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5251. {
  5252. if(code_seen('S'))
  5253. {
  5254. int t= code_value() ;
  5255. switch(t)
  5256. {
  5257. case 0:
  5258. {
  5259. cs.autoretract_enabled=false;
  5260. retracted[0]=false;
  5261. #if EXTRUDERS > 1
  5262. retracted[1]=false;
  5263. #endif
  5264. #if EXTRUDERS > 2
  5265. retracted[2]=false;
  5266. #endif
  5267. }break;
  5268. case 1:
  5269. {
  5270. cs.autoretract_enabled=true;
  5271. retracted[0]=false;
  5272. #if EXTRUDERS > 1
  5273. retracted[1]=false;
  5274. #endif
  5275. #if EXTRUDERS > 2
  5276. retracted[2]=false;
  5277. #endif
  5278. }break;
  5279. default:
  5280. SERIAL_ECHO_START;
  5281. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5282. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5283. SERIAL_ECHOLNPGM("\"(1)");
  5284. }
  5285. }
  5286. }break;
  5287. #endif // FWRETRACT
  5288. #if EXTRUDERS > 1
  5289. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5290. {
  5291. uint8_t extruder;
  5292. if(setTargetedHotend(218, extruder)){
  5293. break;
  5294. }
  5295. if(code_seen('X'))
  5296. {
  5297. extruder_offset[X_AXIS][extruder] = code_value();
  5298. }
  5299. if(code_seen('Y'))
  5300. {
  5301. extruder_offset[Y_AXIS][extruder] = code_value();
  5302. }
  5303. SERIAL_ECHO_START;
  5304. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5305. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5306. {
  5307. SERIAL_ECHO(" ");
  5308. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5309. SERIAL_ECHO(",");
  5310. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5311. }
  5312. SERIAL_ECHOLN("");
  5313. }break;
  5314. #endif
  5315. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5316. {
  5317. if (code_seen('B')) //backup current speed factor
  5318. {
  5319. saved_feedmultiply_mm = feedmultiply;
  5320. }
  5321. if(code_seen('S'))
  5322. {
  5323. feedmultiply = code_value() ;
  5324. }
  5325. if (code_seen('R')) { //restore previous feedmultiply
  5326. feedmultiply = saved_feedmultiply_mm;
  5327. }
  5328. }
  5329. break;
  5330. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5331. {
  5332. if(code_seen('S'))
  5333. {
  5334. int tmp_code = code_value();
  5335. if (code_seen('T'))
  5336. {
  5337. uint8_t extruder;
  5338. if(setTargetedHotend(221, extruder)){
  5339. break;
  5340. }
  5341. extruder_multiply[extruder] = tmp_code;
  5342. }
  5343. else
  5344. {
  5345. extrudemultiply = tmp_code ;
  5346. }
  5347. }
  5348. calculate_extruder_multipliers();
  5349. }
  5350. break;
  5351. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5352. {
  5353. if(code_seen('P')){
  5354. int pin_number = code_value(); // pin number
  5355. int pin_state = -1; // required pin state - default is inverted
  5356. if(code_seen('S')) pin_state = code_value(); // required pin state
  5357. if(pin_state >= -1 && pin_state <= 1){
  5358. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5359. {
  5360. if (sensitive_pins[i] == pin_number)
  5361. {
  5362. pin_number = -1;
  5363. break;
  5364. }
  5365. }
  5366. if (pin_number > -1)
  5367. {
  5368. int target = LOW;
  5369. st_synchronize();
  5370. pinMode(pin_number, INPUT);
  5371. switch(pin_state){
  5372. case 1:
  5373. target = HIGH;
  5374. break;
  5375. case 0:
  5376. target = LOW;
  5377. break;
  5378. case -1:
  5379. target = !digitalRead(pin_number);
  5380. break;
  5381. }
  5382. while(digitalRead(pin_number) != target){
  5383. manage_heater();
  5384. manage_inactivity();
  5385. lcd_update(0);
  5386. }
  5387. }
  5388. }
  5389. }
  5390. }
  5391. break;
  5392. #if NUM_SERVOS > 0
  5393. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5394. {
  5395. int servo_index = -1;
  5396. int servo_position = 0;
  5397. if (code_seen('P'))
  5398. servo_index = code_value();
  5399. if (code_seen('S')) {
  5400. servo_position = code_value();
  5401. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5402. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5403. servos[servo_index].attach(0);
  5404. #endif
  5405. servos[servo_index].write(servo_position);
  5406. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5407. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5408. servos[servo_index].detach();
  5409. #endif
  5410. }
  5411. else {
  5412. SERIAL_ECHO_START;
  5413. SERIAL_ECHO("Servo ");
  5414. SERIAL_ECHO(servo_index);
  5415. SERIAL_ECHOLN(" out of range");
  5416. }
  5417. }
  5418. else if (servo_index >= 0) {
  5419. SERIAL_PROTOCOL(MSG_OK);
  5420. SERIAL_PROTOCOL(" Servo ");
  5421. SERIAL_PROTOCOL(servo_index);
  5422. SERIAL_PROTOCOL(": ");
  5423. SERIAL_PROTOCOL(servos[servo_index].read());
  5424. SERIAL_PROTOCOLLN("");
  5425. }
  5426. }
  5427. break;
  5428. #endif // NUM_SERVOS > 0
  5429. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5430. case 300: // M300
  5431. {
  5432. int beepS = code_seen('S') ? code_value() : 110;
  5433. int beepP = code_seen('P') ? code_value() : 1000;
  5434. if (beepS > 0)
  5435. {
  5436. #if BEEPER > 0
  5437. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5438. tone(BEEPER, beepS);
  5439. delay(beepP);
  5440. noTone(BEEPER);
  5441. #endif
  5442. }
  5443. else
  5444. {
  5445. delay(beepP);
  5446. }
  5447. }
  5448. break;
  5449. #endif // M300
  5450. #ifdef PIDTEMP
  5451. case 301: // M301
  5452. {
  5453. if(code_seen('P')) cs.Kp = code_value();
  5454. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5455. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5456. #ifdef PID_ADD_EXTRUSION_RATE
  5457. if(code_seen('C')) Kc = code_value();
  5458. #endif
  5459. updatePID();
  5460. SERIAL_PROTOCOLRPGM(MSG_OK);
  5461. SERIAL_PROTOCOL(" p:");
  5462. SERIAL_PROTOCOL(cs.Kp);
  5463. SERIAL_PROTOCOL(" i:");
  5464. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5465. SERIAL_PROTOCOL(" d:");
  5466. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5467. #ifdef PID_ADD_EXTRUSION_RATE
  5468. SERIAL_PROTOCOL(" c:");
  5469. //Kc does not have scaling applied above, or in resetting defaults
  5470. SERIAL_PROTOCOL(Kc);
  5471. #endif
  5472. SERIAL_PROTOCOLLN("");
  5473. }
  5474. break;
  5475. #endif //PIDTEMP
  5476. #ifdef PIDTEMPBED
  5477. case 304: // M304
  5478. {
  5479. if(code_seen('P')) cs.bedKp = code_value();
  5480. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5481. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5482. updatePID();
  5483. SERIAL_PROTOCOLRPGM(MSG_OK);
  5484. SERIAL_PROTOCOL(" p:");
  5485. SERIAL_PROTOCOL(cs.bedKp);
  5486. SERIAL_PROTOCOL(" i:");
  5487. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5488. SERIAL_PROTOCOL(" d:");
  5489. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5490. SERIAL_PROTOCOLLN("");
  5491. }
  5492. break;
  5493. #endif //PIDTEMP
  5494. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5495. {
  5496. #ifdef CHDK
  5497. SET_OUTPUT(CHDK);
  5498. WRITE(CHDK, HIGH);
  5499. chdkHigh = millis();
  5500. chdkActive = true;
  5501. #else
  5502. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5503. const uint8_t NUM_PULSES=16;
  5504. const float PULSE_LENGTH=0.01524;
  5505. for(int i=0; i < NUM_PULSES; i++) {
  5506. WRITE(PHOTOGRAPH_PIN, HIGH);
  5507. _delay_ms(PULSE_LENGTH);
  5508. WRITE(PHOTOGRAPH_PIN, LOW);
  5509. _delay_ms(PULSE_LENGTH);
  5510. }
  5511. delay(7.33);
  5512. for(int i=0; i < NUM_PULSES; i++) {
  5513. WRITE(PHOTOGRAPH_PIN, HIGH);
  5514. _delay_ms(PULSE_LENGTH);
  5515. WRITE(PHOTOGRAPH_PIN, LOW);
  5516. _delay_ms(PULSE_LENGTH);
  5517. }
  5518. #endif
  5519. #endif //chdk end if
  5520. }
  5521. break;
  5522. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5523. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5524. {
  5525. float temp = .0;
  5526. if (code_seen('S')) temp=code_value();
  5527. set_extrude_min_temp(temp);
  5528. }
  5529. break;
  5530. #endif
  5531. case 303: // M303 PID autotune
  5532. {
  5533. float temp = 150.0;
  5534. int e=0;
  5535. int c=5;
  5536. if (code_seen('E')) e=code_value();
  5537. if (e<0)
  5538. temp=70;
  5539. if (code_seen('S')) temp=code_value();
  5540. if (code_seen('C')) c=code_value();
  5541. PID_autotune(temp, e, c);
  5542. }
  5543. break;
  5544. case 400: // M400 finish all moves
  5545. {
  5546. st_synchronize();
  5547. }
  5548. break;
  5549. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5550. {
  5551. //! currently three different materials are needed (default, flex and PVA)
  5552. //! add storing this information for different load/unload profiles etc. in the future
  5553. //!firmware does not wait for "ok" from mmu
  5554. if (mmu_enabled)
  5555. {
  5556. uint8_t extruder = 255;
  5557. uint8_t filament = FILAMENT_UNDEFINED;
  5558. if(code_seen('E')) extruder = code_value();
  5559. if(code_seen('F')) filament = code_value();
  5560. mmu_set_filament_type(extruder, filament);
  5561. }
  5562. }
  5563. break;
  5564. case 500: // M500 Store settings in EEPROM
  5565. {
  5566. Config_StoreSettings();
  5567. }
  5568. break;
  5569. case 501: // M501 Read settings from EEPROM
  5570. {
  5571. Config_RetrieveSettings();
  5572. }
  5573. break;
  5574. case 502: // M502 Revert to default settings
  5575. {
  5576. Config_ResetDefault();
  5577. }
  5578. break;
  5579. case 503: // M503 print settings currently in memory
  5580. {
  5581. Config_PrintSettings();
  5582. }
  5583. break;
  5584. case 509: //M509 Force language selection
  5585. {
  5586. lang_reset();
  5587. SERIAL_ECHO_START;
  5588. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5589. }
  5590. break;
  5591. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5592. case 540:
  5593. {
  5594. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5595. }
  5596. break;
  5597. #endif
  5598. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5599. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5600. {
  5601. float value;
  5602. if (code_seen('Z'))
  5603. {
  5604. value = code_value();
  5605. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5606. {
  5607. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5608. SERIAL_ECHO_START;
  5609. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5610. SERIAL_PROTOCOLLN("");
  5611. }
  5612. else
  5613. {
  5614. SERIAL_ECHO_START;
  5615. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5616. SERIAL_ECHORPGM(MSG_Z_MIN);
  5617. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5618. SERIAL_ECHORPGM(MSG_Z_MAX);
  5619. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5620. SERIAL_PROTOCOLLN("");
  5621. }
  5622. }
  5623. else
  5624. {
  5625. SERIAL_ECHO_START;
  5626. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5627. SERIAL_ECHO(-cs.zprobe_zoffset);
  5628. SERIAL_PROTOCOLLN("");
  5629. }
  5630. break;
  5631. }
  5632. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5633. #ifdef FILAMENTCHANGEENABLE
  5634. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5635. {
  5636. st_synchronize();
  5637. float x_position = current_position[X_AXIS];
  5638. float y_position = current_position[Y_AXIS];
  5639. float z_shift = 0;
  5640. float e_shift_init = 0;
  5641. float e_shift_late = 0;
  5642. bool automatic = false;
  5643. //Retract extruder
  5644. if(code_seen('E'))
  5645. {
  5646. e_shift_init = code_value();
  5647. }
  5648. else
  5649. {
  5650. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5651. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5652. #endif
  5653. }
  5654. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5655. if (code_seen('L'))
  5656. {
  5657. e_shift_late = code_value();
  5658. }
  5659. else
  5660. {
  5661. #ifdef FILAMENTCHANGE_FINALRETRACT
  5662. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5663. #endif
  5664. }
  5665. //Lift Z
  5666. if(code_seen('Z'))
  5667. {
  5668. z_shift = code_value();
  5669. }
  5670. else
  5671. {
