Marlin_main.cpp 301 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "ultralcd.h"
  57. #include "Configuration_prusa.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef PAT9125
  80. #include "pat9125.h"
  81. #include "fsensor.h"
  82. #endif //PAT9125
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #endif //W25X20CL
  89. #ifdef BLINKM
  90. #include "BlinkM.h"
  91. #include "Wire.h"
  92. #endif
  93. #ifdef ULTRALCD
  94. #include "ultralcd.h"
  95. #endif
  96. #if NUM_SERVOS > 0
  97. #include "Servo.h"
  98. #endif
  99. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  100. #include <SPI.h>
  101. #endif
  102. #define VERSION_STRING "1.0.2"
  103. #include "ultralcd.h"
  104. #include "cmdqueue.h"
  105. // Macros for bit masks
  106. #define BIT(b) (1<<(b))
  107. #define TEST(n,b) (((n)&BIT(b))!=0)
  108. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  109. //Macro for print fan speed
  110. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  111. #define PRINTING_TYPE_SD 0
  112. #define PRINTING_TYPE_USB 1
  113. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  114. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  115. //Implemented Codes
  116. //-------------------
  117. // PRUSA CODES
  118. // P F - Returns FW versions
  119. // P R - Returns revision of printer
  120. // G0 -> G1
  121. // G1 - Coordinated Movement X Y Z E
  122. // G2 - CW ARC
  123. // G3 - CCW ARC
  124. // G4 - Dwell S<seconds> or P<milliseconds>
  125. // G10 - retract filament according to settings of M207
  126. // G11 - retract recover filament according to settings of M208
  127. // G28 - Home all Axis
  128. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  129. // G30 - Single Z Probe, probes bed at current XY location.
  130. // G31 - Dock sled (Z_PROBE_SLED only)
  131. // G32 - Undock sled (Z_PROBE_SLED only)
  132. // G80 - Automatic mesh bed leveling
  133. // G81 - Print bed profile
  134. // G90 - Use Absolute Coordinates
  135. // G91 - Use Relative Coordinates
  136. // G92 - Set current position to coordinates given
  137. // M Codes
  138. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  139. // M1 - Same as M0
  140. // M17 - Enable/Power all stepper motors
  141. // M18 - Disable all stepper motors; same as M84
  142. // M20 - List SD card
  143. // M21 - Init SD card
  144. // M22 - Release SD card
  145. // M23 - Select SD file (M23 filename.g)
  146. // M24 - Start/resume SD print
  147. // M25 - Pause SD print
  148. // M26 - Set SD position in bytes (M26 S12345)
  149. // M27 - Report SD print status
  150. // M28 - Start SD write (M28 filename.g)
  151. // M29 - Stop SD write
  152. // M30 - Delete file from SD (M30 filename.g)
  153. // M31 - Output time since last M109 or SD card start to serial
  154. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  155. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  156. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  157. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  158. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  159. // M73 - Show percent done and print time remaining
  160. // M80 - Turn on Power Supply
  161. // M81 - Turn off Power Supply
  162. // M82 - Set E codes absolute (default)
  163. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  164. // M84 - Disable steppers until next move,
  165. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  166. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  167. // M92 - Set axis_steps_per_unit - same syntax as G92
  168. // M104 - Set extruder target temp
  169. // M105 - Read current temp
  170. // M106 - Fan on
  171. // M107 - Fan off
  172. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  173. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  174. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  175. // M112 - Emergency stop
  176. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  177. // M114 - Output current position to serial port
  178. // M115 - Capabilities string
  179. // M117 - display message
  180. // M119 - Output Endstop status to serial port
  181. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  182. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  183. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  184. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  185. // M140 - Set bed target temp
  186. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  187. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  188. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  189. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  190. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  191. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  192. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  193. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  194. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  195. // M206 - set additional homing offset
  196. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  197. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  198. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  199. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  200. // M220 S<factor in percent>- set speed factor override percentage
  201. // M221 S<factor in percent>- set extrude factor override percentage
  202. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  203. // M240 - Trigger a camera to take a photograph
  204. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  205. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  206. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  207. // M301 - Set PID parameters P I and D
  208. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  209. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  210. // M304 - Set bed PID parameters P I and D
  211. // M400 - Finish all moves
  212. // M401 - Lower z-probe if present
  213. // M402 - Raise z-probe if present
  214. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  215. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  216. // M406 - Turn off Filament Sensor extrusion control
  217. // M407 - Displays measured filament diameter
  218. // M500 - stores parameters in EEPROM
  219. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  220. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  221. // M503 - print the current settings (from memory not from EEPROM)
  222. // M509 - force language selection on next restart
  223. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  224. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  225. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  226. // M860 - Wait for PINDA thermistor to reach target temperature.
  227. // M861 - Set / Read PINDA temperature compensation offsets
  228. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  229. // M907 - Set digital trimpot motor current using axis codes.
  230. // M908 - Control digital trimpot directly.
  231. // M350 - Set microstepping mode.
  232. // M351 - Toggle MS1 MS2 pins directly.
  233. // M928 - Start SD logging (M928 filename.g) - ended by M29
  234. // M999 - Restart after being stopped by error
  235. //Stepper Movement Variables
  236. //===========================================================================
  237. //=============================imported variables============================
  238. //===========================================================================
  239. //===========================================================================
  240. //=============================public variables=============================
  241. //===========================================================================
  242. #ifdef SDSUPPORT
  243. CardReader card;
  244. #endif
  245. unsigned long PingTime = millis();
  246. unsigned long NcTime;
  247. union Data
  248. {
  249. byte b[2];
  250. int value;
  251. };
  252. float homing_feedrate[] = HOMING_FEEDRATE;
  253. // Currently only the extruder axis may be switched to a relative mode.
  254. // Other axes are always absolute or relative based on the common relative_mode flag.
  255. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  256. int feedmultiply=100; //100->1 200->2
  257. int saved_feedmultiply;
  258. int extrudemultiply=100; //100->1 200->2
  259. int extruder_multiply[EXTRUDERS] = {100
  260. #if EXTRUDERS > 1
  261. , 100
  262. #if EXTRUDERS > 2
  263. , 100
  264. #endif
  265. #endif
  266. };
  267. int bowden_length[4] = {385, 385, 385, 385};
  268. bool is_usb_printing = false;
  269. bool homing_flag = false;
  270. bool temp_cal_active = false;
  271. unsigned long kicktime = millis()+100000;
  272. unsigned int usb_printing_counter;
  273. int lcd_change_fil_state = 0;
  274. int feedmultiplyBckp = 100;
  275. float HotendTempBckp = 0;
  276. int fanSpeedBckp = 0;
  277. float pause_lastpos[4];
  278. unsigned long pause_time = 0;
  279. unsigned long start_pause_print = millis();
  280. unsigned long t_fan_rising_edge = millis();
  281. static LongTimer safetyTimer;
  282. static LongTimer crashDetTimer;
  283. //unsigned long load_filament_time;
  284. bool mesh_bed_leveling_flag = false;
  285. bool mesh_bed_run_from_menu = false;
  286. int8_t FarmMode = 0;
  287. bool prusa_sd_card_upload = false;
  288. unsigned int status_number = 0;
  289. unsigned long total_filament_used;
  290. unsigned int heating_status;
  291. unsigned int heating_status_counter;
  292. bool custom_message;
  293. bool loading_flag = false;
  294. unsigned int custom_message_type;
  295. unsigned int custom_message_state;
  296. char snmm_filaments_used = 0;
  297. bool fan_state[2];
  298. int fan_edge_counter[2];
  299. int fan_speed[2];
  300. char dir_names[3][9];
  301. bool sortAlpha = false;
  302. bool volumetric_enabled = false;
  303. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  304. #if EXTRUDERS > 1
  305. , DEFAULT_NOMINAL_FILAMENT_DIA
  306. #if EXTRUDERS > 2
  307. , DEFAULT_NOMINAL_FILAMENT_DIA
  308. #endif
  309. #endif
  310. };
  311. float extruder_multiplier[EXTRUDERS] = {1.0
  312. #if EXTRUDERS > 1
  313. , 1.0
  314. #if EXTRUDERS > 2
  315. , 1.0
  316. #endif
  317. #endif
  318. };
  319. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  320. float add_homing[3]={0,0,0};
  321. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  322. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  323. bool axis_known_position[3] = {false, false, false};
  324. float zprobe_zoffset;
  325. // Extruder offset
  326. #if EXTRUDERS > 1
  327. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  328. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  329. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  330. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  331. #endif
  332. };
  333. #endif
  334. uint8_t active_extruder = 0;
  335. int fanSpeed=0;
  336. #ifdef FWRETRACT
  337. bool autoretract_enabled=false;
  338. bool retracted[EXTRUDERS]={false
  339. #if EXTRUDERS > 1
  340. , false
  341. #if EXTRUDERS > 2
  342. , false
  343. #endif
  344. #endif
  345. };
  346. bool retracted_swap[EXTRUDERS]={false
  347. #if EXTRUDERS > 1
  348. , false
  349. #if EXTRUDERS > 2
  350. , false
  351. #endif
  352. #endif
  353. };
  354. float retract_length = RETRACT_LENGTH;
  355. float retract_length_swap = RETRACT_LENGTH_SWAP;
  356. float retract_feedrate = RETRACT_FEEDRATE;
  357. float retract_zlift = RETRACT_ZLIFT;
  358. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  359. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  360. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  361. #endif
  362. #ifdef ULTIPANEL
  363. #ifdef PS_DEFAULT_OFF
  364. bool powersupply = false;
  365. #else
  366. bool powersupply = true;
  367. #endif
  368. #endif
  369. bool cancel_heatup = false ;
  370. #ifdef HOST_KEEPALIVE_FEATURE
  371. int busy_state = NOT_BUSY;
  372. static long prev_busy_signal_ms = -1;
  373. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  374. #else
  375. #define host_keepalive();
  376. #define KEEPALIVE_STATE(n);
  377. #endif
  378. const char errormagic[] PROGMEM = "Error:";
  379. const char echomagic[] PROGMEM = "echo:";
  380. bool no_response = false;
  381. uint8_t important_status;
  382. uint8_t saved_filament_type;
  383. // save/restore printing
  384. bool saved_printing = false;
  385. // storing estimated time to end of print counted by slicer
  386. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  387. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  388. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  389. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  390. //===========================================================================
  391. //=============================Private Variables=============================
  392. //===========================================================================
  393. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  394. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  395. static float delta[3] = {0.0, 0.0, 0.0};
  396. // For tracing an arc
  397. static float offset[3] = {0.0, 0.0, 0.0};
  398. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  399. // Determines Absolute or Relative Coordinates.
  400. // Also there is bool axis_relative_modes[] per axis flag.
  401. static bool relative_mode = false;
  402. #ifndef _DISABLE_M42_M226
  403. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  404. #endif //_DISABLE_M42_M226
  405. //static float tt = 0;
  406. //static float bt = 0;
  407. //Inactivity shutdown variables
  408. static unsigned long previous_millis_cmd = 0;
  409. unsigned long max_inactive_time = 0;
  410. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  411. unsigned long starttime=0;
  412. unsigned long stoptime=0;
  413. unsigned long _usb_timer = 0;
  414. static uint8_t tmp_extruder;
  415. bool extruder_under_pressure = true;
  416. bool Stopped=false;
  417. #if NUM_SERVOS > 0
  418. Servo servos[NUM_SERVOS];
  419. #endif
  420. bool CooldownNoWait = true;
  421. bool target_direction;
  422. //Insert variables if CHDK is defined
  423. #ifdef CHDK
  424. unsigned long chdkHigh = 0;
  425. boolean chdkActive = false;
  426. #endif
  427. // save/restore printing
  428. static uint32_t saved_sdpos = 0;
  429. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  430. static float saved_pos[4] = { 0, 0, 0, 0 };
  431. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  432. static float saved_feedrate2 = 0;
  433. static uint8_t saved_active_extruder = 0;
  434. static bool saved_extruder_under_pressure = false;
  435. //===========================================================================
  436. //=============================Routines======================================
  437. //===========================================================================
  438. void get_arc_coordinates();
  439. bool setTargetedHotend(int code);
  440. void serial_echopair_P(const char *s_P, float v)
  441. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  442. void serial_echopair_P(const char *s_P, double v)
  443. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  444. void serial_echopair_P(const char *s_P, unsigned long v)
  445. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  446. #ifdef SDSUPPORT
  447. #include "SdFatUtil.h"
  448. int freeMemory() { return SdFatUtil::FreeRam(); }
  449. #else
  450. extern "C" {
  451. extern unsigned int __bss_end;
  452. extern unsigned int __heap_start;
  453. extern void *__brkval;
  454. int freeMemory() {
  455. int free_memory;
  456. if ((int)__brkval == 0)
  457. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  458. else
  459. free_memory = ((int)&free_memory) - ((int)__brkval);
  460. return free_memory;
  461. }
  462. }
  463. #endif //!SDSUPPORT
  464. void setup_killpin()
  465. {
  466. #if defined(KILL_PIN) && KILL_PIN > -1
  467. SET_INPUT(KILL_PIN);
  468. WRITE(KILL_PIN,HIGH);
  469. #endif
  470. }
  471. // Set home pin
  472. void setup_homepin(void)
  473. {
  474. #if defined(HOME_PIN) && HOME_PIN > -1
  475. SET_INPUT(HOME_PIN);
  476. WRITE(HOME_PIN,HIGH);
  477. #endif
  478. }
  479. void setup_photpin()
  480. {
  481. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  482. SET_OUTPUT(PHOTOGRAPH_PIN);
  483. WRITE(PHOTOGRAPH_PIN, LOW);
  484. #endif
  485. }
  486. void setup_powerhold()
  487. {
  488. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  489. SET_OUTPUT(SUICIDE_PIN);
  490. WRITE(SUICIDE_PIN, HIGH);
  491. #endif
  492. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  493. SET_OUTPUT(PS_ON_PIN);
  494. #if defined(PS_DEFAULT_OFF)
  495. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  496. #else
  497. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  498. #endif
  499. #endif
  500. }
  501. void suicide()
  502. {
  503. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  504. SET_OUTPUT(SUICIDE_PIN);
  505. WRITE(SUICIDE_PIN, LOW);
  506. #endif
  507. }
  508. void servo_init()
  509. {
  510. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  511. servos[0].attach(SERVO0_PIN);
  512. #endif
  513. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  514. servos[1].attach(SERVO1_PIN);
  515. #endif
  516. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  517. servos[2].attach(SERVO2_PIN);
  518. #endif
  519. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  520. servos[3].attach(SERVO3_PIN);
  521. #endif
  522. #if (NUM_SERVOS >= 5)
  523. #error "TODO: enter initalisation code for more servos"
  524. #endif
  525. }
  526. void stop_and_save_print_to_ram(float z_move, float e_move);
  527. void restore_print_from_ram_and_continue(float e_move);
  528. bool fans_check_enabled = true;
  529. bool filament_autoload_enabled = true;
  530. #ifdef TMC2130
  531. extern int8_t CrashDetectMenu;
  532. void crashdet_enable()
  533. {
  534. // MYSERIAL.println("crashdet_enable");
  535. tmc2130_sg_stop_on_crash = true;
  536. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  537. CrashDetectMenu = 1;
  538. }
  539. void crashdet_disable()
  540. {
  541. // MYSERIAL.println("crashdet_disable");
  542. tmc2130_sg_stop_on_crash = false;
  543. tmc2130_sg_crash = 0;
  544. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  545. CrashDetectMenu = 0;
  546. }
  547. void crashdet_stop_and_save_print()
  548. {
  549. stop_and_save_print_to_ram(10, -2); //XY - no change, Z 10mm up, E -2mm retract
  550. }
  551. void crashdet_restore_print_and_continue()
  552. {
  553. restore_print_from_ram_and_continue(2); //XYZ = orig, E +2mm unretract
  554. // babystep_apply();
  555. }
  556. void crashdet_stop_and_save_print2()
  557. {
  558. cli();
  559. planner_abort_hard(); //abort printing
  560. cmdqueue_reset(); //empty cmdqueue
  561. card.sdprinting = false;
  562. card.closefile();
  563. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  564. st_reset_timer();
  565. sei();
  566. }
  567. void crashdet_detected(uint8_t mask)
  568. {
  569. // printf("CRASH_DETECTED");
  570. /* while (!is_buffer_empty())
  571. {
  572. process_commands();
  573. cmdqueue_pop_front();
  574. }*/
  575. st_synchronize();
  576. static uint8_t crashDet_counter = 0;
  577. bool automatic_recovery_after_crash = true;
  578. bool yesno;
  579. if (crashDet_counter++ == 0) {
  580. crashDetTimer.start();
  581. }
  582. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  583. crashDetTimer.stop();
  584. crashDet_counter = 0;
  585. }
  586. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  587. automatic_recovery_after_crash = false;
  588. crashDetTimer.stop();
  589. crashDet_counter = 0;
  590. }
  591. else {
  592. crashDetTimer.start();
  593. }
  594. lcd_update_enable(true);
  595. lcd_implementation_clear();
  596. lcd_update(2);
  597. if (mask & X_AXIS_MASK)
  598. {
  599. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  600. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  601. }
  602. if (mask & Y_AXIS_MASK)
  603. {
  604. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  605. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  606. }
  607. lcd_update_enable(true);
  608. lcd_update(2);
  609. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  610. gcode_G28(true, true, false, false); //home X and Y
  611. st_synchronize();
  612. if(automatic_recovery_after_crash)
  613. yesno = true;
  614. else
  615. yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  616. lcd_update_enable(true);
  617. if (yesno)
  618. {
  619. enquecommand_P(PSTR("CRASH_RECOVER"));
  620. }
  621. else
  622. {
  623. enquecommand_P(PSTR("CRASH_CANCEL"));
  624. }
  625. }
  626. void crashdet_recover()
  627. {
  628. crashdet_restore_print_and_continue();
  629. tmc2130_sg_stop_on_crash = true;
  630. }
  631. void crashdet_cancel()
  632. {
  633. tmc2130_sg_stop_on_crash = true;
  634. if (saved_printing_type == PRINTING_TYPE_SD) {
  635. lcd_print_stop();
  636. }else if(saved_printing_type == PRINTING_TYPE_USB){
  637. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  638. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  639. }
  640. }
  641. #endif //TMC2130
  642. void failstats_reset_print()
  643. {
  644. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  645. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  646. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  647. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  648. }
  649. #ifdef MESH_BED_LEVELING
  650. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  651. #endif
  652. // Factory reset function
  653. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  654. // Level input parameter sets depth of reset
  655. // Quiet parameter masks all waitings for user interact.
  656. int er_progress = 0;
  657. void factory_reset(char level, bool quiet)
  658. {
  659. lcd_implementation_clear();
  660. int cursor_pos = 0;
  661. switch (level) {
  662. // Level 0: Language reset
  663. case 0:
  664. WRITE(BEEPER, HIGH);
  665. _delay_ms(100);
  666. WRITE(BEEPER, LOW);
  667. lang_reset();
  668. break;
  669. //Level 1: Reset statistics
  670. case 1:
  671. WRITE(BEEPER, HIGH);
  672. _delay_ms(100);
  673. WRITE(BEEPER, LOW);
  674. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  675. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  676. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  677. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  678. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  679. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  680. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  681. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  682. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  683. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  684. lcd_menu_statistics();
  685. break;
  686. // Level 2: Prepare for shipping
  687. case 2:
  688. //lcd_printPGM(PSTR("Factory RESET"));
  689. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  690. // Force language selection at the next boot up.
  691. lang_reset();
  692. // Force the "Follow calibration flow" message at the next boot up.
  693. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  694. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  695. farm_no = 0;
  696. farm_mode = false;
  697. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  698. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  699. WRITE(BEEPER, HIGH);
  700. _delay_ms(100);
  701. WRITE(BEEPER, LOW);
  702. //_delay_ms(2000);
  703. break;
  704. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  705. case 3:
  706. lcd_printPGM(PSTR("Factory RESET"));
  707. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  708. WRITE(BEEPER, HIGH);
  709. _delay_ms(100);
  710. WRITE(BEEPER, LOW);
  711. er_progress = 0;
  712. lcd_print_at_PGM(3, 3, PSTR(" "));
  713. lcd_implementation_print_at(3, 3, er_progress);
  714. // Erase EEPROM
  715. for (int i = 0; i < 4096; i++) {
  716. eeprom_write_byte((uint8_t*)i, 0xFF);
  717. if (i % 41 == 0) {
  718. er_progress++;
  719. lcd_print_at_PGM(3, 3, PSTR(" "));
  720. lcd_implementation_print_at(3, 3, er_progress);
  721. lcd_printPGM(PSTR("%"));
  722. }
  723. }
  724. break;
  725. case 4:
  726. bowden_menu();
  727. break;
  728. default:
  729. break;
  730. }
  731. }
  732. #include "LiquidCrystal_Prusa.h"
  733. extern LiquidCrystal_Prusa lcd;
  734. FILE _lcdout = {0};
  735. int lcd_putchar(char c, FILE *stream)
  736. {
  737. lcd.write(c);
  738. return 0;
  739. }
  740. FILE _uartout = {0};
  741. int uart_putchar(char c, FILE *stream)
  742. {
  743. MYSERIAL.write(c);
  744. return 0;
  745. }
  746. void lcd_splash()
  747. {
  748. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  749. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  750. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  751. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  752. }
  753. void factory_reset()
  754. {
  755. KEEPALIVE_STATE(PAUSED_FOR_USER);
  756. if (!READ(BTN_ENC))
  757. {
  758. _delay_ms(1000);
  759. if (!READ(BTN_ENC))
  760. {
  761. lcd_implementation_clear();
  762. lcd_printPGM(PSTR("Factory RESET"));
  763. SET_OUTPUT(BEEPER);
  764. WRITE(BEEPER, HIGH);
  765. while (!READ(BTN_ENC));
  766. WRITE(BEEPER, LOW);
  767. _delay_ms(2000);
  768. char level = reset_menu();
  769. factory_reset(level, false);
  770. switch (level) {
  771. case 0: _delay_ms(0); break;
  772. case 1: _delay_ms(0); break;
  773. case 2: _delay_ms(0); break;
  774. case 3: _delay_ms(0); break;
  775. }
  776. // _delay_ms(100);
  777. /*
  778. #ifdef MESH_BED_LEVELING
  779. _delay_ms(2000);
  780. if (!READ(BTN_ENC))
  781. {
  782. WRITE(BEEPER, HIGH);
  783. _delay_ms(100);
  784. WRITE(BEEPER, LOW);
  785. _delay_ms(200);
  786. WRITE(BEEPER, HIGH);
  787. _delay_ms(100);
  788. WRITE(BEEPER, LOW);
  789. int _z = 0;
  790. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  791. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  792. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  793. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  794. }
  795. else
  796. {
  797. WRITE(BEEPER, HIGH);
  798. _delay_ms(100);
  799. WRITE(BEEPER, LOW);
  800. }
  801. #endif // mesh */
  802. }
  803. }
  804. else
  805. {
  806. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  807. }
  808. KEEPALIVE_STATE(IN_HANDLER);
  809. }
  810. void show_fw_version_warnings() {
  811. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  812. switch (FW_DEV_VERSION) {
  813. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  814. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  815. case(FW_VERSION_DEVEL):
  816. case(FW_VERSION_DEBUG):
  817. lcd_update_enable(false);
  818. lcd_implementation_clear();
  819. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  820. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  821. #else
  822. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  823. #endif
  824. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  825. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  826. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  827. lcd_wait_for_click();
  828. break;
  829. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  830. }
  831. lcd_update_enable(true);
  832. }
  833. uint8_t check_printer_version()
  834. {
  835. uint8_t version_changed = 0;
  836. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  837. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  838. if (printer_type != PRINTER_TYPE) {
  839. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  840. else version_changed |= 0b10;
  841. }
  842. if (motherboard != MOTHERBOARD) {
  843. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  844. else version_changed |= 0b01;
  845. }
  846. return version_changed;
  847. }
  848. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  849. {
  850. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  851. }
  852. #if (LANG_MODE != 0) //secondary language support
  853. #ifdef W25X20CL
  854. #include "bootapp.h" //bootloader support
  855. // language update from external flash
  856. #define LANGBOOT_BLOCKSIZE 0x1000
  857. #define LANGBOOT_RAMBUFFER 0x0800
  858. void update_sec_lang_from_external_flash()
  859. {
  860. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  861. {
  862. uint8_t lang = boot_reserved >> 4;
  863. uint8_t state = boot_reserved & 0xf;
  864. lang_table_header_t header;
  865. uint32_t src_addr;
  866. if (lang_get_header(lang, &header, &src_addr))
  867. {
  868. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  869. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  870. delay(100);
  871. boot_reserved = (state + 1) | (lang << 4);
  872. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  873. {
  874. cli();
  875. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  876. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  877. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  878. if (state == 0)
  879. {
  880. //TODO - check header integrity
  881. }
  882. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  883. }
  884. else
  885. {
  886. //TODO - check sec lang data integrity
  887. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  888. }
  889. }
  890. }
  891. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  892. }
  893. #ifdef DEBUG_W25X20CL
  894. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  895. {
  896. lang_table_header_t header;
  897. uint8_t count = 0;
  898. uint32_t addr = 0x00000;
  899. while (1)
  900. {
  901. printf_P(_n("LANGTABLE%d:"), count);
  902. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  903. if (header.magic != LANG_MAGIC)
  904. {
  905. printf_P(_n("NG!\n"));
  906. break;
  907. }
  908. printf_P(_n("OK\n"));
  909. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  910. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  911. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  912. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  913. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  914. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), header.reserved1);
  915. addr += header.size;
  916. codes[count] = header.code;
  917. count ++;
  918. }
  919. return count;
  920. }
  921. void list_sec_lang_from_external_flash()
  922. {
  923. uint16_t codes[8];
  924. uint8_t count = lang_xflash_enum_codes(codes);
  925. printf_P(_n("XFlash lang count = %hhd\n"), count);
  926. }
  927. #endif //DEBUG_W25X20CL
  928. #endif //W25X20CL
  929. #endif //(LANG_MODE != 0)
  930. // "Setup" function is called by the Arduino framework on startup.
  931. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  932. // are initialized by the main() routine provided by the Arduino framework.
  933. void setup()
  934. {
  935. lcd_init();
  936. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  937. spi_init();
  938. lcd_splash();
  939. #if (LANG_MODE != 0) //secondary language support
  940. #ifdef W25X20CL
  941. if (w25x20cl_init())
  942. update_sec_lang_from_external_flash();
  943. else
  944. kill(_i("External SPI flash W25X20CL not responding."));
  945. #endif //W25X20CL
  946. #endif //(LANG_MODE != 0)
  947. setup_killpin();
  948. setup_powerhold();
  949. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  950. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  951. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  952. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  953. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  954. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  955. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  956. if (farm_mode)
  957. {
  958. no_response = true; //we need confirmation by recieving PRUSA thx
  959. important_status = 8;
  960. prusa_statistics(8);
  961. selectedSerialPort = 1;
  962. }
  963. MYSERIAL.begin(BAUDRATE);
  964. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  965. stdout = uartout;
  966. SERIAL_PROTOCOLLNPGM("start");
  967. SERIAL_ECHO_START;
  968. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  969. #ifdef DEBUG_SEC_LANG
  970. lang_table_header_t header;
  971. uint32_t src_addr = 0x00000;
  972. if (lang_get_header(3, &header, &src_addr))
  973. {
  974. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  975. #define LT_PRINT_TEST 2
  976. // flash usage
  977. // total p.test
  978. //0 252718 t+c text code
  979. //1 253142 424 170 254
  980. //2 253040 322 164 158
  981. //3 253248 530 135 395
  982. #if (LT_PRINT_TEST==1) //not optimized printf
  983. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  984. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  985. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  986. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  987. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  988. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  989. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), header.reserved1);
  990. #elif (LT_PRINT_TEST==2) //optimized printf
  991. printf_P(
  992. _n(
  993. " _src_addr = 0x%08lx\n"
  994. " _lt_magic = 0x%08lx %S\n"
  995. " _lt_size = 0x%04x (%d)\n"
  996. " _lt_count = 0x%04x (%d)\n"
  997. " _lt_chsum = 0x%04x\n"
  998. " _lt_code = 0x%04x (%c%c)\n"
  999. " _lt_resv1 = 0x%08lx\n"
  1000. ),
  1001. src_addr,
  1002. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1003. header.size, header.size,
  1004. header.count, header.count,
  1005. header.checksum,
  1006. header.code, header.code >> 8, header.code & 0xff,
  1007. header.reserved1
  1008. );
  1009. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1010. MYSERIAL.print(" _src_addr = 0x");
  1011. MYSERIAL.println(src_addr, 16);
  1012. MYSERIAL.print(" _lt_magic = 0x");
  1013. MYSERIAL.print(header.magic, 16);
  1014. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1015. MYSERIAL.print(" _lt_size = 0x");
  1016. MYSERIAL.print(header.size, 16);
  1017. MYSERIAL.print(" (");
  1018. MYSERIAL.print(header.size, 10);
  1019. MYSERIAL.println(")");
  1020. MYSERIAL.print(" _lt_count = 0x");
  1021. MYSERIAL.print(header.count, 16);
  1022. MYSERIAL.print(" (");
  1023. MYSERIAL.print(header.count, 10);
  1024. MYSERIAL.println(")");
  1025. MYSERIAL.print(" _lt_chsum = 0x");
  1026. MYSERIAL.println(header.checksum, 16);
  1027. MYSERIAL.print(" _lt_code = 0x");
  1028. MYSERIAL.print(header.code, 16);
  1029. MYSERIAL.print(" (");
  1030. MYSERIAL.print((char)(header.code >> 8), 0);
  1031. MYSERIAL.print((char)(header.code & 0xff), 0);
  1032. MYSERIAL.println(")");
  1033. MYSERIAL.print(" _lt_resv1 = 0x");
  1034. MYSERIAL.println(header.reserved1, 16);
  1035. #endif //(LT_PRINT_TEST==)
  1036. #undef LT_PRINT_TEST
  1037. #if 0
  1038. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1039. for (uint16_t i = 0; i < 1024; i++)
  1040. {
  1041. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1042. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1043. if ((i % 16) == 15) putchar('\n');
  1044. }
  1045. #endif
  1046. #if 1
  1047. for (uint16_t i = 0; i < 1024*10; i++)
  1048. {
  1049. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1050. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1051. if ((i % 16) == 15) putchar('\n');
  1052. }
  1053. #endif
  1054. }
  1055. else
  1056. printf_P(_n("lang_get_header failed!\n"));
  1057. #if 0
  1058. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1059. for (int i = 0; i < 4096; ++i) {
  1060. int b = eeprom_read_byte((unsigned char*)i);
  1061. if (b != 255) {
  1062. SERIAL_ECHO(i);
  1063. SERIAL_ECHO(":");
  1064. SERIAL_ECHO(b);
  1065. SERIAL_ECHOLN("");
  1066. }
  1067. }
  1068. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1069. #endif
  1070. #endif //DEBUG_SEC_LANG
  1071. // Check startup - does nothing if bootloader sets MCUSR to 0
  1072. byte mcu = MCUSR;
  1073. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1074. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1075. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1076. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1077. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1078. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1079. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1080. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1081. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1082. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1083. MCUSR = 0;
  1084. //SERIAL_ECHORPGM(MSG_MARLIN);
  1085. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1086. #ifdef STRING_VERSION_CONFIG_H
  1087. #ifdef STRING_CONFIG_H_AUTHOR
  1088. SERIAL_ECHO_START;
  1089. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1090. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1091. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1092. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1093. SERIAL_ECHOPGM("Compiled: ");
  1094. SERIAL_ECHOLNPGM(__DATE__);
  1095. #endif
  1096. #endif
  1097. SERIAL_ECHO_START;
  1098. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1099. SERIAL_ECHO(freeMemory());
  1100. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1101. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1102. //lcd_update_enable(false); // why do we need this?? - andre
  1103. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1104. bool previous_settings_retrieved = false;
  1105. uint8_t hw_changed = check_printer_version();
  1106. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1107. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1108. }
  1109. else { //printer version was changed so use default settings
  1110. Config_ResetDefault();
  1111. }
  1112. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1113. tp_init(); // Initialize temperature loop
  1114. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1115. plan_init(); // Initialize planner;
  1116. factory_reset();
  1117. #ifdef TMC2130
  1118. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1119. if (silentMode == 0xff) silentMode = 0;
  1120. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1121. tmc2130_mode = TMC2130_MODE_NORMAL;
  1122. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1123. if (crashdet && !farm_mode)
  1124. {
  1125. crashdet_enable();
  1126. MYSERIAL.println("CrashDetect ENABLED!");
  1127. }
  1128. else
  1129. {
  1130. crashdet_disable();
  1131. MYSERIAL.println("CrashDetect DISABLED");
  1132. }
  1133. #ifdef TMC2130_LINEARITY_CORRECTION
  1134. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1135. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1136. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1137. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1138. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1139. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1140. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1141. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1142. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1143. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1144. #endif //TMC2130_LINEARITY_CORRECTION
  1145. #ifdef TMC2130_VARIABLE_RESOLUTION
  1146. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1147. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1148. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1149. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1150. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1151. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1152. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1153. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1154. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1155. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1156. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1157. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1158. #else //TMC2130_VARIABLE_RESOLUTION
  1159. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1160. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1161. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1162. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1163. #endif //TMC2130_VARIABLE_RESOLUTION
  1164. #endif //TMC2130
  1165. st_init(); // Initialize stepper, this enables interrupts!
