Marlin_main.cpp 314 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #include "AutoDeplete.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef FILAMENT_SENSOR
  81. #include "fsensor.h"
  82. #endif //FILAMENT_SENSOR
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #include "mmu.h"
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "sound.h"
  107. #include "cmdqueue.h"
  108. #include "io_atmega2560.h"
  109. // Macros for bit masks
  110. #define BIT(b) (1<<(b))
  111. #define TEST(n,b) (((n)&BIT(b))!=0)
  112. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  113. //Macro for print fan speed
  114. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  115. #define PRINTING_TYPE_SD 0
  116. #define PRINTING_TYPE_USB 1
  117. //filament types
  118. #define FILAMENT_DEFAULT 0
  119. #define FILAMENT_FLEX 1
  120. #define FILAMENT_PVA 2
  121. #define FILAMENT_UNDEFINED 255
  122. //Stepper Movement Variables
  123. //===========================================================================
  124. //=============================imported variables============================
  125. //===========================================================================
  126. //===========================================================================
  127. //=============================public variables=============================
  128. //===========================================================================
  129. #ifdef SDSUPPORT
  130. CardReader card;
  131. #endif
  132. unsigned long PingTime = _millis();
  133. unsigned long NcTime;
  134. //used for PINDA temp calibration and pause print
  135. #define DEFAULT_RETRACTION 1
  136. #define DEFAULT_RETRACTION_MM 4 //MM
  137. float default_retraction = DEFAULT_RETRACTION;
  138. float homing_feedrate[] = HOMING_FEEDRATE;
  139. // Currently only the extruder axis may be switched to a relative mode.
  140. // Other axes are always absolute or relative based on the common relative_mode flag.
  141. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  142. int feedmultiply=100; //100->1 200->2
  143. int extrudemultiply=100; //100->1 200->2
  144. int extruder_multiply[EXTRUDERS] = {100
  145. #if EXTRUDERS > 1
  146. , 100
  147. #if EXTRUDERS > 2
  148. , 100
  149. #endif
  150. #endif
  151. };
  152. int bowden_length[4] = {385, 385, 385, 385};
  153. bool is_usb_printing = false;
  154. bool homing_flag = false;
  155. bool temp_cal_active = false;
  156. unsigned long kicktime = _millis()+100000;
  157. unsigned int usb_printing_counter;
  158. int8_t lcd_change_fil_state = 0;
  159. unsigned long pause_time = 0;
  160. unsigned long start_pause_print = _millis();
  161. unsigned long t_fan_rising_edge = _millis();
  162. LongTimer safetyTimer;
  163. static LongTimer crashDetTimer;
  164. //unsigned long load_filament_time;
  165. bool mesh_bed_leveling_flag = false;
  166. bool mesh_bed_run_from_menu = false;
  167. int8_t FarmMode = 0;
  168. bool prusa_sd_card_upload = false;
  169. unsigned int status_number = 0;
  170. unsigned long total_filament_used;
  171. unsigned int heating_status;
  172. unsigned int heating_status_counter;
  173. bool loading_flag = false;
  174. char snmm_filaments_used = 0;
  175. bool fan_state[2];
  176. int fan_edge_counter[2];
  177. int fan_speed[2];
  178. char dir_names[3][9];
  179. bool sortAlpha = false;
  180. float extruder_multiplier[EXTRUDERS] = {1.0
  181. #if EXTRUDERS > 1
  182. , 1.0
  183. #if EXTRUDERS > 2
  184. , 1.0
  185. #endif
  186. #endif
  187. };
  188. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  189. //shortcuts for more readable code
  190. #define _x current_position[X_AXIS]
  191. #define _y current_position[Y_AXIS]
  192. #define _z current_position[Z_AXIS]
  193. #define _e current_position[E_AXIS]
  194. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  195. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  196. bool axis_known_position[3] = {false, false, false};
  197. // Extruder offset
  198. #if EXTRUDERS > 1
  199. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  200. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  201. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  202. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  203. #endif
  204. };
  205. #endif
  206. uint8_t active_extruder = 0;
  207. int fanSpeed=0;
  208. #ifdef FWRETRACT
  209. bool retracted[EXTRUDERS]={false
  210. #if EXTRUDERS > 1
  211. , false
  212. #if EXTRUDERS > 2
  213. , false
  214. #endif
  215. #endif
  216. };
  217. bool retracted_swap[EXTRUDERS]={false
  218. #if EXTRUDERS > 1
  219. , false
  220. #if EXTRUDERS > 2
  221. , false
  222. #endif
  223. #endif
  224. };
  225. float retract_length_swap = RETRACT_LENGTH_SWAP;
  226. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  227. #endif
  228. #ifdef PS_DEFAULT_OFF
  229. bool powersupply = false;
  230. #else
  231. bool powersupply = true;
  232. #endif
  233. bool cancel_heatup = false ;
  234. #ifdef HOST_KEEPALIVE_FEATURE
  235. int busy_state = NOT_BUSY;
  236. static long prev_busy_signal_ms = -1;
  237. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  238. #else
  239. #define host_keepalive();
  240. #define KEEPALIVE_STATE(n);
  241. #endif
  242. const char errormagic[] PROGMEM = "Error:";
  243. const char echomagic[] PROGMEM = "echo:";
  244. bool no_response = false;
  245. uint8_t important_status;
  246. uint8_t saved_filament_type;
  247. // save/restore printing in case that mmu was not responding
  248. bool mmu_print_saved = false;
  249. // storing estimated time to end of print counted by slicer
  250. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  251. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  252. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  253. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  254. bool wizard_active = false; //autoload temporarily disabled during wizard
  255. //===========================================================================
  256. //=============================Private Variables=============================
  257. //===========================================================================
  258. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  259. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  260. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  261. // For tracing an arc
  262. static float offset[3] = {0.0, 0.0, 0.0};
  263. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  264. // Determines Absolute or Relative Coordinates.
  265. // Also there is bool axis_relative_modes[] per axis flag.
  266. static bool relative_mode = false;
  267. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  268. //static float tt = 0;
  269. //static float bt = 0;
  270. //Inactivity shutdown variables
  271. static unsigned long previous_millis_cmd = 0;
  272. unsigned long max_inactive_time = 0;
  273. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  274. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  275. unsigned long starttime=0;
  276. unsigned long stoptime=0;
  277. unsigned long _usb_timer = 0;
  278. bool extruder_under_pressure = true;
  279. bool Stopped=false;
  280. #if NUM_SERVOS > 0
  281. Servo servos[NUM_SERVOS];
  282. #endif
  283. bool CooldownNoWait = true;
  284. bool target_direction;
  285. //Insert variables if CHDK is defined
  286. #ifdef CHDK
  287. unsigned long chdkHigh = 0;
  288. boolean chdkActive = false;
  289. #endif
  290. //! @name RAM save/restore printing
  291. //! @{
  292. bool saved_printing = false; //!< Print is paused and saved in RAM
  293. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  294. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  295. static float saved_pos[4] = { 0, 0, 0, 0 };
  296. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  297. static float saved_feedrate2 = 0;
  298. static uint8_t saved_active_extruder = 0;
  299. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  300. static bool saved_extruder_under_pressure = false;
  301. static bool saved_extruder_relative_mode = false;
  302. static int saved_fanSpeed = 0; //!< Print fan speed
  303. //! @}
  304. static int saved_feedmultiply_mm = 100;
  305. //===========================================================================
  306. //=============================Routines======================================
  307. //===========================================================================
  308. static void get_arc_coordinates();
  309. static bool setTargetedHotend(int code, uint8_t &extruder);
  310. static void print_time_remaining_init();
  311. static void wait_for_heater(long codenum, uint8_t extruder);
  312. uint16_t gcode_in_progress = 0;
  313. uint16_t mcode_in_progress = 0;
  314. void serial_echopair_P(const char *s_P, float v)
  315. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  316. void serial_echopair_P(const char *s_P, double v)
  317. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  318. void serial_echopair_P(const char *s_P, unsigned long v)
  319. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  320. #ifdef SDSUPPORT
  321. #include "SdFatUtil.h"
  322. int freeMemory() { return SdFatUtil::FreeRam(); }
  323. #else
  324. extern "C" {
  325. extern unsigned int __bss_end;
  326. extern unsigned int __heap_start;
  327. extern void *__brkval;
  328. int freeMemory() {
  329. int free_memory;
  330. if ((int)__brkval == 0)
  331. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  332. else
  333. free_memory = ((int)&free_memory) - ((int)__brkval);
  334. return free_memory;
  335. }
  336. }
  337. #endif //!SDSUPPORT
  338. void setup_killpin()
  339. {
  340. #if defined(KILL_PIN) && KILL_PIN > -1
  341. SET_INPUT(KILL_PIN);
  342. WRITE(KILL_PIN,HIGH);
  343. #endif
  344. }
  345. // Set home pin
  346. void setup_homepin(void)
  347. {
  348. #if defined(HOME_PIN) && HOME_PIN > -1
  349. SET_INPUT(HOME_PIN);
  350. WRITE(HOME_PIN,HIGH);
  351. #endif
  352. }
  353. void setup_photpin()
  354. {
  355. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  356. SET_OUTPUT(PHOTOGRAPH_PIN);
  357. WRITE(PHOTOGRAPH_PIN, LOW);
  358. #endif
  359. }
  360. void setup_powerhold()
  361. {
  362. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  363. SET_OUTPUT(SUICIDE_PIN);
  364. WRITE(SUICIDE_PIN, HIGH);
  365. #endif
  366. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  367. SET_OUTPUT(PS_ON_PIN);
  368. #if defined(PS_DEFAULT_OFF)
  369. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  370. #else
  371. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  372. #endif
  373. #endif
  374. }
  375. void suicide()
  376. {
  377. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  378. SET_OUTPUT(SUICIDE_PIN);
  379. WRITE(SUICIDE_PIN, LOW);
  380. #endif
  381. }
  382. void servo_init()
  383. {
  384. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  385. servos[0].attach(SERVO0_PIN);
  386. #endif
  387. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  388. servos[1].attach(SERVO1_PIN);
  389. #endif
  390. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  391. servos[2].attach(SERVO2_PIN);
  392. #endif
  393. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  394. servos[3].attach(SERVO3_PIN);
  395. #endif
  396. #if (NUM_SERVOS >= 5)
  397. #error "TODO: enter initalisation code for more servos"
  398. #endif
  399. }
  400. bool fans_check_enabled = true;
  401. #ifdef TMC2130
  402. extern int8_t CrashDetectMenu;
  403. void crashdet_enable()
  404. {
  405. tmc2130_sg_stop_on_crash = true;
  406. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  407. CrashDetectMenu = 1;
  408. }
  409. void crashdet_disable()
  410. {
  411. tmc2130_sg_stop_on_crash = false;
  412. tmc2130_sg_crash = 0;
  413. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  414. CrashDetectMenu = 0;
  415. }
  416. void crashdet_stop_and_save_print()
  417. {
  418. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  419. }
  420. void crashdet_restore_print_and_continue()
  421. {
  422. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  423. // babystep_apply();
  424. }
  425. void crashdet_stop_and_save_print2()
  426. {
  427. cli();
  428. planner_abort_hard(); //abort printing
  429. cmdqueue_reset(); //empty cmdqueue
  430. card.sdprinting = false;
  431. card.closefile();
  432. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  433. st_reset_timer();
  434. sei();
  435. }
  436. void crashdet_detected(uint8_t mask)
  437. {
  438. st_synchronize();
  439. static uint8_t crashDet_counter = 0;
  440. bool automatic_recovery_after_crash = true;
  441. if (crashDet_counter++ == 0) {
  442. crashDetTimer.start();
  443. }
  444. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  445. crashDetTimer.stop();
  446. crashDet_counter = 0;
  447. }
  448. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  449. automatic_recovery_after_crash = false;
  450. crashDetTimer.stop();
  451. crashDet_counter = 0;
  452. }
  453. else {
  454. crashDetTimer.start();
  455. }
  456. lcd_update_enable(true);
  457. lcd_clear();
  458. lcd_update(2);
  459. if (mask & X_AXIS_MASK)
  460. {
  461. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  462. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  463. }
  464. if (mask & Y_AXIS_MASK)
  465. {
  466. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  467. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  468. }
  469. lcd_update_enable(true);
  470. lcd_update(2);
  471. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  472. gcode_G28(true, true, false); //home X and Y
  473. st_synchronize();
  474. if (automatic_recovery_after_crash) {
  475. enquecommand_P(PSTR("CRASH_RECOVER"));
  476. }else{
  477. setTargetHotend(0, active_extruder);
  478. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  479. lcd_update_enable(true);
  480. if (yesno)
  481. {
  482. enquecommand_P(PSTR("CRASH_RECOVER"));
  483. }
  484. else
  485. {
  486. enquecommand_P(PSTR("CRASH_CANCEL"));
  487. }
  488. }
  489. }
  490. void crashdet_recover()
  491. {
  492. crashdet_restore_print_and_continue();
  493. tmc2130_sg_stop_on_crash = true;
  494. }
  495. void crashdet_cancel()
  496. {
  497. saved_printing = false;
  498. tmc2130_sg_stop_on_crash = true;
  499. if (saved_printing_type == PRINTING_TYPE_SD) {
  500. lcd_print_stop();
  501. }else if(saved_printing_type == PRINTING_TYPE_USB){
  502. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  503. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  504. }
  505. }
  506. #endif //TMC2130
  507. void failstats_reset_print()
  508. {
  509. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  511. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  512. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  513. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  514. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  515. }
  516. #ifdef MESH_BED_LEVELING
  517. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  518. #endif
  519. // Factory reset function
  520. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  521. // Level input parameter sets depth of reset
  522. int er_progress = 0;
  523. static void factory_reset(char level)
  524. {
  525. lcd_clear();
  526. switch (level) {
  527. // Level 0: Language reset
  528. case 0:
  529. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  530. WRITE(BEEPER, HIGH);
  531. _delay_ms(100);
  532. WRITE(BEEPER, LOW);
  533. lang_reset();
  534. break;
  535. //Level 1: Reset statistics
  536. case 1:
  537. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  538. WRITE(BEEPER, HIGH);
  539. _delay_ms(100);
  540. WRITE(BEEPER, LOW);
  541. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  542. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  543. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  544. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  545. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  546. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  547. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  548. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  549. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  550. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  551. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  552. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  553. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  554. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  555. lcd_menu_statistics();
  556. break;
  557. // Level 2: Prepare for shipping
  558. case 2:
  559. //lcd_puts_P(PSTR("Factory RESET"));
  560. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  561. // Force language selection at the next boot up.
  562. lang_reset();
  563. // Force the "Follow calibration flow" message at the next boot up.
  564. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  565. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  566. farm_no = 0;
  567. farm_mode = false;
  568. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  569. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  570. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  571. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  572. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  573. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  574. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  575. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  576. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  577. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  578. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  579. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  580. #ifdef FILAMENT_SENSOR
  581. fsensor_enable();
  582. fsensor_autoload_set(true);
  583. #endif //FILAMENT_SENSOR
  584. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  585. WRITE(BEEPER, HIGH);
  586. _delay_ms(100);
  587. WRITE(BEEPER, LOW);
  588. //_delay_ms(2000);
  589. break;
  590. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  591. case 3:
  592. lcd_puts_P(PSTR("Factory RESET"));
  593. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  594. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  595. WRITE(BEEPER, HIGH);
  596. _delay_ms(100);
  597. WRITE(BEEPER, LOW);
  598. er_progress = 0;
  599. lcd_puts_at_P(3, 3, PSTR(" "));
  600. lcd_set_cursor(3, 3);
  601. lcd_print(er_progress);
  602. // Erase EEPROM
  603. for (int i = 0; i < 4096; i++) {
  604. eeprom_update_byte((uint8_t*)i, 0xFF);
  605. if (i % 41 == 0) {
  606. er_progress++;
  607. lcd_puts_at_P(3, 3, PSTR(" "));
  608. lcd_set_cursor(3, 3);
  609. lcd_print(er_progress);
  610. lcd_puts_P(PSTR("%"));
  611. }
  612. }
  613. break;
  614. case 4:
  615. bowden_menu();
  616. break;
  617. default:
  618. break;
  619. }
  620. }
  621. extern "C" {
  622. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  623. }
  624. int uart_putchar(char c, FILE *)
  625. {
  626. MYSERIAL.write(c);
  627. return 0;
  628. }
  629. void lcd_splash()
  630. {
  631. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  632. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  633. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  634. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  635. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  636. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  637. }
  638. void factory_reset()
  639. {
  640. KEEPALIVE_STATE(PAUSED_FOR_USER);
  641. if (!READ(BTN_ENC))
  642. {
  643. _delay_ms(1000);
  644. if (!READ(BTN_ENC))
  645. {
  646. lcd_clear();
  647. lcd_puts_P(PSTR("Factory RESET"));
  648. SET_OUTPUT(BEEPER);
  649. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  650. WRITE(BEEPER, HIGH);
  651. while (!READ(BTN_ENC));
  652. WRITE(BEEPER, LOW);
  653. _delay_ms(2000);
  654. char level = reset_menu();
  655. factory_reset(level);
  656. switch (level) {
  657. case 0: _delay_ms(0); break;
  658. case 1: _delay_ms(0); break;
  659. case 2: _delay_ms(0); break;
  660. case 3: _delay_ms(0); break;
  661. }
  662. }
  663. }
  664. KEEPALIVE_STATE(IN_HANDLER);
  665. }
  666. void show_fw_version_warnings() {
  667. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  668. switch (FW_DEV_VERSION) {
  669. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  670. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  671. case(FW_VERSION_DEVEL):
  672. case(FW_VERSION_DEBUG):
  673. lcd_update_enable(false);
  674. lcd_clear();
  675. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  676. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  677. #else
  678. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  679. #endif
  680. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  681. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  682. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  683. lcd_wait_for_click();
  684. break;
  685. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  686. }
  687. lcd_update_enable(true);
  688. }
  689. uint8_t check_printer_version()
  690. {
  691. uint8_t version_changed = 0;
  692. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  693. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  694. if (printer_type != PRINTER_TYPE) {
  695. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  696. else version_changed |= 0b10;
  697. }
  698. if (motherboard != MOTHERBOARD) {
  699. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  700. else version_changed |= 0b01;
  701. }
  702. return version_changed;
  703. }
  704. #ifdef BOOTAPP
  705. #include "bootapp.h" //bootloader support
  706. #endif //BOOTAPP
  707. #if (LANG_MODE != 0) //secondary language support
  708. #ifdef W25X20CL
  709. // language update from external flash
  710. #define LANGBOOT_BLOCKSIZE 0x1000u
  711. #define LANGBOOT_RAMBUFFER 0x0800
  712. void update_sec_lang_from_external_flash()
  713. {
  714. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  715. {
  716. uint8_t lang = boot_reserved >> 4;
  717. uint8_t state = boot_reserved & 0xf;
  718. lang_table_header_t header;
  719. uint32_t src_addr;
  720. if (lang_get_header(lang, &header, &src_addr))
  721. {
  722. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  723. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  724. _delay(100);
  725. boot_reserved = (state + 1) | (lang << 4);
  726. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  727. {
  728. cli();
  729. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  730. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  731. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  732. if (state == 0)
  733. {
  734. //TODO - check header integrity
  735. }
  736. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  737. }
  738. else
  739. {
  740. //TODO - check sec lang data integrity
  741. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  742. }
  743. }
  744. }
  745. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  746. }
  747. #ifdef DEBUG_W25X20CL
  748. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  749. {
  750. lang_table_header_t header;
  751. uint8_t count = 0;
  752. uint32_t addr = 0x00000;
  753. while (1)
  754. {
  755. printf_P(_n("LANGTABLE%d:"), count);
  756. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  757. if (header.magic != LANG_MAGIC)
  758. {
  759. printf_P(_n("NG!\n"));
  760. break;
  761. }
  762. printf_P(_n("OK\n"));
  763. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  764. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  765. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  766. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  767. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  768. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  769. addr += header.size;
  770. codes[count] = header.code;
  771. count ++;
  772. }
  773. return count;
  774. }
  775. void list_sec_lang_from_external_flash()
  776. {
  777. uint16_t codes[8];
  778. uint8_t count = lang_xflash_enum_codes(codes);
  779. printf_P(_n("XFlash lang count = %hhd\n"), count);
  780. }
  781. #endif //DEBUG_W25X20CL
  782. #endif //W25X20CL
  783. #endif //(LANG_MODE != 0)
  784. // "Setup" function is called by the Arduino framework on startup.
  785. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  786. // are initialized by the main() routine provided by the Arduino framework.
  787. void setup()
  788. {
  789. mmu_init();
  790. ultralcd_init();
  791. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  792. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  793. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  794. spi_init();
  795. lcd_splash();
  796. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  797. #ifdef W25X20CL
  798. if (!w25x20cl_init())
  799. kill(_i("External SPI flash W25X20CL not responding."));
  800. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  801. optiboot_w25x20cl_enter();
  802. #endif
  803. #if (LANG_MODE != 0) //secondary language support
  804. #ifdef W25X20CL
  805. if (w25x20cl_init())
  806. update_sec_lang_from_external_flash();
  807. #endif //W25X20CL
  808. #endif //(LANG_MODE != 0)
  809. setup_killpin();
  810. setup_powerhold();
  811. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  812. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  813. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  814. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  815. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  816. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  817. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  818. if (farm_mode)
  819. {
  820. no_response = true; //we need confirmation by recieving PRUSA thx
  821. important_status = 8;
  822. prusa_statistics(8);
  823. selectedSerialPort = 1;
  824. #ifdef TMC2130
  825. //increased extruder current (PFW363)
  826. tmc2130_current_h[E_AXIS] = 36;
  827. tmc2130_current_r[E_AXIS] = 36;
  828. #endif //TMC2130
  829. #ifdef FILAMENT_SENSOR
  830. //disabled filament autoload (PFW360)
  831. fsensor_autoload_set(false);
  832. #endif //FILAMENT_SENSOR
  833. }
  834. MYSERIAL.begin(BAUDRATE);
  835. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  836. #ifndef W25X20CL
  837. SERIAL_PROTOCOLLNPGM("start");
  838. #endif //W25X20CL
  839. stdout = uartout;
  840. SERIAL_ECHO_START;
  841. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  842. #ifdef DEBUG_SEC_LANG
  843. lang_table_header_t header;
  844. uint32_t src_addr = 0x00000;
  845. if (lang_get_header(1, &header, &src_addr))
  846. {
  847. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  848. #define LT_PRINT_TEST 2
  849. // flash usage
  850. // total p.test
  851. //0 252718 t+c text code
  852. //1 253142 424 170 254
  853. //2 253040 322 164 158
  854. //3 253248 530 135 395
  855. #if (LT_PRINT_TEST==1) //not optimized printf
  856. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  857. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  858. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  859. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  860. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  861. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  862. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  863. #elif (LT_PRINT_TEST==2) //optimized printf
  864. printf_P(
  865. _n(
  866. " _src_addr = 0x%08lx\n"
  867. " _lt_magic = 0x%08lx %S\n"
  868. " _lt_size = 0x%04x (%d)\n"
  869. " _lt_count = 0x%04x (%d)\n"
  870. " _lt_chsum = 0x%04x\n"
  871. " _lt_code = 0x%04x (%c%c)\n"
  872. " _lt_resv1 = 0x%08lx\n"
  873. ),
  874. src_addr,
  875. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  876. header.size, header.size,
  877. header.count, header.count,
  878. header.checksum,
  879. header.code, header.code >> 8, header.code & 0xff,
  880. header.signature
  881. );
  882. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  883. MYSERIAL.print(" _src_addr = 0x");
  884. MYSERIAL.println(src_addr, 16);
  885. MYSERIAL.print(" _lt_magic = 0x");
  886. MYSERIAL.print(header.magic, 16);
  887. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  888. MYSERIAL.print(" _lt_size = 0x");
  889. MYSERIAL.print(header.size, 16);
  890. MYSERIAL.print(" (");
  891. MYSERIAL.print(header.size, 10);
  892. MYSERIAL.println(")");
  893. MYSERIAL.print(" _lt_count = 0x");
  894. MYSERIAL.print(header.count, 16);
  895. MYSERIAL.print(" (");
  896. MYSERIAL.print(header.count, 10);
  897. MYSERIAL.println(")");
  898. MYSERIAL.print(" _lt_chsum = 0x");
  899. MYSERIAL.println(header.checksum, 16);
  900. MYSERIAL.print(" _lt_code = 0x");
  901. MYSERIAL.print(header.code, 16);
  902. MYSERIAL.print(" (");
  903. MYSERIAL.print((char)(header.code >> 8), 0);
  904. MYSERIAL.print((char)(header.code & 0xff), 0);
  905. MYSERIAL.println(")");
  906. MYSERIAL.print(" _lt_resv1 = 0x");
  907. MYSERIAL.println(header.signature, 16);
  908. #endif //(LT_PRINT_TEST==)
  909. #undef LT_PRINT_TEST
  910. #if 0
  911. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  912. for (uint16_t i = 0; i < 1024; i++)
  913. {
  914. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  915. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  916. if ((i % 16) == 15) putchar('\n');
  917. }
  918. #endif
  919. uint16_t sum = 0;
  920. for (uint16_t i = 0; i < header.size; i++)
  921. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  922. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  923. sum -= header.checksum; //subtract checksum
  924. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  925. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  926. if (sum == header.checksum)
  927. printf_P(_n("Checksum OK\n"), sum);
  928. else
  929. printf_P(_n("Checksum NG\n"), sum);
  930. }
  931. else
  932. printf_P(_n("lang_get_header failed!\n"));
  933. #if 0
  934. for (uint16_t i = 0; i < 1024*10; i++)
  935. {
  936. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  937. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  938. if ((i % 16) == 15) putchar('\n');
  939. }
  940. #endif
  941. #if 0
  942. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  943. for (int i = 0; i < 4096; ++i) {
  944. int b = eeprom_read_byte((unsigned char*)i);
  945. if (b != 255) {
  946. SERIAL_ECHO(i);
  947. SERIAL_ECHO(":");
  948. SERIAL_ECHO(b);
  949. SERIAL_ECHOLN("");
  950. }
  951. }
  952. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  953. #endif
  954. #endif //DEBUG_SEC_LANG
  955. // Check startup - does nothing if bootloader sets MCUSR to 0
  956. byte mcu = MCUSR;
  957. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  958. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  959. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  960. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  961. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  962. if (mcu & 1) puts_P(MSG_POWERUP);
  963. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  964. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  965. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  966. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  967. MCUSR = 0;
  968. //SERIAL_ECHORPGM(MSG_MARLIN);
  969. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  970. #ifdef STRING_VERSION_CONFIG_H
  971. #ifdef STRING_CONFIG_H_AUTHOR
  972. SERIAL_ECHO_START;
  973. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  974. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  975. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  976. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  977. SERIAL_ECHOPGM("Compiled: ");
  978. SERIAL_ECHOLNPGM(__DATE__);
  979. #endif
  980. #endif
  981. SERIAL_ECHO_START;
  982. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  983. SERIAL_ECHO(freeMemory());
  984. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  985. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  986. //lcd_update_enable(false); // why do we need this?? - andre
  987. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  988. bool previous_settings_retrieved = false;
  989. uint8_t hw_changed = check_printer_version();
  990. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  991. previous_settings_retrieved = Config_RetrieveSettings();
  992. }
  993. else { //printer version was changed so use default settings
  994. Config_ResetDefault();
  995. }
  996. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  997. tp_init(); // Initialize temperature loop
  998. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  999. plan_init(); // Initialize planner;
  1000. factory_reset();
  1001. lcd_encoder_diff=0;
  1002. #ifdef TMC2130
  1003. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1004. if (silentMode == 0xff) silentMode = 0;
  1005. tmc2130_mode = TMC2130_MODE_NORMAL;
  1006. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1007. if (crashdet && !farm_mode)
  1008. {
  1009. crashdet_enable();
  1010. puts_P(_N("CrashDetect ENABLED!"));
  1011. }
  1012. else
  1013. {
  1014. crashdet_disable();
  1015. puts_P(_N("CrashDetect DISABLED"));
  1016. }
  1017. #ifdef TMC2130_LINEARITY_CORRECTION
  1018. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1019. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1020. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1021. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1022. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1023. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1024. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1025. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1026. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1027. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1028. #endif //TMC2130_LINEARITY_CORRECTION
  1029. #ifdef TMC2130_VARIABLE_RESOLUTION
  1030. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1031. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1032. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1033. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1034. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1035. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1036. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1037. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1038. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1039. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1040. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1041. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1042. #else //TMC2130_VARIABLE_RESOLUTION
  1043. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1044. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1045. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1046. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1047. #endif //TMC2130_VARIABLE_RESOLUTION
  1048. #endif //TMC2130
  1049. st_init(); // Initialize stepper, this enables interrupts!
  1050. #ifdef TMC2130
  1051. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1052. update_mode_profile();
  1053. tmc2130_init();
  1054. #endif //TMC2130
  1055. setup_photpin();
  1056. servo_init();
  1057. // Reset the machine correction matrix.
  1058. // It does not make sense to load the correction matrix until the machine is homed.
  1059. world2machine_reset();
  1060. #ifdef FILAMENT_SENSOR
  1061. fsensor_init();
  1062. #endif //FILAMENT_SENSOR
  1063. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1064. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1065. #endif
  1066. setup_homepin();
  1067. #ifdef TMC2130
  1068. if (1) {
  1069. // try to run to zero phase before powering the Z motor.
  1070. // Move in negative direction
  1071. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1072. // Round the current micro-micro steps to micro steps.
  1073. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1074. // Until the phase counter is reset to zero.
  1075. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1076. _delay(2);
  1077. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1078. _delay(2);
  1079. }
  1080. }
  1081. #endif //TMC2130
  1082. #if defined(Z_AXIS_ALWAYS_ON)
  1083. enable_z();
  1084. #endif
  1085. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1086. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1087. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1088. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1089. if (farm_mode)
  1090. {
  1091. prusa_statistics(8);
  1092. }
  1093. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1094. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1095. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1096. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1097. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1098. // where all the EEPROM entries are set to 0x0ff.
  1099. // Once a firmware boots up, it forces at least a language selection, which changes
  1100. // EEPROM_LANG to number lower than 0x0ff.
  1101. // 1) Set a high power mode.
  1102. #ifdef TMC2130
  1103. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1104. tmc2130_mode = TMC2130_MODE_NORMAL;
  1105. #endif //TMC2130
  1106. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1107. }
  1108. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1109. // but this times out if a blocking dialog is shown in setup().
