Marlin_main.cpp 213 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. //#include "spline.h"
  48. #ifdef BLINKM
  49. #include "BlinkM.h"
  50. #include "Wire.h"
  51. #endif
  52. #ifdef ULTRALCD
  53. #include "ultralcd.h"
  54. #endif
  55. #if NUM_SERVOS > 0
  56. #include "Servo.h"
  57. #endif
  58. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  59. #include <SPI.h>
  60. #endif
  61. #define VERSION_STRING "1.0.2"
  62. #include "ultralcd.h"
  63. // Macros for bit masks
  64. #define BIT(b) (1<<(b))
  65. #define TEST(n,b) (((n)&BIT(b))!=0)
  66. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  67. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  68. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  69. //Implemented Codes
  70. //-------------------
  71. // PRUSA CODES
  72. // P F - Returns FW versions
  73. // P R - Returns revision of printer
  74. // P Y - Starts filament allignment process for multicolor
  75. // G0 -> G1
  76. // G1 - Coordinated Movement X Y Z E
  77. // G2 - CW ARC
  78. // G3 - CCW ARC
  79. // G4 - Dwell S<seconds> or P<milliseconds>
  80. // G10 - retract filament according to settings of M207
  81. // G11 - retract recover filament according to settings of M208
  82. // G28 - Home all Axis
  83. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  84. // G30 - Single Z Probe, probes bed at current XY location.
  85. // G31 - Dock sled (Z_PROBE_SLED only)
  86. // G32 - Undock sled (Z_PROBE_SLED only)
  87. // G80 - Automatic mesh bed leveling
  88. // G81 - Print bed profile
  89. // G90 - Use Absolute Coordinates
  90. // G91 - Use Relative Coordinates
  91. // G92 - Set current position to coordinates given
  92. // M Codes
  93. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  94. // M1 - Same as M0
  95. // M17 - Enable/Power all stepper motors
  96. // M18 - Disable all stepper motors; same as M84
  97. // M20 - List SD card
  98. // M21 - Init SD card
  99. // M22 - Release SD card
  100. // M23 - Select SD file (M23 filename.g)
  101. // M24 - Start/resume SD print
  102. // M25 - Pause SD print
  103. // M26 - Set SD position in bytes (M26 S12345)
  104. // M27 - Report SD print status
  105. // M28 - Start SD write (M28 filename.g)
  106. // M29 - Stop SD write
  107. // M30 - Delete file from SD (M30 filename.g)
  108. // M31 - Output time since last M109 or SD card start to serial
  109. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  110. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  111. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  112. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  113. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  114. // M80 - Turn on Power Supply
  115. // M81 - Turn off Power Supply
  116. // M82 - Set E codes absolute (default)
  117. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  118. // M84 - Disable steppers until next move,
  119. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  120. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  121. // M92 - Set axis_steps_per_unit - same syntax as G92
  122. // M104 - Set extruder target temp
  123. // M105 - Read current temp
  124. // M106 - Fan on
  125. // M107 - Fan off
  126. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  127. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  128. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  129. // M112 - Emergency stop
  130. // M114 - Output current position to serial port
  131. // M115 - Capabilities string
  132. // M117 - display message
  133. // M119 - Output Endstop status to serial port
  134. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  135. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  136. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  138. // M140 - Set bed target temp
  139. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  140. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  141. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  142. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  143. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  144. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  145. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  146. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  147. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  148. // M206 - set additional homing offset
  149. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  150. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  151. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  152. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  153. // M220 S<factor in percent>- set speed factor override percentage
  154. // M221 S<factor in percent>- set extrude factor override percentage
  155. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  156. // M240 - Trigger a camera to take a photograph
  157. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  158. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  159. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  160. // M301 - Set PID parameters P I and D
  161. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  162. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  163. // M304 - Set bed PID parameters P I and D
  164. // M400 - Finish all moves
  165. // M401 - Lower z-probe if present
  166. // M402 - Raise z-probe if present
  167. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  168. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  169. // M406 - Turn off Filament Sensor extrusion control
  170. // M407 - Displays measured filament diameter
  171. // M500 - stores parameters in EEPROM
  172. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  173. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  174. // M503 - print the current settings (from memory not from EEPROM)
  175. // M509 - force language selection on next restart
  176. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  177. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  178. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  179. // M907 - Set digital trimpot motor current using axis codes.
  180. // M908 - Control digital trimpot directly.
  181. // M350 - Set microstepping mode.
  182. // M351 - Toggle MS1 MS2 pins directly.
  183. // M928 - Start SD logging (M928 filename.g) - ended by M29
  184. // M999 - Restart after being stopped by error
  185. //Stepper Movement Variables
  186. //===========================================================================
  187. //=============================imported variables============================
  188. //===========================================================================
  189. //===========================================================================
  190. //=============================public variables=============================
  191. //===========================================================================
  192. #ifdef SDSUPPORT
  193. CardReader card;
  194. #endif
  195. unsigned long TimeSent = millis();
  196. unsigned long TimeNow = millis();
  197. union Data
  198. {
  199. byte b[2];
  200. int value;
  201. };
  202. float homing_feedrate[] = HOMING_FEEDRATE;
  203. // Currently only the extruder axis may be switched to a relative mode.
  204. // Other axes are always absolute or relative based on the common relative_mode flag.
  205. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  206. int feedmultiply=100; //100->1 200->2
  207. int saved_feedmultiply;
  208. int extrudemultiply=100; //100->1 200->2
  209. int extruder_multiply[EXTRUDERS] = {100
  210. #if EXTRUDERS > 1
  211. , 100
  212. #if EXTRUDERS > 2
  213. , 100
  214. #endif
  215. #endif
  216. };
  217. bool is_usb_printing = false;
  218. bool homing_flag = false;
  219. unsigned long kicktime = millis()+100000;
  220. unsigned int usb_printing_counter;
  221. int lcd_change_fil_state = 0;
  222. int feedmultiplyBckp = 100;
  223. unsigned char lang_selected = 0;
  224. bool prusa_sd_card_upload = false;
  225. unsigned long total_filament_used;
  226. unsigned int heating_status;
  227. unsigned int heating_status_counter;
  228. bool custom_message;
  229. bool loading_flag = false;
  230. unsigned int custom_message_type;
  231. unsigned int custom_message_state;
  232. bool volumetric_enabled = false;
  233. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  234. #if EXTRUDERS > 1
  235. , DEFAULT_NOMINAL_FILAMENT_DIA
  236. #if EXTRUDERS > 2
  237. , DEFAULT_NOMINAL_FILAMENT_DIA
  238. #endif
  239. #endif
  240. };
  241. float volumetric_multiplier[EXTRUDERS] = {1.0
  242. #if EXTRUDERS > 1
  243. , 1.0
  244. #if EXTRUDERS > 2
  245. , 1.0
  246. #endif
  247. #endif
  248. };
  249. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  250. float add_homing[3]={0,0,0};
  251. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  252. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  253. bool axis_known_position[3] = {false, false, false};
  254. float zprobe_zoffset;
  255. // Extruder offset
  256. #if EXTRUDERS > 1
  257. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  258. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  259. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  260. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  261. #endif
  262. };
  263. #endif
  264. uint8_t active_extruder = 0;
  265. int fanSpeed=0;
  266. #ifdef FWRETRACT
  267. bool autoretract_enabled=false;
  268. bool retracted[EXTRUDERS]={false
  269. #if EXTRUDERS > 1
  270. , false
  271. #if EXTRUDERS > 2
  272. , false
  273. #endif
  274. #endif
  275. };
  276. bool retracted_swap[EXTRUDERS]={false
  277. #if EXTRUDERS > 1
  278. , false
  279. #if EXTRUDERS > 2
  280. , false
  281. #endif
  282. #endif
  283. };
  284. float retract_length = RETRACT_LENGTH;
  285. float retract_length_swap = RETRACT_LENGTH_SWAP;
  286. float retract_feedrate = RETRACT_FEEDRATE;
  287. float retract_zlift = RETRACT_ZLIFT;
  288. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  289. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  290. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  291. #endif
  292. #ifdef ULTIPANEL
  293. #ifdef PS_DEFAULT_OFF
  294. bool powersupply = false;
  295. #else
  296. bool powersupply = true;
  297. #endif
  298. #endif
  299. bool cancel_heatup = false ;
  300. #ifdef FILAMENT_SENSOR
  301. //Variables for Filament Sensor input
  302. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  303. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  304. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  305. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  306. int delay_index1=0; //index into ring buffer
  307. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  308. float delay_dist=0; //delay distance counter
  309. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  310. #endif
  311. const char errormagic[] PROGMEM = "Error:";
  312. const char echomagic[] PROGMEM = "echo:";
  313. //===========================================================================
  314. //=============================Private Variables=============================
  315. //===========================================================================
  316. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  317. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  318. static float delta[3] = {0.0, 0.0, 0.0};
  319. // For tracing an arc
  320. static float offset[3] = {0.0, 0.0, 0.0};
  321. static bool home_all_axis = true;
  322. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  323. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  324. // Determines Absolute or Relative Coordinates.
  325. // Also there is bool axis_relative_modes[] per axis flag.
  326. static bool relative_mode = false;
  327. // String circular buffer. Commands may be pushed to the buffer from both sides:
  328. // Chained commands will be pushed to the front, interactive (from LCD menu)
  329. // and printing commands (from serial line or from SD card) are pushed to the tail.
  330. // First character of each entry indicates the type of the entry:
  331. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  332. // Command in cmdbuffer was sent over USB.
  333. #define CMDBUFFER_CURRENT_TYPE_USB 1
  334. // Command in cmdbuffer was read from SDCARD.
  335. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  336. // Command in cmdbuffer was generated by the UI.
  337. #define CMDBUFFER_CURRENT_TYPE_UI 3
  338. // Command in cmdbuffer was generated by another G-code.
  339. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  340. // How much space to reserve for the chained commands
  341. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  342. // which are pushed to the front of the queue?
  343. // Maximum 5 commands of max length 20 + null terminator.
  344. #define CMDBUFFER_RESERVE_FRONT (5*21)
  345. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  346. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  347. // Head of the circular buffer, where to read.
  348. static int bufindr = 0;
  349. // Tail of the buffer, where to write.
  350. static int bufindw = 0;
  351. // Number of lines in cmdbuffer.
  352. static int buflen = 0;
  353. // Flag for processing the current command inside the main Arduino loop().
  354. // If a new command was pushed to the front of a command buffer while
  355. // processing another command, this replaces the command on the top.
  356. // Therefore don't remove the command from the queue in the loop() function.
  357. static bool cmdbuffer_front_already_processed = false;
  358. // Type of a command, which is to be executed right now.
  359. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  360. // String of a command, which is to be executed right now.
  361. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  362. // Enable debugging of the command buffer.
  363. // Debugging information will be sent to serial line.
  364. // #define CMDBUFFER_DEBUG
  365. static int serial_count = 0;
  366. static boolean comment_mode = false;
  367. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  368. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  369. //static float tt = 0;
  370. //static float bt = 0;
  371. //Inactivity shutdown variables
  372. static unsigned long previous_millis_cmd = 0;
  373. unsigned long max_inactive_time = 0;
  374. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  375. unsigned long starttime=0;
  376. unsigned long stoptime=0;
  377. unsigned long _usb_timer = 0;
  378. static uint8_t tmp_extruder;
  379. bool Stopped=false;
  380. #if NUM_SERVOS > 0
  381. Servo servos[NUM_SERVOS];
  382. #endif
  383. bool CooldownNoWait = true;
  384. bool target_direction;
  385. //Insert variables if CHDK is defined
  386. #ifdef CHDK
  387. unsigned long chdkHigh = 0;
  388. boolean chdkActive = false;
  389. #endif
  390. //===========================================================================
  391. //=============================Routines======================================
  392. //===========================================================================
  393. void get_arc_coordinates();
  394. bool setTargetedHotend(int code);
  395. void serial_echopair_P(const char *s_P, float v)
  396. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  397. void serial_echopair_P(const char *s_P, double v)
  398. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  399. void serial_echopair_P(const char *s_P, unsigned long v)
  400. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  401. #ifdef SDSUPPORT
  402. #include "SdFatUtil.h"
  403. int freeMemory() { return SdFatUtil::FreeRam(); }
  404. #else
  405. extern "C" {
  406. extern unsigned int __bss_end;
  407. extern unsigned int __heap_start;
  408. extern void *__brkval;
  409. int freeMemory() {
  410. int free_memory;
  411. if ((int)__brkval == 0)
  412. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  413. else
  414. free_memory = ((int)&free_memory) - ((int)__brkval);
  415. return free_memory;
  416. }
  417. }
  418. #endif //!SDSUPPORT
  419. // Pop the currently processed command from the queue.
  420. // It is expected, that there is at least one command in the queue.
  421. bool cmdqueue_pop_front()
  422. {
  423. if (buflen > 0) {
  424. #ifdef CMDBUFFER_DEBUG
  425. SERIAL_ECHOPGM("Dequeing ");
  426. SERIAL_ECHO(cmdbuffer+bufindr+1);
  427. SERIAL_ECHOLNPGM("");
  428. SERIAL_ECHOPGM("Old indices: buflen ");
  429. SERIAL_ECHO(buflen);
  430. SERIAL_ECHOPGM(", bufindr ");
  431. SERIAL_ECHO(bufindr);
  432. SERIAL_ECHOPGM(", bufindw ");
  433. SERIAL_ECHO(bufindw);
  434. SERIAL_ECHOPGM(", serial_count ");
  435. SERIAL_ECHO(serial_count);
  436. SERIAL_ECHOPGM(", bufsize ");
  437. SERIAL_ECHO(sizeof(cmdbuffer));
  438. SERIAL_ECHOLNPGM("");
  439. #endif /* CMDBUFFER_DEBUG */
  440. if (-- buflen == 0) {
  441. // Empty buffer.
  442. if (serial_count == 0)
  443. // No serial communication is pending. Reset both pointers to zero.
  444. bufindw = 0;
  445. bufindr = bufindw;
  446. } else {
  447. // There is at least one ready line in the buffer.
  448. // First skip the current command ID and iterate up to the end of the string.
  449. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  450. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  451. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  452. // If the end of the buffer was empty,
  453. if (bufindr == sizeof(cmdbuffer)) {
  454. // skip to the start and find the nonzero command.
  455. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  456. }
  457. #ifdef CMDBUFFER_DEBUG
  458. SERIAL_ECHOPGM("New indices: buflen ");
  459. SERIAL_ECHO(buflen);
  460. SERIAL_ECHOPGM(", bufindr ");
  461. SERIAL_ECHO(bufindr);
  462. SERIAL_ECHOPGM(", bufindw ");
  463. SERIAL_ECHO(bufindw);
  464. SERIAL_ECHOPGM(", serial_count ");
  465. SERIAL_ECHO(serial_count);
  466. SERIAL_ECHOPGM(" new command on the top: ");
  467. SERIAL_ECHO(cmdbuffer+bufindr+1);
  468. SERIAL_ECHOLNPGM("");
  469. #endif /* CMDBUFFER_DEBUG */
  470. }
  471. return true;
  472. }
  473. return false;
  474. }
  475. void cmdqueue_reset()
  476. {
  477. while (cmdqueue_pop_front()) ;
  478. }
  479. // How long a string could be pushed to the front of the command queue?
  480. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  481. // len_asked does not contain the zero terminator size.
  482. bool cmdqueue_could_enqueue_front(int len_asked)
  483. {
  484. // MAX_CMD_SIZE has to accommodate the zero terminator.
  485. if (len_asked >= MAX_CMD_SIZE)
  486. return false;
  487. // Remove the currently processed command from the queue.
  488. if (! cmdbuffer_front_already_processed) {
  489. cmdqueue_pop_front();
  490. cmdbuffer_front_already_processed = true;
  491. }
  492. if (bufindr == bufindw && buflen > 0)
  493. // Full buffer.
  494. return false;
  495. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  496. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  497. if (bufindw < bufindr) {
  498. int bufindr_new = bufindr - len_asked - 2;
  499. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  500. if (endw <= bufindr_new) {
  501. bufindr = bufindr_new;
  502. return true;
  503. }
  504. } else {
  505. // Otherwise the free space is split between the start and end.
  506. if (len_asked + 2 <= bufindr) {
  507. // Could fit at the start.
  508. bufindr -= len_asked + 2;
  509. return true;
  510. }
  511. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  512. if (endw <= bufindr_new) {
  513. memset(cmdbuffer, 0, bufindr);
  514. bufindr = bufindr_new;
  515. return true;
  516. }
  517. }
  518. return false;
  519. }
  520. // Could one enqueue a command of lenthg len_asked into the buffer,
  521. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  522. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  523. // len_asked does not contain the zero terminator size.
  524. bool cmdqueue_could_enqueue_back(int len_asked)
  525. {
  526. // MAX_CMD_SIZE has to accommodate the zero terminator.
  527. if (len_asked >= MAX_CMD_SIZE)
  528. return false;
  529. if (bufindr == bufindw && buflen > 0)
  530. // Full buffer.
  531. return false;
  532. if (serial_count > 0) {
  533. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  534. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  535. // serial data.
  536. // How much memory to reserve for the commands pushed to the front?
  537. // End of the queue, when pushing to the end.
  538. int endw = bufindw + len_asked + 2;
  539. if (bufindw < bufindr)
  540. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  541. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  542. // Otherwise the free space is split between the start and end.
  543. if (// Could one fit to the end, including the reserve?
  544. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  545. // Could one fit to the end, and the reserve to the start?
  546. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  547. return true;
  548. // Could one fit both to the start?
  549. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  550. // Mark the rest of the buffer as used.
  551. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  552. // and point to the start.
  553. bufindw = 0;
  554. return true;
  555. }
  556. } else {
  557. // How much memory to reserve for the commands pushed to the front?
  558. // End of the queue, when pushing to the end.
  559. int endw = bufindw + len_asked + 2;
  560. if (bufindw < bufindr)
  561. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  562. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  563. // Otherwise the free space is split between the start and end.
  564. if (// Could one fit to the end, including the reserve?
  565. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  566. // Could one fit to the end, and the reserve to the start?
  567. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  568. return true;
  569. // Could one fit both to the start?
  570. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  571. // Mark the rest of the buffer as used.
  572. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  573. // and point to the start.
  574. bufindw = 0;
  575. return true;
  576. }
  577. }
  578. return false;
  579. }
  580. #ifdef CMDBUFFER_DEBUG
  581. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  582. {
  583. SERIAL_ECHOPGM("Entry nr: ");
  584. SERIAL_ECHO(nr);
  585. SERIAL_ECHOPGM(", type: ");
  586. SERIAL_ECHO(int(*p));
  587. SERIAL_ECHOPGM(", cmd: ");
  588. SERIAL_ECHO(p+1);
  589. SERIAL_ECHOLNPGM("");
  590. }
  591. static void cmdqueue_dump_to_serial()
  592. {
  593. if (buflen == 0) {
  594. SERIAL_ECHOLNPGM("The command buffer is empty.");
  595. } else {
  596. SERIAL_ECHOPGM("Content of the buffer: entries ");
  597. SERIAL_ECHO(buflen);
  598. SERIAL_ECHOPGM(", indr ");
  599. SERIAL_ECHO(bufindr);
  600. SERIAL_ECHOPGM(", indw ");
  601. SERIAL_ECHO(bufindw);
  602. SERIAL_ECHOLNPGM("");
  603. int nr = 0;
  604. if (bufindr < bufindw) {
  605. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  606. cmdqueue_dump_to_serial_single_line(nr, p);
  607. // Skip the command.
  608. for (++p; *p != 0; ++ p);
  609. // Skip the gaps.
  610. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  611. }
  612. } else {
  613. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  614. cmdqueue_dump_to_serial_single_line(nr, p);
  615. // Skip the command.
  616. for (++p; *p != 0; ++ p);
  617. // Skip the gaps.
  618. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  619. }
  620. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  621. cmdqueue_dump_to_serial_single_line(nr, p);
  622. // Skip the command.
  623. for (++p; *p != 0; ++ p);
  624. // Skip the gaps.
  625. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  626. }
  627. }
  628. SERIAL_ECHOLNPGM("End of the buffer.");
  629. }
  630. }
  631. #endif /* CMDBUFFER_DEBUG */
  632. //adds an command to the main command buffer
  633. //thats really done in a non-safe way.
  634. //needs overworking someday
  635. // Currently the maximum length of a command piped through this function is around 20 characters
  636. void enquecommand(const char *cmd, bool from_progmem)
  637. {
  638. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  639. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  640. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  641. if (cmdqueue_could_enqueue_back(len)) {
  642. // This is dangerous if a mixing of serial and this happens
  643. // This may easily be tested: If serial_count > 0, we have a problem.
  644. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  645. if (from_progmem)
  646. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  647. else
  648. strcpy(cmdbuffer + bufindw + 1, cmd);
  649. SERIAL_ECHO_START;
  650. SERIAL_ECHORPGM(MSG_Enqueing);
  651. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  652. SERIAL_ECHOLNPGM("\"");
  653. bufindw += len + 2;
  654. if (bufindw == sizeof(cmdbuffer))
  655. bufindw = 0;
  656. ++ buflen;
  657. #ifdef CMDBUFFER_DEBUG
  658. cmdqueue_dump_to_serial();
  659. #endif /* CMDBUFFER_DEBUG */
  660. } else {
  661. SERIAL_ERROR_START;
  662. SERIAL_ECHORPGM(MSG_Enqueing);
  663. if (from_progmem)
  664. SERIAL_PROTOCOLRPGM(cmd);
  665. else
  666. SERIAL_ECHO(cmd);
  667. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  668. #ifdef CMDBUFFER_DEBUG
  669. cmdqueue_dump_to_serial();
  670. #endif /* CMDBUFFER_DEBUG */
  671. }
  672. }
  673. void enquecommand_front(const char *cmd, bool from_progmem)
  674. {
  675. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  676. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  677. if (cmdqueue_could_enqueue_front(len)) {
  678. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  679. if (from_progmem)
  680. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  681. else
  682. strcpy(cmdbuffer + bufindr + 1, cmd);
  683. ++ buflen;
  684. SERIAL_ECHO_START;
  685. SERIAL_ECHOPGM("Enqueing to the front: \"");
  686. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  687. SERIAL_ECHOLNPGM("\"");
  688. #ifdef CMDBUFFER_DEBUG
  689. cmdqueue_dump_to_serial();
  690. #endif /* CMDBUFFER_DEBUG */
  691. } else {
  692. SERIAL_ERROR_START;
  693. SERIAL_ECHOPGM("Enqueing to the front: \"");
  694. if (from_progmem)
  695. SERIAL_PROTOCOLRPGM(cmd);
  696. else
  697. SERIAL_ECHO(cmd);
  698. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  699. #ifdef CMDBUFFER_DEBUG
  700. cmdqueue_dump_to_serial();
  701. #endif /* CMDBUFFER_DEBUG */
  702. }
  703. }
  704. // Mark the command at the top of the command queue as new.