  1166. #ifdef TMC2130
  1167. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1168. tmc2130_init();
  1169. #endif //TMC2130
  1170. setup_photpin();
  1171. servo_init();
  1172. // Reset the machine correction matrix.
  1173. // It does not make sense to load the correction matrix until the machine is homed.
  1174. world2machine_reset();
  1175. #ifdef PAT9125
  1176. fsensor_init();
  1177. #endif //PAT9125
  1178. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1179. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1180. #endif
  1181. setup_homepin();
  1182. #ifdef TMC2130
  1183. if (1) {
  1184. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  1185. // try to run to zero phase before powering the Z motor.
  1186. // Move in negative direction
  1187. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1188. // Round the current micro-micro steps to micro steps.
  1189. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1190. // Until the phase counter is reset to zero.
  1191. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1192. delay(2);
  1193. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1194. delay(2);
  1195. }
  1196. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  1197. }
  1198. #endif //TMC2130
  1199. #if defined(Z_AXIS_ALWAYS_ON)
  1200. enable_z();
  1201. #endif
  1202. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1203. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1204. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1205. if (farm_no == 0xFFFF) farm_no = 0;
  1206. if (farm_mode)
  1207. {
  1208. prusa_statistics(8);
  1209. }
  1210. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1211. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1212. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1213. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1214. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1215. // where all the EEPROM entries are set to 0x0ff.
  1216. // Once a firmware boots up, it forces at least a language selection, which changes
  1217. // EEPROM_LANG to number lower than 0x0ff.
  1218. // 1) Set a high power mode.
  1219. #ifdef TMC2130
  1220. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1221. tmc2130_mode = TMC2130_MODE_NORMAL;
  1222. #endif //TMC2130
  1223. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1224. }
  1225. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1226. // but this times out if a blocking dialog is shown in setup().
  1227. card.initsd();
  1228. #ifdef DEBUG_SD_SPEED_TEST
  1229. if (card.cardOK)
  1230. {
  1231. uint8_t* buff = (uint8_t*)block_buffer;
  1232. uint32_t block = 0;
  1233. uint32_t sumr = 0;
  1234. uint32_t sumw = 0;
  1235. for (int i = 0; i < 1024; i++)
  1236. {
  1237. uint32_t u = micros();
  1238. bool res = card.card.readBlock(i, buff);
  1239. u = micros() - u;
  1240. if (res)
  1241. {
  1242. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1243. sumr += u;
  1244. u = micros();
  1245. res = card.card.writeBlock(i, buff);
  1246. u = micros() - u;
  1247. if (res)
  1248. {
  1249. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1250. sumw += u;
  1251. }
  1252. else
  1253. {
  1254. printf_P(PSTR("writeBlock %4d error\n"), i);
  1255. break;
  1256. }
  1257. }
  1258. else
  1259. {
  1260. printf_P(PSTR("readBlock %4d error\n"), i);
  1261. break;
  1262. }
  1263. }
  1264. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1265. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1266. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1267. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1268. }
  1269. else
  1270. printf_P(PSTR("Card NG!\n"));
  1271. #endif //DEBUG_SD_SPEED_TEST
  1272. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1273. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1274. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1275. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1276. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1277. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1278. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1279. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1280. #ifdef SNMM
  1281. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1282. int _z = BOWDEN_LENGTH;
  1283. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1284. }
  1285. #endif
  1286. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1287. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1288. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1289. #if (LANG_MODE != 0) //secondary language support
  1290. #ifdef DEBUG_W25X20CL
  1291. W25X20CL_SPI_ENTER();
  1292. uint8_t uid[8]; // 64bit unique id
  1293. w25x20cl_rd_uid(uid);
  1294. puts_P(_n("W25X20CL UID="));
  1295. for (uint8_t i = 0; i < 8; i ++)
  1296. printf_P(PSTR("%02hhx"), uid[i]);
  1297. putchar('\n');
  1298. list_sec_lang_from_external_flash();
  1299. #endif //DEBUG_W25X20CL
  1300. // lang_reset();
  1301. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1302. lcd_language();
  1303. #ifdef DEBUG_SEC_LANG
  1304. uint16_t sec_lang_code = lang_get_code(1);
  1305. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1306. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1307. // lang_print_sec_lang(uartout);
  1308. #endif //DEBUG_SEC_LANG
  1309. #endif //(LANG_MODE != 0)
  1310. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1311. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1312. temp_cal_active = false;
  1313. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1314. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1315. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1316. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1317. int16_t z_shift = 0;
  1318. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1319. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1320. temp_cal_active = false;
  1321. }
  1322. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1323. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1324. }
  1325. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1326. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1327. }
  1328. check_babystep(); //checking if Z babystep is in allowed range
  1329. #ifdef UVLO_SUPPORT
  1330. setup_uvlo_interrupt();
  1331. #endif //UVLO_SUPPORT
  1332. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1333. setup_fan_interrupt();
  1334. #endif //DEBUG_DISABLE_FANCHECK
  1335. #ifdef PAT9125
  1336. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1337. fsensor_setup_interrupt();
  1338. #endif //DEBUG_DISABLE_FSENSORCHECK
  1339. #endif //PAT9125
  1340. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1341. #ifndef DEBUG_DISABLE_STARTMSGS
  1342. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1343. show_fw_version_warnings();
  1344. switch (hw_changed) {
  1345. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1346. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1347. case(0b01):
  1348. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1349. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1350. break;
  1351. case(0b10):
  1352. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1353. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1354. break;
  1355. case(0b11):
  1356. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1357. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1358. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1359. break;
  1360. default: break; //no change, show no message
  1361. }
  1362. if (!previous_settings_retrieved) {
  1363. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1364. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1365. }
  1366. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1367. lcd_wizard(0);
  1368. }
  1369. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1370. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1371. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1372. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1373. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1374. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1375. // Show the message.
  1376. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1377. }
  1378. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1379. // Show the message.
  1380. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1381. lcd_update_enable(true);
  1382. }
  1383. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1384. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1385. lcd_update_enable(true);
  1386. }
  1387. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1388. // Show the message.
  1389. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1390. }
  1391. }
  1392. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1393. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1394. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1395. update_current_firmware_version_to_eeprom();
  1396. lcd_selftest();
  1397. }
  1398. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1399. KEEPALIVE_STATE(IN_PROCESS);
  1400. #endif //DEBUG_DISABLE_STARTMSGS
  1401. lcd_update_enable(true);
  1402. lcd_implementation_clear();
  1403. lcd_update(2);
  1404. // Store the currently running firmware into an eeprom,
  1405. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1406. update_current_firmware_version_to_eeprom();
  1407. #ifdef TMC2130
  1408. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1409. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1410. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1411. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1412. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1413. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1414. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1415. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1416. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1417. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1418. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1419. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1420. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1421. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1422. #endif //TMC2130
  1423. #ifdef UVLO_SUPPORT
  1424. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1425. /*
  1426. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1427. else {
  1428. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1429. lcd_update_enable(true);
  1430. lcd_update(2);
  1431. lcd_setstatuspgm(_T(WELCOME_MSG));
  1432. }
  1433. */
  1434. manage_heater(); // Update temperatures
  1435. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1436. MYSERIAL.println("Power panic detected!");
  1437. MYSERIAL.print("Current bed temp:");
  1438. MYSERIAL.println(degBed());
  1439. MYSERIAL.print("Saved bed temp:");
  1440. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1441. #endif
  1442. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1443. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1444. MYSERIAL.println("Automatic recovery!");
  1445. #endif
  1446. recover_print(1);
  1447. }
  1448. else{
  1449. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1450. MYSERIAL.println("Normal recovery!");
  1451. #endif
  1452. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1453. else {
  1454. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1455. lcd_update_enable(true);
  1456. lcd_update(2);
  1457. lcd_setstatuspgm(_T(WELCOME_MSG));
  1458. }
  1459. }
  1460. }
  1461. #endif //UVLO_SUPPORT
  1462. KEEPALIVE_STATE(NOT_BUSY);
  1463. #ifdef WATCHDOG
  1464. wdt_enable(WDTO_4S);
  1465. #endif //WATCHDOG
  1466. }
  1467. #ifdef PAT9125
  1468. void fsensor_init() {
  1469. int pat9125 = pat9125_init();
  1470. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1471. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1472. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1473. if (!pat9125)
  1474. {
  1475. fsensor = 0; //disable sensor
  1476. fsensor_not_responding = true;
  1477. }
  1478. else {
  1479. fsensor_not_responding = false;
  1480. }
  1481. puts_P(PSTR("FSensor "));
  1482. if (fsensor)
  1483. {
  1484. puts_P(PSTR("ENABLED\n"));
  1485. fsensor_enable();
  1486. }
  1487. else
  1488. {
  1489. puts_P(PSTR("DISABLED\n"));
  1490. fsensor_disable();
  1491. }
  1492. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1493. filament_autoload_enabled = false;
  1494. fsensor_disable();
  1495. #endif //DEBUG_DISABLE_FSENSORCHECK
  1496. }
  1497. #endif //PAT9125
  1498. void trace();
  1499. #define CHUNK_SIZE 64 // bytes
  1500. #define SAFETY_MARGIN 1
  1501. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1502. int chunkHead = 0;
  1503. int serial_read_stream() {
  1504. setTargetHotend(0, 0);
  1505. setTargetBed(0);
  1506. lcd_implementation_clear();
  1507. lcd_printPGM(PSTR(" Upload in progress"));
  1508. // first wait for how many bytes we will receive
  1509. uint32_t bytesToReceive;
  1510. // receive the four bytes
  1511. char bytesToReceiveBuffer[4];
  1512. for (int i=0; i<4; i++) {
  1513. int data;
  1514. while ((data = MYSERIAL.read()) == -1) {};
  1515. bytesToReceiveBuffer[i] = data;
  1516. }
  1517. // make it a uint32
  1518. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1519. // we're ready, notify the sender
  1520. MYSERIAL.write('+');
  1521. // lock in the routine
  1522. uint32_t receivedBytes = 0;
  1523. while (prusa_sd_card_upload) {
  1524. int i;
  1525. for (i=0; i<CHUNK_SIZE; i++) {
  1526. int data;
  1527. // check if we're not done
  1528. if (receivedBytes == bytesToReceive) {
  1529. break;
  1530. }
  1531. // read the next byte
  1532. while ((data = MYSERIAL.read()) == -1) {};
  1533. receivedBytes++;
  1534. // save it to the chunk
  1535. chunk[i] = data;
  1536. }
  1537. // write the chunk to SD
  1538. card.write_command_no_newline(&chunk[0]);
  1539. // notify the sender we're ready for more data
  1540. MYSERIAL.write('+');
  1541. // for safety
  1542. manage_heater();
  1543. // check if we're done
  1544. if(receivedBytes == bytesToReceive) {
  1545. trace(); // beep
  1546. card.closefile();
  1547. prusa_sd_card_upload = false;
  1548. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1549. return 0;
  1550. }
  1551. }
  1552. }
  1553. #ifdef HOST_KEEPALIVE_FEATURE
  1554. /**
  1555. * Output a "busy" message at regular intervals
  1556. * while the machine is not accepting commands.
  1557. */
  1558. void host_keepalive() {
  1559. if (farm_mode) return;
  1560. long ms = millis();
  1561. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1562. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1563. switch (busy_state) {
  1564. case IN_HANDLER:
  1565. case IN_PROCESS:
  1566. SERIAL_ECHO_START;
  1567. SERIAL_ECHOLNPGM("busy: processing");
  1568. break;
  1569. case PAUSED_FOR_USER:
  1570. SERIAL_ECHO_START;
  1571. SERIAL_ECHOLNPGM("busy: paused for user");
  1572. break;
  1573. case PAUSED_FOR_INPUT:
  1574. SERIAL_ECHO_START;
  1575. SERIAL_ECHOLNPGM("busy: paused for input");
  1576. break;
  1577. default:
  1578. break;
  1579. }
  1580. }
  1581. prev_busy_signal_ms = ms;
  1582. }
  1583. #endif
  1584. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1585. // Before loop(), the setup() function is called by the main() routine.
  1586. void loop()
  1587. {
  1588. KEEPALIVE_STATE(NOT_BUSY);
  1589. bool stack_integrity = true;
  1590. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1591. {
  1592. is_usb_printing = true;
  1593. usb_printing_counter--;
  1594. _usb_timer = millis();
  1595. }
  1596. if (usb_printing_counter == 0)
  1597. {
  1598. is_usb_printing = false;
  1599. }
  1600. if (prusa_sd_card_upload)
  1601. {
  1602. //we read byte-by byte
  1603. serial_read_stream();
  1604. } else
  1605. {
  1606. get_command();
  1607. #ifdef SDSUPPORT
  1608. card.checkautostart(false);
  1609. #endif
  1610. if(buflen)
  1611. {
  1612. cmdbuffer_front_already_processed = false;
  1613. #ifdef SDSUPPORT
  1614. if(card.saving)
  1615. {
  1616. // Saving a G-code file onto an SD-card is in progress.
  1617. // Saving starts with M28, saving until M29 is seen.
  1618. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1619. card.write_command(CMDBUFFER_CURRENT_STRING);
  1620. if(card.logging)
  1621. process_commands();
  1622. else
  1623. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1624. } else {
  1625. card.closefile();
  1626. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1627. }
  1628. } else {
  1629. process_commands();
  1630. }
  1631. #else
  1632. process_commands();
  1633. #endif //SDSUPPORT
  1634. if (! cmdbuffer_front_already_processed && buflen)
  1635. {
  1636. // ptr points to the start of the block currently being processed.
  1637. // The first character in the block is the block type.
  1638. char *ptr = cmdbuffer + bufindr;
  1639. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1640. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1641. union {
  1642. struct {
  1643. char lo;
  1644. char hi;
  1645. } lohi;
  1646. uint16_t value;
  1647. } sdlen;
  1648. sdlen.value = 0;
  1649. {
  1650. // This block locks the interrupts globally for 3.25 us,
  1651. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1652. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1653. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1654. cli();
  1655. // Reset the command to something, which will be ignored by the power panic routine,
  1656. // so this buffer length will not be counted twice.
  1657. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1658. // Extract the current buffer length.
  1659. sdlen.lohi.lo = *ptr ++;
  1660. sdlen.lohi.hi = *ptr;
  1661. // and pass it to the planner queue.
  1662. planner_add_sd_length(sdlen.value);
  1663. sei();
  1664. }
  1665. }
  1666. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1667. cli();
  1668. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1669. // and one for each command to previous block in the planner queue.
  1670. planner_add_sd_length(1);
  1671. sei();
  1672. }
  1673. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1674. // this block's SD card length will not be counted twice as its command type has been replaced
  1675. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1676. cmdqueue_pop_front();
  1677. }
  1678. host_keepalive();
  1679. }
  1680. }
  1681. //check heater every n milliseconds
  1682. manage_heater();
  1683. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1684. checkHitEndstops();
  1685. lcd_update();
  1686. #ifdef PAT9125
  1687. fsensor_update();
  1688. #endif //PAT9125
  1689. #ifdef TMC2130
  1690. tmc2130_check_overtemp();
  1691. if (tmc2130_sg_crash)
  1692. {
  1693. uint8_t crash = tmc2130_sg_crash;
  1694. tmc2130_sg_crash = 0;
  1695. // crashdet_stop_and_save_print();
  1696. switch (crash)
  1697. {
  1698. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1699. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1700. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1701. }
  1702. }
  1703. #endif //TMC2130
  1704. }
  1705. #define DEFINE_PGM_READ_ANY(type, reader) \
  1706. static inline type pgm_read_any(const type *p) \
  1707. { return pgm_read_##reader##_near(p); }
  1708. DEFINE_PGM_READ_ANY(float, float);
  1709. DEFINE_PGM_READ_ANY(signed char, byte);
  1710. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1711. static const PROGMEM type array##_P[3] = \
  1712. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1713. static inline type array(int axis) \
  1714. { return pgm_read_any(&array##_P[axis]); } \
  1715. type array##_ext(int axis) \
  1716. { return pgm_read_any(&array##_P[axis]); }
  1717. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1718. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1719. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1720. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1721. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1722. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1723. static void axis_is_at_home(int axis) {
  1724. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1725. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1726. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1727. }
  1728. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1729. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1730. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1731. saved_feedrate = feedrate;
  1732. saved_feedmultiply = feedmultiply;
  1733. feedmultiply = 100;
  1734. previous_millis_cmd = millis();
  1735. enable_endstops(enable_endstops_now);
  1736. }
  1737. static void clean_up_after_endstop_move() {
  1738. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1739. enable_endstops(false);
  1740. #endif
  1741. feedrate = saved_feedrate;
  1742. feedmultiply = saved_feedmultiply;
  1743. previous_millis_cmd = millis();
  1744. }
  1745. #ifdef ENABLE_AUTO_BED_LEVELING
  1746. #ifdef AUTO_BED_LEVELING_GRID
  1747. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1748. {
  1749. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1750. planeNormal.debug("planeNormal");
  1751. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1752. //bedLevel.debug("bedLevel");
  1753. //plan_bed_level_matrix.debug("bed level before");
  1754. //vector_3 uncorrected_position = plan_get_position_mm();
  1755. //uncorrected_position.debug("position before");
  1756. vector_3 corrected_position = plan_get_position();
  1757. // corrected_position.debug("position after");
  1758. current_position[X_AXIS] = corrected_position.x;
  1759. current_position[Y_AXIS] = corrected_position.y;
  1760. current_position[Z_AXIS] = corrected_position.z;
  1761. // put the bed at 0 so we don't go below it.
  1762. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1763. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1764. }
  1765. #else // not AUTO_BED_LEVELING_GRID
  1766. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1767. plan_bed_level_matrix.set_to_identity();
  1768. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1769. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1770. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1771. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1772. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1773. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1774. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1775. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1776. vector_3 corrected_position = plan_get_position();
  1777. current_position[X_AXIS] = corrected_position.x;
  1778. current_position[Y_AXIS] = corrected_position.y;
  1779. current_position[Z_AXIS] = corrected_position.z;
  1780. // put the bed at 0 so we don't go below it.
  1781. current_position[Z_AXIS] = zprobe_zoffset;
  1782. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1783. }
  1784. #endif // AUTO_BED_LEVELING_GRID
  1785. static void run_z_probe() {
  1786. plan_bed_level_matrix.set_to_identity();
  1787. feedrate = homing_feedrate[Z_AXIS];
  1788. // move down until you find the bed
  1789. float zPosition = -10;
  1790. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1791. st_synchronize();
  1792. // we have to let the planner know where we are right now as it is not where we said to go.
  1793. zPosition = st_get_position_mm(Z_AXIS);
  1794. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1795. // move up the retract distance
  1796. zPosition += home_retract_mm(Z_AXIS);
  1797. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1798. st_synchronize();
  1799. // move back down slowly to find bed
  1800. feedrate = homing_feedrate[Z_AXIS]/4;
  1801. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1802. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1803. st_synchronize();
  1804. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1805. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1806. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1807. }
  1808. static void do_blocking_move_to(float x, float y, float z) {
  1809. float oldFeedRate = feedrate;
  1810. feedrate = homing_feedrate[Z_AXIS];
  1811. current_position[Z_AXIS] = z;
  1812. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1813. st_synchronize();
  1814. feedrate = XY_TRAVEL_SPEED;
  1815. current_position[X_AXIS] = x;
  1816. current_position[Y_AXIS] = y;
  1817. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1818. st_synchronize();
  1819. feedrate = oldFeedRate;
  1820. }
  1821. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1822. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1823. }
  1824. /// Probe bed height at position (x,y), returns the measured z value
  1825. static float probe_pt(float x, float y, float z_before) {
  1826. // move to right place
  1827. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1828. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1829. run_z_probe();
  1830. float measured_z = current_position[Z_AXIS];
  1831. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1832. SERIAL_PROTOCOLPGM(" x: ");
  1833. SERIAL_PROTOCOL(x);
  1834. SERIAL_PROTOCOLPGM(" y: ");
  1835. SERIAL_PROTOCOL(y);
  1836. SERIAL_PROTOCOLPGM(" z: ");
  1837. SERIAL_PROTOCOL(measured_z);
  1838. SERIAL_PROTOCOLPGM("\n");
  1839. return measured_z;
  1840. }
  1841. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1842. #ifdef LIN_ADVANCE
  1843. /**
  1844. * M900: Set and/or Get advance K factor and WH/D ratio
  1845. *
  1846. * K<factor> Set advance K factor
  1847. * R<ratio> Set ratio directly (overrides WH/D)
  1848. * W<width> H<height> D<diam> Set ratio from WH/D
  1849. */
  1850. inline void gcode_M900() {
  1851. st_synchronize();
  1852. const float newK = code_seen('K') ? code_value_float() : -1;
  1853. if (newK >= 0) extruder_advance_k = newK;
  1854. float newR = code_seen('R') ? code_value_float() : -1;
  1855. if (newR < 0) {
  1856. const float newD = code_seen('D') ? code_value_float() : -1,
  1857. newW = code_seen('W') ? code_value_float() : -1,
  1858. newH = code_seen('H') ? code_value_float() : -1;
  1859. if (newD >= 0 && newW >= 0 && newH >= 0)
  1860. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1861. }
  1862. if (newR >= 0) advance_ed_ratio = newR;
  1863. SERIAL_ECHO_START;
  1864. SERIAL_ECHOPGM("Advance K=");
  1865. SERIAL_ECHOLN(extruder_advance_k);
  1866. SERIAL_ECHOPGM(" E/D=");
  1867. const float ratio = advance_ed_ratio;
  1868. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1869. }
  1870. #endif // LIN_ADVANCE
  1871. bool check_commands() {
  1872. bool end_command_found = false;
  1873. while (buflen)
  1874. {
  1875. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1876. if (!cmdbuffer_front_already_processed)
  1877. cmdqueue_pop_front();
  1878. cmdbuffer_front_already_processed = false;
  1879. }
  1880. return end_command_found;
  1881. }
  1882. #ifdef TMC2130
  1883. bool calibrate_z_auto()
  1884. {
  1885. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1886. lcd_implementation_clear();
  1887. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1888. bool endstops_enabled = enable_endstops(true);
  1889. int axis_up_dir = -home_dir(Z_AXIS);
  1890. tmc2130_home_enter(Z_AXIS_MASK);
  1891. current_position[Z_AXIS] = 0;
  1892. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1893. set_destination_to_current();
  1894. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1895. feedrate = homing_feedrate[Z_AXIS];
  1896. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1897. st_synchronize();
  1898. // current_position[axis] = 0;
  1899. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1900. tmc2130_home_exit();
  1901. enable_endstops(false);
  1902. current_position[Z_AXIS] = 0;
  1903. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1904. set_destination_to_current();
  1905. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1906. feedrate = homing_feedrate[Z_AXIS] / 2;
  1907. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1908. st_synchronize();
  1909. enable_endstops(endstops_enabled);
  1910. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1911. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1912. return true;
  1913. }
  1914. #endif //TMC2130
  1915. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1916. {
  1917. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1918. #define HOMEAXIS_DO(LETTER) \
  1919. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1920. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1921. {
  1922. int axis_home_dir = home_dir(axis);
  1923. feedrate = homing_feedrate[axis];
  1924. #ifdef TMC2130
  1925. tmc2130_home_enter(X_AXIS_MASK << axis);
  1926. #endif //TMC2130
  1927. // Move right a bit, so that the print head does not touch the left end position,
  1928. // and the following left movement has a chance to achieve the required velocity
  1929. // for the stall guard to work.
  1930. current_position[axis] = 0;
  1931. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1932. set_destination_to_current();
  1933. // destination[axis] = 11.f;
  1934. destination[axis] = 3.f;
  1935. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1936. st_synchronize();
  1937. // Move left away from the possible collision with the collision detection disabled.
  1938. endstops_hit_on_purpose();
  1939. enable_endstops(false);
  1940. current_position[axis] = 0;
  1941. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1942. destination[axis] = - 1.;
  1943. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1944. st_synchronize();
  1945. // Now continue to move up to the left end stop with the collision detection enabled.
  1946. enable_endstops(true);
  1947. destination[axis] = - 1.1 * max_length(axis);
  1948. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1949. st_synchronize();
  1950. for (uint8_t i = 0; i < cnt; i++)
  1951. {
  1952. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1953. endstops_hit_on_purpose();
  1954. enable_endstops(false);
  1955. current_position[axis] = 0;
  1956. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1957. destination[axis] = 10.f;
  1958. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1959. st_synchronize();
  1960. endstops_hit_on_purpose();
  1961. // Now move left up to the collision, this time with a repeatable velocity.
