temperature.cpp 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "cmdqueue.h"
  25. #include "ultralcd.h"
  26. #include "menu.h"
  27. #include "conv2str.h"
  28. #include "sound.h"
  29. #include "temperature.h"
  30. #include "cardreader.h"
  31. #include "SdFatUtil.h"
  32. #include <avr/wdt.h>
  33. #include "adc.h"
  34. #include "ConfigurationStore.h"
  35. #include "messages.h"
  36. #include "Timer.h"
  37. #include "Configuration_prusa.h"
  38. #include "config.h"
  39. //===========================================================================
  40. //=============================public variables============================
  41. //===========================================================================
  42. int target_temperature[EXTRUDERS] = { 0 };
  43. int target_temperature_bed = 0;
  44. int current_temperature_raw[EXTRUDERS] = { 0 };
  45. float current_temperature[EXTRUDERS] = { 0.0 };
  46. #ifdef PINDA_THERMISTOR
  47. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  48. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  49. float current_temperature_pinda = 0.0;
  50. #endif //PINDA_THERMISTOR
  51. #ifdef AMBIENT_THERMISTOR
  52. int current_temperature_raw_ambient = 0 ;
  53. float current_temperature_ambient = 0.0;
  54. #endif //AMBIENT_THERMISTOR
  55. #ifdef VOLT_PWR_PIN
  56. int current_voltage_raw_pwr = 0;
  57. #endif
  58. #ifdef VOLT_BED_PIN
  59. int current_voltage_raw_bed = 0;
  60. #endif
  61. #ifdef IR_SENSOR_ANALOG
  62. uint16_t current_voltage_raw_IR = 0;
  63. #endif //IR_SENSOR_ANALOG
  64. int current_temperature_bed_raw = 0;
  65. float current_temperature_bed = 0.0;
  66. #ifdef PIDTEMP
  67. float _Kp, _Ki, _Kd;
  68. int pid_cycle, pid_number_of_cycles;
  69. bool pid_tuning_finished = false;
  70. #ifdef PID_ADD_EXTRUSION_RATE
  71. float Kc=DEFAULT_Kc;
  72. #endif
  73. #endif //PIDTEMP
  74. #ifdef FAN_SOFT_PWM
  75. unsigned char fanSpeedSoftPwm;
  76. #endif
  77. #ifdef FANCHECK
  78. volatile uint8_t fan_check_error = EFCE_OK;
  79. #endif
  80. unsigned char soft_pwm_bed;
  81. #ifdef BABYSTEPPING
  82. volatile int babystepsTodo[3]={0,0,0};
  83. #endif
  84. //===========================================================================
  85. //=============================private variables============================
  86. //===========================================================================
  87. static volatile bool temp_meas_ready = false;
  88. #ifdef PIDTEMP
  89. //static cannot be external:
  90. static float iState_sum[EXTRUDERS] = { 0 };
  91. static float dState_last[EXTRUDERS] = { 0 };
  92. static float pTerm[EXTRUDERS];
  93. static float iTerm[EXTRUDERS];
  94. static float dTerm[EXTRUDERS];
  95. //int output;
  96. static float pid_error[EXTRUDERS];
  97. static float iState_sum_min[EXTRUDERS];
  98. static float iState_sum_max[EXTRUDERS];
  99. // static float pid_input[EXTRUDERS];
  100. // static float pid_output[EXTRUDERS];
  101. static bool pid_reset[EXTRUDERS];
  102. #endif //PIDTEMP
  103. #ifdef PIDTEMPBED
  104. //static cannot be external:
  105. static float temp_iState_bed = { 0 };
  106. static float temp_dState_bed = { 0 };
  107. static float pTerm_bed;
  108. static float iTerm_bed;
  109. static float dTerm_bed;
  110. //int output;
  111. static float pid_error_bed;
  112. static float temp_iState_min_bed;
  113. static float temp_iState_max_bed;
  114. #else //PIDTEMPBED
  115. static unsigned long previous_millis_bed_heater;
  116. #endif //PIDTEMPBED
  117. static unsigned char soft_pwm[EXTRUDERS];
  118. #ifdef FAN_SOFT_PWM
  119. static unsigned char soft_pwm_fan;
  120. #endif
  121. uint8_t fanSpeedBckp = 255;
  122. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  123. unsigned long extruder_autofan_last_check = _millis();
  124. bool fan_measuring = false;
  125. uint8_t fanState = 0;
  126. #ifdef EXTRUDER_ALTFAN_DETECT
  127. struct
  128. {
  129. uint8_t isAltfan : 1;
  130. uint8_t altfanOverride : 1;
  131. } altfanStatus;
  132. #endif //EXTRUDER_ALTFAN_DETECT
  133. #endif
  134. #if EXTRUDERS > 3
  135. # error Unsupported number of extruders
  136. #elif EXTRUDERS > 2
  137. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  138. #elif EXTRUDERS > 1
  139. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  140. #else
  141. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  142. #endif
  143. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  144. // Init min and max temp with extreme values to prevent false errors during startup
  145. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  146. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  147. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  148. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  149. #ifdef BED_MINTEMP
  150. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  151. #endif
  152. #ifdef BED_MAXTEMP
  153. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  154. #endif
  155. #ifdef AMBIENT_MINTEMP
  156. static int ambient_minttemp_raw = AMBIENT_RAW_LO_TEMP;
  157. #endif
  158. #ifdef AMBIENT_MAXTEMP
  159. static int ambient_maxttemp_raw = AMBIENT_RAW_HI_TEMP;
  160. #endif
  161. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  162. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  163. static float analog2temp(int raw, uint8_t e);
  164. static float analog2tempBed(int raw);
  165. #ifdef AMBIENT_MAXTEMP
  166. static float analog2tempAmbient(int raw);
  167. #endif
  168. static void updateTemperaturesFromRawValues();
  169. enum TempRunawayStates : uint8_t
  170. {
  171. TempRunaway_INACTIVE = 0,
  172. TempRunaway_PREHEAT = 1,
  173. TempRunaway_ACTIVE = 2,
  174. };
  175. #ifndef SOFT_PWM_SCALE
  176. #define SOFT_PWM_SCALE 0
  177. #endif
  178. //===========================================================================
  179. //============================= functions ============================
  180. //===========================================================================
  181. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  182. static uint8_t temp_runaway_status[1 + EXTRUDERS];
  183. static float temp_runaway_target[1 + EXTRUDERS];
  184. static uint32_t temp_runaway_timer[1 + EXTRUDERS];
  185. static uint16_t temp_runaway_error_counter[1 + EXTRUDERS];