  705. // Therefore it will not be removed from the queue.
  706. void repeatcommand_front()
  707. {
  708. cmdbuffer_front_already_processed = true;
  709. }
  710. void setup_killpin()
  711. {
  712. #if defined(KILL_PIN) && KILL_PIN > -1
  713. SET_INPUT(KILL_PIN);
  714. WRITE(KILL_PIN,HIGH);
  715. #endif
  716. }
  717. // Set home pin
  718. void setup_homepin(void)
  719. {
  720. #if defined(HOME_PIN) && HOME_PIN > -1
  721. SET_INPUT(HOME_PIN);
  722. WRITE(HOME_PIN,HIGH);
  723. #endif
  724. }
  725. void setup_photpin()
  726. {
  727. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  728. SET_OUTPUT(PHOTOGRAPH_PIN);
  729. WRITE(PHOTOGRAPH_PIN, LOW);
  730. #endif
  731. }
  732. void setup_powerhold()
  733. {
  734. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  735. SET_OUTPUT(SUICIDE_PIN);
  736. WRITE(SUICIDE_PIN, HIGH);
  737. #endif
  738. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  739. SET_OUTPUT(PS_ON_PIN);
  740. #if defined(PS_DEFAULT_OFF)
  741. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  742. #else
  743. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  744. #endif
  745. #endif
  746. }
  747. void suicide()
  748. {
  749. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  750. SET_OUTPUT(SUICIDE_PIN);
  751. WRITE(SUICIDE_PIN, LOW);
  752. #endif
  753. }
  754. void servo_init()
  755. {
  756. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  757. servos[0].attach(SERVO0_PIN);
  758. #endif
  759. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  760. servos[1].attach(SERVO1_PIN);
  761. #endif
  762. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  763. servos[2].attach(SERVO2_PIN);
  764. #endif
  765. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  766. servos[3].attach(SERVO3_PIN);
  767. #endif
  768. #if (NUM_SERVOS >= 5)
  769. #error "TODO: enter initalisation code for more servos"
  770. #endif
  771. }
  772. static void lcd_language_menu();
  773. #ifdef MESH_BED_LEVELING
  774. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  775. #endif
  776. // Factory reset function
  777. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  778. // Level input parameter sets depth of reset
  779. // Quiet parameter masks all waitings for user interact.
  780. int er_progress = 0;
  781. void factory_reset(char level, bool quiet)
  782. {
  783. lcd_implementation_clear();
  784. switch (level) {
  785. // Level 0: Language reset
  786. case 0:
  787. WRITE(BEEPER, HIGH);
  788. _delay_ms(100);
  789. WRITE(BEEPER, LOW);
  790. lcd_force_language_selection();
  791. break;
  792. //Level 1: Reset statistics
  793. case 1:
  794. WRITE(BEEPER, HIGH);
  795. _delay_ms(100);
  796. WRITE(BEEPER, LOW);
  797. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  798. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  799. lcd_menu_statistics();
  800. break;
  801. // Level 2: Prepare for shipping
  802. case 2:
  803. //lcd_printPGM(PSTR("Factory RESET"));
  804. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  805. // Force language selection at the next boot up.
  806. lcd_force_language_selection();
  807. // Force the "Follow calibration flow" message at the next boot up.
  808. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  809. farm_no = 0;
  810. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  811. farm_mode = false;
  812. WRITE(BEEPER, HIGH);
  813. _delay_ms(100);
  814. WRITE(BEEPER, LOW);
  815. //_delay_ms(2000);
  816. break;
  817. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  818. case 3:
  819. lcd_printPGM(PSTR("Factory RESET"));
  820. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  821. WRITE(BEEPER, HIGH);
  822. _delay_ms(100);
  823. WRITE(BEEPER, LOW);
  824. er_progress = 0;
  825. lcd_print_at_PGM(3, 3, PSTR(" "));
  826. lcd_implementation_print_at(3, 3, er_progress);
  827. // Erase EEPROM
  828. for (int i = 0; i < 4096; i++) {
  829. eeprom_write_byte((uint8_t*)i, 0xFF);
  830. if (i % 41 == 0) {
  831. er_progress++;
  832. lcd_print_at_PGM(3, 3, PSTR(" "));
  833. lcd_implementation_print_at(3, 3, er_progress);
  834. lcd_printPGM(PSTR("%"));
  835. }
  836. }
  837. break;
  838. default:
  839. break;
  840. }
  841. }
  842. // "Setup" function is called by the Arduino framework on startup.
  843. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  844. // are initialized by the main() routine provided by the Arduino framework.
  845. void setup()
  846. {
  847. setup_killpin();
  848. setup_powerhold();
  849. MYSERIAL.begin(BAUDRATE);
  850. SERIAL_PROTOCOLLNPGM("start");
  851. SERIAL_ECHO_START;
  852. #if 0
  853. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  854. for (int i = 0; i < 4096; ++ i) {
  855. int b = eeprom_read_byte((unsigned char*)i);
  856. if (b != 255) {
  857. SERIAL_ECHO(i);
  858. SERIAL_ECHO(":");
  859. SERIAL_ECHO(b);
  860. SERIAL_ECHOLN("");
  861. }
  862. }
  863. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  864. #endif
  865. // Check startup - does nothing if bootloader sets MCUSR to 0
  866. byte mcu = MCUSR;
  867. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  868. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  869. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  870. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  871. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  872. MCUSR=0;
  873. //SERIAL_ECHORPGM(MSG_MARLIN);
  874. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  875. #ifdef STRING_VERSION_CONFIG_H
  876. #ifdef STRING_CONFIG_H_AUTHOR
  877. SERIAL_ECHO_START;
  878. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  879. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  880. SERIAL_ECHORPGM(MSG_AUTHOR);
  881. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  882. SERIAL_ECHOPGM("Compiled: ");
  883. SERIAL_ECHOLNPGM(__DATE__);
  884. #endif
  885. #endif
  886. SERIAL_ECHO_START;
  887. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  888. SERIAL_ECHO(freeMemory());
  889. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  890. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  891. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  892. Config_RetrieveSettings();
  893. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  894. tp_init(); // Initialize temperature loop
  895. plan_init(); // Initialize planner;
  896. watchdog_init();
  897. st_init(); // Initialize stepper, this enables interrupts!
  898. setup_photpin();
  899. servo_init();
  900. // Reset the machine correction matrix.
  901. // It does not make sense to load the correction matrix until the machine is homed.
  902. world2machine_reset();
  903. lcd_init();
  904. if (!READ(BTN_ENC))
  905. {
  906. _delay_ms(1000);
  907. if (!READ(BTN_ENC))
  908. {
  909. lcd_implementation_clear();
  910. lcd_printPGM(PSTR("Factory RESET"));
  911. SET_OUTPUT(BEEPER);
  912. WRITE(BEEPER, HIGH);
  913. while (!READ(BTN_ENC));
  914. WRITE(BEEPER, LOW);
  915. _delay_ms(2000);
  916. char level = reset_menu();
  917. factory_reset(level, false);
  918. switch (level) {
  919. case 0: _delay_ms(0); break;
  920. case 1: _delay_ms(0); break;
  921. case 2: _delay_ms(0); break;
  922. case 3: _delay_ms(0); break;
  923. }
  924. // _delay_ms(100);
  925. /*
  926. #ifdef MESH_BED_LEVELING
  927. _delay_ms(2000);
  928. if (!READ(BTN_ENC))
  929. {
  930. WRITE(BEEPER, HIGH);
  931. _delay_ms(100);
  932. WRITE(BEEPER, LOW);
  933. _delay_ms(200);
  934. WRITE(BEEPER, HIGH);
  935. _delay_ms(100);
  936. WRITE(BEEPER, LOW);
  937. int _z = 0;
  938. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  939. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  940. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  941. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  942. }
  943. else
  944. {
  945. WRITE(BEEPER, HIGH);
  946. _delay_ms(100);
  947. WRITE(BEEPER, LOW);
  948. }
  949. #endif // mesh */
  950. }
  951. }
  952. else
  953. {
  954. _delay_ms(1000); // wait 1sec to display the splash screen
  955. }
  956. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  957. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  958. #endif
  959. #ifdef DIGIPOT_I2C
  960. digipot_i2c_init();
  961. #endif
  962. setup_homepin();
  963. #if defined(Z_AXIS_ALWAYS_ON)
  964. enable_z();
  965. #endif
  966. EEPROM_read_B(EEPROM_FARM_MODE, &farm_no);
  967. if (farm_no > 0)
  968. {
  969. farm_mode = true;
  970. farm_no = farm_no;
  971. prusa_statistics(8);
  972. }
  973. else
  974. {
  975. farm_mode = false;
  976. farm_no = 0;
  977. }
  978. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  979. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  980. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  981. // but this times out if a blocking dialog is shown in setup().
  982. card.initsd();
  983. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP-4)) == 0x0ffffffff &&
  984. eeprom_read_dword((uint32_t*)(EEPROM_TOP-8)) == 0x0ffffffff &&
  985. eeprom_read_dword((uint32_t*)(EEPROM_TOP-12)) == 0x0ffffffff) {
  986. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  987. // where all the EEPROM entries are set to 0x0ff.
  988. // Once a firmware boots up, it forces at least a language selection, which changes
  989. // EEPROM_LANG to number lower than 0x0ff.
  990. // 1) Set a high power mode.
  991. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  992. }
  993. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  994. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  995. // is being written into the EEPROM, so the update procedure will be triggered only once.
  996. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  997. if (lang_selected >= LANG_NUM){
  998. lcd_mylang();
  999. }
  1000. check_babystep(); //checking if Z babystep is in allowed range
  1001. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1002. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1003. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1004. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1005. // Show the message.
  1006. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1007. lcd_update_enable(true);
  1008. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1009. // Show the message.
  1010. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1011. lcd_update_enable(true);
  1012. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1013. // Show the message.
  1014. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1015. lcd_update_enable(true);
  1016. }
  1017. // Store the currently running firmware into an eeprom,
  1018. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1019. update_current_firmware_version_to_eeprom();
  1020. }
  1021. void trace();
  1022. #define CHUNK_SIZE 64 // bytes
  1023. #define SAFETY_MARGIN 1
  1024. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1025. int chunkHead = 0;
  1026. int serial_read_stream() {
  1027. setTargetHotend(0, 0);
  1028. setTargetBed(0);
  1029. lcd_implementation_clear();
  1030. lcd_printPGM(PSTR(" Upload in progress"));
  1031. // first wait for how many bytes we will receive
  1032. uint32_t bytesToReceive;
  1033. // receive the four bytes
  1034. char bytesToReceiveBuffer[4];
  1035. for (int i=0; i<4; i++) {
  1036. int data;
  1037. while ((data = MYSERIAL.read()) == -1) {};
  1038. bytesToReceiveBuffer[i] = data;
  1039. }
  1040. // make it a uint32
  1041. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1042. // we're ready, notify the sender
  1043. MYSERIAL.write('+');
  1044. // lock in the routine
  1045. uint32_t receivedBytes = 0;
  1046. while (prusa_sd_card_upload) {
  1047. int i;
  1048. for (i=0; i<CHUNK_SIZE; i++) {
  1049. int data;
  1050. // check if we're not done
  1051. if (receivedBytes == bytesToReceive) {
  1052. break;
  1053. }
  1054. // read the next byte
  1055. while ((data = MYSERIAL.read()) == -1) {};
  1056. receivedBytes++;
  1057. // save it to the chunk
  1058. chunk[i] = data;
  1059. }
  1060. // write the chunk to SD
  1061. card.write_command_no_newline(&chunk[0]);
  1062. // notify the sender we're ready for more data
  1063. MYSERIAL.write('+');
  1064. // for safety
  1065. manage_heater();
  1066. // check if we're done
  1067. if(receivedBytes == bytesToReceive) {
  1068. trace(); // beep
  1069. card.closefile();
  1070. prusa_sd_card_upload = false;
  1071. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1072. return 0;
  1073. }
  1074. }
  1075. }
  1076. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1077. // Before loop(), the setup() function is called by the main() routine.
  1078. void loop()
  1079. {
  1080. bool stack_integrity = true;
  1081. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1082. {
  1083. is_usb_printing = true;
  1084. usb_printing_counter--;
  1085. _usb_timer = millis();
  1086. }
  1087. if (usb_printing_counter == 0)
  1088. {
  1089. is_usb_printing = false;
  1090. }
  1091. if (prusa_sd_card_upload)
  1092. {
  1093. //we read byte-by byte
  1094. serial_read_stream();
  1095. } else
  1096. {
  1097. get_command();
  1098. #ifdef SDSUPPORT
  1099. card.checkautostart(false);
  1100. #endif
  1101. if(buflen)
  1102. {
  1103. #ifdef SDSUPPORT
  1104. if(card.saving)
  1105. {
  1106. // Saving a G-code file onto an SD-card is in progress.
  1107. // Saving starts with M28, saving until M29 is seen.
  1108. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1109. card.write_command(CMDBUFFER_CURRENT_STRING);
  1110. if(card.logging)
  1111. process_commands();
  1112. else
  1113. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1114. } else {
  1115. card.closefile();
  1116. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1117. }
  1118. } else {
  1119. process_commands();
  1120. }
  1121. #else
  1122. process_commands();
  1123. #endif //SDSUPPORT
  1124. if (! cmdbuffer_front_already_processed)
  1125. cmdqueue_pop_front();
  1126. cmdbuffer_front_already_processed = false;
  1127. }
  1128. }
  1129. //check heater every n milliseconds
  1130. manage_heater();
  1131. manage_inactivity();
  1132. checkHitEndstops();
  1133. lcd_update();
  1134. }
  1135. void get_command()
  1136. {
  1137. // Test and reserve space for the new command string.
  1138. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1139. return;
  1140. while (MYSERIAL.available() > 0) {
  1141. char serial_char = MYSERIAL.read();
  1142. TimeSent = millis();
  1143. TimeNow = millis();
  1144. if (serial_char < 0)
  1145. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1146. // and Marlin does not support such file names anyway.
  1147. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1148. // to a hang-up of the print process from an SD card.
  1149. continue;
  1150. if(serial_char == '\n' ||
  1151. serial_char == '\r' ||
  1152. (serial_char == ':' && comment_mode == false) ||
  1153. serial_count >= (MAX_CMD_SIZE - 1) )
  1154. {
  1155. if(!serial_count) { //if empty line
  1156. comment_mode = false; //for new command
  1157. return;
  1158. }
  1159. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1160. if(!comment_mode){
  1161. comment_mode = false; //for new command
  1162. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1163. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1164. {
  1165. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1166. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1167. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1168. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1169. // M110 - set current line number.
  1170. // Line numbers not sent in succession.
  1171. SERIAL_ERROR_START;
  1172. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1173. SERIAL_ERRORLN(gcode_LastN);
  1174. //Serial.println(gcode_N);
  1175. FlushSerialRequestResend();
  1176. serial_count = 0;
  1177. return;
  1178. }
  1179. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1180. {
  1181. byte checksum = 0;
  1182. char *p = cmdbuffer+bufindw+1;
  1183. while (p != strchr_pointer)
  1184. checksum = checksum^(*p++);
  1185. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1186. SERIAL_ERROR_START;
  1187. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1188. SERIAL_ERRORLN(gcode_LastN);
  1189. FlushSerialRequestResend();
  1190. serial_count = 0;
  1191. return;
  1192. }
  1193. // If no errors, remove the checksum and continue parsing.
  1194. *strchr_pointer = 0;
  1195. }
  1196. else
  1197. {
  1198. SERIAL_ERROR_START;
  1199. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1200. SERIAL_ERRORLN(gcode_LastN);
  1201. FlushSerialRequestResend();
  1202. serial_count = 0;
  1203. return;
  1204. }
  1205. gcode_LastN = gcode_N;
  1206. //if no errors, continue parsing
  1207. } // end of 'N' command
  1208. }
  1209. else // if we don't receive 'N' but still see '*'
  1210. {
  1211. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1212. {
  1213. SERIAL_ERROR_START;
  1214. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1215. SERIAL_ERRORLN(gcode_LastN);
  1216. serial_count = 0;
  1217. return;
  1218. }
  1219. } // end of '*' command
  1220. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1221. if (! IS_SD_PRINTING) {
  1222. usb_printing_counter = 10;
  1223. is_usb_printing = true;
  1224. }
  1225. if (Stopped == true) {
  1226. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1227. if (gcode >= 0 && gcode <= 3) {
  1228. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1229. LCD_MESSAGERPGM(MSG_STOPPED);
  1230. }
  1231. }
  1232. } // end of 'G' command
  1233. //If command was e-stop process now
  1234. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1235. kill();
  1236. // Store the current line into buffer, move to the next line.
  1237. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1238. #ifdef CMDBUFFER_DEBUG
  1239. SERIAL_ECHO_START;
  1240. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1241. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1242. SERIAL_ECHOLNPGM("");
  1243. #endif /* CMDBUFFER_DEBUG */
  1244. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1245. if (bufindw == sizeof(cmdbuffer))
  1246. bufindw = 0;
  1247. ++ buflen;
  1248. #ifdef CMDBUFFER_DEBUG
  1249. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1250. SERIAL_ECHO(buflen);
  1251. SERIAL_ECHOLNPGM("");
  1252. #endif /* CMDBUFFER_DEBUG */
  1253. } // end of 'not comment mode'
  1254. serial_count = 0; //clear buffer
  1255. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1256. // in the queue, as this function will reserve the memory.
  1257. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1258. return;
  1259. } // end of "end of line" processing
  1260. else {
  1261. // Not an "end of line" symbol. Store the new character into a buffer.
  1262. if(serial_char == ';') comment_mode = true;
  1263. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1264. }
  1265. } // end of serial line processing loop
  1266. if(farm_mode){
  1267. TimeNow = millis();
  1268. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1269. cmdbuffer[bufindw+serial_count+1] = 0;
  1270. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1271. if (bufindw == sizeof(cmdbuffer))
  1272. bufindw = 0;
  1273. ++ buflen;
  1274. serial_count = 0;
  1275. SERIAL_ECHOPGM("TIMEOUT:");
  1276. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1277. return;
  1278. }
  1279. }
  1280. #ifdef SDSUPPORT
  1281. if(!card.sdprinting || serial_count!=0){
  1282. // If there is a half filled buffer from serial line, wait until return before
  1283. // continuing with the serial line.
  1284. return;
  1285. }
  1286. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1287. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1288. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1289. static bool stop_buffering=false;
  1290. if(buflen==0) stop_buffering=false;
  1291. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1292. while( !card.eof() && !stop_buffering) {
  1293. int16_t n=card.get();
  1294. char serial_char = (char)n;
  1295. if(serial_char == '\n' ||
  1296. serial_char == '\r' ||
  1297. (serial_char == '#' && comment_mode == false) ||
  1298. (serial_char == ':' && comment_mode == false) ||
  1299. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1300. {
  1301. if(card.eof()){
  1302. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1303. stoptime=millis();
  1304. char time[30];
  1305. unsigned long t=(stoptime-starttime)/1000;
  1306. int hours, minutes;
  1307. minutes=(t/60)%60;
  1308. hours=t/60/60;
  1309. save_statistics(total_filament_used, t);
  1310. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1311. SERIAL_ECHO_START;
  1312. SERIAL_ECHOLN(time);
  1313. lcd_setstatus(time);
  1314. card.printingHasFinished();
  1315. card.checkautostart(true);
  1316. if (farm_mode)
  1317. {
  1318. prusa_statistics(6);
  1319. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1320. }
  1321. }
  1322. if(serial_char=='#')
  1323. stop_buffering=true;
  1324. if(!serial_count)
  1325. {
  1326. comment_mode = false; //for new command
  1327. return; //if empty line
  1328. }
  1329. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1330. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1331. ++ buflen;
  1332. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1333. if (bufindw == sizeof(cmdbuffer))
  1334. bufindw = 0;
  1335. comment_mode = false; //for new command
  1336. serial_count = 0; //clear buffer
  1337. // The following line will reserve buffer space if available.