  1962. enable_endstops(true);
  1963. destination[axis] = - 11.f;
  1964. #ifdef TMC2130
  1965. feedrate = homing_feedrate[axis];
  1966. #else //TMC2130
  1967. feedrate = homing_feedrate[axis] / 2;
  1968. #endif //TMC2130
  1969. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1970. st_synchronize();
  1971. #ifdef TMC2130
  1972. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1973. if (pstep) pstep[i] = mscnt >> 4;
  1974. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1975. #endif //TMC2130
  1976. }
  1977. endstops_hit_on_purpose();
  1978. enable_endstops(false);
  1979. #ifdef TMC2130
  1980. uint8_t orig = tmc2130_home_origin[axis];
  1981. uint8_t back = tmc2130_home_bsteps[axis];
  1982. if (tmc2130_home_enabled && (orig <= 63))
  1983. {
  1984. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1985. if (back > 0)
  1986. tmc2130_do_steps(axis, back, 1, 1000);
  1987. }
  1988. else
  1989. tmc2130_do_steps(axis, 8, 2, 1000);
  1990. tmc2130_home_exit();
  1991. #endif //TMC2130
  1992. axis_is_at_home(axis);
  1993. axis_known_position[axis] = true;
  1994. // Move from minimum
  1995. #ifdef TMC2130
  1996. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1997. #else //TMC2130
  1998. float dist = 0.01f * 64;
  1999. #endif //TMC2130
  2000. current_position[axis] -= dist;
  2001. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2002. current_position[axis] += dist;
  2003. destination[axis] = current_position[axis];
  2004. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2005. st_synchronize();
  2006. feedrate = 0.0;
  2007. }
  2008. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2009. {
  2010. #ifdef TMC2130
  2011. FORCE_HIGH_POWER_START;
  2012. #endif
  2013. int axis_home_dir = home_dir(axis);
  2014. current_position[axis] = 0;
  2015. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2016. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2017. feedrate = homing_feedrate[axis];
  2018. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2019. st_synchronize();
  2020. #ifdef TMC2130
  2021. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2022. FORCE_HIGH_POWER_END;
  2023. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2024. return;
  2025. }
  2026. #endif //TMC2130
  2027. current_position[axis] = 0;
  2028. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2029. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2030. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2031. st_synchronize();
  2032. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2033. feedrate = homing_feedrate[axis]/2 ;
  2034. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2035. st_synchronize();
  2036. #ifdef TMC2130
  2037. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2038. FORCE_HIGH_POWER_END;
  2039. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2040. return;
  2041. }
  2042. #endif //TMC2130
  2043. axis_is_at_home(axis);
  2044. destination[axis] = current_position[axis];
  2045. feedrate = 0.0;
  2046. endstops_hit_on_purpose();
  2047. axis_known_position[axis] = true;
  2048. #ifdef TMC2130
  2049. FORCE_HIGH_POWER_END;
  2050. #endif
  2051. }
  2052. enable_endstops(endstops_enabled);
  2053. }
  2054. /**/
  2055. void home_xy()
  2056. {
  2057. set_destination_to_current();
  2058. homeaxis(X_AXIS);
  2059. homeaxis(Y_AXIS);
  2060. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2061. endstops_hit_on_purpose();
  2062. }
  2063. void refresh_cmd_timeout(void)
  2064. {
  2065. previous_millis_cmd = millis();
  2066. }
  2067. #ifdef FWRETRACT
  2068. void retract(bool retracting, bool swapretract = false) {
  2069. if(retracting && !retracted[active_extruder]) {
  2070. destination[X_AXIS]=current_position[X_AXIS];
  2071. destination[Y_AXIS]=current_position[Y_AXIS];
  2072. destination[Z_AXIS]=current_position[Z_AXIS];
  2073. destination[E_AXIS]=current_position[E_AXIS];
  2074. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2075. plan_set_e_position(current_position[E_AXIS]);
  2076. float oldFeedrate = feedrate;
  2077. feedrate=retract_feedrate*60;
  2078. retracted[active_extruder]=true;
  2079. prepare_move();
  2080. current_position[Z_AXIS]-=retract_zlift;
  2081. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2082. prepare_move();
  2083. feedrate = oldFeedrate;
  2084. } else if(!retracting && retracted[active_extruder]) {
  2085. destination[X_AXIS]=current_position[X_AXIS];
  2086. destination[Y_AXIS]=current_position[Y_AXIS];
  2087. destination[Z_AXIS]=current_position[Z_AXIS];
  2088. destination[E_AXIS]=current_position[E_AXIS];
  2089. current_position[Z_AXIS]+=retract_zlift;
  2090. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2091. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2092. plan_set_e_position(current_position[E_AXIS]);
  2093. float oldFeedrate = feedrate;
  2094. feedrate=retract_recover_feedrate*60;
  2095. retracted[active_extruder]=false;
  2096. prepare_move();
  2097. feedrate = oldFeedrate;
  2098. }
  2099. } //retract
  2100. #endif //FWRETRACT
  2101. void trace() {
  2102. tone(BEEPER, 440);
  2103. delay(25);
  2104. noTone(BEEPER);
  2105. delay(20);
  2106. }
  2107. /*
  2108. void ramming() {
  2109. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2110. if (current_temperature[0] < 230) {
  2111. //PLA
  2112. max_feedrate[E_AXIS] = 50;
  2113. //current_position[E_AXIS] -= 8;
  2114. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2115. //current_position[E_AXIS] += 8;
  2116. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2117. current_position[E_AXIS] += 5.4;
  2118. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2119. current_position[E_AXIS] += 3.2;
  2120. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2121. current_position[E_AXIS] += 3;
  2122. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2123. st_synchronize();
  2124. max_feedrate[E_AXIS] = 80;
  2125. current_position[E_AXIS] -= 82;
  2126. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2127. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2128. current_position[E_AXIS] -= 20;
  2129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2130. current_position[E_AXIS] += 5;
  2131. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2132. current_position[E_AXIS] += 5;
  2133. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2134. current_position[E_AXIS] -= 10;
  2135. st_synchronize();
  2136. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2137. current_position[E_AXIS] += 10;
  2138. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2139. current_position[E_AXIS] -= 10;
  2140. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2141. current_position[E_AXIS] += 10;
  2142. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2143. current_position[E_AXIS] -= 10;
  2144. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2145. st_synchronize();
  2146. }
  2147. else {
  2148. //ABS
  2149. max_feedrate[E_AXIS] = 50;
  2150. //current_position[E_AXIS] -= 8;
  2151. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2152. //current_position[E_AXIS] += 8;
  2153. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2154. current_position[E_AXIS] += 3.1;
  2155. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2156. current_position[E_AXIS] += 3.1;
  2157. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2158. current_position[E_AXIS] += 4;
  2159. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2160. st_synchronize();
  2161. //current_position[X_AXIS] += 23; //delay
  2162. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2163. //current_position[X_AXIS] -= 23; //delay
  2164. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2165. delay(4700);
  2166. max_feedrate[E_AXIS] = 80;
  2167. current_position[E_AXIS] -= 92;
  2168. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2169. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2170. current_position[E_AXIS] -= 5;
  2171. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2172. current_position[E_AXIS] += 5;
  2173. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2174. current_position[E_AXIS] -= 5;
  2175. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2176. st_synchronize();
  2177. current_position[E_AXIS] += 5;
  2178. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2179. current_position[E_AXIS] -= 5;
  2180. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2181. current_position[E_AXIS] += 5;
  2182. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2183. current_position[E_AXIS] -= 5;
  2184. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2185. st_synchronize();
  2186. }
  2187. }
  2188. */
  2189. #ifdef TMC2130
  2190. void force_high_power_mode(bool start_high_power_section) {
  2191. uint8_t silent;
  2192. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2193. if (silent == 1) {
  2194. //we are in silent mode, set to normal mode to enable crash detection
  2195. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2196. st_synchronize();
  2197. cli();
  2198. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2199. tmc2130_init();
  2200. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2201. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2202. st_reset_timer();
  2203. sei();
  2204. }
  2205. }
  2206. #endif //TMC2130
  2207. void gcode_G28(bool home_x, bool home_y, bool home_z, bool calib) {
  2208. st_synchronize();
  2209. #if 0
  2210. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2211. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2212. #endif
  2213. // Flag for the display update routine and to disable the print cancelation during homing.
  2214. homing_flag = true;
  2215. // Either all X,Y,Z codes are present, or none of them.
  2216. bool home_all_axes = home_x == home_y && home_x == home_z;
  2217. if (home_all_axes)
  2218. // No X/Y/Z code provided means to home all axes.
  2219. home_x = home_y = home_z = true;
  2220. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2221. if (home_all_axes) {
  2222. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2223. feedrate = homing_feedrate[Z_AXIS];
  2224. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2225. st_synchronize();
  2226. }
  2227. #ifdef ENABLE_AUTO_BED_LEVELING
  2228. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2229. #endif //ENABLE_AUTO_BED_LEVELING
  2230. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2231. // the planner will not perform any adjustments in the XY plane.
  2232. // Wait for the motors to stop and update the current position with the absolute values.
  2233. world2machine_revert_to_uncorrected();
  2234. // For mesh bed leveling deactivate the matrix temporarily.
  2235. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2236. // in a single axis only.
  2237. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2238. #ifdef MESH_BED_LEVELING
  2239. uint8_t mbl_was_active = mbl.active;
  2240. mbl.active = 0;
  2241. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2242. #endif
  2243. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2244. // consumed during the first movements following this statement.
  2245. if (home_z)
  2246. babystep_undo();
  2247. saved_feedrate = feedrate;
  2248. saved_feedmultiply = feedmultiply;
  2249. feedmultiply = 100;
  2250. previous_millis_cmd = millis();
  2251. enable_endstops(true);
  2252. memcpy(destination, current_position, sizeof(destination));
  2253. feedrate = 0.0;
  2254. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2255. if(home_z)
  2256. homeaxis(Z_AXIS);
  2257. #endif
  2258. #ifdef QUICK_HOME
  2259. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2260. if(home_x && home_y) //first diagonal move
  2261. {
  2262. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2263. int x_axis_home_dir = home_dir(X_AXIS);
  2264. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2265. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2266. feedrate = homing_feedrate[X_AXIS];
  2267. if(homing_feedrate[Y_AXIS]<feedrate)
  2268. feedrate = homing_feedrate[Y_AXIS];
  2269. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2270. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2271. } else {
  2272. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2273. }
  2274. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2275. st_synchronize();
  2276. axis_is_at_home(X_AXIS);
  2277. axis_is_at_home(Y_AXIS);
  2278. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2279. destination[X_AXIS] = current_position[X_AXIS];
  2280. destination[Y_AXIS] = current_position[Y_AXIS];
  2281. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2282. feedrate = 0.0;
  2283. st_synchronize();
  2284. endstops_hit_on_purpose();
  2285. current_position[X_AXIS] = destination[X_AXIS];
  2286. current_position[Y_AXIS] = destination[Y_AXIS];
  2287. current_position[Z_AXIS] = destination[Z_AXIS];
  2288. }
  2289. #endif /* QUICK_HOME */
  2290. #ifdef TMC2130
  2291. if(home_x)
  2292. {
  2293. if (!calib)
  2294. homeaxis(X_AXIS);
  2295. else
  2296. tmc2130_home_calibrate(X_AXIS);
  2297. }
  2298. if(home_y)
  2299. {
  2300. if (!calib)
  2301. homeaxis(Y_AXIS);
  2302. else
  2303. tmc2130_home_calibrate(Y_AXIS);
  2304. }
  2305. #endif //TMC2130
  2306. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2307. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2308. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2309. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2310. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2311. #ifndef Z_SAFE_HOMING
  2312. if(home_z) {
  2313. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2314. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2315. feedrate = max_feedrate[Z_AXIS];
  2316. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2317. st_synchronize();
  2318. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2319. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2320. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2321. {
  2322. homeaxis(X_AXIS);
  2323. homeaxis(Y_AXIS);
  2324. }
  2325. // 1st mesh bed leveling measurement point, corrected.
  2326. world2machine_initialize();
  2327. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2328. world2machine_reset();
  2329. if (destination[Y_AXIS] < Y_MIN_POS)
  2330. destination[Y_AXIS] = Y_MIN_POS;
  2331. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2332. feedrate = homing_feedrate[Z_AXIS]/10;
  2333. current_position[Z_AXIS] = 0;
  2334. enable_endstops(false);
  2335. #ifdef DEBUG_BUILD
  2336. SERIAL_ECHOLNPGM("plan_set_position()");
  2337. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2338. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2339. #endif
  2340. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2341. #ifdef DEBUG_BUILD
  2342. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2343. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2344. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2345. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2346. #endif
  2347. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2348. st_synchronize();
  2349. current_position[X_AXIS] = destination[X_AXIS];
  2350. current_position[Y_AXIS] = destination[Y_AXIS];
  2351. enable_endstops(true);
  2352. endstops_hit_on_purpose();
  2353. homeaxis(Z_AXIS);
  2354. #else // MESH_BED_LEVELING
  2355. homeaxis(Z_AXIS);
  2356. #endif // MESH_BED_LEVELING
  2357. }
  2358. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2359. if(home_all_axes) {
  2360. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2361. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2362. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2363. feedrate = XY_TRAVEL_SPEED/60;
  2364. current_position[Z_AXIS] = 0;
  2365. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2366. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2367. st_synchronize();
  2368. current_position[X_AXIS] = destination[X_AXIS];
  2369. current_position[Y_AXIS] = destination[Y_AXIS];
  2370. homeaxis(Z_AXIS);
  2371. }
  2372. // Let's see if X and Y are homed and probe is inside bed area.
  2373. if(home_z) {
  2374. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2375. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2376. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2377. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2378. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2379. current_position[Z_AXIS] = 0;
  2380. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2381. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2382. feedrate = max_feedrate[Z_AXIS];
  2383. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2384. st_synchronize();
  2385. homeaxis(Z_AXIS);
  2386. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2387. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2388. SERIAL_ECHO_START;
  2389. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2390. } else {
  2391. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2392. SERIAL_ECHO_START;
  2393. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2394. }
  2395. }
  2396. #endif // Z_SAFE_HOMING
  2397. #endif // Z_HOME_DIR < 0
  2398. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2399. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2400. #ifdef ENABLE_AUTO_BED_LEVELING
  2401. if(home_z)
  2402. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2403. #endif
  2404. // Set the planner and stepper routine positions.
  2405. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2406. // contains the machine coordinates.
  2407. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2408. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2409. enable_endstops(false);
  2410. #endif
  2411. feedrate = saved_feedrate;
  2412. feedmultiply = saved_feedmultiply;
  2413. previous_millis_cmd = millis();
  2414. endstops_hit_on_purpose();
  2415. #ifndef MESH_BED_LEVELING
  2416. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2417. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2418. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2419. lcd_adjust_z();
  2420. #endif
  2421. // Load the machine correction matrix
  2422. world2machine_initialize();
  2423. // and correct the current_position XY axes to match the transformed coordinate system.
  2424. world2machine_update_current();
  2425. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2426. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2427. {
  2428. if (! home_z && mbl_was_active) {
  2429. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2430. mbl.active = true;
  2431. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2432. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2433. }
  2434. }
  2435. else
  2436. {
  2437. st_synchronize();
  2438. homing_flag = false;
  2439. // Push the commands to the front of the message queue in the reverse order!
  2440. // There shall be always enough space reserved for these commands.
  2441. enquecommand_front_P((PSTR("G80")));
  2442. //goto case_G80;
  2443. }
  2444. #endif
  2445. if (farm_mode) { prusa_statistics(20); };
  2446. homing_flag = false;
  2447. #if 0
  2448. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2449. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2450. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2451. #endif
  2452. }
  2453. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2454. {
  2455. bool final_result = false;
  2456. #ifdef TMC2130
  2457. FORCE_HIGH_POWER_START;
  2458. #endif // TMC2130
  2459. // Only Z calibration?
  2460. if (!onlyZ)
  2461. {
  2462. setTargetBed(0);
  2463. setTargetHotend(0, 0);
  2464. setTargetHotend(0, 1);
  2465. setTargetHotend(0, 2);
  2466. adjust_bed_reset(); //reset bed level correction
  2467. }
  2468. // Disable the default update procedure of the display. We will do a modal dialog.
  2469. lcd_update_enable(false);
  2470. // Let the planner use the uncorrected coordinates.
  2471. mbl.reset();
  2472. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2473. // the planner will not perform any adjustments in the XY plane.
  2474. // Wait for the motors to stop and update the current position with the absolute values.
  2475. world2machine_revert_to_uncorrected();
  2476. // Reset the baby step value applied without moving the axes.
  2477. babystep_reset();
  2478. // Mark all axes as in a need for homing.
  2479. memset(axis_known_position, 0, sizeof(axis_known_position));
  2480. // Home in the XY plane.
  2481. //set_destination_to_current();
  2482. setup_for_endstop_move();
  2483. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2484. home_xy();
  2485. enable_endstops(false);
  2486. current_position[X_AXIS] += 5;
  2487. current_position[Y_AXIS] += 5;
  2488. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2489. st_synchronize();
  2490. // Let the user move the Z axes up to the end stoppers.
  2491. #ifdef TMC2130
  2492. if (calibrate_z_auto())
  2493. {
  2494. #else //TMC2130
  2495. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2496. {
  2497. #endif //TMC2130
  2498. refresh_cmd_timeout();
  2499. #ifndef STEEL_SHEET
  2500. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2501. {
  2502. lcd_wait_for_cool_down();
  2503. }
  2504. #endif //STEEL_SHEET
  2505. if(!onlyZ)
  2506. {
  2507. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2508. #ifdef STEEL_SHEET
  2509. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2510. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2511. #endif //STEEL_SHEET
  2512. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2513. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2514. KEEPALIVE_STATE(IN_HANDLER);
  2515. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2516. lcd_implementation_print_at(0, 2, 1);
  2517. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2518. }
  2519. // Move the print head close to the bed.
  2520. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2521. bool endstops_enabled = enable_endstops(true);
  2522. #ifdef TMC2130
  2523. tmc2130_home_enter(Z_AXIS_MASK);
  2524. #endif //TMC2130
  2525. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2526. st_synchronize();
  2527. #ifdef TMC2130
  2528. tmc2130_home_exit();
  2529. #endif //TMC2130
  2530. enable_endstops(endstops_enabled);
  2531. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2532. {
  2533. int8_t verbosity_level = 0;
  2534. if (code_seen('V'))
  2535. {
  2536. // Just 'V' without a number counts as V1.
  2537. char c = strchr_pointer[1];
  2538. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2539. }
  2540. if (onlyZ)
  2541. {
  2542. clean_up_after_endstop_move();
  2543. // Z only calibration.
  2544. // Load the machine correction matrix
  2545. world2machine_initialize();
  2546. // and correct the current_position to match the transformed coordinate system.
  2547. world2machine_update_current();
  2548. //FIXME
  2549. bool result = sample_mesh_and_store_reference();
  2550. if (result)
  2551. {
  2552. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2553. // Shipped, the nozzle height has been set already. The user can start printing now.
  2554. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2555. final_result = true;
  2556. // babystep_apply();
  2557. }
  2558. }
  2559. else
  2560. {
  2561. // Reset the baby step value and the baby step applied flag.
  2562. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2563. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2564. // Complete XYZ calibration.
  2565. uint8_t point_too_far_mask = 0;
  2566. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2567. clean_up_after_endstop_move();
  2568. // Print head up.
  2569. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2570. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2571. st_synchronize();
  2572. //#ifndef NEW_XYZCAL
  2573. if (result >= 0)
  2574. {
  2575. #ifdef HEATBED_V2
  2576. sample_z();
  2577. #else //HEATBED_V2
  2578. point_too_far_mask = 0;
  2579. // Second half: The fine adjustment.
  2580. // Let the planner use the uncorrected coordinates.
  2581. mbl.reset();
  2582. world2machine_reset();
  2583. // Home in the XY plane.
  2584. setup_for_endstop_move();
  2585. home_xy();
  2586. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2587. clean_up_after_endstop_move();
  2588. // Print head up.
  2589. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2591. st_synchronize();
  2592. // if (result >= 0) babystep_apply();
  2593. #endif //HEATBED_V2
  2594. }
  2595. //#endif //NEW_XYZCAL
  2596. lcd_update_enable(true);
  2597. lcd_update(2);
  2598. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2599. if (result >= 0)
  2600. {
  2601. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2602. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2603. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2604. final_result = true;
  2605. }
  2606. }
  2607. #ifdef TMC2130
  2608. tmc2130_home_exit();
  2609. #endif
  2610. }
  2611. else
  2612. {
  2613. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2614. final_result = false;
  2615. }
  2616. }
  2617. else
  2618. {
  2619. // Timeouted.
  2620. }
  2621. lcd_update_enable(true);
  2622. #ifdef TMC2130
  2623. FORCE_HIGH_POWER_END;
  2624. #endif // TMC2130
  2625. return final_result;
  2626. }
  2627. void gcode_M114()
  2628. {
  2629. SERIAL_PROTOCOLPGM("X:");
  2630. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2631. SERIAL_PROTOCOLPGM(" Y:");
  2632. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2633. SERIAL_PROTOCOLPGM(" Z:");
  2634. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2635. SERIAL_PROTOCOLPGM(" E:");
  2636. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2637. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2638. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2639. SERIAL_PROTOCOLPGM(" Y:");
  2640. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2641. SERIAL_PROTOCOLPGM(" Z:");
  2642. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2643. SERIAL_PROTOCOLPGM(" E:");
  2644. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2645. SERIAL_PROTOCOLLN("");
  2646. }
  2647. void gcode_M701()
  2648. {
  2649. #ifdef SNMM
  2650. extr_adj(snmm_extruder);//loads current extruder
  2651. #else
  2652. enable_z();
  2653. custom_message = true;
  2654. custom_message_type = 2;
  2655. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2656. current_position[E_AXIS] += 70;
  2657. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2658. current_position[E_AXIS] += 25;
  2659. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2660. st_synchronize();
  2661. tone(BEEPER, 500);
  2662. delay_keep_alive(50);
  2663. noTone(BEEPER);
  2664. if (!farm_mode && loading_flag) {
  2665. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2666. while (!clean) {
  2667. lcd_update_enable(true);
  2668. lcd_update(2);
  2669. current_position[E_AXIS] += 25;
  2670. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2671. st_synchronize();
  2672. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2673. }
  2674. }
  2675. lcd_update_enable(true);
  2676. lcd_update(2);
  2677. lcd_setstatuspgm(_T(WELCOME_MSG));
  2678. disable_z();
  2679. loading_flag = false;
  2680. custom_message = false;
  2681. custom_message_type = 0;
  2682. #endif
  2683. }
  2684. /**
  2685. * @brief Get serial number from 32U2 processor
  2686. *
  2687. * Typical format of S/N is:CZPX0917X003XC13518
  2688. *
  2689. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2690. *
  2691. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2692. * reply is transmitted to serial port 1 character by character.
  2693. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2694. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2695. * in any case.
  2696. */
  2697. static void gcode_PRUSA_SN()
  2698. {
  2699. if (farm_mode) {
  2700. selectedSerialPort = 0;
  2701. MSerial.write(";S");
  2702. int numbersRead = 0;
  2703. ShortTimer timeout;
  2704. timeout.start();
  2705. while (numbersRead < 19) {
  2706. while (MSerial.available() > 0) {
  2707. uint8_t serial_char = MSerial.read();
  2708. selectedSerialPort = 1;
  2709. MSerial.write(serial_char);
  2710. numbersRead++;
  2711. selectedSerialPort = 0;
  2712. }
  2713. if (timeout.expired(100u)) break;
  2714. }
  2715. selectedSerialPort = 1;
  2716. MSerial.write('\n');
  2717. #if 0
  2718. for (int b = 0; b < 3; b++) {
  2719. tone(BEEPER, 110);
  2720. delay(50);
  2721. noTone(BEEPER);
  2722. delay(50);
  2723. }
  2724. #endif
  2725. } else {
  2726. MYSERIAL.println("Not in farm mode.");
  2727. }
  2728. }
  2729. void process_commands()
  2730. {
  2731. if (!buflen) return; //empty command
  2732. #ifdef FILAMENT_RUNOUT_SUPPORT
  2733. SET_INPUT(FR_SENS);
  2734. #endif
  2735. #ifdef CMDBUFFER_DEBUG
  2736. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2737. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2738. SERIAL_ECHOLNPGM("");
  2739. SERIAL_ECHOPGM("In cmdqueue: ");
  2740. SERIAL_ECHO(buflen);
  2741. SERIAL_ECHOLNPGM("");
  2742. #endif /* CMDBUFFER_DEBUG */
  2743. unsigned long codenum; //throw away variable
  2744. char *starpos = NULL;
  2745. #ifdef ENABLE_AUTO_BED_LEVELING
  2746. float x_tmp, y_tmp, z_tmp, real_z;
  2747. #endif
  2748. // PRUSA GCODES
  2749. KEEPALIVE_STATE(IN_HANDLER);
  2750. #ifdef SNMM
  2751. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2752. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2753. int8_t SilentMode;
  2754. #endif
  2755. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2756. starpos = (strchr(strchr_pointer + 5, '*'));
  2757. if (starpos != NULL)
  2758. *(starpos) = '\0';
  2759. lcd_setstatus(strchr_pointer + 5);
  2760. }
  2761. #ifdef TMC2130
  2762. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2763. {
  2764. if(code_seen("CRASH_DETECTED"))
  2765. {
  2766. uint8_t mask = 0;
  2767. if (code_seen("X")) mask |= X_AXIS_MASK;
  2768. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2769. crashdet_detected(mask);
  2770. }
  2771. else if(code_seen("CRASH_RECOVER"))
  2772. crashdet_recover();
  2773. else if(code_seen("CRASH_CANCEL"))
  2774. crashdet_cancel();
  2775. }
  2776. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2777. {
  2778. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2779. {
  2780. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2781. tmc2130_set_wave(E_AXIS, 247, fac);
  2782. }
  2783. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2784. {
  2785. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2786. uint16_t res = tmc2130_get_res(E_AXIS);
  2787. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2788. }
  2789. }
  2790. #endif //TMC2130
  2791. else if(code_seen("PRUSA")){
  2792. if (code_seen("Ping")) { //PRUSA Ping
  2793. if (farm_mode) {
  2794. PingTime = millis();
  2795. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2796. }
  2797. }
  2798. else if (code_seen("PRN")) {
  2799. MYSERIAL.println(status_number);
  2800. }else if (code_seen("FAN")) {
  2801. MYSERIAL.print("E0:");
  2802. MYSERIAL.print(60*fan_speed[0]);
  2803. MYSERIAL.println(" RPM");
  2804. MYSERIAL.print("PRN0:");
  2805. MYSERIAL.print(60*fan_speed[1]);
  2806. MYSERIAL.println(" RPM");
  2807. }else if (code_seen("fn")) {
  2808. if (farm_mode) {
  2809. MYSERIAL.println(farm_no);
  2810. }
  2811. else {
  2812. MYSERIAL.println("Not in farm mode.");
  2813. }
  2814. }
  2815. else if (code_seen("thx")) {
  2816. no_response = false;
  2817. }else if (code_seen("fv")) {
  2818. // get file version
  2819. #ifdef SDSUPPORT
  2820. card.openFile(strchr_pointer + 3,true);
  2821. while (true) {
  2822. uint16_t readByte = card.get();
  2823. MYSERIAL.write(readByte);
  2824. if (readByte=='\n') {
  2825. break;
  2826. }
  2827. }
  2828. card.closefile();
  2829. #endif // SDSUPPORT
  2830. } else if (code_seen("M28")) {
  2831. trace();
  2832. prusa_sd_card_upload = true;
  2833. card.openFile(strchr_pointer+4,false);
  2834. } else if (code_seen("SN")) {
  2835. gcode_PRUSA_SN();
  2836. } else if(code_seen("Fir")){
  2837. SERIAL_PROTOCOLLN(FW_VERSION);
  2838. } else if(code_seen("Rev")){
  2839. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2840. } else if(code_seen("Lang")) {
  2841. lang_reset();
  2842. } else if(code_seen("Lz")) {
  2843. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2844. } else if(code_seen("Beat")) {
  2845. // Kick farm link timer
  2846. kicktime = millis();
  2847. } else if(code_seen("FR")) {
  2848. // Factory full reset
  2849. factory_reset(0,true);
  2850. }
  2851. //else if (code_seen('Cal')) {
  2852. // lcd_calibration();
  2853. // }
  2854. }
  2855. else if (code_seen('^')) {
  2856. // nothing, this is a version line
  2857. } else if(code_seen('G'))
  2858. {
  2859. switch((int)code_value())
  2860. {
  2861. case 0: // G0 -> G1
  2862. case 1: // G1
  2863. if(Stopped == false) {
  2864. #ifdef FILAMENT_RUNOUT_SUPPORT
  2865. if(READ(FR_SENS)){
  2866. feedmultiplyBckp=feedmultiply;
  2867. float target[4];
  2868. float lastpos[4];
  2869. target[X_AXIS]=current_position[X_AXIS];
  2870. target[Y_AXIS]=current_position[Y_AXIS];
  2871. target[Z_AXIS]=current_position[Z_AXIS];
  2872. target[E_AXIS]=current_position[E_AXIS];
  2873. lastpos[X_AXIS]=current_position[X_AXIS];
  2874. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2875. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2876. lastpos[E_AXIS]=current_position[E_AXIS];
  2877. //retract by E
  2878. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2879. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2880. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2881. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2882. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2883. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2884. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2885. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2886. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2887. //finish moves
  2888. st_synchronize();
  2889. //disable extruder steppers so filament can be removed
  2890. disable_e0();
  2891. disable_e1();
  2892. disable_e2();
  2893. delay(100);
  2894. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  2895. uint8_t cnt=0;
  2896. int counterBeep = 0;
  2897. lcd_wait_interact();
  2898. while(!lcd_clicked()){
  2899. cnt++;
  2900. manage_heater();
  2901. manage_inactivity(true);
  2902. //lcd_update();
  2903. if(cnt==0)
  2904. {
  2905. #if BEEPER > 0
  2906. if (counterBeep== 500){
  2907. counterBeep = 0;
  2908. }
  2909. SET_OUTPUT(BEEPER);
  2910. if (counterBeep== 0){
  2911. WRITE(BEEPER,HIGH);
  2912. }
  2913. if (counterBeep== 20){
  2914. WRITE(BEEPER,LOW);
  2915. }
  2916. counterBeep++;
  2917. #else
  2918. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2919. lcd_buzz(1000/6,100);
  2920. #else
  2921. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2922. #endif
  2923. #endif
  2924. }
  2925. }
  2926. WRITE(BEEPER,LOW);
  2927. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2928. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2929. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2930. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2931. lcd_change_fil_state = 0;
  2932. lcd_loading_filament();
  2933. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2934. lcd_change_fil_state = 0;
  2935. lcd_alright();
  2936. switch(lcd_change_fil_state){
  2937. case 2:
  2938. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2939. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2940. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2941. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2942. lcd_loading_filament();
  2943. break;
  2944. case 3:
  2945. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2946. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2947. lcd_loading_color();
  2948. break;
  2949. default:
  2950. lcd_change_success();
  2951. break;
  2952. }
  2953. }
  2954. target[E_AXIS]+= 5;
  2955. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2956. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2957. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2958. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2959. //plan_set_e_position(current_position[E_AXIS]);
  2960. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2961. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2962. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2963. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2964. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2965. plan_set_e_position(lastpos[E_AXIS]);
  2966. feedmultiply=feedmultiplyBckp;
  2967. char cmd[9];
  2968. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2969. enquecommand(cmd);
  2970. }
  2971. #endif
  2972. get_coordinates(); // For X Y Z E F
  2973. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2974. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2975. }
  2976. #ifdef FWRETRACT
  2977. if(autoretract_enabled)
  2978. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2979. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2980. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  2981. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2982. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2983. retract(!retracted[active_extruder]);
  2984. return;
  2985. }
  2986. }
  2987. #endif //FWRETRACT
  2988. prepare_move();
  2989. //ClearToSend();
  2990. }
  2991. break;
  2992. case 2: // G2 - CW ARC
  2993. if(Stopped == false) {
  2994. get_arc_coordinates();
  2995. prepare_arc_move(true);
  2996. }
  2997. break;
  2998. case 3: // G3 - CCW ARC
  2999. if(Stopped == false) {
  3000. get_arc_coordinates();
  3001. prepare_arc_move(false);
  3002. }
  3003. break;
  3004. case 4: // G4 dwell
  3005. codenum = 0;
  3006. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3007. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3008. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3009. st_synchronize();
  3010. codenum += millis(); // keep track of when we started waiting
  3011. previous_millis_cmd = millis();
  3012. while(millis() < codenum) {
  3013. manage_heater();
  3014. manage_inactivity();
  3015. lcd_update();
  3016. }
  3017. break;
  3018. #ifdef FWRETRACT
  3019. case 10: // G10 retract
  3020. #if EXTRUDERS > 1
  3021. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3022. retract(true,retracted_swap[active_extruder]);
  3023. #else
  3024. retract(true);
  3025. #endif
  3026. break;
  3027. case 11: // G11 retract_recover
  3028. #if EXTRUDERS > 1
  3029. retract(false,retracted_swap[active_extruder]);
  3030. #else
  3031. retract(false);
  3032. #endif
  3033. break;
  3034. #endif //FWRETRACT
  3035. case 28: //G28 Home all Axis one at a time
  3036. {
  3037. // Which axes should be homed?