  1110. card.initsd();
  1111. #ifdef DEBUG_SD_SPEED_TEST
  1112. if (card.cardOK)
  1113. {
  1114. uint8_t* buff = (uint8_t*)block_buffer;
  1115. uint32_t block = 0;
  1116. uint32_t sumr = 0;
  1117. uint32_t sumw = 0;
  1118. for (int i = 0; i < 1024; i++)
  1119. {
  1120. uint32_t u = _micros();
  1121. bool res = card.card.readBlock(i, buff);
  1122. u = _micros() - u;
  1123. if (res)
  1124. {
  1125. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1126. sumr += u;
  1127. u = _micros();
  1128. res = card.card.writeBlock(i, buff);
  1129. u = _micros() - u;
  1130. if (res)
  1131. {
  1132. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1133. sumw += u;
  1134. }
  1135. else
  1136. {
  1137. printf_P(PSTR("writeBlock %4d error\n"), i);
  1138. break;
  1139. }
  1140. }
  1141. else
  1142. {
  1143. printf_P(PSTR("readBlock %4d error\n"), i);
  1144. break;
  1145. }
  1146. }
  1147. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1148. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1149. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1150. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1151. }
  1152. else
  1153. printf_P(PSTR("Card NG!\n"));
  1154. #endif //DEBUG_SD_SPEED_TEST
  1155. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1156. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1157. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1158. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1159. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1160. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1161. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1162. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1163. if (eeprom_read_word((uint16_t*)EEPROM_MMU_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  1164. if (eeprom_read_word((uint16_t*)EEPROM_MMU_LOAD_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  1165. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  1166. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  1167. #ifdef SNMM
  1168. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1169. int _z = BOWDEN_LENGTH;
  1170. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1171. }
  1172. #endif
  1173. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1174. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1175. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1176. #if (LANG_MODE != 0) //secondary language support
  1177. #ifdef DEBUG_W25X20CL
  1178. W25X20CL_SPI_ENTER();
  1179. uint8_t uid[8]; // 64bit unique id
  1180. w25x20cl_rd_uid(uid);
  1181. puts_P(_n("W25X20CL UID="));
  1182. for (uint8_t i = 0; i < 8; i ++)
  1183. printf_P(PSTR("%02hhx"), uid[i]);
  1184. putchar('\n');
  1185. list_sec_lang_from_external_flash();
  1186. #endif //DEBUG_W25X20CL
  1187. // lang_reset();
  1188. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1189. lcd_language();
  1190. #ifdef DEBUG_SEC_LANG
  1191. uint16_t sec_lang_code = lang_get_code(1);
  1192. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1193. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1194. lang_print_sec_lang(uartout);
  1195. #endif //DEBUG_SEC_LANG
  1196. #endif //(LANG_MODE != 0)
  1197. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1198. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1199. temp_cal_active = false;
  1200. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1201. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1202. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1203. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1204. int16_t z_shift = 0;
  1205. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1206. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1207. temp_cal_active = false;
  1208. }
  1209. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1210. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1211. }
  1212. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1213. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1214. }
  1215. check_babystep(); //checking if Z babystep is in allowed range
  1216. #ifdef UVLO_SUPPORT
  1217. setup_uvlo_interrupt();
  1218. #endif //UVLO_SUPPORT
  1219. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1220. setup_fan_interrupt();
  1221. #endif //DEBUG_DISABLE_FANCHECK
  1222. #ifdef PAT9125
  1223. fsensor_setup_interrupt();
  1224. #endif //PAT9125
  1225. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1226. #ifndef DEBUG_DISABLE_STARTMSGS
  1227. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1228. show_fw_version_warnings();
  1229. switch (hw_changed) {
  1230. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1231. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1232. case(0b01):
  1233. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1234. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1235. break;
  1236. case(0b10):
  1237. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1238. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1239. break;
  1240. case(0b11):
  1241. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1242. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1243. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1244. break;
  1245. default: break; //no change, show no message
  1246. }
  1247. if (!previous_settings_retrieved) {
  1248. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1249. Config_StoreSettings();
  1250. }
  1251. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1252. lcd_wizard(WizState::Run);
  1253. }
  1254. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1255. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1256. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1257. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1258. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1259. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1260. // Show the message.
  1261. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1262. }
  1263. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1264. // Show the message.
  1265. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1266. lcd_update_enable(true);
  1267. }
  1268. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1269. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1270. lcd_update_enable(true);
  1271. }
  1272. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1273. // Show the message.
  1274. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1275. }
  1276. }
  1277. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1278. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1279. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1280. update_current_firmware_version_to_eeprom();
  1281. lcd_selftest();
  1282. }
  1283. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1284. KEEPALIVE_STATE(IN_PROCESS);
  1285. #endif //DEBUG_DISABLE_STARTMSGS
  1286. lcd_update_enable(true);
  1287. lcd_clear();
  1288. lcd_update(2);
  1289. // Store the currently running firmware into an eeprom,
  1290. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1291. update_current_firmware_version_to_eeprom();
  1292. #ifdef TMC2130
  1293. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1294. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1295. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1296. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1297. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1298. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1299. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1300. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1301. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1302. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1303. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1304. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1305. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1306. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1307. #endif //TMC2130
  1308. #ifdef UVLO_SUPPORT
  1309. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1310. /*
  1311. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1312. else {
  1313. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1314. lcd_update_enable(true);
  1315. lcd_update(2);
  1316. lcd_setstatuspgm(_T(WELCOME_MSG));
  1317. }
  1318. */
  1319. manage_heater(); // Update temperatures
  1320. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1321. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1322. #endif
  1323. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1324. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1325. puts_P(_N("Automatic recovery!"));
  1326. #endif
  1327. recover_print(1);
  1328. }
  1329. else{
  1330. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1331. puts_P(_N("Normal recovery!"));
  1332. #endif
  1333. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1334. else {
  1335. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1336. lcd_update_enable(true);
  1337. lcd_update(2);
  1338. lcd_setstatuspgm(_T(WELCOME_MSG));
  1339. }
  1340. }
  1341. }
  1342. #endif //UVLO_SUPPORT
  1343. KEEPALIVE_STATE(NOT_BUSY);
  1344. #ifdef WATCHDOG
  1345. wdt_enable(WDTO_4S);
  1346. #endif //WATCHDOG
  1347. }
  1348. void trace();
  1349. #define CHUNK_SIZE 64 // bytes
  1350. #define SAFETY_MARGIN 1
  1351. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1352. int chunkHead = 0;
  1353. void serial_read_stream() {
  1354. setAllTargetHotends(0);
  1355. setTargetBed(0);
  1356. lcd_clear();
  1357. lcd_puts_P(PSTR(" Upload in progress"));
  1358. // first wait for how many bytes we will receive
  1359. uint32_t bytesToReceive;
  1360. // receive the four bytes
  1361. char bytesToReceiveBuffer[4];
  1362. for (int i=0; i<4; i++) {
  1363. int data;
  1364. while ((data = MYSERIAL.read()) == -1) {};
  1365. bytesToReceiveBuffer[i] = data;
  1366. }
  1367. // make it a uint32
  1368. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1369. // we're ready, notify the sender
  1370. MYSERIAL.write('+');
  1371. // lock in the routine
  1372. uint32_t receivedBytes = 0;
  1373. while (prusa_sd_card_upload) {
  1374. int i;
  1375. for (i=0; i<CHUNK_SIZE; i++) {
  1376. int data;
  1377. // check if we're not done
  1378. if (receivedBytes == bytesToReceive) {
  1379. break;
  1380. }
  1381. // read the next byte
  1382. while ((data = MYSERIAL.read()) == -1) {};
  1383. receivedBytes++;
  1384. // save it to the chunk
  1385. chunk[i] = data;
  1386. }
  1387. // write the chunk to SD
  1388. card.write_command_no_newline(&chunk[0]);
  1389. // notify the sender we're ready for more data
  1390. MYSERIAL.write('+');
  1391. // for safety
  1392. manage_heater();
  1393. // check if we're done
  1394. if(receivedBytes == bytesToReceive) {
  1395. trace(); // beep
  1396. card.closefile();
  1397. prusa_sd_card_upload = false;
  1398. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1399. }
  1400. }
  1401. }
  1402. #ifdef HOST_KEEPALIVE_FEATURE
  1403. /**
  1404. * Output a "busy" message at regular intervals
  1405. * while the machine is not accepting commands.
  1406. */
  1407. void host_keepalive() {
  1408. if (farm_mode) return;
  1409. long ms = _millis();
  1410. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1411. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1412. switch (busy_state) {
  1413. case IN_HANDLER:
  1414. case IN_PROCESS:
  1415. SERIAL_ECHO_START;
  1416. SERIAL_ECHOLNPGM("busy: processing");
  1417. break;
  1418. case PAUSED_FOR_USER:
  1419. SERIAL_ECHO_START;
  1420. SERIAL_ECHOLNPGM("busy: paused for user");
  1421. break;
  1422. case PAUSED_FOR_INPUT:
  1423. SERIAL_ECHO_START;
  1424. SERIAL_ECHOLNPGM("busy: paused for input");
  1425. break;
  1426. default:
  1427. break;
  1428. }
  1429. }
  1430. prev_busy_signal_ms = ms;
  1431. }
  1432. #endif
  1433. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1434. // Before loop(), the setup() function is called by the main() routine.
  1435. void loop()
  1436. {
  1437. KEEPALIVE_STATE(NOT_BUSY);
  1438. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1439. {
  1440. is_usb_printing = true;
  1441. usb_printing_counter--;
  1442. _usb_timer = _millis();
  1443. }
  1444. if (usb_printing_counter == 0)
  1445. {
  1446. is_usb_printing = false;
  1447. }
  1448. if (prusa_sd_card_upload)
  1449. {
  1450. //we read byte-by byte
  1451. serial_read_stream();
  1452. } else
  1453. {
  1454. get_command();
  1455. #ifdef SDSUPPORT
  1456. card.checkautostart(false);
  1457. #endif
  1458. if(buflen)
  1459. {
  1460. cmdbuffer_front_already_processed = false;
  1461. #ifdef SDSUPPORT
  1462. if(card.saving)
  1463. {
  1464. // Saving a G-code file onto an SD-card is in progress.
  1465. // Saving starts with M28, saving until M29 is seen.
  1466. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1467. card.write_command(CMDBUFFER_CURRENT_STRING);
  1468. if(card.logging)
  1469. process_commands();
  1470. else
  1471. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1472. } else {
  1473. card.closefile();
  1474. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1475. }
  1476. } else {
  1477. process_commands();
  1478. }
  1479. #else
  1480. process_commands();
  1481. #endif //SDSUPPORT
  1482. if (! cmdbuffer_front_already_processed && buflen)
  1483. {
  1484. // ptr points to the start of the block currently being processed.
  1485. // The first character in the block is the block type.
  1486. char *ptr = cmdbuffer + bufindr;
  1487. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1488. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1489. union {
  1490. struct {
  1491. char lo;
  1492. char hi;
  1493. } lohi;
  1494. uint16_t value;
  1495. } sdlen;
  1496. sdlen.value = 0;
  1497. {
  1498. // This block locks the interrupts globally for 3.25 us,
  1499. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1500. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1501. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1502. cli();
  1503. // Reset the command to something, which will be ignored by the power panic routine,
  1504. // so this buffer length will not be counted twice.
  1505. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1506. // Extract the current buffer length.
  1507. sdlen.lohi.lo = *ptr ++;
  1508. sdlen.lohi.hi = *ptr;
  1509. // and pass it to the planner queue.
  1510. planner_add_sd_length(sdlen.value);
  1511. sei();
  1512. }
  1513. }
  1514. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1515. cli();
  1516. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1517. // and one for each command to previous block in the planner queue.
  1518. planner_add_sd_length(1);
  1519. sei();
  1520. }
  1521. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1522. // this block's SD card length will not be counted twice as its command type has been replaced
  1523. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1524. cmdqueue_pop_front();
  1525. }
  1526. host_keepalive();
  1527. }
  1528. }
  1529. //check heater every n milliseconds
  1530. manage_heater();
  1531. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1532. checkHitEndstops();
  1533. lcd_update(0);
  1534. #ifdef TMC2130
  1535. tmc2130_check_overtemp();
  1536. if (tmc2130_sg_crash)
  1537. {
  1538. uint8_t crash = tmc2130_sg_crash;
  1539. tmc2130_sg_crash = 0;
  1540. // crashdet_stop_and_save_print();
  1541. switch (crash)
  1542. {
  1543. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1544. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1545. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1546. }
  1547. }
  1548. #endif //TMC2130
  1549. mmu_loop();
  1550. }
  1551. #define DEFINE_PGM_READ_ANY(type, reader) \
  1552. static inline type pgm_read_any(const type *p) \
  1553. { return pgm_read_##reader##_near(p); }
  1554. DEFINE_PGM_READ_ANY(float, float);
  1555. DEFINE_PGM_READ_ANY(signed char, byte);
  1556. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1557. static const PROGMEM type array##_P[3] = \
  1558. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1559. static inline type array(int axis) \
  1560. { return pgm_read_any(&array##_P[axis]); } \
  1561. type array##_ext(int axis) \
  1562. { return pgm_read_any(&array##_P[axis]); }
  1563. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1564. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1565. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1566. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1567. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1568. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1569. static void axis_is_at_home(int axis) {
  1570. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1571. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1572. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1573. }
  1574. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1575. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1576. //! @return original feedmultiply
  1577. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1578. saved_feedrate = feedrate;
  1579. int l_feedmultiply = feedmultiply;
  1580. feedmultiply = 100;
  1581. previous_millis_cmd = _millis();
  1582. enable_endstops(enable_endstops_now);
  1583. return l_feedmultiply;
  1584. }
  1585. //! @param original_feedmultiply feedmultiply to restore
  1586. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1587. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1588. enable_endstops(false);
  1589. #endif
  1590. feedrate = saved_feedrate;
  1591. feedmultiply = original_feedmultiply;
  1592. previous_millis_cmd = _millis();
  1593. }
  1594. #ifdef ENABLE_AUTO_BED_LEVELING
  1595. #ifdef AUTO_BED_LEVELING_GRID
  1596. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1597. {
  1598. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1599. planeNormal.debug("planeNormal");
  1600. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1601. //bedLevel.debug("bedLevel");
  1602. //plan_bed_level_matrix.debug("bed level before");
  1603. //vector_3 uncorrected_position = plan_get_position_mm();
  1604. //uncorrected_position.debug("position before");
  1605. vector_3 corrected_position = plan_get_position();
  1606. // corrected_position.debug("position after");
  1607. current_position[X_AXIS] = corrected_position.x;
  1608. current_position[Y_AXIS] = corrected_position.y;
  1609. current_position[Z_AXIS] = corrected_position.z;
  1610. // put the bed at 0 so we don't go below it.
  1611. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1612. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1613. }
  1614. #else // not AUTO_BED_LEVELING_GRID
  1615. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1616. plan_bed_level_matrix.set_to_identity();
  1617. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1618. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1619. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1620. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1621. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1622. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1623. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1624. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1625. vector_3 corrected_position = plan_get_position();
  1626. current_position[X_AXIS] = corrected_position.x;
  1627. current_position[Y_AXIS] = corrected_position.y;
  1628. current_position[Z_AXIS] = corrected_position.z;
  1629. // put the bed at 0 so we don't go below it.
  1630. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1631. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1632. }
  1633. #endif // AUTO_BED_LEVELING_GRID
  1634. static void run_z_probe() {
  1635. plan_bed_level_matrix.set_to_identity();
  1636. feedrate = homing_feedrate[Z_AXIS];
  1637. // move down until you find the bed
  1638. float zPosition = -10;
  1639. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1640. st_synchronize();
  1641. // we have to let the planner know where we are right now as it is not where we said to go.
  1642. zPosition = st_get_position_mm(Z_AXIS);
  1643. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1644. // move up the retract distance
  1645. zPosition += home_retract_mm(Z_AXIS);
  1646. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1647. st_synchronize();
  1648. // move back down slowly to find bed
  1649. feedrate = homing_feedrate[Z_AXIS]/4;
  1650. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1651. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1652. st_synchronize();
  1653. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1654. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1655. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1656. }
  1657. static void do_blocking_move_to(float x, float y, float z) {
  1658. float oldFeedRate = feedrate;
  1659. feedrate = homing_feedrate[Z_AXIS];
  1660. current_position[Z_AXIS] = z;
  1661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1662. st_synchronize();
  1663. feedrate = XY_TRAVEL_SPEED;
  1664. current_position[X_AXIS] = x;
  1665. current_position[Y_AXIS] = y;
  1666. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1667. st_synchronize();
  1668. feedrate = oldFeedRate;
  1669. }
  1670. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1671. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1672. }
  1673. /// Probe bed height at position (x,y), returns the measured z value
  1674. static float probe_pt(float x, float y, float z_before) {
  1675. // move to right place
  1676. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1677. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1678. run_z_probe();
  1679. float measured_z = current_position[Z_AXIS];
  1680. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1681. SERIAL_PROTOCOLPGM(" x: ");
  1682. SERIAL_PROTOCOL(x);
  1683. SERIAL_PROTOCOLPGM(" y: ");
  1684. SERIAL_PROTOCOL(y);
  1685. SERIAL_PROTOCOLPGM(" z: ");
  1686. SERIAL_PROTOCOL(measured_z);
  1687. SERIAL_PROTOCOLPGM("\n");
  1688. return measured_z;
  1689. }
  1690. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1691. #ifdef LIN_ADVANCE
  1692. /**
  1693. * M900: Set and/or Get advance K factor and WH/D ratio
  1694. *
  1695. * K<factor> Set advance K factor
  1696. * R<ratio> Set ratio directly (overrides WH/D)
  1697. * W<width> H<height> D<diam> Set ratio from WH/D
  1698. */
  1699. inline void gcode_M900() {
  1700. st_synchronize();
  1701. const float newK = code_seen('K') ? code_value_float() : -1;
  1702. if (newK >= 0) extruder_advance_k = newK;
  1703. float newR = code_seen('R') ? code_value_float() : -1;
  1704. if (newR < 0) {
  1705. const float newD = code_seen('D') ? code_value_float() : -1,
  1706. newW = code_seen('W') ? code_value_float() : -1,
  1707. newH = code_seen('H') ? code_value_float() : -1;
  1708. if (newD >= 0 && newW >= 0 && newH >= 0)
  1709. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1710. }
  1711. if (newR >= 0) advance_ed_ratio = newR;
  1712. SERIAL_ECHO_START;
  1713. SERIAL_ECHOPGM("Advance K=");
  1714. SERIAL_ECHOLN(extruder_advance_k);
  1715. SERIAL_ECHOPGM(" E/D=");
  1716. const float ratio = advance_ed_ratio;
  1717. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1718. }
  1719. #endif // LIN_ADVANCE
  1720. bool check_commands() {
  1721. bool end_command_found = false;
  1722. while (buflen)
  1723. {
  1724. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1725. if (!cmdbuffer_front_already_processed)
  1726. cmdqueue_pop_front();
  1727. cmdbuffer_front_already_processed = false;
  1728. }
  1729. return end_command_found;
  1730. }
  1731. #ifdef TMC2130
  1732. bool calibrate_z_auto()
  1733. {
  1734. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1735. lcd_clear();
  1736. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1737. bool endstops_enabled = enable_endstops(true);
  1738. int axis_up_dir = -home_dir(Z_AXIS);
  1739. tmc2130_home_enter(Z_AXIS_MASK);
  1740. current_position[Z_AXIS] = 0;
  1741. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1742. set_destination_to_current();
  1743. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1744. feedrate = homing_feedrate[Z_AXIS];
  1745. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1746. st_synchronize();
  1747. // current_position[axis] = 0;
  1748. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1749. tmc2130_home_exit();
  1750. enable_endstops(false);
  1751. current_position[Z_AXIS] = 0;
  1752. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1753. set_destination_to_current();
  1754. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1755. feedrate = homing_feedrate[Z_AXIS] / 2;
  1756. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1757. st_synchronize();
  1758. enable_endstops(endstops_enabled);
  1759. if (PRINTER_TYPE == PRINTER_MK3) {
  1760. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1761. }
  1762. else {
  1763. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1764. }
  1765. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1766. return true;
  1767. }
  1768. #endif //TMC2130
  1769. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1770. {
  1771. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1772. #define HOMEAXIS_DO(LETTER) \
  1773. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1774. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1775. {
  1776. int axis_home_dir = home_dir(axis);
  1777. feedrate = homing_feedrate[axis];
  1778. #ifdef TMC2130
  1779. tmc2130_home_enter(X_AXIS_MASK << axis);
  1780. #endif //TMC2130
  1781. // Move away a bit, so that the print head does not touch the end position,
  1782. // and the following movement to endstop has a chance to achieve the required velocity
  1783. // for the stall guard to work.
  1784. current_position[axis] = 0;
  1785. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1786. set_destination_to_current();
  1787. // destination[axis] = 11.f;
  1788. destination[axis] = -3.f * axis_home_dir;
  1789. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1790. st_synchronize();
  1791. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1792. endstops_hit_on_purpose();
  1793. enable_endstops(false);
  1794. current_position[axis] = 0;
  1795. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1796. destination[axis] = 1. * axis_home_dir;
  1797. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1798. st_synchronize();
  1799. // Now continue to move up to the left end stop with the collision detection enabled.
  1800. enable_endstops(true);
  1801. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1802. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1803. st_synchronize();
  1804. for (uint8_t i = 0; i < cnt; i++)
  1805. {
  1806. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1807. endstops_hit_on_purpose();
  1808. enable_endstops(false);
  1809. current_position[axis] = 0;
  1810. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1811. destination[axis] = -10.f * axis_home_dir;
  1812. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1813. st_synchronize();
  1814. endstops_hit_on_purpose();
  1815. // Now move left up to the collision, this time with a repeatable velocity.
  1816. enable_endstops(true);
  1817. destination[axis] = 11.f * axis_home_dir;
  1818. #ifdef TMC2130
  1819. feedrate = homing_feedrate[axis];
  1820. #else //TMC2130
  1821. feedrate = homing_feedrate[axis] / 2;
  1822. #endif //TMC2130
  1823. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1824. st_synchronize();
  1825. #ifdef TMC2130
  1826. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1827. if (pstep) pstep[i] = mscnt >> 4;
  1828. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1829. #endif //TMC2130
  1830. }
  1831. endstops_hit_on_purpose();
  1832. enable_endstops(false);
  1833. #ifdef TMC2130
  1834. uint8_t orig = tmc2130_home_origin[axis];
  1835. uint8_t back = tmc2130_home_bsteps[axis];
  1836. if (tmc2130_home_enabled && (orig <= 63))
  1837. {
  1838. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1839. if (back > 0)
  1840. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1841. }
  1842. else
  1843. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1844. tmc2130_home_exit();
  1845. #endif //TMC2130
  1846. axis_is_at_home(axis);
  1847. axis_known_position[axis] = true;
  1848. // Move from minimum
  1849. #ifdef TMC2130
  1850. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1851. #else //TMC2130
  1852. float dist = - axis_home_dir * 0.01f * 64;
  1853. #endif //TMC2130
  1854. current_position[axis] -= dist;
  1855. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1856. current_position[axis] += dist;
  1857. destination[axis] = current_position[axis];
  1858. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1859. st_synchronize();
  1860. feedrate = 0.0;
  1861. }
  1862. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1863. {
  1864. #ifdef TMC2130
  1865. FORCE_HIGH_POWER_START;
  1866. #endif
  1867. int axis_home_dir = home_dir(axis);
  1868. current_position[axis] = 0;
  1869. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1870. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1871. feedrate = homing_feedrate[axis];
  1872. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1873. st_synchronize();
  1874. #ifdef TMC2130
  1875. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1876. FORCE_HIGH_POWER_END;
  1877. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1878. return;
  1879. }
  1880. #endif //TMC2130
  1881. current_position[axis] = 0;
  1882. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1883. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1884. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1885. st_synchronize();
  1886. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1887. feedrate = homing_feedrate[axis]/2 ;
  1888. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1889. st_synchronize();
  1890. #ifdef TMC2130
  1891. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1892. FORCE_HIGH_POWER_END;
  1893. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1894. return;
  1895. }
  1896. #endif //TMC2130
  1897. axis_is_at_home(axis);
  1898. destination[axis] = current_position[axis];
  1899. feedrate = 0.0;
  1900. endstops_hit_on_purpose();
  1901. axis_known_position[axis] = true;
  1902. #ifdef TMC2130
  1903. FORCE_HIGH_POWER_END;
  1904. #endif
  1905. }
  1906. enable_endstops(endstops_enabled);
  1907. }
  1908. /**/
  1909. void home_xy()
  1910. {
  1911. set_destination_to_current();
  1912. homeaxis(X_AXIS);
  1913. homeaxis(Y_AXIS);
  1914. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1915. endstops_hit_on_purpose();
  1916. }
  1917. void refresh_cmd_timeout(void)
  1918. {
  1919. previous_millis_cmd = _millis();
  1920. }
  1921. #ifdef FWRETRACT
  1922. void retract(bool retracting, bool swapretract = false) {
  1923. if(retracting && !retracted[active_extruder]) {
  1924. destination[X_AXIS]=current_position[X_AXIS];
  1925. destination[Y_AXIS]=current_position[Y_AXIS];
  1926. destination[Z_AXIS]=current_position[Z_AXIS];
  1927. destination[E_AXIS]=current_position[E_AXIS];
  1928. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1929. plan_set_e_position(current_position[E_AXIS]);
  1930. float oldFeedrate = feedrate;
  1931. feedrate=cs.retract_feedrate*60;
  1932. retracted[active_extruder]=true;
  1933. prepare_move();
  1934. current_position[Z_AXIS]-=cs.retract_zlift;
  1935. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1936. prepare_move();
  1937. feedrate = oldFeedrate;
  1938. } else if(!retracting && retracted[active_extruder]) {
  1939. destination[X_AXIS]=current_position[X_AXIS];
  1940. destination[Y_AXIS]=current_position[Y_AXIS];
  1941. destination[Z_AXIS]=current_position[Z_AXIS];
  1942. destination[E_AXIS]=current_position[E_AXIS];
  1943. current_position[Z_AXIS]+=cs.retract_zlift;
  1944. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1945. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1946. plan_set_e_position(current_position[E_AXIS]);
  1947. float oldFeedrate = feedrate;
  1948. feedrate=cs.retract_recover_feedrate*60;
  1949. retracted[active_extruder]=false;
  1950. prepare_move();
  1951. feedrate = oldFeedrate;
  1952. }
  1953. } //retract
  1954. #endif //FWRETRACT
  1955. void trace() {
  1956. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  1957. tone(BEEPER, 440);
  1958. _delay(25);
  1959. noTone(BEEPER);
  1960. _delay(20);
  1961. }
  1962. /*
  1963. void ramming() {
  1964. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1965. if (current_temperature[0] < 230) {
  1966. //PLA
  1967. max_feedrate[E_AXIS] = 50;
  1968. //current_position[E_AXIS] -= 8;
  1969. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1970. //current_position[E_AXIS] += 8;
  1971. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1972. current_position[E_AXIS] += 5.4;
  1973. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1974. current_position[E_AXIS] += 3.2;
  1975. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1976. current_position[E_AXIS] += 3;
  1977. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1978. st_synchronize();
  1979. max_feedrate[E_AXIS] = 80;
  1980. current_position[E_AXIS] -= 82;
  1981. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1982. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1983. current_position[E_AXIS] -= 20;
  1984. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1985. current_position[E_AXIS] += 5;
  1986. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1987. current_position[E_AXIS] += 5;
  1988. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1989. current_position[E_AXIS] -= 10;
  1990. st_synchronize();
  1991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1992. current_position[E_AXIS] += 10;
  1993. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1994. current_position[E_AXIS] -= 10;
  1995. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1996. current_position[E_AXIS] += 10;
  1997. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1998. current_position[E_AXIS] -= 10;
  1999. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2000. st_synchronize();
  2001. }
  2002. else {
  2003. //ABS
  2004. max_feedrate[E_AXIS] = 50;
  2005. //current_position[E_AXIS] -= 8;
  2006. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2007. //current_position[E_AXIS] += 8;
  2008. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2009. current_position[E_AXIS] += 3.1;
  2010. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2011. current_position[E_AXIS] += 3.1;
  2012. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2013. current_position[E_AXIS] += 4;
  2014. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2015. st_synchronize();
  2016. //current_position[X_AXIS] += 23; //delay
  2017. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2018. //current_position[X_AXIS] -= 23; //delay
  2019. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2020. _delay(4700);
  2021. max_feedrate[E_AXIS] = 80;
  2022. current_position[E_AXIS] -= 92;
  2023. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2024. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2025. current_position[E_AXIS] -= 5;
  2026. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2027. current_position[E_AXIS] += 5;
  2028. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2029. current_position[E_AXIS] -= 5;
  2030. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2031. st_synchronize();
  2032. current_position[E_AXIS] += 5;
  2033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2034. current_position[E_AXIS] -= 5;
  2035. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2036. current_position[E_AXIS] += 5;
  2037. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2038. current_position[E_AXIS] -= 5;
  2039. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2040. st_synchronize();
  2041. }
  2042. }
  2043. */
  2044. #ifdef TMC2130
  2045. void force_high_power_mode(bool start_high_power_section) {
  2046. uint8_t silent;
  2047. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2048. if (silent == 1) {
  2049. //we are in silent mode, set to normal mode to enable crash detection
  2050. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2051. st_synchronize();
  2052. cli();
  2053. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2054. update_mode_profile();
  2055. tmc2130_init();
  2056. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2057. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2058. st_reset_timer();
  2059. sei();
  2060. }
  2061. }
  2062. #endif //TMC2130
  2063. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2064. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2065. }
  2066. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2067. st_synchronize();
  2068. #if 0
  2069. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2070. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2071. #endif
  2072. // Flag for the display update routine and to disable the print cancelation during homing.
  2073. homing_flag = true;
  2074. // Which axes should be homed?
  2075. bool home_x = home_x_axis;
  2076. bool home_y = home_y_axis;
  2077. bool home_z = home_z_axis;
  2078. // Either all X,Y,Z codes are present, or none of them.
  2079. bool home_all_axes = home_x == home_y && home_x == home_z;
  2080. if (home_all_axes)
  2081. // No X/Y/Z code provided means to home all axes.
  2082. home_x = home_y = home_z = true;
  2083. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2084. if (home_all_axes) {
  2085. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2086. feedrate = homing_feedrate[Z_AXIS];
  2087. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2088. st_synchronize();
  2089. }
  2090. #ifdef ENABLE_AUTO_BED_LEVELING
  2091. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2092. #endif //ENABLE_AUTO_BED_LEVELING
  2093. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2094. // the planner will not perform any adjustments in the XY plane.
  2095. // Wait for the motors to stop and update the current position with the absolute values.
  2096. world2machine_revert_to_uncorrected();
  2097. // For mesh bed leveling deactivate the matrix temporarily.
  2098. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2099. // in a single axis only.
  2100. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2101. #ifdef MESH_BED_LEVELING
  2102. uint8_t mbl_was_active = mbl.active;
  2103. mbl.active = 0;
  2104. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2105. #endif
  2106. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2107. // consumed during the first movements following this statement.