  5672. #ifdef FILAMENTCHANGE_ZADD
  5673. z_shift= FILAMENTCHANGE_ZADD ;
  5674. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5675. #endif
  5676. }
  5677. //Move XY to side
  5678. if(code_seen('X'))
  5679. {
  5680. x_position = code_value();
  5681. }
  5682. else
  5683. {
  5684. #ifdef FILAMENTCHANGE_XPOS
  5685. x_position = FILAMENTCHANGE_XPOS;
  5686. #endif
  5687. }
  5688. if(code_seen('Y'))
  5689. {
  5690. y_position = code_value();
  5691. }
  5692. else
  5693. {
  5694. #ifdef FILAMENTCHANGE_YPOS
  5695. y_position = FILAMENTCHANGE_YPOS ;
  5696. #endif
  5697. }
  5698. if (mmu_enabled && code_seen("AUTO"))
  5699. automatic = true;
  5700. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5701. }
  5702. break;
  5703. #endif //FILAMENTCHANGEENABLE
  5704. case 601: //! M601 - Pause print
  5705. {
  5706. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  5707. lcd_pause_print();
  5708. }
  5709. break;
  5710. case 602: { //! M602 - Resume print
  5711. lcd_resume_print();
  5712. }
  5713. break;
  5714. #ifdef PINDA_THERMISTOR
  5715. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5716. {
  5717. int set_target_pinda = 0;
  5718. if (code_seen('S')) {
  5719. set_target_pinda = code_value();
  5720. }
  5721. else {
  5722. break;
  5723. }
  5724. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5725. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5726. SERIAL_PROTOCOL(set_target_pinda);
  5727. SERIAL_PROTOCOLLN("");
  5728. codenum = millis();
  5729. cancel_heatup = false;
  5730. bool is_pinda_cooling = false;
  5731. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5732. is_pinda_cooling = true;
  5733. }
  5734. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5735. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5736. {
  5737. SERIAL_PROTOCOLPGM("P:");
  5738. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5739. SERIAL_PROTOCOLPGM("/");
  5740. SERIAL_PROTOCOL(set_target_pinda);
  5741. SERIAL_PROTOCOLLN("");
  5742. codenum = millis();
  5743. }
  5744. manage_heater();
  5745. manage_inactivity();
  5746. lcd_update(0);
  5747. }
  5748. LCD_MESSAGERPGM(MSG_OK);
  5749. break;
  5750. }
  5751. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5752. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5753. uint8_t cal_status = calibration_status_pinda();
  5754. int16_t usteps = 0;
  5755. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5756. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5757. for (uint8_t i = 0; i < 6; i++)
  5758. {
  5759. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5760. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5761. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5762. SERIAL_PROTOCOLPGM(", ");
  5763. SERIAL_PROTOCOL(35 + (i * 5));
  5764. SERIAL_PROTOCOLPGM(", ");
  5765. SERIAL_PROTOCOL(usteps);
  5766. SERIAL_PROTOCOLPGM(", ");
  5767. SERIAL_PROTOCOL(mm * 1000);
  5768. SERIAL_PROTOCOLLN("");
  5769. }
  5770. }
  5771. else if (code_seen('!')) { // ! - Set factory default values
  5772. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5773. int16_t z_shift = 8; //40C - 20um - 8usteps
  5774. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5775. z_shift = 24; //45C - 60um - 24usteps
  5776. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5777. z_shift = 48; //50C - 120um - 48usteps
  5778. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5779. z_shift = 80; //55C - 200um - 80usteps
  5780. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5781. z_shift = 120; //60C - 300um - 120usteps
  5782. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5783. SERIAL_PROTOCOLLN("factory restored");
  5784. }
  5785. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5786. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5787. int16_t z_shift = 0;
  5788. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5789. SERIAL_PROTOCOLLN("zerorized");
  5790. }
  5791. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5792. int16_t usteps = code_value();
  5793. if (code_seen('I')) {
  5794. uint8_t index = code_value();
  5795. if (index < 5) {
  5796. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5797. SERIAL_PROTOCOLLN("OK");
  5798. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5799. for (uint8_t i = 0; i < 6; i++)
  5800. {
  5801. usteps = 0;
  5802. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5803. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5804. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5805. SERIAL_PROTOCOLPGM(", ");
  5806. SERIAL_PROTOCOL(35 + (i * 5));
  5807. SERIAL_PROTOCOLPGM(", ");
  5808. SERIAL_PROTOCOL(usteps);
  5809. SERIAL_PROTOCOLPGM(", ");
  5810. SERIAL_PROTOCOL(mm * 1000);
  5811. SERIAL_PROTOCOLLN("");
  5812. }
  5813. }
  5814. }
  5815. }
  5816. else {
  5817. SERIAL_PROTOCOLPGM("no valid command");
  5818. }
  5819. break;
  5820. #endif //PINDA_THERMISTOR
  5821. #ifdef LIN_ADVANCE
  5822. case 900: // M900: Set LIN_ADVANCE options.
  5823. gcode_M900();
  5824. break;
  5825. #endif
  5826. case 907: // M907 Set digital trimpot motor current using axis codes.
  5827. {
  5828. #ifdef TMC2130
  5829. for (int i = 0; i < NUM_AXIS; i++)
  5830. if(code_seen(axis_codes[i]))
  5831. {
  5832. long cur_mA = code_value_long();
  5833. uint8_t val = tmc2130_cur2val(cur_mA);
  5834. tmc2130_set_current_h(i, val);
  5835. tmc2130_set_current_r(i, val);
  5836. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  5837. }
  5838. #else //TMC2130
  5839. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5840. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5841. if(code_seen('B')) st_current_set(4,code_value());
  5842. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5843. #endif
  5844. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5845. if(code_seen('X')) st_current_set(0, code_value());
  5846. #endif
  5847. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5848. if(code_seen('Z')) st_current_set(1, code_value());
  5849. #endif
  5850. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5851. if(code_seen('E')) st_current_set(2, code_value());
  5852. #endif
  5853. #endif //TMC2130
  5854. }
  5855. break;
  5856. case 908: // M908 Control digital trimpot directly.
  5857. {
  5858. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5859. uint8_t channel,current;
  5860. if(code_seen('P')) channel=code_value();
  5861. if(code_seen('S')) current=code_value();
  5862. digitalPotWrite(channel, current);
  5863. #endif
  5864. }
  5865. break;
  5866. #ifdef TMC2130_SERVICE_CODES_M910_M918
  5867. case 910: //! M910 - TMC2130 init
  5868. {
  5869. tmc2130_init();
  5870. }
  5871. break;
  5872. case 911: //! M911 - Set TMC2130 holding currents
  5873. {
  5874. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5875. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5876. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5877. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5878. }
  5879. break;
  5880. case 912: //! M912 - Set TMC2130 running currents
  5881. {
  5882. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5883. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5884. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5885. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5886. }
  5887. break;
  5888. case 913: //! M913 - Print TMC2130 currents
  5889. {
  5890. tmc2130_print_currents();
  5891. }
  5892. break;
  5893. case 914: //! M914 - Set normal mode
  5894. {
  5895. tmc2130_mode = TMC2130_MODE_NORMAL;
  5896. update_mode_profile();
  5897. tmc2130_init();
  5898. }
  5899. break;
  5900. case 915: //! M915 - Set silent mode
  5901. {
  5902. tmc2130_mode = TMC2130_MODE_SILENT;
  5903. update_mode_profile();
  5904. tmc2130_init();
  5905. }
  5906. break;
  5907. case 916: //! M916 - Set sg_thrs
  5908. {
  5909. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5910. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5911. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5912. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5913. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5914. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5915. }
  5916. break;
  5917. case 917: //! M917 - Set TMC2130 pwm_ampl
  5918. {
  5919. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5920. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5921. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5922. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5923. }
  5924. break;
  5925. case 918: //! M918 - Set TMC2130 pwm_grad
  5926. {
  5927. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5928. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5929. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5930. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5931. }
  5932. break;
  5933. #endif //TMC2130_SERVICE_CODES_M910_M918
  5934. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5935. {
  5936. #ifdef TMC2130
  5937. if(code_seen('E'))
  5938. {
  5939. uint16_t res_new = code_value();
  5940. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5941. {
  5942. st_synchronize();
  5943. uint8_t axis = E_AXIS;
  5944. uint16_t res = tmc2130_get_res(axis);
  5945. tmc2130_set_res(axis, res_new);
  5946. if (res_new > res)
  5947. {
  5948. uint16_t fac = (res_new / res);
  5949. cs.axis_steps_per_unit[axis] *= fac;
  5950. position[E_AXIS] *= fac;
  5951. }
  5952. else
  5953. {
  5954. uint16_t fac = (res / res_new);
  5955. cs.axis_steps_per_unit[axis] /= fac;
  5956. position[E_AXIS] /= fac;
  5957. }
  5958. }
  5959. }
  5960. #else //TMC2130
  5961. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5962. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5963. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5964. if(code_seen('B')) microstep_mode(4,code_value());
  5965. microstep_readings();
  5966. #endif
  5967. #endif //TMC2130
  5968. }
  5969. break;
  5970. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5971. {
  5972. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5973. if(code_seen('S')) switch((int)code_value())
  5974. {
  5975. case 1:
  5976. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5977. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5978. break;
  5979. case 2:
  5980. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5981. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5982. break;
  5983. }
  5984. microstep_readings();
  5985. #endif
  5986. }
  5987. break;
  5988. case 701: //! M701 - load filament
  5989. {
  5990. if (mmu_enabled && code_seen('E'))
  5991. tmp_extruder = code_value();
  5992. gcode_M701();
  5993. }
  5994. break;
  5995. case 702: //! M702 [U C] -
  5996. {
  5997. #ifdef SNMM
  5998. if (code_seen('U'))
  5999. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6000. else if (code_seen('C'))
  6001. extr_unload(); //! if "C" unload just current filament
  6002. else
  6003. extr_unload_all(); //! otherwise unload all filaments
  6004. #else
  6005. if (code_seen('C')) {
  6006. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6007. }
  6008. else {
  6009. if(mmu_enabled) extr_unload(); //! unload current filament
  6010. else unload_filament();
  6011. }
  6012. #endif //SNMM
  6013. }
  6014. break;
  6015. case 999: // M999: Restart after being stopped
  6016. Stopped = false;
  6017. lcd_reset_alert_level();
  6018. gcode_LastN = Stopped_gcode_LastN;
  6019. FlushSerialRequestResend();
  6020. break;
  6021. default:
  6022. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6023. }
  6024. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6025. mcode_in_progress = 0;
  6026. }
  6027. }
  6028. // end if(code_seen('M')) (end of M codes)
  6029. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6030. //! select filament in case of MMU_V2
  6031. //! if extruder is "?", open menu to let the user select extruder/filament
  6032. //!