  3038. bool home_x = code_seen(axis_codes[X_AXIS]);
  3039. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3040. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3041. // calibrate?
  3042. bool calib = code_seen('C');
  3043. gcode_G28(home_x, home_y, home_z, calib);
  3044. break;
  3045. }
  3046. #ifdef ENABLE_AUTO_BED_LEVELING
  3047. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3048. {
  3049. #if Z_MIN_PIN == -1
  3050. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3051. #endif
  3052. // Prevent user from running a G29 without first homing in X and Y
  3053. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3054. {
  3055. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3056. SERIAL_ECHO_START;
  3057. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3058. break; // abort G29, since we don't know where we are
  3059. }
  3060. st_synchronize();
  3061. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3062. //vector_3 corrected_position = plan_get_position_mm();
  3063. //corrected_position.debug("position before G29");
  3064. plan_bed_level_matrix.set_to_identity();
  3065. vector_3 uncorrected_position = plan_get_position();
  3066. //uncorrected_position.debug("position durring G29");
  3067. current_position[X_AXIS] = uncorrected_position.x;
  3068. current_position[Y_AXIS] = uncorrected_position.y;
  3069. current_position[Z_AXIS] = uncorrected_position.z;
  3070. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3071. setup_for_endstop_move();
  3072. feedrate = homing_feedrate[Z_AXIS];
  3073. #ifdef AUTO_BED_LEVELING_GRID
  3074. // probe at the points of a lattice grid
  3075. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3076. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3077. // solve the plane equation ax + by + d = z
  3078. // A is the matrix with rows [x y 1] for all the probed points
  3079. // B is the vector of the Z positions
  3080. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3081. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3082. // "A" matrix of the linear system of equations
  3083. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3084. // "B" vector of Z points
  3085. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3086. int probePointCounter = 0;
  3087. bool zig = true;
  3088. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3089. {
  3090. int xProbe, xInc;
  3091. if (zig)
  3092. {
  3093. xProbe = LEFT_PROBE_BED_POSITION;
  3094. //xEnd = RIGHT_PROBE_BED_POSITION;
  3095. xInc = xGridSpacing;
  3096. zig = false;
  3097. } else // zag
  3098. {
  3099. xProbe = RIGHT_PROBE_BED_POSITION;
  3100. //xEnd = LEFT_PROBE_BED_POSITION;
  3101. xInc = -xGridSpacing;
  3102. zig = true;
  3103. }
  3104. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3105. {
  3106. float z_before;
  3107. if (probePointCounter == 0)
  3108. {
  3109. // raise before probing
  3110. z_before = Z_RAISE_BEFORE_PROBING;
  3111. } else
  3112. {
  3113. // raise extruder
  3114. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3115. }
  3116. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3117. eqnBVector[probePointCounter] = measured_z;
  3118. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3119. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3120. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3121. probePointCounter++;
  3122. xProbe += xInc;
  3123. }
  3124. }
  3125. clean_up_after_endstop_move();
  3126. // solve lsq problem
  3127. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3128. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3129. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3130. SERIAL_PROTOCOLPGM(" b: ");
  3131. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3132. SERIAL_PROTOCOLPGM(" d: ");
  3133. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3134. set_bed_level_equation_lsq(plane_equation_coefficients);
  3135. free(plane_equation_coefficients);
  3136. #else // AUTO_BED_LEVELING_GRID not defined
  3137. // Probe at 3 arbitrary points
  3138. // probe 1
  3139. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3140. // probe 2
  3141. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3142. // probe 3
  3143. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3144. clean_up_after_endstop_move();
  3145. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3146. #endif // AUTO_BED_LEVELING_GRID
  3147. st_synchronize();
  3148. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3149. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3150. // When the bed is uneven, this height must be corrected.
  3151. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3152. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3153. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3154. z_tmp = current_position[Z_AXIS];
  3155. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3156. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3157. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3158. }
  3159. break;
  3160. #ifndef Z_PROBE_SLED
  3161. case 30: // G30 Single Z Probe
  3162. {
  3163. st_synchronize();
  3164. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3165. setup_for_endstop_move();
  3166. feedrate = homing_feedrate[Z_AXIS];
  3167. run_z_probe();
  3168. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3169. SERIAL_PROTOCOLPGM(" X: ");
  3170. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3171. SERIAL_PROTOCOLPGM(" Y: ");
  3172. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3173. SERIAL_PROTOCOLPGM(" Z: ");
  3174. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3175. SERIAL_PROTOCOLPGM("\n");
  3176. clean_up_after_endstop_move();
  3177. }
  3178. break;
  3179. #else
  3180. case 31: // dock the sled
  3181. dock_sled(true);
  3182. break;
  3183. case 32: // undock the sled
  3184. dock_sled(false);
  3185. break;
  3186. #endif // Z_PROBE_SLED
  3187. #endif // ENABLE_AUTO_BED_LEVELING
  3188. #ifdef MESH_BED_LEVELING
  3189. case 30: // G30 Single Z Probe
  3190. {
  3191. st_synchronize();
  3192. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3193. setup_for_endstop_move();
  3194. feedrate = homing_feedrate[Z_AXIS];
  3195. find_bed_induction_sensor_point_z(-10.f, 3);
  3196. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  3197. SERIAL_PROTOCOLPGM(" X: ");
  3198. MYSERIAL.print(current_position[X_AXIS], 5);
  3199. SERIAL_PROTOCOLPGM(" Y: ");
  3200. MYSERIAL.print(current_position[Y_AXIS], 5);
  3201. SERIAL_PROTOCOLPGM(" Z: ");
  3202. MYSERIAL.print(current_position[Z_AXIS], 5);
  3203. SERIAL_PROTOCOLPGM("\n");
  3204. clean_up_after_endstop_move();
  3205. }
  3206. break;
  3207. case 75:
  3208. {
  3209. for (int i = 40; i <= 110; i++) {
  3210. MYSERIAL.print(i);
  3211. MYSERIAL.print(" ");
  3212. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  3213. }
  3214. }
  3215. break;
  3216. case 76: //PINDA probe temperature calibration
  3217. {
  3218. #ifdef PINDA_THERMISTOR
  3219. if (true)
  3220. {
  3221. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3222. //we need to know accurate position of first calibration point
  3223. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3224. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3225. break;
  3226. }
  3227. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3228. {
  3229. // We don't know where we are! HOME!
  3230. // Push the commands to the front of the message queue in the reverse order!
  3231. // There shall be always enough space reserved for these commands.
  3232. repeatcommand_front(); // repeat G76 with all its parameters
  3233. enquecommand_front_P((PSTR("G28 W0")));
  3234. break;
  3235. }
  3236. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3237. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3238. if (result)
  3239. {
  3240. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3241. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3242. current_position[Z_AXIS] = 50;
  3243. current_position[Y_AXIS] = 180;
  3244. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3245. st_synchronize();
  3246. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3247. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3248. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3249. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3250. st_synchronize();
  3251. gcode_G28(false, false, true, false);
  3252. }
  3253. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3254. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3255. current_position[Z_AXIS] = 100;
  3256. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3257. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3258. lcd_temp_cal_show_result(false);
  3259. break;
  3260. }
  3261. }
  3262. lcd_update_enable(true);
  3263. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3264. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3265. float zero_z;
  3266. int z_shift = 0; //unit: steps
  3267. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3268. if (start_temp < 35) start_temp = 35;
  3269. if (start_temp < current_temperature_pinda) start_temp += 5;
  3270. SERIAL_ECHOPGM("start temperature: ");
  3271. MYSERIAL.println(start_temp);
  3272. // setTargetHotend(200, 0);
  3273. setTargetBed(70 + (start_temp - 30));
  3274. custom_message = true;
  3275. custom_message_type = 4;
  3276. custom_message_state = 1;
  3277. custom_message = _T(MSG_TEMP_CALIBRATION);
  3278. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3279. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3280. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3281. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3282. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3283. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3284. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3285. st_synchronize();
  3286. while (current_temperature_pinda < start_temp)
  3287. {
  3288. delay_keep_alive(1000);
  3289. serialecho_temperatures();
  3290. }
  3291. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3292. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3293. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3294. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3295. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3296. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3297. st_synchronize();
  3298. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3299. if (find_z_result == false) {
  3300. lcd_temp_cal_show_result(find_z_result);
  3301. break;
  3302. }
  3303. zero_z = current_position[Z_AXIS];
  3304. //current_position[Z_AXIS]
  3305. SERIAL_ECHOLNPGM("");
  3306. SERIAL_ECHOPGM("ZERO: ");
  3307. MYSERIAL.print(current_position[Z_AXIS]);
  3308. SERIAL_ECHOLNPGM("");
  3309. int i = -1; for (; i < 5; i++)
  3310. {
  3311. float temp = (40 + i * 5);
  3312. SERIAL_ECHOPGM("Step: ");
  3313. MYSERIAL.print(i + 2);
  3314. SERIAL_ECHOLNPGM("/6 (skipped)");
  3315. SERIAL_ECHOPGM("PINDA temperature: ");
  3316. MYSERIAL.print((40 + i*5));
  3317. SERIAL_ECHOPGM(" Z shift (mm):");
  3318. MYSERIAL.print(0);
  3319. SERIAL_ECHOLNPGM("");
  3320. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3321. if (start_temp <= temp) break;
  3322. }
  3323. for (i++; i < 5; i++)
  3324. {
  3325. float temp = (40 + i * 5);
  3326. SERIAL_ECHOPGM("Step: ");
  3327. MYSERIAL.print(i + 2);
  3328. SERIAL_ECHOLNPGM("/6");
  3329. custom_message_state = i + 2;
  3330. setTargetBed(50 + 10 * (temp - 30) / 5);
  3331. // setTargetHotend(255, 0);
  3332. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3333. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3334. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3335. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3336. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3337. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3338. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3339. st_synchronize();
  3340. while (current_temperature_pinda < temp)
  3341. {
  3342. delay_keep_alive(1000);
  3343. serialecho_temperatures();
  3344. }
  3345. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3346. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3347. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3348. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3349. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3350. st_synchronize();
  3351. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3352. if (find_z_result == false) {
  3353. lcd_temp_cal_show_result(find_z_result);
  3354. break;
  3355. }
  3356. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3357. SERIAL_ECHOLNPGM("");
  3358. SERIAL_ECHOPGM("PINDA temperature: ");
  3359. MYSERIAL.print(current_temperature_pinda);
  3360. SERIAL_ECHOPGM(" Z shift (mm):");
  3361. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3362. SERIAL_ECHOLNPGM("");
  3363. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3364. }
  3365. lcd_temp_cal_show_result(true);
  3366. break;
  3367. }
  3368. #endif //PINDA_THERMISTOR
  3369. setTargetBed(PINDA_MIN_T);
  3370. float zero_z;
  3371. int z_shift = 0; //unit: steps
  3372. int t_c; // temperature
  3373. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3374. // We don't know where we are! HOME!
  3375. // Push the commands to the front of the message queue in the reverse order!
  3376. // There shall be always enough space reserved for these commands.
  3377. repeatcommand_front(); // repeat G76 with all its parameters
  3378. enquecommand_front_P((PSTR("G28 W0")));
  3379. break;
  3380. }
  3381. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3382. custom_message = true;
  3383. custom_message_type = 4;
  3384. custom_message_state = 1;
  3385. custom_message = _T(MSG_TEMP_CALIBRATION);
  3386. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3387. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3388. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3389. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3390. st_synchronize();
  3391. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3392. delay_keep_alive(1000);
  3393. serialecho_temperatures();
  3394. }
  3395. //enquecommand_P(PSTR("M190 S50"));
  3396. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3397. delay_keep_alive(1000);
  3398. serialecho_temperatures();
  3399. }
  3400. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3401. current_position[Z_AXIS] = 5;
  3402. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3403. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3404. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3405. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3406. st_synchronize();
  3407. find_bed_induction_sensor_point_z(-1.f);
  3408. zero_z = current_position[Z_AXIS];
  3409. //current_position[Z_AXIS]
  3410. SERIAL_ECHOLNPGM("");
  3411. SERIAL_ECHOPGM("ZERO: ");
  3412. MYSERIAL.print(current_position[Z_AXIS]);
  3413. SERIAL_ECHOLNPGM("");
  3414. for (int i = 0; i<5; i++) {
  3415. SERIAL_ECHOPGM("Step: ");
  3416. MYSERIAL.print(i+2);
  3417. SERIAL_ECHOLNPGM("/6");
  3418. custom_message_state = i + 2;
  3419. t_c = 60 + i * 10;
  3420. setTargetBed(t_c);
  3421. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3422. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3423. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3424. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3425. st_synchronize();
  3426. while (degBed() < t_c) {
  3427. delay_keep_alive(1000);
  3428. serialecho_temperatures();
  3429. }
  3430. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3431. delay_keep_alive(1000);
  3432. serialecho_temperatures();
  3433. }
  3434. current_position[Z_AXIS] = 5;
  3435. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3436. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3437. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3438. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3439. st_synchronize();
  3440. find_bed_induction_sensor_point_z(-1.f);
  3441. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3442. SERIAL_ECHOLNPGM("");
  3443. SERIAL_ECHOPGM("Temperature: ");
  3444. MYSERIAL.print(t_c);
  3445. SERIAL_ECHOPGM(" Z shift (mm):");
  3446. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3447. SERIAL_ECHOLNPGM("");
  3448. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3449. }
  3450. custom_message_type = 0;
  3451. custom_message = false;
  3452. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3453. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3454. disable_x();
  3455. disable_y();
  3456. disable_z();
  3457. disable_e0();
  3458. disable_e1();
  3459. disable_e2();
  3460. setTargetBed(0); //set bed target temperature back to 0
  3461. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3462. temp_cal_active = true;
  3463. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3464. lcd_update_enable(true);
  3465. lcd_update(2);
  3466. }
  3467. break;
  3468. #ifdef DIS
  3469. case 77:
  3470. {
  3471. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3472. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3473. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3474. float dimension_x = 40;
  3475. float dimension_y = 40;
  3476. int points_x = 40;
  3477. int points_y = 40;
  3478. float offset_x = 74;
  3479. float offset_y = 33;
  3480. if (code_seen('X')) dimension_x = code_value();
  3481. if (code_seen('Y')) dimension_y = code_value();
  3482. if (code_seen('XP')) points_x = code_value();
  3483. if (code_seen('YP')) points_y = code_value();
  3484. if (code_seen('XO')) offset_x = code_value();
  3485. if (code_seen('YO')) offset_y = code_value();
  3486. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3487. } break;
  3488. #endif
  3489. case 79: {
  3490. for (int i = 255; i > 0; i = i - 5) {
  3491. fanSpeed = i;
  3492. //delay_keep_alive(2000);
  3493. for (int j = 0; j < 100; j++) {
  3494. delay_keep_alive(100);
  3495. }
  3496. fan_speed[1];
  3497. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3498. }
  3499. }break;
  3500. /**
  3501. * G80: Mesh-based Z probe, probes a grid and produces a
  3502. * mesh to compensate for variable bed height
  3503. *
  3504. * The S0 report the points as below
  3505. *
  3506. * +----> X-axis
  3507. * |
  3508. * |
  3509. * v Y-axis
  3510. *
  3511. */
  3512. case 80:
  3513. #ifdef MK1BP
  3514. break;
  3515. #endif //MK1BP
  3516. case_G80:
  3517. {
  3518. mesh_bed_leveling_flag = true;
  3519. int8_t verbosity_level = 0;
  3520. static bool run = false;
  3521. if (code_seen('V')) {
  3522. // Just 'V' without a number counts as V1.
  3523. char c = strchr_pointer[1];
  3524. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3525. }
  3526. // Firstly check if we know where we are
  3527. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3528. // We don't know where we are! HOME!
  3529. // Push the commands to the front of the message queue in the reverse order!
  3530. // There shall be always enough space reserved for these commands.
  3531. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3532. repeatcommand_front(); // repeat G80 with all its parameters
  3533. enquecommand_front_P((PSTR("G28 W0")));
  3534. }
  3535. else {
  3536. mesh_bed_leveling_flag = false;
  3537. }
  3538. break;
  3539. }
  3540. bool temp_comp_start = true;
  3541. #ifdef PINDA_THERMISTOR
  3542. temp_comp_start = false;
  3543. #endif //PINDA_THERMISTOR
  3544. if (temp_comp_start)
  3545. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3546. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3547. temp_compensation_start();
  3548. run = true;
  3549. repeatcommand_front(); // repeat G80 with all its parameters
  3550. enquecommand_front_P((PSTR("G28 W0")));
  3551. }
  3552. else {
  3553. mesh_bed_leveling_flag = false;
  3554. }
  3555. break;
  3556. }
  3557. run = false;
  3558. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3559. mesh_bed_leveling_flag = false;
  3560. break;
  3561. }
  3562. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3563. bool custom_message_old = custom_message;
  3564. unsigned int custom_message_type_old = custom_message_type;
  3565. unsigned int custom_message_state_old = custom_message_state;
  3566. custom_message = true;
  3567. custom_message_type = 1;
  3568. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3569. lcd_update(1);
  3570. mbl.reset(); //reset mesh bed leveling
  3571. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3572. // consumed during the first movements following this statement.
  3573. babystep_undo();
  3574. // Cycle through all points and probe them
  3575. // First move up. During this first movement, the babystepping will be reverted.
  3576. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3577. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3578. // The move to the first calibration point.
  3579. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3580. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3581. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3582. #ifdef SUPPORT_VERBOSITY
  3583. if (verbosity_level >= 1) {
  3584. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3585. }
  3586. #endif //SUPPORT_VERBOSITY
  3587. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3588. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3589. // Wait until the move is finished.
  3590. st_synchronize();
  3591. int mesh_point = 0; //index number of calibration point
  3592. int ix = 0;
  3593. int iy = 0;
  3594. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3595. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3596. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3597. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3598. #ifdef SUPPORT_VERBOSITY
  3599. if (verbosity_level >= 1) {
  3600. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3601. }
  3602. #endif // SUPPORT_VERBOSITY
  3603. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3604. const char *kill_message = NULL;
  3605. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3606. // Get coords of a measuring point.
  3607. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3608. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3609. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3610. float z0 = 0.f;
  3611. if (has_z && mesh_point > 0) {
  3612. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3613. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3614. //#if 0
  3615. #ifdef SUPPORT_VERBOSITY
  3616. if (verbosity_level >= 1) {
  3617. SERIAL_ECHOLNPGM("");
  3618. SERIAL_ECHOPGM("Bed leveling, point: ");
  3619. MYSERIAL.print(mesh_point);
  3620. SERIAL_ECHOPGM(", calibration z: ");
  3621. MYSERIAL.print(z0, 5);
  3622. SERIAL_ECHOLNPGM("");
  3623. }
  3624. #endif // SUPPORT_VERBOSITY
  3625. //#endif
  3626. }
  3627. // Move Z up to MESH_HOME_Z_SEARCH.
  3628. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3629. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3630. st_synchronize();
  3631. // Move to XY position of the sensor point.
  3632. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3633. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3634. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3635. #ifdef SUPPORT_VERBOSITY
  3636. if (verbosity_level >= 1) {
  3637. SERIAL_PROTOCOL(mesh_point);
  3638. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3639. }
  3640. #endif // SUPPORT_VERBOSITY
  3641. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3642. st_synchronize();
  3643. // Go down until endstop is hit
  3644. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3645. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3646. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3647. break;
  3648. }
  3649. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3650. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3651. break;
  3652. }
  3653. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3654. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3655. break;
  3656. }
  3657. #ifdef SUPPORT_VERBOSITY
  3658. if (verbosity_level >= 10) {
  3659. SERIAL_ECHOPGM("X: ");
  3660. MYSERIAL.print(current_position[X_AXIS], 5);
  3661. SERIAL_ECHOLNPGM("");
  3662. SERIAL_ECHOPGM("Y: ");
  3663. MYSERIAL.print(current_position[Y_AXIS], 5);
  3664. SERIAL_PROTOCOLPGM("\n");
  3665. }
  3666. #endif // SUPPORT_VERBOSITY
  3667. float offset_z = 0;
  3668. #ifdef PINDA_THERMISTOR
  3669. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3670. #endif //PINDA_THERMISTOR
  3671. // #ifdef SUPPORT_VERBOSITY
  3672. /* if (verbosity_level >= 1)
  3673. {
  3674. SERIAL_ECHOPGM("mesh bed leveling: ");
  3675. MYSERIAL.print(current_position[Z_AXIS], 5);
  3676. SERIAL_ECHOPGM(" offset: ");
  3677. MYSERIAL.print(offset_z, 5);
  3678. SERIAL_ECHOLNPGM("");
  3679. }*/
  3680. // #endif // SUPPORT_VERBOSITY
  3681. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3682. custom_message_state--;
  3683. mesh_point++;
  3684. lcd_update(1);
  3685. }
  3686. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3687. #ifdef SUPPORT_VERBOSITY
  3688. if (verbosity_level >= 20) {
  3689. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3690. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3691. MYSERIAL.print(current_position[Z_AXIS], 5);
  3692. }
  3693. #endif // SUPPORT_VERBOSITY
  3694. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3695. st_synchronize();
  3696. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3697. kill(kill_message);
  3698. SERIAL_ECHOLNPGM("killed");
  3699. }
  3700. clean_up_after_endstop_move();
  3701. // SERIAL_ECHOLNPGM("clean up finished ");
  3702. bool apply_temp_comp = true;
  3703. #ifdef PINDA_THERMISTOR
  3704. apply_temp_comp = false;
  3705. #endif
  3706. if (apply_temp_comp)
  3707. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3708. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3709. // SERIAL_ECHOLNPGM("babystep applied");
  3710. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3711. #ifdef SUPPORT_VERBOSITY
  3712. if (verbosity_level >= 1) {
  3713. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3714. }
  3715. #endif // SUPPORT_VERBOSITY
  3716. for (uint8_t i = 0; i < 4; ++i) {
  3717. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3718. long correction = 0;
  3719. if (code_seen(codes[i]))
  3720. correction = code_value_long();
  3721. else if (eeprom_bed_correction_valid) {
  3722. unsigned char *addr = (i < 2) ?
  3723. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3724. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3725. correction = eeprom_read_int8(addr);
  3726. }
  3727. if (correction == 0)
  3728. continue;
  3729. float offset = float(correction) * 0.001f;
  3730. if (fabs(offset) > 0.101f) {
  3731. SERIAL_ERROR_START;
  3732. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3733. SERIAL_ECHO(offset);
  3734. SERIAL_ECHOLNPGM(" microns");
  3735. }
  3736. else {
  3737. switch (i) {
  3738. case 0:
  3739. for (uint8_t row = 0; row < 3; ++row) {
  3740. mbl.z_values[row][1] += 0.5f * offset;
  3741. mbl.z_values[row][0] += offset;
  3742. }
  3743. break;
  3744. case 1:
  3745. for (uint8_t row = 0; row < 3; ++row) {
  3746. mbl.z_values[row][1] += 0.5f * offset;
  3747. mbl.z_values[row][2] += offset;
  3748. }
  3749. break;
  3750. case 2:
  3751. for (uint8_t col = 0; col < 3; ++col) {
  3752. mbl.z_values[1][col] += 0.5f * offset;
  3753. mbl.z_values[0][col] += offset;
  3754. }
  3755. break;
  3756. case 3:
  3757. for (uint8_t col = 0; col < 3; ++col) {
  3758. mbl.z_values[1][col] += 0.5f * offset;
  3759. mbl.z_values[2][col] += offset;
  3760. }
  3761. break;
  3762. }
  3763. }
  3764. }
  3765. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3766. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3767. // SERIAL_ECHOLNPGM("Upsample finished");
  3768. mbl.active = 1; //activate mesh bed leveling
  3769. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3770. go_home_with_z_lift();
  3771. // SERIAL_ECHOLNPGM("Go home finished");
  3772. //unretract (after PINDA preheat retraction)
  3773. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3774. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3775. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3776. }
  3777. KEEPALIVE_STATE(NOT_BUSY);
  3778. // Restore custom message state
  3779. custom_message = custom_message_old;
  3780. custom_message_type = custom_message_type_old;
  3781. custom_message_state = custom_message_state_old;
  3782. mesh_bed_leveling_flag = false;
  3783. mesh_bed_run_from_menu = false;
  3784. lcd_update(2);
  3785. }
  3786. break;
  3787. /**
  3788. * G81: Print mesh bed leveling status and bed profile if activated
  3789. */
  3790. case 81:
  3791. if (mbl.active) {
  3792. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3793. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3794. SERIAL_PROTOCOLPGM(",");
  3795. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3796. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3797. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3798. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3799. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3800. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3801. SERIAL_PROTOCOLPGM(" ");
  3802. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3803. }
  3804. SERIAL_PROTOCOLPGM("\n");
  3805. }
  3806. }
  3807. else
  3808. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3809. break;
  3810. #if 0
  3811. /**
  3812. * G82: Single Z probe at current location
  3813. *
  3814. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3815. *
  3816. */
  3817. case 82:
  3818. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3819. setup_for_endstop_move();
  3820. find_bed_induction_sensor_point_z();
  3821. clean_up_after_endstop_move();
  3822. SERIAL_PROTOCOLPGM("Bed found at: ");
  3823. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3824. SERIAL_PROTOCOLPGM("\n");
  3825. break;
  3826. /**
  3827. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3828. */
  3829. case 83:
  3830. {
  3831. int babystepz = code_seen('S') ? code_value() : 0;
  3832. int BabyPosition = code_seen('P') ? code_value() : 0;
  3833. if (babystepz != 0) {
  3834. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3835. // Is the axis indexed starting with zero or one?
  3836. if (BabyPosition > 4) {
  3837. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3838. }else{
  3839. // Save it to the eeprom
  3840. babystepLoadZ = babystepz;
  3841. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3842. // adjust the Z
  3843. babystepsTodoZadd(babystepLoadZ);
  3844. }
  3845. }
  3846. }
  3847. break;
  3848. /**
  3849. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3850. */
  3851. case 84:
  3852. babystepsTodoZsubtract(babystepLoadZ);
  3853. // babystepLoadZ = 0;
  3854. break;
  3855. /**
  3856. * G85: Prusa3D specific: Pick best babystep
  3857. */
  3858. case 85:
  3859. lcd_pick_babystep();
  3860. break;
  3861. #endif
  3862. /**
  3863. * G86: Prusa3D specific: Disable babystep correction after home.
  3864. * This G-code will be performed at the start of a calibration script.
  3865. */
  3866. case 86:
  3867. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3868. break;
  3869. /**
  3870. * G87: Prusa3D specific: Enable babystep correction after home
  3871. * This G-code will be performed at the end of a calibration script.
  3872. */
  3873. case 87:
  3874. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3875. break;
  3876. /**
  3877. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3878. */
  3879. case 88:
  3880. break;
  3881. #endif // ENABLE_MESH_BED_LEVELING
  3882. case 90: // G90
  3883. relative_mode = false;
  3884. break;
  3885. case 91: // G91
  3886. relative_mode = true;
  3887. break;
  3888. case 92: // G92
  3889. if(!code_seen(axis_codes[E_AXIS]))
  3890. st_synchronize();
  3891. for(int8_t i=0; i < NUM_AXIS; i++) {
  3892. if(code_seen(axis_codes[i])) {
  3893. if(i == E_AXIS) {
  3894. current_position[i] = code_value();
  3895. plan_set_e_position(current_position[E_AXIS]);
  3896. }
  3897. else {
  3898. current_position[i] = code_value()+add_homing[i];
  3899. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3900. }
  3901. }
  3902. }
  3903. break;
  3904. case 98: // G98 (activate farm mode)
  3905. farm_mode = 1;
  3906. PingTime = millis();
  3907. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3908. SilentModeMenu = SILENT_MODE_OFF;
  3909. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3910. break;
  3911. case 99: // G99 (deactivate farm mode)
  3912. farm_mode = 0;
  3913. lcd_printer_connected();
  3914. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3915. lcd_update(2);
  3916. break;
  3917. default:
  3918. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3919. }
  3920. } // end if(code_seen('G'))
  3921. else if(code_seen('M'))
  3922. {
  3923. int index;
  3924. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3925. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3926. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3927. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3928. } else
  3929. switch((int)code_value())
  3930. {
  3931. #ifdef ULTIPANEL
  3932. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3933. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3934. {
  3935. char *src = strchr_pointer + 2;
  3936. codenum = 0;
  3937. bool hasP = false, hasS = false;
  3938. if (code_seen('P')) {
  3939. codenum = code_value(); // milliseconds to wait
  3940. hasP = codenum > 0;
  3941. }
  3942. if (code_seen('S')) {
  3943. codenum = code_value() * 1000; // seconds to wait
  3944. hasS = codenum > 0;
  3945. }
  3946. starpos = strchr(src, '*');
  3947. if (starpos != NULL) *(starpos) = '\0';
  3948. while (*src == ' ') ++src;
  3949. if (!hasP && !hasS && *src != '\0') {
  3950. lcd_setstatus(src);
  3951. } else {
  3952. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  3953. }
  3954. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3955. st_synchronize();
  3956. previous_millis_cmd = millis();
  3957. if (codenum > 0){
  3958. codenum += millis(); // keep track of when we started waiting
  3959. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3960. while(millis() < codenum && !lcd_clicked()){
  3961. manage_heater();
  3962. manage_inactivity(true);
  3963. lcd_update();
  3964. }
  3965. KEEPALIVE_STATE(IN_HANDLER);
  3966. lcd_ignore_click(false);
  3967. }else{
  3968. if (!lcd_detected())
  3969. break;
  3970. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3971. while(!lcd_clicked()){
  3972. manage_heater();
  3973. manage_inactivity(true);
  3974. lcd_update();
  3975. }
  3976. KEEPALIVE_STATE(IN_HANDLER);
  3977. }
  3978. if (IS_SD_PRINTING)
  3979. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  3980. else
  3981. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  3982. }
  3983. break;
  3984. #endif
  3985. case 17:
  3986. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  3987. enable_x();
  3988. enable_y();
  3989. enable_z();
  3990. enable_e0();
  3991. enable_e1();
  3992. enable_e2();
  3993. break;
  3994. #ifdef SDSUPPORT
  3995. case 20: // M20 - list SD card
  3996. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  3997. card.ls();
  3998. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  3999. break;
  4000. case 21: // M21 - init SD card
  4001. card.initsd();
  4002. break;
  4003. case 22: //M22 - release SD card
  4004. card.release();
  4005. break;
  4006. case 23: //M23 - Select file
  4007. starpos = (strchr(strchr_pointer + 4,'*'));
  4008. if(starpos!=NULL)
  4009. *(starpos)='\0';
  4010. card.openFile(strchr_pointer + 4,true);
  4011. break;
  4012. case 24: //M24 - Start SD print
  4013. if (!card.paused)
  4014. failstats_reset_print();
  4015. card.startFileprint();
  4016. starttime=millis();
  4017. break;
  4018. case 25: //M25 - Pause SD print
  4019. card.pauseSDPrint();
  4020. break;
  4021. case 26: //M26 - Set SD index
  4022. if(card.cardOK && code_seen('S')) {
  4023. card.setIndex(code_value_long());
  4024. }
  4025. break;
  4026. case 27: //M27 - Get SD status
  4027. card.getStatus();
  4028. break;
  4029. case 28: //M28 - Start SD write
  4030. starpos = (strchr(strchr_pointer + 4,'*'));
  4031. if(starpos != NULL){
  4032. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4033. strchr_pointer = strchr(npos,' ') + 1;
  4034. *(starpos) = '\0';
  4035. }
  4036. card.openFile(strchr_pointer+4,false);
  4037. break;
  4038. case 29: //M29 - Stop SD write
  4039. //processed in write to file routine above
  4040. //card,saving = false;
  4041. break;
  4042. case 30: //M30 <filename> Delete File
  4043. if (card.cardOK){
  4044. card.closefile();
  4045. starpos = (strchr(strchr_pointer + 4,'*'));
  4046. if(starpos != NULL){
  4047. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4048. strchr_pointer = strchr(npos,' ') + 1;
  4049. *(starpos) = '\0';
  4050. }
  4051. card.removeFile(strchr_pointer + 4);
  4052. }
  4053. break;
  4054. case 32: //M32 - Select file and start SD print
  4055. {
  4056. if(card.sdprinting) {
  4057. st_synchronize();
  4058. }
  4059. starpos = (strchr(strchr_pointer + 4,'*'));
  4060. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4061. if(namestartpos==NULL)
  4062. {
  4063. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4064. }
  4065. else
  4066. namestartpos++; //to skip the '!'