  1338. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1339. return;
  1340. }
  1341. else
  1342. {
  1343. if(serial_char == ';') comment_mode = true;
  1344. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1345. }
  1346. }
  1347. #endif //SDSUPPORT
  1348. }
  1349. // Return True if a character was found
  1350. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1351. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1352. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1353. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1354. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1355. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1356. #define DEFINE_PGM_READ_ANY(type, reader) \
  1357. static inline type pgm_read_any(const type *p) \
  1358. { return pgm_read_##reader##_near(p); }
  1359. DEFINE_PGM_READ_ANY(float, float);
  1360. DEFINE_PGM_READ_ANY(signed char, byte);
  1361. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1362. static const PROGMEM type array##_P[3] = \
  1363. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1364. static inline type array(int axis) \
  1365. { return pgm_read_any(&array##_P[axis]); } \
  1366. type array##_ext(int axis) \
  1367. { return pgm_read_any(&array##_P[axis]); }
  1368. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1369. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1370. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1371. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1372. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1373. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1374. static void axis_is_at_home(int axis) {
  1375. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1376. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1377. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1378. }
  1379. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1380. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1381. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1382. saved_feedrate = feedrate;
  1383. saved_feedmultiply = feedmultiply;
  1384. feedmultiply = 100;
  1385. previous_millis_cmd = millis();
  1386. enable_endstops(enable_endstops_now);
  1387. }
  1388. static void clean_up_after_endstop_move() {
  1389. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1390. enable_endstops(false);
  1391. #endif
  1392. feedrate = saved_feedrate;
  1393. feedmultiply = saved_feedmultiply;
  1394. previous_millis_cmd = millis();
  1395. }
  1396. #ifdef ENABLE_AUTO_BED_LEVELING
  1397. #ifdef AUTO_BED_LEVELING_GRID
  1398. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1399. {
  1400. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1401. planeNormal.debug("planeNormal");
  1402. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1403. //bedLevel.debug("bedLevel");
  1404. //plan_bed_level_matrix.debug("bed level before");
  1405. //vector_3 uncorrected_position = plan_get_position_mm();
  1406. //uncorrected_position.debug("position before");
  1407. vector_3 corrected_position = plan_get_position();
  1408. // corrected_position.debug("position after");
  1409. current_position[X_AXIS] = corrected_position.x;
  1410. current_position[Y_AXIS] = corrected_position.y;
  1411. current_position[Z_AXIS] = corrected_position.z;
  1412. // put the bed at 0 so we don't go below it.
  1413. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1414. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1415. }
  1416. #else // not AUTO_BED_LEVELING_GRID
  1417. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1418. plan_bed_level_matrix.set_to_identity();
  1419. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1420. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1421. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1422. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1423. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1424. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1425. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1426. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1427. vector_3 corrected_position = plan_get_position();
  1428. current_position[X_AXIS] = corrected_position.x;
  1429. current_position[Y_AXIS] = corrected_position.y;
  1430. current_position[Z_AXIS] = corrected_position.z;
  1431. // put the bed at 0 so we don't go below it.
  1432. current_position[Z_AXIS] = zprobe_zoffset;
  1433. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1434. }
  1435. #endif // AUTO_BED_LEVELING_GRID
  1436. static void run_z_probe() {
  1437. plan_bed_level_matrix.set_to_identity();
  1438. feedrate = homing_feedrate[Z_AXIS];
  1439. // move down until you find the bed
  1440. float zPosition = -10;
  1441. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1442. st_synchronize();
  1443. // we have to let the planner know where we are right now as it is not where we said to go.
  1444. zPosition = st_get_position_mm(Z_AXIS);
  1445. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1446. // move up the retract distance
  1447. zPosition += home_retract_mm(Z_AXIS);
  1448. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1449. st_synchronize();
  1450. // move back down slowly to find bed
  1451. feedrate = homing_feedrate[Z_AXIS]/4;
  1452. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1453. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1454. st_synchronize();
  1455. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1456. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1457. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1458. }
  1459. static void do_blocking_move_to(float x, float y, float z) {
  1460. float oldFeedRate = feedrate;
  1461. feedrate = homing_feedrate[Z_AXIS];
  1462. current_position[Z_AXIS] = z;
  1463. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1464. st_synchronize();
  1465. feedrate = XY_TRAVEL_SPEED;
  1466. current_position[X_AXIS] = x;
  1467. current_position[Y_AXIS] = y;
  1468. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1469. st_synchronize();
  1470. feedrate = oldFeedRate;
  1471. }
  1472. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1473. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1474. }
  1475. /// Probe bed height at position (x,y), returns the measured z value
  1476. static float probe_pt(float x, float y, float z_before) {
  1477. // move to right place
  1478. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1479. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1480. run_z_probe();
  1481. float measured_z = current_position[Z_AXIS];
  1482. SERIAL_PROTOCOLRPGM(MSG_BED);
  1483. SERIAL_PROTOCOLPGM(" x: ");
  1484. SERIAL_PROTOCOL(x);
  1485. SERIAL_PROTOCOLPGM(" y: ");
  1486. SERIAL_PROTOCOL(y);
  1487. SERIAL_PROTOCOLPGM(" z: ");
  1488. SERIAL_PROTOCOL(measured_z);
  1489. SERIAL_PROTOCOLPGM("\n");
  1490. return measured_z;
  1491. }
  1492. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1493. void homeaxis(int axis) {
  1494. #define HOMEAXIS_DO(LETTER) \
  1495. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1496. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1497. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1498. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1499. 0) {
  1500. int axis_home_dir = home_dir(axis);
  1501. current_position[axis] = 0;
  1502. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1503. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1504. feedrate = homing_feedrate[axis];
  1505. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1506. st_synchronize();
  1507. current_position[axis] = 0;
  1508. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1509. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1510. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1511. st_synchronize();
  1512. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1513. feedrate = homing_feedrate[axis]/2 ;
  1514. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1515. st_synchronize();
  1516. axis_is_at_home(axis);
  1517. destination[axis] = current_position[axis];
  1518. feedrate = 0.0;
  1519. endstops_hit_on_purpose();
  1520. axis_known_position[axis] = true;
  1521. }
  1522. }
  1523. void home_xy()
  1524. {
  1525. set_destination_to_current();
  1526. homeaxis(X_AXIS);
  1527. homeaxis(Y_AXIS);
  1528. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1529. endstops_hit_on_purpose();
  1530. }
  1531. void refresh_cmd_timeout(void)
  1532. {
  1533. previous_millis_cmd = millis();
  1534. }
  1535. #ifdef FWRETRACT
  1536. void retract(bool retracting, bool swapretract = false) {
  1537. if(retracting && !retracted[active_extruder]) {
  1538. destination[X_AXIS]=current_position[X_AXIS];
  1539. destination[Y_AXIS]=current_position[Y_AXIS];
  1540. destination[Z_AXIS]=current_position[Z_AXIS];
  1541. destination[E_AXIS]=current_position[E_AXIS];
  1542. if (swapretract) {
  1543. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1544. } else {
  1545. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1546. }
  1547. plan_set_e_position(current_position[E_AXIS]);
  1548. float oldFeedrate = feedrate;
  1549. feedrate=retract_feedrate*60;
  1550. retracted[active_extruder]=true;
  1551. prepare_move();
  1552. current_position[Z_AXIS]-=retract_zlift;
  1553. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1554. prepare_move();
  1555. feedrate = oldFeedrate;
  1556. } else if(!retracting && retracted[active_extruder]) {
  1557. destination[X_AXIS]=current_position[X_AXIS];
  1558. destination[Y_AXIS]=current_position[Y_AXIS];
  1559. destination[Z_AXIS]=current_position[Z_AXIS];
  1560. destination[E_AXIS]=current_position[E_AXIS];
  1561. current_position[Z_AXIS]+=retract_zlift;
  1562. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1563. //prepare_move();
  1564. if (swapretract) {
  1565. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1566. } else {
  1567. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1568. }
  1569. plan_set_e_position(current_position[E_AXIS]);
  1570. float oldFeedrate = feedrate;
  1571. feedrate=retract_recover_feedrate*60;
  1572. retracted[active_extruder]=false;
  1573. prepare_move();
  1574. feedrate = oldFeedrate;
  1575. }
  1576. } //retract
  1577. #endif //FWRETRACT
  1578. void trace() {
  1579. tone(BEEPER, 440);
  1580. delay(25);
  1581. noTone(BEEPER);
  1582. delay(20);
  1583. }
  1584. void ramming() {
  1585. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1586. if (current_temperature[0] < 230) {
  1587. //PLA
  1588. max_feedrate[E_AXIS] = 50;
  1589. //current_position[E_AXIS] -= 8;
  1590. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1591. //current_position[E_AXIS] += 8;
  1592. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1593. current_position[E_AXIS] += 5.4;
  1594. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1595. current_position[E_AXIS] += 3.2;
  1596. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1597. current_position[E_AXIS] += 3;
  1598. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1599. st_synchronize();
  1600. max_feedrate[E_AXIS] = 80;
  1601. current_position[E_AXIS] -= 82;
  1602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1603. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1604. current_position[E_AXIS] -= 20;
  1605. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1606. current_position[E_AXIS] += 5;
  1607. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1608. current_position[E_AXIS] += 5;
  1609. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1610. current_position[E_AXIS] -= 10;
  1611. st_synchronize();
  1612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1613. current_position[E_AXIS] += 10;
  1614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1615. current_position[E_AXIS] -= 10;
  1616. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1617. current_position[E_AXIS] += 10;
  1618. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1619. current_position[E_AXIS] -= 10;
  1620. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1621. st_synchronize();
  1622. }
  1623. else {
  1624. //ABS
  1625. max_feedrate[E_AXIS] = 50;
  1626. //current_position[E_AXIS] -= 8;
  1627. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1628. //current_position[E_AXIS] += 8;
  1629. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1630. current_position[E_AXIS] += 3.1;
  1631. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1632. current_position[E_AXIS] += 3.1;
  1633. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1634. current_position[E_AXIS] += 4;
  1635. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1636. st_synchronize();
  1637. /*current_position[X_AXIS] += 23; //delay
  1638. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1639. current_position[X_AXIS] -= 23; //delay
  1640. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay*/
  1641. delay(4700);
  1642. max_feedrate[E_AXIS] = 80;
  1643. current_position[E_AXIS] -= 92;
  1644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1645. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1646. current_position[E_AXIS] -= 5;
  1647. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1648. current_position[E_AXIS] += 5;
  1649. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1650. current_position[E_AXIS] -= 5;
  1651. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1652. st_synchronize();
  1653. current_position[E_AXIS] += 5;
  1654. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1655. current_position[E_AXIS] -= 5;
  1656. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1657. current_position[E_AXIS] += 5;
  1658. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1659. current_position[E_AXIS] -= 5;
  1660. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1661. st_synchronize();
  1662. }
  1663. }
  1664. void process_commands()
  1665. {
  1666. #ifdef FILAMENT_RUNOUT_SUPPORT
  1667. SET_INPUT(FR_SENS);
  1668. #endif
  1669. #ifdef CMDBUFFER_DEBUG
  1670. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1671. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1672. SERIAL_ECHOLNPGM("");
  1673. SERIAL_ECHOPGM("In cmdqueue: ");
  1674. SERIAL_ECHO(buflen);
  1675. SERIAL_ECHOLNPGM("");
  1676. #endif /* CMDBUFFER_DEBUG */
  1677. unsigned long codenum; //throw away variable
  1678. char *starpos = NULL;
  1679. #ifdef ENABLE_AUTO_BED_LEVELING
  1680. float x_tmp, y_tmp, z_tmp, real_z;
  1681. #endif
  1682. // PRUSA GCODES
  1683. #ifdef SNMM
  1684. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1685. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1686. int8_t SilentMode;
  1687. #endif
  1688. if(code_seen("PRUSA")){
  1689. if (code_seen("fn")) {
  1690. if (farm_mode) {
  1691. MYSERIAL.println(farm_no);
  1692. }
  1693. else {
  1694. MYSERIAL.println("Not in farm mode.");
  1695. }
  1696. }else if (code_seen("fv")) {
  1697. // get file version
  1698. #ifdef SDSUPPORT
  1699. card.openFile(strchr_pointer + 3,true);
  1700. while (true) {
  1701. uint16_t readByte = card.get();
  1702. MYSERIAL.write(readByte);
  1703. if (readByte=='\n') {
  1704. break;
  1705. }
  1706. }
  1707. card.closefile();
  1708. #endif // SDSUPPORT
  1709. } else if (code_seen("M28")) {
  1710. trace();
  1711. prusa_sd_card_upload = true;
  1712. card.openFile(strchr_pointer+4,false);
  1713. } else if(code_seen("Fir")){
  1714. SERIAL_PROTOCOLLN(FW_version);
  1715. } else if(code_seen("Rev")){
  1716. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1717. } else if(code_seen("Lang")) {
  1718. lcd_force_language_selection();
  1719. } else if(code_seen("Lz")) {
  1720. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1721. } else if (code_seen("SERIAL LOW")) {
  1722. MYSERIAL.println("SERIAL LOW");
  1723. MYSERIAL.begin(BAUDRATE);
  1724. return;
  1725. } else if (code_seen("SERIAL HIGH")) {
  1726. MYSERIAL.println("SERIAL HIGH");
  1727. MYSERIAL.begin(1152000);
  1728. return;
  1729. } else if(code_seen("Beat")) {
  1730. // Kick farm link timer
  1731. kicktime = millis();
  1732. } else if(code_seen("FR")) {
  1733. // Factory full reset
  1734. factory_reset(0,true);
  1735. }else if(code_seen("Y")) { //filaments adjustment at the beginning of print (for SNMM)
  1736. #ifdef SNMM
  1737. int extr;
  1738. SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT); //is silent mode or loud mode set
  1739. lcd_implementation_clear();
  1740. lcd_display_message_fullscreen_P(MSG_FIL_ADJUSTING);
  1741. current_position[Z_AXIS] = 100;
  1742. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1743. digipot_current(2, E_MOTOR_HIGH_CURRENT);
  1744. for (extr = 1; extr < 4; extr++) { //we dont know which filament is in nozzle, but we want to load filament0, so all other filaments must unloaded
  1745. change_extr(extr);
  1746. ramming();
  1747. }
  1748. change_extr(0);
  1749. current_position[E_AXIS] += FIL_LOAD_LENGTH; //loading filament0 into the nozzle
  1750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1751. st_synchronize();
  1752. for (extr = 1; extr < 4; extr++) {
  1753. digipot_current(2, E_MOTOR_LOW_CURRENT); //set lower current for extruder motors
  1754. change_extr(extr);
  1755. current_position[E_AXIS] += (FIL_LOAD_LENGTH + 3 * FIL_RETURN_LENGTH); //adjusting filaments
  1756. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  1757. st_synchronize();
  1758. digipot_current(2, tmp_motor_loud[2]); //set back to normal operation currents
  1759. current_position[E_AXIS] -= FIL_RETURN_LENGTH;
  1760. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1761. st_synchronize();
  1762. }
  1763. change_extr(0);
  1764. current_position[E_AXIS] += 25;
  1765. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  1766. digipot_current(2, E_MOTOR_HIGH_CURRENT);
  1767. ramming();
  1768. if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  1769. else digipot_current(2, tmp_motor_loud[2]);
  1770. st_synchronize();
  1771. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN_FIL_ADJ);
  1772. lcd_implementation_clear();
  1773. lcd_printPGM(MSG_PLEASE_WAIT);
  1774. current_position[Z_AXIS] = 0;
  1775. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  1776. st_synchronize();
  1777. lcd_update_enable(true);
  1778. #endif
  1779. }
  1780. else if (code_seen("SetF")) {
  1781. #ifdef SNMM
  1782. bool not_finished = (eeprom_read_byte((unsigned char*)EEPROM_PRINT_FLAG) != PRINT_FINISHED);
  1783. eeprom_update_byte((unsigned char*)EEPROM_PRINT_FLAG, PRINT_STARTED);
  1784. if (not_finished) enquecommand_front_P(PSTR("PRUSA Y"));
  1785. #endif
  1786. }
  1787. else if (code_seen("ResF")) {
  1788. #ifdef SNMM
  1789. eeprom_update_byte((unsigned char*)EEPROM_PRINT_FLAG, PRINT_FINISHED);
  1790. #endif
  1791. }
  1792. //else if (code_seen('Cal')) {
  1793. // lcd_calibration();
  1794. // }
  1795. }
  1796. else if (code_seen('^')) {
  1797. // nothing, this is a version line
  1798. } else if(code_seen('G'))
  1799. {
  1800. switch((int)code_value())
  1801. {
  1802. case 0: // G0 -> G1
  1803. case 1: // G1
  1804. if(Stopped == false) {
  1805. #ifdef FILAMENT_RUNOUT_SUPPORT
  1806. if(READ(FR_SENS)){
  1807. feedmultiplyBckp=feedmultiply;
  1808. float target[4];
  1809. float lastpos[4];
  1810. target[X_AXIS]=current_position[X_AXIS];
  1811. target[Y_AXIS]=current_position[Y_AXIS];
  1812. target[Z_AXIS]=current_position[Z_AXIS];
  1813. target[E_AXIS]=current_position[E_AXIS];
  1814. lastpos[X_AXIS]=current_position[X_AXIS];
  1815. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1816. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1817. lastpos[E_AXIS]=current_position[E_AXIS];
  1818. //retract by E
  1819. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1820. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1821. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1822. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1823. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1824. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1825. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1826. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1827. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1828. //finish moves
  1829. st_synchronize();
  1830. //disable extruder steppers so filament can be removed
  1831. disable_e0();
  1832. disable_e1();
  1833. disable_e2();
  1834. delay(100);
  1835. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1836. uint8_t cnt=0;
  1837. int counterBeep = 0;
  1838. lcd_wait_interact();
  1839. while(!lcd_clicked()){
  1840. cnt++;
  1841. manage_heater();
  1842. manage_inactivity(true);
  1843. //lcd_update();
  1844. if(cnt==0)
  1845. {
  1846. #if BEEPER > 0
  1847. if (counterBeep== 500){
  1848. counterBeep = 0;
  1849. }
  1850. SET_OUTPUT(BEEPER);
  1851. if (counterBeep== 0){
  1852. WRITE(BEEPER,HIGH);
  1853. }
  1854. if (counterBeep== 20){
  1855. WRITE(BEEPER,LOW);
  1856. }
  1857. counterBeep++;
  1858. #else
  1859. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1860. lcd_buzz(1000/6,100);
  1861. #else
  1862. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1863. #endif
  1864. #endif
  1865. }
  1866. }
  1867. WRITE(BEEPER,LOW);
  1868. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1869. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1870. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1871. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1872. lcd_change_fil_state = 0;
  1873. lcd_loading_filament();
  1874. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1875. lcd_change_fil_state = 0;
  1876. lcd_alright();
  1877. switch(lcd_change_fil_state){
  1878. case 2:
  1879. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1880. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1881. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1882. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1883. lcd_loading_filament();
  1884. break;
  1885. case 3:
  1886. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1887. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1888. lcd_loading_color();
  1889. break;
  1890. default:
  1891. lcd_change_success();
  1892. break;
  1893. }
  1894. }
  1895. target[E_AXIS]+= 5;
  1896. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1897. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1898. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1899. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1900. //plan_set_e_position(current_position[E_AXIS]);
  1901. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1902. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1903. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1904. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1905. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1906. plan_set_e_position(lastpos[E_AXIS]);
  1907. feedmultiply=feedmultiplyBckp;
  1908. char cmd[9];
  1909. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1910. enquecommand(cmd);
  1911. }
  1912. #endif
  1913. get_coordinates(); // For X Y Z E F
  1914. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1915. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1916. }
  1917. #ifdef FWRETRACT
  1918. if(autoretract_enabled)
  1919. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1920. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1921. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1922. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1923. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1924. retract(!retracted);
  1925. return;
  1926. }
  1927. }
  1928. #endif //FWRETRACT
  1929. prepare_move();
  1930. //ClearToSend();
  1931. }
  1932. break;
  1933. case 2: // G2 - CW ARC
  1934. if(Stopped == false) {
  1935. get_arc_coordinates();
  1936. prepare_arc_move(true);
  1937. }
  1938. break;
  1939. case 3: // G3 - CCW ARC
  1940. if(Stopped == false) {
  1941. get_arc_coordinates();
  1942. prepare_arc_move(false);
  1943. }
  1944. break;
  1945. case 4: // G4 dwell
  1946. LCD_MESSAGERPGM(MSG_DWELL);
  1947. codenum = 0;
  1948. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1949. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1950. st_synchronize();
  1951. codenum += millis(); // keep track of when we started waiting
  1952. previous_millis_cmd = millis();
  1953. while(millis() < codenum) {
  1954. manage_heater();
  1955. manage_inactivity();
  1956. lcd_update();
  1957. }
  1958. break;
  1959. #ifdef FWRETRACT
  1960. case 10: // G10 retract
  1961. #if EXTRUDERS > 1
  1962. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1963. retract(true,retracted_swap[active_extruder]);
  1964. #else
  1965. retract(true);
  1966. #endif
  1967. break;
  1968. case 11: // G11 retract_recover
  1969. #if EXTRUDERS > 1
  1970. retract(false,retracted_swap[active_extruder]);
  1971. #else
  1972. retract(false);
  1973. #endif
  1974. break;
  1975. #endif //FWRETRACT
  1976. case 28: //G28 Home all Axis one at a time
  1977. homing_flag = true;
  1978. #ifdef ENABLE_AUTO_BED_LEVELING
  1979. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1980. #endif //ENABLE_AUTO_BED_LEVELING
  1981. // For mesh bed leveling deactivate the matrix temporarily
  1982. #ifdef MESH_BED_LEVELING
  1983. mbl.active = 0;
  1984. #endif
  1985. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1986. // the planner will not perform any adjustments in the XY plane.
  1987. // Wait for the motors to stop and update the current position with the absolute values.
  1988. world2machine_revert_to_uncorrected();
  1989. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1990. // consumed during the first movements following this statement.
