mmu.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810
  1. //mmu.cpp
  2. #include "mmu.h"
  3. #include "planner.h"
  4. #include "language.h"
  5. #include "lcd.h"
  6. #include "uart2.h"
  7. #include "temperature.h"
  8. #include "Configuration_prusa.h"
  9. extern const char* lcd_display_message_fullscreen_P(const char *msg);
  10. extern void lcd_show_fullscreen_message_and_wait_P(const char *msg);
  11. extern int8_t lcd_show_fullscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting = true, bool default_yes = false);
  12. extern void lcd_return_to_status();
  13. extern void lcd_wait_for_heater();
  14. extern char choose_extruder_menu();
  15. #define MMU_TODELAY 100
  16. #define MMU_TIMEOUT 10
  17. #define MMU_HWRESET
  18. #define MMU_RST_PIN 76
  19. bool mmu_enabled = false;
  20. bool mmu_ready = false;
  21. int8_t mmu_state = 0;
  22. uint8_t mmu_cmd = 0;
  23. uint8_t mmu_extruder = 0;
  24. uint8_t tmp_extruder = 0;
  25. int8_t mmu_finda = -1;
  26. int16_t mmu_version = -1;
  27. int16_t mmu_buildnr = -1;
  28. uint32_t mmu_last_request = 0;
  29. uint32_t mmu_last_response = 0;
  30. //clear rx buffer
  31. void mmu_clr_rx_buf(void)
  32. {
  33. while (fgetc(uart2io) >= 0);
  34. }
  35. //send command - puts
  36. int mmu_puts_P(const char* str)
  37. {
  38. mmu_clr_rx_buf(); //clear rx buffer
  39. int r = fputs_P(str, uart2io); //send command
  40. mmu_last_request = millis();
  41. return r;
  42. }
  43. //send command - printf
  44. int mmu_printf_P(const char* format, ...)
  45. {
  46. va_list args;
  47. va_start(args, format);
  48. mmu_clr_rx_buf(); //clear rx buffer
  49. int r = vfprintf_P(uart2io, format, args); //send command
  50. va_end(args);
  51. mmu_last_request = millis();
  52. return r;
  53. }
  54. //check 'ok' response
  55. int8_t mmu_rx_ok(void)
  56. {
  57. int8_t res = uart2_rx_str_P(PSTR("ok\n"));
  58. if (res == 1) mmu_last_response = millis();
  59. return res;
  60. }
  61. //check 'start' response
  62. int8_t mmu_rx_start(void)
  63. {
  64. int8_t res = uart2_rx_str_P(PSTR("start\n"));
  65. if (res == 1) mmu_last_response = millis();
  66. return res;
  67. }
  68. //initialize mmu2 unit - first part - should be done at begining of startup process
  69. void mmu_init(void)
  70. {
  71. digitalWrite(MMU_RST_PIN, HIGH);
  72. pinMode(MMU_RST_PIN, OUTPUT); //setup reset pin
  73. uart2_init(); //init uart2
  74. _delay_ms(10); //wait 10ms for sure
  75. mmu_reset(); //reset mmu (HW or SW), do not wait for response
  76. mmu_state = -1;
  77. }
  78. //mmu main loop - state machine processing
  79. void mmu_loop(void)
  80. {
  81. // printf_P(PSTR("MMU loop, state=%d\n"), mmu_state);
  82. switch (mmu_state)
  83. {
  84. case 0:
  85. return;
  86. case -1:
  87. if (mmu_rx_start() > 0)
  88. {
  89. puts_P(PSTR("MMU => 'start'"));
  90. puts_P(PSTR("MMU <= 'S1'"));
  91. mmu_puts_P(PSTR("S1\n")); //send 'read version' request
  92. mmu_state = -2;
  93. }
  94. else if (millis() > 30000) //30sec after reset disable mmu
  95. {
  96. puts_P(PSTR("MMU not responding - DISABLED"));
  97. mmu_state = 0;
  98. }
  99. return;
  100. case -2:
  101. if (mmu_rx_ok() > 0)
  102. {
  103. fscanf_P(uart2io, PSTR("%u"), &mmu_version); //scan version from buffer
  104. printf_P(PSTR("MMU => '%dok'\n"), mmu_version);
  105. puts_P(PSTR("MMU <= 'S2'"));
  106. mmu_puts_P(PSTR("S2\n")); //send 'read buildnr' request
  107. mmu_state = -3;
  108. }
  109. return;
  110. case -3:
  111. if (mmu_rx_ok() > 0)
  112. {
  113. fscanf_P(uart2io, PSTR("%u"), &mmu_buildnr); //scan buildnr from buffer
  114. printf_P(PSTR("MMU => '%dok'\n"), mmu_buildnr);
  115. puts_P(PSTR("MMU <= 'P0'"));
  116. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  117. mmu_state = -4;
  118. }
  119. return;
  120. case -4:
  121. if (mmu_rx_ok() > 0)
  122. {
  123. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  124. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  125. puts_P(PSTR("MMU - ENABLED"));
  126. mmu_enabled = true;
  127. mmu_state = 1;
  128. }
  129. return;
  130. case 1:
  131. if (mmu_cmd) //command request ?