  4067. if(starpos!=NULL)
  4068. *(starpos)='\0';
  4069. bool call_procedure=(code_seen('P'));
  4070. if(strchr_pointer>namestartpos)
  4071. call_procedure=false; //false alert, 'P' found within filename
  4072. if( card.cardOK )
  4073. {
  4074. card.openFile(namestartpos,true,!call_procedure);
  4075. if(code_seen('S'))
  4076. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4077. card.setIndex(code_value_long());
  4078. card.startFileprint();
  4079. if(!call_procedure)
  4080. starttime=millis(); //procedure calls count as normal print time.
  4081. }
  4082. } break;
  4083. case 928: //M928 - Start SD write
  4084. starpos = (strchr(strchr_pointer + 5,'*'));
  4085. if(starpos != NULL){
  4086. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4087. strchr_pointer = strchr(npos,' ') + 1;
  4088. *(starpos) = '\0';
  4089. }
  4090. card.openLogFile(strchr_pointer+5);
  4091. break;
  4092. #endif //SDSUPPORT
  4093. case 31: //M31 take time since the start of the SD print or an M109 command
  4094. {
  4095. stoptime=millis();
  4096. char time[30];
  4097. unsigned long t=(stoptime-starttime)/1000;
  4098. int sec,min;
  4099. min=t/60;
  4100. sec=t%60;
  4101. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4102. SERIAL_ECHO_START;
  4103. SERIAL_ECHOLN(time);
  4104. lcd_setstatus(time);
  4105. autotempShutdown();
  4106. }
  4107. break;
  4108. #ifndef _DISABLE_M42_M226
  4109. case 42: //M42 -Change pin status via gcode
  4110. if (code_seen('S'))
  4111. {
  4112. int pin_status = code_value();
  4113. int pin_number = LED_PIN;
  4114. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4115. pin_number = code_value();
  4116. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4117. {
  4118. if (sensitive_pins[i] == pin_number)
  4119. {
  4120. pin_number = -1;
  4121. break;
  4122. }
  4123. }
  4124. #if defined(FAN_PIN) && FAN_PIN > -1
  4125. if (pin_number == FAN_PIN)
  4126. fanSpeed = pin_status;
  4127. #endif
  4128. if (pin_number > -1)
  4129. {
  4130. pinMode(pin_number, OUTPUT);
  4131. digitalWrite(pin_number, pin_status);
  4132. analogWrite(pin_number, pin_status);
  4133. }
  4134. }
  4135. break;
  4136. #endif //_DISABLE_M42_M226
  4137. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4138. // Reset the baby step value and the baby step applied flag.
  4139. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4140. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4141. // Reset the skew and offset in both RAM and EEPROM.
  4142. reset_bed_offset_and_skew();
  4143. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4144. // the planner will not perform any adjustments in the XY plane.
  4145. // Wait for the motors to stop and update the current position with the absolute values.
  4146. world2machine_revert_to_uncorrected();
  4147. break;
  4148. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4149. {
  4150. int8_t verbosity_level = 0;
  4151. bool only_Z = code_seen('Z');
  4152. #ifdef SUPPORT_VERBOSITY
  4153. if (code_seen('V'))
  4154. {
  4155. // Just 'V' without a number counts as V1.
  4156. char c = strchr_pointer[1];
  4157. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4158. }
  4159. #endif //SUPPORT_VERBOSITY
  4160. gcode_M45(only_Z, verbosity_level);
  4161. }
  4162. break;
  4163. /*
  4164. case 46:
  4165. {
  4166. // M46: Prusa3D: Show the assigned IP address.
  4167. uint8_t ip[4];
  4168. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4169. if (hasIP) {
  4170. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4171. SERIAL_ECHO(int(ip[0]));
  4172. SERIAL_ECHOPGM(".");
  4173. SERIAL_ECHO(int(ip[1]));
  4174. SERIAL_ECHOPGM(".");
  4175. SERIAL_ECHO(int(ip[2]));
  4176. SERIAL_ECHOPGM(".");
  4177. SERIAL_ECHO(int(ip[3]));
  4178. SERIAL_ECHOLNPGM("");
  4179. } else {
  4180. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4181. }
  4182. break;
  4183. }
  4184. */
  4185. case 47:
  4186. // M47: Prusa3D: Show end stops dialog on the display.
  4187. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4188. lcd_diag_show_end_stops();
  4189. KEEPALIVE_STATE(IN_HANDLER);
  4190. break;
  4191. #if 0
  4192. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4193. {
  4194. // Disable the default update procedure of the display. We will do a modal dialog.
  4195. lcd_update_enable(false);
  4196. // Let the planner use the uncorrected coordinates.
  4197. mbl.reset();
  4198. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4199. // the planner will not perform any adjustments in the XY plane.
  4200. // Wait for the motors to stop and update the current position with the absolute values.
  4201. world2machine_revert_to_uncorrected();
  4202. // Move the print head close to the bed.
  4203. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4204. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4205. st_synchronize();
  4206. // Home in the XY plane.
  4207. set_destination_to_current();
  4208. setup_for_endstop_move();
  4209. home_xy();
  4210. int8_t verbosity_level = 0;
  4211. if (code_seen('V')) {
  4212. // Just 'V' without a number counts as V1.
  4213. char c = strchr_pointer[1];
  4214. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4215. }
  4216. bool success = scan_bed_induction_points(verbosity_level);
  4217. clean_up_after_endstop_move();
  4218. // Print head up.
  4219. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4220. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4221. st_synchronize();
  4222. lcd_update_enable(true);
  4223. break;
  4224. }
  4225. #endif
  4226. // M48 Z-Probe repeatability measurement function.
  4227. //
  4228. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4229. //
  4230. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4231. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4232. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4233. // regenerated.
  4234. //
  4235. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4236. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4237. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4238. //
  4239. #ifdef ENABLE_AUTO_BED_LEVELING
  4240. #ifdef Z_PROBE_REPEATABILITY_TEST
  4241. case 48: // M48 Z-Probe repeatability
  4242. {
  4243. #if Z_MIN_PIN == -1
  4244. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4245. #endif
  4246. double sum=0.0;
  4247. double mean=0.0;
  4248. double sigma=0.0;
  4249. double sample_set[50];
  4250. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4251. double X_current, Y_current, Z_current;
  4252. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4253. if (code_seen('V') || code_seen('v')) {
  4254. verbose_level = code_value();
  4255. if (verbose_level<0 || verbose_level>4 ) {
  4256. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4257. goto Sigma_Exit;
  4258. }
  4259. }
  4260. if (verbose_level > 0) {
  4261. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4262. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4263. }
  4264. if (code_seen('n')) {
  4265. n_samples = code_value();
  4266. if (n_samples<4 || n_samples>50 ) {
  4267. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4268. goto Sigma_Exit;
  4269. }
  4270. }
  4271. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4272. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4273. Z_current = st_get_position_mm(Z_AXIS);
  4274. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4275. ext_position = st_get_position_mm(E_AXIS);
  4276. if (code_seen('X') || code_seen('x') ) {
  4277. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4278. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4279. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4280. goto Sigma_Exit;
  4281. }
  4282. }
  4283. if (code_seen('Y') || code_seen('y') ) {
  4284. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4285. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4286. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4287. goto Sigma_Exit;
  4288. }
  4289. }
  4290. if (code_seen('L') || code_seen('l') ) {
  4291. n_legs = code_value();
  4292. if ( n_legs==1 )
  4293. n_legs = 2;
  4294. if ( n_legs<0 || n_legs>15 ) {
  4295. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4296. goto Sigma_Exit;
  4297. }
  4298. }
  4299. //
  4300. // Do all the preliminary setup work. First raise the probe.
  4301. //
  4302. st_synchronize();
  4303. plan_bed_level_matrix.set_to_identity();
  4304. plan_buffer_line( X_current, Y_current, Z_start_location,
  4305. ext_position,
  4306. homing_feedrate[Z_AXIS]/60,
  4307. active_extruder);
  4308. st_synchronize();
  4309. //
  4310. // Now get everything to the specified probe point So we can safely do a probe to
  4311. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4312. // use that as a starting point for each probe.
  4313. //
  4314. if (verbose_level > 2)
  4315. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4316. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4317. ext_position,
  4318. homing_feedrate[X_AXIS]/60,
  4319. active_extruder);
  4320. st_synchronize();
  4321. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4322. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4323. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4324. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4325. //
  4326. // OK, do the inital probe to get us close to the bed.
  4327. // Then retrace the right amount and use that in subsequent probes
  4328. //
  4329. setup_for_endstop_move();
  4330. run_z_probe();
  4331. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4332. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4333. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4334. ext_position,
  4335. homing_feedrate[X_AXIS]/60,
  4336. active_extruder);
  4337. st_synchronize();
  4338. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4339. for( n=0; n<n_samples; n++) {
  4340. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4341. if ( n_legs) {
  4342. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4343. int rotational_direction, l;
  4344. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4345. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4346. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4347. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4348. //SERIAL_ECHOPAIR(" theta: ",theta);
  4349. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4350. //SERIAL_PROTOCOLLNPGM("");
  4351. for( l=0; l<n_legs-1; l++) {
  4352. if (rotational_direction==1)
  4353. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4354. else
  4355. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4356. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4357. if ( radius<0.0 )
  4358. radius = -radius;
  4359. X_current = X_probe_location + cos(theta) * radius;
  4360. Y_current = Y_probe_location + sin(theta) * radius;
  4361. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4362. X_current = X_MIN_POS;
  4363. if ( X_current>X_MAX_POS)
  4364. X_current = X_MAX_POS;
  4365. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4366. Y_current = Y_MIN_POS;
  4367. if ( Y_current>Y_MAX_POS)
  4368. Y_current = Y_MAX_POS;
  4369. if (verbose_level>3 ) {
  4370. SERIAL_ECHOPAIR("x: ", X_current);
  4371. SERIAL_ECHOPAIR("y: ", Y_current);
  4372. SERIAL_PROTOCOLLNPGM("");
  4373. }
  4374. do_blocking_move_to( X_current, Y_current, Z_current );
  4375. }
  4376. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4377. }
  4378. setup_for_endstop_move();
  4379. run_z_probe();
  4380. sample_set[n] = current_position[Z_AXIS];
  4381. //
  4382. // Get the current mean for the data points we have so far
  4383. //
  4384. sum=0.0;
  4385. for( j=0; j<=n; j++) {
  4386. sum = sum + sample_set[j];
  4387. }
  4388. mean = sum / (double (n+1));
  4389. //
  4390. // Now, use that mean to calculate the standard deviation for the
  4391. // data points we have so far
  4392. //
  4393. sum=0.0;
  4394. for( j=0; j<=n; j++) {
  4395. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4396. }
  4397. sigma = sqrt( sum / (double (n+1)) );
  4398. if (verbose_level > 1) {
  4399. SERIAL_PROTOCOL(n+1);
  4400. SERIAL_PROTOCOL(" of ");
  4401. SERIAL_PROTOCOL(n_samples);
  4402. SERIAL_PROTOCOLPGM(" z: ");
  4403. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4404. }
  4405. if (verbose_level > 2) {
  4406. SERIAL_PROTOCOL(" mean: ");
  4407. SERIAL_PROTOCOL_F(mean,6);
  4408. SERIAL_PROTOCOL(" sigma: ");
  4409. SERIAL_PROTOCOL_F(sigma,6);
  4410. }
  4411. if (verbose_level > 0)
  4412. SERIAL_PROTOCOLPGM("\n");
  4413. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4414. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4415. st_synchronize();
  4416. }
  4417. delay(1000);
  4418. clean_up_after_endstop_move();
  4419. // enable_endstops(true);
  4420. if (verbose_level > 0) {
  4421. SERIAL_PROTOCOLPGM("Mean: ");
  4422. SERIAL_PROTOCOL_F(mean, 6);
  4423. SERIAL_PROTOCOLPGM("\n");
  4424. }
  4425. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4426. SERIAL_PROTOCOL_F(sigma, 6);
  4427. SERIAL_PROTOCOLPGM("\n\n");
  4428. Sigma_Exit:
  4429. break;
  4430. }
  4431. #endif // Z_PROBE_REPEATABILITY_TEST
  4432. #endif // ENABLE_AUTO_BED_LEVELING
  4433. case 73: //M73 show percent done and time remaining
  4434. if(code_seen('P')) print_percent_done_normal = code_value();
  4435. if(code_seen('R')) print_time_remaining_normal = code_value();
  4436. if(code_seen('Q')) print_percent_done_silent = code_value();
  4437. if(code_seen('S')) print_time_remaining_silent = code_value();
  4438. SERIAL_ECHOPGM("NORMAL MODE: Percent done: ");
  4439. MYSERIAL.print(int(print_percent_done_normal));
  4440. SERIAL_ECHOPGM("; print time remaining in mins: ");
  4441. MYSERIAL.println(print_time_remaining_normal);
  4442. SERIAL_ECHOPGM("SILENT MODE: Percent done: ");
  4443. MYSERIAL.print(int(print_percent_done_silent));
  4444. SERIAL_ECHOPGM("; print time remaining in mins: ");
  4445. MYSERIAL.println(print_time_remaining_silent);
  4446. break;
  4447. case 104: // M104
  4448. if(setTargetedHotend(104)){
  4449. break;
  4450. }
  4451. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4452. setWatch();
  4453. break;
  4454. case 112: // M112 -Emergency Stop
  4455. kill(_n(""), 3);
  4456. break;
  4457. case 140: // M140 set bed temp
  4458. if (code_seen('S')) setTargetBed(code_value());
  4459. break;
  4460. case 105 : // M105
  4461. if(setTargetedHotend(105)){
  4462. break;
  4463. }
  4464. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4465. SERIAL_PROTOCOLPGM("ok T:");
  4466. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4467. SERIAL_PROTOCOLPGM(" /");
  4468. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4469. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4470. SERIAL_PROTOCOLPGM(" B:");
  4471. SERIAL_PROTOCOL_F(degBed(),1);
  4472. SERIAL_PROTOCOLPGM(" /");
  4473. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4474. #endif //TEMP_BED_PIN
  4475. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4476. SERIAL_PROTOCOLPGM(" T");
  4477. SERIAL_PROTOCOL(cur_extruder);
  4478. SERIAL_PROTOCOLPGM(":");
  4479. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4480. SERIAL_PROTOCOLPGM(" /");
  4481. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4482. }
  4483. #else
  4484. SERIAL_ERROR_START;
  4485. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4486. #endif
  4487. SERIAL_PROTOCOLPGM(" @:");
  4488. #ifdef EXTRUDER_WATTS
  4489. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4490. SERIAL_PROTOCOLPGM("W");
  4491. #else
  4492. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4493. #endif
  4494. SERIAL_PROTOCOLPGM(" B@:");
  4495. #ifdef BED_WATTS
  4496. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4497. SERIAL_PROTOCOLPGM("W");
  4498. #else
  4499. SERIAL_PROTOCOL(getHeaterPower(-1));
  4500. #endif
  4501. #ifdef PINDA_THERMISTOR
  4502. SERIAL_PROTOCOLPGM(" P:");
  4503. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4504. #endif //PINDA_THERMISTOR
  4505. #ifdef AMBIENT_THERMISTOR
  4506. SERIAL_PROTOCOLPGM(" A:");
  4507. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4508. #endif //AMBIENT_THERMISTOR
  4509. #ifdef SHOW_TEMP_ADC_VALUES
  4510. {float raw = 0.0;
  4511. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4512. SERIAL_PROTOCOLPGM(" ADC B:");
  4513. SERIAL_PROTOCOL_F(degBed(),1);
  4514. SERIAL_PROTOCOLPGM("C->");
  4515. raw = rawBedTemp();
  4516. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4517. SERIAL_PROTOCOLPGM(" Rb->");
  4518. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4519. SERIAL_PROTOCOLPGM(" Rxb->");
  4520. SERIAL_PROTOCOL_F(raw, 5);
  4521. #endif
  4522. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4523. SERIAL_PROTOCOLPGM(" T");
  4524. SERIAL_PROTOCOL(cur_extruder);
  4525. SERIAL_PROTOCOLPGM(":");
  4526. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4527. SERIAL_PROTOCOLPGM("C->");
  4528. raw = rawHotendTemp(cur_extruder);
  4529. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4530. SERIAL_PROTOCOLPGM(" Rt");
  4531. SERIAL_PROTOCOL(cur_extruder);
  4532. SERIAL_PROTOCOLPGM("->");
  4533. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4534. SERIAL_PROTOCOLPGM(" Rx");
  4535. SERIAL_PROTOCOL(cur_extruder);
  4536. SERIAL_PROTOCOLPGM("->");
  4537. SERIAL_PROTOCOL_F(raw, 5);
  4538. }}
  4539. #endif
  4540. SERIAL_PROTOCOLLN("");
  4541. KEEPALIVE_STATE(NOT_BUSY);
  4542. return;
  4543. break;
  4544. case 109:
  4545. {// M109 - Wait for extruder heater to reach target.
  4546. if(setTargetedHotend(109)){
  4547. break;
  4548. }
  4549. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4550. heating_status = 1;
  4551. if (farm_mode) { prusa_statistics(1); };
  4552. #ifdef AUTOTEMP
  4553. autotemp_enabled=false;
  4554. #endif
  4555. if (code_seen('S')) {
  4556. setTargetHotend(code_value(), tmp_extruder);
  4557. CooldownNoWait = true;
  4558. } else if (code_seen('R')) {
  4559. setTargetHotend(code_value(), tmp_extruder);
  4560. CooldownNoWait = false;
  4561. }
  4562. #ifdef AUTOTEMP
  4563. if (code_seen('S')) autotemp_min=code_value();
  4564. if (code_seen('B')) autotemp_max=code_value();
  4565. if (code_seen('F'))
  4566. {
  4567. autotemp_factor=code_value();
  4568. autotemp_enabled=true;
  4569. }
  4570. #endif
  4571. setWatch();
  4572. codenum = millis();
  4573. /* See if we are heating up or cooling down */
  4574. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4575. KEEPALIVE_STATE(NOT_BUSY);
  4576. cancel_heatup = false;
  4577. wait_for_heater(codenum); //loops until target temperature is reached
  4578. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4579. KEEPALIVE_STATE(IN_HANDLER);
  4580. heating_status = 2;
  4581. if (farm_mode) { prusa_statistics(2); };
  4582. //starttime=millis();
  4583. previous_millis_cmd = millis();
  4584. }
  4585. break;
  4586. case 190: // M190 - Wait for bed heater to reach target.
  4587. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4588. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4589. heating_status = 3;
  4590. if (farm_mode) { prusa_statistics(1); };
  4591. if (code_seen('S'))
  4592. {
  4593. setTargetBed(code_value());
  4594. CooldownNoWait = true;
  4595. }
  4596. else if (code_seen('R'))
  4597. {
  4598. setTargetBed(code_value());
  4599. CooldownNoWait = false;
  4600. }
  4601. codenum = millis();
  4602. cancel_heatup = false;
  4603. target_direction = isHeatingBed(); // true if heating, false if cooling
  4604. KEEPALIVE_STATE(NOT_BUSY);
  4605. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4606. {
  4607. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4608. {
  4609. if (!farm_mode) {
  4610. float tt = degHotend(active_extruder);
  4611. SERIAL_PROTOCOLPGM("T:");
  4612. SERIAL_PROTOCOL(tt);
  4613. SERIAL_PROTOCOLPGM(" E:");
  4614. SERIAL_PROTOCOL((int)active_extruder);
  4615. SERIAL_PROTOCOLPGM(" B:");
  4616. SERIAL_PROTOCOL_F(degBed(), 1);
  4617. SERIAL_PROTOCOLLN("");
  4618. }
  4619. codenum = millis();
  4620. }
  4621. manage_heater();
  4622. manage_inactivity();
  4623. lcd_update();
  4624. }
  4625. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4626. KEEPALIVE_STATE(IN_HANDLER);
  4627. heating_status = 4;
  4628. previous_millis_cmd = millis();
  4629. #endif
  4630. break;
  4631. #if defined(FAN_PIN) && FAN_PIN > -1
  4632. case 106: //M106 Fan On
  4633. if (code_seen('S')){
  4634. fanSpeed=constrain(code_value(),0,255);
  4635. }
  4636. else {
  4637. fanSpeed=255;
  4638. }
  4639. break;
  4640. case 107: //M107 Fan Off
  4641. fanSpeed = 0;
  4642. break;
  4643. #endif //FAN_PIN
  4644. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4645. case 80: // M80 - Turn on Power Supply
  4646. SET_OUTPUT(PS_ON_PIN); //GND
  4647. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4648. // If you have a switch on suicide pin, this is useful
  4649. // if you want to start another print with suicide feature after
  4650. // a print without suicide...
  4651. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4652. SET_OUTPUT(SUICIDE_PIN);
  4653. WRITE(SUICIDE_PIN, HIGH);
  4654. #endif
  4655. #ifdef ULTIPANEL
  4656. powersupply = true;
  4657. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4658. lcd_update();
  4659. #endif
  4660. break;
  4661. #endif
  4662. case 81: // M81 - Turn off Power Supply
  4663. disable_heater();
  4664. st_synchronize();
  4665. disable_e0();
  4666. disable_e1();
  4667. disable_e2();
  4668. finishAndDisableSteppers();
  4669. fanSpeed = 0;
  4670. delay(1000); // Wait a little before to switch off
  4671. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4672. st_synchronize();
  4673. suicide();
  4674. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4675. SET_OUTPUT(PS_ON_PIN);
  4676. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4677. #endif
  4678. #ifdef ULTIPANEL
  4679. powersupply = false;
  4680. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4681. lcd_update();
  4682. #endif
  4683. break;
  4684. case 82:
  4685. axis_relative_modes[3] = false;
  4686. break;
  4687. case 83:
  4688. axis_relative_modes[3] = true;
  4689. break;
  4690. case 18: //compatibility
  4691. case 84: // M84
  4692. if(code_seen('S')){
  4693. stepper_inactive_time = code_value() * 1000;
  4694. }
  4695. else
  4696. {
  4697. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4698. if(all_axis)
  4699. {
  4700. st_synchronize();
  4701. disable_e0();
  4702. disable_e1();
  4703. disable_e2();
  4704. finishAndDisableSteppers();
  4705. }
  4706. else
  4707. {
  4708. st_synchronize();
  4709. if (code_seen('X')) disable_x();
  4710. if (code_seen('Y')) disable_y();
  4711. if (code_seen('Z')) disable_z();
  4712. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4713. if (code_seen('E')) {
  4714. disable_e0();
  4715. disable_e1();
  4716. disable_e2();
  4717. }
  4718. #endif
  4719. }
  4720. }
  4721. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4722. print_time_remaining_init();
  4723. snmm_filaments_used = 0;
  4724. break;
  4725. case 85: // M85
  4726. if(code_seen('S')) {
  4727. max_inactive_time = code_value() * 1000;
  4728. }
  4729. break;
  4730. case 92: // M92
  4731. for(int8_t i=0; i < NUM_AXIS; i++)
  4732. {
  4733. if(code_seen(axis_codes[i]))
  4734. {
  4735. if(i == 3) { // E
  4736. float value = code_value();
  4737. if(value < 20.0) {
  4738. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4739. max_jerk[E_AXIS] *= factor;
  4740. max_feedrate[i] *= factor;
  4741. axis_steps_per_sqr_second[i] *= factor;
  4742. }
  4743. axis_steps_per_unit[i] = value;
  4744. }
  4745. else {
  4746. axis_steps_per_unit[i] = code_value();
  4747. }
  4748. }
  4749. }
  4750. break;
  4751. case 110: // M110 - reset line pos
  4752. if (code_seen('N'))
  4753. gcode_LastN = code_value_long();
  4754. break;
  4755. #ifdef HOST_KEEPALIVE_FEATURE
  4756. case 113: // M113 - Get or set Host Keepalive interval
  4757. if (code_seen('S')) {
  4758. host_keepalive_interval = (uint8_t)code_value_short();
  4759. // NOMORE(host_keepalive_interval, 60);
  4760. }
  4761. else {
  4762. SERIAL_ECHO_START;
  4763. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4764. SERIAL_PROTOCOLLN("");
  4765. }
  4766. break;
  4767. #endif
  4768. case 115: // M115
  4769. if (code_seen('V')) {
  4770. // Report the Prusa version number.
  4771. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4772. } else if (code_seen('U')) {
  4773. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4774. // pause the print and ask the user to upgrade the firmware.