  2108. if (home_z)
  2109. babystep_undo();
  2110. saved_feedrate = feedrate;
  2111. int l_feedmultiply = feedmultiply;
  2112. feedmultiply = 100;
  2113. previous_millis_cmd = _millis();
  2114. enable_endstops(true);
  2115. memcpy(destination, current_position, sizeof(destination));
  2116. feedrate = 0.0;
  2117. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2118. if(home_z)
  2119. homeaxis(Z_AXIS);
  2120. #endif
  2121. #ifdef QUICK_HOME
  2122. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2123. if(home_x && home_y) //first diagonal move
  2124. {
  2125. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2126. int x_axis_home_dir = home_dir(X_AXIS);
  2127. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2128. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2129. feedrate = homing_feedrate[X_AXIS];
  2130. if(homing_feedrate[Y_AXIS]<feedrate)
  2131. feedrate = homing_feedrate[Y_AXIS];
  2132. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2133. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2134. } else {
  2135. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2136. }
  2137. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2138. st_synchronize();
  2139. axis_is_at_home(X_AXIS);
  2140. axis_is_at_home(Y_AXIS);
  2141. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2142. destination[X_AXIS] = current_position[X_AXIS];
  2143. destination[Y_AXIS] = current_position[Y_AXIS];
  2144. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2145. feedrate = 0.0;
  2146. st_synchronize();
  2147. endstops_hit_on_purpose();
  2148. current_position[X_AXIS] = destination[X_AXIS];
  2149. current_position[Y_AXIS] = destination[Y_AXIS];
  2150. current_position[Z_AXIS] = destination[Z_AXIS];
  2151. }
  2152. #endif /* QUICK_HOME */
  2153. #ifdef TMC2130
  2154. if(home_x)
  2155. {
  2156. if (!calib)
  2157. homeaxis(X_AXIS);
  2158. else
  2159. tmc2130_home_calibrate(X_AXIS);
  2160. }
  2161. if(home_y)
  2162. {
  2163. if (!calib)
  2164. homeaxis(Y_AXIS);
  2165. else
  2166. tmc2130_home_calibrate(Y_AXIS);
  2167. }
  2168. #else //TMC2130
  2169. if(home_x) homeaxis(X_AXIS);
  2170. if(home_y) homeaxis(Y_AXIS);
  2171. #endif //TMC2130
  2172. if(home_x_axis && home_x_value != 0)
  2173. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2174. if(home_y_axis && home_y_value != 0)
  2175. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2176. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2177. #ifndef Z_SAFE_HOMING
  2178. if(home_z) {
  2179. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2180. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2181. feedrate = max_feedrate[Z_AXIS];
  2182. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2183. st_synchronize();
  2184. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2185. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2186. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2187. {
  2188. homeaxis(X_AXIS);
  2189. homeaxis(Y_AXIS);
  2190. }
  2191. // 1st mesh bed leveling measurement point, corrected.
  2192. world2machine_initialize();
  2193. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2194. world2machine_reset();
  2195. if (destination[Y_AXIS] < Y_MIN_POS)
  2196. destination[Y_AXIS] = Y_MIN_POS;
  2197. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2198. feedrate = homing_feedrate[Z_AXIS]/10;
  2199. current_position[Z_AXIS] = 0;
  2200. enable_endstops(false);
  2201. #ifdef DEBUG_BUILD
  2202. SERIAL_ECHOLNPGM("plan_set_position()");
  2203. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2204. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2205. #endif
  2206. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2207. #ifdef DEBUG_BUILD
  2208. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2209. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2210. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2211. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2212. #endif
  2213. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2214. st_synchronize();
  2215. current_position[X_AXIS] = destination[X_AXIS];
  2216. current_position[Y_AXIS] = destination[Y_AXIS];
  2217. enable_endstops(true);
  2218. endstops_hit_on_purpose();
  2219. homeaxis(Z_AXIS);
  2220. #else // MESH_BED_LEVELING
  2221. homeaxis(Z_AXIS);
  2222. #endif // MESH_BED_LEVELING
  2223. }
  2224. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2225. if(home_all_axes) {
  2226. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2227. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2228. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2229. feedrate = XY_TRAVEL_SPEED/60;
  2230. current_position[Z_AXIS] = 0;
  2231. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2232. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2233. st_synchronize();
  2234. current_position[X_AXIS] = destination[X_AXIS];
  2235. current_position[Y_AXIS] = destination[Y_AXIS];
  2236. homeaxis(Z_AXIS);
  2237. }
  2238. // Let's see if X and Y are homed and probe is inside bed area.
  2239. if(home_z) {
  2240. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2241. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2242. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2243. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2244. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2245. current_position[Z_AXIS] = 0;
  2246. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2247. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2248. feedrate = max_feedrate[Z_AXIS];
  2249. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2250. st_synchronize();
  2251. homeaxis(Z_AXIS);
  2252. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2253. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2254. SERIAL_ECHO_START;
  2255. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2256. } else {
  2257. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2258. SERIAL_ECHO_START;
  2259. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2260. }
  2261. }
  2262. #endif // Z_SAFE_HOMING
  2263. #endif // Z_HOME_DIR < 0
  2264. if(home_z_axis && home_z_value != 0)
  2265. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2266. #ifdef ENABLE_AUTO_BED_LEVELING
  2267. if(home_z)
  2268. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2269. #endif
  2270. // Set the planner and stepper routine positions.
  2271. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2272. // contains the machine coordinates.
  2273. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2274. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2275. enable_endstops(false);
  2276. #endif
  2277. feedrate = saved_feedrate;
  2278. feedmultiply = l_feedmultiply;
  2279. previous_millis_cmd = _millis();
  2280. endstops_hit_on_purpose();
  2281. #ifndef MESH_BED_LEVELING
  2282. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2283. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2284. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2285. lcd_adjust_z();
  2286. #endif
  2287. // Load the machine correction matrix
  2288. world2machine_initialize();
  2289. // and correct the current_position XY axes to match the transformed coordinate system.
  2290. world2machine_update_current();
  2291. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2292. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2293. {
  2294. if (! home_z && mbl_was_active) {
  2295. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2296. mbl.active = true;
  2297. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2298. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2299. }
  2300. }
  2301. else
  2302. {
  2303. st_synchronize();
  2304. homing_flag = false;
  2305. }
  2306. #endif
  2307. if (farm_mode) { prusa_statistics(20); };
  2308. homing_flag = false;
  2309. #if 0
  2310. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2311. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2312. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2313. #endif
  2314. }
  2315. void adjust_bed_reset()
  2316. {
  2317. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2318. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2319. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2320. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2321. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2322. }
  2323. //! @brief Calibrate XYZ
  2324. //! @param onlyZ if true, calibrate only Z axis
  2325. //! @param verbosity_level
  2326. //! @retval true Succeeded
  2327. //! @retval false Failed
  2328. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2329. {
  2330. bool final_result = false;
  2331. #ifdef TMC2130
  2332. FORCE_HIGH_POWER_START;
  2333. #endif // TMC2130
  2334. // Only Z calibration?
  2335. if (!onlyZ)
  2336. {
  2337. setTargetBed(0);
  2338. setAllTargetHotends(0);
  2339. adjust_bed_reset(); //reset bed level correction
  2340. }
  2341. // Disable the default update procedure of the display. We will do a modal dialog.
  2342. lcd_update_enable(false);
  2343. // Let the planner use the uncorrected coordinates.
  2344. mbl.reset();
  2345. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2346. // the planner will not perform any adjustments in the XY plane.
  2347. // Wait for the motors to stop and update the current position with the absolute values.
  2348. world2machine_revert_to_uncorrected();
  2349. // Reset the baby step value applied without moving the axes.
  2350. babystep_reset();
  2351. // Mark all axes as in a need for homing.
  2352. memset(axis_known_position, 0, sizeof(axis_known_position));
  2353. // Home in the XY plane.
  2354. //set_destination_to_current();
  2355. int l_feedmultiply = setup_for_endstop_move();
  2356. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2357. home_xy();
  2358. enable_endstops(false);
  2359. current_position[X_AXIS] += 5;
  2360. current_position[Y_AXIS] += 5;
  2361. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2362. st_synchronize();
  2363. // Let the user move the Z axes up to the end stoppers.
  2364. #ifdef TMC2130
  2365. if (calibrate_z_auto())
  2366. {
  2367. #else //TMC2130
  2368. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2369. {
  2370. #endif //TMC2130
  2371. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2372. if(onlyZ){
  2373. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2374. lcd_set_cursor(0, 3);
  2375. lcd_print(1);
  2376. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2377. }else{
  2378. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2379. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2380. lcd_set_cursor(0, 2);
  2381. lcd_print(1);
  2382. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2383. }
  2384. refresh_cmd_timeout();
  2385. #ifndef STEEL_SHEET
  2386. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2387. {
  2388. lcd_wait_for_cool_down();
  2389. }
  2390. #endif //STEEL_SHEET
  2391. if(!onlyZ)
  2392. {
  2393. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2394. #ifdef STEEL_SHEET
  2395. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2396. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2397. #endif //STEEL_SHEET
  2398. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2399. KEEPALIVE_STATE(IN_HANDLER);
  2400. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2401. lcd_set_cursor(0, 2);
  2402. lcd_print(1);
  2403. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2404. }
  2405. bool endstops_enabled = enable_endstops(false);
  2406. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2407. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2408. st_synchronize();
  2409. // Move the print head close to the bed.
  2410. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2411. enable_endstops(true);
  2412. #ifdef TMC2130
  2413. tmc2130_home_enter(Z_AXIS_MASK);
  2414. #endif //TMC2130
  2415. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2416. st_synchronize();
  2417. #ifdef TMC2130
  2418. tmc2130_home_exit();
  2419. #endif //TMC2130
  2420. enable_endstops(endstops_enabled);
  2421. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2422. {
  2423. if (onlyZ)
  2424. {
  2425. clean_up_after_endstop_move(l_feedmultiply);
  2426. // Z only calibration.
  2427. // Load the machine correction matrix
  2428. world2machine_initialize();
  2429. // and correct the current_position to match the transformed coordinate system.
  2430. world2machine_update_current();
  2431. //FIXME
  2432. bool result = sample_mesh_and_store_reference();
  2433. if (result)
  2434. {
  2435. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2436. // Shipped, the nozzle height has been set already. The user can start printing now.
  2437. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2438. final_result = true;
  2439. // babystep_apply();
  2440. }
  2441. }
  2442. else
  2443. {
  2444. // Reset the baby step value and the baby step applied flag.
  2445. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2446. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2447. // Complete XYZ calibration.
  2448. uint8_t point_too_far_mask = 0;
  2449. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2450. clean_up_after_endstop_move(l_feedmultiply);
  2451. // Print head up.
  2452. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2453. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2454. st_synchronize();
  2455. //#ifndef NEW_XYZCAL
  2456. if (result >= 0)
  2457. {
  2458. #ifdef HEATBED_V2
  2459. sample_z();
  2460. #else //HEATBED_V2
  2461. point_too_far_mask = 0;
  2462. // Second half: The fine adjustment.
  2463. // Let the planner use the uncorrected coordinates.
  2464. mbl.reset();
  2465. world2machine_reset();
  2466. // Home in the XY plane.
  2467. int l_feedmultiply = setup_for_endstop_move();
  2468. home_xy();
  2469. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2470. clean_up_after_endstop_move(l_feedmultiply);
  2471. // Print head up.
  2472. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2473. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2474. st_synchronize();
  2475. // if (result >= 0) babystep_apply();
  2476. #endif //HEATBED_V2
  2477. }
  2478. //#endif //NEW_XYZCAL
  2479. lcd_update_enable(true);
  2480. lcd_update(2);
  2481. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2482. if (result >= 0)
  2483. {
  2484. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2485. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2486. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2487. final_result = true;
  2488. }
  2489. }
  2490. #ifdef TMC2130
  2491. tmc2130_home_exit();
  2492. #endif
  2493. }
  2494. else
  2495. {
  2496. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2497. final_result = false;
  2498. }
  2499. }
  2500. else
  2501. {
  2502. // Timeouted.
  2503. }
  2504. lcd_update_enable(true);
  2505. #ifdef TMC2130
  2506. FORCE_HIGH_POWER_END;
  2507. #endif // TMC2130
  2508. return final_result;
  2509. }
  2510. void gcode_M114()
  2511. {
  2512. SERIAL_PROTOCOLPGM("X:");
  2513. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2514. SERIAL_PROTOCOLPGM(" Y:");
  2515. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2516. SERIAL_PROTOCOLPGM(" Z:");
  2517. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2518. SERIAL_PROTOCOLPGM(" E:");
  2519. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2520. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2521. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2522. SERIAL_PROTOCOLPGM(" Y:");
  2523. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2524. SERIAL_PROTOCOLPGM(" Z:");
  2525. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2526. SERIAL_PROTOCOLPGM(" E:");
  2527. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2528. SERIAL_PROTOCOLLN("");
  2529. }
  2530. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2531. {
  2532. st_synchronize();
  2533. float lastpos[4];
  2534. if (farm_mode)
  2535. {
  2536. prusa_statistics(22);
  2537. }
  2538. //First backup current position and settings
  2539. int feedmultiplyBckp = feedmultiply;
  2540. float HotendTempBckp = degTargetHotend(active_extruder);
  2541. int fanSpeedBckp = fanSpeed;
  2542. lastpos[X_AXIS] = current_position[X_AXIS];
  2543. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2544. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2545. lastpos[E_AXIS] = current_position[E_AXIS];
  2546. //Retract E
  2547. current_position[E_AXIS] += e_shift;
  2548. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2549. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2550. st_synchronize();
  2551. //Lift Z
  2552. current_position[Z_AXIS] += z_shift;
  2553. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2554. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2555. st_synchronize();
  2556. //Move XY to side
  2557. current_position[X_AXIS] = x_position;
  2558. current_position[Y_AXIS] = y_position;
  2559. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2560. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2561. st_synchronize();
  2562. //Beep, manage nozzle heater and wait for user to start unload filament
  2563. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2564. lcd_change_fil_state = 0;
  2565. // Unload filament
  2566. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2567. else unload_filament(); //unload filament for single material (used also in M702)
  2568. //finish moves
  2569. st_synchronize();
  2570. if (!mmu_enabled)
  2571. {
  2572. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2573. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2574. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2575. if (lcd_change_fil_state == 0)
  2576. {
  2577. lcd_clear();
  2578. lcd_set_cursor(0, 2);
  2579. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2580. current_position[X_AXIS] -= 100;
  2581. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2582. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2583. st_synchronize();
  2584. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2585. }
  2586. }
  2587. if (mmu_enabled)
  2588. {
  2589. if (!automatic) {
  2590. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2591. mmu_M600_wait_and_beep();
  2592. if (saved_printing) {
  2593. lcd_clear();
  2594. lcd_set_cursor(0, 2);
  2595. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2596. mmu_command(MMU_CMD_R0);
  2597. manage_response(false, false);
  2598. }
  2599. }
  2600. mmu_M600_load_filament(automatic);
  2601. }
  2602. else
  2603. M600_load_filament();
  2604. if (!automatic) M600_check_state();
  2605. lcd_update_enable(true);
  2606. //Not let's go back to print
  2607. fanSpeed = fanSpeedBckp;
  2608. //Feed a little of filament to stabilize pressure
  2609. if (!automatic)
  2610. {
  2611. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2613. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2614. }
  2615. //Move XY back
  2616. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2617. FILAMENTCHANGE_XYFEED, active_extruder);
  2618. st_synchronize();
  2619. //Move Z back
  2620. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2621. FILAMENTCHANGE_ZFEED, active_extruder);
  2622. st_synchronize();
  2623. //Set E position to original
  2624. plan_set_e_position(lastpos[E_AXIS]);
  2625. memcpy(current_position, lastpos, sizeof(lastpos));
  2626. memcpy(destination, current_position, sizeof(current_position));
  2627. //Recover feed rate
  2628. feedmultiply = feedmultiplyBckp;
  2629. char cmd[9];
  2630. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2631. enquecommand(cmd);
  2632. lcd_setstatuspgm(_T(WELCOME_MSG));
  2633. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2634. }
  2635. void gcode_M701()
  2636. {
  2637. printf_P(PSTR("gcode_M701 begin\n"));
  2638. if (mmu_enabled)
  2639. {
  2640. extr_adj(tmp_extruder);//loads current extruder
  2641. mmu_extruder = tmp_extruder;
  2642. }
  2643. else
  2644. {
  2645. enable_z();
  2646. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2647. #ifdef FSENSOR_QUALITY
  2648. fsensor_oq_meassure_start(40);
  2649. #endif //FSENSOR_QUALITY
  2650. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2651. current_position[E_AXIS] += 40;
  2652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2653. st_synchronize();
  2654. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2655. current_position[E_AXIS] += 30;
  2656. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2657. load_filament_final_feed(); //slow sequence
  2658. st_synchronize();
  2659. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) tone(BEEPER, 500);
  2660. delay_keep_alive(50);
  2661. noTone(BEEPER);
  2662. if (!farm_mode && loading_flag) {
  2663. lcd_load_filament_color_check();
  2664. }
  2665. lcd_update_enable(true);
  2666. lcd_update(2);
  2667. lcd_setstatuspgm(_T(WELCOME_MSG));
  2668. disable_z();
  2669. loading_flag = false;
  2670. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2671. #ifdef FSENSOR_QUALITY
  2672. fsensor_oq_meassure_stop();
  2673. if (!fsensor_oq_result())
  2674. {
  2675. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2676. lcd_update_enable(true);
  2677. lcd_update(2);
  2678. if (disable)
  2679. fsensor_disable();
  2680. }
  2681. #endif //FSENSOR_QUALITY
  2682. }
  2683. }
  2684. /**
  2685. * @brief Get serial number from 32U2 processor
  2686. *
  2687. * Typical format of S/N is:CZPX0917X003XC13518
  2688. *
  2689. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2690. *
  2691. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2692. * reply is transmitted to serial port 1 character by character.
  2693. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2694. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2695. * in any case.
  2696. */
  2697. static void gcode_PRUSA_SN()
  2698. {
  2699. if (farm_mode) {
  2700. selectedSerialPort = 0;
  2701. putchar(';');
  2702. putchar('S');
  2703. int numbersRead = 0;
  2704. ShortTimer timeout;
  2705. timeout.start();
  2706. while (numbersRead < 19) {
  2707. while (MSerial.available() > 0) {
  2708. uint8_t serial_char = MSerial.read();
  2709. selectedSerialPort = 1;
  2710. putchar(serial_char);
  2711. numbersRead++;
  2712. selectedSerialPort = 0;
  2713. }
  2714. if (timeout.expired(100u)) break;
  2715. }
  2716. selectedSerialPort = 1;
  2717. putchar('\n');
  2718. #if 0
  2719. for (int b = 0; b < 3; b++) {
  2720. tone(BEEPER, 110);
  2721. _delay(50);
  2722. noTone(BEEPER);
  2723. _delay(50);
  2724. }
  2725. #endif
  2726. } else {
  2727. puts_P(_N("Not in farm mode."));
  2728. }
  2729. }
  2730. #ifdef BACKLASH_X
  2731. extern uint8_t st_backlash_x;
  2732. #endif //BACKLASH_X
  2733. #ifdef BACKLASH_Y
  2734. extern uint8_t st_backlash_y;
  2735. #endif //BACKLASH_Y
  2736. //! @brief Parse and process commands
  2737. //!
  2738. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2739. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2740. //!
  2741. //! Implemented Codes
  2742. //! -------------------
  2743. //!
  2744. //!@n PRUSA CODES
  2745. //!@n P F - Returns FW versions
  2746. //!@n P R - Returns revision of printer
  2747. //!
  2748. //!@n G0 -> G1
  2749. //!@n G1 - Coordinated Movement X Y Z E
  2750. //!@n G2 - CW ARC
  2751. //!@n G3 - CCW ARC
  2752. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2753. //!@n G10 - retract filament according to settings of M207
  2754. //!@n G11 - retract recover filament according to settings of M208
  2755. //!@n G28 - Home all Axis
  2756. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2757. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2758. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2759. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2760. //!@n G80 - Automatic mesh bed leveling
  2761. //!@n G81 - Print bed profile
  2762. //!@n G90 - Use Absolute Coordinates
  2763. //!@n G91 - Use Relative Coordinates
  2764. //!@n G92 - Set current position to coordinates given
  2765. //!
  2766. //!@n M Codes
  2767. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2768. //!@n M1 - Same as M0
  2769. //!@n M17 - Enable/Power all stepper motors
  2770. //!@n M18 - Disable all stepper motors; same as M84
  2771. //!@n M20 - List SD card
  2772. //!@n M21 - Init SD card
  2773. //!@n M22 - Release SD card
  2774. //!@n M23 - Select SD file (M23 filename.g)
  2775. //!@n M24 - Start/resume SD print
  2776. //!@n M25 - Pause SD print
  2777. //!@n M26 - Set SD position in bytes (M26 S12345)
  2778. //!@n M27 - Report SD print status
  2779. //!@n M28 - Start SD write (M28 filename.g)
  2780. //!@n M29 - Stop SD write
  2781. //!@n M30 - Delete file from SD (M30 filename.g)
  2782. //!@n M31 - Output time since last M109 or SD card start to serial
  2783. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2784. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2785. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2786. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2787. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2788. //!@n M73 - Show percent done and print time remaining
  2789. //!@n M80 - Turn on Power Supply
  2790. //!@n M81 - Turn off Power Supply
  2791. //!@n M82 - Set E codes absolute (default)
  2792. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2793. //!@n M84 - Disable steppers until next move,
  2794. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2795. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2796. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2797. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2798. //!@n M104 - Set extruder target temp
  2799. //!@n M105 - Read current temp
  2800. //!@n M106 - Fan on
  2801. //!@n M107 - Fan off
  2802. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2803. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2804. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2805. //!@n M112 - Emergency stop
  2806. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2807. //!@n M114 - Output current position to serial port
  2808. //!@n M115 - Capabilities string
  2809. //!@n M117 - display message
  2810. //!@n M119 - Output Endstop status to serial port
  2811. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2812. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2813. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2814. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2815. //!@n M140 - Set bed target temp
  2816. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2817. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2818. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2819. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2820. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2821. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2822. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2823. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2824. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2825. //!@n M206 - set additional homing offset
  2826. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2827. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2828. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2829. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2830. //!@n M220 S<factor in percent>- set speed factor override percentage
  2831. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2832. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2833. //!@n M240 - Trigger a camera to take a photograph
  2834. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2835. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2836. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2837. //!@n M301 - Set PID parameters P I and D
  2838. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2839. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2840. //!@n M304 - Set bed PID parameters P I and D
  2841. //!@n M400 - Finish all moves
  2842. //!@n M401 - Lower z-probe if present
  2843. //!@n M402 - Raise z-probe if present
  2844. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2845. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2846. //!@n M406 - Turn off Filament Sensor extrusion control
  2847. //!@n M407 - Displays measured filament diameter
  2848. //!@n M500 - stores parameters in EEPROM
  2849. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2850. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2851. //!@n M503 - print the current settings (from memory not from EEPROM)
  2852. //!@n M509 - force language selection on next restart
  2853. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2854. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2855. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2856. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2857. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2858. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2859. //!@n M907 - Set digital trimpot motor current using axis codes.
  2860. //!@n M908 - Control digital trimpot directly.
  2861. //!@n M350 - Set microstepping mode.
  2862. //!@n M351 - Toggle MS1 MS2 pins directly.
  2863. //!
  2864. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2865. //!@n M999 - Restart after being stopped by error
  2866. void process_commands()
  2867. {
  2868. if (!buflen) return; //empty command
  2869. #ifdef FILAMENT_RUNOUT_SUPPORT
  2870. SET_INPUT(FR_SENS);
  2871. #endif
  2872. #ifdef CMDBUFFER_DEBUG
  2873. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2874. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2875. SERIAL_ECHOLNPGM("");
  2876. SERIAL_ECHOPGM("In cmdqueue: ");
  2877. SERIAL_ECHO(buflen);
  2878. SERIAL_ECHOLNPGM("");
  2879. #endif /* CMDBUFFER_DEBUG */
  2880. unsigned long codenum; //throw away variable
  2881. char *starpos = NULL;
  2882. #ifdef ENABLE_AUTO_BED_LEVELING
  2883. float x_tmp, y_tmp, z_tmp, real_z;
  2884. #endif
  2885. // PRUSA GCODES
  2886. KEEPALIVE_STATE(IN_HANDLER);
  2887. #ifdef SNMM
  2888. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2889. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2890. int8_t SilentMode;
  2891. #endif
  2892. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2893. starpos = (strchr(strchr_pointer + 5, '*'));
  2894. if (starpos != NULL)
  2895. *(starpos) = '\0';
  2896. lcd_setstatus(strchr_pointer + 5);
  2897. }
  2898. #ifdef TMC2130
  2899. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2900. {
  2901. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2902. {
  2903. uint8_t mask = 0;
  2904. if (code_seen('X')) mask |= X_AXIS_MASK;
  2905. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2906. crashdet_detected(mask);
  2907. }
  2908. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2909. crashdet_recover();
  2910. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  2911. crashdet_cancel();
  2912. }
  2913. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2914. {
  2915. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  2916. {
  2917. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2918. axis = (axis == 'E')?3:(axis - 'X');
  2919. if (axis < 4)
  2920. {
  2921. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2922. tmc2130_set_wave(axis, 247, fac);
  2923. }
  2924. }
  2925. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  2926. {
  2927. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2928. axis = (axis == 'E')?3:(axis - 'X');
  2929. if (axis < 4)
  2930. {
  2931. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2932. uint16_t res = tmc2130_get_res(axis);
  2933. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2934. }
  2935. }
  2936. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  2937. {
  2938. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2939. axis = (axis == 'E')?3:(axis - 'X');
  2940. if (axis < 4)
  2941. {
  2942. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2943. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2944. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2945. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2946. char* str_end = 0;
  2947. if (CMDBUFFER_CURRENT_STRING[14])
  2948. {
  2949. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2950. if (str_end && *str_end)
  2951. {
  2952. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2953. if (str_end && *str_end)
  2954. {
  2955. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2956. if (str_end && *str_end)
  2957. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2958. }
  2959. }
  2960. }
  2961. tmc2130_chopper_config[axis].toff = chop0;
  2962. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2963. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2964. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2965. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2966. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2967. }
  2968. }
  2969. }
  2970. #ifdef BACKLASH_X
  2971. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2972. {
  2973. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2974. st_backlash_x = bl;
  2975. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2976. }
  2977. #endif //BACKLASH_X
  2978. #ifdef BACKLASH_Y
  2979. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2980. {
  2981. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2982. st_backlash_y = bl;
  2983. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2984. }
  2985. #endif //BACKLASH_Y
  2986. #endif //TMC2130
  2987. #ifdef FILAMENT_SENSOR
  2988. else if (code_seen("FSENSOR_RECOVER")) { //! FSENSOR_RECOVER
  2989. fsensor_restore_print_and_continue();
  2990. }
  2991. #endif //FILAMENT_SENSOR
  2992. else if(code_seen("PRUSA")){
  2993. if (code_seen("Ping")) { //! PRUSA Ping
  2994. if (farm_mode) {
  2995. PingTime = _millis();
  2996. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2997. }
  2998. }
  2999. else if (code_seen("PRN")) { //! PRUSA PRN
  3000. printf_P(_N("%d"), status_number);
  3001. }else if (code_seen("FAN")) { //! PRUSA FAN
  3002. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3003. }else if (code_seen("fn")) { //! PRUSA fn
  3004. if (farm_mode) {
  3005. printf_P(_N("%d"), farm_no);
  3006. }
  3007. else {
  3008. puts_P(_N("Not in farm mode."));
  3009. }
  3010. }
  3011. else if (code_seen("thx")) //! PRUSA thx
  3012. {
  3013. no_response = false;
  3014. }
  3015. else if (code_seen("uvlo")) //! PRUSA uvlo
  3016. {
  3017. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3018. enquecommand_P(PSTR("M24"));
  3019. }
  3020. else if (code_seen("MMURES")) //! PRUSA MMURES
  3021. {
  3022. mmu_reset();
  3023. }
  3024. else if (code_seen("RESET")) { //! PRUSA RESET
  3025. // careful!