  132. {
  133. if ((mmu_cmd >= MMU_CMD_T0) && (mmu_cmd <= MMU_CMD_T4))
  134. {
  135. int extruder = mmu_cmd - MMU_CMD_T0;
  136. printf_P(PSTR("MMU <= 'T%d'\n"), extruder);
  137. mmu_printf_P(PSTR("T%d\n"), extruder);
  138. mmu_state = 3; // wait for response
  139. }
  140. mmu_cmd = 0;
  141. }
  142. else if ((mmu_last_response + 1000) < millis()) //request every 1s
  143. {
  144. puts_P(PSTR("MMU <= 'P0'"));
  145. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  146. mmu_state = 2;
  147. }
  148. return;
  149. case 2: //response to command P0
  150. if (mmu_rx_ok() > 0)
  151. {
  152. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  153. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  154. mmu_state = 1;
  155. if (mmu_cmd == 0)
  156. mmu_ready = true;
  157. }
  158. else if ((mmu_last_request + 30000) < millis())
  159. { //resend request after timeout (30s)
  160. mmu_state = 1;
  161. }
  162. return;
  163. case 3: //response to commands T0-T4
  164. if (mmu_rx_ok() > 0)
  165. {
  166. printf_P(PSTR("MMU => 'ok'\n"), mmu_finda);
  167. mmu_ready = true;
  168. mmu_state = 1;
  169. }
  170. else if ((mmu_last_request + 30000) < millis())
  171. { //resend request after timeout (30s)
  172. mmu_state = 1;
  173. }
  174. return;
  175. }
  176. }
  177. void mmu_reset(void)
  178. {
  179. #ifdef MMU_HWRESET //HW - pulse reset pin
  180. digitalWrite(MMU_RST_PIN, LOW);
  181. _delay_us(100);
  182. digitalWrite(MMU_RST_PIN, HIGH);
  183. #else //SW - send X0 command
  184. mmu_puts_P(PSTR("X0\n"));
  185. #endif
  186. }
  187. int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament)
  188. {
  189. printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament);
  190. mmu_printf_P(PSTR("F%d %d\n"), extruder, filament);
  191. unsigned char timeout = MMU_TIMEOUT; //10x100ms
  192. while ((mmu_rx_ok() <= 0) && (--timeout))
  193. delay_keep_alive(MMU_TODELAY);
  194. return timeout?1:0;
  195. }
  196. void mmu_command(uint8_t cmd)
  197. {
  198. mmu_cmd = cmd;
  199. mmu_ready = false;
  200. }
  201. bool mmu_get_response(void)
  202. {
  203. // printf_P(PSTR("mmu_get_response - begin\n"));
  204. KEEPALIVE_STATE(IN_PROCESS);
  205. while (mmu_cmd != 0)
  206. {
  207. // mmu_loop();
  208. delay_keep_alive(100);
  209. }
  210. while (!mmu_ready)
  211. {
  212. // mmu_loop();
  213. manage_heater();
  214. if (mmu_state != 3)
  215. break;
  216. delay_keep_alive(100);
  217. }
  218. bool ret = mmu_ready;
  219. mmu_ready = false;
  220. // printf_P(PSTR("mmu_get_response - end %d\n"), ret?1:0);
  221. return ret;
  222. /* //waits for "ok" from mmu
  223. //function returns true if "ok" was received
  224. //if timeout is set to true function return false if there is no "ok" received before timeout
  225. bool response = true;
  226. LongTimer mmu_get_reponse_timeout;
  227. KEEPALIVE_STATE(IN_PROCESS);
  228. mmu_get_reponse_timeout.start();
  229. while (mmu_rx_ok() <= 0)
  230. {
  231. delay_keep_alive(100);
  232. if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul))
  233. { //5 minutes timeout
  234. response = false;
  235. break;
  236. }
  237. }
  238. printf_P(PSTR("mmu_get_response - end %d\n"), response?1:0);
  239. return response;*/
  240. }
  241. void manage_response(bool move_axes, bool turn_off_nozzle)
  242. {
  243. bool response = false;
  244. mmu_print_saved = false;
  245. bool lcd_update_was_enabled = false;
  246. float hotend_temp_bckp = degTargetHotend(active_extruder);
  247. float z_position_bckp = current_position[Z_AXIS];
  248. float x_position_bckp = current_position[X_AXIS];
  249. float y_position_bckp = current_position[Y_AXIS];