  186. static void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  187. static void temp_runaway_stop(bool isPreheat, bool isBed);
  188. #endif
  189. #ifdef EXTRUDER_ALTFAN_DETECT
  190. ISR(INT6_vect) {
  191. fan_edge_counter[0]++;
  192. }
  193. bool extruder_altfan_detect()
  194. {
  195. setExtruderAutoFanState(3);
  196. SET_INPUT(TACH_0);
  197. uint8_t overrideVal = eeprom_read_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE);
  198. if (overrideVal == EEPROM_EMPTY_VALUE)
  199. {
  200. overrideVal = (calibration_status() == CALIBRATION_STATUS_CALIBRATED) ? 1 : 0;
  201. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, overrideVal);
  202. }
  203. altfanStatus.altfanOverride = overrideVal;
  204. CRITICAL_SECTION_START;
  205. EICRB &= ~(1 << ISC61);
  206. EICRB |= (1 << ISC60);
  207. EIMSK |= (1 << INT6);
  208. fan_edge_counter[0] = 0;
  209. CRITICAL_SECTION_END;
  210. extruder_autofan_last_check = _millis();
  211. _delay(1000);
  212. EIMSK &= ~(1 << INT6);
  213. countFanSpeed();
  214. altfanStatus.isAltfan = fan_speed[0] > 100;
  215. setExtruderAutoFanState(1);
  216. return altfanStatus.isAltfan;
  217. }
  218. void altfanOverride_toggle()
  219. {
  220. altfanStatus.altfanOverride = !altfanStatus.altfanOverride;
  221. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, altfanStatus.altfanOverride);
  222. }
  223. bool altfanOverride_get()
  224. {
  225. return altfanStatus.altfanOverride;
  226. }
  227. #endif //EXTRUDER_ALTFAN_DETECT
  228. // return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on')
  229. bool checkAllHotends(void)
  230. {
  231. bool result=false;
  232. for(int i=0;i<EXTRUDERS;i++) result=(result||(target_temperature[i]!=0));
  233. return(result);
  234. }
  235. // WARNING: the following function has been marked noinline to avoid a GCC 4.9.2 LTO
  236. // codegen bug causing a stack overwrite issue in process_commands()
  237. void __attribute__((noinline)) PID_autotune(float temp, int extruder, int ncycles)
  238. {
  239. pid_number_of_cycles = ncycles;
  240. pid_tuning_finished = false;
  241. float input = 0.0;
  242. pid_cycle=0;
  243. bool heating = true;
  244. unsigned long temp_millis = _millis();
  245. unsigned long t1=temp_millis;
  246. unsigned long t2=temp_millis;
  247. long t_high = 0;
  248. long t_low = 0;
  249. long bias, d;
  250. float Ku, Tu;
  251. float max = 0, min = 10000;
  252. uint8_t safety_check_cycles = 0;
  253. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  254. float temp_ambient;
  255. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  256. unsigned long extruder_autofan_last_check = _millis();
  257. #endif
  258. if ((extruder >= EXTRUDERS)
  259. #if (TEMP_BED_PIN <= -1)
  260. ||(extruder < 0)
  261. #endif
  262. ){
  263. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  264. pid_tuning_finished = true;
  265. pid_cycle = 0;
  266. return;
  267. }
  268. SERIAL_ECHOLN("PID Autotune start");
  269. disable_heater(); // switch off all heaters.
  270. if (extruder<0)
  271. {
  272. soft_pwm_bed = (MAX_BED_POWER)/2;
  273. timer02_set_pwm0(soft_pwm_bed << 1);
  274. bias = d = (MAX_BED_POWER)/2;
  275. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  276. }
  277. else
  278. {
  279. soft_pwm[extruder] = (PID_MAX)/2;
  280. bias = d = (PID_MAX)/2;
  281. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  282. }
  283. for(;;) {
  284. #ifdef WATCHDOG
  285. wdt_reset();
  286. #endif //WATCHDOG
  287. if(temp_meas_ready == true) { // temp sample ready
  288. updateTemperaturesFromRawValues();
  289. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  290. max=max(max,input);
  291. min=min(min,input);
  292. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  293. if(_millis() - extruder_autofan_last_check > 2500) {
  294. checkExtruderAutoFans();
  295. extruder_autofan_last_check = _millis();
  296. }
  297. #endif
  298. if(heating == true && input > temp) {
  299. if(_millis() - t2 > 5000) {
  300. heating=false;
  301. if (extruder<0)
  302. {
  303. soft_pwm_bed = (bias - d) >> 1;
  304. timer02_set_pwm0(soft_pwm_bed << 1);
  305. }
  306. else
  307. soft_pwm[extruder] = (bias - d) >> 1;
  308. t1=_millis();
  309. t_high=t1 - t2;
  310. max=temp;
  311. }
  312. }
  313. if(heating == false && input < temp) {
  314. if(_millis() - t1 > 5000) {
  315. heating=true;
  316. t2=_millis();
  317. t_low=t2 - t1;
  318. if(pid_cycle > 0) {
  319. bias += (d*(t_high - t_low))/(t_low + t_high);
  320. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  321. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  322. else d = bias;
  323. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  324. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  325. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  326. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  327. if(pid_cycle > 2) {
  328. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  329. Tu = ((float)(t_low + t_high)/1000.0);
  330. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  331. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  332. _Kp = 0.6*Ku;
  333. _Ki = 2*_Kp/Tu;
  334. _Kd = _Kp*Tu/8;
  335. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  336. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  337. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  338. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  339. /*
  340. _Kp = 0.33*Ku;
  341. _Ki = _Kp/Tu;
  342. _Kd = _Kp*Tu/3;
  343. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  344. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  345. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  346. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  347. _Kp = 0.2*Ku;
  348. _Ki = 2*_Kp/Tu;
  349. _Kd = _Kp*Tu/3;
  350. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  351. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  352. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  353. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  354. */
  355. }
  356. }
  357. if (extruder<0)
  358. {
  359. soft_pwm_bed = (bias + d) >> 1;
  360. timer02_set_pwm0(soft_pwm_bed << 1);
  361. }
  362. else
  363. soft_pwm[extruder] = (bias + d) >> 1;
  364. pid_cycle++;
  365. min=temp;
  366. }
  367. }
  368. }
  369. if(input > (temp + 20)) {