  1991. babystep_undo();
  1992. saved_feedrate = feedrate;
  1993. saved_feedmultiply = feedmultiply;
  1994. feedmultiply = 100;
  1995. previous_millis_cmd = millis();
  1996. enable_endstops(true);
  1997. for(int8_t i=0; i < NUM_AXIS; i++)
  1998. destination[i] = current_position[i];
  1999. feedrate = 0.0;
  2000. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2001. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2002. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2003. homeaxis(Z_AXIS);
  2004. }
  2005. #endif
  2006. #ifdef QUICK_HOME
  2007. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2008. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2009. {
  2010. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2011. int x_axis_home_dir = home_dir(X_AXIS);
  2012. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2013. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2014. feedrate = homing_feedrate[X_AXIS];
  2015. if(homing_feedrate[Y_AXIS]<feedrate)
  2016. feedrate = homing_feedrate[Y_AXIS];
  2017. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2018. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2019. } else {
  2020. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2021. }
  2022. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2023. st_synchronize();
  2024. axis_is_at_home(X_AXIS);
  2025. axis_is_at_home(Y_AXIS);
  2026. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2027. destination[X_AXIS] = current_position[X_AXIS];
  2028. destination[Y_AXIS] = current_position[Y_AXIS];
  2029. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2030. feedrate = 0.0;
  2031. st_synchronize();
  2032. endstops_hit_on_purpose();
  2033. current_position[X_AXIS] = destination[X_AXIS];
  2034. current_position[Y_AXIS] = destination[Y_AXIS];
  2035. current_position[Z_AXIS] = destination[Z_AXIS];
  2036. }
  2037. #endif /* QUICK_HOME */
  2038. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2039. homeaxis(X_AXIS);
  2040. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2041. homeaxis(Y_AXIS);
  2042. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2043. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2044. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2045. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2046. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2047. #ifndef Z_SAFE_HOMING
  2048. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2049. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2050. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2051. feedrate = max_feedrate[Z_AXIS];
  2052. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2053. st_synchronize();
  2054. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2055. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  2056. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2057. {
  2058. homeaxis(X_AXIS);
  2059. homeaxis(Y_AXIS);
  2060. }
  2061. // 1st mesh bed leveling measurement point, corrected.
  2062. world2machine_initialize();
  2063. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2064. world2machine_reset();
  2065. if (destination[Y_AXIS] < Y_MIN_POS)
  2066. destination[Y_AXIS] = Y_MIN_POS;
  2067. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2068. feedrate = homing_feedrate[Z_AXIS]/10;
  2069. current_position[Z_AXIS] = 0;
  2070. enable_endstops(false);
  2071. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2072. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2073. st_synchronize();
  2074. current_position[X_AXIS] = destination[X_AXIS];
  2075. current_position[Y_AXIS] = destination[Y_AXIS];
  2076. enable_endstops(true);
  2077. endstops_hit_on_purpose();
  2078. homeaxis(Z_AXIS);
  2079. #else // MESH_BED_LEVELING
  2080. homeaxis(Z_AXIS);
  2081. #endif // MESH_BED_LEVELING
  2082. }
  2083. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2084. if(home_all_axis) {
  2085. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2086. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2087. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2088. feedrate = XY_TRAVEL_SPEED/60;
  2089. current_position[Z_AXIS] = 0;
  2090. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2091. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2092. st_synchronize();
  2093. current_position[X_AXIS] = destination[X_AXIS];
  2094. current_position[Y_AXIS] = destination[Y_AXIS];
  2095. homeaxis(Z_AXIS);
  2096. }
  2097. // Let's see if X and Y are homed and probe is inside bed area.
  2098. if(code_seen(axis_codes[Z_AXIS])) {
  2099. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2100. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2101. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2102. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2103. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2104. current_position[Z_AXIS] = 0;
  2105. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2106. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2107. feedrate = max_feedrate[Z_AXIS];
  2108. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2109. st_synchronize();
  2110. homeaxis(Z_AXIS);
  2111. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2112. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2113. SERIAL_ECHO_START;
  2114. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2115. } else {
  2116. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2117. SERIAL_ECHO_START;
  2118. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2119. }
  2120. }
  2121. #endif // Z_SAFE_HOMING
  2122. #endif // Z_HOME_DIR < 0
  2123. if(code_seen(axis_codes[Z_AXIS])) {
  2124. if(code_value_long() != 0) {
  2125. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2126. }
  2127. }
  2128. #ifdef ENABLE_AUTO_BED_LEVELING
  2129. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2130. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2131. }
  2132. #endif
  2133. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2134. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2135. enable_endstops(false);
  2136. #endif
  2137. feedrate = saved_feedrate;
  2138. feedmultiply = saved_feedmultiply;
  2139. previous_millis_cmd = millis();
  2140. endstops_hit_on_purpose();
  2141. #ifndef MESH_BED_LEVELING
  2142. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2143. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2144. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2145. lcd_adjust_z();
  2146. #endif
  2147. // Load the machine correction matrix
  2148. world2machine_initialize();
  2149. // and correct the current_position to match the transformed coordinate system.
  2150. world2machine_update_current();
  2151. #ifdef MESH_BED_LEVELING
  2152. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2153. {
  2154. }
  2155. else
  2156. {
  2157. st_synchronize();
  2158. homing_flag = false;
  2159. // Push the commands to the front of the message queue in the reverse order!
  2160. // There shall be always enough space reserved for these commands.
  2161. // enquecommand_front_P((PSTR("G80")));
  2162. goto case_G80;
  2163. }
  2164. #endif
  2165. if (farm_mode) { prusa_statistics(20); };
  2166. homing_flag = false;
  2167. break;
  2168. #ifdef ENABLE_AUTO_BED_LEVELING
  2169. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2170. {
  2171. #if Z_MIN_PIN == -1
  2172. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2173. #endif
  2174. // Prevent user from running a G29 without first homing in X and Y
  2175. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2176. {
  2177. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2178. SERIAL_ECHO_START;
  2179. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2180. break; // abort G29, since we don't know where we are
  2181. }
  2182. st_synchronize();
  2183. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2184. //vector_3 corrected_position = plan_get_position_mm();
  2185. //corrected_position.debug("position before G29");
  2186. plan_bed_level_matrix.set_to_identity();
  2187. vector_3 uncorrected_position = plan_get_position();
  2188. //uncorrected_position.debug("position durring G29");
  2189. current_position[X_AXIS] = uncorrected_position.x;
  2190. current_position[Y_AXIS] = uncorrected_position.y;
  2191. current_position[Z_AXIS] = uncorrected_position.z;
  2192. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2193. setup_for_endstop_move();
  2194. feedrate = homing_feedrate[Z_AXIS];
  2195. #ifdef AUTO_BED_LEVELING_GRID
  2196. // probe at the points of a lattice grid
  2197. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2198. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2199. // solve the plane equation ax + by + d = z
  2200. // A is the matrix with rows [x y 1] for all the probed points
  2201. // B is the vector of the Z positions
  2202. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2203. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2204. // "A" matrix of the linear system of equations
  2205. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2206. // "B" vector of Z points
  2207. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2208. int probePointCounter = 0;
  2209. bool zig = true;
  2210. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2211. {
  2212. int xProbe, xInc;
  2213. if (zig)
  2214. {
  2215. xProbe = LEFT_PROBE_BED_POSITION;
  2216. //xEnd = RIGHT_PROBE_BED_POSITION;
  2217. xInc = xGridSpacing;
  2218. zig = false;
  2219. } else // zag
  2220. {
  2221. xProbe = RIGHT_PROBE_BED_POSITION;
  2222. //xEnd = LEFT_PROBE_BED_POSITION;
  2223. xInc = -xGridSpacing;
  2224. zig = true;
  2225. }
  2226. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2227. {
  2228. float z_before;
  2229. if (probePointCounter == 0)
  2230. {
  2231. // raise before probing
  2232. z_before = Z_RAISE_BEFORE_PROBING;
  2233. } else
  2234. {
  2235. // raise extruder
  2236. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2237. }
  2238. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2239. eqnBVector[probePointCounter] = measured_z;
  2240. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2241. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2242. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2243. probePointCounter++;
  2244. xProbe += xInc;
  2245. }
  2246. }
  2247. clean_up_after_endstop_move();
  2248. // solve lsq problem
  2249. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2250. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2251. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2252. SERIAL_PROTOCOLPGM(" b: ");
  2253. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2254. SERIAL_PROTOCOLPGM(" d: ");
  2255. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2256. set_bed_level_equation_lsq(plane_equation_coefficients);
  2257. free(plane_equation_coefficients);
  2258. #else // AUTO_BED_LEVELING_GRID not defined
  2259. // Probe at 3 arbitrary points
  2260. // probe 1
  2261. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2262. // probe 2
  2263. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2264. // probe 3
  2265. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2266. clean_up_after_endstop_move();
  2267. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2268. #endif // AUTO_BED_LEVELING_GRID
  2269. st_synchronize();
  2270. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2271. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2272. // When the bed is uneven, this height must be corrected.
  2273. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2274. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2275. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2276. z_tmp = current_position[Z_AXIS];
  2277. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2278. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2279. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2280. }
  2281. break;
  2282. #ifndef Z_PROBE_SLED
  2283. case 30: // G30 Single Z Probe
  2284. {
  2285. st_synchronize();
  2286. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2287. setup_for_endstop_move();
  2288. feedrate = homing_feedrate[Z_AXIS];
  2289. run_z_probe();
  2290. SERIAL_PROTOCOLPGM(MSG_BED);
  2291. SERIAL_PROTOCOLPGM(" X: ");
  2292. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2293. SERIAL_PROTOCOLPGM(" Y: ");
  2294. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2295. SERIAL_PROTOCOLPGM(" Z: ");
  2296. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2297. SERIAL_PROTOCOLPGM("\n");
  2298. clean_up_after_endstop_move();
  2299. }
  2300. break;
  2301. #else
  2302. case 31: // dock the sled
  2303. dock_sled(true);
  2304. break;
  2305. case 32: // undock the sled
  2306. dock_sled(false);
  2307. break;
  2308. #endif // Z_PROBE_SLED
  2309. #endif // ENABLE_AUTO_BED_LEVELING
  2310. #ifdef MESH_BED_LEVELING
  2311. case 30: // G30 Single Z Probe
  2312. {
  2313. st_synchronize();
  2314. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2315. setup_for_endstop_move();
  2316. feedrate = homing_feedrate[Z_AXIS];
  2317. find_bed_induction_sensor_point_z(-10.f, 3);
  2318. SERIAL_PROTOCOLRPGM(MSG_BED);
  2319. SERIAL_PROTOCOLPGM(" X: ");
  2320. MYSERIAL.print(current_position[X_AXIS], 5);
  2321. SERIAL_PROTOCOLPGM(" Y: ");
  2322. MYSERIAL.print(current_position[Y_AXIS], 5);
  2323. SERIAL_PROTOCOLPGM(" Z: ");
  2324. MYSERIAL.print(current_position[Z_AXIS], 5);
  2325. SERIAL_PROTOCOLPGM("\n");
  2326. clean_up_after_endstop_move();
  2327. }
  2328. break;
  2329. /**
  2330. * G80: Mesh-based Z probe, probes a grid and produces a
  2331. * mesh to compensate for variable bed height
  2332. *
  2333. * The S0 report the points as below
  2334. *
  2335. * +----> X-axis
  2336. * |
  2337. * |
  2338. * v Y-axis
  2339. *
  2340. */
  2341. case 73:
  2342. {
  2343. int i, read;
  2344. for (i = 0; i < 5; i++) {
  2345. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &read);
  2346. MYSERIAL.print(read);
  2347. SERIAL_ECHOLNPGM(" ");
  2348. }
  2349. }break;
  2350. case 74:
  2351. {
  2352. float result, temp;
  2353. if (code_seen('X')) temp = code_value();
  2354. result = temp_comp_interpolation(temp);
  2355. MYSERIAL.print(result);
  2356. }break;
  2357. case 76: //PINDA probe temperature compensation
  2358. {
  2359. setTargetBed(PINDA_MIN_T);
  2360. float zero_z;
  2361. int z_shift = 0; //unit: steps
  2362. int t_c; // temperature
  2363. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2364. // We don't know where we are! HOME!
  2365. // Push the commands to the front of the message queue in the reverse order!
  2366. // There shall be always enough space reserved for these commands.
  2367. repeatcommand_front(); // repeat G76 with all its parameters
  2368. enquecommand_front_P((PSTR("G28 W0")));
  2369. break;
  2370. }
  2371. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2372. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2373. current_position[Z_AXIS] = 0;
  2374. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2375. st_synchronize();
  2376. while (degBed() < PINDA_MIN_T) delay_keep_alive(1000);
  2377. //enquecommand_P(PSTR("M190 S50"));
  2378. for (int i = 0; i < PINDA_HEAT_T; i++) delay_keep_alive(1000);
  2379. current_position[Z_AXIS] = 5;
  2380. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2381. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2382. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2383. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2384. st_synchronize();
  2385. find_bed_induction_sensor_point_z(-1.f);
  2386. zero_z = current_position[Z_AXIS];
  2387. //current_position[Z_AXIS]
  2388. SERIAL_ECHOLNPGM("");
  2389. SERIAL_ECHOPGM("ZERO: ");
  2390. MYSERIAL.print(current_position[Z_AXIS]);
  2391. SERIAL_ECHOLNPGM("");
  2392. for (int i = 0; i<5; i++) {
  2393. t_c = 60 + i * 10;
  2394. setTargetBed(t_c);
  2395. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2396. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2397. current_position[Z_AXIS] = 0;
  2398. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2399. st_synchronize();
  2400. while (degBed() < t_c) delay_keep_alive(1000);
  2401. for (int i = 0; i < PINDA_HEAT_T; i++) delay_keep_alive(1000);
  2402. current_position[Z_AXIS] = 5;
  2403. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2404. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2405. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2406. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2407. st_synchronize();
  2408. find_bed_induction_sensor_point_z(-1.f);
  2409. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2410. SERIAL_ECHOLNPGM("");
  2411. SERIAL_ECHOPGM("Temperature: ");
  2412. MYSERIAL.print(t_c);
  2413. SERIAL_ECHOPGM(" Z shift (mm):");
  2414. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2415. SERIAL_ECHOLNPGM("");
  2416. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2417. }
  2418. setTargetBed(0); //set bed target temperature back to 0
  2419. }
  2420. break;
  2421. case 75:
  2422. {
  2423. temp_compensation_start();
  2424. }
  2425. break;
  2426. #ifdef DIS
  2427. case 77:
  2428. {
  2429. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2430. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2431. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2432. float dimension_x = 40;
  2433. float dimension_y = 40;
  2434. int points_x = 40;
  2435. int points_y = 40;
  2436. float offset_x = 74;
  2437. float offset_y = 33;
  2438. if (code_seen('X')) dimension_x = code_value();
  2439. if (code_seen('Y')) dimension_y = code_value();
  2440. if (code_seen('XP')) points_x = code_value();
  2441. if (code_seen('YP')) points_y = code_value();
  2442. if (code_seen('XO')) offset_x = code_value();
  2443. if (code_seen('YO')) offset_y = code_value();
  2444. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2445. } break;
  2446. #endif
  2447. case 80:
  2448. case_G80:
  2449. {
  2450. int8_t verbosity_level = 0;
  2451. if (code_seen('V')) {
  2452. // Just 'V' without a number counts as V1.
  2453. char c = strchr_pointer[1];
  2454. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2455. }
  2456. // Firstly check if we know where we are
  2457. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2458. // We don't know where we are! HOME!
  2459. // Push the commands to the front of the message queue in the reverse order!
  2460. // There shall be always enough space reserved for these commands.
  2461. repeatcommand_front(); // repeat G80 with all its parameters
  2462. enquecommand_front_P((PSTR("G28 W0")));
  2463. break;
  2464. }
  2465. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2466. bool custom_message_old = custom_message;
  2467. unsigned int custom_message_type_old = custom_message_type;
  2468. unsigned int custom_message_state_old = custom_message_state;
  2469. custom_message = true;
  2470. custom_message_type = 1;
  2471. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2472. lcd_update(1);
  2473. mbl.reset(); //reset mesh bed leveling
  2474. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2475. // consumed during the first movements following this statement.
  2476. babystep_undo();
  2477. // Cycle through all points and probe them
  2478. // First move up. During this first movement, the babystepping will be reverted.
  2479. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2480. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2481. // The move to the first calibration point.
  2482. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2483. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2484. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2485. if (verbosity_level >= 1) {
  2486. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2487. }
  2488. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2489. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2490. // Wait until the move is finished.
  2491. st_synchronize();
  2492. int mesh_point = 0; //index number of calibration point
  2493. int ix = 0;
  2494. int iy = 0;
  2495. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2496. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2497. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2498. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2499. if (verbosity_level >= 1) {
  2500. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2501. }
  2502. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2503. const char *kill_message = NULL;
  2504. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2505. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2506. // Get coords of a measuring point.
  2507. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2508. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2509. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2510. float z0 = 0.f;
  2511. if (has_z && mesh_point > 0) {
  2512. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2513. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2514. //#if 0
  2515. if (verbosity_level >= 1) {
  2516. SERIAL_ECHOPGM("Bed leveling, point: ");
  2517. MYSERIAL.print(mesh_point);
  2518. SERIAL_ECHOPGM(", calibration z: ");
  2519. MYSERIAL.print(z0, 5);
  2520. SERIAL_ECHOLNPGM("");
  2521. }
  2522. //#endif
  2523. }
  2524. // Move Z up to MESH_HOME_Z_SEARCH.
  2525. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2526. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2527. st_synchronize();
  2528. // Move to XY position of the sensor point.
  2529. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2530. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2531. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2532. if (verbosity_level >= 1) {
  2533. SERIAL_PROTOCOL(mesh_point);
  2534. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2535. }
  2536. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2537. st_synchronize();
  2538. // Go down until endstop is hit
  2539. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2540. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2541. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2542. break;
  2543. }
  2544. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2545. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2546. break;
  2547. }
  2548. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2549. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2550. break;
  2551. }
  2552. if (verbosity_level >= 10) {
  2553. SERIAL_ECHOPGM("X: ");
  2554. MYSERIAL.print(current_position[X_AXIS], 5);
  2555. SERIAL_ECHOLNPGM("");
  2556. SERIAL_ECHOPGM("Y: ");
  2557. MYSERIAL.print(current_position[Y_AXIS], 5);
  2558. SERIAL_PROTOCOLPGM("\n");
  2559. }
  2560. if (verbosity_level >= 1) {
  2561. SERIAL_ECHOPGM("mesh bed leveling: ");
  2562. MYSERIAL.print(current_position[Z_AXIS], 5);
  2563. SERIAL_ECHOLNPGM("");
  2564. }
  2565. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2566. custom_message_state--;
  2567. mesh_point++;
  2568. lcd_update(1);
  2569. }
  2570. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2571. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2572. if (verbosity_level >= 20) {
  2573. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2574. MYSERIAL.print(current_position[Z_AXIS], 5);
  2575. }
  2576. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2577. st_synchronize();
  2578. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2579. kill(kill_message);
  2580. SERIAL_ECHOLNPGM("killed");
  2581. }
  2582. clean_up_after_endstop_move();
  2583. SERIAL_ECHOLNPGM("clean up finished ");
  2584. temp_compensation_apply(); //apply PINDA temperature compensation
  2585. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2586. SERIAL_ECHOLNPGM("babystep applied");
  2587. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2588. if (verbosity_level >= 1) {
  2589. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2590. }
  2591. for (uint8_t i = 0; i < 4; ++i) {
  2592. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2593. long correction = 0;
  2594. if (code_seen(codes[i]))
  2595. correction = code_value_long();
  2596. else if (eeprom_bed_correction_valid) {
  2597. unsigned char *addr = (i < 2) ?
  2598. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2599. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2600. correction = eeprom_read_int8(addr);
  2601. }
  2602. if (correction == 0)
  2603. continue;
  2604. float offset = float(correction) * 0.001f;
  2605. if (fabs(offset) > 0.101f) {
  2606. SERIAL_ERROR_START;
  2607. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2608. SERIAL_ECHO(offset);
  2609. SERIAL_ECHOLNPGM(" microns");
  2610. }
  2611. else {
  2612. switch (i) {
  2613. case 0:
  2614. for (uint8_t row = 0; row < 3; ++row) {
  2615. mbl.z_values[row][1] += 0.5f * offset;
  2616. mbl.z_values[row][0] += offset;
  2617. }
  2618. break;
  2619. case 1:
  2620. for (uint8_t row = 0; row < 3; ++row) {
  2621. mbl.z_values[row][1] += 0.5f * offset;
  2622. mbl.z_values[row][2] += offset;
  2623. }
  2624. break;
  2625. case 2:
  2626. for (uint8_t col = 0; col < 3; ++col) {
  2627. mbl.z_values[1][col] += 0.5f * offset;
  2628. mbl.z_values[0][col] += offset;
  2629. }
  2630. break;
  2631. case 3:
  2632. for (uint8_t col = 0; col < 3; ++col) {
  2633. mbl.z_values[1][col] += 0.5f * offset;
  2634. mbl.z_values[2][col] += offset;
  2635. }
  2636. break;
  2637. }
  2638. }
  2639. }
  2640. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2641. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2642. SERIAL_ECHOLNPGM("Upsample finished");
  2643. mbl.active = 1; //activate mesh bed leveling
  2644. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2645. go_home_with_z_lift();
  2646. SERIAL_ECHOLNPGM("Go home finished");
  2647. // Restore custom message state
  2648. custom_message = custom_message_old;
  2649. custom_message_type = custom_message_type_old;
  2650. custom_message_state = custom_message_state_old;
  2651. lcd_update(1);
  2652. }
  2653. break;
  2654. /**
  2655. * G81: Print mesh bed leveling status and bed profile if activated
  2656. */
  2657. case 81:
  2658. if (mbl.active) {
  2659. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2660. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2661. SERIAL_PROTOCOLPGM(",");
  2662. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2663. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2664. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2665. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2666. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2667. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2668. SERIAL_PROTOCOLPGM(" ");
  2669. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2670. }
  2671. SERIAL_PROTOCOLPGM("\n");
  2672. }
  2673. }
  2674. else
  2675. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2676. break;
  2677. #if 0
  2678. /**
  2679. * G82: Single Z probe at current location
  2680. *
  2681. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2682. *
  2683. */
  2684. case 82:
  2685. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2686. setup_for_endstop_move();
  2687. find_bed_induction_sensor_point_z();
  2688. clean_up_after_endstop_move();
  2689. SERIAL_PROTOCOLPGM("Bed found at: ");
  2690. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2691. SERIAL_PROTOCOLPGM("\n");
  2692. break;
  2693. /**
  2694. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2695. */
  2696. case 83:
  2697. {
  2698. int babystepz = code_seen('S') ? code_value() : 0;
  2699. int BabyPosition = code_seen('P') ? code_value() : 0;
  2700. if (babystepz != 0) {
  2701. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2702. // Is the axis indexed starting with zero or one?