  6033. //! For MMU_V2:
  6034. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6035. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6036. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6037. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6038. else if(code_seen('T'))
  6039. {
  6040. int index;
  6041. bool load_to_nozzle = false;
  6042. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6043. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6044. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6045. SERIAL_ECHOLNPGM("Invalid T code.");
  6046. }
  6047. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6048. if (mmu_enabled)
  6049. {
  6050. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6051. st_synchronize();
  6052. mmu_command(MMU_CMD_T0 + tmp_extruder);
  6053. manage_response(true, true);
  6054. }
  6055. }
  6056. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6057. if (mmu_enabled)
  6058. {
  6059. st_synchronize();
  6060. mmu_command(MMU_CMD_C0);
  6061. mmu_extruder = tmp_extruder; //filament change is finished
  6062. mmu_load_to_nozzle();
  6063. }
  6064. }
  6065. else {
  6066. if (*(strchr_pointer + index) == '?')
  6067. {
  6068. if(mmu_enabled)
  6069. {
  6070. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6071. load_to_nozzle = true;
  6072. } else
  6073. {
  6074. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6075. }
  6076. }
  6077. else {
  6078. tmp_extruder = code_value();
  6079. }
  6080. st_synchronize();
  6081. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6082. if (mmu_enabled)
  6083. {
  6084. mmu_command(MMU_CMD_T0 + tmp_extruder);
  6085. manage_response(true, true);
  6086. mmu_command(MMU_CMD_C0);
  6087. mmu_extruder = tmp_extruder; //filament change is finished
  6088. if (load_to_nozzle)// for single material usage with mmu
  6089. {
  6090. mmu_load_to_nozzle();
  6091. }
  6092. }
  6093. else
  6094. {
  6095. #ifdef SNMM
  6096. #ifdef LIN_ADVANCE
  6097. if (mmu_extruder != tmp_extruder)
  6098. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6099. #endif
  6100. mmu_extruder = tmp_extruder;
  6101. delay(100);
  6102. disable_e0();
  6103. disable_e1();
  6104. disable_e2();
  6105. pinMode(E_MUX0_PIN, OUTPUT);
  6106. pinMode(E_MUX1_PIN, OUTPUT);
  6107. delay(100);
  6108. SERIAL_ECHO_START;
  6109. SERIAL_ECHO("T:");
  6110. SERIAL_ECHOLN((int)tmp_extruder);
  6111. switch (tmp_extruder) {
  6112. case 1:
  6113. WRITE(E_MUX0_PIN, HIGH);
  6114. WRITE(E_MUX1_PIN, LOW);
  6115. break;
  6116. case 2:
  6117. WRITE(E_MUX0_PIN, LOW);
  6118. WRITE(E_MUX1_PIN, HIGH);
  6119. break;
  6120. case 3:
  6121. WRITE(E_MUX0_PIN, HIGH);
  6122. WRITE(E_MUX1_PIN, HIGH);
  6123. break;
  6124. default:
  6125. WRITE(E_MUX0_PIN, LOW);
  6126. WRITE(E_MUX1_PIN, LOW);
  6127. break;
  6128. }
  6129. delay(100);
  6130. #else //SNMM
  6131. if (tmp_extruder >= EXTRUDERS) {
  6132. SERIAL_ECHO_START;
  6133. SERIAL_ECHOPGM("T");
  6134. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6135. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6136. }
  6137. else {
  6138. #if EXTRUDERS > 1
  6139. boolean make_move = false;
  6140. #endif
  6141. if (code_seen('F')) {
  6142. #if EXTRUDERS > 1
  6143. make_move = true;
  6144. #endif
  6145. next_feedrate = code_value();
  6146. if (next_feedrate > 0.0) {
  6147. feedrate = next_feedrate;
  6148. }
  6149. }
  6150. #if EXTRUDERS > 1
  6151. if (tmp_extruder != active_extruder) {
  6152. // Save current position to return to after applying extruder offset
  6153. memcpy(destination, current_position, sizeof(destination));
  6154. // Offset extruder (only by XY)
  6155. int i;
  6156. for (i = 0; i < 2; i++) {
  6157. current_position[i] = current_position[i] -
  6158. extruder_offset[i][active_extruder] +
  6159. extruder_offset[i][tmp_extruder];
  6160. }
  6161. // Set the new active extruder and position
  6162. active_extruder = tmp_extruder;
  6163. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6164. // Move to the old position if 'F' was in the parameters
  6165. if (make_move && Stopped == false) {
  6166. prepare_move();
  6167. }
  6168. }
  6169. #endif
  6170. SERIAL_ECHO_START;
  6171. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6172. SERIAL_PROTOCOLLN((int)active_extruder);
  6173. }
  6174. #endif //SNMM
  6175. }
  6176. }
  6177. } // end if(code_seen('T')) (end of T codes)
  6178. else if (code_seen('D')) // D codes (debug)
  6179. {
  6180. switch((int)code_value())
  6181. {
  6182. #ifdef DEBUG_DCODES
  6183. case -1: //! D-1 - Endless loop
  6184. dcode__1(); break;
  6185. case 0: //! D0 - Reset
  6186. dcode_0(); break;
  6187. case 1: //! D1 - Clear EEPROM
  6188. dcode_1(); break;
  6189. case 2: //! D2 - Read/Write RAM
  6190. dcode_2(); break;
  6191. #endif //DEBUG_DCODES
  6192. #ifdef DEBUG_DCODE3
  6193. case 3: //! D3 - Read/Write EEPROM
  6194. dcode_3(); break;
  6195. #endif //DEBUG_DCODE3
  6196. #ifdef DEBUG_DCODES
  6197. case 4: //! D4 - Read/Write PIN
  6198. dcode_4(); break;
  6199. #endif //DEBUG_DCODES
  6200. #ifdef DEBUG_DCODE5
  6201. case 5: // D5 - Read/Write FLASH
  6202. dcode_5(); break;
  6203. break;
  6204. #endif //DEBUG_DCODE5
  6205. #ifdef DEBUG_DCODES
  6206. case 6: // D6 - Read/Write external FLASH
  6207. dcode_6(); break;
  6208. case 7: //! D7 - Read/Write Bootloader
  6209. dcode_7(); break;
  6210. case 8: //! D8 - Read/Write PINDA
  6211. dcode_8(); break;
  6212. case 9: //! D9 - Read/Write ADC
  6213. dcode_9(); break;
  6214. case 10: //! D10 - XYZ calibration = OK
  6215. dcode_10(); break;
  6216. #ifdef TMC2130
  6217. case 2130: //! D2130 - TMC2130
  6218. dcode_2130(); break;
  6219. #endif //TMC2130
  6220. #ifdef FILAMENT_SENSOR
  6221. case 9125: //! D9125 - FILAMENT_SENSOR
  6222. dcode_9125(); break;
  6223. #endif //FILAMENT_SENSOR
  6224. #endif //DEBUG_DCODES
  6225. }
  6226. }
  6227. else
  6228. {
  6229. SERIAL_ECHO_START;
  6230. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6231. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6232. SERIAL_ECHOLNPGM("\"(2)");
  6233. }
  6234. KEEPALIVE_STATE(NOT_BUSY);
  6235. ClearToSend();
  6236. }
  6237. void FlushSerialRequestResend()
  6238. {
  6239. //char cmdbuffer[bufindr][100]="Resend:";
  6240. MYSERIAL.flush();
  6241. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  6242. }
  6243. // Confirm the execution of a command, if sent from a serial line.
  6244. // Execution of a command from a SD card will not be confirmed.
  6245. void ClearToSend()
  6246. {
  6247. previous_millis_cmd = millis();
  6248. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6249. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  6250. }
  6251. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6252. void update_currents() {
  6253. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6254. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6255. float tmp_motor[3];
  6256. //SERIAL_ECHOLNPGM("Currents updated: ");
  6257. if (destination[Z_AXIS] < Z_SILENT) {
  6258. //SERIAL_ECHOLNPGM("LOW");
  6259. for (uint8_t i = 0; i < 3; i++) {
  6260. st_current_set(i, current_low[i]);
  6261. /*MYSERIAL.print(int(i));
  6262. SERIAL_ECHOPGM(": ");
  6263. MYSERIAL.println(current_low[i]);*/
  6264. }
  6265. }
  6266. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6267. //SERIAL_ECHOLNPGM("HIGH");
  6268. for (uint8_t i = 0; i < 3; i++) {
  6269. st_current_set(i, current_high[i]);
  6270. /*MYSERIAL.print(int(i));
  6271. SERIAL_ECHOPGM(": ");
  6272. MYSERIAL.println(current_high[i]);*/
  6273. }
  6274. }
  6275. else {
  6276. for (uint8_t i = 0; i < 3; i++) {
  6277. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6278. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6279. st_current_set(i, tmp_motor[i]);
  6280. /*MYSERIAL.print(int(i));
  6281. SERIAL_ECHOPGM(": ");
  6282. MYSERIAL.println(tmp_motor[i]);*/
  6283. }
  6284. }
  6285. }
  6286. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6287. void get_coordinates()
  6288. {
  6289. bool seen[4]={false,false,false,false};
  6290. for(int8_t i=0; i < NUM_AXIS; i++) {
  6291. if(code_seen(axis_codes[i]))
  6292. {
  6293. bool relative = axis_relative_modes[i] || relative_mode;
  6294. destination[i] = (float)code_value();
  6295. if (i == E_AXIS) {
  6296. float emult = extruder_multiplier[active_extruder];
  6297. if (emult != 1.) {
  6298. if (! relative) {
  6299. destination[i] -= current_position[i];
  6300. relative = true;
  6301. }
  6302. destination[i] *= emult;
  6303. }
  6304. }
  6305. if (relative)
  6306. destination[i] += current_position[i];
  6307. seen[i]=true;
  6308. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6309. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6310. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6311. }
  6312. else destination[i] = current_position[i]; //Are these else lines really needed?