  370. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  371. pid_tuning_finished = true;
  372. pid_cycle = 0;
  373. return;
  374. }
  375. if(_millis() - temp_millis > 2000) {
  376. int p;
  377. if (extruder<0){
  378. p=soft_pwm_bed;
  379. SERIAL_PROTOCOLPGM("B:");
  380. }else{
  381. p=soft_pwm[extruder];
  382. SERIAL_PROTOCOLPGM("T:");
  383. }
  384. SERIAL_PROTOCOL(input);
  385. SERIAL_PROTOCOLPGM(" @:");
  386. SERIAL_PROTOCOLLN(p);
  387. if (safety_check_cycles == 0) { //save ambient temp
  388. temp_ambient = input;
  389. //SERIAL_ECHOPGM("Ambient T: ");
  390. //MYSERIAL.println(temp_ambient);
  391. safety_check_cycles++;
  392. }
  393. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  394. safety_check_cycles++;
  395. }
  396. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  397. safety_check_cycles++;
  398. //SERIAL_ECHOPGM("Time from beginning: ");
  399. //MYSERIAL.print(safety_check_cycles_count * 2);
  400. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  401. //MYSERIAL.println(input - temp_ambient);
  402. if (fabs(input - temp_ambient) < 5.0) {
  403. temp_runaway_stop(false, (extruder<0));
  404. pid_tuning_finished = true;
  405. return;
  406. }
  407. }
  408. temp_millis = _millis();
  409. }
  410. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  411. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  412. pid_tuning_finished = true;
  413. pid_cycle = 0;
  414. return;
  415. }
  416. if(pid_cycle > ncycles) {
  417. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  418. pid_tuning_finished = true;
  419. pid_cycle = 0;
  420. return;
  421. }
  422. lcd_update(0);
  423. }
  424. }
  425. void updatePID()
  426. {
  427. #ifdef PIDTEMP
  428. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  429. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  430. }
  431. #endif
  432. #ifdef PIDTEMPBED
  433. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  434. #endif
  435. }
  436. int getHeaterPower(int heater) {
  437. if (heater<0)
  438. return soft_pwm_bed;
  439. return soft_pwm[heater];
  440. }
  441. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  442. #if defined(FAN_PIN) && FAN_PIN > -1
  443. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  444. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  445. #endif
  446. #endif
  447. void setExtruderAutoFanState(uint8_t state)
  448. {
  449. //If bit 1 is set (0x02), then the extruder fan speed won't be adjusted according to temperature. Useful for forcing
  450. //the fan to either On or Off during certain tests/errors.
  451. fanState = state;
  452. newFanSpeed = 0;
  453. if (fanState & 0x01)
  454. {
  455. #ifdef EXTRUDER_ALTFAN_DETECT
  456. if (altfanStatus.isAltfan && !altfanStatus.altfanOverride) newFanSpeed = EXTRUDER_ALTFAN_SPEED_SILENT;
  457. else newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  458. #else //EXTRUDER_ALTFAN_DETECT
  459. newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  460. #endif //EXTRUDER_ALTFAN_DETECT
  461. }
  462. timer4_set_fan0(newFanSpeed);
  463. }
  464. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  465. void countFanSpeed()
  466. {
  467. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  468. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  469. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  470. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  471. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  472. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  473. SERIAL_ECHOLNPGM(" ");*/
  474. fan_edge_counter[0] = 0;
  475. fan_edge_counter[1] = 0;
  476. }
  477. void checkFanSpeed()
  478. {
  479. uint8_t max_fan_errors[2];
  480. #ifdef FAN_SOFT_PWM
  481. max_fan_errors[1] = 3; // 15 seconds (Print fan)
  482. max_fan_errors[0] = 2; // 10 seconds (Extruder fan)
  483. #else //FAN_SOFT_PWM
  484. max_fan_errors[1] = 15; // 15 seconds (Print fan)
  485. max_fan_errors[0] = 5; // 5 seconds (Extruder fan)
  486. #endif //FAN_SOFT_PWM
  487. if(fans_check_enabled)
  488. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  489. static uint8_t fan_speed_errors[2] = { 0,0 };
  490. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  491. if ((fan_speed[0] < 20) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
  492. else fan_speed_errors[0] = 0;
  493. #endif
  494. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  495. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  496. else fan_speed_errors[1] = 0;
  497. #endif
  498. // drop the fan_check_error flag when both fans are ok
  499. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  500. // we may even send some info to the LCD from here
  501. fan_check_error = EFCE_FIXED;
  502. }
  503. if ((fan_check_error == EFCE_FIXED) && !PRINTER_ACTIVE){
  504. fan_check_error = EFCE_OK; //if the issue is fixed while the printer is doing nothing, reenable processing immediately.
  505. lcd_reset_alert_level(); //for another fan speed error
  506. }
  507. if (fans_check_enabled && (fan_check_error == EFCE_OK))
  508. {
  509. for (uint8_t fan = 0; fan < 2; fan++)
  510. {
  511. if (fan_speed_errors[fan] > max_fan_errors[fan])
  512. {
  513. fan_speed_errors[fan] = 0;
  514. fanSpeedError(fan);
  515. }
  516. }
  517. }
  518. }
  519. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  520. //! Extracted from fanSpeedError to save some space.
  521. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  522. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  523. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  524. SERIAL_ECHOLNRPGM(serialMsg);
  525. if (get_message_level() == 0) {
  526. Sound_MakeCustom(200,0,true);
  527. LCD_ALERTMESSAGERPGM(lcdMsg);
  528. }
  529. }
  530. void fanSpeedError(unsigned char _fan) {
  531. if (get_message_level() != 0 && isPrintPaused) return;
  532. //to ensure that target temp. is not set to zero in case that we are resuming print
  533. if (card.sdprinting || usb_timer.running()) {
  534. if (heating_status != HeatingStatus::NO_HEATING) {
  535. lcd_print_stop();
  536. }
  537. else {
  538. fan_check_error = EFCE_DETECTED; //plans error for next processed command
  539. }
  540. }
  541. else {
  542. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED); //Why pause octoprint? usb_timer.running() would be true in that case, so there is no need for this.