  3026. if (farm_mode) {
  3027. #ifdef WATCHDOG
  3028. boot_app_magic = BOOT_APP_MAGIC;
  3029. boot_app_flags = BOOT_APP_FLG_RUN;
  3030. wdt_enable(WDTO_15MS);
  3031. cli();
  3032. while(1);
  3033. #else //WATCHDOG
  3034. asm volatile("jmp 0x3E000");
  3035. #endif //WATCHDOG
  3036. }
  3037. else {
  3038. MYSERIAL.println("Not in farm mode.");
  3039. }
  3040. }else if (code_seen("fv")) { //! PRUSA fv
  3041. // get file version
  3042. #ifdef SDSUPPORT
  3043. card.openFile(strchr_pointer + 3,true);
  3044. while (true) {
  3045. uint16_t readByte = card.get();
  3046. MYSERIAL.write(readByte);
  3047. if (readByte=='\n') {
  3048. break;
  3049. }
  3050. }
  3051. card.closefile();
  3052. #endif // SDSUPPORT
  3053. } else if (code_seen("M28")) { //! PRUSA M28
  3054. trace();
  3055. prusa_sd_card_upload = true;
  3056. card.openFile(strchr_pointer+4,false);
  3057. } else if (code_seen("SN")) { //! PRUSA SN
  3058. gcode_PRUSA_SN();
  3059. } else if(code_seen("Fir")){ //! PRUSA Fir
  3060. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3061. } else if(code_seen("Rev")){ //! PRUSA Rev
  3062. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3063. } else if(code_seen("Lang")) { //! PRUSA Lang
  3064. lang_reset();
  3065. } else if(code_seen("Lz")) { //! PRUSA Lz
  3066. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3067. } else if(code_seen("Beat")) { //! PRUSA Beat
  3068. // Kick farm link timer
  3069. kicktime = _millis();
  3070. } else if(code_seen("FR")) { //! PRUSA FR
  3071. // Factory full reset
  3072. factory_reset(0);
  3073. }
  3074. //else if (code_seen('Cal')) {
  3075. // lcd_calibration();
  3076. // }
  3077. }
  3078. else if (code_seen('^')) {
  3079. // nothing, this is a version line
  3080. } else if(code_seen('G'))
  3081. {
  3082. gcode_in_progress = (int)code_value();
  3083. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3084. switch (gcode_in_progress)
  3085. {
  3086. case 0: // G0 -> G1
  3087. case 1: // G1
  3088. if(Stopped == false) {
  3089. #ifdef FILAMENT_RUNOUT_SUPPORT
  3090. if(READ(FR_SENS)){
  3091. int feedmultiplyBckp=feedmultiply;
  3092. float target[4];
  3093. float lastpos[4];
  3094. target[X_AXIS]=current_position[X_AXIS];
  3095. target[Y_AXIS]=current_position[Y_AXIS];
  3096. target[Z_AXIS]=current_position[Z_AXIS];
  3097. target[E_AXIS]=current_position[E_AXIS];
  3098. lastpos[X_AXIS]=current_position[X_AXIS];
  3099. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3100. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3101. lastpos[E_AXIS]=current_position[E_AXIS];
  3102. //retract by E
  3103. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3104. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3105. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3106. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3107. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3108. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3109. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3110. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3111. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3112. //finish moves
  3113. st_synchronize();
  3114. //disable extruder steppers so filament can be removed
  3115. disable_e0();
  3116. disable_e1();
  3117. disable_e2();
  3118. _delay(100);
  3119. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3120. uint8_t cnt=0;
  3121. int counterBeep = 0;
  3122. lcd_wait_interact();
  3123. while(!lcd_clicked()){
  3124. cnt++;
  3125. manage_heater();
  3126. manage_inactivity(true);
  3127. //lcd_update(0);
  3128. if(cnt==0)
  3129. {
  3130. #if BEEPER > 0
  3131. if (counterBeep== 500){
  3132. counterBeep = 0;
  3133. }
  3134. SET_OUTPUT(BEEPER);
  3135. if (counterBeep== 0){
  3136. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3137. WRITE(BEEPER,HIGH);
  3138. }
  3139. if (counterBeep== 20){
  3140. WRITE(BEEPER,LOW);
  3141. }
  3142. counterBeep++;
  3143. #else
  3144. #endif
  3145. }
  3146. }
  3147. WRITE(BEEPER,LOW);
  3148. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3149. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3150. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3151. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3152. lcd_change_fil_state = 0;
  3153. lcd_loading_filament();
  3154. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3155. lcd_change_fil_state = 0;
  3156. lcd_alright();
  3157. switch(lcd_change_fil_state){
  3158. case 2:
  3159. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3160. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3161. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3162. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3163. lcd_loading_filament();
  3164. break;
  3165. case 3:
  3166. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3167. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3168. lcd_loading_color();
  3169. break;
  3170. default:
  3171. lcd_change_success();
  3172. break;
  3173. }
  3174. }
  3175. target[E_AXIS]+= 5;
  3176. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3177. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3178. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3179. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3180. //plan_set_e_position(current_position[E_AXIS]);
  3181. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3182. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3183. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3184. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3185. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3186. plan_set_e_position(lastpos[E_AXIS]);
  3187. feedmultiply=feedmultiplyBckp;
  3188. char cmd[9];
  3189. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3190. enquecommand(cmd);
  3191. }
  3192. #endif
  3193. get_coordinates(); // For X Y Z E F
  3194. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3195. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3196. }
  3197. #ifdef FWRETRACT
  3198. if(cs.autoretract_enabled)
  3199. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3200. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3201. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3202. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3203. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3204. retract(!retracted[active_extruder]);
  3205. return;
  3206. }
  3207. }
  3208. #endif //FWRETRACT
  3209. prepare_move();
  3210. //ClearToSend();
  3211. }
  3212. break;
  3213. case 2: // G2 - CW ARC
  3214. if(Stopped == false) {
  3215. get_arc_coordinates();
  3216. prepare_arc_move(true);
  3217. }
  3218. break;
  3219. case 3: // G3 - CCW ARC
  3220. if(Stopped == false) {
  3221. get_arc_coordinates();
  3222. prepare_arc_move(false);
  3223. }
  3224. break;
  3225. case 4: // G4 dwell
  3226. codenum = 0;
  3227. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3228. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3229. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL c=0 r=0
  3230. st_synchronize();
  3231. codenum += _millis(); // keep track of when we started waiting
  3232. previous_millis_cmd = _millis();
  3233. while(_millis() < codenum) {
  3234. manage_heater();
  3235. manage_inactivity();
  3236. lcd_update(0);
  3237. }
  3238. break;
  3239. #ifdef FWRETRACT
  3240. case 10: // G10 retract
  3241. #if EXTRUDERS > 1
  3242. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3243. retract(true,retracted_swap[active_extruder]);
  3244. #else
  3245. retract(true);
  3246. #endif
  3247. break;
  3248. case 11: // G11 retract_recover
  3249. #if EXTRUDERS > 1
  3250. retract(false,retracted_swap[active_extruder]);
  3251. #else
  3252. retract(false);
  3253. #endif
  3254. break;
  3255. #endif //FWRETRACT
  3256. case 28: //G28 Home all Axis one at a time
  3257. {
  3258. long home_x_value = 0;
  3259. long home_y_value = 0;
  3260. long home_z_value = 0;
  3261. // Which axes should be homed?
  3262. bool home_x = code_seen(axis_codes[X_AXIS]);
  3263. home_x_value = code_value_long();
  3264. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3265. home_y_value = code_value_long();
  3266. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3267. home_z_value = code_value_long();
  3268. bool without_mbl = code_seen('W');
  3269. // calibrate?
  3270. bool calib = code_seen('C');
  3271. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3272. if ((home_x || home_y || without_mbl || home_z) == false) {
  3273. // Push the commands to the front of the message queue in the reverse order!
  3274. // There shall be always enough space reserved for these commands.
  3275. goto case_G80;
  3276. }
  3277. break;
  3278. }
  3279. #ifdef ENABLE_AUTO_BED_LEVELING
  3280. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3281. {
  3282. #if Z_MIN_PIN == -1
  3283. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3284. #endif
  3285. // Prevent user from running a G29 without first homing in X and Y
  3286. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3287. {
  3288. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3289. SERIAL_ECHO_START;
  3290. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3291. break; // abort G29, since we don't know where we are
  3292. }
  3293. st_synchronize();
  3294. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3295. //vector_3 corrected_position = plan_get_position_mm();
  3296. //corrected_position.debug("position before G29");
  3297. plan_bed_level_matrix.set_to_identity();
  3298. vector_3 uncorrected_position = plan_get_position();
  3299. //uncorrected_position.debug("position durring G29");
  3300. current_position[X_AXIS] = uncorrected_position.x;
  3301. current_position[Y_AXIS] = uncorrected_position.y;
  3302. current_position[Z_AXIS] = uncorrected_position.z;
  3303. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3304. int l_feedmultiply = setup_for_endstop_move();
  3305. feedrate = homing_feedrate[Z_AXIS];
  3306. #ifdef AUTO_BED_LEVELING_GRID
  3307. // probe at the points of a lattice grid
  3308. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3309. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3310. // solve the plane equation ax + by + d = z
  3311. // A is the matrix with rows [x y 1] for all the probed points
  3312. // B is the vector of the Z positions
  3313. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3314. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3315. // "A" matrix of the linear system of equations
  3316. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3317. // "B" vector of Z points
  3318. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3319. int probePointCounter = 0;
  3320. bool zig = true;
  3321. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3322. {
  3323. int xProbe, xInc;
  3324. if (zig)
  3325. {
  3326. xProbe = LEFT_PROBE_BED_POSITION;
  3327. //xEnd = RIGHT_PROBE_BED_POSITION;
  3328. xInc = xGridSpacing;
  3329. zig = false;
  3330. } else // zag
  3331. {
  3332. xProbe = RIGHT_PROBE_BED_POSITION;
  3333. //xEnd = LEFT_PROBE_BED_POSITION;
  3334. xInc = -xGridSpacing;
  3335. zig = true;
  3336. }
  3337. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3338. {
  3339. float z_before;
  3340. if (probePointCounter == 0)
  3341. {
  3342. // raise before probing
  3343. z_before = Z_RAISE_BEFORE_PROBING;
  3344. } else
  3345. {
  3346. // raise extruder
  3347. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3348. }
  3349. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3350. eqnBVector[probePointCounter] = measured_z;
  3351. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3352. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3353. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3354. probePointCounter++;
  3355. xProbe += xInc;
  3356. }
  3357. }
  3358. clean_up_after_endstop_move(l_feedmultiply);
  3359. // solve lsq problem
  3360. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3361. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3362. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3363. SERIAL_PROTOCOLPGM(" b: ");
  3364. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3365. SERIAL_PROTOCOLPGM(" d: ");
  3366. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3367. set_bed_level_equation_lsq(plane_equation_coefficients);
  3368. free(plane_equation_coefficients);
  3369. #else // AUTO_BED_LEVELING_GRID not defined
  3370. // Probe at 3 arbitrary points
  3371. // probe 1
  3372. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3373. // probe 2
  3374. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3375. // probe 3
  3376. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3377. clean_up_after_endstop_move(l_feedmultiply);
  3378. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3379. #endif // AUTO_BED_LEVELING_GRID
  3380. st_synchronize();
  3381. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3382. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3383. // When the bed is uneven, this height must be corrected.
  3384. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3385. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3386. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3387. z_tmp = current_position[Z_AXIS];
  3388. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3389. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3390. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3391. }
  3392. break;
  3393. #ifndef Z_PROBE_SLED
  3394. case 30: // G30 Single Z Probe
  3395. {
  3396. st_synchronize();
  3397. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3398. int l_feedmultiply = setup_for_endstop_move();
  3399. feedrate = homing_feedrate[Z_AXIS];
  3400. run_z_probe();
  3401. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3402. SERIAL_PROTOCOLPGM(" X: ");
  3403. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3404. SERIAL_PROTOCOLPGM(" Y: ");
  3405. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3406. SERIAL_PROTOCOLPGM(" Z: ");
  3407. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3408. SERIAL_PROTOCOLPGM("\n");
  3409. clean_up_after_endstop_move(l_feedmultiply);
  3410. }
  3411. break;
  3412. #else
  3413. case 31: // dock the sled
  3414. dock_sled(true);
  3415. break;
  3416. case 32: // undock the sled
  3417. dock_sled(false);
  3418. break;
  3419. #endif // Z_PROBE_SLED
  3420. #endif // ENABLE_AUTO_BED_LEVELING
  3421. #ifdef MESH_BED_LEVELING
  3422. case 30: // G30 Single Z Probe
  3423. {
  3424. st_synchronize();
  3425. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3426. int l_feedmultiply = setup_for_endstop_move();
  3427. feedrate = homing_feedrate[Z_AXIS];
  3428. find_bed_induction_sensor_point_z(-10.f, 3);
  3429. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3430. clean_up_after_endstop_move(l_feedmultiply);
  3431. }
  3432. break;
  3433. case 75:
  3434. {
  3435. for (int i = 40; i <= 110; i++)
  3436. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3437. }
  3438. break;
  3439. case 76: //! G76 - PINDA probe temperature calibration
  3440. {
  3441. #ifdef PINDA_THERMISTOR
  3442. if (true)
  3443. {
  3444. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3445. //we need to know accurate position of first calibration point
  3446. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3447. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3448. break;
  3449. }
  3450. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3451. {
  3452. // We don't know where we are! HOME!
  3453. // Push the commands to the front of the message queue in the reverse order!
  3454. // There shall be always enough space reserved for these commands.
  3455. repeatcommand_front(); // repeat G76 with all its parameters
  3456. enquecommand_front_P((PSTR("G28 W0")));
  3457. break;
  3458. }
  3459. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3460. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3461. if (result)
  3462. {
  3463. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3464. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3465. current_position[Z_AXIS] = 50;
  3466. current_position[Y_AXIS] = 180;
  3467. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3468. st_synchronize();
  3469. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3470. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3471. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3472. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3473. st_synchronize();
  3474. gcode_G28(false, false, true);
  3475. }
  3476. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3477. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3478. current_position[Z_AXIS] = 100;
  3479. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3480. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3481. lcd_temp_cal_show_result(false);
  3482. break;
  3483. }
  3484. }
  3485. lcd_update_enable(true);
  3486. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3487. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3488. float zero_z;
  3489. int z_shift = 0; //unit: steps
  3490. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3491. if (start_temp < 35) start_temp = 35;
  3492. if (start_temp < current_temperature_pinda) start_temp += 5;
  3493. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3494. // setTargetHotend(200, 0);
  3495. setTargetBed(70 + (start_temp - 30));
  3496. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3497. custom_message_state = 1;
  3498. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3499. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3500. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3501. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3502. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3503. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3504. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3505. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3506. st_synchronize();
  3507. while (current_temperature_pinda < start_temp)
  3508. {
  3509. delay_keep_alive(1000);
  3510. serialecho_temperatures();
  3511. }
  3512. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3513. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3514. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3515. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3516. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3518. st_synchronize();
  3519. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3520. if (find_z_result == false) {
  3521. lcd_temp_cal_show_result(find_z_result);
  3522. break;
  3523. }
  3524. zero_z = current_position[Z_AXIS];
  3525. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3526. int i = -1; for (; i < 5; i++)
  3527. {
  3528. float temp = (40 + i * 5);
  3529. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3530. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3531. if (start_temp <= temp) break;
  3532. }
  3533. for (i++; i < 5; i++)
  3534. {
  3535. float temp = (40 + i * 5);
  3536. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3537. custom_message_state = i + 2;
  3538. setTargetBed(50 + 10 * (temp - 30) / 5);
  3539. // setTargetHotend(255, 0);
  3540. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3541. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3542. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3543. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3544. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3545. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3546. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3547. st_synchronize();
  3548. while (current_temperature_pinda < temp)
  3549. {
  3550. delay_keep_alive(1000);
  3551. serialecho_temperatures();
  3552. }
  3553. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3554. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3555. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3556. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3557. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3558. st_synchronize();
  3559. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3560. if (find_z_result == false) {
  3561. lcd_temp_cal_show_result(find_z_result);
  3562. break;
  3563. }
  3564. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3565. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3566. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3567. }
  3568. lcd_temp_cal_show_result(true);
  3569. break;
  3570. }
  3571. #endif //PINDA_THERMISTOR
  3572. setTargetBed(PINDA_MIN_T);
  3573. float zero_z;
  3574. int z_shift = 0; //unit: steps
  3575. int t_c; // temperature
  3576. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3577. // We don't know where we are! HOME!
  3578. // Push the commands to the front of the message queue in the reverse order!
  3579. // There shall be always enough space reserved for these commands.
  3580. repeatcommand_front(); // repeat G76 with all its parameters
  3581. enquecommand_front_P((PSTR("G28 W0")));
  3582. break;
  3583. }
  3584. puts_P(_N("PINDA probe calibration start"));
  3585. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3586. custom_message_state = 1;
  3587. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3588. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3589. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3590. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3591. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3592. st_synchronize();
  3593. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3594. delay_keep_alive(1000);
  3595. serialecho_temperatures();
  3596. }
  3597. //enquecommand_P(PSTR("M190 S50"));
  3598. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3599. delay_keep_alive(1000);
  3600. serialecho_temperatures();
  3601. }
  3602. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3603. current_position[Z_AXIS] = 5;
  3604. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3605. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3606. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3607. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3608. st_synchronize();
  3609. find_bed_induction_sensor_point_z(-1.f);
  3610. zero_z = current_position[Z_AXIS];
  3611. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3612. for (int i = 0; i<5; i++) {
  3613. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3614. custom_message_state = i + 2;
  3615. t_c = 60 + i * 10;
  3616. setTargetBed(t_c);
  3617. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3618. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3619. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3620. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3621. st_synchronize();
  3622. while (degBed() < t_c) {
  3623. delay_keep_alive(1000);
  3624. serialecho_temperatures();
  3625. }
  3626. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3627. delay_keep_alive(1000);
  3628. serialecho_temperatures();
  3629. }
  3630. current_position[Z_AXIS] = 5;
  3631. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3632. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3633. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3634. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3635. st_synchronize();
  3636. find_bed_induction_sensor_point_z(-1.f);
  3637. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3638. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3639. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3640. }
  3641. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3642. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3643. puts_P(_N("Temperature calibration done."));
  3644. disable_x();
  3645. disable_y();
  3646. disable_z();
  3647. disable_e0();
  3648. disable_e1();
  3649. disable_e2();
  3650. setTargetBed(0); //set bed target temperature back to 0
  3651. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3652. temp_cal_active = true;
  3653. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3654. lcd_update_enable(true);
  3655. lcd_update(2);
  3656. }
  3657. break;
  3658. #ifdef DIS
  3659. case 77:
  3660. {
  3661. //! G77 X200 Y150 XP100 YP15 XO10 Y015
  3662. //! for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3663. //! G77 X232 Y218 XP116 YP109 XO-11 YO0
  3664. float dimension_x = 40;
  3665. float dimension_y = 40;
  3666. int points_x = 40;
  3667. int points_y = 40;
  3668. float offset_x = 74;
  3669. float offset_y = 33;
  3670. if (code_seen('X')) dimension_x = code_value();
  3671. if (code_seen('Y')) dimension_y = code_value();
  3672. if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
  3673. if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
  3674. if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
  3675. if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
  3676. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3677. } break;
  3678. #endif
  3679. case 79: {
  3680. for (int i = 255; i > 0; i = i - 5) {
  3681. fanSpeed = i;
  3682. //delay_keep_alive(2000);
  3683. for (int j = 0; j < 100; j++) {
  3684. delay_keep_alive(100);
  3685. }
  3686. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3687. }
  3688. }break;
  3689. /**
  3690. * G80: Mesh-based Z probe, probes a grid and produces a
  3691. * mesh to compensate for variable bed height
  3692. *
  3693. * The S0 report the points as below
  3694. * @code{.unparsed}
  3695. * +----> X-axis
  3696. * |
  3697. * |
  3698. * v Y-axis
  3699. * @endcode
  3700. */
  3701. case 80:
  3702. #ifdef MK1BP
  3703. break;
  3704. #endif //MK1BP
  3705. case_G80:
  3706. {
  3707. mesh_bed_leveling_flag = true;
  3708. static bool run = false;
  3709. #ifdef SUPPORT_VERBOSITY
  3710. int8_t verbosity_level = 0;
  3711. if (code_seen('V')) {
  3712. // Just 'V' without a number counts as V1.
  3713. char c = strchr_pointer[1];
  3714. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3715. }
  3716. #endif //SUPPORT_VERBOSITY
  3717. // Firstly check if we know where we are
  3718. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3719. // We don't know where we are! HOME!
  3720. // Push the commands to the front of the message queue in the reverse order!
  3721. // There shall be always enough space reserved for these commands.
  3722. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3723. repeatcommand_front(); // repeat G80 with all its parameters
  3724. enquecommand_front_P((PSTR("G28 W0")));
  3725. }
  3726. else {
  3727. mesh_bed_leveling_flag = false;
  3728. }
  3729. break;
  3730. }
  3731. bool temp_comp_start = true;
  3732. #ifdef PINDA_THERMISTOR
  3733. temp_comp_start = false;
  3734. #endif //PINDA_THERMISTOR
  3735. if (temp_comp_start)
  3736. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3737. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3738. temp_compensation_start();
  3739. run = true;
  3740. repeatcommand_front(); // repeat G80 with all its parameters
  3741. enquecommand_front_P((PSTR("G28 W0")));
  3742. }
  3743. else {
  3744. mesh_bed_leveling_flag = false;
  3745. }
  3746. break;
  3747. }
  3748. run = false;
  3749. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3750. mesh_bed_leveling_flag = false;
  3751. break;
  3752. }
  3753. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3754. unsigned int custom_message_type_old = custom_message_type;
  3755. unsigned int custom_message_state_old = custom_message_state;
  3756. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3757. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3758. lcd_update(1);
  3759. mbl.reset(); //reset mesh bed leveling
  3760. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3761. // consumed during the first movements following this statement.
  3762. babystep_undo();
  3763. // Cycle through all points and probe them
  3764. // First move up. During this first movement, the babystepping will be reverted.
  3765. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3766. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3767. // The move to the first calibration point.
  3768. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3769. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3770. #ifdef SUPPORT_VERBOSITY
  3771. if (verbosity_level >= 1)
  3772. {
  3773. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3774. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3775. }
  3776. #endif //SUPPORT_VERBOSITY
  3777. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3778. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3779. // Wait until the move is finished.
  3780. st_synchronize();
  3781. int mesh_point = 0; //index number of calibration point
  3782. int ix = 0;
  3783. int iy = 0;
  3784. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3785. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3786. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3787. #ifdef SUPPORT_VERBOSITY
  3788. if (verbosity_level >= 1) {
  3789. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3790. }
  3791. #endif // SUPPORT_VERBOSITY
  3792. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3793. const char *kill_message = NULL;
  3794. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3795. // Get coords of a measuring point.
  3796. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3797. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3798. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3799. float z0 = 0.f;
  3800. if (has_z && mesh_point > 0) {
  3801. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3802. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3803. //#if 0
  3804. #ifdef SUPPORT_VERBOSITY
  3805. if (verbosity_level >= 1) {
  3806. SERIAL_ECHOLNPGM("");
  3807. SERIAL_ECHOPGM("Bed leveling, point: ");
  3808. MYSERIAL.print(mesh_point);
  3809. SERIAL_ECHOPGM(", calibration z: ");
  3810. MYSERIAL.print(z0, 5);
  3811. SERIAL_ECHOLNPGM("");
  3812. }
  3813. #endif // SUPPORT_VERBOSITY
  3814. //#endif
  3815. }
  3816. // Move Z up to MESH_HOME_Z_SEARCH.
  3817. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3818. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3819. st_synchronize();
  3820. // Move to XY position of the sensor point.
  3821. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3822. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3823. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3824. #ifdef SUPPORT_VERBOSITY
  3825. if (verbosity_level >= 1) {
  3826. SERIAL_PROTOCOL(mesh_point);
  3827. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3828. }
  3829. #endif // SUPPORT_VERBOSITY
  3830. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3831. st_synchronize();
  3832. // Go down until endstop is hit
  3833. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3834. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3835. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3836. break;
  3837. }
  3838. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3839. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3840. break;
  3841. }
  3842. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3843. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3844. break;
  3845. }
  3846. #ifdef SUPPORT_VERBOSITY
  3847. if (verbosity_level >= 10) {
  3848. SERIAL_ECHOPGM("X: ");
  3849. MYSERIAL.print(current_position[X_AXIS], 5);
  3850. SERIAL_ECHOLNPGM("");
  3851. SERIAL_ECHOPGM("Y: ");
  3852. MYSERIAL.print(current_position[Y_AXIS], 5);
  3853. SERIAL_PROTOCOLPGM("\n");
  3854. }
  3855. #endif // SUPPORT_VERBOSITY
  3856. float offset_z = 0;
  3857. #ifdef PINDA_THERMISTOR
  3858. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3859. #endif //PINDA_THERMISTOR
  3860. // #ifdef SUPPORT_VERBOSITY
  3861. /* if (verbosity_level >= 1)
  3862. {
  3863. SERIAL_ECHOPGM("mesh bed leveling: ");
  3864. MYSERIAL.print(current_position[Z_AXIS], 5);
  3865. SERIAL_ECHOPGM(" offset: ");
  3866. MYSERIAL.print(offset_z, 5);
  3867. SERIAL_ECHOLNPGM("");
  3868. }*/
  3869. // #endif // SUPPORT_VERBOSITY
  3870. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3871. custom_message_state--;
  3872. mesh_point++;
  3873. lcd_update(1);
  3874. }
  3875. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3876. #ifdef SUPPORT_VERBOSITY
  3877. if (verbosity_level >= 20) {
  3878. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3879. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3880. MYSERIAL.print(current_position[Z_AXIS], 5);
  3881. }
  3882. #endif // SUPPORT_VERBOSITY
  3883. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3884. st_synchronize();
  3885. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3886. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  3887. bool bState;
  3888. do { // repeat until Z-leveling o.k.
  3889. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  3890. #ifdef TMC2130
  3891. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  3892. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  3893. #else // TMC2130
  3894. lcd_wait_for_click_delay(0); // ~ no timeout
  3895. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  3896. #endif // TMC2130
  3897. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  3898. bState=enable_z_endstop(false);
  3899. current_position[Z_AXIS] -= 1;
  3900. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3901. st_synchronize();
  3902. enable_z_endstop(true);
  3903. #ifdef TMC2130
  3904. tmc2130_home_enter(Z_AXIS_MASK);
  3905. #endif // TMC2130
  3906. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3907. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3908. st_synchronize();
  3909. #ifdef TMC2130
  3910. tmc2130_home_exit();
  3911. #endif // TMC2130
  3912. enable_z_endstop(bState);
  3913. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  3914. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  3915. custom_message_type=CUSTOM_MSG_TYPE_STATUS; // display / status-line recovery
  3916. lcd_update_enable(true); // display / status-line recovery
  3917. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  3918. repeatcommand_front(); // re-run (i.e. of "G80")
  3919. break;
  3920. }
  3921. clean_up_after_endstop_move(l_feedmultiply);
  3922. // SERIAL_ECHOLNPGM("clean up finished ");
  3923. bool apply_temp_comp = true;
  3924. #ifdef PINDA_THERMISTOR
  3925. apply_temp_comp = false;
  3926. #endif
  3927. if (apply_temp_comp)
  3928. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3929. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3930. // SERIAL_ECHOLNPGM("babystep applied");
  3931. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3932. #ifdef SUPPORT_VERBOSITY
  3933. if (verbosity_level >= 1) {
  3934. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3935. }
  3936. #endif // SUPPORT_VERBOSITY
  3937. for (uint8_t i = 0; i < 4; ++i) {
  3938. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3939. long correction = 0;
  3940. if (code_seen(codes[i]))
  3941. correction = code_value_long();
  3942. else if (eeprom_bed_correction_valid) {
  3943. unsigned char *addr = (i < 2) ?
  3944. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3945. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3946. correction = eeprom_read_int8(addr);
  3947. }
  3948. if (correction == 0)
  3949. continue;
  3950. float offset = float(correction) * 0.001f;
  3951. if (fabs(offset) > 0.101f) {
  3952. SERIAL_ERROR_START;
  3953. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3954. SERIAL_ECHO(offset);
  3955. SERIAL_ECHOLNPGM(" microns");
  3956. }
  3957. else {
  3958. switch (i) {
  3959. case 0:
  3960. for (uint8_t row = 0; row < 3; ++row) {
  3961. mbl.z_values[row][1] += 0.5f * offset;
  3962. mbl.z_values[row][0] += offset;
  3963. }
  3964. break;
  3965. case 1:
  3966. for (uint8_t row = 0; row < 3; ++row) {
  3967. mbl.z_values[row][1] += 0.5f * offset;
  3968. mbl.z_values[row][2] += offset;
  3969. }
  3970. break;
  3971. case 2:
  3972. for (uint8_t col = 0; col < 3; ++col) {
  3973. mbl.z_values[1][col] += 0.5f * offset;
  3974. mbl.z_values[0][col] += offset;
  3975. }
  3976. break;
  3977. case 3:
  3978. for (uint8_t col = 0; col < 3; ++col) {
  3979. mbl.z_values[1][col] += 0.5f * offset;
  3980. mbl.z_values[2][col] += offset;
  3981. }
  3982. break;
  3983. }
  3984. }
  3985. }
  3986. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3987. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3988. // SERIAL_ECHOLNPGM("Upsample finished");
  3989. mbl.active = 1; //activate mesh bed leveling
  3990. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3991. go_home_with_z_lift();
  3992. // SERIAL_ECHOLNPGM("Go home finished");
  3993. //unretract (after PINDA preheat retraction)
  3994. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3995. current_position[E_AXIS] += default_retraction;
  3996. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3997. }
  3998. KEEPALIVE_STATE(NOT_BUSY);
  3999. // Restore custom message state
  4000. lcd_setstatuspgm(_T(WELCOME_MSG));
  4001. custom_message_type = custom_message_type_old;
  4002. custom_message_state = custom_message_state_old;
  4003. mesh_bed_leveling_flag = false;
  4004. mesh_bed_run_from_menu = false;
  4005. lcd_update(2);
  4006. }
  4007. break;
  4008. /**
  4009. * G81: Print mesh bed leveling status and bed profile if activated
  4010. */
  4011. case 81:
  4012. if (mbl.active) {
  4013. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4014. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4015. SERIAL_PROTOCOLPGM(",");
  4016. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4017. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4018. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4019. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4020. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4021. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4022. SERIAL_PROTOCOLPGM(" ");
  4023. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4024. }
  4025. SERIAL_PROTOCOLPGM("\n");
  4026. }
  4027. }
  4028. else
  4029. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4030. break;
  4031. #if 0
  4032. /**
  4033. * G82: Single Z probe at current location
  4034. *
  4035. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4036. *
  4037. */
  4038. case 82:
  4039. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4040. int l_feedmultiply = setup_for_endstop_move();
  4041. find_bed_induction_sensor_point_z();
  4042. clean_up_after_endstop_move(l_feedmultiply);
  4043. SERIAL_PROTOCOLPGM("Bed found at: ");
  4044. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4045. SERIAL_PROTOCOLPGM("\n");
  4046. break;
  4047. /**
  4048. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4049. */
  4050. case 83:
  4051. {
  4052. int babystepz = code_seen('S') ? code_value() : 0;
  4053. int BabyPosition = code_seen('P') ? code_value() : 0;
  4054. if (babystepz != 0) {
  4055. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4056. // Is the axis indexed starting with zero or one?
  4057. if (BabyPosition > 4) {
  4058. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4059. }else{
  4060. // Save it to the eeprom
  4061. babystepLoadZ = babystepz;
  4062. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4063. // adjust the Z
  4064. babystepsTodoZadd(babystepLoadZ);
  4065. }
  4066. }
  4067. }
  4068. break;
  4069. /**
  4070. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4071. */
  4072. case 84:
  4073. babystepsTodoZsubtract(babystepLoadZ);
  4074. // babystepLoadZ = 0;
  4075. break;
  4076. /**
  4077. * G85: Prusa3D specific: Pick best babystep
  4078. */
  4079. case 85:
  4080. lcd_pick_babystep();
  4081. break;
  4082. #endif
  4083. /**
  4084. * G86: Prusa3D specific: Disable babystep correction after home.
  4085. * This G-code will be performed at the start of a calibration script.
  4086. */
  4087. case 86:
  4088. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4089. break;
  4090. /**
  4091. * G87: Prusa3D specific: Enable babystep correction after home
  4092. * This G-code will be performed at the end of a calibration script.