  4775. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4776. } else {
  4777. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4778. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4779. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4780. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4781. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4782. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4783. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4784. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4785. SERIAL_ECHOPGM(" UUID:");
  4786. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4787. }
  4788. break;
  4789. /* case 117: // M117 display message
  4790. starpos = (strchr(strchr_pointer + 5,'*'));
  4791. if(starpos!=NULL)
  4792. *(starpos)='\0';
  4793. lcd_setstatus(strchr_pointer + 5);
  4794. break;*/
  4795. case 114: // M114
  4796. gcode_M114();
  4797. break;
  4798. case 120: // M120
  4799. enable_endstops(false) ;
  4800. break;
  4801. case 121: // M121
  4802. enable_endstops(true) ;
  4803. break;
  4804. case 119: // M119
  4805. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4806. SERIAL_PROTOCOLLN("");
  4807. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4808. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4809. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4810. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4811. }else{
  4812. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4813. }
  4814. SERIAL_PROTOCOLLN("");
  4815. #endif
  4816. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4817. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4818. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4819. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4820. }else{
  4821. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4822. }
  4823. SERIAL_PROTOCOLLN("");
  4824. #endif
  4825. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4826. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4827. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4828. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4829. }else{
  4830. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4831. }
  4832. SERIAL_PROTOCOLLN("");
  4833. #endif
  4834. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4835. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4836. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4837. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4838. }else{
  4839. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4840. }
  4841. SERIAL_PROTOCOLLN("");
  4842. #endif
  4843. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4844. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4845. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4846. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4847. }else{
  4848. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4849. }
  4850. SERIAL_PROTOCOLLN("");
  4851. #endif
  4852. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4853. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4854. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4855. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4856. }else{
  4857. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4858. }
  4859. SERIAL_PROTOCOLLN("");
  4860. #endif
  4861. break;
  4862. //TODO: update for all axis, use for loop
  4863. #ifdef BLINKM
  4864. case 150: // M150
  4865. {
  4866. byte red;
  4867. byte grn;
  4868. byte blu;
  4869. if(code_seen('R')) red = code_value();
  4870. if(code_seen('U')) grn = code_value();
  4871. if(code_seen('B')) blu = code_value();
  4872. SendColors(red,grn,blu);
  4873. }
  4874. break;
  4875. #endif //BLINKM
  4876. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4877. {
  4878. tmp_extruder = active_extruder;
  4879. if(code_seen('T')) {
  4880. tmp_extruder = code_value();
  4881. if(tmp_extruder >= EXTRUDERS) {
  4882. SERIAL_ECHO_START;
  4883. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4884. break;
  4885. }
  4886. }
  4887. float area = .0;
  4888. if(code_seen('D')) {
  4889. float diameter = (float)code_value();
  4890. if (diameter == 0.0) {
  4891. // setting any extruder filament size disables volumetric on the assumption that
  4892. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4893. // for all extruders
  4894. volumetric_enabled = false;
  4895. } else {
  4896. filament_size[tmp_extruder] = (float)code_value();
  4897. // make sure all extruders have some sane value for the filament size
  4898. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4899. #if EXTRUDERS > 1
  4900. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4901. #if EXTRUDERS > 2
  4902. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4903. #endif
  4904. #endif
  4905. volumetric_enabled = true;
  4906. }
  4907. } else {
  4908. //reserved for setting filament diameter via UFID or filament measuring device
  4909. break;
  4910. }
  4911. calculate_extruder_multipliers();
  4912. }
  4913. break;
  4914. case 201: // M201
  4915. for(int8_t i=0; i < NUM_AXIS; i++)
  4916. {
  4917. if(code_seen(axis_codes[i]))
  4918. {
  4919. max_acceleration_units_per_sq_second[i] = code_value();
  4920. }
  4921. }
  4922. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4923. reset_acceleration_rates();
  4924. break;
  4925. #if 0 // Not used for Sprinter/grbl gen6
  4926. case 202: // M202
  4927. for(int8_t i=0; i < NUM_AXIS; i++) {
  4928. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4929. }
  4930. break;
  4931. #endif
  4932. case 203: // M203 max feedrate mm/sec
  4933. for(int8_t i=0; i < NUM_AXIS; i++) {
  4934. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4935. }
  4936. break;
  4937. case 204: // M204 acclereration S normal moves T filmanent only moves
  4938. {
  4939. if(code_seen('S')) acceleration = code_value() ;
  4940. if(code_seen('T')) retract_acceleration = code_value() ;
  4941. }
  4942. break;
  4943. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4944. {
  4945. if(code_seen('S')) minimumfeedrate = code_value();
  4946. if(code_seen('T')) mintravelfeedrate = code_value();
  4947. if(code_seen('B')) minsegmenttime = code_value() ;
  4948. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4949. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4950. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4951. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4952. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4953. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4954. }
  4955. break;
  4956. case 206: // M206 additional homing offset
  4957. for(int8_t i=0; i < 3; i++)
  4958. {
  4959. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4960. }
  4961. break;
  4962. #ifdef FWRETRACT
  4963. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4964. {
  4965. if(code_seen('S'))
  4966. {
  4967. retract_length = code_value() ;
  4968. }
  4969. if(code_seen('F'))
  4970. {
  4971. retract_feedrate = code_value()/60 ;
  4972. }
  4973. if(code_seen('Z'))
  4974. {
  4975. retract_zlift = code_value() ;
  4976. }
  4977. }break;
  4978. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4979. {
  4980. if(code_seen('S'))
  4981. {
  4982. retract_recover_length = code_value() ;
  4983. }
  4984. if(code_seen('F'))
  4985. {
  4986. retract_recover_feedrate = code_value()/60 ;
  4987. }
  4988. }break;
  4989. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4990. {
  4991. if(code_seen('S'))
  4992. {
  4993. int t= code_value() ;
  4994. switch(t)
  4995. {
  4996. case 0:
  4997. {
  4998. autoretract_enabled=false;
  4999. retracted[0]=false;
  5000. #if EXTRUDERS > 1
  5001. retracted[1]=false;
  5002. #endif
  5003. #if EXTRUDERS > 2
  5004. retracted[2]=false;
  5005. #endif
  5006. }break;
  5007. case 1:
  5008. {
  5009. autoretract_enabled=true;
  5010. retracted[0]=false;
  5011. #if EXTRUDERS > 1
  5012. retracted[1]=false;
  5013. #endif
  5014. #if EXTRUDERS > 2
  5015. retracted[2]=false;
  5016. #endif
  5017. }break;
  5018. default:
  5019. SERIAL_ECHO_START;
  5020. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5021. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5022. SERIAL_ECHOLNPGM("\"(1)");
  5023. }
  5024. }
  5025. }break;
  5026. #endif // FWRETRACT
  5027. #if EXTRUDERS > 1
  5028. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5029. {
  5030. if(setTargetedHotend(218)){
  5031. break;
  5032. }
  5033. if(code_seen('X'))
  5034. {
  5035. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5036. }
  5037. if(code_seen('Y'))
  5038. {
  5039. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5040. }
  5041. SERIAL_ECHO_START;
  5042. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5043. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5044. {
  5045. SERIAL_ECHO(" ");
  5046. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5047. SERIAL_ECHO(",");
  5048. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5049. }
  5050. SERIAL_ECHOLN("");
  5051. }break;
  5052. #endif
  5053. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5054. {
  5055. if(code_seen('S'))
  5056. {
  5057. feedmultiply = code_value() ;
  5058. }
  5059. }
  5060. break;
  5061. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5062. {
  5063. if(code_seen('S'))
  5064. {
  5065. int tmp_code = code_value();
  5066. if (code_seen('T'))
  5067. {
  5068. if(setTargetedHotend(221)){
  5069. break;
  5070. }
  5071. extruder_multiply[tmp_extruder] = tmp_code;
  5072. }
  5073. else
  5074. {
  5075. extrudemultiply = tmp_code ;
  5076. }
  5077. }
  5078. calculate_extruder_multipliers();
  5079. }
  5080. break;
  5081. #ifndef _DISABLE_M42_M226
  5082. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5083. {
  5084. if(code_seen('P')){
  5085. int pin_number = code_value(); // pin number
  5086. int pin_state = -1; // required pin state - default is inverted
  5087. if(code_seen('S')) pin_state = code_value(); // required pin state
  5088. if(pin_state >= -1 && pin_state <= 1){
  5089. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5090. {
  5091. if (sensitive_pins[i] == pin_number)
  5092. {
  5093. pin_number = -1;
  5094. break;
  5095. }
  5096. }
  5097. if (pin_number > -1)
  5098. {
  5099. int target = LOW;
  5100. st_synchronize();
  5101. pinMode(pin_number, INPUT);
  5102. switch(pin_state){
  5103. case 1:
  5104. target = HIGH;
  5105. break;
  5106. case 0:
  5107. target = LOW;
  5108. break;
  5109. case -1:
  5110. target = !digitalRead(pin_number);
  5111. break;
  5112. }
  5113. while(digitalRead(pin_number) != target){
  5114. manage_heater();
  5115. manage_inactivity();
  5116. lcd_update();
  5117. }
  5118. }
  5119. }
  5120. }
  5121. }
  5122. break;
  5123. #endif //_DISABLE_M42_M226
  5124. #if NUM_SERVOS > 0
  5125. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5126. {
  5127. int servo_index = -1;
  5128. int servo_position = 0;
  5129. if (code_seen('P'))
  5130. servo_index = code_value();
  5131. if (code_seen('S')) {
  5132. servo_position = code_value();
  5133. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5134. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5135. servos[servo_index].attach(0);
  5136. #endif
  5137. servos[servo_index].write(servo_position);
  5138. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5139. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5140. servos[servo_index].detach();
  5141. #endif
  5142. }
  5143. else {
  5144. SERIAL_ECHO_START;
  5145. SERIAL_ECHO("Servo ");
  5146. SERIAL_ECHO(servo_index);
  5147. SERIAL_ECHOLN(" out of range");
  5148. }
  5149. }
  5150. else if (servo_index >= 0) {
  5151. SERIAL_PROTOCOL(_T(MSG_OK));
  5152. SERIAL_PROTOCOL(" Servo ");
  5153. SERIAL_PROTOCOL(servo_index);
  5154. SERIAL_PROTOCOL(": ");
  5155. SERIAL_PROTOCOL(servos[servo_index].read());
  5156. SERIAL_PROTOCOLLN("");
  5157. }
  5158. }
  5159. break;
  5160. #endif // NUM_SERVOS > 0
  5161. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5162. case 300: // M300
  5163. {
  5164. int beepS = code_seen('S') ? code_value() : 110;
  5165. int beepP = code_seen('P') ? code_value() : 1000;
  5166. if (beepS > 0)
  5167. {
  5168. #if BEEPER > 0
  5169. tone(BEEPER, beepS);
  5170. delay(beepP);
  5171. noTone(BEEPER);
  5172. #elif defined(ULTRALCD)
  5173. lcd_buzz(beepS, beepP);
  5174. #elif defined(LCD_USE_I2C_BUZZER)
  5175. lcd_buzz(beepP, beepS);
  5176. #endif
  5177. }
  5178. else
  5179. {
  5180. delay(beepP);
  5181. }
  5182. }
  5183. break;
  5184. #endif // M300
  5185. #ifdef PIDTEMP
  5186. case 301: // M301
  5187. {
  5188. if(code_seen('P')) Kp = code_value();
  5189. if(code_seen('I')) Ki = scalePID_i(code_value());
  5190. if(code_seen('D')) Kd = scalePID_d(code_value());
  5191. #ifdef PID_ADD_EXTRUSION_RATE
  5192. if(code_seen('C')) Kc = code_value();
  5193. #endif
  5194. updatePID();
  5195. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5196. SERIAL_PROTOCOL(" p:");
  5197. SERIAL_PROTOCOL(Kp);
  5198. SERIAL_PROTOCOL(" i:");
  5199. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5200. SERIAL_PROTOCOL(" d:");
  5201. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5202. #ifdef PID_ADD_EXTRUSION_RATE
  5203. SERIAL_PROTOCOL(" c:");
  5204. //Kc does not have scaling applied above, or in resetting defaults
  5205. SERIAL_PROTOCOL(Kc);
  5206. #endif
  5207. SERIAL_PROTOCOLLN("");
  5208. }
  5209. break;
  5210. #endif //PIDTEMP
  5211. #ifdef PIDTEMPBED
  5212. case 304: // M304
  5213. {
  5214. if(code_seen('P')) bedKp = code_value();
  5215. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5216. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5217. updatePID();
  5218. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5219. SERIAL_PROTOCOL(" p:");
  5220. SERIAL_PROTOCOL(bedKp);
  5221. SERIAL_PROTOCOL(" i:");
  5222. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5223. SERIAL_PROTOCOL(" d:");
  5224. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5225. SERIAL_PROTOCOLLN("");
  5226. }
  5227. break;
  5228. #endif //PIDTEMP
  5229. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5230. {
  5231. #ifdef CHDK
  5232. SET_OUTPUT(CHDK);
  5233. WRITE(CHDK, HIGH);
  5234. chdkHigh = millis();
  5235. chdkActive = true;
  5236. #else
  5237. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5238. const uint8_t NUM_PULSES=16;
  5239. const float PULSE_LENGTH=0.01524;
  5240. for(int i=0; i < NUM_PULSES; i++) {
  5241. WRITE(PHOTOGRAPH_PIN, HIGH);
  5242. _delay_ms(PULSE_LENGTH);
  5243. WRITE(PHOTOGRAPH_PIN, LOW);
  5244. _delay_ms(PULSE_LENGTH);
  5245. }
  5246. delay(7.33);
  5247. for(int i=0; i < NUM_PULSES; i++) {
  5248. WRITE(PHOTOGRAPH_PIN, HIGH);
  5249. _delay_ms(PULSE_LENGTH);
  5250. WRITE(PHOTOGRAPH_PIN, LOW);
  5251. _delay_ms(PULSE_LENGTH);
  5252. }
  5253. #endif
  5254. #endif //chdk end if
  5255. }
  5256. break;
  5257. #ifdef DOGLCD
  5258. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5259. {
  5260. if (code_seen('C')) {
  5261. lcd_setcontrast( ((int)code_value())&63 );
  5262. }
  5263. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5264. SERIAL_PROTOCOL(lcd_contrast);
  5265. SERIAL_PROTOCOLLN("");
  5266. }
  5267. break;
  5268. #endif
  5269. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5270. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5271. {
  5272. float temp = .0;
  5273. if (code_seen('S')) temp=code_value();
  5274. set_extrude_min_temp(temp);
  5275. }
  5276. break;
  5277. #endif
  5278. case 303: // M303 PID autotune
  5279. {
  5280. float temp = 150.0;
  5281. int e=0;
  5282. int c=5;
  5283. if (code_seen('E')) e=code_value();
  5284. if (e<0)
  5285. temp=70;
  5286. if (code_seen('S')) temp=code_value();
  5287. if (code_seen('C')) c=code_value();
  5288. PID_autotune(temp, e, c);
  5289. }
  5290. break;
  5291. case 400: // M400 finish all moves
  5292. {
  5293. st_synchronize();
  5294. }
  5295. break;
  5296. case 500: // M500 Store settings in EEPROM
  5297. {
  5298. Config_StoreSettings(EEPROM_OFFSET);
  5299. }
  5300. break;
  5301. case 501: // M501 Read settings from EEPROM
  5302. {
  5303. Config_RetrieveSettings(EEPROM_OFFSET);
  5304. }
  5305. break;
  5306. case 502: // M502 Revert to default settings
  5307. {
  5308. Config_ResetDefault();
  5309. }
  5310. break;
  5311. case 503: // M503 print settings currently in memory
  5312. {
  5313. Config_PrintSettings();
  5314. }
  5315. break;
  5316. case 509: //M509 Force language selection
  5317. {
  5318. lang_reset();
  5319. SERIAL_ECHO_START;
  5320. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5321. }
  5322. break;
  5323. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5324. case 540:
  5325. {
  5326. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5327. }
  5328. break;
  5329. #endif
  5330. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5331. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5332. {
  5333. float value;
  5334. if (code_seen('Z'))
  5335. {
  5336. value = code_value();
  5337. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5338. {
  5339. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5340. SERIAL_ECHO_START;
  5341. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5342. SERIAL_PROTOCOLLN("");
  5343. }
  5344. else
  5345. {
  5346. SERIAL_ECHO_START;
  5347. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5348. SERIAL_ECHORPGM(MSG_Z_MIN);
  5349. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5350. SERIAL_ECHORPGM(MSG_Z_MAX);
  5351. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5352. SERIAL_PROTOCOLLN("");
  5353. }
  5354. }
  5355. else
  5356. {
  5357. SERIAL_ECHO_START;
  5358. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5359. SERIAL_ECHO(-zprobe_zoffset);
  5360. SERIAL_PROTOCOLLN("");
  5361. }
  5362. break;
  5363. }
  5364. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5365. #ifdef FILAMENTCHANGEENABLE
  5366. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5367. {
  5368. #ifdef PAT9125
  5369. bool old_fsensor_enabled = fsensor_enabled;
  5370. fsensor_enabled = false; //temporary solution for unexpected restarting
  5371. #endif //PAT9125
  5372. st_synchronize();
  5373. float target[4];
  5374. float lastpos[4];
  5375. if (farm_mode)
  5376. {
  5377. prusa_statistics(22);
  5378. }
  5379. feedmultiplyBckp=feedmultiply;
  5380. int8_t TooLowZ = 0;
  5381. float HotendTempBckp = degTargetHotend(active_extruder);
  5382. int fanSpeedBckp = fanSpeed;
  5383. target[X_AXIS]=current_position[X_AXIS];
  5384. target[Y_AXIS]=current_position[Y_AXIS];
  5385. target[Z_AXIS]=current_position[Z_AXIS];
  5386. target[E_AXIS]=current_position[E_AXIS];
  5387. lastpos[X_AXIS]=current_position[X_AXIS];
  5388. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5389. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5390. lastpos[E_AXIS]=current_position[E_AXIS];
  5391. //Restract extruder
  5392. if(code_seen('E'))
  5393. {
  5394. target[E_AXIS]+= code_value();
  5395. }
  5396. else
  5397. {
  5398. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5399. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5400. #endif
  5401. }
  5402. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5403. //Lift Z
  5404. if(code_seen('Z'))
  5405. {
  5406. target[Z_AXIS]+= code_value();
  5407. }
  5408. else
  5409. {
  5410. #ifdef FILAMENTCHANGE_ZADD
  5411. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5412. if(target[Z_AXIS] < 10){
  5413. target[Z_AXIS]+= 10 ;
  5414. TooLowZ = 1;
  5415. }else{
  5416. TooLowZ = 0;
  5417. }
  5418. #endif
  5419. }
  5420. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5421. //Move XY to side
  5422. if(code_seen('X'))
  5423. {
  5424. target[X_AXIS]+= code_value();
  5425. }
  5426. else
  5427. {
  5428. #ifdef FILAMENTCHANGE_XPOS
  5429. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5430. #endif
  5431. }
  5432. if(code_seen('Y'))
  5433. {
  5434. target[Y_AXIS]= code_value();
  5435. }
  5436. else
  5437. {
  5438. #ifdef FILAMENTCHANGE_YPOS
  5439. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5440. #endif
  5441. }
  5442. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5443. st_synchronize();
  5444. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5445. uint8_t cnt = 0;
  5446. int counterBeep = 0;
  5447. fanSpeed = 0;
  5448. unsigned long waiting_start_time = millis();
  5449. uint8_t wait_for_user_state = 0;
  5450. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5451. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5452. //cnt++;
  5453. manage_heater();
  5454. manage_inactivity(true);
  5455. /*#ifdef SNMM
  5456. target[E_AXIS] += 0.002;
  5457. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5458. #endif // SNMM*/
  5459. //if (cnt == 0)
  5460. {
  5461. #if BEEPER > 0
  5462. if (counterBeep == 500) {
  5463. counterBeep = 0;
  5464. }
  5465. SET_OUTPUT(BEEPER);
  5466. if (counterBeep == 0) {
  5467. WRITE(BEEPER, HIGH);
  5468. }
  5469. if (counterBeep == 20) {
  5470. WRITE(BEEPER, LOW);
  5471. }
  5472. counterBeep++;
  5473. #else
  5474. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5475. lcd_buzz(1000 / 6, 100);
  5476. #else
  5477. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5478. #endif
  5479. #endif
  5480. }
  5481. switch (wait_for_user_state) {
  5482. case 0:
  5483. delay_keep_alive(4);
  5484. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5485. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5486. wait_for_user_state = 1;
  5487. setTargetHotend(0, 0);
  5488. setTargetHotend(0, 1);
  5489. setTargetHotend(0, 2);
  5490. st_synchronize();
  5491. disable_e0();
  5492. disable_e1();
  5493. disable_e2();
  5494. }
  5495. break;
  5496. case 1:
  5497. delay_keep_alive(4);
  5498. if (lcd_clicked()) {
  5499. setTargetHotend(HotendTempBckp, active_extruder);
  5500. lcd_wait_for_heater();
  5501. wait_for_user_state = 2;
  5502. }
  5503. break;
  5504. case 2:
  5505. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5506. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5507. waiting_start_time = millis();
  5508. wait_for_user_state = 0;
  5509. }
  5510. else {
  5511. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5512. lcd.setCursor(1, 4);
  5513. lcd.print(ftostr3(degHotend(active_extruder)));
  5514. }
  5515. break;
  5516. }
  5517. }
  5518. WRITE(BEEPER, LOW);
  5519. lcd_change_fil_state = 0;
  5520. // Unload filament
  5521. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5522. KEEPALIVE_STATE(IN_HANDLER);
  5523. custom_message = true;
  5524. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5525. if (code_seen('L'))
  5526. {
  5527. target[E_AXIS] += code_value();
  5528. }
  5529. else
  5530. {
  5531. #ifdef SNMM
  5532. #else
  5533. #ifdef FILAMENTCHANGE_FINALRETRACT
  5534. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5535. #endif
  5536. #endif // SNMM
  5537. }
  5538. #ifdef SNMM
  5539. target[E_AXIS] += 12;
  5540. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5541. target[E_AXIS] += 6;
  5542. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5543. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5544. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5545. st_synchronize();
  5546. target[E_AXIS] += (FIL_COOLING);
  5547. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5548. target[E_AXIS] += (FIL_COOLING*-1);
  5549. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5550. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5551. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5552. st_synchronize();
  5553. #else
  5554. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5555. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5556. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5557. st_synchronize();
  5558. #ifdef TMC2130
  5559. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5560. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5561. #else
  5562. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5563. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5564. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5565. #endif //TMC2130
  5566. target[E_AXIS] -= 45;
  5567. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5568. st_synchronize();
  5569. target[E_AXIS] -= 15;
  5570. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5571. st_synchronize();
  5572. target[E_AXIS] -= 20;
  5573. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5574. st_synchronize();
  5575. #ifdef TMC2130
  5576. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5577. #else
  5578. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5579. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5580. else st_current_set(2, tmp_motor_loud[2]);
  5581. #endif //TMC2130
  5582. #endif // SNMM
  5583. //finish moves
  5584. st_synchronize();
  5585. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5586. //disable extruder steppers so filament can be removed
  5587. disable_e0();
  5588. disable_e1();
  5589. disable_e2();
  5590. delay(100);
  5591. WRITE(BEEPER, HIGH);
  5592. counterBeep = 0;
  5593. while(!lcd_clicked() && (counterBeep < 50)) {
  5594. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5595. delay_keep_alive(100);
  5596. counterBeep++;
  5597. }
  5598. WRITE(BEEPER, LOW);
  5599. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5600. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5601. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5602. //lcd_return_to_status();
  5603. lcd_update_enable(true);
  5604. //Wait for user to insert filament
  5605. lcd_wait_interact();
  5606. //load_filament_time = millis();
  5607. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5608. #ifdef PAT9125
  5609. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5610. #endif //PAT9125
  5611. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5612. while(!lcd_clicked())
  5613. {
  5614. manage_heater();
  5615. manage_inactivity(true);
  5616. #ifdef PAT9125
  5617. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5618. {
  5619. tone(BEEPER, 1000);
  5620. delay_keep_alive(50);
  5621. noTone(BEEPER);
  5622. break;
  5623. }
  5624. #endif //PAT9125
  5625. /*#ifdef SNMM
  5626. target[E_AXIS] += 0.002;
  5627. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5628. #endif // SNMM*/
  5629. }
  5630. #ifdef PAT9125
  5631. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5632. #endif //PAT9125
  5633. //WRITE(BEEPER, LOW);
  5634. KEEPALIVE_STATE(IN_HANDLER);
  5635. #ifdef SNMM
  5636. display_loading();
  5637. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5638. do {
  5639. target[E_AXIS] += 0.002;
  5640. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5641. delay_keep_alive(2);
  5642. } while (!lcd_clicked());
  5643. KEEPALIVE_STATE(IN_HANDLER);
  5644. /*if (millis() - load_filament_time > 2) {
  5645. load_filament_time = millis();
  5646. target[E_AXIS] += 0.001;
  5647. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5648. }*/
  5649. //Filament inserted
  5650. //Feed the filament to the end of nozzle quickly
  5651. st_synchronize();
  5652. target[E_AXIS] += bowden_length[snmm_extruder];
  5653. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5654. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5655. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5656. target[E_AXIS] += 40;
  5657. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5658. target[E_AXIS] += 10;
  5659. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5660. #else
  5661. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5662. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5663. #endif // SNMM
  5664. //Extrude some filament
  5665. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5666. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5667. //Wait for user to check the state
  5668. lcd_change_fil_state = 0;
  5669. lcd_loading_filament();
  5670. tone(BEEPER, 500);
  5671. delay_keep_alive(50);
  5672. noTone(BEEPER);
  5673. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5674. lcd_change_fil_state = 0;
  5675. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5676. lcd_alright();
  5677. KEEPALIVE_STATE(IN_HANDLER);
  5678. switch(lcd_change_fil_state){
  5679. // Filament failed to load so load it again
  5680. case 2:
  5681. #ifdef SNMM
  5682. display_loading();
  5683. do {
  5684. target[E_AXIS] += 0.002;
  5685. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5686. delay_keep_alive(2);
  5687. } while (!lcd_clicked());
  5688. st_synchronize();
  5689. target[E_AXIS] += bowden_length[snmm_extruder];
  5690. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5691. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5692. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5693. target[E_AXIS] += 40;
  5694. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5695. target[E_AXIS] += 10;
  5696. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5697. #else
  5698. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5699. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5700. #endif
  5701. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5702. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5703. lcd_loading_filament();
  5704. break;
  5705. // Filament loaded properly but color is not clear
  5706. case 3:
  5707. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5708. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5709. lcd_loading_color();
  5710. break;
  5711. // Everything good
  5712. default:
  5713. lcd_change_success();
  5714. lcd_update_enable(true);
  5715. break;
  5716. }
  5717. }
  5718. //Not let's go back to print
  5719. fanSpeed = fanSpeedBckp;
  5720. //Feed a little of filament to stabilize pressure
  5721. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5722. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5723. //Retract
  5724. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5725. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5726. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5727. //Move XY back
  5728. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5729. //Move Z back
  5730. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5731. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5732. //Unretract
  5733. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5734. //Set E position to original
  5735. plan_set_e_position(lastpos[E_AXIS]);
  5736. //Recover feed rate
  5737. feedmultiply=feedmultiplyBckp;
  5738. char cmd[9];
  5739. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5740. enquecommand(cmd);
  5741. lcd_setstatuspgm(_T(WELCOME_MSG));
  5742. custom_message = false;
  5743. custom_message_type = 0;
  5744. #ifdef PAT9125
  5745. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5746. if (fsensor_M600)
  5747. {
  5748. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5749. st_synchronize();
  5750. while (!is_buffer_empty())
  5751. {
  5752. process_commands();
  5753. cmdqueue_pop_front();
  5754. }
  5755. fsensor_enable();
  5756. fsensor_restore_print_and_continue();
  5757. }
  5758. #endif //PAT9125
  5759. }
  5760. break;
  5761. #endif //FILAMENTCHANGEENABLE
  5762. case 601: {
  5763. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5764. }
  5765. break;
  5766. case 602: {
  5767. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5768. }
  5769. break;
  5770. #ifdef PINDA_THERMISTOR
  5771. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5772. {
  5773. int set_target_pinda = 0;
  5774. if (code_seen('S')) {
  5775. set_target_pinda = code_value();
  5776. }
  5777. else {
  5778. break;
  5779. }
  5780. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5781. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5782. SERIAL_PROTOCOL(set_target_pinda);
  5783. SERIAL_PROTOCOLLN("");
  5784. codenum = millis();
  5785. cancel_heatup = false;
  5786. bool is_pinda_cooling = false;
  5787. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5788. is_pinda_cooling = true;
  5789. }
  5790. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5791. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5792. {
  5793. SERIAL_PROTOCOLPGM("P:");
  5794. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5795. SERIAL_PROTOCOLPGM("/");
  5796. SERIAL_PROTOCOL(set_target_pinda);
  5797. SERIAL_PROTOCOLLN("");
  5798. codenum = millis();
  5799. }
  5800. manage_heater();
  5801. manage_inactivity();
  5802. lcd_update();
  5803. }
  5804. LCD_MESSAGERPGM(_T(MSG_OK));
  5805. break;
  5806. }
  5807. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5808. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5809. uint8_t cal_status = calibration_status_pinda();
  5810. int16_t usteps = 0;
  5811. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5812. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5813. for (uint8_t i = 0; i < 6; i++)
  5814. {
  5815. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5816. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5817. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5818. SERIAL_PROTOCOLPGM(", ");
  5819. SERIAL_PROTOCOL(35 + (i * 5));
  5820. SERIAL_PROTOCOLPGM(", ");
  5821. SERIAL_PROTOCOL(usteps);
  5822. SERIAL_PROTOCOLPGM(", ");
  5823. SERIAL_PROTOCOL(mm * 1000);
  5824. SERIAL_PROTOCOLLN("");
  5825. }
  5826. }
  5827. else if (code_seen('!')) { // ! - Set factory default values
  5828. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5829. int16_t z_shift = 8; //40C - 20um - 8usteps
  5830. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5831. z_shift = 24; //45C - 60um - 24usteps
  5832. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5833. z_shift = 48; //50C - 120um - 48usteps
  5834. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5835. z_shift = 80; //55C - 200um - 80usteps
  5836. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5837. z_shift = 120; //60C - 300um - 120usteps
  5838. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5839. SERIAL_PROTOCOLLN("factory restored");
  5840. }
  5841. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5842. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5843. int16_t z_shift = 0;
  5844. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5845. SERIAL_PROTOCOLLN("zerorized");
  5846. }
  5847. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5848. int16_t usteps = code_value();
  5849. if (code_seen('I')) {
  5850. byte index = code_value();
  5851. if ((index >= 0) && (index < 5)) {
  5852. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5853. SERIAL_PROTOCOLLN("OK");
  5854. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5855. for (uint8_t i = 0; i < 6; i++)
  5856. {
  5857. usteps = 0;
  5858. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5859. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5860. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5861. SERIAL_PROTOCOLPGM(", ");
  5862. SERIAL_PROTOCOL(35 + (i * 5));
  5863. SERIAL_PROTOCOLPGM(", ");
  5864. SERIAL_PROTOCOL(usteps);
  5865. SERIAL_PROTOCOLPGM(", ");
  5866. SERIAL_PROTOCOL(mm * 1000);
  5867. SERIAL_PROTOCOLLN("");
  5868. }
  5869. }
  5870. }
  5871. }
  5872. else {
  5873. SERIAL_PROTOCOLPGM("no valid command");
  5874. }
  5875. break;
  5876. #endif //PINDA_THERMISTOR
  5877. #ifdef LIN_ADVANCE
  5878. case 900: // M900: Set LIN_ADVANCE options.
  5879. gcode_M900();
  5880. break;
  5881. #endif
  5882. case 907: // M907 Set digital trimpot motor current using axis codes.
  5883. {
  5884. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5885. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5886. if(code_seen('B')) st_current_set(4,code_value());
  5887. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5888. #endif
  5889. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5890. if(code_seen('X')) st_current_set(0, code_value());
  5891. #endif
  5892. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5893. if(code_seen('Z')) st_current_set(1, code_value());
  5894. #endif
  5895. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5896. if(code_seen('E')) st_current_set(2, code_value());
  5897. #endif
  5898. }
  5899. break;
  5900. case 908: // M908 Control digital trimpot directly.