  543. setTargetHotend0(0);
  544. heating_status = HeatingStatus::NO_HEATING;
  545. fan_check_error = EFCE_REPORTED;
  546. }
  547. switch (_fan) {
  548. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  549. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), MSG_FANCHECK_EXTRUDER);
  550. break;
  551. case 1:
  552. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT);
  553. break;
  554. }
  555. }
  556. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  557. void checkExtruderAutoFans()
  558. {
  559. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  560. if (!(fanState & 0x02))
  561. {
  562. fanState &= ~1;
  563. fanState |= current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE;
  564. }
  565. setExtruderAutoFanState(fanState);
  566. #endif
  567. }
  568. #endif // any extruder auto fan pins set
  569. // ready for eventually parameters adjusting
  570. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  571. //void resetPID(uint8_t extruder)
  572. {
  573. }
  574. void manage_heater()
  575. {
  576. #ifdef WATCHDOG
  577. wdt_reset();
  578. #endif //WATCHDOG
  579. float pid_input;
  580. float pid_output;
  581. if(temp_meas_ready != true) //better readability
  582. return;
  583. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  584. // ADC values need to be converted before checking: converted values are later used in MINTEMP
  585. updateTemperaturesFromRawValues();
  586. check_max_temp();
  587. check_min_temp();
  588. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  589. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  590. #endif
  591. for(uint8_t e = 0; e < EXTRUDERS; e++)
  592. {
  593. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  594. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  595. #endif
  596. #ifdef PIDTEMP
  597. pid_input = current_temperature[e];
  598. #ifndef PID_OPENLOOP
  599. if(target_temperature[e] == 0) {
  600. pid_output = 0;
  601. pid_reset[e] = true;
  602. } else {
  603. pid_error[e] = target_temperature[e] - pid_input;
  604. if(pid_reset[e]) {
  605. iState_sum[e] = 0.0;
  606. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  607. pid_reset[e] = false;
  608. }
  609. #ifndef PonM
  610. pTerm[e] = cs.Kp * pid_error[e];
  611. iState_sum[e] += pid_error[e];
  612. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  613. iTerm[e] = cs.Ki * iState_sum[e];
  614. // PID_K1 defined in Configuration.h in the PID settings
  615. #define K2 (1.0-PID_K1)
  616. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  617. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  618. if (pid_output > PID_MAX) {
  619. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  620. pid_output=PID_MAX;
  621. } else if (pid_output < 0) {
  622. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  623. pid_output=0;
  624. }
  625. #else // PonM ("Proportional on Measurement" method)
  626. iState_sum[e] += cs.Ki * pid_error[e];
  627. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  628. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  629. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  630. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  631. pid_output = constrain(pid_output, 0, PID_MAX);
  632. #endif // PonM
  633. }
  634. dState_last[e] = pid_input;
  635. #else
  636. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  637. #endif //PID_OPENLOOP
  638. #ifdef PID_DEBUG
  639. SERIAL_ECHO_START;
  640. SERIAL_ECHO(" PID_DEBUG ");
  641. SERIAL_ECHO(e);
  642. SERIAL_ECHO(": Input ");
  643. SERIAL_ECHO(pid_input);
  644. SERIAL_ECHO(" Output ");
  645. SERIAL_ECHO(pid_output);
  646. SERIAL_ECHO(" pTerm ");
  647. SERIAL_ECHO(pTerm[e]);
  648. SERIAL_ECHO(" iTerm ");
  649. SERIAL_ECHO(iTerm[e]);
  650. SERIAL_ECHO(" dTerm ");
  651. SERIAL_ECHOLN(-dTerm[e]);
  652. #endif //PID_DEBUG
  653. #else /* PID off */
  654. pid_output = 0;
  655. if(current_temperature[e] < target_temperature[e]) {
  656. pid_output = PID_MAX;
  657. }
  658. #endif
  659. // Check if temperature is within the correct range
  660. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  661. {
  662. soft_pwm[e] = (int)pid_output >> 1;
  663. }
  664. else
  665. {
  666. soft_pwm[e] = 0;
  667. }
  668. } // End extruder for loop
  669. #define FAN_CHECK_PERIOD 5000 //5s
  670. #define FAN_CHECK_DURATION 100 //100ms
  671. #ifndef DEBUG_DISABLE_FANCHECK
  672. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  673. #ifdef FAN_SOFT_PWM
  674. #ifdef FANCHECK
  675. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  676. extruder_autofan_last_check = _millis();
  677. fanSpeedBckp = fanSpeedSoftPwm;
  678. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  679. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  680. fanSpeedSoftPwm = 255;
  681. }
  682. fan_measuring = true;
  683. }
  684. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  685. countFanSpeed();
  686. checkFanSpeed();
  687. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  688. fanSpeedSoftPwm = fanSpeedBckp;
  689. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  690. extruder_autofan_last_check = _millis();
  691. fan_measuring = false;
  692. }
  693. #endif //FANCHECK
  694. checkExtruderAutoFans();
  695. #else //FAN_SOFT_PWM
  696. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  697. {
  698. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  699. countFanSpeed();
  700. checkFanSpeed();
  701. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  702. checkExtruderAutoFans();
  703. extruder_autofan_last_check = _millis();
  704. }
  705. #endif //FAN_SOFT_PWM
  706. #endif
  707. #endif //DEBUG_DISABLE_FANCHECK
  708. #ifndef PIDTEMPBED
  709. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  710. return;
  711. previous_millis_bed_heater = _millis();
  712. #endif
  713. #if TEMP_SENSOR_BED != 0
  714. #ifdef PIDTEMPBED
  715. pid_input = current_temperature_bed;
  716. #ifndef PID_OPENLOOP
  717. pid_error_bed = target_temperature_bed - pid_input;
  718. pTerm_bed = cs.bedKp * pid_error_bed;
  719. temp_iState_bed += pid_error_bed;
  720. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  721. iTerm_bed = cs.bedKi * temp_iState_bed;
  722. //PID_K1 defined in Configuration.h in the PID settings
  723. #define K2 (1.0-PID_K1)
  724. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  725. temp_dState_bed = pid_input;
  726. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  727. if (pid_output > MAX_BED_POWER) {
  728. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  729. pid_output=MAX_BED_POWER;
  730. } else if (pid_output < 0){
  731. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  732. pid_output=0;
  733. }
  734. #else
  735. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  736. #endif //PID_OPENLOOP
  737. if(current_temperature_bed < BED_MAXTEMP)
  738. {
  739. soft_pwm_bed = (int)pid_output >> 1;
  740. timer02_set_pwm0(soft_pwm_bed << 1);
  741. }
  742. else {
  743. soft_pwm_bed = 0;
  744. timer02_set_pwm0(soft_pwm_bed << 1);
  745. }
  746. #elif !defined(BED_LIMIT_SWITCHING)
  747. // Check if temperature is within the correct range
  748. if(current_temperature_bed < BED_MAXTEMP)
  749. {
  750. if(current_temperature_bed >= target_temperature_bed)
  751. {
  752. soft_pwm_bed = 0;
  753. timer02_set_pwm0(soft_pwm_bed << 1);
  754. }
  755. else
  756. {
  757. soft_pwm_bed = MAX_BED_POWER>>1;
  758. timer02_set_pwm0(soft_pwm_bed << 1);
  759. }
  760. }
  761. else
  762. {
  763. soft_pwm_bed = 0;
  764. timer02_set_pwm0(soft_pwm_bed << 1);
  765. WRITE(HEATER_BED_PIN,LOW);
  766. }
  767. #else //#ifdef BED_LIMIT_SWITCHING
  768. // Check if temperature is within the correct band
  769. if(current_temperature_bed < BED_MAXTEMP)
  770. {
  771. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  772. {
  773. soft_pwm_bed = 0;
  774. timer02_set_pwm0(soft_pwm_bed << 1);
  775. }
  776. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  777. {
  778. soft_pwm_bed = MAX_BED_POWER>>1;
  779. timer02_set_pwm0(soft_pwm_bed << 1);
  780. }
  781. }
  782. else
  783. {
  784. soft_pwm_bed = 0;
  785. timer02_set_pwm0(soft_pwm_bed << 1);
  786. WRITE(HEATER_BED_PIN,LOW);
  787. }
  788. #endif
  789. if(target_temperature_bed==0)
  790. {
  791. soft_pwm_bed = 0;
  792. timer02_set_pwm0(soft_pwm_bed << 1);
  793. }
  794. #endif
  795. }
  796. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  797. // Derived from RepRap FiveD extruder::getTemperature()
  798. // For hot end temperature measurement.