  250. while(!response)
  251. {
  252. response = mmu_get_response(); //wait for "ok" from mmu
  253. if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
  254. if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
  255. if (lcd_update_enabled) {
  256. lcd_update_was_enabled = true;
  257. lcd_update_enable(false);
  258. }
  259. st_synchronize();
  260. mmu_print_saved = true;
  261. hotend_temp_bckp = degTargetHotend(active_extruder);
  262. if (move_axes) {
  263. z_position_bckp = current_position[Z_AXIS];
  264. x_position_bckp = current_position[X_AXIS];
  265. y_position_bckp = current_position[Y_AXIS];
  266. //lift z
  267. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  268. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  269. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  270. st_synchronize();
  271. //Move XY to side
  272. current_position[X_AXIS] = X_PAUSE_POS;
  273. current_position[Y_AXIS] = Y_PAUSE_POS;
  274. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  275. st_synchronize();
  276. }
  277. if (turn_off_nozzle) {
  278. //set nozzle target temperature to 0
  279. setAllTargetHotends(0);
  280. printf_P(PSTR("MMU not responding\n"));
  281. lcd_show_fullscreen_message_and_wait_P(_i("MMU needs user attention. Please press knob to resume nozzle target temperature."));
  282. setTargetHotend(hotend_temp_bckp, active_extruder);
  283. while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5) {
  284. delay_keep_alive(1000);
  285. lcd_wait_for_heater();
  286. }
  287. }
  288. }
  289. lcd_display_message_fullscreen_P(_i("Check MMU. Fix the issue and then press button on MMU unit."));
  290. delay_keep_alive(1000);
  291. }
  292. else if (mmu_print_saved) {
  293. printf_P(PSTR("MMU start responding\n"));
  294. lcd_clear();
  295. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
  296. if (move_axes) {
  297. current_position[X_AXIS] = x_position_bckp;
  298. current_position[Y_AXIS] = y_position_bckp;
  299. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  300. st_synchronize();
  301. current_position[Z_AXIS] = z_position_bckp;
  302. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  303. st_synchronize();
  304. }
  305. else {
  306. delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
  307. }
  308. }
  309. }
  310. if (lcd_update_was_enabled) lcd_update_enable(true);
  311. }
  312. void mmu_load_to_nozzle()
  313. {
  314. st_synchronize();
  315. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  316. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  317. current_position[E_AXIS] += 7.2f;
  318. float feedrate = 562;
  319. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  320. st_synchronize();
  321. current_position[E_AXIS] += 14.4f;
  322. feedrate = 871;
  323. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  324. st_synchronize();
  325. current_position[E_AXIS] += 36.0f;
  326. feedrate = 1393;
  327. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  328. st_synchronize();
  329. current_position[E_AXIS] += 14.4f;
  330. feedrate = 871;
  331. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  332. st_synchronize();
  333. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  334. }
  335. void mmu_M600_load_filament(bool automatic)
  336. {
  337. //load filament for mmu v2
  338. bool response = false;
  339. bool yes = false;
  340. if (!automatic) {
  341. yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
  342. if(yes) tmp_extruder = choose_extruder_menu();
  343. else tmp_extruder = mmu_extruder;
  344. }
  345. else {
  346. tmp_extruder = (tmp_extruder+1)%5;