  2703. if (BabyPosition > 4) {
  2704. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2705. }else{
  2706. // Save it to the eeprom
  2707. babystepLoadZ = babystepz;
  2708. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2709. // adjust the Z
  2710. babystepsTodoZadd(babystepLoadZ);
  2711. }
  2712. }
  2713. }
  2714. break;
  2715. /**
  2716. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2717. */
  2718. case 84:
  2719. babystepsTodoZsubtract(babystepLoadZ);
  2720. // babystepLoadZ = 0;
  2721. break;
  2722. /**
  2723. * G85: Prusa3D specific: Pick best babystep
  2724. */
  2725. case 85:
  2726. lcd_pick_babystep();
  2727. break;
  2728. #endif
  2729. /**
  2730. * G86: Prusa3D specific: Disable babystep correction after home.
  2731. * This G-code will be performed at the start of a calibration script.
  2732. */
  2733. case 86:
  2734. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2735. break;
  2736. /**
  2737. * G87: Prusa3D specific: Enable babystep correction after home
  2738. * This G-code will be performed at the end of a calibration script.
  2739. */
  2740. case 87:
  2741. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2742. break;
  2743. /**
  2744. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2745. */
  2746. case 88:
  2747. break;
  2748. #endif // ENABLE_MESH_BED_LEVELING
  2749. case 90: // G90
  2750. relative_mode = false;
  2751. break;
  2752. case 91: // G91
  2753. relative_mode = true;
  2754. break;
  2755. case 92: // G92
  2756. if(!code_seen(axis_codes[E_AXIS]))
  2757. st_synchronize();
  2758. for(int8_t i=0; i < NUM_AXIS; i++) {
  2759. if(code_seen(axis_codes[i])) {
  2760. if(i == E_AXIS) {
  2761. current_position[i] = code_value();
  2762. plan_set_e_position(current_position[E_AXIS]);
  2763. }
  2764. else {
  2765. current_position[i] = code_value()+add_homing[i];
  2766. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2767. }
  2768. }
  2769. }
  2770. break;
  2771. case 98:
  2772. farm_no = 21;
  2773. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2774. farm_mode = true;
  2775. break;
  2776. case 99:
  2777. farm_no = 0;
  2778. EEPROM_save_B(EEPROM_FARM_MODE, &farm_no);
  2779. farm_mode = false;
  2780. break;
  2781. }
  2782. } // end if(code_seen('G'))
  2783. else if(code_seen('M'))
  2784. {
  2785. int index;
  2786. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2787. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2788. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2789. SERIAL_ECHOLNPGM("Invalid M code");
  2790. } else
  2791. switch((int)code_value())
  2792. {
  2793. #ifdef ULTIPANEL
  2794. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2795. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2796. {
  2797. char *src = strchr_pointer + 2;
  2798. codenum = 0;
  2799. bool hasP = false, hasS = false;
  2800. if (code_seen('P')) {
  2801. codenum = code_value(); // milliseconds to wait
  2802. hasP = codenum > 0;
  2803. }
  2804. if (code_seen('S')) {
  2805. codenum = code_value() * 1000; // seconds to wait
  2806. hasS = codenum > 0;
  2807. }
  2808. starpos = strchr(src, '*');
  2809. if (starpos != NULL) *(starpos) = '\0';
  2810. while (*src == ' ') ++src;
  2811. if (!hasP && !hasS && *src != '\0') {
  2812. lcd_setstatus(src);
  2813. } else {
  2814. LCD_MESSAGERPGM(MSG_USERWAIT);
  2815. }
  2816. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2817. st_synchronize();
  2818. previous_millis_cmd = millis();
  2819. if (codenum > 0){
  2820. codenum += millis(); // keep track of when we started waiting
  2821. while(millis() < codenum && !lcd_clicked()){
  2822. manage_heater();
  2823. manage_inactivity(true);
  2824. lcd_update();
  2825. }
  2826. lcd_ignore_click(false);
  2827. }else{
  2828. if (!lcd_detected())
  2829. break;
  2830. while(!lcd_clicked()){
  2831. manage_heater();
  2832. manage_inactivity(true);
  2833. lcd_update();
  2834. }
  2835. }
  2836. if (IS_SD_PRINTING)
  2837. LCD_MESSAGERPGM(MSG_RESUMING);
  2838. else
  2839. LCD_MESSAGERPGM(WELCOME_MSG);
  2840. }
  2841. break;
  2842. #endif
  2843. case 17:
  2844. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2845. enable_x();
  2846. enable_y();
  2847. enable_z();
  2848. enable_e0();
  2849. enable_e1();
  2850. enable_e2();
  2851. break;
  2852. #ifdef SDSUPPORT
  2853. case 20: // M20 - list SD card
  2854. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2855. card.ls();
  2856. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2857. break;
  2858. case 21: // M21 - init SD card
  2859. card.initsd();
  2860. break;
  2861. case 22: //M22 - release SD card
  2862. card.release();
  2863. break;
  2864. case 23: //M23 - Select file
  2865. starpos = (strchr(strchr_pointer + 4,'*'));
  2866. if(starpos!=NULL)
  2867. *(starpos)='\0';
  2868. card.openFile(strchr_pointer + 4,true);
  2869. break;
  2870. case 24: //M24 - Start SD print
  2871. card.startFileprint();
  2872. starttime=millis();
  2873. break;
  2874. case 25: //M25 - Pause SD print
  2875. card.pauseSDPrint();
  2876. break;
  2877. case 26: //M26 - Set SD index
  2878. if(card.cardOK && code_seen('S')) {
  2879. card.setIndex(code_value_long());
  2880. }
  2881. break;
  2882. case 27: //M27 - Get SD status
  2883. card.getStatus();
  2884. break;
  2885. case 28: //M28 - Start SD write
  2886. starpos = (strchr(strchr_pointer + 4,'*'));
  2887. if(starpos != NULL){
  2888. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2889. strchr_pointer = strchr(npos,' ') + 1;
  2890. *(starpos) = '\0';
  2891. }
  2892. card.openFile(strchr_pointer+4,false);
  2893. break;
  2894. case 29: //M29 - Stop SD write
  2895. //processed in write to file routine above
  2896. //card,saving = false;
  2897. break;
  2898. case 30: //M30 <filename> Delete File
  2899. if (card.cardOK){
  2900. card.closefile();
  2901. starpos = (strchr(strchr_pointer + 4,'*'));
  2902. if(starpos != NULL){
  2903. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2904. strchr_pointer = strchr(npos,' ') + 1;
  2905. *(starpos) = '\0';
  2906. }
  2907. card.removeFile(strchr_pointer + 4);
  2908. }
  2909. break;
  2910. case 32: //M32 - Select file and start SD print
  2911. {
  2912. if(card.sdprinting) {
  2913. st_synchronize();
  2914. }
  2915. starpos = (strchr(strchr_pointer + 4,'*'));
  2916. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2917. if(namestartpos==NULL)
  2918. {
  2919. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2920. }
  2921. else
  2922. namestartpos++; //to skip the '!'
  2923. if(starpos!=NULL)
  2924. *(starpos)='\0';
  2925. bool call_procedure=(code_seen('P'));
  2926. if(strchr_pointer>namestartpos)
  2927. call_procedure=false; //false alert, 'P' found within filename
  2928. if( card.cardOK )
  2929. {
  2930. card.openFile(namestartpos,true,!call_procedure);
  2931. if(code_seen('S'))
  2932. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2933. card.setIndex(code_value_long());
  2934. card.startFileprint();
  2935. if(!call_procedure)
  2936. starttime=millis(); //procedure calls count as normal print time.
  2937. }
  2938. } break;
  2939. case 928: //M928 - Start SD write
  2940. starpos = (strchr(strchr_pointer + 5,'*'));
  2941. if(starpos != NULL){
  2942. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2943. strchr_pointer = strchr(npos,' ') + 1;
  2944. *(starpos) = '\0';
  2945. }
  2946. card.openLogFile(strchr_pointer+5);
  2947. break;
  2948. #endif //SDSUPPORT
  2949. case 31: //M31 take time since the start of the SD print or an M109 command
  2950. {
  2951. stoptime=millis();
  2952. char time[30];
  2953. unsigned long t=(stoptime-starttime)/1000;
  2954. int sec,min;
  2955. min=t/60;
  2956. sec=t%60;
  2957. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2958. SERIAL_ECHO_START;
  2959. SERIAL_ECHOLN(time);
  2960. lcd_setstatus(time);
  2961. autotempShutdown();
  2962. }
  2963. break;
  2964. case 42: //M42 -Change pin status via gcode
  2965. if (code_seen('S'))
  2966. {
  2967. int pin_status = code_value();
  2968. int pin_number = LED_PIN;
  2969. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2970. pin_number = code_value();
  2971. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2972. {
  2973. if (sensitive_pins[i] == pin_number)
  2974. {
  2975. pin_number = -1;
  2976. break;
  2977. }
  2978. }
  2979. #if defined(FAN_PIN) && FAN_PIN > -1
  2980. if (pin_number == FAN_PIN)
  2981. fanSpeed = pin_status;
  2982. #endif
  2983. if (pin_number > -1)
  2984. {
  2985. pinMode(pin_number, OUTPUT);
  2986. digitalWrite(pin_number, pin_status);
  2987. analogWrite(pin_number, pin_status);
  2988. }
  2989. }
  2990. break;
  2991. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2992. // Reset the baby step value and the baby step applied flag.
  2993. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  2994. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2995. // Reset the skew and offset in both RAM and EEPROM.
  2996. reset_bed_offset_and_skew();
  2997. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2998. // the planner will not perform any adjustments in the XY plane.
  2999. // Wait for the motors to stop and update the current position with the absolute values.
  3000. world2machine_revert_to_uncorrected();
  3001. break;
  3002. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3003. {
  3004. // Only Z calibration?
  3005. bool onlyZ = code_seen('Z');
  3006. if (!onlyZ) {
  3007. setTargetBed(0);
  3008. setTargetHotend(0, 0);
  3009. setTargetHotend(0, 1);
  3010. setTargetHotend(0, 2);
  3011. adjust_bed_reset(); //reset bed level correction
  3012. }
  3013. // Disable the default update procedure of the display. We will do a modal dialog.
  3014. lcd_update_enable(false);
  3015. // Let the planner use the uncorrected coordinates.
  3016. mbl.reset();
  3017. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3018. // the planner will not perform any adjustments in the XY plane.
  3019. // Wait for the motors to stop and update the current position with the absolute values.
  3020. world2machine_revert_to_uncorrected();
  3021. // Reset the baby step value applied without moving the axes.
  3022. babystep_reset();
  3023. // Mark all axes as in a need for homing.
  3024. memset(axis_known_position, 0, sizeof(axis_known_position));
  3025. // Let the user move the Z axes up to the end stoppers.
  3026. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3027. refresh_cmd_timeout();
  3028. if (((degHotend(0)>MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION))&& (!onlyZ)) lcd_wait_for_cool_down();
  3029. lcd_display_message_fullscreen_P(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1);
  3030. lcd_implementation_print_at(0, 3, 1);
  3031. lcd_printPGM(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2);
  3032. // Move the print head close to the bed.
  3033. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3034. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3035. st_synchronize();
  3036. // Home in the XY plane.
  3037. set_destination_to_current();
  3038. setup_for_endstop_move();
  3039. home_xy();
  3040. int8_t verbosity_level = 0;
  3041. if (code_seen('V')) {
  3042. // Just 'V' without a number counts as V1.
  3043. char c = strchr_pointer[1];
  3044. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3045. }
  3046. if (onlyZ) {
  3047. clean_up_after_endstop_move();
  3048. // Z only calibration.
  3049. // Load the machine correction matrix
  3050. world2machine_initialize();
  3051. // and correct the current_position to match the transformed coordinate system.
  3052. world2machine_update_current();
  3053. //FIXME
  3054. bool result = sample_mesh_and_store_reference();
  3055. if (result) {
  3056. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3057. // Shipped, the nozzle height has been set already. The user can start printing now.
  3058. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3059. // babystep_apply();
  3060. }
  3061. } else {
  3062. // Reset the baby step value and the baby step applied flag.
  3063. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3064. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3065. // Complete XYZ calibration.
  3066. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  3067. uint8_t point_too_far_mask = 0;
  3068. clean_up_after_endstop_move();
  3069. // Print head up.
  3070. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3071. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3072. st_synchronize();
  3073. if (result >= 0) {
  3074. // Second half: The fine adjustment.
  3075. // Let the planner use the uncorrected coordinates.
  3076. mbl.reset();
  3077. world2machine_reset();
  3078. // Home in the XY plane.
  3079. setup_for_endstop_move();
  3080. home_xy();
  3081. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3082. clean_up_after_endstop_move();
  3083. // Print head up.
  3084. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3085. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3086. st_synchronize();
  3087. // if (result >= 0) babystep_apply();
  3088. }
  3089. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3090. if (result >= 0) {
  3091. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3092. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3093. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3094. }
  3095. }
  3096. } else {
  3097. // Timeouted.
  3098. }
  3099. lcd_update_enable(true);
  3100. break;
  3101. }
  3102. /*
  3103. case 46:
  3104. {
  3105. // M46: Prusa3D: Show the assigned IP address.
  3106. uint8_t ip[4];
  3107. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3108. if (hasIP) {
  3109. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3110. SERIAL_ECHO(int(ip[0]));
  3111. SERIAL_ECHOPGM(".");
  3112. SERIAL_ECHO(int(ip[1]));
  3113. SERIAL_ECHOPGM(".");
  3114. SERIAL_ECHO(int(ip[2]));
  3115. SERIAL_ECHOPGM(".");
  3116. SERIAL_ECHO(int(ip[3]));
  3117. SERIAL_ECHOLNPGM("");
  3118. } else {
  3119. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3120. }
  3121. break;
  3122. }
  3123. */
  3124. case 47:
  3125. // M47: Prusa3D: Show end stops dialog on the display.
  3126. lcd_diag_show_end_stops();
  3127. break;
  3128. #if 0
  3129. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3130. {
  3131. // Disable the default update procedure of the display. We will do a modal dialog.
  3132. lcd_update_enable(false);
  3133. // Let the planner use the uncorrected coordinates.
  3134. mbl.reset();
  3135. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3136. // the planner will not perform any adjustments in the XY plane.
  3137. // Wait for the motors to stop and update the current position with the absolute values.
  3138. world2machine_revert_to_uncorrected();
  3139. // Move the print head close to the bed.
  3140. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3141. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3142. st_synchronize();
  3143. // Home in the XY plane.
  3144. set_destination_to_current();
  3145. setup_for_endstop_move();
  3146. home_xy();
  3147. int8_t verbosity_level = 0;
  3148. if (code_seen('V')) {
  3149. // Just 'V' without a number counts as V1.
  3150. char c = strchr_pointer[1];
  3151. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3152. }
  3153. bool success = scan_bed_induction_points(verbosity_level);
  3154. clean_up_after_endstop_move();
  3155. // Print head up.
  3156. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3157. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3158. st_synchronize();
  3159. lcd_update_enable(true);
  3160. break;
  3161. }
  3162. #endif
  3163. // M48 Z-Probe repeatability measurement function.
  3164. //
  3165. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3166. //
  3167. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3168. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3169. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3170. // regenerated.
  3171. //
  3172. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3173. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3174. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3175. //
  3176. #ifdef ENABLE_AUTO_BED_LEVELING
  3177. #ifdef Z_PROBE_REPEATABILITY_TEST
  3178. case 48: // M48 Z-Probe repeatability
  3179. {
  3180. #if Z_MIN_PIN == -1
  3181. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3182. #endif
  3183. double sum=0.0;
  3184. double mean=0.0;
  3185. double sigma=0.0;
  3186. double sample_set[50];
  3187. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3188. double X_current, Y_current, Z_current;
  3189. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3190. if (code_seen('V') || code_seen('v')) {
  3191. verbose_level = code_value();
  3192. if (verbose_level<0 || verbose_level>4 ) {
  3193. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3194. goto Sigma_Exit;
  3195. }
  3196. }
  3197. if (verbose_level > 0) {
  3198. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3199. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3200. }
  3201. if (code_seen('n')) {
  3202. n_samples = code_value();
  3203. if (n_samples<4 || n_samples>50 ) {
  3204. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3205. goto Sigma_Exit;
  3206. }
  3207. }
  3208. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3209. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3210. Z_current = st_get_position_mm(Z_AXIS);
  3211. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3212. ext_position = st_get_position_mm(E_AXIS);
  3213. if (code_seen('X') || code_seen('x') ) {
  3214. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3215. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3216. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3217. goto Sigma_Exit;
  3218. }
  3219. }
  3220. if (code_seen('Y') || code_seen('y') ) {
  3221. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3222. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3223. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3224. goto Sigma_Exit;
  3225. }
  3226. }
  3227. if (code_seen('L') || code_seen('l') ) {
  3228. n_legs = code_value();
  3229. if ( n_legs==1 )
  3230. n_legs = 2;
  3231. if ( n_legs<0 || n_legs>15 ) {
  3232. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3233. goto Sigma_Exit;
  3234. }
  3235. }
  3236. //
  3237. // Do all the preliminary setup work. First raise the probe.
  3238. //
  3239. st_synchronize();
  3240. plan_bed_level_matrix.set_to_identity();
  3241. plan_buffer_line( X_current, Y_current, Z_start_location,
  3242. ext_position,
  3243. homing_feedrate[Z_AXIS]/60,
  3244. active_extruder);
  3245. st_synchronize();
  3246. //
  3247. // Now get everything to the specified probe point So we can safely do a probe to
  3248. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3249. // use that as a starting point for each probe.
  3250. //
  3251. if (verbose_level > 2)
  3252. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3253. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3254. ext_position,
  3255. homing_feedrate[X_AXIS]/60,
  3256. active_extruder);
  3257. st_synchronize();
  3258. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3259. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3260. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3261. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3262. //
  3263. // OK, do the inital probe to get us close to the bed.
  3264. // Then retrace the right amount and use that in subsequent probes
  3265. //
  3266. setup_for_endstop_move();
  3267. run_z_probe();
  3268. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3269. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3270. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3271. ext_position,
  3272. homing_feedrate[X_AXIS]/60,
  3273. active_extruder);
  3274. st_synchronize();
  3275. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3276. for( n=0; n<n_samples; n++) {
  3277. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3278. if ( n_legs) {
  3279. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3280. int rotational_direction, l;
  3281. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3282. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3283. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3284. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3285. //SERIAL_ECHOPAIR(" theta: ",theta);
  3286. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3287. //SERIAL_PROTOCOLLNPGM("");
  3288. for( l=0; l<n_legs-1; l++) {
  3289. if (rotational_direction==1)
  3290. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3291. else
  3292. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3293. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3294. if ( radius<0.0 )
  3295. radius = -radius;
  3296. X_current = X_probe_location + cos(theta) * radius;
  3297. Y_current = Y_probe_location + sin(theta) * radius;
  3298. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3299. X_current = X_MIN_POS;
  3300. if ( X_current>X_MAX_POS)
  3301. X_current = X_MAX_POS;
  3302. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3303. Y_current = Y_MIN_POS;
  3304. if ( Y_current>Y_MAX_POS)
  3305. Y_current = Y_MAX_POS;
  3306. if (verbose_level>3 ) {
  3307. SERIAL_ECHOPAIR("x: ", X_current);
  3308. SERIAL_ECHOPAIR("y: ", Y_current);
  3309. SERIAL_PROTOCOLLNPGM("");
  3310. }
  3311. do_blocking_move_to( X_current, Y_current, Z_current );
  3312. }
  3313. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3314. }
  3315. setup_for_endstop_move();
  3316. run_z_probe();
  3317. sample_set[n] = current_position[Z_AXIS];
  3318. //
  3319. // Get the current mean for the data points we have so far
  3320. //
  3321. sum=0.0;
  3322. for( j=0; j<=n; j++) {
  3323. sum = sum + sample_set[j];
  3324. }
  3325. mean = sum / (double (n+1));
  3326. //
  3327. // Now, use that mean to calculate the standard deviation for the
  3328. // data points we have so far
  3329. //
  3330. sum=0.0;
  3331. for( j=0; j<=n; j++) {
  3332. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3333. }
  3334. sigma = sqrt( sum / (double (n+1)) );
  3335. if (verbose_level > 1) {
  3336. SERIAL_PROTOCOL(n+1);
  3337. SERIAL_PROTOCOL(" of ");
  3338. SERIAL_PROTOCOL(n_samples);
  3339. SERIAL_PROTOCOLPGM(" z: ");
  3340. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3341. }
  3342. if (verbose_level > 2) {
  3343. SERIAL_PROTOCOL(" mean: ");
  3344. SERIAL_PROTOCOL_F(mean,6);
  3345. SERIAL_PROTOCOL(" sigma: ");
  3346. SERIAL_PROTOCOL_F(sigma,6);
  3347. }
  3348. if (verbose_level > 0)
  3349. SERIAL_PROTOCOLPGM("\n");
  3350. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3351. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3352. st_synchronize();
  3353. }
  3354. delay(1000);
  3355. clean_up_after_endstop_move();
  3356. // enable_endstops(true);
  3357. if (verbose_level > 0) {
  3358. SERIAL_PROTOCOLPGM("Mean: ");
  3359. SERIAL_PROTOCOL_F(mean, 6);
  3360. SERIAL_PROTOCOLPGM("\n");
  3361. }
  3362. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3363. SERIAL_PROTOCOL_F(sigma, 6);
  3364. SERIAL_PROTOCOLPGM("\n\n");
  3365. Sigma_Exit:
  3366. break;
  3367. }
  3368. #endif // Z_PROBE_REPEATABILITY_TEST
  3369. #endif // ENABLE_AUTO_BED_LEVELING
  3370. case 104: // M104
  3371. if(setTargetedHotend(104)){
  3372. break;
  3373. }
  3374. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3375. setWatch();
  3376. break;
  3377. case 112: // M112 -Emergency Stop
  3378. kill();
  3379. break;
  3380. case 140: // M140 set bed temp
  3381. if (code_seen('S')) setTargetBed(code_value());
  3382. break;
  3383. case 105 : // M105
  3384. if(setTargetedHotend(105)){
  3385. break;
  3386. }
  3387. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3388. SERIAL_PROTOCOLPGM("ok T:");
  3389. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3390. SERIAL_PROTOCOLPGM(" /");
  3391. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3392. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3393. SERIAL_PROTOCOLPGM(" B:");
  3394. SERIAL_PROTOCOL_F(degBed(),1);
  3395. SERIAL_PROTOCOLPGM(" /");
  3396. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3397. #endif //TEMP_BED_PIN
  3398. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3399. SERIAL_PROTOCOLPGM(" T");
  3400. SERIAL_PROTOCOL(cur_extruder);
  3401. SERIAL_PROTOCOLPGM(":");
  3402. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3403. SERIAL_PROTOCOLPGM(" /");
  3404. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3405. }
  3406. #else
  3407. SERIAL_ERROR_START;
  3408. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3409. #endif
  3410. SERIAL_PROTOCOLPGM(" @:");
  3411. #ifdef EXTRUDER_WATTS
  3412. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3413. SERIAL_PROTOCOLPGM("W");
  3414. #else
  3415. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3416. #endif
  3417. SERIAL_PROTOCOLPGM(" B@:");
  3418. #ifdef BED_WATTS
  3419. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3420. SERIAL_PROTOCOLPGM("W");
  3421. #else
  3422. SERIAL_PROTOCOL(getHeaterPower(-1));
  3423. #endif
  3424. #ifdef SHOW_TEMP_ADC_VALUES
  3425. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3426. SERIAL_PROTOCOLPGM(" ADC B:");
  3427. SERIAL_PROTOCOL_F(degBed(),1);
  3428. SERIAL_PROTOCOLPGM("C->");
  3429. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  3430. #endif
  3431. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3432. SERIAL_PROTOCOLPGM(" T");
  3433. SERIAL_PROTOCOL(cur_extruder);
  3434. SERIAL_PROTOCOLPGM(":");
  3435. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3436. SERIAL_PROTOCOLPGM("C->");
  3437. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  3438. }
  3439. #endif
  3440. SERIAL_PROTOCOLLN("");
  3441. return;
  3442. break;
  3443. case 109:
  3444. {// M109 - Wait for extruder heater to reach target.