  6313. }
  6314. if(code_seen('F')) {
  6315. next_feedrate = code_value();
  6316. #ifdef MAX_SILENT_FEEDRATE
  6317. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6318. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6319. #endif //MAX_SILENT_FEEDRATE
  6320. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6321. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6322. {
  6323. // float e_max_speed =
  6324. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6325. }
  6326. }
  6327. }
  6328. void get_arc_coordinates()
  6329. {
  6330. #ifdef SF_ARC_FIX
  6331. bool relative_mode_backup = relative_mode;
  6332. relative_mode = true;
  6333. #endif
  6334. get_coordinates();
  6335. #ifdef SF_ARC_FIX
  6336. relative_mode=relative_mode_backup;
  6337. #endif
  6338. if(code_seen('I')) {
  6339. offset[0] = code_value();
  6340. }
  6341. else {
  6342. offset[0] = 0.0;
  6343. }
  6344. if(code_seen('J')) {
  6345. offset[1] = code_value();
  6346. }
  6347. else {
  6348. offset[1] = 0.0;
  6349. }
  6350. }
  6351. void clamp_to_software_endstops(float target[3])
  6352. {
  6353. #ifdef DEBUG_DISABLE_SWLIMITS
  6354. return;
  6355. #endif //DEBUG_DISABLE_SWLIMITS
  6356. world2machine_clamp(target[0], target[1]);
  6357. // Clamp the Z coordinate.
  6358. if (min_software_endstops) {
  6359. float negative_z_offset = 0;
  6360. #ifdef ENABLE_AUTO_BED_LEVELING
  6361. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6362. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6363. #endif
  6364. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6365. }
  6366. if (max_software_endstops) {
  6367. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6368. }
  6369. }
  6370. #ifdef MESH_BED_LEVELING
  6371. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6372. float dx = x - current_position[X_AXIS];
  6373. float dy = y - current_position[Y_AXIS];
  6374. float dz = z - current_position[Z_AXIS];
  6375. int n_segments = 0;
  6376. if (mbl.active) {
  6377. float len = abs(dx) + abs(dy);
  6378. if (len > 0)
  6379. // Split to 3cm segments or shorter.
  6380. n_segments = int(ceil(len / 30.f));
  6381. }
  6382. if (n_segments > 1) {
  6383. float de = e - current_position[E_AXIS];
  6384. for (int i = 1; i < n_segments; ++ i) {
  6385. float t = float(i) / float(n_segments);
  6386. if (saved_printing || (mbl.active == false)) return;
  6387. plan_buffer_line(
  6388. current_position[X_AXIS] + t * dx,
  6389. current_position[Y_AXIS] + t * dy,
  6390. current_position[Z_AXIS] + t * dz,
  6391. current_position[E_AXIS] + t * de,
  6392. feed_rate, extruder);
  6393. }
  6394. }
  6395. // The rest of the path.
  6396. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6397. current_position[X_AXIS] = x;
  6398. current_position[Y_AXIS] = y;
  6399. current_position[Z_AXIS] = z;
  6400. current_position[E_AXIS] = e;
  6401. }
  6402. #endif // MESH_BED_LEVELING
  6403. void prepare_move()
  6404. {
  6405. clamp_to_software_endstops(destination);
  6406. previous_millis_cmd = millis();
  6407. // Do not use feedmultiply for E or Z only moves
  6408. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6409. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6410. }
  6411. else {
  6412. #ifdef MESH_BED_LEVELING
  6413. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6414. #else
  6415. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6416. #endif
  6417. }
  6418. for(int8_t i=0; i < NUM_AXIS; i++) {
  6419. current_position[i] = destination[i];
  6420. }
  6421. }
  6422. void prepare_arc_move(char isclockwise) {
  6423. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6424. // Trace the arc
  6425. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6426. // As far as the parser is concerned, the position is now == target. In reality the
  6427. // motion control system might still be processing the action and the real tool position
  6428. // in any intermediate location.
  6429. for(int8_t i=0; i < NUM_AXIS; i++) {
  6430. current_position[i] = destination[i];
  6431. }
  6432. previous_millis_cmd = millis();
  6433. }
  6434. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6435. #if defined(FAN_PIN)
  6436. #if CONTROLLERFAN_PIN == FAN_PIN
  6437. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6438. #endif
  6439. #endif
  6440. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6441. unsigned long lastMotorCheck = 0;
  6442. void controllerFan()
  6443. {
  6444. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6445. {
  6446. lastMotorCheck = millis();
  6447. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6448. #if EXTRUDERS > 2
  6449. || !READ(E2_ENABLE_PIN)
  6450. #endif
  6451. #if EXTRUDER > 1
  6452. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6453. || !READ(X2_ENABLE_PIN)
  6454. #endif
  6455. || !READ(E1_ENABLE_PIN)
  6456. #endif
  6457. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6458. {
  6459. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6460. }
  6461. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6462. {
  6463. digitalWrite(CONTROLLERFAN_PIN, 0);
  6464. analogWrite(CONTROLLERFAN_PIN, 0);
  6465. }
  6466. else
  6467. {
  6468. // allows digital or PWM fan output to be used (see M42 handling)
  6469. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6470. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6471. }
  6472. }
  6473. }
  6474. #endif
  6475. #ifdef TEMP_STAT_LEDS
  6476. static bool blue_led = false;
  6477. static bool red_led = false;
  6478. static uint32_t stat_update = 0;
  6479. void handle_status_leds(void) {
  6480. float max_temp = 0.0;
  6481. if(millis() > stat_update) {
  6482. stat_update += 500; // Update every 0.5s
  6483. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6484. max_temp = max(max_temp, degHotend(cur_extruder));
  6485. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6486. }
  6487. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6488. max_temp = max(max_temp, degTargetBed());
  6489. max_temp = max(max_temp, degBed());
  6490. #endif
  6491. if((max_temp > 55.0) && (red_led == false)) {
  6492. digitalWrite(STAT_LED_RED, 1);
  6493. digitalWrite(STAT_LED_BLUE, 0);
  6494. red_led = true;
  6495. blue_led = false;
  6496. }
  6497. if((max_temp < 54.0) && (blue_led == false)) {
  6498. digitalWrite(STAT_LED_RED, 0);
  6499. digitalWrite(STAT_LED_BLUE, 1);
  6500. red_led = false;
  6501. blue_led = true;
  6502. }
  6503. }
  6504. }
  6505. #endif
  6506. #ifdef SAFETYTIMER
  6507. /**
  6508. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6509. *
  6510. * Full screen blocking notification message is shown after heater turning off.
  6511. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6512. * damage print.
  6513. *
  6514. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6515. */
  6516. static void handleSafetyTimer()
  6517. {
  6518. #if (EXTRUDERS > 1)
  6519. #error Implemented only for one extruder.
  6520. #endif //(EXTRUDERS > 1)
  6521. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6522. {
  6523. safetyTimer.stop();
  6524. }
  6525. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6526. {
  6527. safetyTimer.start();
  6528. }
  6529. else if (safetyTimer.expired(safetytimer_inactive_time))
  6530. {
  6531. setTargetBed(0);
  6532. setAllTargetHotends(0);
  6533. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6534. }
  6535. }
  6536. #endif //SAFETYTIMER
  6537. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6538. {
  6539. #ifdef FILAMENT_SENSOR
  6540. if (mmu_enabled == false)
  6541. {
  6542. if (mcode_in_progress != 600) //M600 not in progress
  6543. {
  6544. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6545. {
  6546. if (fsensor_check_autoload())
  6547. {
  6548. fsensor_autoload_check_stop();
  6549. if (degHotend0() > EXTRUDE_MINTEMP)
  6550. {
  6551. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6552. tone(BEEPER, 1000);
  6553. delay_keep_alive(50);
  6554. noTone(BEEPER);
  6555. loading_flag = true;
  6556. enquecommand_front_P((PSTR("M701")));
  6557. }
  6558. else
  6559. {
  6560. lcd_update_enable(false);
  6561. show_preheat_nozzle_warning();
  6562. lcd_update_enable(true);
  6563. }
  6564. }
  6565. }
  6566. else
  6567. {
  6568. fsensor_autoload_check_stop();
  6569. fsensor_update();
  6570. }
  6571. }
  6572. }
  6573. #endif //FILAMENT_SENSOR
  6574. #ifdef SAFETYTIMER
  6575. handleSafetyTimer();
  6576. #endif //SAFETYTIMER
  6577. #if defined(KILL_PIN) && KILL_PIN > -1
  6578. static int killCount = 0; // make the inactivity button a bit less responsive
  6579. const int KILL_DELAY = 10000;
  6580. #endif
  6581. if(buflen < (BUFSIZE-1)){
  6582. get_command();
  6583. }
  6584. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6585. if(max_inactive_time)
  6586. kill(_n(""), 4);
  6587. if(stepper_inactive_time) {
  6588. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6589. {
  6590. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6591. disable_x();
  6592. disable_y();
  6593. disable_z();
  6594. disable_e0();
  6595. disable_e1();
  6596. disable_e2();
  6597. }
  6598. }
  6599. }
  6600. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6601. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6602. {
  6603. chdkActive = false;
  6604. WRITE(CHDK, LOW);
  6605. }
  6606. #endif
  6607. #if defined(KILL_PIN) && KILL_PIN > -1
  6608. // Check if the kill button was pressed and wait just in case it was an accidental
  6609. // key kill key press
  6610. // -------------------------------------------------------------------------------
  6611. if( 0 == READ(KILL_PIN) )
  6612. {
  6613. killCount++;
  6614. }
  6615. else if (killCount > 0)
  6616. {
  6617. killCount--;
  6618. }
  6619. // Exceeded threshold and we can confirm that it was not accidental
  6620. // KILL the machine
  6621. // ----------------------------------------------------------------
  6622. if ( killCount >= KILL_DELAY)
  6623. {
  6624. kill("", 5);
  6625. }
  6626. #endif
  6627. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6628. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6629. #endif
  6630. #ifdef EXTRUDER_RUNOUT_PREVENT
  6631. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6632. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6633. {
  6634. bool oldstatus=READ(E0_ENABLE_PIN);
  6635. enable_e0();
  6636. float oldepos=current_position[E_AXIS];
  6637. float oldedes=destination[E_AXIS];
  6638. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6639. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  6640. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  6641. current_position[E_AXIS]=oldepos;
  6642. destination[E_AXIS]=oldedes;
  6643. plan_set_e_position(oldepos);
  6644. previous_millis_cmd=millis();
  6645. st_synchronize();
  6646. WRITE(E0_ENABLE_PIN,oldstatus);
  6647. }
  6648. #endif
  6649. #ifdef TEMP_STAT_LEDS
  6650. handle_status_leds();
  6651. #endif
  6652. check_axes_activity();
  6653. mmu_loop();
  6654. }
  6655. void kill(const char *full_screen_message, unsigned char id)
  6656. {
  6657. printf_P(_N("KILL: %d\n"), id);
  6658. //return;
  6659. cli(); // Stop interrupts
  6660. disable_heater();
  6661. disable_x();
  6662. // SERIAL_ECHOLNPGM("kill - disable Y");
  6663. disable_y();
  6664. disable_z();
  6665. disable_e0();
  6666. disable_e1();
  6667. disable_e2();
  6668. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6669. pinMode(PS_ON_PIN,INPUT);
  6670. #endif
  6671. SERIAL_ERROR_START;
  6672. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6673. if (full_screen_message != NULL) {
  6674. SERIAL_ERRORLNRPGM(full_screen_message);
  6675. lcd_display_message_fullscreen_P(full_screen_message);
  6676. } else {
  6677. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED c=0 r=0
  6678. }
  6679. // FMC small patch to update the LCD before ending
  6680. sei(); // enable interrupts
  6681. for ( int i=5; i--; lcd_update(0))
  6682. {
  6683. delay(200);
  6684. }
  6685. cli(); // disable interrupts
  6686. suicide();
  6687. while(1)
  6688. {
  6689. #ifdef WATCHDOG
  6690. wdt_reset();
  6691. #endif //WATCHDOG
  6692. /* Intentionally left empty */
  6693. } // Wait for reset
  6694. }
  6695. void Stop()
  6696. {
  6697. disable_heater();
  6698. if(Stopped == false) {
  6699. Stopped = true;
  6700. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6701. SERIAL_ERROR_START;
  6702. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6703. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6704. }
  6705. }
  6706. bool IsStopped() { return Stopped; };
  6707. #ifdef FAST_PWM_FAN
  6708. void setPwmFrequency(uint8_t pin, int val)
  6709. {
  6710. val &= 0x07;
  6711. switch(digitalPinToTimer(pin))
  6712. {
  6713. #if defined(TCCR0A)
  6714. case TIMER0A:
  6715. case TIMER0B:
  6716. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6717. // TCCR0B |= val;
  6718. break;
  6719. #endif
  6720. #if defined(TCCR1A)
  6721. case TIMER1A:
  6722. case TIMER1B:
  6723. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6724. // TCCR1B |= val;
  6725. break;
  6726. #endif
  6727. #if defined(TCCR2)
  6728. case TIMER2:
  6729. case TIMER2:
  6730. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6731. TCCR2 |= val;
  6732. break;
  6733. #endif
  6734. #if defined(TCCR2A)
  6735. case TIMER2A:
  6736. case TIMER2B:
  6737. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6738. TCCR2B |= val;
  6739. break;
  6740. #endif
  6741. #if defined(TCCR3A)
  6742. case TIMER3A:
  6743. case TIMER3B:
  6744. case TIMER3C:
  6745. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6746. TCCR3B |= val;
  6747. break;
  6748. #endif
  6749. #if defined(TCCR4A)
  6750. case TIMER4A:
  6751. case TIMER4B:
  6752. case TIMER4C:
  6753. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6754. TCCR4B |= val;
  6755. break;
  6756. #endif
  6757. #if defined(TCCR5A)
  6758. case TIMER5A:
  6759. case TIMER5B:
  6760. case TIMER5C:
  6761. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6762. TCCR5B |= val;
  6763. break;
  6764. #endif
  6765. }
  6766. }
  6767. #endif //FAST_PWM_FAN
  6768. //! @brief Get and validate extruder number
  6769. //!