  347. }
  348. lcd_update_enable(false);
  349. lcd_clear();
  350. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  351. lcd_print(" ");
  352. lcd_print(tmp_extruder + 1);
  353. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  354. // printf_P(PSTR("T code: %d \n"), tmp_extruder);
  355. // mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
  356. mmu_command(MMU_CMD_T0 + tmp_extruder);
  357. manage_response(false, true);
  358. mmu_extruder = tmp_extruder; //filament change is finished
  359. mmu_load_to_nozzle();
  360. st_synchronize();
  361. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  362. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  363. }
  364. void extr_mov(float shift, float feed_rate)
  365. { //move extruder no matter what the current heater temperature is
  366. set_extrude_min_temp(.0);
  367. current_position[E_AXIS] += shift;
  368. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
  369. set_extrude_min_temp(EXTRUDE_MINTEMP);
  370. }
  371. void change_extr(int extr) { //switches multiplexer for extruders
  372. #ifdef SNMM
  373. st_synchronize();
  374. delay(100);
  375. disable_e0();
  376. disable_e1();
  377. disable_e2();
  378. mmu_extruder = extr;
  379. pinMode(E_MUX0_PIN, OUTPUT);
  380. pinMode(E_MUX1_PIN, OUTPUT);
  381. switch (extr) {
  382. case 1:
  383. WRITE(E_MUX0_PIN, HIGH);
  384. WRITE(E_MUX1_PIN, LOW);
  385. break;
  386. case 2:
  387. WRITE(E_MUX0_PIN, LOW);
  388. WRITE(E_MUX1_PIN, HIGH);
  389. break;
  390. case 3:
  391. WRITE(E_MUX0_PIN, HIGH);
  392. WRITE(E_MUX1_PIN, HIGH);
  393. break;
  394. default:
  395. WRITE(E_MUX0_PIN, LOW);
  396. WRITE(E_MUX1_PIN, LOW);
  397. break;
  398. }
  399. delay(100);
  400. #endif
  401. }
  402. int get_ext_nr()
  403. { //reads multiplexer input pins and return current extruder number (counted from 0)
  404. #ifndef SNMM
  405. return(mmu_extruder); //update needed
  406. #else
  407. return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
  408. #endif
  409. }
  410. void display_loading()
  411. {
  412. switch (mmu_extruder)
  413. {
  414. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  415. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  416. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  417. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  418. }
  419. }
  420. void extr_adj(int extruder) //loading filament for SNMM
  421. {
  422. #ifndef SNMM
  423. printf_P(PSTR("L%d \n"),extruder);
  424. fprintf_P(uart2io, PSTR("L%d\n"), extruder);
  425. //show which filament is currently loaded
  426. lcd_update_enable(false);
  427. lcd_clear();
  428. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  429. //if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
  430. //else lcd.print(" ");
  431. lcd_print(" ");
  432. lcd_print(mmu_extruder + 1);
  433. // get response
  434. manage_response(false, false);
  435. lcd_update_enable(true);
  436. //lcd_return_to_status();
  437. #else
  438. bool correct;
  439. max_feedrate[E_AXIS] =80;
  440. //max_feedrate[E_AXIS] = 50;
  441. START:
  442. lcd_clear();
  443. lcd_set_cursor(0, 0);
  444. switch (extruder) {
  445. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  446. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  447. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  448. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  449. }
  450. KEEPALIVE_STATE(PAUSED_FOR_USER);
  451. do{
  452. extr_mov(0.001,1000);
  453. delay_keep_alive(2);
  454. } while (!lcd_clicked());
  455. //delay_keep_alive(500);
  456. KEEPALIVE_STATE(IN_HANDLER);
  457. st_synchronize();