  799. static float analog2temp(int raw, uint8_t e) {
  800. if(e >= EXTRUDERS)
  801. {
  802. SERIAL_ERROR_START;
  803. SERIAL_ERROR((int)e);
  804. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  805. kill(NULL, 6);
  806. return 0.0;
  807. }
  808. #ifdef HEATER_0_USES_MAX6675
  809. if (e == 0)
  810. {
  811. return 0.25 * raw;
  812. }
  813. #endif
  814. if(heater_ttbl_map[e] != NULL)
  815. {
  816. float celsius = 0;
  817. uint8_t i;
  818. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  819. for (i=1; i<heater_ttbllen_map[e]; i++)
  820. {
  821. if (PGM_RD_W((*tt)[i][0]) > raw)
  822. {
  823. celsius = PGM_RD_W((*tt)[i-1][1]) +
  824. (raw - PGM_RD_W((*tt)[i-1][0])) *
  825. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  826. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  827. break;
  828. }
  829. }
  830. // Overflow: Set to last value in the table
  831. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  832. return celsius;
  833. }
  834. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  835. }
  836. // Derived from RepRap FiveD extruder::getTemperature()
  837. // For bed temperature measurement.
  838. static float analog2tempBed(int raw) {
  839. #ifdef BED_USES_THERMISTOR
  840. float celsius = 0;
  841. byte i;
  842. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  843. {
  844. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  845. {
  846. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  847. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  848. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  849. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  850. break;
  851. }
  852. }
  853. // Overflow: Set to last value in the table
  854. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  855. // temperature offset adjustment
  856. #ifdef BED_OFFSET
  857. float _offset = BED_OFFSET;
  858. float _offset_center = BED_OFFSET_CENTER;
  859. float _offset_start = BED_OFFSET_START;
  860. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  861. float _second_koef = (_offset / 2) / (100 - _offset_center);
  862. if (celsius >= _offset_start && celsius <= _offset_center)
  863. {
  864. celsius = celsius + (_first_koef * (celsius - _offset_start));
  865. }
  866. else if (celsius > _offset_center && celsius <= 100)
  867. {
  868. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  869. }
  870. else if (celsius > 100)
  871. {
  872. celsius = celsius + _offset;
  873. }
  874. #endif
  875. return celsius;
  876. #elif defined BED_USES_AD595
  877. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  878. #else
  879. return 0;
  880. #endif
  881. }
  882. #ifdef AMBIENT_THERMISTOR
  883. static float analog2tempAmbient(int raw)
  884. {
  885. float celsius = 0;
  886. byte i;
  887. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  888. {
  889. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  890. {
  891. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  892. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  893. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  894. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  895. break;
  896. }
  897. }
  898. // Overflow: Set to last value in the table
  899. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  900. return celsius;
  901. }
  902. #endif //AMBIENT_THERMISTOR
  903. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  904. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  905. static void updateTemperaturesFromRawValues()
  906. {
  907. for(uint8_t e=0;e<EXTRUDERS;e++)
  908. {
  909. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  910. }
  911. #ifdef PINDA_THERMISTOR
  912. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  913. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  914. #endif
  915. #ifdef AMBIENT_THERMISTOR
  916. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  917. #endif
  918. #ifdef DEBUG_HEATER_BED_SIM
  919. current_temperature_bed = target_temperature_bed;
  920. #else //DEBUG_HEATER_BED_SIM
  921. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  922. #endif //DEBUG_HEATER_BED_SIM
  923. CRITICAL_SECTION_START;
  924. temp_meas_ready = false;
  925. CRITICAL_SECTION_END;
  926. }
  927. void tp_init()
  928. {
  929. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  930. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  931. MCUCR=(1<<JTD);
  932. MCUCR=(1<<JTD);
  933. #endif
  934. // Finish init of mult extruder arrays
  935. for(int e = 0; e < EXTRUDERS; e++) {
  936. // populate with the first value
  937. maxttemp[e] = maxttemp[0];
  938. #ifdef PIDTEMP
  939. iState_sum_min[e] = 0.0;
  940. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  941. #endif //PIDTEMP
  942. #ifdef PIDTEMPBED
  943. temp_iState_min_bed = 0.0;
  944. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  945. #endif //PIDTEMPBED
  946. }
  947. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  948. SET_OUTPUT(HEATER_0_PIN);
  949. #endif
  950. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  951. SET_OUTPUT(HEATER_1_PIN);
  952. #endif
  953. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  954. SET_OUTPUT(HEATER_2_PIN);
  955. #endif
  956. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  957. SET_OUTPUT(HEATER_BED_PIN);
  958. #endif
  959. #if defined(FAN_PIN) && (FAN_PIN > -1)
  960. SET_OUTPUT(FAN_PIN);
  961. #ifdef FAST_PWM_FAN
  962. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  963. #endif
  964. #ifdef FAN_SOFT_PWM
  965. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  966. #endif
  967. #endif
  968. #ifdef HEATER_0_USES_MAX6675
  969. #ifndef SDSUPPORT
  970. SET_OUTPUT(SCK_PIN);
  971. WRITE(SCK_PIN,0);
  972. SET_OUTPUT(MOSI_PIN);
  973. WRITE(MOSI_PIN,1);
  974. SET_INPUT(MISO_PIN);
  975. WRITE(MISO_PIN,1);
  976. #endif
  977. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  978. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  979. pinMode(SS_PIN, OUTPUT);
  980. digitalWrite(SS_PIN,0);
  981. pinMode(MAX6675_SS, OUTPUT);
  982. digitalWrite(MAX6675_SS,1);
  983. #endif
  984. adc_init();
  985. timer0_init(); //enables the heatbed timer.