  6770. //! If it is not specified, active_extruder is returned in parameter extruder.
  6771. //! @param [in] code M code number
  6772. //! @param [out] extruder
  6773. //! @return error
  6774. //! @retval true Invalid extruder specified in T code
  6775. //! @retval false Valid extruder specified in T code, or not specifiead
  6776. bool setTargetedHotend(int code, uint8_t &extruder)
  6777. {
  6778. extruder = active_extruder;
  6779. if(code_seen('T')) {
  6780. extruder = code_value();
  6781. if(extruder >= EXTRUDERS) {
  6782. SERIAL_ECHO_START;
  6783. switch(code){
  6784. case 104:
  6785. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6786. break;
  6787. case 105:
  6788. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6789. break;
  6790. case 109:
  6791. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6792. break;
  6793. case 218:
  6794. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6795. break;
  6796. case 221:
  6797. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6798. break;
  6799. }
  6800. SERIAL_PROTOCOLLN((int)extruder);
  6801. return true;
  6802. }
  6803. }
  6804. return false;
  6805. }
  6806. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6807. {
  6808. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6809. {
  6810. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6811. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6812. }
  6813. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6814. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6815. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6816. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6817. total_filament_used = 0;
  6818. }
  6819. float calculate_extruder_multiplier(float diameter) {
  6820. float out = 1.f;
  6821. if (cs.volumetric_enabled && diameter > 0.f) {
  6822. float area = M_PI * diameter * diameter * 0.25;
  6823. out = 1.f / area;
  6824. }
  6825. if (extrudemultiply != 100)
  6826. out *= float(extrudemultiply) * 0.01f;
  6827. return out;
  6828. }
  6829. void calculate_extruder_multipliers() {
  6830. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  6831. #if EXTRUDERS > 1
  6832. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  6833. #if EXTRUDERS > 2
  6834. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  6835. #endif
  6836. #endif
  6837. }
  6838. void delay_keep_alive(unsigned int ms)
  6839. {
  6840. for (;;) {
  6841. manage_heater();
  6842. // Manage inactivity, but don't disable steppers on timeout.
  6843. manage_inactivity(true);
  6844. lcd_update(0);
  6845. if (ms == 0)
  6846. break;
  6847. else if (ms >= 50) {
  6848. delay(50);
  6849. ms -= 50;
  6850. } else {
  6851. delay(ms);
  6852. ms = 0;
  6853. }
  6854. }
  6855. }
  6856. static void wait_for_heater(long codenum, uint8_t extruder) {
  6857. #ifdef TEMP_RESIDENCY_TIME
  6858. long residencyStart;
  6859. residencyStart = -1;
  6860. /* continue to loop until we have reached the target temp
  6861. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6862. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6863. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6864. #else
  6865. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6866. #endif //TEMP_RESIDENCY_TIME
  6867. if ((millis() - codenum) > 1000UL)
  6868. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6869. if (!farm_mode) {
  6870. SERIAL_PROTOCOLPGM("T:");
  6871. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  6872. SERIAL_PROTOCOLPGM(" E:");
  6873. SERIAL_PROTOCOL((int)extruder);
  6874. #ifdef TEMP_RESIDENCY_TIME
  6875. SERIAL_PROTOCOLPGM(" W:");
  6876. if (residencyStart > -1)
  6877. {
  6878. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6879. SERIAL_PROTOCOLLN(codenum);
  6880. }
  6881. else
  6882. {
  6883. SERIAL_PROTOCOLLN("?");
  6884. }
  6885. }
  6886. #else
  6887. SERIAL_PROTOCOLLN("");
  6888. #endif
  6889. codenum = millis();
  6890. }
  6891. manage_heater();
  6892. manage_inactivity(true); //do not disable steppers
  6893. lcd_update(0);
  6894. #ifdef TEMP_RESIDENCY_TIME
  6895. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6896. or when current temp falls outside the hysteresis after target temp was reached */
  6897. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  6898. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  6899. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  6900. {
  6901. residencyStart = millis();
  6902. }
  6903. #endif //TEMP_RESIDENCY_TIME
  6904. }
  6905. }
  6906. void check_babystep()
  6907. {
  6908. int babystep_z;
  6909. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6910. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6911. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6912. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6913. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6914. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6915. lcd_update_enable(true);
  6916. }
  6917. }
  6918. #ifdef DIS
  6919. void d_setup()
  6920. {
  6921. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6922. pinMode(D_DATA, INPUT_PULLUP);
  6923. pinMode(D_REQUIRE, OUTPUT);
  6924. digitalWrite(D_REQUIRE, HIGH);
  6925. }
  6926. float d_ReadData()
  6927. {
  6928. int digit[13];
  6929. String mergeOutput;
  6930. float output;
  6931. digitalWrite(D_REQUIRE, HIGH);
  6932. for (int i = 0; i<13; i++)
  6933. {
  6934. for (int j = 0; j < 4; j++)
  6935. {
  6936. while (digitalRead(D_DATACLOCK) == LOW) {}
  6937. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6938. bitWrite(digit[i], j, digitalRead(D_DATA));
  6939. }
  6940. }
  6941. digitalWrite(D_REQUIRE, LOW);
  6942. mergeOutput = "";
  6943. output = 0;
  6944. for (int r = 5; r <= 10; r++) //Merge digits
  6945. {
  6946. mergeOutput += digit[r];
  6947. }
  6948. output = mergeOutput.toFloat();
  6949. if (digit[4] == 8) //Handle sign
  6950. {
  6951. output *= -1;
  6952. }
  6953. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6954. {
  6955. output /= 10;
  6956. }
  6957. return output;
  6958. }
  6959. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6960. int t1 = 0;
  6961. int t_delay = 0;
  6962. int digit[13];
  6963. int m;
  6964. char str[3];
  6965. //String mergeOutput;
  6966. char mergeOutput[15];
  6967. float output;
  6968. int mesh_point = 0; //index number of calibration point
  6969. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6970. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6971. float mesh_home_z_search = 4;
  6972. float row[x_points_num];
  6973. int ix = 0;
  6974. int iy = 0;
  6975. const char* filename_wldsd = "wldsd.txt";
  6976. char data_wldsd[70];
  6977. char numb_wldsd[10];
  6978. d_setup();
  6979. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6980. // We don't know where we are! HOME!
  6981. // Push the commands to the front of the message queue in the reverse order!
  6982. // There shall be always enough space reserved for these commands.