  458. //correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
  459. //if (!correct) goto START;
  460. //extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
  461. //extr_mov(BOWDEN_LENGTH/2.f, 500);
  462. extr_mov(bowden_length[extruder], 500);
  463. lcd_clear();
  464. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  465. if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
  466. else lcd_print(" ");
  467. lcd_print(mmu_extruder + 1);
  468. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  469. st_synchronize();
  470. max_feedrate[E_AXIS] = 50;
  471. lcd_update_enable(true);
  472. lcd_return_to_status();
  473. lcdDrawUpdate = 2;
  474. #endif
  475. }
  476. void extr_unload()
  477. { //unload just current filament for multimaterial printers
  478. #ifdef SNMM
  479. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  480. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  481. uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  482. #endif
  483. if (degHotend0() > EXTRUDE_MINTEMP)
  484. {
  485. #ifndef SNMM
  486. st_synchronize();
  487. //show which filament is currently unloaded
  488. lcd_update_enable(false);
  489. lcd_clear();
  490. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  491. lcd_print(" ");
  492. lcd_print(mmu_extruder + 1);
  493. current_position[E_AXIS] -= 80;
  494. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  495. st_synchronize();
  496. printf_P(PSTR("U0\n"));
  497. fprintf_P(uart2io, PSTR("U0\n"));
  498. // get response
  499. manage_response(false, true);
  500. lcd_update_enable(true);
  501. #else //SNMM
  502. lcd_clear();
  503. lcd_display_message_fullscreen_P(PSTR(""));
  504. max_feedrate[E_AXIS] = 50;
  505. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  506. lcd_print(" ");
  507. lcd_print(mmu_extruder + 1);
  508. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  509. if (current_position[Z_AXIS] < 15) {
  510. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  511. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  512. }
  513. current_position[E_AXIS] += 10; //extrusion
  514. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  515. st_current_set(2, E_MOTOR_HIGH_CURRENT);
  516. if (current_temperature[0] < 230) { //PLA & all other filaments
  517. current_position[E_AXIS] += 5.4;
  518. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  519. current_position[E_AXIS] += 3.2;
  520. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  521. current_position[E_AXIS] += 3;
  522. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  523. }
  524. else { //ABS
  525. current_position[E_AXIS] += 3.1;
  526. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  527. current_position[E_AXIS] += 3.1;
  528. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  529. current_position[E_AXIS] += 4;
  530. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  531. /*current_position[X_AXIS] += 23; //delay
  532. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  533. current_position[X_AXIS] -= 23; //delay
  534. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  535. delay_keep_alive(4700);
  536. }
  537. max_feedrate[E_AXIS] = 80;
  538. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  539. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  540. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  541. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  542. st_synchronize();
  543. //st_current_init();
  544. if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
  545. else st_current_set(2, tmp_motor_loud[2]);
  546. lcd_update_enable(true);
  547. lcd_return_to_status();