  3445. if(setTargetedHotend(109)){
  3446. break;
  3447. }
  3448. LCD_MESSAGERPGM(MSG_HEATING);
  3449. heating_status = 1;
  3450. if (farm_mode) { prusa_statistics(1); };
  3451. #ifdef AUTOTEMP
  3452. autotemp_enabled=false;
  3453. #endif
  3454. if (code_seen('S')) {
  3455. setTargetHotend(code_value(), tmp_extruder);
  3456. CooldownNoWait = true;
  3457. } else if (code_seen('R')) {
  3458. setTargetHotend(code_value(), tmp_extruder);
  3459. CooldownNoWait = false;
  3460. }
  3461. #ifdef AUTOTEMP
  3462. if (code_seen('S')) autotemp_min=code_value();
  3463. if (code_seen('B')) autotemp_max=code_value();
  3464. if (code_seen('F'))
  3465. {
  3466. autotemp_factor=code_value();
  3467. autotemp_enabled=true;
  3468. }
  3469. #endif
  3470. setWatch();
  3471. codenum = millis();
  3472. /* See if we are heating up or cooling down */
  3473. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3474. cancel_heatup = false;
  3475. #ifdef TEMP_RESIDENCY_TIME
  3476. long residencyStart;
  3477. residencyStart = -1;
  3478. /* continue to loop until we have reached the target temp
  3479. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  3480. while((!cancel_heatup)&&((residencyStart == -1) ||
  3481. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  3482. #else
  3483. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  3484. #endif //TEMP_RESIDENCY_TIME
  3485. if( (millis() - codenum) > 1000UL )
  3486. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  3487. SERIAL_PROTOCOLPGM("T:");
  3488. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3489. SERIAL_PROTOCOLPGM(" E:");
  3490. SERIAL_PROTOCOL((int)tmp_extruder);
  3491. #ifdef TEMP_RESIDENCY_TIME
  3492. SERIAL_PROTOCOLPGM(" W:");
  3493. if(residencyStart > -1)
  3494. {
  3495. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  3496. SERIAL_PROTOCOLLN( codenum );
  3497. }
  3498. else
  3499. {
  3500. SERIAL_PROTOCOLLN( "?" );
  3501. }
  3502. #else
  3503. SERIAL_PROTOCOLLN("");
  3504. #endif
  3505. codenum = millis();
  3506. }
  3507. manage_heater();
  3508. manage_inactivity();
  3509. lcd_update();
  3510. #ifdef TEMP_RESIDENCY_TIME
  3511. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  3512. or when current temp falls outside the hysteresis after target temp was reached */
  3513. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  3514. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  3515. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  3516. {
  3517. residencyStart = millis();
  3518. }
  3519. #endif //TEMP_RESIDENCY_TIME
  3520. }
  3521. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3522. heating_status = 2;
  3523. if (farm_mode) { prusa_statistics(2); };
  3524. starttime=millis();
  3525. previous_millis_cmd = millis();
  3526. }
  3527. break;
  3528. case 190: // M190 - Wait for bed heater to reach target.
  3529. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3530. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3531. heating_status = 3;
  3532. if (farm_mode) { prusa_statistics(1); };
  3533. if (code_seen('S'))
  3534. {
  3535. setTargetBed(code_value());
  3536. CooldownNoWait = true;
  3537. }
  3538. else if (code_seen('R'))
  3539. {
  3540. setTargetBed(code_value());
  3541. CooldownNoWait = false;
  3542. }
  3543. codenum = millis();
  3544. cancel_heatup = false;
  3545. target_direction = isHeatingBed(); // true if heating, false if cooling
  3546. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3547. {
  3548. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3549. {
  3550. float tt=degHotend(active_extruder);
  3551. SERIAL_PROTOCOLPGM("T:");
  3552. SERIAL_PROTOCOL(tt);
  3553. SERIAL_PROTOCOLPGM(" E:");
  3554. SERIAL_PROTOCOL((int)active_extruder);
  3555. SERIAL_PROTOCOLPGM(" B:");
  3556. SERIAL_PROTOCOL_F(degBed(),1);
  3557. SERIAL_PROTOCOLLN("");
  3558. codenum = millis();
  3559. }
  3560. manage_heater();
  3561. manage_inactivity();
  3562. lcd_update();
  3563. }
  3564. LCD_MESSAGERPGM(MSG_BED_DONE);
  3565. heating_status = 4;
  3566. previous_millis_cmd = millis();
  3567. #endif
  3568. break;
  3569. #if defined(FAN_PIN) && FAN_PIN > -1
  3570. case 106: //M106 Fan On
  3571. if (code_seen('S')){
  3572. fanSpeed=constrain(code_value(),0,255);
  3573. }
  3574. else {
  3575. fanSpeed=255;
  3576. }
  3577. break;
  3578. case 107: //M107 Fan Off
  3579. fanSpeed = 0;
  3580. break;
  3581. #endif //FAN_PIN
  3582. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3583. case 80: // M80 - Turn on Power Supply
  3584. SET_OUTPUT(PS_ON_PIN); //GND
  3585. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3586. // If you have a switch on suicide pin, this is useful
  3587. // if you want to start another print with suicide feature after
  3588. // a print without suicide...
  3589. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3590. SET_OUTPUT(SUICIDE_PIN);
  3591. WRITE(SUICIDE_PIN, HIGH);
  3592. #endif
  3593. #ifdef ULTIPANEL
  3594. powersupply = true;
  3595. LCD_MESSAGERPGM(WELCOME_MSG);
  3596. lcd_update();
  3597. #endif
  3598. break;
  3599. #endif
  3600. case 81: // M81 - Turn off Power Supply
  3601. disable_heater();
  3602. st_synchronize();
  3603. disable_e0();
  3604. disable_e1();
  3605. disable_e2();
  3606. finishAndDisableSteppers();
  3607. fanSpeed = 0;
  3608. delay(1000); // Wait a little before to switch off
  3609. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3610. st_synchronize();
  3611. suicide();
  3612. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3613. SET_OUTPUT(PS_ON_PIN);
  3614. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3615. #endif
  3616. #ifdef ULTIPANEL
  3617. powersupply = false;
  3618. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3619. /*
  3620. MACHNAME = "Prusa i3"
  3621. MSGOFF = "Vypnuto"
  3622. "Prusai3"" ""vypnuto""."
  3623. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3624. */
  3625. lcd_update();
  3626. #endif
  3627. break;
  3628. case 82:
  3629. axis_relative_modes[3] = false;
  3630. break;
  3631. case 83:
  3632. axis_relative_modes[3] = true;
  3633. break;
  3634. case 18: //compatibility
  3635. case 84: // M84
  3636. if(code_seen('S')){
  3637. stepper_inactive_time = code_value() * 1000;
  3638. }
  3639. else
  3640. {
  3641. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3642. if(all_axis)
  3643. {
  3644. st_synchronize();
  3645. disable_e0();
  3646. disable_e1();
  3647. disable_e2();
  3648. finishAndDisableSteppers();
  3649. }
  3650. else
  3651. {
  3652. st_synchronize();
  3653. if(code_seen('X')) disable_x();
  3654. if(code_seen('Y')) disable_y();
  3655. if(code_seen('Z')) disable_z();
  3656. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3657. if(code_seen('E')) {
  3658. disable_e0();
  3659. disable_e1();
  3660. disable_e2();
  3661. }
  3662. #endif
  3663. }
  3664. }
  3665. break;
  3666. case 85: // M85
  3667. if(code_seen('S')) {
  3668. max_inactive_time = code_value() * 1000;
  3669. }
  3670. break;
  3671. case 92: // M92
  3672. for(int8_t i=0; i < NUM_AXIS; i++)
  3673. {
  3674. if(code_seen(axis_codes[i]))
  3675. {
  3676. if(i == 3) { // E
  3677. float value = code_value();
  3678. if(value < 20.0) {
  3679. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3680. max_jerk[E_AXIS] *= factor;
  3681. max_feedrate[i] *= factor;
  3682. axis_steps_per_sqr_second[i] *= factor;
  3683. }
  3684. axis_steps_per_unit[i] = value;
  3685. }
  3686. else {
  3687. axis_steps_per_unit[i] = code_value();
  3688. }
  3689. }
  3690. }
  3691. break;
  3692. case 115: // M115
  3693. if (code_seen('V')) {
  3694. // Report the Prusa version number.
  3695. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3696. } else if (code_seen('U')) {
  3697. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3698. // pause the print and ask the user to upgrade the firmware.
  3699. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3700. } else {
  3701. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3702. }
  3703. break;
  3704. case 117: // M117 display message
  3705. starpos = (strchr(strchr_pointer + 5,'*'));
  3706. if(starpos!=NULL)
  3707. *(starpos)='\0';
  3708. lcd_setstatus(strchr_pointer + 5);
  3709. break;
  3710. case 114: // M114
  3711. SERIAL_PROTOCOLPGM("X:");
  3712. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3713. SERIAL_PROTOCOLPGM(" Y:");
  3714. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3715. SERIAL_PROTOCOLPGM(" Z:");
  3716. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3717. SERIAL_PROTOCOLPGM(" E:");
  3718. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3719. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3720. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3721. SERIAL_PROTOCOLPGM(" Y:");
  3722. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3723. SERIAL_PROTOCOLPGM(" Z:");
  3724. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3725. SERIAL_PROTOCOLLN("");
  3726. break;
  3727. case 120: // M120
  3728. enable_endstops(false) ;
  3729. break;
  3730. case 121: // M121
  3731. enable_endstops(true) ;
  3732. break;
  3733. case 119: // M119
  3734. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3735. SERIAL_PROTOCOLLN("");
  3736. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3737. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3738. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3739. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3740. }else{
  3741. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3742. }
  3743. SERIAL_PROTOCOLLN("");
  3744. #endif
  3745. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3746. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3747. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3748. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3749. }else{
  3750. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3751. }
  3752. SERIAL_PROTOCOLLN("");
  3753. #endif
  3754. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3755. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3756. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3757. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3758. }else{
  3759. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3760. }
  3761. SERIAL_PROTOCOLLN("");
  3762. #endif
  3763. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3764. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3765. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3766. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3767. }else{
  3768. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3769. }
  3770. SERIAL_PROTOCOLLN("");
  3771. #endif
  3772. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3773. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3774. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3775. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3776. }else{
  3777. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3778. }
  3779. SERIAL_PROTOCOLLN("");
  3780. #endif
  3781. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3782. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3783. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3784. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3785. }else{
  3786. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3787. }
  3788. SERIAL_PROTOCOLLN("");
  3789. #endif
  3790. break;
  3791. //TODO: update for all axis, use for loop
  3792. #ifdef BLINKM
  3793. case 150: // M150
  3794. {
  3795. byte red;
  3796. byte grn;
  3797. byte blu;
  3798. if(code_seen('R')) red = code_value();
  3799. if(code_seen('U')) grn = code_value();
  3800. if(code_seen('B')) blu = code_value();
  3801. SendColors(red,grn,blu);
  3802. }
  3803. break;
  3804. #endif //BLINKM
  3805. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3806. {
  3807. tmp_extruder = active_extruder;
  3808. if(code_seen('T')) {
  3809. tmp_extruder = code_value();
  3810. if(tmp_extruder >= EXTRUDERS) {
  3811. SERIAL_ECHO_START;
  3812. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3813. break;
  3814. }
  3815. }
  3816. float area = .0;
  3817. if(code_seen('D')) {
  3818. float diameter = (float)code_value();
  3819. if (diameter == 0.0) {
  3820. // setting any extruder filament size disables volumetric on the assumption that
  3821. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3822. // for all extruders
  3823. volumetric_enabled = false;
  3824. } else {
  3825. filament_size[tmp_extruder] = (float)code_value();
  3826. // make sure all extruders have some sane value for the filament size
  3827. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3828. #if EXTRUDERS > 1
  3829. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3830. #if EXTRUDERS > 2
  3831. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3832. #endif
  3833. #endif
  3834. volumetric_enabled = true;
  3835. }
  3836. } else {
  3837. //reserved for setting filament diameter via UFID or filament measuring device
  3838. break;
  3839. }
  3840. calculate_volumetric_multipliers();
  3841. }
  3842. break;
  3843. case 201: // M201
  3844. for(int8_t i=0; i < NUM_AXIS; i++)
  3845. {
  3846. if(code_seen(axis_codes[i]))
  3847. {
  3848. max_acceleration_units_per_sq_second[i] = code_value();
  3849. }
  3850. }
  3851. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3852. reset_acceleration_rates();
  3853. break;
  3854. #if 0 // Not used for Sprinter/grbl gen6
  3855. case 202: // M202
  3856. for(int8_t i=0; i < NUM_AXIS; i++) {
  3857. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3858. }
  3859. break;
  3860. #endif
  3861. case 203: // M203 max feedrate mm/sec
  3862. for(int8_t i=0; i < NUM_AXIS; i++) {
  3863. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3864. }
  3865. break;
  3866. case 204: // M204 acclereration S normal moves T filmanent only moves
  3867. {
  3868. if(code_seen('S')) acceleration = code_value() ;
  3869. if(code_seen('T')) retract_acceleration = code_value() ;
  3870. }
  3871. break;
  3872. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3873. {
  3874. if(code_seen('S')) minimumfeedrate = code_value();
  3875. if(code_seen('T')) mintravelfeedrate = code_value();
  3876. if(code_seen('B')) minsegmenttime = code_value() ;
  3877. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3878. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3879. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3880. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3881. }
  3882. break;
  3883. case 206: // M206 additional homing offset
  3884. for(int8_t i=0; i < 3; i++)
  3885. {
  3886. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3887. }
  3888. break;
  3889. #ifdef FWRETRACT
  3890. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3891. {
  3892. if(code_seen('S'))
  3893. {
  3894. retract_length = code_value() ;
  3895. }
  3896. if(code_seen('F'))
  3897. {
  3898. retract_feedrate = code_value()/60 ;
  3899. }
  3900. if(code_seen('Z'))
  3901. {
  3902. retract_zlift = code_value() ;
  3903. }
  3904. }break;
  3905. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3906. {
  3907. if(code_seen('S'))
  3908. {
  3909. retract_recover_length = code_value() ;
  3910. }
  3911. if(code_seen('F'))
  3912. {
  3913. retract_recover_feedrate = code_value()/60 ;
  3914. }
  3915. }break;
  3916. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3917. {
  3918. if(code_seen('S'))
  3919. {
  3920. int t= code_value() ;
  3921. switch(t)
  3922. {
  3923. case 0:
  3924. {
  3925. autoretract_enabled=false;
  3926. retracted[0]=false;
  3927. #if EXTRUDERS > 1
  3928. retracted[1]=false;
  3929. #endif
  3930. #if EXTRUDERS > 2
  3931. retracted[2]=false;
  3932. #endif
  3933. }break;
  3934. case 1:
  3935. {
  3936. autoretract_enabled=true;
  3937. retracted[0]=false;
  3938. #if EXTRUDERS > 1
  3939. retracted[1]=false;
  3940. #endif
  3941. #if EXTRUDERS > 2
  3942. retracted[2]=false;
  3943. #endif
  3944. }break;
  3945. default:
  3946. SERIAL_ECHO_START;
  3947. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3948. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3949. SERIAL_ECHOLNPGM("\"");
  3950. }
  3951. }
  3952. }break;
  3953. #endif // FWRETRACT
  3954. #if EXTRUDERS > 1
  3955. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3956. {
  3957. if(setTargetedHotend(218)){
  3958. break;
  3959. }
  3960. if(code_seen('X'))
  3961. {
  3962. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3963. }
  3964. if(code_seen('Y'))
  3965. {
  3966. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3967. }
  3968. SERIAL_ECHO_START;
  3969. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3970. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3971. {
  3972. SERIAL_ECHO(" ");
  3973. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3974. SERIAL_ECHO(",");
  3975. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3976. }
  3977. SERIAL_ECHOLN("");
  3978. }break;
  3979. #endif
  3980. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3981. {
  3982. if(code_seen('S'))
  3983. {
  3984. feedmultiply = code_value() ;
  3985. }
  3986. }
  3987. break;
  3988. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3989. {
  3990. if(code_seen('S'))
  3991. {
  3992. int tmp_code = code_value();
  3993. if (code_seen('T'))
  3994. {
  3995. if(setTargetedHotend(221)){
  3996. break;
  3997. }
  3998. extruder_multiply[tmp_extruder] = tmp_code;
  3999. }
  4000. else
  4001. {
  4002. extrudemultiply = tmp_code ;
  4003. }
  4004. }
  4005. }
  4006. break;
  4007. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4008. {
  4009. if(code_seen('P')){
  4010. int pin_number = code_value(); // pin number
  4011. int pin_state = -1; // required pin state - default is inverted
  4012. if(code_seen('S')) pin_state = code_value(); // required pin state
  4013. if(pin_state >= -1 && pin_state <= 1){
  4014. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4015. {
  4016. if (sensitive_pins[i] == pin_number)
  4017. {
  4018. pin_number = -1;
  4019. break;
  4020. }
  4021. }
  4022. if (pin_number > -1)
  4023. {
  4024. int target = LOW;
  4025. st_synchronize();
  4026. pinMode(pin_number, INPUT);
  4027. switch(pin_state){
  4028. case 1:
  4029. target = HIGH;
  4030. break;
  4031. case 0:
  4032. target = LOW;
  4033. break;
  4034. case -1:
  4035. target = !digitalRead(pin_number);
  4036. break;
  4037. }
  4038. while(digitalRead(pin_number) != target){
  4039. manage_heater();
  4040. manage_inactivity();
  4041. lcd_update();
  4042. }
  4043. }
  4044. }
  4045. }
  4046. }
  4047. break;
  4048. #if NUM_SERVOS > 0
  4049. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4050. {
  4051. int servo_index = -1;
  4052. int servo_position = 0;
  4053. if (code_seen('P'))
  4054. servo_index = code_value();
  4055. if (code_seen('S')) {
  4056. servo_position = code_value();
  4057. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4058. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4059. servos[servo_index].attach(0);
  4060. #endif
  4061. servos[servo_index].write(servo_position);
  4062. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4063. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4064. servos[servo_index].detach();
  4065. #endif
  4066. }
  4067. else {
  4068. SERIAL_ECHO_START;
  4069. SERIAL_ECHO("Servo ");
  4070. SERIAL_ECHO(servo_index);
  4071. SERIAL_ECHOLN(" out of range");
  4072. }
  4073. }
  4074. else if (servo_index >= 0) {
  4075. SERIAL_PROTOCOL(MSG_OK);
  4076. SERIAL_PROTOCOL(" Servo ");
  4077. SERIAL_PROTOCOL(servo_index);
  4078. SERIAL_PROTOCOL(": ");
  4079. SERIAL_PROTOCOL(servos[servo_index].read());
  4080. SERIAL_PROTOCOLLN("");
  4081. }
  4082. }
  4083. break;
  4084. #endif // NUM_SERVOS > 0
  4085. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4086. case 300: // M300
  4087. {
  4088. int beepS = code_seen('S') ? code_value() : 110;
  4089. int beepP = code_seen('P') ? code_value() : 1000;
  4090. if (beepS > 0)
  4091. {
  4092. #if BEEPER > 0
  4093. tone(BEEPER, beepS);
  4094. delay(beepP);
  4095. noTone(BEEPER);
  4096. #elif defined(ULTRALCD)
  4097. lcd_buzz(beepS, beepP);
  4098. #elif defined(LCD_USE_I2C_BUZZER)
  4099. lcd_buzz(beepP, beepS);
  4100. #endif
  4101. }
  4102. else
  4103. {
  4104. delay(beepP);
  4105. }
  4106. }
  4107. break;
  4108. #endif // M300
  4109. #ifdef PIDTEMP
  4110. case 301: // M301
  4111. {
  4112. if(code_seen('P')) Kp = code_value();
  4113. if(code_seen('I')) Ki = scalePID_i(code_value());
  4114. if(code_seen('D')) Kd = scalePID_d(code_value());
  4115. #ifdef PID_ADD_EXTRUSION_RATE
  4116. if(code_seen('C')) Kc = code_value();
  4117. #endif
  4118. updatePID();
  4119. SERIAL_PROTOCOLRPGM(MSG_OK);
  4120. SERIAL_PROTOCOL(" p:");
  4121. SERIAL_PROTOCOL(Kp);
  4122. SERIAL_PROTOCOL(" i:");
  4123. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4124. SERIAL_PROTOCOL(" d:");
  4125. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4126. #ifdef PID_ADD_EXTRUSION_RATE
  4127. SERIAL_PROTOCOL(" c:");
  4128. //Kc does not have scaling applied above, or in resetting defaults
  4129. SERIAL_PROTOCOL(Kc);
  4130. #endif