  5901. {
  5902. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5903. uint8_t channel,current;
  5904. if(code_seen('P')) channel=code_value();
  5905. if(code_seen('S')) current=code_value();
  5906. digitalPotWrite(channel, current);
  5907. #endif
  5908. }
  5909. break;
  5910. #ifdef TMC2130
  5911. case 910: // M910 TMC2130 init
  5912. {
  5913. tmc2130_init();
  5914. }
  5915. break;
  5916. case 911: // M911 Set TMC2130 holding currents
  5917. {
  5918. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5919. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5920. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5921. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5922. }
  5923. break;
  5924. case 912: // M912 Set TMC2130 running currents
  5925. {
  5926. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5927. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5928. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5929. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5930. }
  5931. break;
  5932. case 913: // M913 Print TMC2130 currents
  5933. {
  5934. tmc2130_print_currents();
  5935. }
  5936. break;
  5937. case 914: // M914 Set normal mode
  5938. {
  5939. tmc2130_mode = TMC2130_MODE_NORMAL;
  5940. tmc2130_init();
  5941. }
  5942. break;
  5943. case 915: // M915 Set silent mode
  5944. {
  5945. tmc2130_mode = TMC2130_MODE_SILENT;
  5946. tmc2130_init();
  5947. }
  5948. break;
  5949. case 916: // M916 Set sg_thrs
  5950. {
  5951. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5952. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5953. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5954. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5955. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5956. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5957. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5958. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5959. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5960. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5961. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5962. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5963. }
  5964. break;
  5965. case 917: // M917 Set TMC2130 pwm_ampl
  5966. {
  5967. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5968. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5969. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5970. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5971. }
  5972. break;
  5973. case 918: // M918 Set TMC2130 pwm_grad
  5974. {
  5975. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5976. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5977. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5978. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5979. }
  5980. break;
  5981. #endif //TMC2130
  5982. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5983. {
  5984. #ifdef TMC2130
  5985. if(code_seen('E'))
  5986. {
  5987. uint16_t res_new = code_value();
  5988. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5989. {
  5990. st_synchronize();
  5991. uint8_t axis = E_AXIS;
  5992. uint16_t res = tmc2130_get_res(axis);
  5993. tmc2130_set_res(axis, res_new);
  5994. if (res_new > res)
  5995. {
  5996. uint16_t fac = (res_new / res);
  5997. axis_steps_per_unit[axis] *= fac;
  5998. position[E_AXIS] *= fac;
  5999. }
  6000. else
  6001. {
  6002. uint16_t fac = (res / res_new);
  6003. axis_steps_per_unit[axis] /= fac;
  6004. position[E_AXIS] /= fac;
  6005. }
  6006. }
  6007. }
  6008. #else //TMC2130
  6009. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6010. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6011. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6012. if(code_seen('B')) microstep_mode(4,code_value());
  6013. microstep_readings();
  6014. #endif
  6015. #endif //TMC2130
  6016. }
  6017. break;
  6018. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6019. {
  6020. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6021. if(code_seen('S')) switch((int)code_value())
  6022. {
  6023. case 1:
  6024. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6025. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6026. break;
  6027. case 2:
  6028. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6029. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6030. break;
  6031. }
  6032. microstep_readings();
  6033. #endif
  6034. }
  6035. break;
  6036. case 701: //M701: load filament
  6037. {
  6038. gcode_M701();
  6039. }
  6040. break;
  6041. case 702:
  6042. {
  6043. #ifdef SNMM
  6044. if (code_seen('U')) {
  6045. extr_unload_used(); //unload all filaments which were used in current print
  6046. }
  6047. else if (code_seen('C')) {
  6048. extr_unload(); //unload just current filament
  6049. }
  6050. else {
  6051. extr_unload_all(); //unload all filaments
  6052. }
  6053. #else
  6054. #ifdef PAT9125
  6055. bool old_fsensor_enabled = fsensor_enabled;
  6056. fsensor_enabled = false;
  6057. #endif //PAT9125
  6058. custom_message = true;
  6059. custom_message_type = 2;
  6060. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6061. // extr_unload2();
  6062. current_position[E_AXIS] -= 45;
  6063. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6064. st_synchronize();
  6065. current_position[E_AXIS] -= 15;
  6066. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6067. st_synchronize();
  6068. current_position[E_AXIS] -= 20;
  6069. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6070. st_synchronize();
  6071. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6072. //disable extruder steppers so filament can be removed
  6073. disable_e0();
  6074. disable_e1();
  6075. disable_e2();
  6076. delay(100);
  6077. WRITE(BEEPER, HIGH);
  6078. uint8_t counterBeep = 0;
  6079. while (!lcd_clicked() && (counterBeep < 50)) {
  6080. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6081. delay_keep_alive(100);
  6082. counterBeep++;
  6083. }
  6084. WRITE(BEEPER, LOW);
  6085. st_synchronize();
  6086. while (lcd_clicked()) delay_keep_alive(100);
  6087. lcd_update_enable(true);
  6088. lcd_setstatuspgm(_T(WELCOME_MSG));
  6089. custom_message = false;
  6090. custom_message_type = 0;
  6091. #ifdef PAT9125
  6092. fsensor_enabled = old_fsensor_enabled;
  6093. #endif //PAT9125
  6094. #endif
  6095. }
  6096. break;
  6097. case 999: // M999: Restart after being stopped
  6098. Stopped = false;
  6099. lcd_reset_alert_level();
  6100. gcode_LastN = Stopped_gcode_LastN;
  6101. FlushSerialRequestResend();
  6102. break;
  6103. default:
  6104. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6105. }
  6106. } // end if(code_seen('M')) (end of M codes)
  6107. else if(code_seen('T'))
  6108. {
  6109. int index;
  6110. st_synchronize();
  6111. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6112. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6113. SERIAL_ECHOLNPGM("Invalid T code.");
  6114. }
  6115. else {
  6116. if (*(strchr_pointer + index) == '?') {
  6117. tmp_extruder = choose_extruder_menu();
  6118. }
  6119. else {
  6120. tmp_extruder = code_value();
  6121. }
  6122. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6123. #ifdef SNMM
  6124. #ifdef LIN_ADVANCE
  6125. if (snmm_extruder != tmp_extruder)
  6126. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6127. #endif
  6128. snmm_extruder = tmp_extruder;
  6129. delay(100);
  6130. disable_e0();
  6131. disable_e1();
  6132. disable_e2();
  6133. pinMode(E_MUX0_PIN, OUTPUT);
  6134. pinMode(E_MUX1_PIN, OUTPUT);
  6135. delay(100);
  6136. SERIAL_ECHO_START;
  6137. SERIAL_ECHO("T:");
  6138. SERIAL_ECHOLN((int)tmp_extruder);
  6139. switch (tmp_extruder) {
  6140. case 1:
  6141. WRITE(E_MUX0_PIN, HIGH);
  6142. WRITE(E_MUX1_PIN, LOW);
  6143. break;
  6144. case 2:
  6145. WRITE(E_MUX0_PIN, LOW);
  6146. WRITE(E_MUX1_PIN, HIGH);
  6147. break;
  6148. case 3:
  6149. WRITE(E_MUX0_PIN, HIGH);
  6150. WRITE(E_MUX1_PIN, HIGH);
  6151. break;
  6152. default:
  6153. WRITE(E_MUX0_PIN, LOW);
  6154. WRITE(E_MUX1_PIN, LOW);
  6155. break;
  6156. }
  6157. delay(100);
  6158. #else
  6159. if (tmp_extruder >= EXTRUDERS) {
  6160. SERIAL_ECHO_START;
  6161. SERIAL_ECHOPGM("T");
  6162. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6163. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6164. }
  6165. else {
  6166. boolean make_move = false;
  6167. if (code_seen('F')) {
  6168. make_move = true;
  6169. next_feedrate = code_value();
  6170. if (next_feedrate > 0.0) {
  6171. feedrate = next_feedrate;
  6172. }
  6173. }
  6174. #if EXTRUDERS > 1
  6175. if (tmp_extruder != active_extruder) {
  6176. // Save current position to return to after applying extruder offset
  6177. memcpy(destination, current_position, sizeof(destination));
  6178. // Offset extruder (only by XY)
  6179. int i;
  6180. for (i = 0; i < 2; i++) {
  6181. current_position[i] = current_position[i] -
  6182. extruder_offset[i][active_extruder] +
  6183. extruder_offset[i][tmp_extruder];
  6184. }
  6185. // Set the new active extruder and position
  6186. active_extruder = tmp_extruder;
  6187. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6188. // Move to the old position if 'F' was in the parameters
  6189. if (make_move && Stopped == false) {
  6190. prepare_move();
  6191. }
  6192. }
  6193. #endif
  6194. SERIAL_ECHO_START;
  6195. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6196. SERIAL_PROTOCOLLN((int)active_extruder);
  6197. }
  6198. #endif
  6199. }
  6200. } // end if(code_seen('T')) (end of T codes)
  6201. #ifdef DEBUG_DCODES
  6202. else if (code_seen('D')) // D codes (debug)
  6203. {
  6204. switch((int)code_value())
  6205. {
  6206. case -1: // D-1 - Endless loop
  6207. dcode__1(); break;
  6208. case 0: // D0 - Reset
  6209. dcode_0(); break;
  6210. case 1: // D1 - Clear EEPROM
  6211. dcode_1(); break;
  6212. case 2: // D2 - Read/Write RAM
  6213. dcode_2(); break;
  6214. case 3: // D3 - Read/Write EEPROM
  6215. dcode_3(); break;
  6216. case 4: // D4 - Read/Write PIN
  6217. dcode_4(); break;
  6218. case 5: // D5 - Read/Write FLASH
  6219. // dcode_5(); break;
  6220. break;
  6221. case 6: // D6 - Read/Write external FLASH
  6222. dcode_6(); break;
  6223. case 7: // D7 - Read/Write Bootloader
  6224. dcode_7(); break;
  6225. case 8: // D8 - Read/Write PINDA
  6226. dcode_8(); break;
  6227. case 9: // D9 - Read/Write ADC
  6228. dcode_9(); break;
  6229. case 10: // D10 - XYZ calibration = OK
  6230. dcode_10(); break;
  6231. #ifdef TMC2130
  6232. case 2130: // D9125 - TMC2130
  6233. dcode_2130(); break;
  6234. #endif //TMC2130
  6235. #ifdef PAT9125
  6236. case 9125: // D9125 - PAT9125
  6237. dcode_9125(); break;
  6238. #endif //PAT9125
  6239. }
  6240. }
  6241. #endif //DEBUG_DCODES
  6242. else
  6243. {
  6244. SERIAL_ECHO_START;
  6245. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6246. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6247. SERIAL_ECHOLNPGM("\"(2)");
  6248. }
  6249. KEEPALIVE_STATE(NOT_BUSY);
  6250. ClearToSend();
  6251. }
  6252. void FlushSerialRequestResend()
  6253. {
  6254. //char cmdbuffer[bufindr][100]="Resend:";
  6255. MYSERIAL.flush();
  6256. SERIAL_PROTOCOLRPGM(_i("Resend: "));////MSG_RESEND c=0 r=0
  6257. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6258. previous_millis_cmd = millis();
  6259. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6260. }
  6261. // Confirm the execution of a command, if sent from a serial line.
  6262. // Execution of a command from a SD card will not be confirmed.
  6263. void ClearToSend()
  6264. {
  6265. previous_millis_cmd = millis();
  6266. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6267. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6268. }
  6269. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6270. void update_currents() {
  6271. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6272. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6273. float tmp_motor[3];
  6274. //SERIAL_ECHOLNPGM("Currents updated: ");
  6275. if (destination[Z_AXIS] < Z_SILENT) {
  6276. //SERIAL_ECHOLNPGM("LOW");
  6277. for (uint8_t i = 0; i < 3; i++) {
  6278. st_current_set(i, current_low[i]);
  6279. /*MYSERIAL.print(int(i));
  6280. SERIAL_ECHOPGM(": ");
  6281. MYSERIAL.println(current_low[i]);*/
  6282. }
  6283. }
  6284. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6285. //SERIAL_ECHOLNPGM("HIGH");
  6286. for (uint8_t i = 0; i < 3; i++) {
  6287. st_current_set(i, current_high[i]);
  6288. /*MYSERIAL.print(int(i));
  6289. SERIAL_ECHOPGM(": ");
  6290. MYSERIAL.println(current_high[i]);*/
  6291. }
  6292. }
  6293. else {
  6294. for (uint8_t i = 0; i < 3; i++) {
  6295. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6296. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6297. st_current_set(i, tmp_motor[i]);
  6298. /*MYSERIAL.print(int(i));
  6299. SERIAL_ECHOPGM(": ");
  6300. MYSERIAL.println(tmp_motor[i]);*/
  6301. }
  6302. }
  6303. }
  6304. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6305. void get_coordinates()
  6306. {
  6307. bool seen[4]={false,false,false,false};
  6308. for(int8_t i=0; i < NUM_AXIS; i++) {
  6309. if(code_seen(axis_codes[i]))
  6310. {
  6311. bool relative = axis_relative_modes[i] || relative_mode;
  6312. destination[i] = (float)code_value();
  6313. if (i == E_AXIS) {
  6314. float emult = extruder_multiplier[active_extruder];
  6315. if (emult != 1.) {
  6316. if (! relative) {
  6317. destination[i] -= current_position[i];
  6318. relative = true;
  6319. }
  6320. destination[i] *= emult;
  6321. }
  6322. }
  6323. if (relative)
  6324. destination[i] += current_position[i];
  6325. seen[i]=true;
  6326. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6327. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6328. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6329. }
  6330. else destination[i] = current_position[i]; //Are these else lines really needed?
  6331. }
  6332. if(code_seen('F')) {
  6333. next_feedrate = code_value();
  6334. #ifdef MAX_SILENT_FEEDRATE
  6335. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6336. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6337. #endif //MAX_SILENT_FEEDRATE
  6338. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6339. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6340. {
  6341. // float e_max_speed =
  6342. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6343. }
  6344. }
  6345. }
  6346. void get_arc_coordinates()
  6347. {
  6348. #ifdef SF_ARC_FIX
  6349. bool relative_mode_backup = relative_mode;
  6350. relative_mode = true;
  6351. #endif
  6352. get_coordinates();
  6353. #ifdef SF_ARC_FIX
  6354. relative_mode=relative_mode_backup;
  6355. #endif
  6356. if(code_seen('I')) {
  6357. offset[0] = code_value();
  6358. }
  6359. else {
  6360. offset[0] = 0.0;
  6361. }
  6362. if(code_seen('J')) {
  6363. offset[1] = code_value();
  6364. }
  6365. else {
  6366. offset[1] = 0.0;
  6367. }
  6368. }
  6369. void clamp_to_software_endstops(float target[3])
  6370. {
  6371. #ifdef DEBUG_DISABLE_SWLIMITS
  6372. return;
  6373. #endif //DEBUG_DISABLE_SWLIMITS
  6374. world2machine_clamp(target[0], target[1]);
  6375. // Clamp the Z coordinate.
  6376. if (min_software_endstops) {
  6377. float negative_z_offset = 0;
  6378. #ifdef ENABLE_AUTO_BED_LEVELING
  6379. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6380. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6381. #endif
  6382. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6383. }
  6384. if (max_software_endstops) {
  6385. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6386. }
  6387. }
  6388. #ifdef MESH_BED_LEVELING
  6389. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6390. float dx = x - current_position[X_AXIS];
  6391. float dy = y - current_position[Y_AXIS];
  6392. float dz = z - current_position[Z_AXIS];
  6393. int n_segments = 0;
  6394. if (mbl.active) {
  6395. float len = abs(dx) + abs(dy);
  6396. if (len > 0)
  6397. // Split to 3cm segments or shorter.
  6398. n_segments = int(ceil(len / 30.f));
  6399. }
  6400. if (n_segments > 1) {
  6401. float de = e - current_position[E_AXIS];
  6402. for (int i = 1; i < n_segments; ++ i) {
  6403. float t = float(i) / float(n_segments);
  6404. plan_buffer_line(
  6405. current_position[X_AXIS] + t * dx,
  6406. current_position[Y_AXIS] + t * dy,
  6407. current_position[Z_AXIS] + t * dz,
  6408. current_position[E_AXIS] + t * de,
  6409. feed_rate, extruder);
  6410. }
  6411. }
  6412. // The rest of the path.
  6413. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6414. current_position[X_AXIS] = x;
  6415. current_position[Y_AXIS] = y;
  6416. current_position[Z_AXIS] = z;
  6417. current_position[E_AXIS] = e;
  6418. }
  6419. #endif // MESH_BED_LEVELING
  6420. void prepare_move()
  6421. {
  6422. clamp_to_software_endstops(destination);
  6423. previous_millis_cmd = millis();
  6424. // Do not use feedmultiply for E or Z only moves
  6425. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6426. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6427. }
  6428. else {
  6429. #ifdef MESH_BED_LEVELING
  6430. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6431. #else
  6432. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6433. #endif
  6434. }
  6435. for(int8_t i=0; i < NUM_AXIS; i++) {
  6436. current_position[i] = destination[i];
  6437. }
  6438. }
  6439. void prepare_arc_move(char isclockwise) {
  6440. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6441. // Trace the arc
  6442. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6443. // As far as the parser is concerned, the position is now == target. In reality the
  6444. // motion control system might still be processing the action and the real tool position
  6445. // in any intermediate location.
  6446. for(int8_t i=0; i < NUM_AXIS; i++) {
  6447. current_position[i] = destination[i];
  6448. }
  6449. previous_millis_cmd = millis();
  6450. }
  6451. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6452. #if defined(FAN_PIN)
  6453. #if CONTROLLERFAN_PIN == FAN_PIN
  6454. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6455. #endif
  6456. #endif
  6457. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6458. unsigned long lastMotorCheck = 0;
  6459. void controllerFan()
  6460. {
  6461. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6462. {
  6463. lastMotorCheck = millis();
  6464. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6465. #if EXTRUDERS > 2
  6466. || !READ(E2_ENABLE_PIN)
  6467. #endif
  6468. #if EXTRUDER > 1
  6469. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6470. || !READ(X2_ENABLE_PIN)
  6471. #endif
  6472. || !READ(E1_ENABLE_PIN)
  6473. #endif
  6474. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6475. {
  6476. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6477. }
  6478. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6479. {
  6480. digitalWrite(CONTROLLERFAN_PIN, 0);
  6481. analogWrite(CONTROLLERFAN_PIN, 0);
  6482. }
  6483. else
  6484. {
  6485. // allows digital or PWM fan output to be used (see M42 handling)
  6486. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6487. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6488. }
  6489. }
  6490. }
  6491. #endif
  6492. #ifdef TEMP_STAT_LEDS
  6493. static bool blue_led = false;
  6494. static bool red_led = false;
  6495. static uint32_t stat_update = 0;
  6496. void handle_status_leds(void) {
  6497. float max_temp = 0.0;
  6498. if(millis() > stat_update) {
  6499. stat_update += 500; // Update every 0.5s
  6500. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6501. max_temp = max(max_temp, degHotend(cur_extruder));
  6502. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6503. }
  6504. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6505. max_temp = max(max_temp, degTargetBed());
  6506. max_temp = max(max_temp, degBed());
  6507. #endif
  6508. if((max_temp > 55.0) && (red_led == false)) {
  6509. digitalWrite(STAT_LED_RED, 1);
  6510. digitalWrite(STAT_LED_BLUE, 0);
  6511. red_led = true;
  6512. blue_led = false;
  6513. }
  6514. if((max_temp < 54.0) && (blue_led == false)) {
  6515. digitalWrite(STAT_LED_RED, 0);
  6516. digitalWrite(STAT_LED_BLUE, 1);
  6517. red_led = false;
  6518. blue_led = true;
  6519. }
  6520. }
  6521. }
  6522. #endif
  6523. #ifdef SAFETYTIMER
  6524. /**
  6525. * @brief Turn off heating after 30 minutes of inactivity
  6526. *
  6527. * Full screen blocking notification message is shown after heater turning off.
  6528. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6529. * damage print.
  6530. */
  6531. static void handleSafetyTimer()
  6532. {
  6533. #if (EXTRUDERS > 1)
  6534. #error Implemented only for one extruder.
  6535. #endif //(EXTRUDERS > 1)
  6536. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)))
  6537. {
  6538. safetyTimer.stop();
  6539. }
  6540. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6541. {
  6542. safetyTimer.start();
  6543. }
  6544. else if (safetyTimer.expired(1800000ul)) //30 min
  6545. {
  6546. setTargetBed(0);
  6547. setTargetHotend(0, 0);
  6548. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6549. }
  6550. }
  6551. #endif //SAFETYTIMER
  6552. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6553. {
  6554. #ifdef PAT9125
  6555. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6556. {
  6557. if (fsensor_autoload_enabled)
  6558. {
  6559. if (fsensor_check_autoload())
  6560. {
  6561. if (degHotend0() > EXTRUDE_MINTEMP)
  6562. {
  6563. fsensor_autoload_check_stop();
  6564. tone(BEEPER, 1000);
  6565. delay_keep_alive(50);
  6566. noTone(BEEPER);
  6567. loading_flag = true;
  6568. enquecommand_front_P((PSTR("M701")));
  6569. }
  6570. else
  6571. {
  6572. lcd_update_enable(false);
  6573. lcd_implementation_clear();
  6574. lcd.setCursor(0, 0);
  6575. lcd_printPGM(_T(MSG_ERROR));
  6576. lcd.setCursor(0, 2);
  6577. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6578. delay(2000);
  6579. lcd_implementation_clear();
  6580. lcd_update_enable(true);
  6581. }
  6582. }
  6583. }
  6584. else
  6585. fsensor_autoload_check_start();
  6586. }
  6587. else
  6588. if (fsensor_autoload_enabled)
  6589. fsensor_autoload_check_stop();
  6590. #endif //PAT9125
  6591. #ifdef SAFETYTIMER
  6592. handleSafetyTimer();
  6593. #endif //SAFETYTIMER
  6594. #if defined(KILL_PIN) && KILL_PIN > -1
  6595. static int killCount = 0; // make the inactivity button a bit less responsive
  6596. const int KILL_DELAY = 10000;
  6597. #endif
  6598. if(buflen < (BUFSIZE-1)){
  6599. get_command();
  6600. }
  6601. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6602. if(max_inactive_time)
  6603. kill(_n(""), 4);
  6604. if(stepper_inactive_time) {
  6605. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6606. {
  6607. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6608. disable_x();
  6609. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6610. disable_y();
  6611. disable_z();
  6612. disable_e0();
  6613. disable_e1();
  6614. disable_e2();
  6615. }
  6616. }
  6617. }
  6618. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6619. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6620. {
  6621. chdkActive = false;
  6622. WRITE(CHDK, LOW);
  6623. }
  6624. #endif
  6625. #if defined(KILL_PIN) && KILL_PIN > -1
  6626. // Check if the kill button was pressed and wait just in case it was an accidental
  6627. // key kill key press
  6628. // -------------------------------------------------------------------------------
  6629. if( 0 == READ(KILL_PIN) )
  6630. {
  6631. killCount++;
  6632. }
  6633. else if (killCount > 0)
  6634. {
  6635. killCount--;
  6636. }
  6637. // Exceeded threshold and we can confirm that it was not accidental
  6638. // KILL the machine
  6639. // ----------------------------------------------------------------
  6640. if ( killCount >= KILL_DELAY)
  6641. {
  6642. kill("", 5);
  6643. }
  6644. #endif
  6645. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6646. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6647. #endif
  6648. #ifdef EXTRUDER_RUNOUT_PREVENT
  6649. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6650. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6651. {
  6652. bool oldstatus=READ(E0_ENABLE_PIN);
  6653. enable_e0();
  6654. float oldepos=current_position[E_AXIS];
  6655. float oldedes=destination[E_AXIS];
  6656. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6657. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6658. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6659. current_position[E_AXIS]=oldepos;
  6660. destination[E_AXIS]=oldedes;
  6661. plan_set_e_position(oldepos);
  6662. previous_millis_cmd=millis();
  6663. st_synchronize();
  6664. WRITE(E0_ENABLE_PIN,oldstatus);
  6665. }
  6666. #endif
  6667. #ifdef TEMP_STAT_LEDS
  6668. handle_status_leds();
  6669. #endif
  6670. check_axes_activity();
  6671. }
  6672. void kill(const char *full_screen_message, unsigned char id)
  6673. {
  6674. SERIAL_ECHOPGM("KILL: ");
  6675. MYSERIAL.println(int(id));
  6676. //return;
  6677. cli(); // Stop interrupts
  6678. disable_heater();
  6679. disable_x();
  6680. // SERIAL_ECHOLNPGM("kill - disable Y");
  6681. disable_y();
  6682. disable_z();
  6683. disable_e0();
  6684. disable_e1();
  6685. disable_e2();
  6686. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6687. pinMode(PS_ON_PIN,INPUT);
  6688. #endif
  6689. SERIAL_ERROR_START;
  6690. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6691. if (full_screen_message != NULL) {
  6692. SERIAL_ERRORLNRPGM(full_screen_message);
  6693. lcd_display_message_fullscreen_P(full_screen_message);
  6694. } else {
  6695. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6696. }
  6697. // FMC small patch to update the LCD before ending
  6698. sei(); // enable interrupts
  6699. for ( int i=5; i--; lcd_update())
  6700. {
  6701. delay(200);
  6702. }
  6703. cli(); // disable interrupts
  6704. suicide();
  6705. while(1)
  6706. {
  6707. #ifdef WATCHDOG
  6708. wdt_reset();
  6709. #endif //WATCHDOG
  6710. /* Intentionally left empty */
  6711. } // Wait for reset
  6712. }
  6713. void Stop()
  6714. {
  6715. disable_heater();
  6716. if(Stopped == false) {
  6717. Stopped = true;
  6718. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6719. SERIAL_ERROR_START;
  6720. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6721. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6722. }
  6723. }
  6724. bool IsStopped() { return Stopped; };
  6725. #ifdef FAST_PWM_FAN
  6726. void setPwmFrequency(uint8_t pin, int val)
  6727. {
  6728. val &= 0x07;
  6729. switch(digitalPinToTimer(pin))
  6730. {
  6731. #if defined(TCCR0A)
  6732. case TIMER0A:
  6733. case TIMER0B:
  6734. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6735. // TCCR0B |= val;
  6736. break;
  6737. #endif
  6738. #if defined(TCCR1A)
  6739. case TIMER1A:
  6740. case TIMER1B:
  6741. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6742. // TCCR1B |= val;
  6743. break;
  6744. #endif
  6745. #if defined(TCCR2)
  6746. case TIMER2:
  6747. case TIMER2:
  6748. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6749. TCCR2 |= val;
  6750. break;
  6751. #endif
  6752. #if defined(TCCR2A)
  6753. case TIMER2A:
  6754. case TIMER2B:
  6755. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6756. TCCR2B |= val;
  6757. break;
  6758. #endif
  6759. #if defined(TCCR3A)
  6760. case TIMER3A:
  6761. case TIMER3B:
  6762. case TIMER3C:
  6763. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6764. TCCR3B |= val;
  6765. break;
  6766. #endif
  6767. #if defined(TCCR4A)
  6768. case TIMER4A:
  6769. case TIMER4B:
  6770. case TIMER4C:
  6771. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6772. TCCR4B |= val;
  6773. break;
  6774. #endif
  6775. #if defined(TCCR5A)
  6776. case TIMER5A:
  6777. case TIMER5B:
  6778. case TIMER5C:
  6779. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6780. TCCR5B |= val;
  6781. break;
  6782. #endif
  6783. }
  6784. }
  6785. #endif //FAST_PWM_FAN
  6786. bool setTargetedHotend(int code){
  6787. tmp_extruder = active_extruder;
  6788. if(code_seen('T')) {
  6789. tmp_extruder = code_value();
  6790. if(tmp_extruder >= EXTRUDERS) {
  6791. SERIAL_ECHO_START;
  6792. switch(code){
  6793. case 104:
  6794. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6795. break;
  6796. case 105:
  6797. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6798. break;
  6799. case 109:
  6800. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6801. break;
  6802. case 218:
  6803. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6804. break;
  6805. case 221:
  6806. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6807. break;
  6808. }
  6809. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6810. return true;
  6811. }
  6812. }
  6813. return false;
  6814. }
  6815. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6816. {
  6817. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6818. {
  6819. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6820. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6821. }
  6822. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6823. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6824. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6825. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6826. total_filament_used = 0;
  6827. }
  6828. float calculate_extruder_multiplier(float diameter) {
  6829. float out = 1.f;
  6830. if (volumetric_enabled && diameter > 0.f) {
  6831. float area = M_PI * diameter * diameter * 0.25;
  6832. out = 1.f / area;
  6833. }
  6834. if (extrudemultiply != 100)
  6835. out *= float(extrudemultiply) * 0.01f;
  6836. return out;
  6837. }
  6838. void calculate_extruder_multipliers() {
  6839. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6840. #if EXTRUDERS > 1
  6841. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6842. #if EXTRUDERS > 2
  6843. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6844. #endif
  6845. #endif
  6846. }
  6847. void delay_keep_alive(unsigned int ms)
  6848. {
  6849. for (;;) {
  6850. manage_heater();
  6851. // Manage inactivity, but don't disable steppers on timeout.