  4093. */
  4094. case 87:
  4095. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4096. break;
  4097. /**
  4098. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4099. */
  4100. case 88:
  4101. break;
  4102. #endif // ENABLE_MESH_BED_LEVELING
  4103. case 90: // G90
  4104. relative_mode = false;
  4105. break;
  4106. case 91: // G91
  4107. relative_mode = true;
  4108. break;
  4109. case 92: // G92
  4110. if(!code_seen(axis_codes[E_AXIS]))
  4111. st_synchronize();
  4112. for(int8_t i=0; i < NUM_AXIS; i++) {
  4113. if(code_seen(axis_codes[i])) {
  4114. if(i == E_AXIS) {
  4115. current_position[i] = code_value();
  4116. plan_set_e_position(current_position[E_AXIS]);
  4117. }
  4118. else {
  4119. current_position[i] = code_value()+cs.add_homing[i];
  4120. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4121. }
  4122. }
  4123. }
  4124. break;
  4125. case 98: //! G98 (activate farm mode)
  4126. farm_mode = 1;
  4127. PingTime = _millis();
  4128. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4129. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4130. SilentModeMenu = SILENT_MODE_OFF;
  4131. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4132. break;
  4133. case 99: //! G99 (deactivate farm mode)
  4134. farm_mode = 0;
  4135. lcd_printer_connected();
  4136. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4137. lcd_update(2);
  4138. break;
  4139. default:
  4140. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4141. }
  4142. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4143. gcode_in_progress = 0;
  4144. } // end if(code_seen('G'))
  4145. else if(code_seen('M'))
  4146. {
  4147. int index;
  4148. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4149. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4150. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4151. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4152. } else
  4153. {
  4154. mcode_in_progress = (int)code_value();
  4155. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4156. switch(mcode_in_progress)
  4157. {
  4158. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4159. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4160. {
  4161. char *src = strchr_pointer + 2;
  4162. codenum = 0;
  4163. bool hasP = false, hasS = false;
  4164. if (code_seen('P')) {
  4165. codenum = code_value(); // milliseconds to wait
  4166. hasP = codenum > 0;
  4167. }
  4168. if (code_seen('S')) {
  4169. codenum = code_value() * 1000; // seconds to wait
  4170. hasS = codenum > 0;
  4171. }
  4172. starpos = strchr(src, '*');
  4173. if (starpos != NULL) *(starpos) = '\0';
  4174. while (*src == ' ') ++src;
  4175. if (!hasP && !hasS && *src != '\0') {
  4176. lcd_setstatus(src);
  4177. } else {
  4178. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4179. }
  4180. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4181. st_synchronize();
  4182. previous_millis_cmd = _millis();
  4183. if (codenum > 0){
  4184. codenum += _millis(); // keep track of when we started waiting
  4185. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4186. while(_millis() < codenum && !lcd_clicked()){
  4187. manage_heater();
  4188. manage_inactivity(true);
  4189. lcd_update(0);
  4190. }
  4191. KEEPALIVE_STATE(IN_HANDLER);
  4192. lcd_ignore_click(false);
  4193. }else{
  4194. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4195. while(!lcd_clicked()){
  4196. manage_heater();
  4197. manage_inactivity(true);
  4198. lcd_update(0);
  4199. }
  4200. KEEPALIVE_STATE(IN_HANDLER);
  4201. }
  4202. if (IS_SD_PRINTING)
  4203. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4204. else
  4205. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4206. }
  4207. break;
  4208. case 17:
  4209. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4210. enable_x();
  4211. enable_y();
  4212. enable_z();
  4213. enable_e0();
  4214. enable_e1();
  4215. enable_e2();
  4216. break;
  4217. #ifdef SDSUPPORT
  4218. case 20: // M20 - list SD card
  4219. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4220. card.ls();
  4221. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4222. break;
  4223. case 21: // M21 - init SD card
  4224. card.initsd();
  4225. break;
  4226. case 22: //M22 - release SD card
  4227. card.release();
  4228. break;
  4229. case 23: //M23 - Select file
  4230. starpos = (strchr(strchr_pointer + 4,'*'));
  4231. if(starpos!=NULL)
  4232. *(starpos)='\0';
  4233. card.openFile(strchr_pointer + 4,true);
  4234. break;
  4235. case 24: //M24 - Start SD print
  4236. if (!card.paused)
  4237. failstats_reset_print();
  4238. card.startFileprint();
  4239. starttime=_millis();
  4240. break;
  4241. case 25: //M25 - Pause SD print
  4242. card.pauseSDPrint();
  4243. break;
  4244. case 26: //M26 - Set SD index
  4245. if(card.cardOK && code_seen('S')) {
  4246. card.setIndex(code_value_long());
  4247. }
  4248. break;
  4249. case 27: //M27 - Get SD status
  4250. card.getStatus();
  4251. break;
  4252. case 28: //M28 - Start SD write
  4253. starpos = (strchr(strchr_pointer + 4,'*'));
  4254. if(starpos != NULL){
  4255. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4256. strchr_pointer = strchr(npos,' ') + 1;
  4257. *(starpos) = '\0';
  4258. }
  4259. card.openFile(strchr_pointer+4,false);
  4260. break;
  4261. case 29: //M29 - Stop SD write
  4262. //processed in write to file routine above
  4263. //card,saving = false;
  4264. break;
  4265. case 30: //M30 <filename> Delete File
  4266. if (card.cardOK){
  4267. card.closefile();
  4268. starpos = (strchr(strchr_pointer + 4,'*'));
  4269. if(starpos != NULL){
  4270. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4271. strchr_pointer = strchr(npos,' ') + 1;
  4272. *(starpos) = '\0';
  4273. }
  4274. card.removeFile(strchr_pointer + 4);
  4275. }
  4276. break;
  4277. case 32: //M32 - Select file and start SD print
  4278. {
  4279. if(card.sdprinting) {
  4280. st_synchronize();
  4281. }
  4282. starpos = (strchr(strchr_pointer + 4,'*'));
  4283. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4284. if(namestartpos==NULL)
  4285. {
  4286. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4287. }
  4288. else
  4289. namestartpos++; //to skip the '!'
  4290. if(starpos!=NULL)
  4291. *(starpos)='\0';
  4292. bool call_procedure=(code_seen('P'));
  4293. if(strchr_pointer>namestartpos)
  4294. call_procedure=false; //false alert, 'P' found within filename
  4295. if( card.cardOK )
  4296. {
  4297. card.openFile(namestartpos,true,!call_procedure);
  4298. if(code_seen('S'))
  4299. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4300. card.setIndex(code_value_long());
  4301. card.startFileprint();
  4302. if(!call_procedure)
  4303. starttime=_millis(); //procedure calls count as normal print time.
  4304. }
  4305. } break;
  4306. case 928: //M928 - Start SD write
  4307. starpos = (strchr(strchr_pointer + 5,'*'));
  4308. if(starpos != NULL){
  4309. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4310. strchr_pointer = strchr(npos,' ') + 1;
  4311. *(starpos) = '\0';
  4312. }
  4313. card.openLogFile(strchr_pointer+5);
  4314. break;
  4315. #endif //SDSUPPORT
  4316. case 31: //M31 take time since the start of the SD print or an M109 command
  4317. {
  4318. stoptime=_millis();
  4319. char time[30];
  4320. unsigned long t=(stoptime-starttime)/1000;
  4321. int sec,min;
  4322. min=t/60;
  4323. sec=t%60;
  4324. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4325. SERIAL_ECHO_START;
  4326. SERIAL_ECHOLN(time);
  4327. lcd_setstatus(time);
  4328. autotempShutdown();
  4329. }
  4330. break;
  4331. case 42: //M42 -Change pin status via gcode
  4332. if (code_seen('S'))
  4333. {
  4334. int pin_status = code_value();
  4335. int pin_number = LED_PIN;
  4336. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4337. pin_number = code_value();
  4338. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4339. {
  4340. if (sensitive_pins[i] == pin_number)
  4341. {
  4342. pin_number = -1;
  4343. break;
  4344. }
  4345. }
  4346. #if defined(FAN_PIN) && FAN_PIN > -1
  4347. if (pin_number == FAN_PIN)
  4348. fanSpeed = pin_status;
  4349. #endif
  4350. if (pin_number > -1)
  4351. {
  4352. pinMode(pin_number, OUTPUT);
  4353. digitalWrite(pin_number, pin_status);
  4354. analogWrite(pin_number, pin_status);
  4355. }
  4356. }
  4357. break;
  4358. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4359. // Reset the baby step value and the baby step applied flag.
  4360. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4361. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4362. // Reset the skew and offset in both RAM and EEPROM.
  4363. reset_bed_offset_and_skew();
  4364. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4365. // the planner will not perform any adjustments in the XY plane.
  4366. // Wait for the motors to stop and update the current position with the absolute values.
  4367. world2machine_revert_to_uncorrected();
  4368. break;
  4369. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4370. {
  4371. int8_t verbosity_level = 0;
  4372. bool only_Z = code_seen('Z');
  4373. #ifdef SUPPORT_VERBOSITY
  4374. if (code_seen('V'))
  4375. {
  4376. // Just 'V' without a number counts as V1.
  4377. char c = strchr_pointer[1];
  4378. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4379. }
  4380. #endif //SUPPORT_VERBOSITY
  4381. gcode_M45(only_Z, verbosity_level);
  4382. }
  4383. break;
  4384. /*
  4385. case 46:
  4386. {
  4387. // M46: Prusa3D: Show the assigned IP address.
  4388. uint8_t ip[4];
  4389. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4390. if (hasIP) {
  4391. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4392. SERIAL_ECHO(int(ip[0]));
  4393. SERIAL_ECHOPGM(".");
  4394. SERIAL_ECHO(int(ip[1]));
  4395. SERIAL_ECHOPGM(".");
  4396. SERIAL_ECHO(int(ip[2]));
  4397. SERIAL_ECHOPGM(".");
  4398. SERIAL_ECHO(int(ip[3]));
  4399. SERIAL_ECHOLNPGM("");
  4400. } else {
  4401. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4402. }
  4403. break;
  4404. }
  4405. */
  4406. case 47:
  4407. //! M47: Prusa3D: Show end stops dialog on the display.
  4408. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4409. lcd_diag_show_end_stops();
  4410. KEEPALIVE_STATE(IN_HANDLER);
  4411. break;
  4412. #if 0
  4413. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4414. {
  4415. // Disable the default update procedure of the display. We will do a modal dialog.
  4416. lcd_update_enable(false);
  4417. // Let the planner use the uncorrected coordinates.
  4418. mbl.reset();
  4419. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4420. // the planner will not perform any adjustments in the XY plane.
  4421. // Wait for the motors to stop and update the current position with the absolute values.
  4422. world2machine_revert_to_uncorrected();
  4423. // Move the print head close to the bed.
  4424. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4425. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4426. st_synchronize();
  4427. // Home in the XY plane.
  4428. set_destination_to_current();
  4429. int l_feedmultiply = setup_for_endstop_move();
  4430. home_xy();
  4431. int8_t verbosity_level = 0;
  4432. if (code_seen('V')) {
  4433. // Just 'V' without a number counts as V1.
  4434. char c = strchr_pointer[1];
  4435. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4436. }
  4437. bool success = scan_bed_induction_points(verbosity_level);
  4438. clean_up_after_endstop_move(l_feedmultiply);
  4439. // Print head up.
  4440. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4441. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4442. st_synchronize();
  4443. lcd_update_enable(true);
  4444. break;
  4445. }
  4446. #endif
  4447. #ifdef ENABLE_AUTO_BED_LEVELING
  4448. #ifdef Z_PROBE_REPEATABILITY_TEST
  4449. //! M48 Z-Probe repeatability measurement function.
  4450. //!
  4451. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4452. //!
  4453. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4454. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4455. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4456. //! regenerated.
  4457. //!
  4458. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4459. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4460. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4461. //!
  4462. case 48: // M48 Z-Probe repeatability
  4463. {
  4464. #if Z_MIN_PIN == -1
  4465. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4466. #endif
  4467. double sum=0.0;
  4468. double mean=0.0;
  4469. double sigma=0.0;
  4470. double sample_set[50];
  4471. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4472. double X_current, Y_current, Z_current;
  4473. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4474. if (code_seen('V') || code_seen('v')) {
  4475. verbose_level = code_value();
  4476. if (verbose_level<0 || verbose_level>4 ) {
  4477. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4478. goto Sigma_Exit;
  4479. }
  4480. }
  4481. if (verbose_level > 0) {
  4482. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4483. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4484. }
  4485. if (code_seen('n')) {
  4486. n_samples = code_value();
  4487. if (n_samples<4 || n_samples>50 ) {
  4488. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4489. goto Sigma_Exit;
  4490. }
  4491. }
  4492. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4493. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4494. Z_current = st_get_position_mm(Z_AXIS);
  4495. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4496. ext_position = st_get_position_mm(E_AXIS);
  4497. if (code_seen('X') || code_seen('x') ) {
  4498. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4499. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4500. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4501. goto Sigma_Exit;
  4502. }
  4503. }
  4504. if (code_seen('Y') || code_seen('y') ) {
  4505. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4506. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4507. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4508. goto Sigma_Exit;
  4509. }
  4510. }
  4511. if (code_seen('L') || code_seen('l') ) {
  4512. n_legs = code_value();
  4513. if ( n_legs==1 )
  4514. n_legs = 2;
  4515. if ( n_legs<0 || n_legs>15 ) {
  4516. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4517. goto Sigma_Exit;
  4518. }
  4519. }
  4520. //
  4521. // Do all the preliminary setup work. First raise the probe.
  4522. //
  4523. st_synchronize();
  4524. plan_bed_level_matrix.set_to_identity();
  4525. plan_buffer_line( X_current, Y_current, Z_start_location,
  4526. ext_position,
  4527. homing_feedrate[Z_AXIS]/60,
  4528. active_extruder);
  4529. st_synchronize();
  4530. //
  4531. // Now get everything to the specified probe point So we can safely do a probe to
  4532. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4533. // use that as a starting point for each probe.
  4534. //
  4535. if (verbose_level > 2)
  4536. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4537. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4538. ext_position,
  4539. homing_feedrate[X_AXIS]/60,
  4540. active_extruder);
  4541. st_synchronize();
  4542. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4543. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4544. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4545. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4546. //
  4547. // OK, do the inital probe to get us close to the bed.
  4548. // Then retrace the right amount and use that in subsequent probes
  4549. //
  4550. int l_feedmultiply = setup_for_endstop_move();
  4551. run_z_probe();
  4552. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4553. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4554. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4555. ext_position,
  4556. homing_feedrate[X_AXIS]/60,
  4557. active_extruder);
  4558. st_synchronize();
  4559. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4560. for( n=0; n<n_samples; n++) {
  4561. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4562. if ( n_legs) {
  4563. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4564. int rotational_direction, l;
  4565. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4566. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4567. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4568. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4569. //SERIAL_ECHOPAIR(" theta: ",theta);
  4570. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4571. //SERIAL_PROTOCOLLNPGM("");
  4572. for( l=0; l<n_legs-1; l++) {
  4573. if (rotational_direction==1)
  4574. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4575. else
  4576. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4577. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4578. if ( radius<0.0 )
  4579. radius = -radius;
  4580. X_current = X_probe_location + cos(theta) * radius;
  4581. Y_current = Y_probe_location + sin(theta) * radius;
  4582. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4583. X_current = X_MIN_POS;
  4584. if ( X_current>X_MAX_POS)
  4585. X_current = X_MAX_POS;
  4586. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4587. Y_current = Y_MIN_POS;
  4588. if ( Y_current>Y_MAX_POS)
  4589. Y_current = Y_MAX_POS;
  4590. if (verbose_level>3 ) {
  4591. SERIAL_ECHOPAIR("x: ", X_current);
  4592. SERIAL_ECHOPAIR("y: ", Y_current);
  4593. SERIAL_PROTOCOLLNPGM("");
  4594. }
  4595. do_blocking_move_to( X_current, Y_current, Z_current );
  4596. }
  4597. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4598. }
  4599. int l_feedmultiply = setup_for_endstop_move();
  4600. run_z_probe();
  4601. sample_set[n] = current_position[Z_AXIS];
  4602. //
  4603. // Get the current mean for the data points we have so far
  4604. //
  4605. sum=0.0;
  4606. for( j=0; j<=n; j++) {
  4607. sum = sum + sample_set[j];
  4608. }
  4609. mean = sum / (double (n+1));
  4610. //
  4611. // Now, use that mean to calculate the standard deviation for the
  4612. // data points we have so far
  4613. //
  4614. sum=0.0;
  4615. for( j=0; j<=n; j++) {
  4616. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4617. }
  4618. sigma = sqrt( sum / (double (n+1)) );
  4619. if (verbose_level > 1) {
  4620. SERIAL_PROTOCOL(n+1);
  4621. SERIAL_PROTOCOL(" of ");
  4622. SERIAL_PROTOCOL(n_samples);
  4623. SERIAL_PROTOCOLPGM(" z: ");
  4624. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4625. }
  4626. if (verbose_level > 2) {
  4627. SERIAL_PROTOCOL(" mean: ");
  4628. SERIAL_PROTOCOL_F(mean,6);
  4629. SERIAL_PROTOCOL(" sigma: ");
  4630. SERIAL_PROTOCOL_F(sigma,6);
  4631. }
  4632. if (verbose_level > 0)
  4633. SERIAL_PROTOCOLPGM("\n");
  4634. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4635. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4636. st_synchronize();
  4637. }
  4638. _delay(1000);
  4639. clean_up_after_endstop_move(l_feedmultiply);
  4640. // enable_endstops(true);
  4641. if (verbose_level > 0) {
  4642. SERIAL_PROTOCOLPGM("Mean: ");
  4643. SERIAL_PROTOCOL_F(mean, 6);
  4644. SERIAL_PROTOCOLPGM("\n");
  4645. }
  4646. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4647. SERIAL_PROTOCOL_F(sigma, 6);
  4648. SERIAL_PROTOCOLPGM("\n\n");
  4649. Sigma_Exit:
  4650. break;
  4651. }
  4652. #endif // Z_PROBE_REPEATABILITY_TEST
  4653. #endif // ENABLE_AUTO_BED_LEVELING
  4654. case 73: //M73 show percent done and time remaining
  4655. if(code_seen('P')) print_percent_done_normal = code_value();
  4656. if(code_seen('R')) print_time_remaining_normal = code_value();
  4657. if(code_seen('Q')) print_percent_done_silent = code_value();
  4658. if(code_seen('S')) print_time_remaining_silent = code_value();
  4659. {
  4660. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4661. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4662. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4663. }
  4664. break;
  4665. case 104: // M104
  4666. {
  4667. uint8_t extruder;
  4668. if(setTargetedHotend(104,extruder)){
  4669. break;
  4670. }
  4671. if (code_seen('S'))
  4672. {
  4673. setTargetHotendSafe(code_value(), extruder);
  4674. }
  4675. setWatch();
  4676. break;
  4677. }
  4678. case 112: // M112 -Emergency Stop
  4679. kill(_n(""), 3);
  4680. break;
  4681. case 140: // M140 set bed temp
  4682. if (code_seen('S')) setTargetBed(code_value());
  4683. break;
  4684. case 105 : // M105
  4685. {
  4686. uint8_t extruder;
  4687. if(setTargetedHotend(105, extruder)){
  4688. break;
  4689. }
  4690. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4691. SERIAL_PROTOCOLPGM("ok T:");
  4692. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4693. SERIAL_PROTOCOLPGM(" /");
  4694. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4695. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4696. SERIAL_PROTOCOLPGM(" B:");
  4697. SERIAL_PROTOCOL_F(degBed(),1);
  4698. SERIAL_PROTOCOLPGM(" /");
  4699. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4700. #endif //TEMP_BED_PIN
  4701. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4702. SERIAL_PROTOCOLPGM(" T");
  4703. SERIAL_PROTOCOL(cur_extruder);
  4704. SERIAL_PROTOCOLPGM(":");
  4705. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4706. SERIAL_PROTOCOLPGM(" /");
  4707. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4708. }
  4709. #else
  4710. SERIAL_ERROR_START;
  4711. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4712. #endif
  4713. SERIAL_PROTOCOLPGM(" @:");
  4714. #ifdef EXTRUDER_WATTS
  4715. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4716. SERIAL_PROTOCOLPGM("W");
  4717. #else
  4718. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4719. #endif
  4720. SERIAL_PROTOCOLPGM(" B@:");
  4721. #ifdef BED_WATTS
  4722. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4723. SERIAL_PROTOCOLPGM("W");
  4724. #else
  4725. SERIAL_PROTOCOL(getHeaterPower(-1));
  4726. #endif
  4727. #ifdef PINDA_THERMISTOR
  4728. SERIAL_PROTOCOLPGM(" P:");
  4729. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4730. #endif //PINDA_THERMISTOR
  4731. #ifdef AMBIENT_THERMISTOR
  4732. SERIAL_PROTOCOLPGM(" A:");
  4733. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4734. #endif //AMBIENT_THERMISTOR
  4735. #ifdef SHOW_TEMP_ADC_VALUES
  4736. {float raw = 0.0;
  4737. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4738. SERIAL_PROTOCOLPGM(" ADC B:");
  4739. SERIAL_PROTOCOL_F(degBed(),1);
  4740. SERIAL_PROTOCOLPGM("C->");
  4741. raw = rawBedTemp();
  4742. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4743. SERIAL_PROTOCOLPGM(" Rb->");
  4744. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4745. SERIAL_PROTOCOLPGM(" Rxb->");
  4746. SERIAL_PROTOCOL_F(raw, 5);
  4747. #endif
  4748. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4749. SERIAL_PROTOCOLPGM(" T");
  4750. SERIAL_PROTOCOL(cur_extruder);
  4751. SERIAL_PROTOCOLPGM(":");
  4752. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4753. SERIAL_PROTOCOLPGM("C->");
  4754. raw = rawHotendTemp(cur_extruder);
  4755. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4756. SERIAL_PROTOCOLPGM(" Rt");
  4757. SERIAL_PROTOCOL(cur_extruder);
  4758. SERIAL_PROTOCOLPGM("->");
  4759. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4760. SERIAL_PROTOCOLPGM(" Rx");
  4761. SERIAL_PROTOCOL(cur_extruder);
  4762. SERIAL_PROTOCOLPGM("->");
  4763. SERIAL_PROTOCOL_F(raw, 5);
  4764. }}
  4765. #endif
  4766. SERIAL_PROTOCOLLN("");
  4767. KEEPALIVE_STATE(NOT_BUSY);
  4768. return;
  4769. break;
  4770. }
  4771. case 109:
  4772. {// M109 - Wait for extruder heater to reach target.
  4773. uint8_t extruder;
  4774. if(setTargetedHotend(109, extruder)){
  4775. break;
  4776. }
  4777. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4778. heating_status = 1;
  4779. if (farm_mode) { prusa_statistics(1); };
  4780. #ifdef AUTOTEMP
  4781. autotemp_enabled=false;
  4782. #endif
  4783. if (code_seen('S')) {
  4784. setTargetHotendSafe(code_value(), extruder);
  4785. CooldownNoWait = true;
  4786. } else if (code_seen('R')) {
  4787. setTargetHotendSafe(code_value(), extruder);
  4788. CooldownNoWait = false;
  4789. }
  4790. #ifdef AUTOTEMP
  4791. if (code_seen('S')) autotemp_min=code_value();
  4792. if (code_seen('B')) autotemp_max=code_value();
  4793. if (code_seen('F'))
  4794. {
  4795. autotemp_factor=code_value();
  4796. autotemp_enabled=true;
  4797. }
  4798. #endif
  4799. setWatch();
  4800. codenum = _millis();
  4801. /* See if we are heating up or cooling down */
  4802. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4803. KEEPALIVE_STATE(NOT_BUSY);
  4804. cancel_heatup = false;
  4805. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4806. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4807. KEEPALIVE_STATE(IN_HANDLER);
  4808. heating_status = 2;
  4809. if (farm_mode) { prusa_statistics(2); };
  4810. //starttime=_millis();
  4811. previous_millis_cmd = _millis();
  4812. }
  4813. break;
  4814. case 190: // M190 - Wait for bed heater to reach target.
  4815. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4816. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4817. heating_status = 3;
  4818. if (farm_mode) { prusa_statistics(1); };
  4819. if (code_seen('S'))
  4820. {
  4821. setTargetBed(code_value());
  4822. CooldownNoWait = true;
  4823. }
  4824. else if (code_seen('R'))
  4825. {
  4826. setTargetBed(code_value());
  4827. CooldownNoWait = false;
  4828. }
  4829. codenum = _millis();
  4830. cancel_heatup = false;
  4831. target_direction = isHeatingBed(); // true if heating, false if cooling
  4832. KEEPALIVE_STATE(NOT_BUSY);
  4833. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4834. {
  4835. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4836. {
  4837. if (!farm_mode) {
  4838. float tt = degHotend(active_extruder);
  4839. SERIAL_PROTOCOLPGM("T:");
  4840. SERIAL_PROTOCOL(tt);
  4841. SERIAL_PROTOCOLPGM(" E:");
  4842. SERIAL_PROTOCOL((int)active_extruder);
  4843. SERIAL_PROTOCOLPGM(" B:");
  4844. SERIAL_PROTOCOL_F(degBed(), 1);
  4845. SERIAL_PROTOCOLLN("");
  4846. }
  4847. codenum = _millis();
  4848. }
  4849. manage_heater();
  4850. manage_inactivity();
  4851. lcd_update(0);
  4852. }
  4853. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4854. KEEPALIVE_STATE(IN_HANDLER);
  4855. heating_status = 4;
  4856. previous_millis_cmd = _millis();
  4857. #endif
  4858. break;
  4859. #if defined(FAN_PIN) && FAN_PIN > -1
  4860. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  4861. if (code_seen('S')){
  4862. fanSpeed=constrain(code_value(),0,255);
  4863. }
  4864. else {
  4865. fanSpeed=255;
  4866. }
  4867. break;
  4868. case 107: //M107 Fan Off
  4869. fanSpeed = 0;
  4870. break;
  4871. #endif //FAN_PIN
  4872. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4873. case 80: // M80 - Turn on Power Supply
  4874. SET_OUTPUT(PS_ON_PIN); //GND
  4875. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4876. // If you have a switch on suicide pin, this is useful
  4877. // if you want to start another print with suicide feature after
  4878. // a print without suicide...
  4879. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4880. SET_OUTPUT(SUICIDE_PIN);
  4881. WRITE(SUICIDE_PIN, HIGH);
  4882. #endif
  4883. powersupply = true;
  4884. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4885. lcd_update(0);
  4886. break;
  4887. #endif
  4888. case 81: // M81 - Turn off Power Supply
  4889. disable_heater();
  4890. st_synchronize();
  4891. disable_e0();
  4892. disable_e1();
  4893. disable_e2();
  4894. finishAndDisableSteppers();
  4895. fanSpeed = 0;
  4896. _delay(1000); // Wait a little before to switch off
  4897. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4898. st_synchronize();
  4899. suicide();
  4900. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4901. SET_OUTPUT(PS_ON_PIN);
  4902. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4903. #endif
  4904. powersupply = false;
  4905. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4906. lcd_update(0);
  4907. break;
  4908. case 82:
  4909. axis_relative_modes[3] = false;
  4910. break;
  4911. case 83:
  4912. axis_relative_modes[3] = true;
  4913. break;
  4914. case 18: //compatibility
  4915. case 84: // M84
  4916. if(code_seen('S')){
  4917. stepper_inactive_time = code_value() * 1000;
  4918. }
  4919. else
  4920. {
  4921. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4922. if(all_axis)
  4923. {
  4924. st_synchronize();
  4925. disable_e0();
  4926. disable_e1();
  4927. disable_e2();
  4928. finishAndDisableSteppers();
  4929. }
  4930. else
  4931. {
  4932. st_synchronize();
  4933. if (code_seen('X')) disable_x();
  4934. if (code_seen('Y')) disable_y();
  4935. if (code_seen('Z')) disable_z();
  4936. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4937. if (code_seen('E')) {
  4938. disable_e0();
  4939. disable_e1();
  4940. disable_e2();
  4941. }
  4942. #endif
  4943. }
  4944. }
  4945. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4946. print_time_remaining_init();
  4947. snmm_filaments_used = 0;
  4948. break;
  4949. case 85: // M85
  4950. if(code_seen('S')) {
  4951. max_inactive_time = code_value() * 1000;
  4952. }
  4953. break;
  4954. #ifdef SAFETYTIMER
  4955. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4956. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4957. if (code_seen('S')) {
  4958. safetytimer_inactive_time = code_value() * 1000;
  4959. safetyTimer.start();
  4960. }
  4961. break;
  4962. #endif
  4963. case 92: // M92
  4964. for(int8_t i=0; i < NUM_AXIS; i++)
  4965. {
  4966. if(code_seen(axis_codes[i]))
  4967. {
  4968. if(i == 3) { // E
  4969. float value = code_value();
  4970. if(value < 20.0) {
  4971. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4972. cs.max_jerk[E_AXIS] *= factor;
  4973. max_feedrate[i] *= factor;
  4974. axis_steps_per_sqr_second[i] *= factor;
  4975. }
  4976. cs.axis_steps_per_unit[i] = value;
  4977. }
  4978. else {
  4979. cs.axis_steps_per_unit[i] = code_value();
  4980. }
  4981. }
  4982. }
  4983. break;
  4984. case 110: //! M110 N<line number> - reset line pos
  4985. if (code_seen('N'))
  4986. gcode_LastN = code_value_long();
  4987. break;
  4988. #ifdef HOST_KEEPALIVE_FEATURE
  4989. case 113: // M113 - Get or set Host Keepalive interval
  4990. if (code_seen('S')) {
  4991. host_keepalive_interval = (uint8_t)code_value_short();
  4992. // NOMORE(host_keepalive_interval, 60);
  4993. }
  4994. else {
  4995. SERIAL_ECHO_START;
  4996. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4997. SERIAL_PROTOCOLLN("");
  4998. }
  4999. break;
  5000. #endif
  5001. case 115: // M115
  5002. if (code_seen('V')) {
  5003. // Report the Prusa version number.
  5004. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5005. } else if (code_seen('U')) {
  5006. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5007. // pause the print and ask the user to upgrade the firmware.