  986. // timer2 already enabled earlier in the code
  987. // now enable the COMPB temperature interrupt
  988. OCR2B = 128;
  989. TIMSK2 |= (1<<OCIE2B);
  990. timer4_init(); //for tone and Extruder fan PWM
  991. // Wait for temperature measurement to settle
  992. _delay(250);
  993. #ifdef HEATER_0_MINTEMP
  994. minttemp[0] = HEATER_0_MINTEMP;
  995. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  996. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  997. minttemp_raw[0] += OVERSAMPLENR;
  998. #else
  999. minttemp_raw[0] -= OVERSAMPLENR;
  1000. #endif
  1001. }
  1002. #endif //MINTEMP
  1003. #ifdef HEATER_0_MAXTEMP
  1004. maxttemp[0] = HEATER_0_MAXTEMP;
  1005. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  1006. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1007. maxttemp_raw[0] -= OVERSAMPLENR;
  1008. #else
  1009. maxttemp_raw[0] += OVERSAMPLENR;
  1010. #endif
  1011. }
  1012. #endif //MAXTEMP
  1013. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1014. minttemp[1] = HEATER_1_MINTEMP;
  1015. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1016. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1017. minttemp_raw[1] += OVERSAMPLENR;
  1018. #else
  1019. minttemp_raw[1] -= OVERSAMPLENR;
  1020. #endif
  1021. }
  1022. #endif // MINTEMP 1
  1023. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1024. maxttemp[1] = HEATER_1_MAXTEMP;
  1025. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1026. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1027. maxttemp_raw[1] -= OVERSAMPLENR;
  1028. #else
  1029. maxttemp_raw[1] += OVERSAMPLENR;
  1030. #endif
  1031. }
  1032. #endif //MAXTEMP 1
  1033. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1034. minttemp[2] = HEATER_2_MINTEMP;
  1035. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1036. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1037. minttemp_raw[2] += OVERSAMPLENR;
  1038. #else
  1039. minttemp_raw[2] -= OVERSAMPLENR;
  1040. #endif
  1041. }
  1042. #endif //MINTEMP 2
  1043. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1044. maxttemp[2] = HEATER_2_MAXTEMP;
  1045. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1046. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1047. maxttemp_raw[2] -= OVERSAMPLENR;
  1048. #else
  1049. maxttemp_raw[2] += OVERSAMPLENR;
  1050. #endif
  1051. }
  1052. #endif //MAXTEMP 2
  1053. #ifdef BED_MINTEMP
  1054. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1055. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1056. bed_minttemp_raw += OVERSAMPLENR;
  1057. #else
  1058. bed_minttemp_raw -= OVERSAMPLENR;
  1059. #endif
  1060. }
  1061. #endif //BED_MINTEMP
  1062. #ifdef BED_MAXTEMP
  1063. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1064. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1065. bed_maxttemp_raw -= OVERSAMPLENR;
  1066. #else
  1067. bed_maxttemp_raw += OVERSAMPLENR;
  1068. #endif
  1069. }
  1070. #endif //BED_MAXTEMP
  1071. #ifdef AMBIENT_MINTEMP
  1072. while(analog2tempAmbient(ambient_minttemp_raw) < AMBIENT_MINTEMP) {
  1073. #if HEATER_AMBIENT_RAW_LO_TEMP < HEATER_AMBIENT_RAW_HI_TEMP
  1074. ambient_minttemp_raw += OVERSAMPLENR;
  1075. #else
  1076. ambient_minttemp_raw -= OVERSAMPLENR;
  1077. #endif
  1078. }
  1079. #endif //AMBIENT_MINTEMP
  1080. #ifdef AMBIENT_MAXTEMP
  1081. while(analog2tempAmbient(ambient_maxttemp_raw) > AMBIENT_MAXTEMP) {
  1082. #if HEATER_AMBIENT_RAW_LO_TEMP < HEATER_AMBIENT_RAW_HI_TEMP
  1083. ambient_maxttemp_raw -= OVERSAMPLENR;
  1084. #else
  1085. ambient_maxttemp_raw += OVERSAMPLENR;
  1086. #endif
  1087. }
  1088. #endif //AMBIENT_MAXTEMP
  1089. }
  1090. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1091. void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1092. {
  1093. float __delta;
  1094. float __hysteresis = 0;
  1095. uint16_t __timeout = 0;
  1096. bool temp_runaway_check_active = false;
  1097. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1098. static uint8_t __preheat_counter[2] = { 0,0};
  1099. static uint8_t __preheat_errors[2] = { 0,0};
  1100. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1101. {
  1102. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1103. if (_isbed)
  1104. {
  1105. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1106. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1107. }
  1108. #endif
  1109. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1110. if (!_isbed)
  1111. {
  1112. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1113. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1114. }
  1115. #endif
  1116. temp_runaway_timer[_heater_id] = _millis();
  1117. if (_output == 0)
  1118. {
  1119. temp_runaway_check_active = false;
  1120. temp_runaway_error_counter[_heater_id] = 0;
  1121. }
  1122. if (temp_runaway_target[_heater_id] != _target_temperature)
  1123. {
  1124. if (_target_temperature > 0)
  1125. {
  1126. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1127. temp_runaway_target[_heater_id] = _target_temperature;
  1128. __preheat_start[_heater_id] = _current_temperature;
  1129. __preheat_counter[_heater_id] = 0;
  1130. }
  1131. else
  1132. {
  1133. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1134. temp_runaway_target[_heater_id] = _target_temperature;
  1135. }
  1136. }
  1137. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1138. {
  1139. __preheat_counter[_heater_id]++;
  1140. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1141. {
  1142. /*SERIAL_ECHOPGM("Heater:");
  1143. MYSERIAL.print(_heater_id);
  1144. SERIAL_ECHOPGM(" T:");
  1145. MYSERIAL.print(_current_temperature);
  1146. SERIAL_ECHOPGM(" Tstart:");
  1147. MYSERIAL.print(__preheat_start[_heater_id]);
  1148. SERIAL_ECHOPGM(" delta:");
  1149. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1150. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1151. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1152. __delta=2.0;
  1153. if(_isbed)
  1154. {
  1155. __delta=3.0;