  6983. repeatcommand_front(); // repeat G80 with all its parameters
  6984. enquecommand_front_P((PSTR("G28 W0")));
  6985. enquecommand_front_P((PSTR("G1 Z5")));
  6986. return;
  6987. }
  6988. unsigned int custom_message_type_old = custom_message_type;
  6989. unsigned int custom_message_state_old = custom_message_state;
  6990. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  6991. custom_message_state = (x_points_num * y_points_num) + 10;
  6992. lcd_update(1);
  6993. mbl.reset();
  6994. babystep_undo();
  6995. card.openFile(filename_wldsd, false);
  6996. current_position[Z_AXIS] = mesh_home_z_search;
  6997. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6998. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6999. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7000. int l_feedmultiply = setup_for_endstop_move(false);
  7001. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7002. SERIAL_PROTOCOL(x_points_num);
  7003. SERIAL_PROTOCOLPGM(",");
  7004. SERIAL_PROTOCOL(y_points_num);
  7005. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7006. SERIAL_PROTOCOL(mesh_home_z_search);
  7007. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7008. SERIAL_PROTOCOL(x_dimension);
  7009. SERIAL_PROTOCOLPGM(",");
  7010. SERIAL_PROTOCOL(y_dimension);
  7011. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7012. while (mesh_point != x_points_num * y_points_num) {
  7013. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7014. iy = mesh_point / x_points_num;
  7015. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7016. float z0 = 0.f;
  7017. current_position[Z_AXIS] = mesh_home_z_search;
  7018. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7019. st_synchronize();
  7020. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7021. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7022. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7023. st_synchronize();
  7024. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7025. break;
  7026. card.closefile();
  7027. }
  7028. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7029. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7030. //strcat(data_wldsd, numb_wldsd);
  7031. //MYSERIAL.println(data_wldsd);
  7032. //delay(1000);
  7033. //delay(3000);
  7034. //t1 = millis();
  7035. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7036. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7037. memset(digit, 0, sizeof(digit));
  7038. //cli();
  7039. digitalWrite(D_REQUIRE, LOW);
  7040. for (int i = 0; i<13; i++)
  7041. {
  7042. //t1 = millis();
  7043. for (int j = 0; j < 4; j++)
  7044. {
  7045. while (digitalRead(D_DATACLOCK) == LOW) {}
  7046. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7047. bitWrite(digit[i], j, digitalRead(D_DATA));
  7048. }
  7049. //t_delay = (millis() - t1);
  7050. //SERIAL_PROTOCOLPGM(" ");
  7051. //SERIAL_PROTOCOL_F(t_delay, 5);
  7052. //SERIAL_PROTOCOLPGM(" ");
  7053. }
  7054. //sei();
  7055. digitalWrite(D_REQUIRE, HIGH);
  7056. mergeOutput[0] = '\0';
  7057. output = 0;
  7058. for (int r = 5; r <= 10; r++) //Merge digits
  7059. {
  7060. sprintf(str, "%d", digit[r]);
  7061. strcat(mergeOutput, str);
  7062. }
  7063. output = atof(mergeOutput);
  7064. if (digit[4] == 8) //Handle sign
  7065. {
  7066. output *= -1;
  7067. }
  7068. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7069. {
  7070. output *= 0.1;
  7071. }
  7072. //output = d_ReadData();
  7073. //row[ix] = current_position[Z_AXIS];
  7074. memset(data_wldsd, 0, sizeof(data_wldsd));
  7075. for (int i = 0; i <3; i++) {
  7076. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7077. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7078. strcat(data_wldsd, numb_wldsd);
  7079. strcat(data_wldsd, ";");
  7080. }
  7081. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7082. dtostrf(output, 8, 5, numb_wldsd);
  7083. strcat(data_wldsd, numb_wldsd);
  7084. //strcat(data_wldsd, ";");
  7085. card.write_command(data_wldsd);
  7086. //row[ix] = d_ReadData();
  7087. row[ix] = output; // current_position[Z_AXIS];
  7088. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7089. for (int i = 0; i < x_points_num; i++) {
  7090. SERIAL_PROTOCOLPGM(" ");
  7091. SERIAL_PROTOCOL_F(row[i], 5);
  7092. }
  7093. SERIAL_PROTOCOLPGM("\n");
  7094. }
  7095. custom_message_state--;
  7096. mesh_point++;
  7097. lcd_update(1);
  7098. }
  7099. card.closefile();
  7100. clean_up_after_endstop_move(l_feedmultiply);
  7101. }
  7102. #endif
  7103. void temp_compensation_start() {
  7104. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  7105. custom_message_state = PINDA_HEAT_T + 1;
  7106. lcd_update(2);
  7107. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7108. current_position[E_AXIS] -= default_retraction;
  7109. }
  7110. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7111. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7112. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7113. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7114. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7115. st_synchronize();
  7116. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7117. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7118. delay_keep_alive(1000);
  7119. custom_message_state = PINDA_HEAT_T - i;
  7120. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7121. else lcd_update(1);
  7122. }
  7123. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7124. custom_message_state = 0;
  7125. }
  7126. void temp_compensation_apply() {
  7127. int i_add;
  7128. int z_shift = 0;
  7129. float z_shift_mm;
  7130. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7131. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7132. i_add = (target_temperature_bed - 60) / 10;
  7133. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7134. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7135. }else {
  7136. //interpolation
  7137. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7138. }
  7139. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7140. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7141. st_synchronize();
  7142. plan_set_z_position(current_position[Z_AXIS]);
  7143. }
  7144. else {
  7145. //we have no temp compensation data
  7146. }
  7147. }
  7148. float temp_comp_interpolation(float inp_temperature) {
  7149. //cubic spline interpolation
  7150. int n, i, j;
  7151. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7152. int shift[10];
  7153. int temp_C[10];
  7154. n = 6; //number of measured points
  7155. shift[0] = 0;
  7156. for (i = 0; i < n; i++) {
  7157. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7158. temp_C[i] = 50 + i * 10; //temperature in C
  7159. #ifdef PINDA_THERMISTOR
  7160. temp_C[i] = 35 + i * 5; //temperature in C
  7161. #else
  7162. temp_C[i] = 50 + i * 10; //temperature in C
  7163. #endif
  7164. x[i] = (float)temp_C[i];
  7165. f[i] = (float)shift[i];
  7166. }
  7167. if (inp_temperature < x[0]) return 0;
  7168. for (i = n - 1; i>0; i--) {
  7169. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7170. h[i - 1] = x[i] - x[i - 1];
  7171. }
  7172. //*********** formation of h, s , f matrix **************
  7173. for (i = 1; i<n - 1; i++) {
  7174. m[i][i] = 2 * (h[i - 1] + h[i]);
  7175. if (i != 1) {
  7176. m[i][i - 1] = h[i - 1];
  7177. m[i - 1][i] = h[i - 1];
  7178. }
  7179. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7180. }
  7181. //*********** forward elimination **************
  7182. for (i = 1; i<n - 2; i++) {
  7183. temp = (m[i + 1][i] / m[i][i]);
  7184. for (j = 1; j <= n - 1; j++)
  7185. m[i + 1][j] -= temp*m[i][j];
  7186. }
  7187. //*********** backward substitution *********
  7188. for (i = n - 2; i>0; i--) {
  7189. sum = 0;
  7190. for (j = i; j <= n - 2; j++)
  7191. sum += m[i][j] * s[j];
  7192. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7193. }
  7194. for (i = 0; i<n - 1; i++)
  7195. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7196. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7197. b = s[i] / 2;
  7198. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7199. d = f[i];
  7200. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7201. }
  7202. return sum;
  7203. }
  7204. #ifdef PINDA_THERMISTOR
  7205. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7206. {
  7207. if (!temp_cal_active) return 0;
  7208. if (!calibration_status_pinda()) return 0;
  7209. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7210. }
  7211. #endif //PINDA_THERMISTOR
  7212. void long_pause() //long pause print
  7213. {
  7214. st_synchronize();
  7215. start_pause_print = millis();
  7216. //retract
  7217. current_position[E_AXIS] -= default_retraction;
  7218. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7219. //lift z
  7220. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7221. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7222. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7223. //Move XY to side
  7224. current_position[X_AXIS] = X_PAUSE_POS;
  7225. current_position[Y_AXIS] = Y_PAUSE_POS;
  7226. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7227. // Turn off the print fan
  7228. fanSpeed = 0;
  7229. st_synchronize();
  7230. }
  7231. void serialecho_temperatures() {
  7232. float tt = degHotend(active_extruder);
  7233. SERIAL_PROTOCOLPGM("T:");
  7234. SERIAL_PROTOCOL(tt);
  7235. SERIAL_PROTOCOLPGM(" E:");
  7236. SERIAL_PROTOCOL((int)active_extruder);
  7237. SERIAL_PROTOCOLPGM(" B:");
  7238. SERIAL_PROTOCOL_F(degBed(), 1);
  7239. SERIAL_PROTOCOLLN("");
  7240. }
  7241. extern uint32_t sdpos_atomic;
  7242. #ifdef UVLO_SUPPORT
  7243. void uvlo_()
  7244. {
  7245. unsigned long time_start = millis();
  7246. bool sd_print = card.sdprinting;
  7247. // Conserve power as soon as possible.
  7248. disable_x();
  7249. disable_y();
  7250. #ifdef TMC2130
  7251. tmc2130_set_current_h(Z_AXIS, 20);
  7252. tmc2130_set_current_r(Z_AXIS, 20);
  7253. tmc2130_set_current_h(E_AXIS, 20);
  7254. tmc2130_set_current_r(E_AXIS, 20);
  7255. #endif //TMC2130
  7256. // Indicate that the interrupt has been triggered.
  7257. // SERIAL_ECHOLNPGM("UVLO");
  7258. // Read out the current Z motor microstep counter. This will be later used
  7259. // for reaching the zero full step before powering off.
  7260. uint16_t z_microsteps = 0;
  7261. #ifdef TMC2130
  7262. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7263. #endif //TMC2130
  7264. // Calculate the file position, from which to resume this print.
  7265. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7266. {
  7267. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7268. sd_position -= sdlen_planner;
  7269. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7270. sd_position -= sdlen_cmdqueue;
  7271. if (sd_position < 0) sd_position = 0;
  7272. }
  7273. // Backup the feedrate in mm/min.
  7274. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7275. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7276. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7277. // are in action.
  7278. planner_abort_hard();
  7279. // Store the current extruder position.
  7280. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7281. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7282. // Clean the input command queue.
  7283. cmdqueue_reset();
  7284. card.sdprinting = false;
  7285. // card.closefile();
  7286. // Enable stepper driver interrupt to move Z axis.
  7287. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7288. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7289. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7290. sei();
  7291. plan_buffer_line(
  7292. current_position[X_AXIS],
  7293. current_position[Y_AXIS],
  7294. current_position[Z_AXIS],
  7295. current_position[E_AXIS] - default_retraction,
  7296. 95, active_extruder);
  7297. st_synchronize();
  7298. disable_e0();
  7299. plan_buffer_line(
  7300. current_position[X_AXIS],
  7301. current_position[Y_AXIS],
  7302. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7303. current_position[E_AXIS] - default_retraction,
  7304. 40, active_extruder);
  7305. st_synchronize();
  7306. disable_e0();
  7307. plan_buffer_line(
  7308. current_position[X_AXIS],
  7309. current_position[Y_AXIS],
  7310. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7311. current_position[E_AXIS] - default_retraction,
  7312. 40, active_extruder);
  7313. st_synchronize();
  7314. disable_e0();
  7315. disable_z();
  7316. // Move Z up to the next 0th full step.
  7317. // Write the file position.
  7318. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7319. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7320. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7321. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7322. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7323. // Scale the z value to 1u resolution.
  7324. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7325. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7326. }
  7327. // Read out the current Z motor microstep counter. This will be later used
  7328. // for reaching the zero full step before powering off.
  7329. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7330. // Store the current position.
  7331. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7332. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7333. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7334. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7335. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7336. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7337. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7338. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7339. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7340. #if EXTRUDERS > 1
  7341. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7342. #if EXTRUDERS > 2
  7343. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7344. #endif
  7345. #endif
  7346. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7347. // Finaly store the "power outage" flag.
  7348. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7349. st_synchronize();
  7350. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7351. disable_z();
  7352. // Increment power failure counter
  7353. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7354. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7355. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7356. #if 0
  7357. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7358. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7359. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7360. st_synchronize();
  7361. #endif
  7362. wdt_enable(WDTO_500MS);
  7363. WRITE(BEEPER,HIGH);
  7364. while(1)
  7365. ;
  7366. }
  7367. void uvlo_tiny()
  7368. {
  7369. uint16_t z_microsteps=0;
  7370. // Conserve power as soon as possible.