  5008. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5009. } else {
  5010. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5011. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5012. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5013. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5014. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5015. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5016. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5017. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5018. SERIAL_ECHOPGM(" UUID:");
  5019. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5020. }
  5021. break;
  5022. /* case 117: // M117 display message
  5023. starpos = (strchr(strchr_pointer + 5,'*'));
  5024. if(starpos!=NULL)
  5025. *(starpos)='\0';
  5026. lcd_setstatus(strchr_pointer + 5);
  5027. break;*/
  5028. case 114: // M114
  5029. gcode_M114();
  5030. break;
  5031. case 120: //! M120 - Disable endstops
  5032. enable_endstops(false) ;
  5033. break;
  5034. case 121: //! M121 - Enable endstops
  5035. enable_endstops(true) ;
  5036. break;
  5037. case 119: // M119
  5038. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  5039. SERIAL_PROTOCOLLN("");
  5040. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5041. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  5042. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5043. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5044. }else{
  5045. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5046. }
  5047. SERIAL_PROTOCOLLN("");
  5048. #endif
  5049. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5050. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  5051. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5052. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5053. }else{
  5054. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5055. }
  5056. SERIAL_PROTOCOLLN("");
  5057. #endif
  5058. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5059. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  5060. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5061. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5062. }else{
  5063. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5064. }
  5065. SERIAL_PROTOCOLLN("");
  5066. #endif
  5067. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5068. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  5069. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5070. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5071. }else{
  5072. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5073. }
  5074. SERIAL_PROTOCOLLN("");
  5075. #endif
  5076. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5077. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5078. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5079. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5080. }else{
  5081. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5082. }
  5083. SERIAL_PROTOCOLLN("");
  5084. #endif
  5085. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5086. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5087. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5088. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5089. }else{
  5090. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5091. }
  5092. SERIAL_PROTOCOLLN("");
  5093. #endif
  5094. break;
  5095. //TODO: update for all axis, use for loop
  5096. #ifdef BLINKM
  5097. case 150: // M150
  5098. {
  5099. byte red;
  5100. byte grn;
  5101. byte blu;
  5102. if(code_seen('R')) red = code_value();
  5103. if(code_seen('U')) grn = code_value();
  5104. if(code_seen('B')) blu = code_value();
  5105. SendColors(red,grn,blu);
  5106. }
  5107. break;
  5108. #endif //BLINKM
  5109. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5110. {
  5111. uint8_t extruder = active_extruder;
  5112. if(code_seen('T')) {
  5113. extruder = code_value();
  5114. if(extruder >= EXTRUDERS) {
  5115. SERIAL_ECHO_START;
  5116. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5117. break;
  5118. }
  5119. }
  5120. if(code_seen('D')) {
  5121. float diameter = (float)code_value();
  5122. if (diameter == 0.0) {
  5123. // setting any extruder filament size disables volumetric on the assumption that
  5124. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5125. // for all extruders
  5126. cs.volumetric_enabled = false;
  5127. } else {
  5128. cs.filament_size[extruder] = (float)code_value();
  5129. // make sure all extruders have some sane value for the filament size
  5130. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5131. #if EXTRUDERS > 1
  5132. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5133. #if EXTRUDERS > 2
  5134. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5135. #endif
  5136. #endif
  5137. cs.volumetric_enabled = true;
  5138. }
  5139. } else {
  5140. //reserved for setting filament diameter via UFID or filament measuring device
  5141. break;
  5142. }
  5143. calculate_extruder_multipliers();
  5144. }
  5145. break;
  5146. case 201: // M201
  5147. for (int8_t i = 0; i < NUM_AXIS; i++)
  5148. {
  5149. if (code_seen(axis_codes[i]))
  5150. {
  5151. unsigned long val = code_value();
  5152. #ifdef TMC2130
  5153. unsigned long val_silent = val;
  5154. if ((i == X_AXIS) || (i == Y_AXIS))
  5155. {
  5156. if (val > NORMAL_MAX_ACCEL_XY)
  5157. val = NORMAL_MAX_ACCEL_XY;
  5158. if (val_silent > SILENT_MAX_ACCEL_XY)
  5159. val_silent = SILENT_MAX_ACCEL_XY;
  5160. }
  5161. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5162. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5163. #else //TMC2130
  5164. max_acceleration_units_per_sq_second[i] = val;
  5165. #endif //TMC2130
  5166. }
  5167. }
  5168. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5169. reset_acceleration_rates();
  5170. break;
  5171. #if 0 // Not used for Sprinter/grbl gen6
  5172. case 202: // M202
  5173. for(int8_t i=0; i < NUM_AXIS; i++) {
  5174. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5175. }
  5176. break;
  5177. #endif
  5178. case 203: // M203 max feedrate mm/sec
  5179. for (int8_t i = 0; i < NUM_AXIS; i++)
  5180. {
  5181. if (code_seen(axis_codes[i]))
  5182. {
  5183. float val = code_value();
  5184. #ifdef TMC2130
  5185. float val_silent = val;
  5186. if ((i == X_AXIS) || (i == Y_AXIS))
  5187. {
  5188. if (val > NORMAL_MAX_FEEDRATE_XY)
  5189. val = NORMAL_MAX_FEEDRATE_XY;
  5190. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5191. val_silent = SILENT_MAX_FEEDRATE_XY;
  5192. }
  5193. cs.max_feedrate_normal[i] = val;
  5194. cs.max_feedrate_silent[i] = val_silent;
  5195. #else //TMC2130
  5196. max_feedrate[i] = val;
  5197. #endif //TMC2130
  5198. }
  5199. }
  5200. break;
  5201. case 204:
  5202. //! M204 acclereration settings.
  5203. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5204. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5205. {
  5206. if(code_seen('S')) {
  5207. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5208. // and it is also generated by Slic3r to control acceleration per extrusion type
  5209. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5210. cs.acceleration = code_value();
  5211. // Interpret the T value as retract acceleration in the old Marlin format.
  5212. if(code_seen('T'))
  5213. cs.retract_acceleration = code_value();
  5214. } else {
  5215. // New acceleration format, compatible with the upstream Marlin.
  5216. if(code_seen('P'))
  5217. cs.acceleration = code_value();
  5218. if(code_seen('R'))
  5219. cs.retract_acceleration = code_value();
  5220. if(code_seen('T')) {
  5221. // Interpret the T value as the travel acceleration in the new Marlin format.
  5222. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5223. // travel_acceleration = code_value();
  5224. }
  5225. }
  5226. }
  5227. break;
  5228. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5229. {
  5230. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5231. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5232. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5233. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5234. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5235. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5236. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5237. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5238. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5239. }
  5240. break;
  5241. case 206: // M206 additional homing offset
  5242. for(int8_t i=0; i < 3; i++)
  5243. {
  5244. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5245. }
  5246. break;
  5247. #ifdef FWRETRACT
  5248. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5249. {
  5250. if(code_seen('S'))
  5251. {
  5252. cs.retract_length = code_value() ;
  5253. }
  5254. if(code_seen('F'))
  5255. {
  5256. cs.retract_feedrate = code_value()/60 ;
  5257. }
  5258. if(code_seen('Z'))
  5259. {
  5260. cs.retract_zlift = code_value() ;
  5261. }
  5262. }break;
  5263. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5264. {
  5265. if(code_seen('S'))
  5266. {
  5267. cs.retract_recover_length = code_value() ;
  5268. }
  5269. if(code_seen('F'))
  5270. {
  5271. cs.retract_recover_feedrate = code_value()/60 ;
  5272. }
  5273. }break;
  5274. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5275. {
  5276. if(code_seen('S'))
  5277. {
  5278. int t= code_value() ;
  5279. switch(t)
  5280. {
  5281. case 0:
  5282. {
  5283. cs.autoretract_enabled=false;
  5284. retracted[0]=false;
  5285. #if EXTRUDERS > 1
  5286. retracted[1]=false;
  5287. #endif
  5288. #if EXTRUDERS > 2
  5289. retracted[2]=false;
  5290. #endif
  5291. }break;
  5292. case 1:
  5293. {
  5294. cs.autoretract_enabled=true;
  5295. retracted[0]=false;
  5296. #if EXTRUDERS > 1
  5297. retracted[1]=false;
  5298. #endif
  5299. #if EXTRUDERS > 2
  5300. retracted[2]=false;
  5301. #endif
  5302. }break;
  5303. default:
  5304. SERIAL_ECHO_START;
  5305. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5306. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5307. SERIAL_ECHOLNPGM("\"(1)");
  5308. }
  5309. }
  5310. }break;
  5311. #endif // FWRETRACT
  5312. #if EXTRUDERS > 1
  5313. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5314. {
  5315. uint8_t extruder;
  5316. if(setTargetedHotend(218, extruder)){
  5317. break;
  5318. }
  5319. if(code_seen('X'))
  5320. {
  5321. extruder_offset[X_AXIS][extruder] = code_value();
  5322. }
  5323. if(code_seen('Y'))
  5324. {
  5325. extruder_offset[Y_AXIS][extruder] = code_value();
  5326. }
  5327. SERIAL_ECHO_START;
  5328. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5329. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5330. {
  5331. SERIAL_ECHO(" ");
  5332. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5333. SERIAL_ECHO(",");
  5334. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5335. }
  5336. SERIAL_ECHOLN("");
  5337. }break;
  5338. #endif
  5339. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5340. {
  5341. if (code_seen('B')) //backup current speed factor
  5342. {
  5343. saved_feedmultiply_mm = feedmultiply;
  5344. }
  5345. if(code_seen('S'))
  5346. {
  5347. feedmultiply = code_value() ;
  5348. }
  5349. if (code_seen('R')) { //restore previous feedmultiply
  5350. feedmultiply = saved_feedmultiply_mm;
  5351. }
  5352. }
  5353. break;
  5354. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5355. {
  5356. if(code_seen('S'))
  5357. {
  5358. int tmp_code = code_value();
  5359. if (code_seen('T'))
  5360. {
  5361. uint8_t extruder;
  5362. if(setTargetedHotend(221, extruder)){
  5363. break;
  5364. }
  5365. extruder_multiply[extruder] = tmp_code;
  5366. }
  5367. else
  5368. {
  5369. extrudemultiply = tmp_code ;
  5370. }
  5371. }
  5372. calculate_extruder_multipliers();
  5373. }
  5374. break;
  5375. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5376. {
  5377. if(code_seen('P')){
  5378. int pin_number = code_value(); // pin number
  5379. int pin_state = -1; // required pin state - default is inverted
  5380. if(code_seen('S')) pin_state = code_value(); // required pin state
  5381. if(pin_state >= -1 && pin_state <= 1){
  5382. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5383. {
  5384. if (sensitive_pins[i] == pin_number)
  5385. {
  5386. pin_number = -1;
  5387. break;
  5388. }
  5389. }
  5390. if (pin_number > -1)
  5391. {
  5392. int target = LOW;
  5393. st_synchronize();
  5394. pinMode(pin_number, INPUT);
  5395. switch(pin_state){
  5396. case 1:
  5397. target = HIGH;
  5398. break;
  5399. case 0:
  5400. target = LOW;
  5401. break;
  5402. case -1:
  5403. target = !digitalRead(pin_number);
  5404. break;
  5405. }
  5406. while(digitalRead(pin_number) != target){
  5407. manage_heater();
  5408. manage_inactivity();
  5409. lcd_update(0);
  5410. }
  5411. }
  5412. }
  5413. }
  5414. }
  5415. break;
  5416. #if NUM_SERVOS > 0
  5417. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5418. {
  5419. int servo_index = -1;
  5420. int servo_position = 0;
  5421. if (code_seen('P'))
  5422. servo_index = code_value();
  5423. if (code_seen('S')) {
  5424. servo_position = code_value();
  5425. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5426. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5427. servos[servo_index].attach(0);
  5428. #endif
  5429. servos[servo_index].write(servo_position);
  5430. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5431. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5432. servos[servo_index].detach();
  5433. #endif
  5434. }
  5435. else {
  5436. SERIAL_ECHO_START;
  5437. SERIAL_ECHO("Servo ");
  5438. SERIAL_ECHO(servo_index);
  5439. SERIAL_ECHOLN(" out of range");
  5440. }
  5441. }
  5442. else if (servo_index >= 0) {
  5443. SERIAL_PROTOCOL(MSG_OK);
  5444. SERIAL_PROTOCOL(" Servo ");
  5445. SERIAL_PROTOCOL(servo_index);
  5446. SERIAL_PROTOCOL(": ");
  5447. SERIAL_PROTOCOL(servos[servo_index].read());
  5448. SERIAL_PROTOCOLLN("");
  5449. }
  5450. }
  5451. break;
  5452. #endif // NUM_SERVOS > 0
  5453. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5454. case 300: // M300
  5455. {
  5456. int beepS = code_seen('S') ? code_value() : 110;
  5457. int beepP = code_seen('P') ? code_value() : 1000;
  5458. if (beepS > 0)
  5459. {
  5460. #if BEEPER > 0
  5461. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5462. tone(BEEPER, beepS);
  5463. _delay(beepP);
  5464. noTone(BEEPER);
  5465. #endif
  5466. }
  5467. else
  5468. {
  5469. _delay(beepP);
  5470. }
  5471. }
  5472. break;
  5473. #endif // M300
  5474. #ifdef PIDTEMP
  5475. case 301: // M301
  5476. {
  5477. if(code_seen('P')) cs.Kp = code_value();
  5478. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5479. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5480. #ifdef PID_ADD_EXTRUSION_RATE
  5481. if(code_seen('C')) Kc = code_value();
  5482. #endif
  5483. updatePID();
  5484. SERIAL_PROTOCOLRPGM(MSG_OK);
  5485. SERIAL_PROTOCOL(" p:");
  5486. SERIAL_PROTOCOL(cs.Kp);
  5487. SERIAL_PROTOCOL(" i:");
  5488. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5489. SERIAL_PROTOCOL(" d:");
  5490. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5491. #ifdef PID_ADD_EXTRUSION_RATE
  5492. SERIAL_PROTOCOL(" c:");
  5493. //Kc does not have scaling applied above, or in resetting defaults
  5494. SERIAL_PROTOCOL(Kc);
  5495. #endif
  5496. SERIAL_PROTOCOLLN("");
  5497. }
  5498. break;
  5499. #endif //PIDTEMP
  5500. #ifdef PIDTEMPBED
  5501. case 304: // M304
  5502. {
  5503. if(code_seen('P')) cs.bedKp = code_value();
  5504. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5505. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5506. updatePID();
  5507. SERIAL_PROTOCOLRPGM(MSG_OK);
  5508. SERIAL_PROTOCOL(" p:");
  5509. SERIAL_PROTOCOL(cs.bedKp);
  5510. SERIAL_PROTOCOL(" i:");
  5511. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5512. SERIAL_PROTOCOL(" d:");
  5513. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5514. SERIAL_PROTOCOLLN("");
  5515. }
  5516. break;
  5517. #endif //PIDTEMP
  5518. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5519. {
  5520. #ifdef CHDK
  5521. SET_OUTPUT(CHDK);
  5522. WRITE(CHDK, HIGH);
  5523. chdkHigh = _millis();
  5524. chdkActive = true;
  5525. #else
  5526. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5527. const uint8_t NUM_PULSES=16;
  5528. const float PULSE_LENGTH=0.01524;
  5529. for(int i=0; i < NUM_PULSES; i++) {
  5530. WRITE(PHOTOGRAPH_PIN, HIGH);
  5531. _delay_ms(PULSE_LENGTH);
  5532. WRITE(PHOTOGRAPH_PIN, LOW);
  5533. _delay_ms(PULSE_LENGTH);
  5534. }
  5535. _delay(7.33);
  5536. for(int i=0; i < NUM_PULSES; i++) {
  5537. WRITE(PHOTOGRAPH_PIN, HIGH);
  5538. _delay_ms(PULSE_LENGTH);
  5539. WRITE(PHOTOGRAPH_PIN, LOW);
  5540. _delay_ms(PULSE_LENGTH);
  5541. }
  5542. #endif
  5543. #endif //chdk end if
  5544. }
  5545. break;
  5546. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5547. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5548. {
  5549. float temp = .0;
  5550. if (code_seen('S')) temp=code_value();
  5551. set_extrude_min_temp(temp);
  5552. }
  5553. break;
  5554. #endif
  5555. case 303: // M303 PID autotune
  5556. {
  5557. float temp = 150.0;
  5558. int e=0;
  5559. int c=5;
  5560. if (code_seen('E')) e=code_value();
  5561. if (e<0)
  5562. temp=70;
  5563. if (code_seen('S')) temp=code_value();
  5564. if (code_seen('C')) c=code_value();
  5565. PID_autotune(temp, e, c);
  5566. }
  5567. break;
  5568. case 400: // M400 finish all moves
  5569. {
  5570. st_synchronize();
  5571. }
  5572. break;
  5573. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5574. {
  5575. //! currently three different materials are needed (default, flex and PVA)
  5576. //! add storing this information for different load/unload profiles etc. in the future
  5577. //!firmware does not wait for "ok" from mmu
  5578. if (mmu_enabled)
  5579. {
  5580. uint8_t extruder = 255;
  5581. uint8_t filament = FILAMENT_UNDEFINED;
  5582. if(code_seen('E')) extruder = code_value();
  5583. if(code_seen('F')) filament = code_value();
  5584. mmu_set_filament_type(extruder, filament);
  5585. }
  5586. }
  5587. break;
  5588. case 500: // M500 Store settings in EEPROM
  5589. {
  5590. Config_StoreSettings();
  5591. }
  5592. break;
  5593. case 501: // M501 Read settings from EEPROM
  5594. {
  5595. Config_RetrieveSettings();
  5596. }
  5597. break;
  5598. case 502: // M502 Revert to default settings
  5599. {
  5600. Config_ResetDefault();
  5601. }
  5602. break;
  5603. case 503: // M503 print settings currently in memory
  5604. {
  5605. Config_PrintSettings();
  5606. }
  5607. break;
  5608. case 509: //M509 Force language selection
  5609. {
  5610. lang_reset();
  5611. SERIAL_ECHO_START;
  5612. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5613. }
  5614. break;
  5615. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5616. case 540:
  5617. {
  5618. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5619. }
  5620. break;
  5621. #endif
  5622. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5623. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5624. {
  5625. float value;
  5626. if (code_seen('Z'))
  5627. {
  5628. value = code_value();
  5629. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5630. {
  5631. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5632. SERIAL_ECHO_START;
  5633. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5634. SERIAL_PROTOCOLLN("");
  5635. }
  5636. else
  5637. {
  5638. SERIAL_ECHO_START;
  5639. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5640. SERIAL_ECHORPGM(MSG_Z_MIN);
  5641. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5642. SERIAL_ECHORPGM(MSG_Z_MAX);
  5643. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5644. SERIAL_PROTOCOLLN("");
  5645. }
  5646. }
  5647. else
  5648. {
  5649. SERIAL_ECHO_START;
  5650. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5651. SERIAL_ECHO(-cs.zprobe_zoffset);
  5652. SERIAL_PROTOCOLLN("");
  5653. }
  5654. break;
  5655. }
  5656. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5657. #ifdef FILAMENTCHANGEENABLE
  5658. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5659. {
  5660. st_synchronize();
  5661. float x_position = current_position[X_AXIS];
  5662. float y_position = current_position[Y_AXIS];
  5663. float z_shift = 0;
  5664. float e_shift_init = 0;
  5665. float e_shift_late = 0;
  5666. bool automatic = false;
  5667. //Retract extruder
  5668. if(code_seen('E'))
  5669. {
  5670. e_shift_init = code_value();
  5671. }
  5672. else
  5673. {
  5674. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5675. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5676. #endif
  5677. }
  5678. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5679. if (code_seen('L'))
  5680. {
  5681. e_shift_late = code_value();
  5682. }
  5683. else
  5684. {
  5685. #ifdef FILAMENTCHANGE_FINALRETRACT
  5686. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5687. #endif
  5688. }
  5689. //Lift Z
  5690. if(code_seen('Z'))
  5691. {
  5692. z_shift = code_value();
  5693. }
  5694. else
  5695. {
  5696. #ifdef FILAMENTCHANGE_ZADD
  5697. z_shift= FILAMENTCHANGE_ZADD ;
  5698. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5699. #endif
  5700. }
  5701. //Move XY to side
  5702. if(code_seen('X'))
  5703. {
  5704. x_position = code_value();
  5705. }
  5706. else
  5707. {
  5708. #ifdef FILAMENTCHANGE_XPOS
  5709. x_position = FILAMENTCHANGE_XPOS;
  5710. #endif
  5711. }
  5712. if(code_seen('Y'))
  5713. {
  5714. y_position = code_value();
  5715. }
  5716. else
  5717. {
  5718. #ifdef FILAMENTCHANGE_YPOS
  5719. y_position = FILAMENTCHANGE_YPOS ;
  5720. #endif
  5721. }
  5722. if (mmu_enabled && code_seen("AUTO"))
  5723. automatic = true;
  5724. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5725. }
  5726. break;
  5727. #endif //FILAMENTCHANGEENABLE
  5728. case 601: //! M601 - Pause print
  5729. {
  5730. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  5731. lcd_pause_print();
  5732. }
  5733. break;
  5734. case 602: { //! M602 - Resume print
  5735. lcd_resume_print();
  5736. }
  5737. break;
  5738. #ifdef PINDA_THERMISTOR
  5739. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5740. {
  5741. int set_target_pinda = 0;
  5742. if (code_seen('S')) {
  5743. set_target_pinda = code_value();
  5744. }
  5745. else {
  5746. break;
  5747. }
  5748. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5749. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5750. SERIAL_PROTOCOL(set_target_pinda);
  5751. SERIAL_PROTOCOLLN("");
  5752. codenum = _millis();
  5753. cancel_heatup = false;
  5754. bool is_pinda_cooling = false;
  5755. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5756. is_pinda_cooling = true;
  5757. }
  5758. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5759. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5760. {
  5761. SERIAL_PROTOCOLPGM("P:");
  5762. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5763. SERIAL_PROTOCOLPGM("/");
  5764. SERIAL_PROTOCOL(set_target_pinda);
  5765. SERIAL_PROTOCOLLN("");
  5766. codenum = _millis();
  5767. }
  5768. manage_heater();
  5769. manage_inactivity();
  5770. lcd_update(0);
  5771. }
  5772. LCD_MESSAGERPGM(MSG_OK);
  5773. break;
  5774. }
  5775. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5776. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5777. uint8_t cal_status = calibration_status_pinda();
  5778. int16_t usteps = 0;
  5779. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5780. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5781. for (uint8_t i = 0; i < 6; i++)
  5782. {
  5783. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5784. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5785. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5786. SERIAL_PROTOCOLPGM(", ");
  5787. SERIAL_PROTOCOL(35 + (i * 5));
  5788. SERIAL_PROTOCOLPGM(", ");
  5789. SERIAL_PROTOCOL(usteps);
  5790. SERIAL_PROTOCOLPGM(", ");
  5791. SERIAL_PROTOCOL(mm * 1000);
  5792. SERIAL_PROTOCOLLN("");
  5793. }
  5794. }
  5795. else if (code_seen('!')) { // ! - Set factory default values
  5796. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5797. int16_t z_shift = 8; //40C - 20um - 8usteps
  5798. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5799. z_shift = 24; //45C - 60um - 24usteps
  5800. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5801. z_shift = 48; //50C - 120um - 48usteps
  5802. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5803. z_shift = 80; //55C - 200um - 80usteps
  5804. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5805. z_shift = 120; //60C - 300um - 120usteps
  5806. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5807. SERIAL_PROTOCOLLN("factory restored");
  5808. }
  5809. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5810. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5811. int16_t z_shift = 0;
  5812. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5813. SERIAL_PROTOCOLLN("zerorized");
  5814. }
  5815. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5816. int16_t usteps = code_value();
  5817. if (code_seen('I')) {
  5818. uint8_t index = code_value();
  5819. if (index < 5) {
  5820. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5821. SERIAL_PROTOCOLLN("OK");
  5822. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5823. for (uint8_t i = 0; i < 6; i++)
  5824. {
  5825. usteps = 0;
  5826. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5827. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5828. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5829. SERIAL_PROTOCOLPGM(", ");
  5830. SERIAL_PROTOCOL(35 + (i * 5));
  5831. SERIAL_PROTOCOLPGM(", ");
  5832. SERIAL_PROTOCOL(usteps);
  5833. SERIAL_PROTOCOLPGM(", ");
  5834. SERIAL_PROTOCOL(mm * 1000);
  5835. SERIAL_PROTOCOLLN("");
  5836. }
  5837. }
  5838. }
  5839. }
  5840. else {
  5841. SERIAL_PROTOCOLPGM("no valid command");
  5842. }
  5843. break;
  5844. #endif //PINDA_THERMISTOR
  5845. #ifdef LIN_ADVANCE
  5846. case 900: // M900: Set LIN_ADVANCE options.
  5847. gcode_M900();
  5848. break;
  5849. #endif
  5850. case 907: // M907 Set digital trimpot motor current using axis codes.
  5851. {
  5852. #ifdef TMC2130
  5853. for (int i = 0; i < NUM_AXIS; i++)
  5854. if(code_seen(axis_codes[i]))
  5855. {
  5856. long cur_mA = code_value_long();
  5857. uint8_t val = tmc2130_cur2val(cur_mA);
  5858. tmc2130_set_current_h(i, val);
  5859. tmc2130_set_current_r(i, val);
  5860. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  5861. }
  5862. #else //TMC2130
  5863. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5864. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5865. if(code_seen('B')) st_current_set(4,code_value());
  5866. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5867. #endif
  5868. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5869. if(code_seen('X')) st_current_set(0, code_value());
  5870. #endif
  5871. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5872. if(code_seen('Z')) st_current_set(1, code_value());
  5873. #endif
  5874. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5875. if(code_seen('E')) st_current_set(2, code_value());
  5876. #endif
  5877. #endif //TMC2130
  5878. }
  5879. break;
  5880. case 908: // M908 Control digital trimpot directly.
  5881. {
  5882. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5883. uint8_t channel,current;
  5884. if(code_seen('P')) channel=code_value();
  5885. if(code_seen('S')) current=code_value();
  5886. digitalPotWrite(channel, current);
  5887. #endif
  5888. }
  5889. break;
  5890. #ifdef TMC2130_SERVICE_CODES_M910_M918
  5891. case 910: //! M910 - TMC2130 init
  5892. {
  5893. tmc2130_init();
  5894. }
  5895. break;
  5896. case 911: //! M911 - Set TMC2130 holding currents
  5897. {
  5898. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5899. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5900. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5901. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5902. }
  5903. break;
  5904. case 912: //! M912 - Set TMC2130 running currents
  5905. {
  5906. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5907. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5908. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5909. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5910. }
  5911. break;
  5912. case 913: //! M913 - Print TMC2130 currents
  5913. {
  5914. tmc2130_print_currents();
  5915. }
  5916. break;
  5917. case 914: //! M914 - Set normal mode
  5918. {
  5919. tmc2130_mode = TMC2130_MODE_NORMAL;
  5920. update_mode_profile();
  5921. tmc2130_init();
  5922. }
  5923. break;
  5924. case 915: //! M915 - Set silent mode
  5925. {
  5926. tmc2130_mode = TMC2130_MODE_SILENT;
  5927. update_mode_profile();
  5928. tmc2130_init();
  5929. }
  5930. break;
  5931. case 916: //! M916 - Set sg_thrs
  5932. {
  5933. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5934. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5935. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5936. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5937. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5938. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5939. }
  5940. break;
  5941. case 917: //! M917 - Set TMC2130 pwm_ampl
  5942. {
  5943. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5944. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5945. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5946. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5947. }
  5948. break;
  5949. case 918: //! M918 - Set TMC2130 pwm_grad
  5950. {
  5951. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5952. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5953. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5954. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5955. }
  5956. break;
  5957. #endif //TMC2130_SERVICE_CODES_M910_M918
  5958. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5959. {
  5960. #ifdef TMC2130
  5961. if(code_seen('E'))
  5962. {
  5963. uint16_t res_new = code_value();
  5964. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5965. {
  5966. st_synchronize();
  5967. uint8_t axis = E_AXIS;
  5968. uint16_t res = tmc2130_get_res(axis);
  5969. tmc2130_set_res(axis, res_new);
  5970. if (res_new > res)
  5971. {
  5972. uint16_t fac = (res_new / res);
  5973. cs.axis_steps_per_unit[axis] *= fac;
  5974. position[E_AXIS] *= fac;
  5975. }
  5976. else
  5977. {
  5978. uint16_t fac = (res / res_new);
  5979. cs.axis_steps_per_unit[axis] /= fac;
  5980. position[E_AXIS] /= fac;
  5981. }
  5982. }
  5983. }
  5984. #else //TMC2130
  5985. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5986. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5987. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5988. if(code_seen('B')) microstep_mode(4,code_value());
  5989. microstep_readings();
  5990. #endif
  5991. #endif //TMC2130
  5992. }
  5993. break;
  5994. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5995. {
  5996. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5997. if(code_seen('S')) switch((int)code_value())
  5998. {
  5999. case 1:
  6000. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6001. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6002. break;
  6003. case 2:
  6004. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6005. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6006. break;
  6007. }
  6008. microstep_readings();
  6009. #endif
  6010. }
  6011. break;
  6012. case 701: //! M701 - load filament
  6013. {
  6014. if (mmu_enabled && code_seen('E'))
  6015. tmp_extruder = code_value();
  6016. gcode_M701();
  6017. }
  6018. break;
  6019. case 702: //! M702 [U C] -
  6020. {
  6021. #ifdef SNMM
  6022. if (code_seen('U'))
  6023. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6024. else if (code_seen('C'))
  6025. extr_unload(); //! if "C" unload just current filament
  6026. else
  6027. extr_unload_all(); //! otherwise unload all filaments
  6028. #else
  6029. if (code_seen('C')) {
  6030. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6031. }
  6032. else {
  6033. if(mmu_enabled) extr_unload(); //! unload current filament
  6034. else unload_filament();
  6035. }
  6036. #endif //SNMM
  6037. }
  6038. break;
  6039. case 999: // M999: Restart after being stopped
  6040. Stopped = false;
  6041. lcd_reset_alert_level();
  6042. gcode_LastN = Stopped_gcode_LastN;
  6043. FlushSerialRequestResend();
  6044. break;
  6045. default:
  6046. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6047. }
  6048. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6049. mcode_in_progress = 0;
  6050. }
  6051. }
  6052. // end if(code_seen('M')) (end of M codes)
  6053. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6054. //! select filament in case of MMU_V2
  6055. //! if extruder is "?", open menu to let the user select extruder/filament
  6056. //!
  6057. //! For MMU_V2:
  6058. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6059. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6060. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6061. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6062. else if(code_seen('T'))
  6063. {
  6064. int index;
  6065. bool load_to_nozzle = false;
  6066. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6067. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6068. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6069. SERIAL_ECHOLNPGM("Invalid T code.");
  6070. }
  6071. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6072. if (mmu_enabled)
  6073. {
  6074. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6075. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) {
  6076. printf_P(PSTR("Duplicit T-code ignored.\n"));
  6077. return; //dont execute the same T-code twice in a row
  6078. }
  6079. st_synchronize();
  6080. mmu_command(MMU_CMD_T0 + tmp_extruder);
  6081. manage_response(true, true, MMU_TCODE_MOVE);
  6082. }
  6083. }
  6084. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6085. if (mmu_enabled)
  6086. {
  6087. st_synchronize();
  6088. mmu_continue_loading();
  6089. mmu_extruder = tmp_extruder; //filament change is finished
  6090. mmu_load_to_nozzle();
  6091. }
  6092. }
  6093. else {
  6094. if (*(strchr_pointer + index) == '?')