  1156. if(_current_temperature>90.0) __delta=2.0;
  1157. if(_current_temperature>105.0) __delta=0.6;
  1158. }
  1159. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1160. __preheat_errors[_heater_id]++;
  1161. /*SERIAL_ECHOPGM(" Preheat errors:");
  1162. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1163. }
  1164. else {
  1165. //SERIAL_ECHOLNPGM("");
  1166. __preheat_errors[_heater_id] = 0;
  1167. }
  1168. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1169. {
  1170. if (farm_mode) { prusa_statistics(0); }
  1171. temp_runaway_stop(true, _isbed);
  1172. if (farm_mode) { prusa_statistics(91); }
  1173. }
  1174. __preheat_start[_heater_id] = _current_temperature;
  1175. __preheat_counter[_heater_id] = 0;
  1176. }
  1177. }
  1178. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1179. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1180. {
  1181. /*SERIAL_ECHOPGM("Heater:");
  1182. MYSERIAL.print(_heater_id);
  1183. MYSERIAL.println(" ->tempRunaway");*/
  1184. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1185. temp_runaway_check_active = false;
  1186. temp_runaway_error_counter[_heater_id] = 0;
  1187. }
  1188. if (_output > 0)
  1189. {
  1190. temp_runaway_check_active = true;
  1191. }
  1192. if (temp_runaway_check_active)
  1193. {
  1194. // we are in range
  1195. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1196. {
  1197. temp_runaway_check_active = false;
  1198. temp_runaway_error_counter[_heater_id] = 0;
  1199. }
  1200. else
  1201. {
  1202. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1203. {
  1204. temp_runaway_error_counter[_heater_id]++;
  1205. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1206. {
  1207. if (farm_mode) { prusa_statistics(0); }
  1208. temp_runaway_stop(false, _isbed);
  1209. if (farm_mode) { prusa_statistics(90); }
  1210. }
  1211. }
  1212. }
  1213. }
  1214. }
  1215. }
  1216. void temp_runaway_stop(bool isPreheat, bool isBed)
  1217. {
  1218. disable_heater();
  1219. Sound_MakeCustom(200,0,true);
  1220. if (isPreheat)
  1221. {
  1222. lcd_setalertstatuspgm(isBed? PSTR("BED PREHEAT ERROR") : PSTR("PREHEAT ERROR"), LCD_STATUS_CRITICAL);
  1223. SERIAL_ERROR_START;
  1224. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HOTEND)");
  1225. #ifdef EXTRUDER_ALTFAN_DETECT
  1226. altfanStatus.altfanOverride = 1; //full speed
  1227. #endif //EXTRUDER_ALTFAN_DETECT
  1228. setExtruderAutoFanState(3);
  1229. SET_OUTPUT(FAN_PIN);
  1230. #ifdef FAN_SOFT_PWM
  1231. fanSpeedSoftPwm = 255;
  1232. #else //FAN_SOFT_PWM
  1233. analogWrite(FAN_PIN, 255);
  1234. #endif //FAN_SOFT_PWM
  1235. fanSpeed = 255;
  1236. }
  1237. else
  1238. {
  1239. lcd_setalertstatuspgm(isBed? PSTR("BED THERMAL RUNAWAY") : PSTR("THERMAL RUNAWAY"), LCD_STATUS_CRITICAL);
  1240. SERIAL_ERROR_START;
  1241. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1242. }
  1243. Stop();
  1244. }
  1245. #endif
  1246. void disable_heater()
  1247. {
  1248. setAllTargetHotends(0);
  1249. setTargetBed(0);
  1250. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1251. target_temperature[0]=0;
  1252. soft_pwm[0]=0;
  1253. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1254. WRITE(HEATER_0_PIN,LOW);
  1255. #endif
  1256. #endif
  1257. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1258. target_temperature[1]=0;
  1259. soft_pwm[1]=0;
  1260. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1261. WRITE(HEATER_1_PIN,LOW);
  1262. #endif
  1263. #endif
  1264. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1265. target_temperature[2]=0;
  1266. soft_pwm[2]=0;
  1267. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1268. WRITE(HEATER_2_PIN,LOW);
  1269. #endif
  1270. #endif
  1271. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1272. target_temperature_bed=0;
  1273. soft_pwm_bed=0;
  1274. timer02_set_pwm0(soft_pwm_bed << 1);
  1275. bedPWMDisabled = 0;
  1276. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1277. //WRITE(HEATER_BED_PIN,LOW);
  1278. #endif
  1279. #endif
  1280. }
  1281. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1282. //! than raw const char * of the messages themselves.
  1283. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1284. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1285. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1286. //! remember the last alert message sent to the LCD
  1287. //! to prevent flicker and improve speed
  1288. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1289. //! update the current temperature error message
  1290. //! @param type short error abbreviation (PROGMEM)
  1291. void temp_update_messagepgm(const char* PROGMEM type)
  1292. {
  1293. char msg[LCD_WIDTH];
  1294. strcpy_P(msg, PSTR("Err: "));
  1295. strcat_P(msg, type);
  1296. lcd_setalertstatus(msg, LCD_STATUS_CRITICAL);
  1297. }
  1298. //! signal a temperature error on both the lcd and serial
  1299. //! @param type short error abbreviation (PROGMEM)
  1300. //! @param e optional extruder index for hotend errors
  1301. void temp_error_messagepgm(const char* PROGMEM type, uint8_t e = EXTRUDERS)
  1302. {
  1303. temp_update_messagepgm(type);
  1304. SERIAL_ERROR_START;
  1305. if(e != EXTRUDERS) {
  1306. SERIAL_ERROR((int)e);
  1307. SERIAL_ERRORPGM(": ");
  1308. }
  1309. SERIAL_ERRORPGM("Heaters switched off. ");
  1310. SERIAL_ERRORRPGM(type);
  1311. SERIAL_ERRORLNPGM(" triggered!");
  1312. }
  1313. void max_temp_error(uint8_t e) {
  1314. disable_heater();
  1315. if(IsStopped() == false) {
  1316. temp_error_messagepgm(PSTR("MAXTEMP"), e);
  1317. }
  1318. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1319. Stop();
  1320. #endif
  1321. SET_OUTPUT(FAN_PIN);
  1322. SET_OUTPUT(BEEPER);
  1323. WRITE(FAN_PIN, 1);
  1324. WRITE(BEEPER, 1);
  1325. #ifdef EXTRUDER_ALTFAN_DETECT
  1326. altfanStatus.altfanOverride = 1; //full speed
  1327. #endif //EXTRUDER_ALTFAN_DETECT
  1328. setExtruderAutoFanState(3);
  1329. // fanSpeed will consumed by the check_axes_activity() routine.