  7371. disable_x();
  7372. disable_y();
  7373. disable_e0();
  7374. #ifdef TMC2130
  7375. tmc2130_set_current_h(Z_AXIS, 20);
  7376. tmc2130_set_current_r(Z_AXIS, 20);
  7377. #endif //TMC2130
  7378. // Read out the current Z motor microstep counter
  7379. #ifdef TMC2130
  7380. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7381. #endif //TMC2130
  7382. planner_abort_hard();
  7383. sei();
  7384. plan_buffer_line(
  7385. current_position[X_AXIS],
  7386. current_position[Y_AXIS],
  7387. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7388. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/cs.axis_steps_per_unit[Z_AXIS],
  7389. current_position[E_AXIS],
  7390. 40, active_extruder);
  7391. st_synchronize();
  7392. disable_z();
  7393. // Finaly store the "power outage" flag.
  7394. //if(sd_print)
  7395. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7396. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7397. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7398. // Increment power failure counter
  7399. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7400. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7401. wdt_enable(WDTO_500MS);
  7402. WRITE(BEEPER,HIGH);
  7403. while(1)
  7404. ;
  7405. }
  7406. #endif //UVLO_SUPPORT
  7407. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7408. void setup_fan_interrupt() {
  7409. //INT7
  7410. DDRE &= ~(1 << 7); //input pin
  7411. PORTE &= ~(1 << 7); //no internal pull-up
  7412. //start with sensing rising edge
  7413. EICRB &= ~(1 << 6);
  7414. EICRB |= (1 << 7);
  7415. //enable INT7 interrupt
  7416. EIMSK |= (1 << 7);
  7417. }
  7418. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7419. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7420. ISR(INT7_vect) {
  7421. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7422. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7423. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7424. t_fan_rising_edge = millis_nc();
  7425. }
  7426. else { //interrupt was triggered by falling edge
  7427. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7428. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7429. }
  7430. }
  7431. EICRB ^= (1 << 6); //change edge
  7432. }
  7433. #endif
  7434. #ifdef UVLO_SUPPORT
  7435. void setup_uvlo_interrupt() {
  7436. DDRE &= ~(1 << 4); //input pin
  7437. PORTE &= ~(1 << 4); //no internal pull-up
  7438. //sensing falling edge
  7439. EICRB |= (1 << 0);
  7440. EICRB &= ~(1 << 1);
  7441. //enable INT4 interrupt
  7442. EIMSK |= (1 << 4);
  7443. }
  7444. ISR(INT4_vect) {
  7445. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7446. SERIAL_ECHOLNPGM("INT4");
  7447. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7448. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7449. }
  7450. void recover_print(uint8_t automatic) {
  7451. char cmd[30];
  7452. lcd_update_enable(true);
  7453. lcd_update(2);
  7454. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7455. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7456. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7457. // Lift the print head, so one may remove the excess priming material.
  7458. if(!bTiny&&(current_position[Z_AXIS]<25))
  7459. enquecommand_P(PSTR("G1 Z25 F800"));
  7460. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7461. enquecommand_P(PSTR("G28 X Y"));
  7462. // Set the target bed and nozzle temperatures and wait.
  7463. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7464. enquecommand(cmd);
  7465. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7466. enquecommand(cmd);
  7467. enquecommand_P(PSTR("M83")); //E axis relative mode
  7468. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7469. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7470. if(automatic == 0){
  7471. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7472. }
  7473. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7474. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7475. // Restart the print.
  7476. restore_print_from_eeprom();
  7477. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7478. }
  7479. void recover_machine_state_after_power_panic(bool bTiny)
  7480. {
  7481. char cmd[30];
  7482. // 1) Recover the logical cordinates at the time of the power panic.
  7483. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7484. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7485. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7486. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7487. // The current position after power panic is moved to the next closest 0th full step.
  7488. if(bTiny)
  7489. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7490. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7491. else
  7492. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7493. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7494. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7495. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7496. sprintf_P(cmd, PSTR("G92 E"));
  7497. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7498. enquecommand(cmd);
  7499. }
  7500. memcpy(destination, current_position, sizeof(destination));
  7501. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7502. print_world_coordinates();
  7503. // 2) Initialize the logical to physical coordinate system transformation.
  7504. world2machine_initialize();
  7505. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7506. mbl.active = false;
  7507. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7508. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7509. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7510. // Scale the z value to 10u resolution.
  7511. int16_t v;
  7512. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7513. if (v != 0)
  7514. mbl.active = true;
  7515. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7516. }
  7517. if (mbl.active)
  7518. mbl.upsample_3x3();
  7519. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7520. // print_mesh_bed_leveling_table();
  7521. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7522. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7523. babystep_load();
  7524. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7525. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7526. // 6) Power up the motors, mark their positions as known.
  7527. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7528. axis_known_position[X_AXIS] = true; enable_x();
  7529. axis_known_position[Y_AXIS] = true; enable_y();
  7530. axis_known_position[Z_AXIS] = true; enable_z();
  7531. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7532. print_physical_coordinates();
  7533. // 7) Recover the target temperatures.
  7534. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7535. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7536. // 8) Recover extruder multipilers
  7537. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7538. #if EXTRUDERS > 1
  7539. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7540. #if EXTRUDERS > 2
  7541. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7542. #endif
  7543. #endif
  7544. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7545. }
  7546. void restore_print_from_eeprom() {
  7547. int feedrate_rec;
  7548. uint8_t fan_speed_rec;
  7549. char cmd[30];
  7550. char filename[13];
  7551. uint8_t depth = 0;
  7552. char dir_name[9];
  7553. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7554. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7555. SERIAL_ECHOPGM("Feedrate:");
  7556. MYSERIAL.println(feedrate_rec);
  7557. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7558. MYSERIAL.println(int(depth));
  7559. for (int i = 0; i < depth; i++) {
  7560. for (int j = 0; j < 8; j++) {
  7561. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7562. }
  7563. dir_name[8] = '\0';
  7564. MYSERIAL.println(dir_name);
  7565. strcpy(dir_names[i], dir_name);
  7566. card.chdir(dir_name);
  7567. }
  7568. for (int i = 0; i < 8; i++) {
  7569. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7570. }
  7571. filename[8] = '\0';
  7572. MYSERIAL.print(filename);
  7573. strcat_P(filename, PSTR(".gco"));
  7574. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7575. enquecommand(cmd);
  7576. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7577. SERIAL_ECHOPGM("Position read from eeprom:");
  7578. MYSERIAL.println(position);
  7579. // E axis relative mode.
  7580. enquecommand_P(PSTR("M83"));
  7581. // Move to the XY print position in logical coordinates, where the print has been killed.
  7582. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7583. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7584. strcat_P(cmd, PSTR(" F2000"));
  7585. enquecommand(cmd);
  7586. // Move the Z axis down to the print, in logical coordinates.
  7587. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7588. enquecommand(cmd);
  7589. // Unretract.
  7590. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7591. // Set the feedrate saved at the power panic.
  7592. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7593. enquecommand(cmd);
  7594. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7595. {
  7596. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7597. }
  7598. // Set the fan speed saved at the power panic.
  7599. strcpy_P(cmd, PSTR("M106 S"));
  7600. strcat(cmd, itostr3(int(fan_speed_rec)));
  7601. enquecommand(cmd);
  7602. // Set a position in the file.
  7603. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7604. enquecommand(cmd);
  7605. enquecommand_P(PSTR("G4 S0"));
  7606. enquecommand_P(PSTR("PRUSA uvlo"));
  7607. }
  7608. #endif //UVLO_SUPPORT
  7609. //! @brief Immediately stop print moves
  7610. //!
  7611. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  7612. //! If printing from sd card, position in file is saved.
  7613. //! If printing from USB, line number is saved.
  7614. //!
  7615. //! @param z_move
  7616. //! @param e_move
  7617. void stop_and_save_print_to_ram(float z_move, float e_move)
  7618. {
  7619. if (saved_printing) return;
  7620. #if 0
  7621. unsigned char nplanner_blocks;
  7622. #endif
  7623. unsigned char nlines;
  7624. uint16_t sdlen_planner;
  7625. uint16_t sdlen_cmdqueue;
  7626. cli();
  7627. if (card.sdprinting) {
  7628. #if 0
  7629. nplanner_blocks = number_of_blocks();
  7630. #endif
  7631. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7632. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7633. saved_sdpos -= sdlen_planner;
  7634. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7635. saved_sdpos -= sdlen_cmdqueue;
  7636. saved_printing_type = PRINTING_TYPE_SD;
  7637. }
  7638. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7639. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7640. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7641. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7642. saved_sdpos -= nlines;
  7643. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7644. saved_printing_type = PRINTING_TYPE_USB;
  7645. }
  7646. else {
  7647. //not sd printing nor usb printing
  7648. }
  7649. #if 0
  7650. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7651. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7652. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7653. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7654. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7655. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7656. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7657. {
  7658. card.setIndex(saved_sdpos);
  7659. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7660. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7661. MYSERIAL.print(char(card.get()));
  7662. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7663. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7664. MYSERIAL.print(char(card.get()));
  7665. SERIAL_ECHOLNPGM("End of command buffer");
  7666. }
  7667. {
  7668. // Print the content of the planner buffer, line by line:
  7669. card.setIndex(saved_sdpos);
  7670. int8_t iline = 0;
  7671. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7672. SERIAL_ECHOPGM("Planner line (from file): ");
  7673. MYSERIAL.print(int(iline), DEC);
  7674. SERIAL_ECHOPGM(", length: ");
  7675. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7676. SERIAL_ECHOPGM(", steps: (");
  7677. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7678. SERIAL_ECHOPGM(",");
  7679. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7680. SERIAL_ECHOPGM(",");
  7681. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7682. SERIAL_ECHOPGM(",");
  7683. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7684. SERIAL_ECHOPGM("), events: ");
  7685. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7686. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7687. MYSERIAL.print(char(card.get()));
  7688. }
  7689. }
  7690. {
  7691. // Print the content of the command buffer, line by line:
  7692. int8_t iline = 0;
  7693. union {
  7694. struct {
  7695. char lo;
  7696. char hi;
  7697. } lohi;
  7698. uint16_t value;
  7699. } sdlen_single;
  7700. int _bufindr = bufindr;
  7701. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7702. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7703. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7704. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7705. }
  7706. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7707. MYSERIAL.print(int(iline), DEC);
  7708. SERIAL_ECHOPGM(", type: ");
  7709. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7710. SERIAL_ECHOPGM(", len: ");
  7711. MYSERIAL.println(sdlen_single.value, DEC);
  7712. // Print the content of the buffer line.
  7713. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7714. SERIAL_ECHOPGM("Buffer line (from file): ");
  7715. MYSERIAL.println(int(iline), DEC);
  7716. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7717. MYSERIAL.print(char(card.get()));
  7718. if (-- _buflen == 0)
  7719. break;
  7720. // First skip the current command ID and iterate up to the end of the string.