  6095. {
  6096. if(mmu_enabled)
  6097. {
  6098. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6099. load_to_nozzle = true;
  6100. } else
  6101. {
  6102. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6103. }
  6104. }
  6105. else {
  6106. tmp_extruder = code_value();
  6107. if (mmu_enabled && lcd_autoDepleteEnabled())
  6108. {
  6109. tmp_extruder = ad_getAlternative(tmp_extruder);
  6110. }
  6111. }
  6112. st_synchronize();
  6113. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6114. if (mmu_enabled)
  6115. {
  6116. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) {
  6117. printf_P(PSTR("Duplicit T-code ignored.\n"));
  6118. return; //dont execute the same T-code twice in a row
  6119. }
  6120. mmu_command(MMU_CMD_T0 + tmp_extruder);
  6121. manage_response(true, true, MMU_TCODE_MOVE);
  6122. mmu_continue_loading();
  6123. mmu_extruder = tmp_extruder; //filament change is finished
  6124. if (load_to_nozzle)// for single material usage with mmu
  6125. {
  6126. mmu_load_to_nozzle();
  6127. }
  6128. }
  6129. else
  6130. {
  6131. #ifdef SNMM
  6132. #ifdef LIN_ADVANCE
  6133. if (mmu_extruder != tmp_extruder)
  6134. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6135. #endif
  6136. mmu_extruder = tmp_extruder;
  6137. _delay(100);
  6138. disable_e0();
  6139. disable_e1();
  6140. disable_e2();
  6141. pinMode(E_MUX0_PIN, OUTPUT);
  6142. pinMode(E_MUX1_PIN, OUTPUT);
  6143. _delay(100);
  6144. SERIAL_ECHO_START;
  6145. SERIAL_ECHO("T:");
  6146. SERIAL_ECHOLN((int)tmp_extruder);
  6147. switch (tmp_extruder) {
  6148. case 1:
  6149. WRITE(E_MUX0_PIN, HIGH);
  6150. WRITE(E_MUX1_PIN, LOW);
  6151. break;
  6152. case 2:
  6153. WRITE(E_MUX0_PIN, LOW);
  6154. WRITE(E_MUX1_PIN, HIGH);
  6155. break;
  6156. case 3:
  6157. WRITE(E_MUX0_PIN, HIGH);
  6158. WRITE(E_MUX1_PIN, HIGH);
  6159. break;
  6160. default:
  6161. WRITE(E_MUX0_PIN, LOW);
  6162. WRITE(E_MUX1_PIN, LOW);
  6163. break;
  6164. }
  6165. _delay(100);
  6166. #else //SNMM
  6167. if (tmp_extruder >= EXTRUDERS) {
  6168. SERIAL_ECHO_START;
  6169. SERIAL_ECHOPGM("T");
  6170. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6171. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6172. }
  6173. else {
  6174. #if EXTRUDERS > 1
  6175. boolean make_move = false;
  6176. #endif
  6177. if (code_seen('F')) {
  6178. #if EXTRUDERS > 1
  6179. make_move = true;
  6180. #endif
  6181. next_feedrate = code_value();
  6182. if (next_feedrate > 0.0) {
  6183. feedrate = next_feedrate;
  6184. }
  6185. }
  6186. #if EXTRUDERS > 1
  6187. if (tmp_extruder != active_extruder) {
  6188. // Save current position to return to after applying extruder offset
  6189. memcpy(destination, current_position, sizeof(destination));
  6190. // Offset extruder (only by XY)
  6191. int i;
  6192. for (i = 0; i < 2; i++) {
  6193. current_position[i] = current_position[i] -
  6194. extruder_offset[i][active_extruder] +
  6195. extruder_offset[i][tmp_extruder];
  6196. }
  6197. // Set the new active extruder and position
  6198. active_extruder = tmp_extruder;
  6199. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6200. // Move to the old position if 'F' was in the parameters
  6201. if (make_move && Stopped == false) {
  6202. prepare_move();
  6203. }
  6204. }
  6205. #endif
  6206. SERIAL_ECHO_START;
  6207. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6208. SERIAL_PROTOCOLLN((int)active_extruder);
  6209. }
  6210. #endif //SNMM
  6211. }
  6212. }
  6213. } // end if(code_seen('T')) (end of T codes)
  6214. else if (code_seen('D')) // D codes (debug)
  6215. {
  6216. switch((int)code_value())
  6217. {
  6218. #ifdef DEBUG_DCODES
  6219. case -1: //! D-1 - Endless loop
  6220. dcode__1(); break;
  6221. case 0: //! D0 - Reset
  6222. dcode_0(); break;
  6223. case 1: //! D1 - Clear EEPROM
  6224. dcode_1(); break;
  6225. case 2: //! D2 - Read/Write RAM
  6226. dcode_2(); break;
  6227. #endif //DEBUG_DCODES
  6228. #ifdef DEBUG_DCODE3
  6229. case 3: //! D3 - Read/Write EEPROM
  6230. dcode_3(); break;
  6231. #endif //DEBUG_DCODE3
  6232. #ifdef DEBUG_DCODES
  6233. case 4: //! D4 - Read/Write PIN
  6234. dcode_4(); break;
  6235. #endif //DEBUG_DCODES
  6236. #ifdef DEBUG_DCODE5
  6237. case 5: // D5 - Read/Write FLASH
  6238. dcode_5(); break;
  6239. break;
  6240. #endif //DEBUG_DCODE5
  6241. #ifdef DEBUG_DCODES
  6242. case 6: // D6 - Read/Write external FLASH
  6243. dcode_6(); break;
  6244. case 7: //! D7 - Read/Write Bootloader
  6245. dcode_7(); break;
  6246. case 8: //! D8 - Read/Write PINDA
  6247. dcode_8(); break;
  6248. case 9: //! D9 - Read/Write ADC
  6249. dcode_9(); break;
  6250. case 10: //! D10 - XYZ calibration = OK
  6251. dcode_10(); break;
  6252. #ifdef TMC2130
  6253. case 2130: //! D2130 - TMC2130
  6254. dcode_2130(); break;
  6255. #endif //TMC2130
  6256. #ifdef FILAMENT_SENSOR
  6257. case 9125: //! D9125 - FILAMENT_SENSOR
  6258. dcode_9125(); break;
  6259. #endif //FILAMENT_SENSOR
  6260. #endif //DEBUG_DCODES
  6261. }
  6262. }
  6263. else
  6264. {
  6265. SERIAL_ECHO_START;
  6266. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6267. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6268. SERIAL_ECHOLNPGM("\"(2)");
  6269. }
  6270. KEEPALIVE_STATE(NOT_BUSY);
  6271. ClearToSend();
  6272. }
  6273. void FlushSerialRequestResend()
  6274. {
  6275. //char cmdbuffer[bufindr][100]="Resend:";
  6276. MYSERIAL.flush();
  6277. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  6278. }
  6279. // Confirm the execution of a command, if sent from a serial line.
  6280. // Execution of a command from a SD card will not be confirmed.
  6281. void ClearToSend()
  6282. {
  6283. previous_millis_cmd = _millis();
  6284. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6285. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  6286. }
  6287. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6288. void update_currents() {
  6289. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6290. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6291. float tmp_motor[3];
  6292. //SERIAL_ECHOLNPGM("Currents updated: ");
  6293. if (destination[Z_AXIS] < Z_SILENT) {
  6294. //SERIAL_ECHOLNPGM("LOW");
  6295. for (uint8_t i = 0; i < 3; i++) {
  6296. st_current_set(i, current_low[i]);
  6297. /*MYSERIAL.print(int(i));
  6298. SERIAL_ECHOPGM(": ");
  6299. MYSERIAL.println(current_low[i]);*/
  6300. }
  6301. }
  6302. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6303. //SERIAL_ECHOLNPGM("HIGH");
  6304. for (uint8_t i = 0; i < 3; i++) {
  6305. st_current_set(i, current_high[i]);
  6306. /*MYSERIAL.print(int(i));
  6307. SERIAL_ECHOPGM(": ");
  6308. MYSERIAL.println(current_high[i]);*/
  6309. }
  6310. }
  6311. else {
  6312. for (uint8_t i = 0; i < 3; i++) {
  6313. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6314. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6315. st_current_set(i, tmp_motor[i]);
  6316. /*MYSERIAL.print(int(i));
  6317. SERIAL_ECHOPGM(": ");
  6318. MYSERIAL.println(tmp_motor[i]);*/
  6319. }
  6320. }
  6321. }
  6322. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6323. void get_coordinates()
  6324. {
  6325. bool seen[4]={false,false,false,false};
  6326. for(int8_t i=0; i < NUM_AXIS; i++) {
  6327. if(code_seen(axis_codes[i]))
  6328. {
  6329. bool relative = axis_relative_modes[i] || relative_mode;
  6330. destination[i] = (float)code_value();
  6331. if (i == E_AXIS) {
  6332. float emult = extruder_multiplier[active_extruder];
  6333. if (emult != 1.) {
  6334. if (! relative) {
  6335. destination[i] -= current_position[i];
  6336. relative = true;
  6337. }
  6338. destination[i] *= emult;
  6339. }
  6340. }
  6341. if (relative)
  6342. destination[i] += current_position[i];
  6343. seen[i]=true;
  6344. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6345. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6346. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6347. }
  6348. else destination[i] = current_position[i]; //Are these else lines really needed?
  6349. }
  6350. if(code_seen('F')) {
  6351. next_feedrate = code_value();
  6352. #ifdef MAX_SILENT_FEEDRATE
  6353. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6354. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6355. #endif //MAX_SILENT_FEEDRATE
  6356. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6357. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6358. {
  6359. // float e_max_speed =
  6360. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6361. }
  6362. }
  6363. }
  6364. void get_arc_coordinates()
  6365. {
  6366. #ifdef SF_ARC_FIX
  6367. bool relative_mode_backup = relative_mode;
  6368. relative_mode = true;
  6369. #endif
  6370. get_coordinates();
  6371. #ifdef SF_ARC_FIX
  6372. relative_mode=relative_mode_backup;
  6373. #endif
  6374. if(code_seen('I')) {
  6375. offset[0] = code_value();
  6376. }
  6377. else {
  6378. offset[0] = 0.0;
  6379. }
  6380. if(code_seen('J')) {
  6381. offset[1] = code_value();
  6382. }
  6383. else {
  6384. offset[1] = 0.0;
  6385. }
  6386. }
  6387. void clamp_to_software_endstops(float target[3])
  6388. {
  6389. #ifdef DEBUG_DISABLE_SWLIMITS
  6390. return;
  6391. #endif //DEBUG_DISABLE_SWLIMITS
  6392. world2machine_clamp(target[0], target[1]);
  6393. // Clamp the Z coordinate.
  6394. if (min_software_endstops) {
  6395. float negative_z_offset = 0;
  6396. #ifdef ENABLE_AUTO_BED_LEVELING
  6397. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6398. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6399. #endif
  6400. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6401. }
  6402. if (max_software_endstops) {
  6403. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6404. }
  6405. }
  6406. #ifdef MESH_BED_LEVELING
  6407. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6408. float dx = x - current_position[X_AXIS];
  6409. float dy = y - current_position[Y_AXIS];
  6410. float dz = z - current_position[Z_AXIS];
  6411. int n_segments = 0;
  6412. if (mbl.active) {
  6413. float len = abs(dx) + abs(dy);
  6414. if (len > 0)
  6415. // Split to 3cm segments or shorter.
  6416. n_segments = int(ceil(len / 30.f));
  6417. }
  6418. if (n_segments > 1) {
  6419. float de = e - current_position[E_AXIS];
  6420. for (int i = 1; i < n_segments; ++ i) {
  6421. float t = float(i) / float(n_segments);
  6422. if (saved_printing || (mbl.active == false)) return;
  6423. plan_buffer_line(
  6424. current_position[X_AXIS] + t * dx,
  6425. current_position[Y_AXIS] + t * dy,
  6426. current_position[Z_AXIS] + t * dz,
  6427. current_position[E_AXIS] + t * de,
  6428. feed_rate, extruder);
  6429. }
  6430. }
  6431. // The rest of the path.
  6432. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6433. current_position[X_AXIS] = x;
  6434. current_position[Y_AXIS] = y;
  6435. current_position[Z_AXIS] = z;
  6436. current_position[E_AXIS] = e;
  6437. }
  6438. #endif // MESH_BED_LEVELING
  6439. void prepare_move()
  6440. {
  6441. clamp_to_software_endstops(destination);
  6442. previous_millis_cmd = _millis();
  6443. // Do not use feedmultiply for E or Z only moves
  6444. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6445. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6446. }
  6447. else {
  6448. #ifdef MESH_BED_LEVELING
  6449. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6450. #else
  6451. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6452. #endif
  6453. }
  6454. for(int8_t i=0; i < NUM_AXIS; i++) {
  6455. current_position[i] = destination[i];
  6456. }
  6457. }
  6458. void prepare_arc_move(char isclockwise) {
  6459. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6460. // Trace the arc
  6461. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6462. // As far as the parser is concerned, the position is now == target. In reality the
  6463. // motion control system might still be processing the action and the real tool position
  6464. // in any intermediate location.
  6465. for(int8_t i=0; i < NUM_AXIS; i++) {
  6466. current_position[i] = destination[i];
  6467. }
  6468. previous_millis_cmd = _millis();
  6469. }
  6470. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6471. #if defined(FAN_PIN)
  6472. #if CONTROLLERFAN_PIN == FAN_PIN
  6473. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6474. #endif
  6475. #endif
  6476. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6477. unsigned long lastMotorCheck = 0;
  6478. void controllerFan()
  6479. {
  6480. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6481. {
  6482. lastMotorCheck = _millis();
  6483. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6484. #if EXTRUDERS > 2
  6485. || !READ(E2_ENABLE_PIN)
  6486. #endif
  6487. #if EXTRUDER > 1
  6488. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6489. || !READ(X2_ENABLE_PIN)
  6490. #endif
  6491. || !READ(E1_ENABLE_PIN)
  6492. #endif
  6493. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6494. {
  6495. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  6496. }
  6497. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6498. {
  6499. digitalWrite(CONTROLLERFAN_PIN, 0);
  6500. analogWrite(CONTROLLERFAN_PIN, 0);
  6501. }
  6502. else
  6503. {
  6504. // allows digital or PWM fan output to be used (see M42 handling)
  6505. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6506. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6507. }
  6508. }
  6509. }
  6510. #endif
  6511. #ifdef TEMP_STAT_LEDS
  6512. static bool blue_led = false;
  6513. static bool red_led = false;
  6514. static uint32_t stat_update = 0;
  6515. void handle_status_leds(void) {
  6516. float max_temp = 0.0;
  6517. if(_millis() > stat_update) {
  6518. stat_update += 500; // Update every 0.5s
  6519. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6520. max_temp = max(max_temp, degHotend(cur_extruder));
  6521. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6522. }
  6523. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6524. max_temp = max(max_temp, degTargetBed());
  6525. max_temp = max(max_temp, degBed());
  6526. #endif
  6527. if((max_temp > 55.0) && (red_led == false)) {
  6528. digitalWrite(STAT_LED_RED, 1);
  6529. digitalWrite(STAT_LED_BLUE, 0);
  6530. red_led = true;
  6531. blue_led = false;
  6532. }
  6533. if((max_temp < 54.0) && (blue_led == false)) {
  6534. digitalWrite(STAT_LED_RED, 0);
  6535. digitalWrite(STAT_LED_BLUE, 1);
  6536. red_led = false;
  6537. blue_led = true;
  6538. }
  6539. }
  6540. }
  6541. #endif
  6542. #ifdef SAFETYTIMER
  6543. /**
  6544. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6545. *
  6546. * Full screen blocking notification message is shown after heater turning off.
  6547. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6548. * damage print.
  6549. *
  6550. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6551. */
  6552. static void handleSafetyTimer()
  6553. {
  6554. #if (EXTRUDERS > 1)
  6555. #error Implemented only for one extruder.
  6556. #endif //(EXTRUDERS > 1)
  6557. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6558. {
  6559. safetyTimer.stop();
  6560. }
  6561. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6562. {
  6563. safetyTimer.start();
  6564. }
  6565. else if (safetyTimer.expired(safetytimer_inactive_time))
  6566. {
  6567. setTargetBed(0);
  6568. setAllTargetHotends(0);
  6569. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6570. }
  6571. }
  6572. #endif //SAFETYTIMER
  6573. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6574. {
  6575. #ifdef FILAMENT_SENSOR
  6576. if (mmu_enabled == false)
  6577. {
  6578. if (mcode_in_progress != 600) //M600 not in progress
  6579. {
  6580. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6581. {
  6582. if (fsensor_check_autoload())
  6583. {
  6584. #ifdef PAT9125
  6585. fsensor_autoload_check_stop();
  6586. #endif //PAT9125
  6587. if (degHotend0() > EXTRUDE_MINTEMP)
  6588. {
  6589. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6590. tone(BEEPER, 1000);
  6591. delay_keep_alive(50);
  6592. noTone(BEEPER);
  6593. loading_flag = true;
  6594. enquecommand_front_P((PSTR("M701")));
  6595. }
  6596. else
  6597. {
  6598. lcd_update_enable(false);
  6599. show_preheat_nozzle_warning();
  6600. lcd_update_enable(true);
  6601. }
  6602. }
  6603. }
  6604. else
  6605. {
  6606. #ifdef PAT9125
  6607. fsensor_autoload_check_stop();
  6608. #endif //PAT9125
  6609. fsensor_update();
  6610. }
  6611. }
  6612. }
  6613. #endif //FILAMENT_SENSOR
  6614. #ifdef SAFETYTIMER
  6615. handleSafetyTimer();
  6616. #endif //SAFETYTIMER
  6617. #if defined(KILL_PIN) && KILL_PIN > -1
  6618. static int killCount = 0; // make the inactivity button a bit less responsive
  6619. const int KILL_DELAY = 10000;
  6620. #endif
  6621. if(buflen < (BUFSIZE-1)){
  6622. get_command();
  6623. }
  6624. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  6625. if(max_inactive_time)
  6626. kill(_n(""), 4);
  6627. if(stepper_inactive_time) {
  6628. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  6629. {
  6630. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6631. disable_x();
  6632. disable_y();
  6633. disable_z();
  6634. disable_e0();
  6635. disable_e1();
  6636. disable_e2();
  6637. }
  6638. }
  6639. }
  6640. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6641. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  6642. {
  6643. chdkActive = false;
  6644. WRITE(CHDK, LOW);
  6645. }
  6646. #endif
  6647. #if defined(KILL_PIN) && KILL_PIN > -1
  6648. // Check if the kill button was pressed and wait just in case it was an accidental
  6649. // key kill key press
  6650. // -------------------------------------------------------------------------------
  6651. if( 0 == READ(KILL_PIN) )
  6652. {
  6653. killCount++;
  6654. }
  6655. else if (killCount > 0)
  6656. {
  6657. killCount--;
  6658. }
  6659. // Exceeded threshold and we can confirm that it was not accidental
  6660. // KILL the machine
  6661. // ----------------------------------------------------------------
  6662. if ( killCount >= KILL_DELAY)
  6663. {
  6664. kill("", 5);
  6665. }
  6666. #endif
  6667. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6668. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6669. #endif
  6670. #ifdef EXTRUDER_RUNOUT_PREVENT
  6671. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6672. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6673. {
  6674. bool oldstatus=READ(E0_ENABLE_PIN);
  6675. enable_e0();
  6676. float oldepos=current_position[E_AXIS];
  6677. float oldedes=destination[E_AXIS];
  6678. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6679. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  6680. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  6681. current_position[E_AXIS]=oldepos;
  6682. destination[E_AXIS]=oldedes;
  6683. plan_set_e_position(oldepos);
  6684. previous_millis_cmd=_millis();
  6685. st_synchronize();
  6686. WRITE(E0_ENABLE_PIN,oldstatus);
  6687. }
  6688. #endif
  6689. #ifdef TEMP_STAT_LEDS
  6690. handle_status_leds();
  6691. #endif
  6692. check_axes_activity();
  6693. mmu_loop();
  6694. }
  6695. void kill(const char *full_screen_message, unsigned char id)
  6696. {
  6697. printf_P(_N("KILL: %d\n"), id);
  6698. //return;
  6699. cli(); // Stop interrupts
  6700. disable_heater();
  6701. disable_x();
  6702. // SERIAL_ECHOLNPGM("kill - disable Y");
  6703. disable_y();
  6704. disable_z();
  6705. disable_e0();
  6706. disable_e1();
  6707. disable_e2();
  6708. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6709. pinMode(PS_ON_PIN,INPUT);
  6710. #endif
  6711. SERIAL_ERROR_START;
  6712. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6713. if (full_screen_message != NULL) {
  6714. SERIAL_ERRORLNRPGM(full_screen_message);
  6715. lcd_display_message_fullscreen_P(full_screen_message);
  6716. } else {
  6717. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED c=0 r=0
  6718. }
  6719. // FMC small patch to update the LCD before ending
  6720. sei(); // enable interrupts
  6721. for ( int i=5; i--; lcd_update(0))
  6722. {
  6723. _delay(200);
  6724. }
  6725. cli(); // disable interrupts
  6726. suicide();
  6727. while(1)
  6728. {
  6729. #ifdef WATCHDOG
  6730. wdt_reset();
  6731. #endif //WATCHDOG
  6732. /* Intentionally left empty */
  6733. } // Wait for reset
  6734. }
  6735. void Stop()
  6736. {
  6737. disable_heater();
  6738. if(Stopped == false) {
  6739. Stopped = true;
  6740. lcd_print_stop();
  6741. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6742. SERIAL_ERROR_START;
  6743. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6744. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6745. }
  6746. }
  6747. bool IsStopped() { return Stopped; };
  6748. #ifdef FAST_PWM_FAN
  6749. void setPwmFrequency(uint8_t pin, int val)
  6750. {
  6751. val &= 0x07;
  6752. switch(digitalPinToTimer(pin))
  6753. {
  6754. #if defined(TCCR0A)
  6755. case TIMER0A:
  6756. case TIMER0B:
  6757. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6758. // TCCR0B |= val;
  6759. break;
  6760. #endif
  6761. #if defined(TCCR1A)
  6762. case TIMER1A:
  6763. case TIMER1B:
  6764. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6765. // TCCR1B |= val;
  6766. break;
  6767. #endif
  6768. #if defined(TCCR2)
  6769. case TIMER2:
  6770. case TIMER2:
  6771. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6772. TCCR2 |= val;
  6773. break;
  6774. #endif
  6775. #if defined(TCCR2A)
  6776. case TIMER2A:
  6777. case TIMER2B:
  6778. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6779. TCCR2B |= val;
  6780. break;
  6781. #endif
  6782. #if defined(TCCR3A)
  6783. case TIMER3A:
  6784. case TIMER3B:
  6785. case TIMER3C:
  6786. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6787. TCCR3B |= val;
  6788. break;
  6789. #endif
  6790. #if defined(TCCR4A)
  6791. case TIMER4A:
  6792. case TIMER4B:
  6793. case TIMER4C:
  6794. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6795. TCCR4B |= val;
  6796. break;
  6797. #endif
  6798. #if defined(TCCR5A)
  6799. case TIMER5A:
  6800. case TIMER5B:
  6801. case TIMER5C:
  6802. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6803. TCCR5B |= val;
  6804. break;
  6805. #endif
  6806. }
  6807. }
  6808. #endif //FAST_PWM_FAN
  6809. //! @brief Get and validate extruder number
  6810. //!
  6811. //! If it is not specified, active_extruder is returned in parameter extruder.
  6812. //! @param [in] code M code number
  6813. //! @param [out] extruder
  6814. //! @return error
  6815. //! @retval true Invalid extruder specified in T code
  6816. //! @retval false Valid extruder specified in T code, or not specifiead
  6817. bool setTargetedHotend(int code, uint8_t &extruder)
  6818. {
  6819. extruder = active_extruder;
  6820. if(code_seen('T')) {
  6821. extruder = code_value();
  6822. if(extruder >= EXTRUDERS) {
  6823. SERIAL_ECHO_START;
  6824. switch(code){
  6825. case 104:
  6826. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6827. break;
  6828. case 105:
  6829. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6830. break;
  6831. case 109:
  6832. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6833. break;
  6834. case 218:
  6835. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6836. break;
  6837. case 221:
  6838. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6839. break;
  6840. }
  6841. SERIAL_PROTOCOLLN((int)extruder);
  6842. return true;
  6843. }
  6844. }
  6845. return false;
  6846. }
  6847. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6848. {
  6849. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6850. {
  6851. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6852. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6853. }
  6854. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6855. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6856. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6857. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6858. total_filament_used = 0;
  6859. }
  6860. float calculate_extruder_multiplier(float diameter) {
  6861. float out = 1.f;
  6862. if (cs.volumetric_enabled && diameter > 0.f) {
  6863. float area = M_PI * diameter * diameter * 0.25;
  6864. out = 1.f / area;
  6865. }
  6866. if (extrudemultiply != 100)
  6867. out *= float(extrudemultiply) * 0.01f;
  6868. return out;
  6869. }
  6870. void calculate_extruder_multipliers() {
  6871. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  6872. #if EXTRUDERS > 1
  6873. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  6874. #if EXTRUDERS > 2
  6875. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  6876. #endif
  6877. #endif
  6878. }
  6879. void delay_keep_alive(unsigned int ms)
  6880. {
  6881. for (;;) {
  6882. manage_heater();
  6883. // Manage inactivity, but don't disable steppers on timeout.
  6884. manage_inactivity(true);
  6885. lcd_update(0);
  6886. if (ms == 0)
  6887. break;
  6888. else if (ms >= 50) {
  6889. _delay(50);
  6890. ms -= 50;
  6891. } else {
  6892. _delay(ms);
  6893. ms = 0;
  6894. }
  6895. }
  6896. }
  6897. static void wait_for_heater(long codenum, uint8_t extruder) {
  6898. #ifdef TEMP_RESIDENCY_TIME
  6899. long residencyStart;
  6900. residencyStart = -1;
  6901. /* continue to loop until we have reached the target temp
  6902. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6903. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6904. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6905. #else
  6906. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6907. #endif //TEMP_RESIDENCY_TIME
  6908. if ((_millis() - codenum) > 1000UL)
  6909. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6910. if (!farm_mode) {
  6911. SERIAL_PROTOCOLPGM("T:");
  6912. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  6913. SERIAL_PROTOCOLPGM(" E:");
  6914. SERIAL_PROTOCOL((int)extruder);
  6915. #ifdef TEMP_RESIDENCY_TIME
  6916. SERIAL_PROTOCOLPGM(" W:");
  6917. if (residencyStart > -1)
  6918. {
  6919. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  6920. SERIAL_PROTOCOLLN(codenum);
  6921. }
  6922. else
  6923. {
  6924. SERIAL_PROTOCOLLN("?");
  6925. }
  6926. }
  6927. #else
  6928. SERIAL_PROTOCOLLN("");
  6929. #endif
  6930. codenum = _millis();
  6931. }
  6932. manage_heater();
  6933. manage_inactivity(true); //do not disable steppers
  6934. lcd_update(0);
  6935. #ifdef TEMP_RESIDENCY_TIME
  6936. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6937. or when current temp falls outside the hysteresis after target temp was reached */
  6938. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  6939. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  6940. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  6941. {
  6942. residencyStart = _millis();
  6943. }
  6944. #endif //TEMP_RESIDENCY_TIME
  6945. }
  6946. }
  6947. void check_babystep()
  6948. {
  6949. int babystep_z;
  6950. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6951. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6952. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6953. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6954. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6955. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6956. lcd_update_enable(true);
  6957. }
  6958. }
  6959. #ifdef DIS
  6960. void d_setup()
  6961. {
  6962. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6963. pinMode(D_DATA, INPUT_PULLUP);
  6964. pinMode(D_REQUIRE, OUTPUT);
  6965. digitalWrite(D_REQUIRE, HIGH);
  6966. }
  6967. float d_ReadData()
  6968. {
  6969. int digit[13];
  6970. String mergeOutput;
  6971. float output;
  6972. digitalWrite(D_REQUIRE, HIGH);
  6973. for (int i = 0; i<13; i++)
  6974. {
  6975. for (int j = 0; j < 4; j++)
  6976. {
  6977. while (digitalRead(D_DATACLOCK) == LOW) {}
  6978. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6979. bitWrite(digit[i], j, digitalRead(D_DATA));
  6980. }
  6981. }
  6982. digitalWrite(D_REQUIRE, LOW);
  6983. mergeOutput = "";
  6984. output = 0;
  6985. for (int r = 5; r <= 10; r++) //Merge digits
  6986. {
  6987. mergeOutput += digit[r];
  6988. }
  6989. output = mergeOutput.toFloat();
  6990. if (digit[4] == 8) //Handle sign
  6991. {
  6992. output *= -1;
  6993. }
  6994. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6995. {
  6996. output /= 10;
  6997. }
  6998. return output;
  6999. }
  7000. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7001. int t1 = 0;
  7002. int t_delay = 0;
  7003. int digit[13];
  7004. int m;
  7005. char str[3];
  7006. //String mergeOutput;
  7007. char mergeOutput[15];
  7008. float output;
  7009. int mesh_point = 0; //index number of calibration point
  7010. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7011. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7012. float mesh_home_z_search = 4;
  7013. float row[x_points_num];
  7014. int ix = 0;
  7015. int iy = 0;
  7016. const char* filename_wldsd = "wldsd.txt";
  7017. char data_wldsd[70];
  7018. char numb_wldsd[10];
  7019. d_setup();
  7020. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7021. // We don't know where we are! HOME!
  7022. // Push the commands to the front of the message queue in the reverse order!
  7023. // There shall be always enough space reserved for these commands.