  4131. SERIAL_PROTOCOLLN("");
  4132. }
  4133. break;
  4134. #endif //PIDTEMP
  4135. #ifdef PIDTEMPBED
  4136. case 304: // M304
  4137. {
  4138. if(code_seen('P')) bedKp = code_value();
  4139. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4140. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4141. updatePID();
  4142. SERIAL_PROTOCOLRPGM(MSG_OK);
  4143. SERIAL_PROTOCOL(" p:");
  4144. SERIAL_PROTOCOL(bedKp);
  4145. SERIAL_PROTOCOL(" i:");
  4146. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4147. SERIAL_PROTOCOL(" d:");
  4148. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4149. SERIAL_PROTOCOLLN("");
  4150. }
  4151. break;
  4152. #endif //PIDTEMP
  4153. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4154. {
  4155. #ifdef CHDK
  4156. SET_OUTPUT(CHDK);
  4157. WRITE(CHDK, HIGH);
  4158. chdkHigh = millis();
  4159. chdkActive = true;
  4160. #else
  4161. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4162. const uint8_t NUM_PULSES=16;
  4163. const float PULSE_LENGTH=0.01524;
  4164. for(int i=0; i < NUM_PULSES; i++) {
  4165. WRITE(PHOTOGRAPH_PIN, HIGH);
  4166. _delay_ms(PULSE_LENGTH);
  4167. WRITE(PHOTOGRAPH_PIN, LOW);
  4168. _delay_ms(PULSE_LENGTH);
  4169. }
  4170. delay(7.33);
  4171. for(int i=0; i < NUM_PULSES; i++) {
  4172. WRITE(PHOTOGRAPH_PIN, HIGH);
  4173. _delay_ms(PULSE_LENGTH);
  4174. WRITE(PHOTOGRAPH_PIN, LOW);
  4175. _delay_ms(PULSE_LENGTH);
  4176. }
  4177. #endif
  4178. #endif //chdk end if
  4179. }
  4180. break;
  4181. #ifdef DOGLCD
  4182. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4183. {
  4184. if (code_seen('C')) {
  4185. lcd_setcontrast( ((int)code_value())&63 );
  4186. }
  4187. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4188. SERIAL_PROTOCOL(lcd_contrast);
  4189. SERIAL_PROTOCOLLN("");
  4190. }
  4191. break;
  4192. #endif
  4193. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4194. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4195. {
  4196. float temp = .0;
  4197. if (code_seen('S')) temp=code_value();
  4198. set_extrude_min_temp(temp);
  4199. }
  4200. break;
  4201. #endif
  4202. case 303: // M303 PID autotune
  4203. {
  4204. float temp = 150.0;
  4205. int e=0;
  4206. int c=5;
  4207. if (code_seen('E')) e=code_value();
  4208. if (e<0)
  4209. temp=70;
  4210. if (code_seen('S')) temp=code_value();
  4211. if (code_seen('C')) c=code_value();
  4212. PID_autotune(temp, e, c);
  4213. }
  4214. break;
  4215. case 400: // M400 finish all moves
  4216. {
  4217. st_synchronize();
  4218. }
  4219. break;
  4220. #ifdef FILAMENT_SENSOR
  4221. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4222. {
  4223. #if (FILWIDTH_PIN > -1)
  4224. if(code_seen('N')) filament_width_nominal=code_value();
  4225. else{
  4226. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4227. SERIAL_PROTOCOLLN(filament_width_nominal);
  4228. }
  4229. #endif
  4230. }
  4231. break;
  4232. case 405: //M405 Turn on filament sensor for control
  4233. {
  4234. if(code_seen('D')) meas_delay_cm=code_value();
  4235. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4236. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4237. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4238. {
  4239. int temp_ratio = widthFil_to_size_ratio();
  4240. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4241. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4242. }
  4243. delay_index1=0;
  4244. delay_index2=0;
  4245. }
  4246. filament_sensor = true ;
  4247. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4248. //SERIAL_PROTOCOL(filament_width_meas);
  4249. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4250. //SERIAL_PROTOCOL(extrudemultiply);
  4251. }
  4252. break;
  4253. case 406: //M406 Turn off filament sensor for control
  4254. {
  4255. filament_sensor = false ;
  4256. }
  4257. break;
  4258. case 407: //M407 Display measured filament diameter
  4259. {
  4260. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4261. SERIAL_PROTOCOLLN(filament_width_meas);
  4262. }
  4263. break;
  4264. #endif
  4265. case 500: // M500 Store settings in EEPROM
  4266. {
  4267. Config_StoreSettings();
  4268. }
  4269. break;
  4270. case 501: // M501 Read settings from EEPROM
  4271. {
  4272. Config_RetrieveSettings();
  4273. }
  4274. break;
  4275. case 502: // M502 Revert to default settings
  4276. {
  4277. Config_ResetDefault();
  4278. }
  4279. break;
  4280. case 503: // M503 print settings currently in memory
  4281. {
  4282. Config_PrintSettings();
  4283. }
  4284. break;
  4285. case 509: //M509 Force language selection
  4286. {
  4287. lcd_force_language_selection();
  4288. SERIAL_ECHO_START;
  4289. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4290. }
  4291. break;
  4292. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4293. case 540:
  4294. {
  4295. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4296. }
  4297. break;
  4298. #endif
  4299. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4300. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4301. {
  4302. float value;
  4303. if (code_seen('Z'))
  4304. {
  4305. value = code_value();
  4306. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4307. {
  4308. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4309. SERIAL_ECHO_START;
  4310. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4311. SERIAL_PROTOCOLLN("");
  4312. }
  4313. else
  4314. {
  4315. SERIAL_ECHO_START;
  4316. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4317. SERIAL_ECHORPGM(MSG_Z_MIN);
  4318. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4319. SERIAL_ECHORPGM(MSG_Z_MAX);
  4320. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4321. SERIAL_PROTOCOLLN("");
  4322. }
  4323. }
  4324. else
  4325. {
  4326. SERIAL_ECHO_START;
  4327. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4328. SERIAL_ECHO(-zprobe_zoffset);
  4329. SERIAL_PROTOCOLLN("");
  4330. }
  4331. break;
  4332. }
  4333. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4334. #ifdef FILAMENTCHANGEENABLE
  4335. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4336. {
  4337. st_synchronize();
  4338. if (farm_mode)
  4339. {
  4340. prusa_statistics(22);
  4341. }
  4342. feedmultiplyBckp=feedmultiply;
  4343. int8_t TooLowZ = 0;
  4344. float target[4];
  4345. float lastpos[4];
  4346. target[X_AXIS]=current_position[X_AXIS];
  4347. target[Y_AXIS]=current_position[Y_AXIS];
  4348. target[Z_AXIS]=current_position[Z_AXIS];
  4349. target[E_AXIS]=current_position[E_AXIS];
  4350. lastpos[X_AXIS]=current_position[X_AXIS];
  4351. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4352. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4353. lastpos[E_AXIS]=current_position[E_AXIS];
  4354. //Restract extruder
  4355. if(code_seen('E'))
  4356. {
  4357. target[E_AXIS]+= code_value();
  4358. }
  4359. else
  4360. {
  4361. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4362. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4363. #endif
  4364. }
  4365. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4366. //Lift Z
  4367. if(code_seen('Z'))
  4368. {
  4369. target[Z_AXIS]+= code_value();
  4370. }
  4371. else
  4372. {
  4373. #ifdef FILAMENTCHANGE_ZADD
  4374. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4375. if(target[Z_AXIS] < 10){
  4376. target[Z_AXIS]+= 10 ;
  4377. TooLowZ = 1;
  4378. }else{
  4379. TooLowZ = 0;
  4380. }
  4381. #endif
  4382. }
  4383. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4384. //Move XY to side
  4385. if(code_seen('X'))
  4386. {
  4387. target[X_AXIS]+= code_value();
  4388. }
  4389. else
  4390. {
  4391. #ifdef FILAMENTCHANGE_XPOS
  4392. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4393. #endif
  4394. }
  4395. if(code_seen('Y'))
  4396. {
  4397. target[Y_AXIS]= code_value();
  4398. }
  4399. else
  4400. {
  4401. #ifdef FILAMENTCHANGE_YPOS
  4402. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4403. #endif
  4404. }
  4405. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4406. // Unload filament
  4407. if(code_seen('L'))
  4408. {
  4409. target[E_AXIS]+= code_value();
  4410. }
  4411. else
  4412. {
  4413. #ifdef FILAMENTCHANGE_FINALRETRACT
  4414. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  4415. #endif
  4416. }
  4417. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4418. //finish moves
  4419. st_synchronize();
  4420. //disable extruder steppers so filament can be removed
  4421. disable_e0();
  4422. disable_e1();
  4423. disable_e2();
  4424. delay(100);
  4425. //Wait for user to insert filament
  4426. uint8_t cnt=0;
  4427. int counterBeep = 0;
  4428. lcd_wait_interact();
  4429. while(!lcd_clicked()){
  4430. cnt++;
  4431. manage_heater();
  4432. manage_inactivity(true);
  4433. if(cnt==0)
  4434. {
  4435. #if BEEPER > 0
  4436. if (counterBeep== 500){
  4437. counterBeep = 0;
  4438. }
  4439. SET_OUTPUT(BEEPER);
  4440. if (counterBeep== 0){
  4441. WRITE(BEEPER,HIGH);
  4442. }
  4443. if (counterBeep== 20){
  4444. WRITE(BEEPER,LOW);
  4445. }
  4446. counterBeep++;
  4447. #else
  4448. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4449. lcd_buzz(1000/6,100);
  4450. #else
  4451. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4452. #endif
  4453. #endif
  4454. }
  4455. }
  4456. //Filament inserted
  4457. WRITE(BEEPER,LOW);
  4458. //Feed the filament to the end of nozzle quickly
  4459. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4460. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4461. //Extrude some filament
  4462. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4463. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4464. //Wait for user to check the state
  4465. lcd_change_fil_state = 0;
  4466. lcd_loading_filament();
  4467. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4468. lcd_change_fil_state = 0;
  4469. lcd_alright();
  4470. switch(lcd_change_fil_state){
  4471. // Filament failed to load so load it again
  4472. case 2:
  4473. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4474. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4475. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4476. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4477. lcd_loading_filament();
  4478. break;
  4479. // Filament loaded properly but color is not clear
  4480. case 3:
  4481. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4482. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4483. lcd_loading_color();
  4484. break;
  4485. // Everything good
  4486. default:
  4487. lcd_change_success();
  4488. break;
  4489. }
  4490. }
  4491. //Not let's go back to print
  4492. //Feed a little of filament to stabilize pressure
  4493. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4494. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4495. //Retract
  4496. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4497. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4498. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4499. //Move XY back
  4500. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4501. //Move Z back
  4502. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4503. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4504. //Unretract
  4505. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4506. //Set E position to original
  4507. plan_set_e_position(lastpos[E_AXIS]);
  4508. //Recover feed rate
  4509. feedmultiply=feedmultiplyBckp;
  4510. char cmd[9];
  4511. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4512. enquecommand(cmd);
  4513. }
  4514. break;
  4515. #endif //FILAMENTCHANGEENABLE
  4516. case 907: // M907 Set digital trimpot motor current using axis codes.
  4517. {
  4518. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4519. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4520. if(code_seen('B')) digipot_current(4,code_value());
  4521. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4522. #endif
  4523. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4524. if(code_seen('X')) digipot_current(0, code_value());
  4525. #endif
  4526. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4527. if(code_seen('Z')) digipot_current(1, code_value());
  4528. #endif
  4529. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4530. if(code_seen('E')) digipot_current(2, code_value());
  4531. #endif
  4532. #ifdef DIGIPOT_I2C
  4533. // this one uses actual amps in floating point
  4534. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4535. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4536. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4537. #endif
  4538. }
  4539. break;
  4540. case 908: // M908 Control digital trimpot directly.
  4541. {
  4542. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4543. uint8_t channel,current;
  4544. if(code_seen('P')) channel=code_value();
  4545. if(code_seen('S')) current=code_value();
  4546. digitalPotWrite(channel, current);
  4547. #endif
  4548. }
  4549. break;
  4550. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4551. {
  4552. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4553. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4554. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4555. if(code_seen('B')) microstep_mode(4,code_value());
  4556. microstep_readings();
  4557. #endif
  4558. }
  4559. break;
  4560. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4561. {
  4562. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4563. if(code_seen('S')) switch((int)code_value())
  4564. {
  4565. case 1:
  4566. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4567. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4568. break;
  4569. case 2:
  4570. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4571. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4572. break;
  4573. }
  4574. microstep_readings();
  4575. #endif
  4576. }
  4577. break;
  4578. case 701: //M701: load filament
  4579. {
  4580. enable_z();
  4581. custom_message = true;
  4582. custom_message_type = 2;
  4583. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4584. current_position[E_AXIS] += 65;
  4585. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4586. current_position[E_AXIS] += 40;
  4587. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4588. st_synchronize();
  4589. if (!farm_mode && loading_flag) {
  4590. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4591. while (!clean) {
  4592. lcd_update_enable(true);
  4593. lcd_update(2);
  4594. current_position[E_AXIS] += 40;
  4595. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4596. st_synchronize();
  4597. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4598. }
  4599. }
  4600. lcd_update_enable(true);
  4601. lcd_update(2);
  4602. lcd_setstatuspgm(WELCOME_MSG);
  4603. disable_z();
  4604. loading_flag = false;
  4605. custom_message = false;
  4606. custom_message_type = 0;
  4607. }
  4608. break;
  4609. case 702:
  4610. {
  4611. custom_message = true;
  4612. custom_message_type = 2;
  4613. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4614. current_position[E_AXIS] -= 80;
  4615. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4616. st_synchronize();
  4617. lcd_setstatuspgm(WELCOME_MSG);
  4618. custom_message = false;
  4619. custom_message_type = 0;
  4620. }
  4621. break;
  4622. case 999: // M999: Restart after being stopped
  4623. Stopped = false;
  4624. lcd_reset_alert_level();
  4625. gcode_LastN = Stopped_gcode_LastN;
  4626. FlushSerialRequestResend();
  4627. break;
  4628. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4629. }
  4630. } // end if(code_seen('M')) (end of M codes)
  4631. else if(code_seen('T'))
  4632. {
  4633. int index;
  4634. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4635. if (*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') {
  4636. SERIAL_ECHOLNPGM("Invalid T code.");
  4637. }
  4638. else {
  4639. tmp_extruder = code_value();
  4640. #ifdef SNMM
  4641. st_synchronize();
  4642. delay(100);
  4643. disable_e0();
  4644. disable_e1();
  4645. disable_e2();
  4646. pinMode(E_MUX0_PIN, OUTPUT);
  4647. pinMode(E_MUX1_PIN, OUTPUT);
  4648. pinMode(E_MUX2_PIN, OUTPUT);
  4649. delay(100);
  4650. SERIAL_ECHO_START;
  4651. SERIAL_ECHO("T:");
  4652. SERIAL_ECHOLN((int)tmp_extruder);
  4653. switch (tmp_extruder) {
  4654. case 1:
  4655. WRITE(E_MUX0_PIN, HIGH);
  4656. WRITE(E_MUX1_PIN, LOW);
  4657. WRITE(E_MUX2_PIN, LOW);
  4658. break;
  4659. case 2:
  4660. WRITE(E_MUX0_PIN, LOW);
  4661. WRITE(E_MUX1_PIN, HIGH);
  4662. WRITE(E_MUX2_PIN, LOW);
  4663. break;
  4664. case 3:
  4665. WRITE(E_MUX0_PIN, HIGH);
  4666. WRITE(E_MUX1_PIN, HIGH);
  4667. WRITE(E_MUX2_PIN, LOW);
  4668. break;
  4669. default:
  4670. WRITE(E_MUX0_PIN, LOW);
  4671. WRITE(E_MUX1_PIN, LOW);
  4672. WRITE(E_MUX2_PIN, LOW);
  4673. break;
  4674. }
  4675. delay(100);
  4676. #else
  4677. if (tmp_extruder >= EXTRUDERS) {
  4678. SERIAL_ECHO_START;
  4679. SERIAL_ECHOPGM("T");
  4680. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4681. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4682. }
  4683. else {
  4684. boolean make_move = false;
  4685. if (code_seen('F')) {
  4686. make_move = true;
  4687. next_feedrate = code_value();
  4688. if (next_feedrate > 0.0) {
  4689. feedrate = next_feedrate;
  4690. }
  4691. }
  4692. #if EXTRUDERS > 1
  4693. if (tmp_extruder != active_extruder) {
  4694. // Save current position to return to after applying extruder offset
  4695. memcpy(destination, current_position, sizeof(destination));
  4696. // Offset extruder (only by XY)
  4697. int i;
  4698. for (i = 0; i < 2; i++) {
  4699. current_position[i] = current_position[i] -
  4700. extruder_offset[i][active_extruder] +
  4701. extruder_offset[i][tmp_extruder];
  4702. }
  4703. // Set the new active extruder and position
  4704. active_extruder = tmp_extruder;
  4705. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4706. // Move to the old position if 'F' was in the parameters
  4707. if (make_move && Stopped == false) {
  4708. prepare_move();
  4709. }
  4710. }
  4711. #endif
  4712. SERIAL_ECHO_START;
  4713. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4714. SERIAL_PROTOCOLLN((int)active_extruder);
  4715. }
  4716. #endif
  4717. }
  4718. } // end if(code_seen('T')) (end of T codes)
  4719. else
  4720. {
  4721. SERIAL_ECHO_START;
  4722. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4723. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4724. SERIAL_ECHOLNPGM("\"");
  4725. }
  4726. ClearToSend();
  4727. }
  4728. void FlushSerialRequestResend()
  4729. {
  4730. //char cmdbuffer[bufindr][100]="Resend:";
  4731. MYSERIAL.flush();
  4732. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4733. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4734. ClearToSend();
  4735. }
  4736. // Confirm the execution of a command, if sent from a serial line.
  4737. // Execution of a command from a SD card will not be confirmed.
  4738. void ClearToSend()
  4739. {
  4740. previous_millis_cmd = millis();
  4741. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4742. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4743. }
  4744. void get_coordinates()
  4745. {
  4746. bool seen[4]={false,false,false,false};
  4747. for(int8_t i=0; i < NUM_AXIS; i++) {
  4748. if(code_seen(axis_codes[i]))
  4749. {
  4750. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4751. seen[i]=true;
  4752. }
  4753. else destination[i] = current_position[i]; //Are these else lines really needed?
  4754. }
  4755. if(code_seen('F')) {
  4756. next_feedrate = code_value();
  4757. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4758. }
  4759. }
  4760. void get_arc_coordinates()
  4761. {
  4762. #ifdef SF_ARC_FIX
  4763. bool relative_mode_backup = relative_mode;
  4764. relative_mode = true;
  4765. #endif
  4766. get_coordinates();
  4767. #ifdef SF_ARC_FIX
  4768. relative_mode=relative_mode_backup;
  4769. #endif
  4770. if(code_seen('I')) {
  4771. offset[0] = code_value();
  4772. }
  4773. else {
  4774. offset[0] = 0.0;
  4775. }
  4776. if(code_seen('J')) {
  4777. offset[1] = code_value();
  4778. }
  4779. else {
  4780. offset[1] = 0.0;
  4781. }
  4782. }
  4783. void clamp_to_software_endstops(float target[3])
  4784. {
  4785. world2machine_clamp(target[0], target[1]);
  4786. // Clamp the Z coordinate.
  4787. if (min_software_endstops) {
  4788. float negative_z_offset = 0;
  4789. #ifdef ENABLE_AUTO_BED_LEVELING
  4790. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4791. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4792. #endif
  4793. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4794. }
  4795. if (max_software_endstops) {
  4796. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4797. }
  4798. }
  4799. #ifdef MESH_BED_LEVELING
  4800. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4801. float dx = x - current_position[X_AXIS];
  4802. float dy = y - current_position[Y_AXIS];
  4803. float dz = z - current_position[Z_AXIS];
  4804. int n_segments = 0;
  4805. if (mbl.active) {
  4806. float len = abs(dx) + abs(dy);
  4807. if (len > 0)
  4808. // Split to 3cm segments or shorter.