  7721. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7722. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7723. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7724. // If the end of the buffer was empty,
  7725. if (_bufindr == sizeof(cmdbuffer)) {
  7726. // skip to the start and find the nonzero command.
  7727. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7728. }
  7729. }
  7730. }
  7731. #endif
  7732. #if 0
  7733. saved_feedrate2 = feedrate; //save feedrate
  7734. #else
  7735. // Try to deduce the feedrate from the first block of the planner.
  7736. // Speed is in mm/min.
  7737. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7738. #endif
  7739. planner_abort_hard(); //abort printing
  7740. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7741. saved_active_extruder = active_extruder; //save active_extruder
  7742. saved_extruder_temperature = degTargetHotend(active_extruder);
  7743. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7744. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7745. saved_fanSpeed = fanSpeed;
  7746. cmdqueue_reset(); //empty cmdqueue
  7747. card.sdprinting = false;
  7748. // card.closefile();
  7749. saved_printing = true;
  7750. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7751. st_reset_timer();
  7752. sei();
  7753. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7754. #if 1
  7755. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7756. char buf[48];
  7757. // First unretract (relative extrusion)
  7758. if(!saved_extruder_relative_mode){
  7759. strcpy_P(buf, PSTR("M83"));
  7760. enquecommand(buf, false);
  7761. }
  7762. //retract 45mm/s
  7763. strcpy_P(buf, PSTR("G1 E"));
  7764. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7765. strcat_P(buf, PSTR(" F"));
  7766. dtostrf(2700, 8, 3, buf + strlen(buf));
  7767. enquecommand(buf, false);
  7768. // Then lift Z axis
  7769. strcpy_P(buf, PSTR("G1 Z"));
  7770. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7771. strcat_P(buf, PSTR(" F"));
  7772. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7773. // At this point the command queue is empty.
  7774. enquecommand(buf, false);
  7775. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7776. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7777. repeatcommand_front();
  7778. #else
  7779. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7780. st_synchronize(); //wait moving
  7781. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7782. memcpy(destination, current_position, sizeof(destination));
  7783. #endif
  7784. }
  7785. }
  7786. //! @brief Restore print from ram
  7787. //!
  7788. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  7789. //! waits for extruder temperature restore, then restores position and continues
  7790. //! print moves.
  7791. //! Internaly lcd_update() is called by wait_for_heater().
  7792. //!
  7793. //! @param e_move
  7794. void restore_print_from_ram_and_continue(float e_move)
  7795. {
  7796. if (!saved_printing) return;
  7797. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7798. // current_position[axis] = st_get_position_mm(axis);
  7799. active_extruder = saved_active_extruder; //restore active_extruder
  7800. setTargetHotendSafe(saved_extruder_temperature,saved_active_extruder);
  7801. heating_status = 1;
  7802. wait_for_heater(millis(),saved_active_extruder);
  7803. heating_status = 2;
  7804. feedrate = saved_feedrate2; //restore feedrate
  7805. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7806. fanSpeed = saved_fanSpeed;
  7807. float e = saved_pos[E_AXIS] - e_move;
  7808. plan_set_e_position(e);
  7809. //first move print head in XY to the saved position:
  7810. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7811. st_synchronize();
  7812. //then move Z
  7813. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7814. st_synchronize();
  7815. //and finaly unretract (35mm/s)
  7816. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7817. st_synchronize();
  7818. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7819. memcpy(destination, current_position, sizeof(destination));
  7820. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7821. card.setIndex(saved_sdpos);
  7822. sdpos_atomic = saved_sdpos;
  7823. card.sdprinting = true;
  7824. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7825. }
  7826. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7827. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7828. serial_count = 0;
  7829. FlushSerialRequestResend();
  7830. }
  7831. else {
  7832. //not sd printing nor usb printing
  7833. }
  7834. lcd_setstatuspgm(_T(WELCOME_MSG));
  7835. saved_printing = false;
  7836. }
  7837. void print_world_coordinates()
  7838. {
  7839. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7840. }
  7841. void print_physical_coordinates()
  7842. {
  7843. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7844. }
  7845. void print_mesh_bed_leveling_table()
  7846. {
  7847. SERIAL_ECHOPGM("mesh bed leveling: ");
  7848. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7849. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7850. MYSERIAL.print(mbl.z_values[y][x], 3);
  7851. SERIAL_ECHOPGM(" ");
  7852. }
  7853. SERIAL_ECHOLNPGM("");
  7854. }
  7855. uint16_t print_time_remaining() {
  7856. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7857. #ifdef TMC2130
  7858. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7859. else print_t = print_time_remaining_silent;
  7860. #else
  7861. print_t = print_time_remaining_normal;
  7862. #endif //TMC2130
  7863. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  7864. return print_t;
  7865. }
  7866. uint8_t calc_percent_done()
  7867. {
  7868. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7869. uint8_t percent_done = 0;
  7870. #ifdef TMC2130
  7871. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7872. percent_done = print_percent_done_normal;
  7873. }
  7874. else if (print_percent_done_silent <= 100) {
  7875. percent_done = print_percent_done_silent;
  7876. }
  7877. #else
  7878. if (print_percent_done_normal <= 100) {
  7879. percent_done = print_percent_done_normal;
  7880. }
  7881. #endif //TMC2130
  7882. else {
  7883. percent_done = card.percentDone();
  7884. }
  7885. return percent_done;
  7886. }
  7887. static void print_time_remaining_init()
  7888. {
  7889. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7890. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7891. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7892. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7893. }
  7894. void load_filament_final_feed()
  7895. {
  7896. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  7897. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  7898. }
  7899. void M600_check_state()
  7900. {
  7901. //Wait for user to check the state
  7902. lcd_change_fil_state = 0;
  7903. while (lcd_change_fil_state != 1){
  7904. lcd_change_fil_state = 0;
  7905. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7906. lcd_alright();
  7907. KEEPALIVE_STATE(IN_HANDLER);
  7908. switch(lcd_change_fil_state){
  7909. // Filament failed to load so load it again
  7910. case 2:
  7911. if (mmu_enabled)
  7912. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  7913. else
  7914. M600_load_filament_movements();
  7915. break;
  7916. // Filament loaded properly but color is not clear
  7917. case 3:
  7918. st_synchronize();
  7919. load_filament_final_feed();
  7920. lcd_loading_color();
  7921. st_synchronize();
  7922. break;
  7923. // Everything good
  7924. default:
  7925. lcd_change_success();
  7926. break;
  7927. }
  7928. }
  7929. }
  7930. //! @brief Wait for user action
  7931. //!
  7932. //! Beep, manage nozzle heater and wait for user to start unload filament
  7933. //! If times out, active extruder temperature is set to 0.
  7934. //!
  7935. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  7936. void M600_wait_for_user(float HotendTempBckp) {
  7937. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7938. int counterBeep = 0;
  7939. unsigned long waiting_start_time = millis();
  7940. uint8_t wait_for_user_state = 0;
  7941. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7942. bool bFirst=true;
  7943. while (!(wait_for_user_state == 0 && lcd_clicked())){
  7944. manage_heater();
  7945. manage_inactivity(true);
  7946. #if BEEPER > 0
  7947. if (counterBeep == 500) {
  7948. counterBeep = 0;
  7949. }
  7950. SET_OUTPUT(BEEPER);
  7951. if (counterBeep == 0) {
  7952. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  7953. {
  7954. bFirst=false;
  7955. WRITE(BEEPER, HIGH);
  7956. }
  7957. }
  7958. if (counterBeep == 20) {
  7959. WRITE(BEEPER, LOW);
  7960. }
  7961. counterBeep++;
  7962. #endif //BEEPER > 0
  7963. switch (wait_for_user_state) {
  7964. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  7965. delay_keep_alive(4);
  7966. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  7967. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  7968. wait_for_user_state = 1;
  7969. setAllTargetHotends(0);
  7970. st_synchronize();
  7971. disable_e0();
  7972. disable_e1();
  7973. disable_e2();
  7974. }
  7975. break;
  7976. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  7977. delay_keep_alive(4);
  7978. if (lcd_clicked()) {
  7979. setTargetHotend(HotendTempBckp, active_extruder);
  7980. lcd_wait_for_heater();
  7981. wait_for_user_state = 2;
  7982. }
  7983. break;
  7984. case 2: //waiting for nozzle to reach target temperature
  7985. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  7986. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7987. waiting_start_time = millis();
  7988. wait_for_user_state = 0;
  7989. }
  7990. else {
  7991. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  7992. lcd_set_cursor(1, 4);
  7993. lcd_print(ftostr3(degHotend(active_extruder)));
  7994. }
  7995. break;
  7996. }
  7997. }
  7998. WRITE(BEEPER, LOW);
  7999. }
  8000. void M600_load_filament_movements()
  8001. {
  8002. #ifdef SNMM
  8003. display_loading();
  8004. do
  8005. {
  8006. current_position[E_AXIS] += 0.002;
  8007. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8008. delay_keep_alive(2);
  8009. }
  8010. while (!lcd_clicked());
  8011. st_synchronize();
  8012. current_position[E_AXIS] += bowden_length[mmu_extruder];
  8013. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8014. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8016. current_position[E_AXIS] += 40;
  8017. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8018. current_position[E_AXIS] += 10;
  8019. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8020. #else
  8021. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8022. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  8023. #endif
  8024. load_filament_final_feed();
  8025. lcd_loading_filament();
  8026. st_synchronize();
  8027. }
  8028. void M600_load_filament() {
  8029. //load filament for single material and SNMM
  8030. lcd_wait_interact();
  8031. //load_filament_time = millis();
  8032. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8033. #ifdef FILAMENT_SENSOR
  8034. fsensor_autoload_check_start();
  8035. #endif //FILAMENT_SENSOR
  8036. while(!lcd_clicked())
  8037. {
  8038. manage_heater();
  8039. manage_inactivity(true);
  8040. #ifdef FILAMENT_SENSOR
  8041. if (fsensor_check_autoload())
  8042. {
  8043. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8044. tone(BEEPER, 1000);
  8045. delay_keep_alive(50);
  8046. noTone(BEEPER);
  8047. break;
  8048. }
  8049. #endif //FILAMENT_SENSOR
  8050. }
  8051. #ifdef FILAMENT_SENSOR
  8052. fsensor_autoload_check_stop();
  8053. #endif //FILAMENT_SENSOR
  8054. KEEPALIVE_STATE(IN_HANDLER);
  8055. #ifdef FSENSOR_QUALITY
  8056. fsensor_oq_meassure_start(70);
  8057. #endif //FSENSOR_QUALITY
  8058. M600_load_filament_movements();
  8059. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8060. tone(BEEPER, 500);
  8061. delay_keep_alive(50);
  8062. noTone(BEEPER);
  8063. #ifdef FSENSOR_QUALITY
  8064. fsensor_oq_meassure_stop();
  8065. if (!fsensor_oq_result())
  8066. {
  8067. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8068. lcd_update_enable(true);
  8069. lcd_update(2);
  8070. if (disable)
  8071. fsensor_disable();
  8072. }
  8073. #endif //FSENSOR_QUALITY
  8074. lcd_update_enable(false);
  8075. }
  8076. #define FIL_LOAD_LENGTH 60