  7024. repeatcommand_front(); // repeat G80 with all its parameters
  7025. enquecommand_front_P((PSTR("G28 W0")));
  7026. enquecommand_front_P((PSTR("G1 Z5")));
  7027. return;
  7028. }
  7029. unsigned int custom_message_type_old = custom_message_type;
  7030. unsigned int custom_message_state_old = custom_message_state;
  7031. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  7032. custom_message_state = (x_points_num * y_points_num) + 10;
  7033. lcd_update(1);
  7034. mbl.reset();
  7035. babystep_undo();
  7036. card.openFile(filename_wldsd, false);
  7037. current_position[Z_AXIS] = mesh_home_z_search;
  7038. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7039. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7040. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7041. int l_feedmultiply = setup_for_endstop_move(false);
  7042. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7043. SERIAL_PROTOCOL(x_points_num);
  7044. SERIAL_PROTOCOLPGM(",");
  7045. SERIAL_PROTOCOL(y_points_num);
  7046. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7047. SERIAL_PROTOCOL(mesh_home_z_search);
  7048. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7049. SERIAL_PROTOCOL(x_dimension);
  7050. SERIAL_PROTOCOLPGM(",");
  7051. SERIAL_PROTOCOL(y_dimension);
  7052. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7053. while (mesh_point != x_points_num * y_points_num) {
  7054. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7055. iy = mesh_point / x_points_num;
  7056. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7057. float z0 = 0.f;
  7058. current_position[Z_AXIS] = mesh_home_z_search;
  7059. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7060. st_synchronize();
  7061. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7062. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7063. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7064. st_synchronize();
  7065. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7066. break;
  7067. card.closefile();
  7068. }
  7069. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7070. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7071. //strcat(data_wldsd, numb_wldsd);
  7072. //MYSERIAL.println(data_wldsd);
  7073. //_delay(1000);
  7074. //_delay(3000);
  7075. //t1 = _millis();
  7076. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7077. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7078. memset(digit, 0, sizeof(digit));
  7079. //cli();
  7080. digitalWrite(D_REQUIRE, LOW);
  7081. for (int i = 0; i<13; i++)
  7082. {
  7083. //t1 = _millis();
  7084. for (int j = 0; j < 4; j++)
  7085. {
  7086. while (digitalRead(D_DATACLOCK) == LOW) {}
  7087. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7088. bitWrite(digit[i], j, digitalRead(D_DATA));
  7089. }
  7090. //t_delay = (_millis() - t1);
  7091. //SERIAL_PROTOCOLPGM(" ");
  7092. //SERIAL_PROTOCOL_F(t_delay, 5);
  7093. //SERIAL_PROTOCOLPGM(" ");
  7094. }
  7095. //sei();
  7096. digitalWrite(D_REQUIRE, HIGH);
  7097. mergeOutput[0] = '\0';
  7098. output = 0;
  7099. for (int r = 5; r <= 10; r++) //Merge digits
  7100. {
  7101. sprintf(str, "%d", digit[r]);
  7102. strcat(mergeOutput, str);
  7103. }
  7104. output = atof(mergeOutput);
  7105. if (digit[4] == 8) //Handle sign
  7106. {
  7107. output *= -1;
  7108. }
  7109. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7110. {
  7111. output *= 0.1;
  7112. }
  7113. //output = d_ReadData();
  7114. //row[ix] = current_position[Z_AXIS];
  7115. memset(data_wldsd, 0, sizeof(data_wldsd));
  7116. for (int i = 0; i <3; i++) {
  7117. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7118. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7119. strcat(data_wldsd, numb_wldsd);
  7120. strcat(data_wldsd, ";");
  7121. }
  7122. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7123. dtostrf(output, 8, 5, numb_wldsd);
  7124. strcat(data_wldsd, numb_wldsd);
  7125. //strcat(data_wldsd, ";");
  7126. card.write_command(data_wldsd);
  7127. //row[ix] = d_ReadData();
  7128. row[ix] = output; // current_position[Z_AXIS];
  7129. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7130. for (int i = 0; i < x_points_num; i++) {
  7131. SERIAL_PROTOCOLPGM(" ");
  7132. SERIAL_PROTOCOL_F(row[i], 5);
  7133. }
  7134. SERIAL_PROTOCOLPGM("\n");
  7135. }
  7136. custom_message_state--;
  7137. mesh_point++;
  7138. lcd_update(1);
  7139. }
  7140. card.closefile();
  7141. clean_up_after_endstop_move(l_feedmultiply);
  7142. }
  7143. #endif
  7144. void temp_compensation_start() {
  7145. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  7146. custom_message_state = PINDA_HEAT_T + 1;
  7147. lcd_update(2);
  7148. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7149. current_position[E_AXIS] -= default_retraction;
  7150. }
  7151. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7152. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7153. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7154. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7155. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7156. st_synchronize();
  7157. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7158. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7159. delay_keep_alive(1000);
  7160. custom_message_state = PINDA_HEAT_T - i;
  7161. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7162. else lcd_update(1);
  7163. }
  7164. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7165. custom_message_state = 0;
  7166. }
  7167. void temp_compensation_apply() {
  7168. int i_add;
  7169. int z_shift = 0;
  7170. float z_shift_mm;
  7171. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7172. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7173. i_add = (target_temperature_bed - 60) / 10;
  7174. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7175. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7176. }else {
  7177. //interpolation
  7178. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7179. }
  7180. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7181. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7182. st_synchronize();
  7183. plan_set_z_position(current_position[Z_AXIS]);
  7184. }
  7185. else {
  7186. //we have no temp compensation data
  7187. }
  7188. }
  7189. float temp_comp_interpolation(float inp_temperature) {
  7190. //cubic spline interpolation
  7191. int n, i, j;
  7192. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7193. int shift[10];
  7194. int temp_C[10];
  7195. n = 6; //number of measured points
  7196. shift[0] = 0;
  7197. for (i = 0; i < n; i++) {
  7198. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7199. temp_C[i] = 50 + i * 10; //temperature in C
  7200. #ifdef PINDA_THERMISTOR
  7201. temp_C[i] = 35 + i * 5; //temperature in C
  7202. #else
  7203. temp_C[i] = 50 + i * 10; //temperature in C
  7204. #endif
  7205. x[i] = (float)temp_C[i];
  7206. f[i] = (float)shift[i];
  7207. }
  7208. if (inp_temperature < x[0]) return 0;
  7209. for (i = n - 1; i>0; i--) {
  7210. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7211. h[i - 1] = x[i] - x[i - 1];
  7212. }
  7213. //*********** formation of h, s , f matrix **************
  7214. for (i = 1; i<n - 1; i++) {
  7215. m[i][i] = 2 * (h[i - 1] + h[i]);
  7216. if (i != 1) {
  7217. m[i][i - 1] = h[i - 1];
  7218. m[i - 1][i] = h[i - 1];
  7219. }
  7220. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7221. }
  7222. //*********** forward elimination **************
  7223. for (i = 1; i<n - 2; i++) {
  7224. temp = (m[i + 1][i] / m[i][i]);
  7225. for (j = 1; j <= n - 1; j++)
  7226. m[i + 1][j] -= temp*m[i][j];
  7227. }
  7228. //*********** backward substitution *********
  7229. for (i = n - 2; i>0; i--) {
  7230. sum = 0;
  7231. for (j = i; j <= n - 2; j++)
  7232. sum += m[i][j] * s[j];
  7233. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7234. }
  7235. for (i = 0; i<n - 1; i++)
  7236. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7237. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7238. b = s[i] / 2;
  7239. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7240. d = f[i];
  7241. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7242. }
  7243. return sum;
  7244. }
  7245. #ifdef PINDA_THERMISTOR
  7246. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7247. {
  7248. if (!temp_cal_active) return 0;
  7249. if (!calibration_status_pinda()) return 0;
  7250. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7251. }
  7252. #endif //PINDA_THERMISTOR
  7253. void long_pause() //long pause print
  7254. {
  7255. st_synchronize();
  7256. start_pause_print = _millis();
  7257. //retract
  7258. current_position[E_AXIS] -= default_retraction;
  7259. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7260. //lift z
  7261. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7262. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7263. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7264. //Move XY to side
  7265. current_position[X_AXIS] = X_PAUSE_POS;
  7266. current_position[Y_AXIS] = Y_PAUSE_POS;
  7267. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7268. // Turn off the print fan
  7269. fanSpeed = 0;
  7270. st_synchronize();
  7271. }
  7272. void serialecho_temperatures() {
  7273. float tt = degHotend(active_extruder);
  7274. SERIAL_PROTOCOLPGM("T:");
  7275. SERIAL_PROTOCOL(tt);
  7276. SERIAL_PROTOCOLPGM(" E:");
  7277. SERIAL_PROTOCOL((int)active_extruder);
  7278. SERIAL_PROTOCOLPGM(" B:");
  7279. SERIAL_PROTOCOL_F(degBed(), 1);
  7280. SERIAL_PROTOCOLLN("");
  7281. }
  7282. extern uint32_t sdpos_atomic;
  7283. #ifdef UVLO_SUPPORT
  7284. void uvlo_()
  7285. {
  7286. unsigned long time_start = _millis();
  7287. bool sd_print = card.sdprinting;
  7288. // Conserve power as soon as possible.
  7289. disable_x();
  7290. disable_y();
  7291. #ifdef TMC2130
  7292. tmc2130_set_current_h(Z_AXIS, 20);
  7293. tmc2130_set_current_r(Z_AXIS, 20);
  7294. tmc2130_set_current_h(E_AXIS, 20);
  7295. tmc2130_set_current_r(E_AXIS, 20);
  7296. #endif //TMC2130
  7297. // Indicate that the interrupt has been triggered.
  7298. // SERIAL_ECHOLNPGM("UVLO");
  7299. // Read out the current Z motor microstep counter. This will be later used
  7300. // for reaching the zero full step before powering off.
  7301. uint16_t z_microsteps = 0;
  7302. #ifdef TMC2130
  7303. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7304. #endif //TMC2130
  7305. // Calculate the file position, from which to resume this print.
  7306. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7307. {
  7308. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7309. sd_position -= sdlen_planner;
  7310. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7311. sd_position -= sdlen_cmdqueue;
  7312. if (sd_position < 0) sd_position = 0;
  7313. }
  7314. // Backup the feedrate in mm/min.
  7315. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7316. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7317. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7318. // are in action.
  7319. planner_abort_hard();
  7320. // Store the current extruder position.
  7321. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7322. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7323. // Clean the input command queue.
  7324. cmdqueue_reset();
  7325. card.sdprinting = false;
  7326. // card.closefile();
  7327. // Enable stepper driver interrupt to move Z axis.
  7328. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7329. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7330. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7331. sei();
  7332. plan_buffer_line(
  7333. current_position[X_AXIS],
  7334. current_position[Y_AXIS],
  7335. current_position[Z_AXIS],
  7336. current_position[E_AXIS] - default_retraction,
  7337. 95, active_extruder);
  7338. st_synchronize();
  7339. disable_e0();
  7340. plan_buffer_line(
  7341. current_position[X_AXIS],
  7342. current_position[Y_AXIS],
  7343. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7344. current_position[E_AXIS] - default_retraction,
  7345. 40, active_extruder);
  7346. st_synchronize();
  7347. disable_e0();
  7348. plan_buffer_line(
  7349. current_position[X_AXIS],
  7350. current_position[Y_AXIS],
  7351. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7352. current_position[E_AXIS] - default_retraction,
  7353. 40, active_extruder);
  7354. st_synchronize();
  7355. disable_e0();
  7356. disable_z();
  7357. // Move Z up to the next 0th full step.
  7358. // Write the file position.
  7359. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7360. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7361. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7362. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7363. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7364. // Scale the z value to 1u resolution.
  7365. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7366. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7367. }
  7368. // Read out the current Z motor microstep counter. This will be later used
  7369. // for reaching the zero full step before powering off.
  7370. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7371. // Store the current position.
  7372. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7373. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7374. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7375. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7376. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7377. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7378. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7379. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7380. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7381. #if EXTRUDERS > 1
  7382. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7383. #if EXTRUDERS > 2
  7384. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7385. #endif
  7386. #endif
  7387. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7388. // Finaly store the "power outage" flag.
  7389. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7390. st_synchronize();
  7391. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7392. disable_z();
  7393. // Increment power failure counter
  7394. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7395. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7396. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  7397. #if 0
  7398. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7399. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7400. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7401. st_synchronize();
  7402. #endif
  7403. wdt_enable(WDTO_500MS);
  7404. WRITE(BEEPER,HIGH);
  7405. while(1)
  7406. ;
  7407. }
  7408. void uvlo_tiny()
  7409. {
  7410. uint16_t z_microsteps=0;
  7411. // Conserve power as soon as possible.
  7412. disable_x();
  7413. disable_y();
  7414. disable_e0();
  7415. #ifdef TMC2130
  7416. tmc2130_set_current_h(Z_AXIS, 20);
  7417. tmc2130_set_current_r(Z_AXIS, 20);
  7418. #endif //TMC2130
  7419. // Read out the current Z motor microstep counter
  7420. #ifdef TMC2130
  7421. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7422. #endif //TMC2130
  7423. planner_abort_hard();
  7424. sei();
  7425. plan_buffer_line(
  7426. current_position[X_AXIS],
  7427. current_position[Y_AXIS],
  7428. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7429. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/cs.axis_steps_per_unit[Z_AXIS],
  7430. current_position[E_AXIS],
  7431. 40, active_extruder);
  7432. st_synchronize();
  7433. disable_z();
  7434. // Finaly store the "power outage" flag.
  7435. //if(sd_print)
  7436. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7437. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7438. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7439. // Increment power failure counter
  7440. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7441. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7442. wdt_enable(WDTO_500MS);
  7443. WRITE(BEEPER,HIGH);
  7444. while(1)
  7445. ;
  7446. }
  7447. #endif //UVLO_SUPPORT
  7448. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7449. void setup_fan_interrupt() {
  7450. //INT7
  7451. DDRE &= ~(1 << 7); //input pin
  7452. PORTE &= ~(1 << 7); //no internal pull-up
  7453. //start with sensing rising edge
  7454. EICRB &= ~(1 << 6);
  7455. EICRB |= (1 << 7);
  7456. //enable INT7 interrupt
  7457. EIMSK |= (1 << 7);
  7458. }
  7459. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7460. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7461. ISR(INT7_vect) {
  7462. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7463. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7464. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7465. t_fan_rising_edge = millis_nc();
  7466. }
  7467. else { //interrupt was triggered by falling edge
  7468. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7469. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7470. }
  7471. }
  7472. EICRB ^= (1 << 6); //change edge
  7473. }
  7474. #endif
  7475. #ifdef UVLO_SUPPORT
  7476. void setup_uvlo_interrupt() {
  7477. DDRE &= ~(1 << 4); //input pin
  7478. PORTE &= ~(1 << 4); //no internal pull-up
  7479. //sensing falling edge
  7480. EICRB |= (1 << 0);
  7481. EICRB &= ~(1 << 1);
  7482. //enable INT4 interrupt
  7483. EIMSK |= (1 << 4);
  7484. }
  7485. ISR(INT4_vect) {
  7486. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7487. SERIAL_ECHOLNPGM("INT4");
  7488. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7489. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7490. }
  7491. void recover_print(uint8_t automatic) {
  7492. char cmd[30];
  7493. lcd_update_enable(true);
  7494. lcd_update(2);
  7495. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7496. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7497. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7498. // Lift the print head, so one may remove the excess priming material.
  7499. if(!bTiny&&(current_position[Z_AXIS]<25))
  7500. enquecommand_P(PSTR("G1 Z25 F800"));
  7501. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7502. enquecommand_P(PSTR("G28 X Y"));
  7503. // Set the target bed and nozzle temperatures and wait.
  7504. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7505. enquecommand(cmd);
  7506. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7507. enquecommand(cmd);
  7508. enquecommand_P(PSTR("M83")); //E axis relative mode
  7509. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7510. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7511. if(automatic == 0){
  7512. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7513. }
  7514. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7515. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7516. // Restart the print.
  7517. restore_print_from_eeprom();
  7518. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7519. }
  7520. void recover_machine_state_after_power_panic(bool bTiny)
  7521. {
  7522. char cmd[30];
  7523. // 1) Recover the logical cordinates at the time of the power panic.
  7524. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7525. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7526. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7527. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7528. // The current position after power panic is moved to the next closest 0th full step.
  7529. if(bTiny)
  7530. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7531. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7532. else
  7533. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7534. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7535. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7536. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7537. sprintf_P(cmd, PSTR("G92 E"));
  7538. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7539. enquecommand(cmd);
  7540. }
  7541. memcpy(destination, current_position, sizeof(destination));
  7542. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7543. print_world_coordinates();
  7544. // 2) Initialize the logical to physical coordinate system transformation.
  7545. world2machine_initialize();
  7546. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7547. mbl.active = false;
  7548. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7549. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7550. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7551. // Scale the z value to 10u resolution.
  7552. int16_t v;
  7553. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7554. if (v != 0)
  7555. mbl.active = true;
  7556. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7557. }
  7558. if (mbl.active)
  7559. mbl.upsample_3x3();
  7560. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7561. // print_mesh_bed_leveling_table();
  7562. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7563. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7564. babystep_load();
  7565. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7566. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7567. // 6) Power up the motors, mark their positions as known.
  7568. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7569. axis_known_position[X_AXIS] = true; enable_x();
  7570. axis_known_position[Y_AXIS] = true; enable_y();
  7571. axis_known_position[Z_AXIS] = true; enable_z();
  7572. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7573. print_physical_coordinates();
  7574. // 7) Recover the target temperatures.
  7575. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7576. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7577. // 8) Recover extruder multipilers
  7578. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7579. #if EXTRUDERS > 1
  7580. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7581. #if EXTRUDERS > 2
  7582. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7583. #endif
  7584. #endif
  7585. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7586. }
  7587. void restore_print_from_eeprom() {
  7588. int feedrate_rec;
  7589. uint8_t fan_speed_rec;
  7590. char cmd[30];
  7591. char filename[13];
  7592. uint8_t depth = 0;
  7593. char dir_name[9];
  7594. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7595. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7596. SERIAL_ECHOPGM("Feedrate:");
  7597. MYSERIAL.println(feedrate_rec);
  7598. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7599. MYSERIAL.println(int(depth));
  7600. for (int i = 0; i < depth; i++) {
  7601. for (int j = 0; j < 8; j++) {
  7602. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7603. }
  7604. dir_name[8] = '\0';
  7605. MYSERIAL.println(dir_name);
  7606. strcpy(dir_names[i], dir_name);
  7607. card.chdir(dir_name);
  7608. }
  7609. for (int i = 0; i < 8; i++) {
  7610. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7611. }
  7612. filename[8] = '\0';
  7613. MYSERIAL.print(filename);
  7614. strcat_P(filename, PSTR(".gco"));
  7615. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7616. enquecommand(cmd);
  7617. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7618. SERIAL_ECHOPGM("Position read from eeprom:");
  7619. MYSERIAL.println(position);
  7620. // E axis relative mode.
  7621. enquecommand_P(PSTR("M83"));
  7622. // Move to the XY print position in logical coordinates, where the print has been killed.
  7623. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7624. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7625. strcat_P(cmd, PSTR(" F2000"));
  7626. enquecommand(cmd);
  7627. // Move the Z axis down to the print, in logical coordinates.
  7628. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7629. enquecommand(cmd);
  7630. // Unretract.
  7631. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7632. // Set the feedrate saved at the power panic.
  7633. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7634. enquecommand(cmd);
  7635. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7636. {
  7637. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7638. }
  7639. // Set the fan speed saved at the power panic.
  7640. strcpy_P(cmd, PSTR("M106 S"));
  7641. strcat(cmd, itostr3(int(fan_speed_rec)));
  7642. enquecommand(cmd);
  7643. // Set a position in the file.
  7644. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7645. enquecommand(cmd);
  7646. enquecommand_P(PSTR("G4 S0"));
  7647. enquecommand_P(PSTR("PRUSA uvlo"));
  7648. }
  7649. #endif //UVLO_SUPPORT
  7650. //! @brief Immediately stop print moves
  7651. //!
  7652. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  7653. //! If printing from sd card, position in file is saved.
  7654. //! If printing from USB, line number is saved.
  7655. //!
  7656. //! @param z_move
  7657. //! @param e_move
  7658. void stop_and_save_print_to_ram(float z_move, float e_move)
  7659. {
  7660. if (saved_printing) return;
  7661. #if 0
  7662. unsigned char nplanner_blocks;
  7663. #endif
  7664. unsigned char nlines;
  7665. uint16_t sdlen_planner;
  7666. uint16_t sdlen_cmdqueue;
  7667. cli();
  7668. if (card.sdprinting) {
  7669. #if 0
  7670. nplanner_blocks = number_of_blocks();
  7671. #endif
  7672. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7673. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7674. saved_sdpos -= sdlen_planner;
  7675. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7676. saved_sdpos -= sdlen_cmdqueue;
  7677. saved_printing_type = PRINTING_TYPE_SD;
  7678. }
  7679. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7680. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7681. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7682. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7683. saved_sdpos -= nlines;
  7684. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7685. saved_printing_type = PRINTING_TYPE_USB;
  7686. }
  7687. else {
  7688. //not sd printing nor usb printing
  7689. }
  7690. #if 0
  7691. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7692. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7693. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7694. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7695. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7696. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7697. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7698. {
  7699. card.setIndex(saved_sdpos);
  7700. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7701. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7702. MYSERIAL.print(char(card.get()));
  7703. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7704. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7705. MYSERIAL.print(char(card.get()));
  7706. SERIAL_ECHOLNPGM("End of command buffer");
  7707. }
  7708. {
  7709. // Print the content of the planner buffer, line by line:
  7710. card.setIndex(saved_sdpos);
  7711. int8_t iline = 0;
  7712. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7713. SERIAL_ECHOPGM("Planner line (from file): ");
  7714. MYSERIAL.print(int(iline), DEC);
  7715. SERIAL_ECHOPGM(", length: ");
  7716. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7717. SERIAL_ECHOPGM(", steps: (");
  7718. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7719. SERIAL_ECHOPGM(",");
  7720. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7721. SERIAL_ECHOPGM(",");
  7722. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7723. SERIAL_ECHOPGM(",");
  7724. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7725. SERIAL_ECHOPGM("), events: ");
  7726. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7727. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7728. MYSERIAL.print(char(card.get()));
  7729. }
  7730. }
  7731. {
  7732. // Print the content of the command buffer, line by line:
  7733. int8_t iline = 0;
  7734. union {
  7735. struct {
  7736. char lo;
  7737. char hi;
  7738. } lohi;
  7739. uint16_t value;
  7740. } sdlen_single;
  7741. int _bufindr = bufindr;
  7742. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7743. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7744. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7745. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7746. }
  7747. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7748. MYSERIAL.print(int(iline), DEC);
  7749. SERIAL_ECHOPGM(", type: ");
  7750. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7751. SERIAL_ECHOPGM(", len: ");
  7752. MYSERIAL.println(sdlen_single.value, DEC);
  7753. // Print the content of the buffer line.
  7754. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7755. SERIAL_ECHOPGM("Buffer line (from file): ");
  7756. MYSERIAL.println(int(iline), DEC);
  7757. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7758. MYSERIAL.print(char(card.get()));
  7759. if (-- _buflen == 0)
  7760. break;
  7761. // First skip the current command ID and iterate up to the end of the string.
  7762. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7763. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7764. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7765. // If the end of the buffer was empty,
  7766. if (_bufindr == sizeof(cmdbuffer)) {
  7767. // skip to the start and find the nonzero command.
  7768. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7769. }
  7770. }
  7771. }
  7772. #endif
  7773. #if 0
  7774. saved_feedrate2 = feedrate; //save feedrate
  7775. #else
  7776. // Try to deduce the feedrate from the first block of the planner.
  7777. // Speed is in mm/min.
  7778. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7779. #endif
  7780. planner_abort_hard(); //abort printing
  7781. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7782. saved_active_extruder = active_extruder; //save active_extruder
  7783. saved_extruder_temperature = degTargetHotend(active_extruder);
  7784. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7785. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7786. saved_fanSpeed = fanSpeed;
  7787. cmdqueue_reset(); //empty cmdqueue
  7788. card.sdprinting = false;
  7789. // card.closefile();
  7790. saved_printing = true;
  7791. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7792. st_reset_timer();
  7793. sei();
  7794. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7795. #if 1
  7796. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7797. char buf[48];
  7798. // First unretract (relative extrusion)
  7799. if(!saved_extruder_relative_mode){
  7800. strcpy_P(buf, PSTR("M83"));
  7801. enquecommand(buf, false);
  7802. }
  7803. //retract 45mm/s
  7804. strcpy_P(buf, PSTR("G1 E"));
  7805. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7806. strcat_P(buf, PSTR(" F"));
  7807. dtostrf(2700, 8, 3, buf + strlen(buf));
  7808. enquecommand(buf, false);
  7809. // Then lift Z axis
  7810. strcpy_P(buf, PSTR("G1 Z"));
  7811. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7812. strcat_P(buf, PSTR(" F"));
  7813. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7814. // At this point the command queue is empty.
  7815. enquecommand(buf, false);
  7816. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7817. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7818. repeatcommand_front();
  7819. #else
  7820. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7821. st_synchronize(); //wait moving
  7822. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7823. memcpy(destination, current_position, sizeof(destination));
  7824. #endif
  7825. }
  7826. }
  7827. //! @brief Restore print from ram
  7828. //!
  7829. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  7830. //! waits for extruder temperature restore, then restores position and continues
  7831. //! print moves.
  7832. //! Internaly lcd_update() is called by wait_for_heater().
  7833. //!
  7834. //! @param e_move
  7835. void restore_print_from_ram_and_continue(float e_move)
  7836. {
  7837. if (!saved_printing) return;
  7838. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7839. // current_position[axis] = st_get_position_mm(axis);
  7840. active_extruder = saved_active_extruder; //restore active_extruder
  7841. setTargetHotendSafe(saved_extruder_temperature,saved_active_extruder);
  7842. heating_status = 1;
  7843. wait_for_heater(_millis(),saved_active_extruder);
  7844. heating_status = 2;
  7845. feedrate = saved_feedrate2; //restore feedrate
  7846. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7847. fanSpeed = saved_fanSpeed;
  7848. float e = saved_pos[E_AXIS] - e_move;
  7849. plan_set_e_position(e);
  7850. //first move print head in XY to the saved position:
  7851. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7852. st_synchronize();
  7853. //then move Z
  7854. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7855. st_synchronize();
  7856. //and finaly unretract (35mm/s)
  7857. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7858. st_synchronize();
  7859. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7860. memcpy(destination, current_position, sizeof(destination));
  7861. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7862. card.setIndex(saved_sdpos);
  7863. sdpos_atomic = saved_sdpos;
  7864. card.sdprinting = true;
  7865. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7866. }
  7867. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7868. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7869. serial_count = 0;
  7870. FlushSerialRequestResend();
  7871. }
  7872. else {
  7873. //not sd printing nor usb printing
  7874. }
  7875. lcd_setstatuspgm(_T(WELCOME_MSG));
  7876. saved_printing = false;
  7877. }
  7878. void print_world_coordinates()
  7879. {
  7880. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7881. }
  7882. void print_physical_coordinates()
  7883. {
  7884. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7885. }
  7886. void print_mesh_bed_leveling_table()
  7887. {
  7888. SERIAL_ECHOPGM("mesh bed leveling: ");
  7889. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7890. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7891. MYSERIAL.print(mbl.z_values[y][x], 3);
  7892. SERIAL_ECHOPGM(" ");
  7893. }
  7894. SERIAL_ECHOLNPGM("");
  7895. }
  7896. uint16_t print_time_remaining() {
  7897. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7898. #ifdef TMC2130
  7899. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7900. else print_t = print_time_remaining_silent;
  7901. #else
  7902. print_t = print_time_remaining_normal;
  7903. #endif //TMC2130
  7904. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  7905. return print_t;
  7906. }
  7907. uint8_t calc_percent_done()
  7908. {
  7909. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7910. uint8_t percent_done = 0;
  7911. #ifdef TMC2130
  7912. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7913. percent_done = print_percent_done_normal;
  7914. }
  7915. else if (print_percent_done_silent <= 100) {
  7916. percent_done = print_percent_done_silent;
  7917. }
  7918. #else
  7919. if (print_percent_done_normal <= 100) {
  7920. percent_done = print_percent_done_normal;
  7921. }
  7922. #endif //TMC2130
  7923. else {
  7924. percent_done = card.percentDone();
  7925. }
  7926. return percent_done;
  7927. }
  7928. static void print_time_remaining_init()
  7929. {
  7930. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7931. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7932. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7933. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7934. }
  7935. void load_filament_final_feed()
  7936. {
  7937. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  7938. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  7939. }
  7940. void M600_check_state()
  7941. {
  7942. //Wait for user to check the state
  7943. lcd_change_fil_state = 0;
  7944. while (lcd_change_fil_state != 1){
  7945. lcd_change_fil_state = 0;
  7946. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7947. lcd_alright();
  7948. KEEPALIVE_STATE(IN_HANDLER);
  7949. switch(lcd_change_fil_state){
  7950. // Filament failed to load so load it again
  7951. case 2:
  7952. if (mmu_enabled)
  7953. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  7954. else
  7955. M600_load_filament_movements();
  7956. break;
  7957. // Filament loaded properly but color is not clear
  7958. case 3:
  7959. st_synchronize();
  7960. load_filament_final_feed();
  7961. lcd_loading_color();
  7962. st_synchronize();
  7963. break;
  7964. // Everything good
  7965. default:
  7966. lcd_change_success();
  7967. break;
  7968. }
  7969. }
  7970. }
  7971. //! @brief Wait for user action
  7972. //!
  7973. //! Beep, manage nozzle heater and wait for user to start unload filament
  7974. //! If times out, active extruder temperature is set to 0.
  7975. //!
  7976. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  7977. void M600_wait_for_user(float HotendTempBckp) {
  7978. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7979. int counterBeep = 0;
  7980. unsigned long waiting_start_time = _millis();
  7981. uint8_t wait_for_user_state = 0;
  7982. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7983. bool bFirst=true;
  7984. while (!(wait_for_user_state == 0 && lcd_clicked())){
  7985. manage_heater();
  7986. manage_inactivity(true);
  7987. #if BEEPER > 0
  7988. if (counterBeep == 500) {
  7989. counterBeep = 0;
  7990. }
  7991. SET_OUTPUT(BEEPER);
  7992. if (counterBeep == 0) {
  7993. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  7994. {
  7995. bFirst=false;
  7996. WRITE(BEEPER, HIGH);
  7997. }
  7998. }
  7999. if (counterBeep == 20) {
  8000. WRITE(BEEPER, LOW);
  8001. }
  8002. counterBeep++;
  8003. #endif //BEEPER > 0
  8004. switch (wait_for_user_state) {
  8005. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  8006. delay_keep_alive(4);
  8007. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  8008. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  8009. wait_for_user_state = 1;
  8010. setAllTargetHotends(0);
  8011. st_synchronize();
  8012. disable_e0();
  8013. disable_e1();
  8014. disable_e2();
  8015. }
  8016. break;
  8017. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  8018. delay_keep_alive(4);
  8019. if (lcd_clicked()) {
  8020. setTargetHotend(HotendTempBckp, active_extruder);
  8021. lcd_wait_for_heater();
  8022. wait_for_user_state = 2;
  8023. }
  8024. break;
  8025. case 2: //waiting for nozzle to reach target temperature
  8026. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  8027. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8028. waiting_start_time = _millis();
  8029. wait_for_user_state = 0;
  8030. }
  8031. else {
  8032. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  8033. lcd_set_cursor(1, 4);
  8034. lcd_print(ftostr3(degHotend(active_extruder)));
  8035. }
  8036. break;
  8037. }
  8038. }
  8039. WRITE(BEEPER, LOW);
  8040. }
  8041. void M600_load_filament_movements()
  8042. {
  8043. #ifdef SNMM
  8044. display_loading();
  8045. do
  8046. {
  8047. current_position[E_AXIS] += 0.002;
  8048. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8049. delay_keep_alive(2);
  8050. }
  8051. while (!lcd_clicked());
  8052. st_synchronize();
  8053. current_position[E_AXIS] += bowden_length[mmu_extruder];
  8054. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8055. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8056. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8057. current_position[E_AXIS] += 40;
  8058. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8059. current_position[E_AXIS] += 10;
  8060. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8061. #else
  8062. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8063. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  8064. #endif
  8065. load_filament_final_feed();
  8066. lcd_loading_filament();
  8067. st_synchronize();
  8068. }
  8069. void M600_load_filament() {
  8070. //load filament for single material and SNMM
  8071. lcd_wait_interact();
  8072. //load_filament_time = _millis();
  8073. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8074. #ifdef PAT9125
  8075. fsensor_autoload_check_start();
  8076. #endif //PAT9125
  8077. while(!lcd_clicked())
  8078. {
  8079. manage_heater();
  8080. manage_inactivity(true);
  8081. #ifdef FILAMENT_SENSOR
  8082. if (fsensor_check_autoload())
  8083. {
  8084. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8085. tone(BEEPER, 1000);
  8086. delay_keep_alive(50);
  8087. noTone(BEEPER);
  8088. break;
  8089. }
  8090. #endif //FILAMENT_SENSOR
  8091. }
  8092. #ifdef PAT9125
  8093. fsensor_autoload_check_stop();
  8094. #endif //PAT9125
  8095. KEEPALIVE_STATE(IN_HANDLER);
  8096. #ifdef FSENSOR_QUALITY
  8097. fsensor_oq_meassure_start(70);
  8098. #endif //FSENSOR_QUALITY
  8099. M600_load_filament_movements();
  8100. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8101. tone(BEEPER, 500);
  8102. delay_keep_alive(50);
  8103. noTone(BEEPER);
  8104. #ifdef FSENSOR_QUALITY
  8105. fsensor_oq_meassure_stop();
  8106. if (!fsensor_oq_result())
  8107. {
  8108. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8109. lcd_update_enable(true);
  8110. lcd_update(2);
  8111. if (disable)
  8112. fsensor_disable();
  8113. }
  8114. #endif //FSENSOR_QUALITY
  8115. lcd_update_enable(false);
  8116. }
  8117. #define FIL_LOAD_LENGTH 60