  548. max_feedrate[E_AXIS] = 50;
  549. #endif //SNMM
  550. }
  551. else
  552. {
  553. lcd_clear();
  554. lcd_set_cursor(0, 0);
  555. lcd_puts_P(_T(MSG_ERROR));
  556. lcd_set_cursor(0, 2);
  557. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  558. delay(2000);
  559. lcd_clear();
  560. }
  561. //lcd_return_to_status();
  562. }
  563. //wrapper functions for loading filament
  564. void extr_adj_0()
  565. {
  566. #ifndef SNMM
  567. enquecommand_P(PSTR("M701 E0"));
  568. #else
  569. change_extr(0);
  570. extr_adj(0);
  571. #endif
  572. }
  573. void extr_adj_1()
  574. {
  575. #ifndef SNMM
  576. enquecommand_P(PSTR("M701 E1"));
  577. #else
  578. change_extr(1);
  579. extr_adj(1);
  580. #endif
  581. }
  582. void extr_adj_2()
  583. {
  584. #ifndef SNMM
  585. enquecommand_P(PSTR("M701 E2"));
  586. #else
  587. change_extr(2);
  588. extr_adj(2);
  589. #endif
  590. }
  591. void extr_adj_3()
  592. {
  593. #ifndef SNMM
  594. enquecommand_P(PSTR("M701 E3"));
  595. #else
  596. change_extr(3);
  597. extr_adj(3);
  598. #endif
  599. }
  600. void extr_adj_4()
  601. {
  602. #ifndef SNMM
  603. enquecommand_P(PSTR("M701 E4"));
  604. #else
  605. change_extr(4);
  606. extr_adj(4);
  607. #endif
  608. }
  609. void load_all()
  610. {
  611. #ifndef SNMM
  612. enquecommand_P(PSTR("M701 E0"));
  613. enquecommand_P(PSTR("M701 E1"));
  614. enquecommand_P(PSTR("M701 E2"));
  615. enquecommand_P(PSTR("M701 E3"));
  616. enquecommand_P(PSTR("M701 E4"));
  617. #else
  618. for (int i = 0; i < 4; i++)
  619. {
  620. change_extr(i);
  621. extr_adj(i);
  622. }
  623. #endif
  624. }
  625. //wrapper functions for changing extruders
  626. void extr_change_0()
  627. {
  628. change_extr(0);
  629. lcd_return_to_status();
  630. }
  631. void extr_change_1()
  632. {
  633. change_extr(1);
  634. lcd_return_to_status();
  635. }
  636. void extr_change_2()
  637. {
  638. change_extr(2);
  639. lcd_return_to_status();
  640. }
  641. void extr_change_3()
  642. {
  643. change_extr(3);
  644. lcd_return_to_status();
  645. }
  646. //wrapper functions for unloading filament
  647. void extr_unload_all()
  648. {
  649. if (degHotend0() > EXTRUDE_MINTEMP)
  650. {
  651. for (int i = 0; i < 4; i++)
  652. {
  653. change_extr(i);
  654. extr_unload();
  655. }
  656. }
  657. else
  658. {
  659. lcd_clear();
  660. lcd_set_cursor(0, 0);
  661. lcd_puts_P(_T(MSG_ERROR));
  662. lcd_set_cursor(0, 2);
  663. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  664. delay(2000);
  665. lcd_clear();
  666. lcd_return_to_status();
  667. }
  668. }
  669. //unloading just used filament (for snmm)
  670. void extr_unload_used()
  671. {
  672. if (degHotend0() > EXTRUDE_MINTEMP) {
  673. for (int i = 0; i < 4; i++) {
  674. if (snmm_filaments_used & (1 << i)) {
  675. change_extr(i);
  676. extr_unload();
  677. }
  678. }
  679. snmm_filaments_used = 0;
  680. }
  681. else {
  682. lcd_clear();
  683. lcd_set_cursor(0, 0);
  684. lcd_puts_P(_T(MSG_ERROR));
  685. lcd_set_cursor(0, 2);
  686. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  687. delay(2000);
  688. lcd_clear();
  689. lcd_return_to_status();
  690. }
  691. }
  692. void extr_unload_0()
  693. {
  694. change_extr(0);
  695. extr_unload();
  696. }
  697. void extr_unload_1()
  698. {
  699. change_extr(1);
  700. extr_unload();
  701. }
  702. void extr_unload_2()
  703. {
  704. change_extr(2);
  705. extr_unload();
  706. }
  707. void extr_unload_3()
  708. {
  709. change_extr(3);
  710. extr_unload();
  711. }
  712. void extr_unload_4()
  713. {
  714. change_extr(4);
  715. extr_unload();
  716. }