  6852. manage_inactivity(true);
  6853. lcd_update();
  6854. if (ms == 0)
  6855. break;
  6856. else if (ms >= 50) {
  6857. delay(50);
  6858. ms -= 50;
  6859. } else {
  6860. delay(ms);
  6861. ms = 0;
  6862. }
  6863. }
  6864. }
  6865. void wait_for_heater(long codenum) {
  6866. #ifdef TEMP_RESIDENCY_TIME
  6867. long residencyStart;
  6868. residencyStart = -1;
  6869. /* continue to loop until we have reached the target temp
  6870. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6871. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6872. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6873. #else
  6874. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6875. #endif //TEMP_RESIDENCY_TIME
  6876. if ((millis() - codenum) > 1000UL)
  6877. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6878. if (!farm_mode) {
  6879. SERIAL_PROTOCOLPGM("T:");
  6880. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6881. SERIAL_PROTOCOLPGM(" E:");
  6882. SERIAL_PROTOCOL((int)tmp_extruder);
  6883. #ifdef TEMP_RESIDENCY_TIME
  6884. SERIAL_PROTOCOLPGM(" W:");
  6885. if (residencyStart > -1)
  6886. {
  6887. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6888. SERIAL_PROTOCOLLN(codenum);
  6889. }
  6890. else
  6891. {
  6892. SERIAL_PROTOCOLLN("?");
  6893. }
  6894. }
  6895. #else
  6896. SERIAL_PROTOCOLLN("");
  6897. #endif
  6898. codenum = millis();
  6899. }
  6900. manage_heater();
  6901. manage_inactivity();
  6902. lcd_update();
  6903. #ifdef TEMP_RESIDENCY_TIME
  6904. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6905. or when current temp falls outside the hysteresis after target temp was reached */
  6906. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6907. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6908. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6909. {
  6910. residencyStart = millis();
  6911. }
  6912. #endif //TEMP_RESIDENCY_TIME
  6913. }
  6914. }
  6915. void check_babystep() {
  6916. int babystep_z;
  6917. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6918. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6919. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6920. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6921. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6922. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6923. lcd_update_enable(true);
  6924. }
  6925. }
  6926. #ifdef DIS
  6927. void d_setup()
  6928. {
  6929. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6930. pinMode(D_DATA, INPUT_PULLUP);
  6931. pinMode(D_REQUIRE, OUTPUT);
  6932. digitalWrite(D_REQUIRE, HIGH);
  6933. }
  6934. float d_ReadData()
  6935. {
  6936. int digit[13];
  6937. String mergeOutput;
  6938. float output;
  6939. digitalWrite(D_REQUIRE, HIGH);
  6940. for (int i = 0; i<13; i++)
  6941. {
  6942. for (int j = 0; j < 4; j++)
  6943. {
  6944. while (digitalRead(D_DATACLOCK) == LOW) {}
  6945. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6946. bitWrite(digit[i], j, digitalRead(D_DATA));
  6947. }
  6948. }
  6949. digitalWrite(D_REQUIRE, LOW);
  6950. mergeOutput = "";
  6951. output = 0;
  6952. for (int r = 5; r <= 10; r++) //Merge digits
  6953. {
  6954. mergeOutput += digit[r];
  6955. }
  6956. output = mergeOutput.toFloat();
  6957. if (digit[4] == 8) //Handle sign
  6958. {
  6959. output *= -1;
  6960. }
  6961. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6962. {
  6963. output /= 10;
  6964. }
  6965. return output;
  6966. }
  6967. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6968. int t1 = 0;
  6969. int t_delay = 0;
  6970. int digit[13];
  6971. int m;
  6972. char str[3];
  6973. //String mergeOutput;
  6974. char mergeOutput[15];
  6975. float output;
  6976. int mesh_point = 0; //index number of calibration point
  6977. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6978. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6979. float mesh_home_z_search = 4;
  6980. float row[x_points_num];
  6981. int ix = 0;
  6982. int iy = 0;
  6983. char* filename_wldsd = "wldsd.txt";
  6984. char data_wldsd[70];
  6985. char numb_wldsd[10];
  6986. d_setup();
  6987. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6988. // We don't know where we are! HOME!
  6989. // Push the commands to the front of the message queue in the reverse order!
  6990. // There shall be always enough space reserved for these commands.
  6991. repeatcommand_front(); // repeat G80 with all its parameters
  6992. enquecommand_front_P((PSTR("G28 W0")));
  6993. enquecommand_front_P((PSTR("G1 Z5")));
  6994. return;
  6995. }
  6996. bool custom_message_old = custom_message;
  6997. unsigned int custom_message_type_old = custom_message_type;
  6998. unsigned int custom_message_state_old = custom_message_state;
  6999. custom_message = true;
  7000. custom_message_type = 1;
  7001. custom_message_state = (x_points_num * y_points_num) + 10;
  7002. lcd_update(1);
  7003. mbl.reset();
  7004. babystep_undo();
  7005. card.openFile(filename_wldsd, false);
  7006. current_position[Z_AXIS] = mesh_home_z_search;
  7007. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7008. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7009. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  7010. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7011. setup_for_endstop_move(false);
  7012. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7013. SERIAL_PROTOCOL(x_points_num);
  7014. SERIAL_PROTOCOLPGM(",");
  7015. SERIAL_PROTOCOL(y_points_num);
  7016. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7017. SERIAL_PROTOCOL(mesh_home_z_search);
  7018. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7019. SERIAL_PROTOCOL(x_dimension);
  7020. SERIAL_PROTOCOLPGM(",");
  7021. SERIAL_PROTOCOL(y_dimension);
  7022. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7023. while (mesh_point != x_points_num * y_points_num) {
  7024. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7025. iy = mesh_point / x_points_num;
  7026. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7027. float z0 = 0.f;
  7028. current_position[Z_AXIS] = mesh_home_z_search;
  7029. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7030. st_synchronize();
  7031. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7032. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7034. st_synchronize();
  7035. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7036. break;
  7037. card.closefile();
  7038. }
  7039. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7040. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7041. //strcat(data_wldsd, numb_wldsd);
  7042. //MYSERIAL.println(data_wldsd);
  7043. //delay(1000);
  7044. //delay(3000);
  7045. //t1 = millis();
  7046. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7047. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7048. memset(digit, 0, sizeof(digit));
  7049. //cli();
  7050. digitalWrite(D_REQUIRE, LOW);
  7051. for (int i = 0; i<13; i++)
  7052. {
  7053. //t1 = millis();
  7054. for (int j = 0; j < 4; j++)
  7055. {
  7056. while (digitalRead(D_DATACLOCK) == LOW) {}
  7057. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7058. bitWrite(digit[i], j, digitalRead(D_DATA));
  7059. }
  7060. //t_delay = (millis() - t1);
  7061. //SERIAL_PROTOCOLPGM(" ");
  7062. //SERIAL_PROTOCOL_F(t_delay, 5);
  7063. //SERIAL_PROTOCOLPGM(" ");
  7064. }
  7065. //sei();
  7066. digitalWrite(D_REQUIRE, HIGH);
  7067. mergeOutput[0] = '\0';
  7068. output = 0;
  7069. for (int r = 5; r <= 10; r++) //Merge digits
  7070. {
  7071. sprintf(str, "%d", digit[r]);
  7072. strcat(mergeOutput, str);
  7073. }
  7074. output = atof(mergeOutput);
  7075. if (digit[4] == 8) //Handle sign
  7076. {
  7077. output *= -1;
  7078. }
  7079. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7080. {
  7081. output *= 0.1;
  7082. }
  7083. //output = d_ReadData();
  7084. //row[ix] = current_position[Z_AXIS];
  7085. memset(data_wldsd, 0, sizeof(data_wldsd));
  7086. for (int i = 0; i <3; i++) {
  7087. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7088. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7089. strcat(data_wldsd, numb_wldsd);
  7090. strcat(data_wldsd, ";");
  7091. }
  7092. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7093. dtostrf(output, 8, 5, numb_wldsd);
  7094. strcat(data_wldsd, numb_wldsd);
  7095. //strcat(data_wldsd, ";");
  7096. card.write_command(data_wldsd);
  7097. //row[ix] = d_ReadData();
  7098. row[ix] = output; // current_position[Z_AXIS];
  7099. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7100. for (int i = 0; i < x_points_num; i++) {
  7101. SERIAL_PROTOCOLPGM(" ");
  7102. SERIAL_PROTOCOL_F(row[i], 5);
  7103. }
  7104. SERIAL_PROTOCOLPGM("\n");
  7105. }
  7106. custom_message_state--;
  7107. mesh_point++;
  7108. lcd_update(1);
  7109. }
  7110. card.closefile();
  7111. }
  7112. #endif
  7113. void temp_compensation_start() {
  7114. custom_message = true;
  7115. custom_message_type = 5;
  7116. custom_message_state = PINDA_HEAT_T + 1;
  7117. lcd_update(2);
  7118. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7119. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7120. }
  7121. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7122. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7123. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7124. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7125. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7126. st_synchronize();
  7127. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7128. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7129. delay_keep_alive(1000);
  7130. custom_message_state = PINDA_HEAT_T - i;
  7131. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7132. else lcd_update(1);
  7133. }
  7134. custom_message_type = 0;
  7135. custom_message_state = 0;
  7136. custom_message = false;
  7137. }
  7138. void temp_compensation_apply() {
  7139. int i_add;
  7140. int compensation_value;
  7141. int z_shift = 0;
  7142. float z_shift_mm;
  7143. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7144. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7145. i_add = (target_temperature_bed - 60) / 10;
  7146. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7147. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7148. }else {
  7149. //interpolation
  7150. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7151. }
  7152. SERIAL_PROTOCOLPGM("\n");
  7153. SERIAL_PROTOCOLPGM("Z shift applied:");
  7154. MYSERIAL.print(z_shift_mm);
  7155. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7156. st_synchronize();
  7157. plan_set_z_position(current_position[Z_AXIS]);
  7158. }
  7159. else {
  7160. //we have no temp compensation data
  7161. }
  7162. }
  7163. float temp_comp_interpolation(float inp_temperature) {
  7164. //cubic spline interpolation
  7165. int n, i, j, k;
  7166. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7167. int shift[10];
  7168. int temp_C[10];
  7169. n = 6; //number of measured points
  7170. shift[0] = 0;
  7171. for (i = 0; i < n; i++) {
  7172. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7173. temp_C[i] = 50 + i * 10; //temperature in C
  7174. #ifdef PINDA_THERMISTOR
  7175. temp_C[i] = 35 + i * 5; //temperature in C
  7176. #else
  7177. temp_C[i] = 50 + i * 10; //temperature in C
  7178. #endif
  7179. x[i] = (float)temp_C[i];
  7180. f[i] = (float)shift[i];
  7181. }
  7182. if (inp_temperature < x[0]) return 0;
  7183. for (i = n - 1; i>0; i--) {
  7184. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7185. h[i - 1] = x[i] - x[i - 1];
  7186. }
  7187. //*********** formation of h, s , f matrix **************
  7188. for (i = 1; i<n - 1; i++) {
  7189. m[i][i] = 2 * (h[i - 1] + h[i]);
  7190. if (i != 1) {
  7191. m[i][i - 1] = h[i - 1];
  7192. m[i - 1][i] = h[i - 1];
  7193. }
  7194. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7195. }
  7196. //*********** forward elimination **************
  7197. for (i = 1; i<n - 2; i++) {
  7198. temp = (m[i + 1][i] / m[i][i]);
  7199. for (j = 1; j <= n - 1; j++)
  7200. m[i + 1][j] -= temp*m[i][j];
  7201. }
  7202. //*********** backward substitution *********
  7203. for (i = n - 2; i>0; i--) {
  7204. sum = 0;
  7205. for (j = i; j <= n - 2; j++)
  7206. sum += m[i][j] * s[j];
  7207. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7208. }
  7209. for (i = 0; i<n - 1; i++)
  7210. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7211. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7212. b = s[i] / 2;
  7213. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7214. d = f[i];
  7215. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7216. }
  7217. return sum;
  7218. }
  7219. #ifdef PINDA_THERMISTOR
  7220. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7221. {
  7222. if (!temp_cal_active) return 0;
  7223. if (!calibration_status_pinda()) return 0;
  7224. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7225. }
  7226. #endif //PINDA_THERMISTOR
  7227. void long_pause() //long pause print
  7228. {
  7229. st_synchronize();
  7230. //save currently set parameters to global variables
  7231. saved_feedmultiply = feedmultiply;
  7232. HotendTempBckp = degTargetHotend(active_extruder);
  7233. fanSpeedBckp = fanSpeed;
  7234. start_pause_print = millis();
  7235. //save position
  7236. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7237. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7238. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7239. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7240. //retract
  7241. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7242. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7243. //lift z
  7244. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7245. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7246. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7247. //set nozzle target temperature to 0
  7248. setTargetHotend(0, 0);
  7249. setTargetHotend(0, 1);
  7250. setTargetHotend(0, 2);
  7251. //Move XY to side
  7252. current_position[X_AXIS] = X_PAUSE_POS;
  7253. current_position[Y_AXIS] = Y_PAUSE_POS;
  7254. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7255. // Turn off the print fan
  7256. fanSpeed = 0;
  7257. st_synchronize();
  7258. }
  7259. void serialecho_temperatures() {
  7260. float tt = degHotend(active_extruder);
  7261. SERIAL_PROTOCOLPGM("T:");
  7262. SERIAL_PROTOCOL(tt);
  7263. SERIAL_PROTOCOLPGM(" E:");
  7264. SERIAL_PROTOCOL((int)active_extruder);
  7265. SERIAL_PROTOCOLPGM(" B:");
  7266. SERIAL_PROTOCOL_F(degBed(), 1);
  7267. SERIAL_PROTOCOLLN("");
  7268. }
  7269. extern uint32_t sdpos_atomic;
  7270. #ifdef UVLO_SUPPORT
  7271. void uvlo_()
  7272. {
  7273. unsigned long time_start = millis();
  7274. bool sd_print = card.sdprinting;
  7275. // Conserve power as soon as possible.
  7276. disable_x();
  7277. disable_y();
  7278. #ifdef TMC2130
  7279. tmc2130_set_current_h(Z_AXIS, 20);
  7280. tmc2130_set_current_r(Z_AXIS, 20);
  7281. tmc2130_set_current_h(E_AXIS, 20);
  7282. tmc2130_set_current_r(E_AXIS, 20);
  7283. #endif //TMC2130
  7284. // Indicate that the interrupt has been triggered.
  7285. // SERIAL_ECHOLNPGM("UVLO");
  7286. // Read out the current Z motor microstep counter. This will be later used
  7287. // for reaching the zero full step before powering off.
  7288. uint16_t z_microsteps = 0;
  7289. #ifdef TMC2130
  7290. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7291. #endif //TMC2130
  7292. // Calculate the file position, from which to resume this print.
  7293. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7294. {
  7295. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7296. sd_position -= sdlen_planner;
  7297. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7298. sd_position -= sdlen_cmdqueue;
  7299. if (sd_position < 0) sd_position = 0;
  7300. }
  7301. // Backup the feedrate in mm/min.
  7302. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7303. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7304. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7305. // are in action.
  7306. planner_abort_hard();
  7307. // Store the current extruder position.
  7308. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7309. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7310. // Clean the input command queue.
  7311. cmdqueue_reset();
  7312. card.sdprinting = false;
  7313. // card.closefile();
  7314. // Enable stepper driver interrupt to move Z axis.
  7315. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7316. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7317. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7318. sei();
  7319. plan_buffer_line(
  7320. current_position[X_AXIS],
  7321. current_position[Y_AXIS],
  7322. current_position[Z_AXIS],
  7323. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7324. 95, active_extruder);
  7325. st_synchronize();
  7326. disable_e0();
  7327. plan_buffer_line(
  7328. current_position[X_AXIS],
  7329. current_position[Y_AXIS],
  7330. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7331. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7332. 40, active_extruder);
  7333. st_synchronize();
  7334. disable_e0();
  7335. plan_buffer_line(
  7336. current_position[X_AXIS],
  7337. current_position[Y_AXIS],
  7338. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7339. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7340. 40, active_extruder);
  7341. st_synchronize();
  7342. disable_e0();
  7343. disable_z();
  7344. // Move Z up to the next 0th full step.
  7345. // Write the file position.
  7346. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7347. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7348. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7349. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7350. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7351. // Scale the z value to 1u resolution.
  7352. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7353. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7354. }
  7355. // Read out the current Z motor microstep counter. This will be later used
  7356. // for reaching the zero full step before powering off.
  7357. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7358. // Store the current position.
  7359. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7360. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7361. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7362. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7363. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7364. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7365. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7366. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7367. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7368. #if EXTRUDERS > 1
  7369. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7370. #if EXTRUDERS > 2
  7371. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7372. #endif
  7373. #endif
  7374. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7375. // Finaly store the "power outage" flag.
  7376. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7377. st_synchronize();
  7378. SERIAL_ECHOPGM("stps");
  7379. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  7380. disable_z();
  7381. // Increment power failure counter
  7382. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7383. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7384. SERIAL_ECHOLNPGM("UVLO - end");
  7385. MYSERIAL.println(millis() - time_start);
  7386. #if 0
  7387. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7388. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7389. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7390. st_synchronize();
  7391. #endif
  7392. cli();
  7393. volatile unsigned int ppcount = 0;
  7394. SET_OUTPUT(BEEPER);
  7395. WRITE(BEEPER, HIGH);
  7396. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7397. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7398. }
  7399. WRITE(BEEPER, LOW);
  7400. while(1){
  7401. #if 1
  7402. WRITE(BEEPER, LOW);
  7403. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7404. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7405. }
  7406. #endif
  7407. };
  7408. }
  7409. #endif //UVLO_SUPPORT
  7410. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7411. void setup_fan_interrupt() {
  7412. //INT7
  7413. DDRE &= ~(1 << 7); //input pin
  7414. PORTE &= ~(1 << 7); //no internal pull-up
  7415. //start with sensing rising edge
  7416. EICRB &= ~(1 << 6);
  7417. EICRB |= (1 << 7);
  7418. //enable INT7 interrupt
  7419. EIMSK |= (1 << 7);
  7420. }
  7421. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7422. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7423. ISR(INT7_vect) {
  7424. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7425. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7426. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7427. t_fan_rising_edge = millis_nc();
  7428. }
  7429. else { //interrupt was triggered by falling edge
  7430. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7431. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7432. }
  7433. }
  7434. EICRB ^= (1 << 6); //change edge
  7435. }
  7436. #endif
  7437. #ifdef UVLO_SUPPORT
  7438. void setup_uvlo_interrupt() {
  7439. DDRE &= ~(1 << 4); //input pin
  7440. PORTE &= ~(1 << 4); //no internal pull-up
  7441. //sensing falling edge
  7442. EICRB |= (1 << 0);
  7443. EICRB &= ~(1 << 1);
  7444. //enable INT4 interrupt
  7445. EIMSK |= (1 << 4);
  7446. }
  7447. ISR(INT4_vect) {
  7448. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7449. SERIAL_ECHOLNPGM("INT4");
  7450. if (IS_SD_PRINTING) uvlo_();
  7451. }
  7452. void recover_print(uint8_t automatic) {
  7453. char cmd[30];
  7454. lcd_update_enable(true);
  7455. lcd_update(2);
  7456. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7457. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7458. // Lift the print head, so one may remove the excess priming material.
  7459. if (current_position[Z_AXIS] < 25)
  7460. enquecommand_P(PSTR("G1 Z25 F800"));
  7461. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7462. enquecommand_P(PSTR("G28 X Y"));
  7463. // Set the target bed and nozzle temperatures and wait.
  7464. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7465. enquecommand(cmd);
  7466. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7467. enquecommand(cmd);
  7468. enquecommand_P(PSTR("M83")); //E axis relative mode
  7469. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7470. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7471. if(automatic == 0){
  7472. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7473. }
  7474. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7475. // Mark the power panic status as inactive.
  7476. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7477. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7478. delay_keep_alive(1000);
  7479. }*/
  7480. SERIAL_ECHOPGM("After waiting for temp:");
  7481. SERIAL_ECHOPGM("Current position X_AXIS:");
  7482. MYSERIAL.println(current_position[X_AXIS]);
  7483. SERIAL_ECHOPGM("Current position Y_AXIS:");
  7484. MYSERIAL.println(current_position[Y_AXIS]);
  7485. // Restart the print.
  7486. restore_print_from_eeprom();
  7487. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  7488. MYSERIAL.print(current_position[Z_AXIS]);
  7489. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  7490. MYSERIAL.print(current_position[E_AXIS]);
  7491. }
  7492. void recover_machine_state_after_power_panic()
  7493. {
  7494. char cmd[30];
  7495. // 1) Recover the logical cordinates at the time of the power panic.
  7496. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7497. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7498. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7499. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7500. // The current position after power panic is moved to the next closest 0th full step.
  7501. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7502. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7503. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7504. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7505. sprintf_P(cmd, PSTR("G92 E"));
  7506. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7507. enquecommand(cmd);
  7508. }
  7509. memcpy(destination, current_position, sizeof(destination));
  7510. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7511. print_world_coordinates();
  7512. // 2) Initialize the logical to physical coordinate system transformation.
  7513. world2machine_initialize();
  7514. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7515. mbl.active = false;
  7516. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7517. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7518. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7519. // Scale the z value to 10u resolution.
  7520. int16_t v;
  7521. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7522. if (v != 0)
  7523. mbl.active = true;
  7524. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7525. }
  7526. if (mbl.active)
  7527. mbl.upsample_3x3();
  7528. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7529. // print_mesh_bed_leveling_table();
  7530. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7531. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7532. babystep_load();
  7533. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7534. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7535. // 6) Power up the motors, mark their positions as known.
  7536. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7537. axis_known_position[X_AXIS] = true; enable_x();
  7538. axis_known_position[Y_AXIS] = true; enable_y();
  7539. axis_known_position[Z_AXIS] = true; enable_z();
  7540. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7541. print_physical_coordinates();
  7542. // 7) Recover the target temperatures.
  7543. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7544. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7545. // 8) Recover extruder multipilers
  7546. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7547. #if EXTRUDERS > 1
  7548. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7549. #if EXTRUDERS > 2
  7550. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7551. #endif
  7552. #endif
  7553. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7554. }
  7555. void restore_print_from_eeprom() {
  7556. float x_rec, y_rec, z_pos;
  7557. int feedrate_rec;
  7558. uint8_t fan_speed_rec;
  7559. char cmd[30];
  7560. char* c;
  7561. char filename[13];
  7562. uint8_t depth = 0;
  7563. char dir_name[9];
  7564. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7565. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7566. SERIAL_ECHOPGM("Feedrate:");
  7567. MYSERIAL.println(feedrate_rec);
  7568. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7569. MYSERIAL.println(int(depth));
  7570. for (int i = 0; i < depth; i++) {
  7571. for (int j = 0; j < 8; j++) {
  7572. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7573. }
  7574. dir_name[8] = '\0';
  7575. MYSERIAL.println(dir_name);
  7576. card.chdir(dir_name);
  7577. }
  7578. for (int i = 0; i < 8; i++) {
  7579. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7580. }
  7581. filename[8] = '\0';
  7582. MYSERIAL.print(filename);
  7583. strcat_P(filename, PSTR(".gco"));
  7584. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7585. for (c = &cmd[4]; *c; c++)
  7586. *c = tolower(*c);
  7587. enquecommand(cmd);
  7588. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7589. SERIAL_ECHOPGM("Position read from eeprom:");
  7590. MYSERIAL.println(position);
  7591. // E axis relative mode.
  7592. enquecommand_P(PSTR("M83"));
  7593. // Move to the XY print position in logical coordinates, where the print has been killed.
  7594. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7595. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7596. strcat_P(cmd, PSTR(" F2000"));
  7597. enquecommand(cmd);
  7598. // Move the Z axis down to the print, in logical coordinates.
  7599. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7600. enquecommand(cmd);
  7601. // Unretract.
  7602. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7603. // Set the feedrate saved at the power panic.
  7604. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7605. enquecommand(cmd);
  7606. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7607. {
  7608. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7609. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7610. }
  7611. // Set the fan speed saved at the power panic.
  7612. strcpy_P(cmd, PSTR("M106 S"));
  7613. strcat(cmd, itostr3(int(fan_speed_rec)));
  7614. enquecommand(cmd);
  7615. // Set a position in the file.
  7616. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7617. enquecommand(cmd);
  7618. // Start SD print.
  7619. enquecommand_P(PSTR("M24"));
  7620. }
  7621. #endif //UVLO_SUPPORT
  7622. ////////////////////////////////////////////////////////////////////////////////
  7623. // save/restore printing
  7624. void stop_and_save_print_to_ram(float z_move, float e_move)
  7625. {
  7626. if (saved_printing) return;
  7627. unsigned char nplanner_blocks;
  7628. unsigned char nlines;
  7629. uint16_t sdlen_planner;
  7630. uint16_t sdlen_cmdqueue;
  7631. cli();
  7632. if (card.sdprinting) {
  7633. nplanner_blocks = number_of_blocks();
  7634. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7635. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7636. saved_sdpos -= sdlen_planner;
  7637. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7638. saved_sdpos -= sdlen_cmdqueue;
  7639. saved_printing_type = PRINTING_TYPE_SD;
  7640. }
  7641. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7642. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7643. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7644. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7645. saved_sdpos -= nlines;
  7646. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7647. saved_printing_type = PRINTING_TYPE_USB;
  7648. }
  7649. else {
  7650. //not sd printing nor usb printing
  7651. }
  7652. #if 0
  7653. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7654. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7655. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7656. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7657. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7658. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7659. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7660. {
  7661. card.setIndex(saved_sdpos);
  7662. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7663. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7664. MYSERIAL.print(char(card.get()));
  7665. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7666. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7667. MYSERIAL.print(char(card.get()));
  7668. SERIAL_ECHOLNPGM("End of command buffer");
  7669. }
  7670. {
  7671. // Print the content of the planner buffer, line by line:
  7672. card.setIndex(saved_sdpos);
  7673. int8_t iline = 0;
  7674. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7675. SERIAL_ECHOPGM("Planner line (from file): ");
  7676. MYSERIAL.print(int(iline), DEC);
  7677. SERIAL_ECHOPGM(", length: ");
  7678. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7679. SERIAL_ECHOPGM(", steps: (");
  7680. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7681. SERIAL_ECHOPGM(",");
  7682. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7683. SERIAL_ECHOPGM(",");
  7684. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7685. SERIAL_ECHOPGM(",");
  7686. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7687. SERIAL_ECHOPGM("), events: ");
  7688. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7689. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7690. MYSERIAL.print(char(card.get()));
  7691. }
  7692. }
  7693. {
  7694. // Print the content of the command buffer, line by line:
  7695. int8_t iline = 0;
  7696. union {
  7697. struct {
  7698. char lo;
  7699. char hi;
  7700. } lohi;
  7701. uint16_t value;
  7702. } sdlen_single;
  7703. int _bufindr = bufindr;
  7704. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7705. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7706. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7707. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7708. }
  7709. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7710. MYSERIAL.print(int(iline), DEC);
  7711. SERIAL_ECHOPGM(", type: ");
  7712. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7713. SERIAL_ECHOPGM(", len: ");
  7714. MYSERIAL.println(sdlen_single.value, DEC);
  7715. // Print the content of the buffer line.
  7716. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7717. SERIAL_ECHOPGM("Buffer line (from file): ");
  7718. MYSERIAL.print(int(iline), DEC);
  7719. MYSERIAL.println(int(iline), DEC);
  7720. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7721. MYSERIAL.print(char(card.get()));
  7722. if (-- _buflen == 0)
  7723. break;
  7724. // First skip the current command ID and iterate up to the end of the string.
  7725. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7726. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7727. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7728. // If the end of the buffer was empty,
  7729. if (_bufindr == sizeof(cmdbuffer)) {
  7730. // skip to the start and find the nonzero command.
  7731. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7732. }
  7733. }
  7734. }
  7735. #endif
  7736. #if 0
  7737. saved_feedrate2 = feedrate; //save feedrate
  7738. #else
  7739. // Try to deduce the feedrate from the first block of the planner.
  7740. // Speed is in mm/min.
  7741. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7742. #endif
  7743. planner_abort_hard(); //abort printing
  7744. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7745. saved_active_extruder = active_extruder; //save active_extruder
  7746. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7747. cmdqueue_reset(); //empty cmdqueue
  7748. card.sdprinting = false;
  7749. // card.closefile();
  7750. saved_printing = true;
  7751. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7752. st_reset_timer();
  7753. sei();
  7754. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7755. #if 1
  7756. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7757. char buf[48];
  7758. // First unretract (relative extrusion)
  7759. strcpy_P(buf, PSTR("G1 E"));
  7760. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7761. strcat_P(buf, PSTR(" F"));
  7762. dtostrf(retract_feedrate*60, 8, 3, buf + strlen(buf));
  7763. enquecommand(buf, false);
  7764. // Then lift Z axis
  7765. strcpy_P(buf, PSTR("G1 Z"));
  7766. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7767. strcat_P(buf, PSTR(" F"));
  7768. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7769. // At this point the command queue is empty.
  7770. enquecommand(buf, false);
  7771. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7772. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7773. repeatcommand_front();
  7774. #else
  7775. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7776. st_synchronize(); //wait moving
  7777. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7778. memcpy(destination, current_position, sizeof(destination));
  7779. #endif
  7780. }
  7781. }
  7782. void restore_print_from_ram_and_continue(float e_move)
  7783. {
  7784. if (!saved_printing) return;
  7785. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7786. // current_position[axis] = st_get_position_mm(axis);
  7787. active_extruder = saved_active_extruder; //restore active_extruder
  7788. feedrate = saved_feedrate2; //restore feedrate
  7789. float e = saved_pos[E_AXIS] - e_move;
  7790. plan_set_e_position(e);
  7791. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7792. st_synchronize();
  7793. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7794. memcpy(destination, current_position, sizeof(destination));
  7795. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7796. card.setIndex(saved_sdpos);
  7797. sdpos_atomic = saved_sdpos;
  7798. card.sdprinting = true;
  7799. }
  7800. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7801. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7802. FlushSerialRequestResend();
  7803. }
  7804. else {
  7805. //not sd printing nor usb printing
  7806. }
  7807. saved_printing = false;
  7808. }
  7809. void print_world_coordinates()
  7810. {
  7811. SERIAL_ECHOPGM("world coordinates: (");
  7812. MYSERIAL.print(current_position[X_AXIS], 3);
  7813. SERIAL_ECHOPGM(", ");
  7814. MYSERIAL.print(current_position[Y_AXIS], 3);
  7815. SERIAL_ECHOPGM(", ");
  7816. MYSERIAL.print(current_position[Z_AXIS], 3);
  7817. SERIAL_ECHOLNPGM(")");
  7818. }
  7819. void print_physical_coordinates()
  7820. {
  7821. SERIAL_ECHOPGM("physical coordinates: (");
  7822. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7823. SERIAL_ECHOPGM(", ");
  7824. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7825. SERIAL_ECHOPGM(", ");
  7826. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7827. SERIAL_ECHOLNPGM(")");
  7828. }
  7829. void print_mesh_bed_leveling_table()
  7830. {
  7831. SERIAL_ECHOPGM("mesh bed leveling: ");
  7832. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7833. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7834. MYSERIAL.print(mbl.z_values[y][x], 3);
  7835. SERIAL_ECHOPGM(" ");
  7836. }
  7837. SERIAL_ECHOLNPGM("");
  7838. }
  7839. uint16_t print_time_remaining() {
  7840. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7841. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7842. else print_t = print_time_remaining_silent;
  7843. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7844. return print_t;
  7845. }
  7846. uint8_t print_percent_done() {
  7847. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7848. uint8_t percent_done = 0;
  7849. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7850. percent_done = print_percent_done_normal;
  7851. }
  7852. else if (print_percent_done_silent <= 100) {
  7853. percent_done = print_percent_done_silent;
  7854. }
  7855. else {
  7856. percent_done = card.percentDone();
  7857. }
  7858. return percent_done;
  7859. }
  7860. static void print_time_remaining_init() {
  7861. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7862. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7863. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7864. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7865. }
  7866. #define FIL_LOAD_LENGTH 60