  4809. n_segments = int(ceil(len / 30.f));
  4810. }
  4811. if (n_segments > 1) {
  4812. float de = e - current_position[E_AXIS];
  4813. for (int i = 1; i < n_segments; ++ i) {
  4814. float t = float(i) / float(n_segments);
  4815. plan_buffer_line(
  4816. current_position[X_AXIS] + t * dx,
  4817. current_position[Y_AXIS] + t * dy,
  4818. current_position[Z_AXIS] + t * dz,
  4819. current_position[E_AXIS] + t * de,
  4820. feed_rate, extruder);
  4821. }
  4822. }
  4823. // The rest of the path.
  4824. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4825. current_position[X_AXIS] = x;
  4826. current_position[Y_AXIS] = y;
  4827. current_position[Z_AXIS] = z;
  4828. current_position[E_AXIS] = e;
  4829. }
  4830. #endif // MESH_BED_LEVELING
  4831. void prepare_move()
  4832. {
  4833. clamp_to_software_endstops(destination);
  4834. previous_millis_cmd = millis();
  4835. // Do not use feedmultiply for E or Z only moves
  4836. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4837. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4838. }
  4839. else {
  4840. #ifdef MESH_BED_LEVELING
  4841. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4842. #else
  4843. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  4844. #endif
  4845. }
  4846. for(int8_t i=0; i < NUM_AXIS; i++) {
  4847. current_position[i] = destination[i];
  4848. }
  4849. }
  4850. void prepare_arc_move(char isclockwise) {
  4851. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4852. // Trace the arc
  4853. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4854. // As far as the parser is concerned, the position is now == target. In reality the
  4855. // motion control system might still be processing the action and the real tool position
  4856. // in any intermediate location.
  4857. for(int8_t i=0; i < NUM_AXIS; i++) {
  4858. current_position[i] = destination[i];
  4859. }
  4860. previous_millis_cmd = millis();
  4861. }
  4862. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4863. #if defined(FAN_PIN)
  4864. #if CONTROLLERFAN_PIN == FAN_PIN
  4865. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4866. #endif
  4867. #endif
  4868. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4869. unsigned long lastMotorCheck = 0;
  4870. void controllerFan()
  4871. {
  4872. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4873. {
  4874. lastMotorCheck = millis();
  4875. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4876. #if EXTRUDERS > 2
  4877. || !READ(E2_ENABLE_PIN)
  4878. #endif
  4879. #if EXTRUDER > 1
  4880. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4881. || !READ(X2_ENABLE_PIN)
  4882. #endif
  4883. || !READ(E1_ENABLE_PIN)
  4884. #endif
  4885. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4886. {
  4887. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4888. }
  4889. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4890. {
  4891. digitalWrite(CONTROLLERFAN_PIN, 0);
  4892. analogWrite(CONTROLLERFAN_PIN, 0);
  4893. }
  4894. else
  4895. {
  4896. // allows digital or PWM fan output to be used (see M42 handling)
  4897. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4898. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4899. }
  4900. }
  4901. }
  4902. #endif
  4903. #ifdef TEMP_STAT_LEDS
  4904. static bool blue_led = false;
  4905. static bool red_led = false;
  4906. static uint32_t stat_update = 0;
  4907. void handle_status_leds(void) {
  4908. float max_temp = 0.0;
  4909. if(millis() > stat_update) {
  4910. stat_update += 500; // Update every 0.5s
  4911. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4912. max_temp = max(max_temp, degHotend(cur_extruder));
  4913. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4914. }
  4915. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4916. max_temp = max(max_temp, degTargetBed());
  4917. max_temp = max(max_temp, degBed());
  4918. #endif
  4919. if((max_temp > 55.0) && (red_led == false)) {
  4920. digitalWrite(STAT_LED_RED, 1);
  4921. digitalWrite(STAT_LED_BLUE, 0);
  4922. red_led = true;
  4923. blue_led = false;
  4924. }
  4925. if((max_temp < 54.0) && (blue_led == false)) {
  4926. digitalWrite(STAT_LED_RED, 0);
  4927. digitalWrite(STAT_LED_BLUE, 1);
  4928. red_led = false;
  4929. blue_led = true;
  4930. }
  4931. }
  4932. }
  4933. #endif
  4934. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4935. {
  4936. #if defined(KILL_PIN) && KILL_PIN > -1
  4937. static int killCount = 0; // make the inactivity button a bit less responsive
  4938. const int KILL_DELAY = 10000;
  4939. #endif
  4940. if(buflen < (BUFSIZE-1)){
  4941. get_command();
  4942. }
  4943. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4944. if(max_inactive_time)
  4945. kill();
  4946. if(stepper_inactive_time) {
  4947. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4948. {
  4949. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4950. disable_x();
  4951. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4952. disable_y();
  4953. disable_z();
  4954. disable_e0();
  4955. disable_e1();
  4956. disable_e2();
  4957. }
  4958. }
  4959. }
  4960. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4961. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4962. {
  4963. chdkActive = false;
  4964. WRITE(CHDK, LOW);
  4965. }
  4966. #endif
  4967. #if defined(KILL_PIN) && KILL_PIN > -1
  4968. // Check if the kill button was pressed and wait just in case it was an accidental
  4969. // key kill key press
  4970. // -------------------------------------------------------------------------------
  4971. if( 0 == READ(KILL_PIN) )
  4972. {
  4973. killCount++;
  4974. }
  4975. else if (killCount > 0)
  4976. {
  4977. killCount--;
  4978. }
  4979. // Exceeded threshold and we can confirm that it was not accidental
  4980. // KILL the machine
  4981. // ----------------------------------------------------------------
  4982. if ( killCount >= KILL_DELAY)
  4983. {
  4984. kill();
  4985. }
  4986. #endif
  4987. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4988. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4989. #endif
  4990. #ifdef EXTRUDER_RUNOUT_PREVENT
  4991. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4992. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4993. {
  4994. bool oldstatus=READ(E0_ENABLE_PIN);
  4995. enable_e0();
  4996. float oldepos=current_position[E_AXIS];
  4997. float oldedes=destination[E_AXIS];
  4998. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4999. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5000. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5001. current_position[E_AXIS]=oldepos;
  5002. destination[E_AXIS]=oldedes;
  5003. plan_set_e_position(oldepos);
  5004. previous_millis_cmd=millis();
  5005. st_synchronize();
  5006. WRITE(E0_ENABLE_PIN,oldstatus);
  5007. }
  5008. #endif
  5009. #ifdef TEMP_STAT_LEDS
  5010. handle_status_leds();
  5011. #endif
  5012. check_axes_activity();
  5013. }
  5014. void kill(const char *full_screen_message)
  5015. {
  5016. cli(); // Stop interrupts
  5017. disable_heater();
  5018. disable_x();
  5019. // SERIAL_ECHOLNPGM("kill - disable Y");
  5020. disable_y();
  5021. disable_z();
  5022. disable_e0();
  5023. disable_e1();
  5024. disable_e2();
  5025. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5026. pinMode(PS_ON_PIN,INPUT);
  5027. #endif
  5028. SERIAL_ERROR_START;
  5029. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5030. if (full_screen_message != NULL) {
  5031. SERIAL_ERRORLNRPGM(full_screen_message);
  5032. lcd_display_message_fullscreen_P(full_screen_message);
  5033. } else {
  5034. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5035. }
  5036. // FMC small patch to update the LCD before ending
  5037. sei(); // enable interrupts
  5038. for ( int i=5; i--; lcd_update())
  5039. {
  5040. delay(200);
  5041. }
  5042. cli(); // disable interrupts
  5043. suicide();
  5044. while(1) { /* Intentionally left empty */ } // Wait for reset
  5045. }
  5046. void Stop()
  5047. {
  5048. disable_heater();
  5049. if(Stopped == false) {
  5050. Stopped = true;
  5051. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5052. SERIAL_ERROR_START;
  5053. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5054. LCD_MESSAGERPGM(MSG_STOPPED);
  5055. }
  5056. }
  5057. bool IsStopped() { return Stopped; };
  5058. #ifdef FAST_PWM_FAN
  5059. void setPwmFrequency(uint8_t pin, int val)
  5060. {
  5061. val &= 0x07;
  5062. switch(digitalPinToTimer(pin))
  5063. {
  5064. #if defined(TCCR0A)
  5065. case TIMER0A:
  5066. case TIMER0B:
  5067. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5068. // TCCR0B |= val;
  5069. break;
  5070. #endif
  5071. #if defined(TCCR1A)
  5072. case TIMER1A:
  5073. case TIMER1B:
  5074. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5075. // TCCR1B |= val;
  5076. break;
  5077. #endif
  5078. #if defined(TCCR2)
  5079. case TIMER2:
  5080. case TIMER2:
  5081. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5082. TCCR2 |= val;
  5083. break;
  5084. #endif
  5085. #if defined(TCCR2A)
  5086. case TIMER2A:
  5087. case TIMER2B:
  5088. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5089. TCCR2B |= val;
  5090. break;
  5091. #endif
  5092. #if defined(TCCR3A)
  5093. case TIMER3A:
  5094. case TIMER3B:
  5095. case TIMER3C:
  5096. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5097. TCCR3B |= val;
  5098. break;
  5099. #endif
  5100. #if defined(TCCR4A)
  5101. case TIMER4A:
  5102. case TIMER4B:
  5103. case TIMER4C:
  5104. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5105. TCCR4B |= val;
  5106. break;
  5107. #endif
  5108. #if defined(TCCR5A)
  5109. case TIMER5A:
  5110. case TIMER5B:
  5111. case TIMER5C:
  5112. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5113. TCCR5B |= val;
  5114. break;
  5115. #endif
  5116. }
  5117. }
  5118. #endif //FAST_PWM_FAN
  5119. bool setTargetedHotend(int code){
  5120. tmp_extruder = active_extruder;
  5121. if(code_seen('T')) {
  5122. tmp_extruder = code_value();
  5123. if(tmp_extruder >= EXTRUDERS) {
  5124. SERIAL_ECHO_START;
  5125. switch(code){
  5126. case 104:
  5127. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5128. break;
  5129. case 105:
  5130. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5131. break;
  5132. case 109:
  5133. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5134. break;
  5135. case 218:
  5136. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5137. break;
  5138. case 221:
  5139. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5140. break;
  5141. }
  5142. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5143. return true;
  5144. }
  5145. }
  5146. return false;
  5147. }
  5148. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5149. {
  5150. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5151. {
  5152. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5153. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5154. }
  5155. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5156. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5157. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5158. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5159. total_filament_used = 0;
  5160. }
  5161. float calculate_volumetric_multiplier(float diameter) {
  5162. float area = .0;
  5163. float radius = .0;
  5164. radius = diameter * .5;
  5165. if (! volumetric_enabled || radius == 0) {
  5166. area = 1;
  5167. }
  5168. else {
  5169. area = M_PI * pow(radius, 2);
  5170. }
  5171. return 1.0 / area;
  5172. }
  5173. void calculate_volumetric_multipliers() {
  5174. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5175. #if EXTRUDERS > 1
  5176. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5177. #if EXTRUDERS > 2
  5178. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5179. #endif
  5180. #endif
  5181. }
  5182. void delay_keep_alive(unsigned int ms)
  5183. {
  5184. for (;;) {
  5185. manage_heater();
  5186. // Manage inactivity, but don't disable steppers on timeout.
  5187. manage_inactivity(true);
  5188. lcd_update();
  5189. if (ms == 0)
  5190. break;
  5191. else if (ms >= 50) {
  5192. delay(50);
  5193. ms -= 50;
  5194. } else {
  5195. delay(ms);
  5196. ms = 0;
  5197. }
  5198. }
  5199. }
  5200. void check_babystep() {
  5201. int babystep_z;
  5202. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5203. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5204. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5205. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5206. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5207. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5208. lcd_update_enable(true);
  5209. }
  5210. }
  5211. #ifdef DIS
  5212. void d_setup()
  5213. {
  5214. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5215. pinMode(D_DATA, INPUT_PULLUP);
  5216. pinMode(D_REQUIRE, OUTPUT);
  5217. digitalWrite(D_REQUIRE, HIGH);
  5218. }
  5219. float d_ReadData()
  5220. {
  5221. int digit[13];
  5222. String mergeOutput;
  5223. float output;
  5224. digitalWrite(D_REQUIRE, HIGH);
  5225. for (int i = 0; i<13; i++)
  5226. {
  5227. for (int j = 0; j < 4; j++)
  5228. {
  5229. while (digitalRead(D_DATACLOCK) == LOW) {}
  5230. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5231. bitWrite(digit[i], j, digitalRead(D_DATA));
  5232. }
  5233. }
  5234. digitalWrite(D_REQUIRE, LOW);
  5235. mergeOutput = "";
  5236. output = 0;
  5237. for (int r = 5; r <= 10; r++) //Merge digits
  5238. {
  5239. mergeOutput += digit[r];
  5240. }
  5241. output = mergeOutput.toFloat();
  5242. if (digit[4] == 8) //Handle sign
  5243. {
  5244. output *= -1;
  5245. }
  5246. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5247. {
  5248. output /= 10;
  5249. }
  5250. return output;
  5251. }
  5252. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5253. int t1 = 0;
  5254. int t_delay = 0;
  5255. int digit[13];
  5256. int m;
  5257. char str[3];
  5258. //String mergeOutput;
  5259. char mergeOutput[15];
  5260. float output;
  5261. int mesh_point = 0; //index number of calibration point
  5262. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5263. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5264. float mesh_home_z_search = 4;
  5265. float row[x_points_num];
  5266. int ix = 0;
  5267. int iy = 0;
  5268. char* filename_wldsd = "wldsd.txt";
  5269. char data_wldsd[70];
  5270. char numb_wldsd[10];
  5271. d_setup();
  5272. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5273. // We don't know where we are! HOME!
  5274. // Push the commands to the front of the message queue in the reverse order!
  5275. // There shall be always enough space reserved for these commands.
  5276. repeatcommand_front(); // repeat G80 with all its parameters
  5277. enquecommand_front_P((PSTR("G28 W0")));
  5278. enquecommand_front_P((PSTR("G1 Z5")));
  5279. return;
  5280. }
  5281. bool custom_message_old = custom_message;
  5282. unsigned int custom_message_type_old = custom_message_type;
  5283. unsigned int custom_message_state_old = custom_message_state;
  5284. custom_message = true;
  5285. custom_message_type = 1;
  5286. custom_message_state = (x_points_num * y_points_num) + 10;
  5287. lcd_update(1);
  5288. mbl.reset();
  5289. babystep_undo();
  5290. card.openFile(filename_wldsd, false);
  5291. current_position[Z_AXIS] = mesh_home_z_search;
  5292. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5293. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5294. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5295. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5296. setup_for_endstop_move(false);
  5297. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5298. SERIAL_PROTOCOL(x_points_num);
  5299. SERIAL_PROTOCOLPGM(",");
  5300. SERIAL_PROTOCOL(y_points_num);
  5301. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5302. SERIAL_PROTOCOL(mesh_home_z_search);
  5303. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5304. SERIAL_PROTOCOL(x_dimension);
  5305. SERIAL_PROTOCOLPGM(",");
  5306. SERIAL_PROTOCOL(y_dimension);
  5307. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5308. while (mesh_point != x_points_num * y_points_num) {
  5309. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5310. iy = mesh_point / x_points_num;
  5311. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5312. float z0 = 0.f;
  5313. current_position[Z_AXIS] = mesh_home_z_search;
  5314. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5315. st_synchronize();
  5316. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5317. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5318. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5319. st_synchronize();
  5320. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5321. break;
  5322. card.closefile();
  5323. }
  5324. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5325. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5326. //strcat(data_wldsd, numb_wldsd);
  5327. //MYSERIAL.println(data_wldsd);
  5328. //delay(1000);
  5329. //delay(3000);
  5330. //t1 = millis();
  5331. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5332. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5333. memset(digit, 0, sizeof(digit));
  5334. //cli();
  5335. digitalWrite(D_REQUIRE, LOW);
  5336. for (int i = 0; i<13; i++)
  5337. {
  5338. //t1 = millis();
  5339. for (int j = 0; j < 4; j++)
  5340. {
  5341. while (digitalRead(D_DATACLOCK) == LOW) {}
  5342. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5343. bitWrite(digit[i], j, digitalRead(D_DATA));
  5344. }
  5345. //t_delay = (millis() - t1);
  5346. //SERIAL_PROTOCOLPGM(" ");
  5347. //SERIAL_PROTOCOL_F(t_delay, 5);
  5348. //SERIAL_PROTOCOLPGM(" ");
  5349. }
  5350. //sei();
  5351. digitalWrite(D_REQUIRE, HIGH);
  5352. mergeOutput[0] = '\0';
  5353. output = 0;
  5354. for (int r = 5; r <= 10; r++) //Merge digits
  5355. {
  5356. sprintf(str, "%d", digit[r]);
  5357. strcat(mergeOutput, str);
  5358. }
  5359. output = atof(mergeOutput);
  5360. if (digit[4] == 8) //Handle sign
  5361. {
  5362. output *= -1;
  5363. }
  5364. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5365. {
  5366. output *= 0.1;
  5367. }
  5368. //output = d_ReadData();
  5369. //row[ix] = current_position[Z_AXIS];
  5370. memset(data_wldsd, 0, sizeof(data_wldsd));
  5371. for (int i = 0; i <3; i++) {
  5372. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5373. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5374. strcat(data_wldsd, numb_wldsd);
  5375. strcat(data_wldsd, ";");
  5376. }
  5377. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5378. dtostrf(output, 8, 5, numb_wldsd);
  5379. strcat(data_wldsd, numb_wldsd);
  5380. //strcat(data_wldsd, ";");
  5381. card.write_command(data_wldsd);
  5382. //row[ix] = d_ReadData();
  5383. row[ix] = output; // current_position[Z_AXIS];
  5384. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5385. for (int i = 0; i < x_points_num; i++) {
  5386. SERIAL_PROTOCOLPGM(" ");
  5387. SERIAL_PROTOCOL_F(row[i], 5);
  5388. }
  5389. SERIAL_PROTOCOLPGM("\n");
  5390. }
  5391. custom_message_state--;
  5392. mesh_point++;
  5393. lcd_update(1);
  5394. }
  5395. card.closefile();
  5396. }
  5397. void temp_compensation_start() {
  5398. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5399. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5400. current_position[Z_AXIS] = 0;
  5401. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5402. st_synchronize();
  5403. while (fabs(degBed() - target_temperature_bed) > 3) delay_keep_alive(1000);
  5404. for(int i = 0; i < PINDA_HEAT_T; i++) delay_keep_alive(1000);
  5405. }
  5406. void temp_compensation_apply() {
  5407. int i_add;
  5408. int compensation_value;
  5409. int z_shift = 0;
  5410. float z_shift_mm;
  5411. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 50 && target_temperature_bed <= 100) {
  5412. i_add = (target_temperature_bed - 60) / 10;
  5413. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5414. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5415. }
  5416. else {
  5417. //interpolation
  5418. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5419. }
  5420. SERIAL_PROTOCOLPGM("\n");
  5421. SERIAL_PROTOCOLPGM("Z shift applied:");
  5422. MYSERIAL.print(z_shift_mm);
  5423. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5424. st_synchronize();
  5425. plan_set_z_position(current_position[Z_AXIS]);
  5426. }
  5427. /*float temp_comp_interpolation(float temperature) {
  5428. }*/
  5429. float temp_comp_interpolation(float temperature) {
  5430. //cubic spline interpolation
  5431. int i;
  5432. int shift[6];
  5433. float shift_f[6];
  5434. float temp_C[6];
  5435. shift[0] = 0; //shift for 50 C is 0
  5436. int n, j, k;
  5437. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], p, m[10][10] = { 0 }, temp;
  5438. /*SERIAL_ECHOLNPGM("Reading shift data:");
  5439. MYSERIAL.print(shift[i]);*/
  5440. for (i = 0; i < 5; i++) {
  5441. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &shift[i + 1]); //read shift in steps from EEPROM
  5442. //SERIAL_ECHOLNPGM(" ");
  5443. //MYSERIAL.print(shift[i + 1]);
  5444. temp_C[i] = 50 + i * 10; //temperature in C
  5445. shift_f[i] = (float)shift[i];
  5446. }
  5447. for (i = 5; i > 0; i--) {
  5448. F[i] = (shift_f[i] - shift_f[i - 1]) / (temp_C[i] - temp_C[i - 1]);
  5449. h[i - 1] = temp_C[i] - temp_C[i - 1];
  5450. }
  5451. //*********** formation of h, s , f matrix *************
  5452. for (i = 1; i<5; i++) {
  5453. m[i][i] = 2 * (h[i - 1] + h[i]);
  5454. if (i != 1) {
  5455. m[i][i - 1] = h[i - 1];
  5456. m[i - 1][i] = h[i - 1];
  5457. }
  5458. m[i][5] = 6 * (F[i + 1] - F[i]);
  5459. }
  5460. //*********** forward elimination **************
  5461. for (i = 1; i<4; i++) {
  5462. temp = (m[i + 1][i] / m[i][i]);
  5463. for (j = 1; j <= 5; j++)
  5464. m[i + 1][j] -= temp*m[i][j];
  5465. }
  5466. //*********** backward substitution *********
  5467. for (i = 4; i>0; i--) {
  5468. sum = 0;
  5469. for (j = i; j <= 4; j++)
  5470. sum += m[i][j] * s[j];
  5471. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5472. }
  5473. for (i = 0; i<5; i++)
  5474. if (temp_C[i] <= temperature&&temperature <= temp_C[i + 1]) {
  5475. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5476. b = s[i] / 2;
  5477. c = (shift[i + 1] - shift[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5478. d = shift[i];
  5479. sum = a*pow((p - temp_C[i]), 3) + b*pow((p - temp_C[i]), 2) + c*(p - temp_C[i]) + d;
  5480. }
  5481. return(sum);
  5482. }
  5483. #endif