  1330. fanSpeed=255;
  1331. if (farm_mode) { prusa_statistics(93); }
  1332. }
  1333. void min_temp_error(uint8_t e) {
  1334. #ifdef DEBUG_DISABLE_MINTEMP
  1335. return;
  1336. #endif
  1337. disable_heater();
  1338. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1339. static const char err[] PROGMEM = "MINTEMP";
  1340. if(IsStopped() == false) {
  1341. temp_error_messagepgm(err, e);
  1342. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1343. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1344. // we are already stopped due to some error, only update the status message without flickering
  1345. temp_update_messagepgm(err);
  1346. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1347. }
  1348. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1349. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1350. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1351. // lcd_print_stop();
  1352. // }
  1353. Stop();
  1354. #endif
  1355. if (farm_mode) { prusa_statistics(92); }
  1356. }
  1357. void bed_max_temp_error(void) {
  1358. disable_heater();
  1359. if(IsStopped() == false) {
  1360. temp_error_messagepgm(PSTR("MAXTEMP BED"));
  1361. }
  1362. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1363. Stop();
  1364. #endif
  1365. }
  1366. void bed_min_temp_error(void) {
  1367. #ifdef DEBUG_DISABLE_MINTEMP
  1368. return;
  1369. #endif
  1370. disable_heater();
  1371. static const char err[] PROGMEM = "MINTEMP BED";
  1372. if(IsStopped() == false) {
  1373. temp_error_messagepgm(err);
  1374. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1375. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1376. // we are already stopped due to some error, only update the status message without flickering
  1377. temp_update_messagepgm(err);
  1378. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1379. }
  1380. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1381. Stop();
  1382. #endif
  1383. }
  1384. #ifdef AMBIENT_THERMISTOR
  1385. void ambient_max_temp_error(void) {
  1386. disable_heater();
  1387. if(IsStopped() == false) {
  1388. temp_error_messagepgm(PSTR("MAXTEMP AMB"));
  1389. }
  1390. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1391. Stop();
  1392. #endif
  1393. }
  1394. void ambient_min_temp_error(void) {
  1395. #ifdef DEBUG_DISABLE_MINTEMP
  1396. return;
  1397. #endif
  1398. disable_heater();
  1399. if(IsStopped() == false) {
  1400. temp_error_messagepgm(PSTR("MINTEMP AMB"));
  1401. }
  1402. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1403. Stop();
  1404. #endif
  1405. }
  1406. #endif
  1407. #ifdef HEATER_0_USES_MAX6675
  1408. #define MAX6675_HEAT_INTERVAL 250
  1409. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1410. int max6675_temp = 2000;
  1411. int read_max6675()
  1412. {
  1413. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1414. return max6675_temp;
  1415. max6675_previous_millis = _millis();
  1416. max6675_temp = 0;
  1417. #ifdef PRR
  1418. PRR &= ~(1<<PRSPI);
  1419. #elif defined PRR0
  1420. PRR0 &= ~(1<<PRSPI);
  1421. #endif
  1422. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1423. // enable TT_MAX6675
  1424. WRITE(MAX6675_SS, 0);
  1425. // ensure 100ns delay - a bit extra is fine
  1426. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1427. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1428. // read MSB
  1429. SPDR = 0;
  1430. for (;(SPSR & (1<<SPIF)) == 0;);
  1431. max6675_temp = SPDR;
  1432. max6675_temp <<= 8;
  1433. // read LSB
  1434. SPDR = 0;
  1435. for (;(SPSR & (1<<SPIF)) == 0;);
  1436. max6675_temp |= SPDR;
  1437. // disable TT_MAX6675
  1438. WRITE(MAX6675_SS, 1);
  1439. if (max6675_temp & 4)
  1440. {
  1441. // thermocouple open
  1442. max6675_temp = 2000;
  1443. }
  1444. else
  1445. {
  1446. max6675_temp = max6675_temp >> 3;
  1447. }
  1448. return max6675_temp;
  1449. }
  1450. #endif
  1451. extern "C" {
  1452. void adc_ready(void) //callback from adc when sampling finished
  1453. {
  1454. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1455. #ifdef PINDA_THERMISTOR
  1456. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1457. #endif //PINDA_THERMISTOR
  1458. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1459. #ifdef VOLT_PWR_PIN
  1460. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1461. #endif
  1462. #ifdef AMBIENT_THERMISTOR
  1463. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
  1464. #endif //AMBIENT_THERMISTOR
  1465. #ifdef VOLT_BED_PIN
  1466. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1467. #endif
  1468. #ifdef IR_SENSOR_ANALOG
  1469. current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
  1470. #endif //IR_SENSOR_ANALOG
  1471. temp_meas_ready = true;
  1472. }
  1473. } // extern "C"
  1474. FORCE_INLINE static void temperature_isr()
  1475. {
  1476. if (!temp_meas_ready) adc_cycle();
  1477. lcd_buttons_update();
  1478. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1479. static uint8_t soft_pwm_0;
  1480. #ifdef SLOW_PWM_HEATERS
  1481. static unsigned char slow_pwm_count = 0;
  1482. static unsigned char state_heater_0 = 0;
  1483. static unsigned char state_timer_heater_0 = 0;
  1484. #endif
  1485. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1486. static unsigned char soft_pwm_1;
  1487. #ifdef SLOW_PWM_HEATERS
  1488. static unsigned char state_heater_1 = 0;
  1489. static unsigned char state_timer_heater_1 = 0;
  1490. #endif
  1491. #endif
  1492. #if EXTRUDERS > 2
  1493. static unsigned char soft_pwm_2;
  1494. #ifdef SLOW_PWM_HEATERS
  1495. static unsigned char state_heater_2 = 0;
  1496. static unsigned char state_timer_heater_2 = 0;
  1497. #endif
  1498. #endif
  1499. #if HEATER_BED_PIN > -1
  1500. // @@DR static unsigned char soft_pwm_b;
  1501. #ifdef SLOW_PWM_HEATERS
  1502. static unsigned char state_heater_b = 0;
  1503. static unsigned char state_timer_heater_b = 0;
  1504. #endif
  1505. #endif
  1506. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1507. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1508. #endif
  1509. #ifndef SLOW_PWM_HEATERS
  1510. /*
  1511. * standard PWM modulation
  1512. */
  1513. if (pwm_count == 0)
  1514. {
  1515. soft_pwm_0 = soft_pwm[0];
  1516. if(soft_pwm_0 > 0)
  1517. {
  1518. WRITE(HEATER_0_PIN,1);
  1519. #ifdef HEATERS_PARALLEL
  1520. WRITE(HEATER_1_PIN,1);
  1521. #endif
  1522. } else WRITE(HEATER_0_PIN,0);
  1523. #if EXTRUDERS > 1
  1524. soft_pwm_1 = soft_pwm[1];
  1525. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1526. #endif
  1527. #if EXTRUDERS > 2
  1528. soft_pwm_2 = soft_pwm[2];
  1529. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1530. #endif
  1531. }
  1532. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1533. #if 0 // @@DR vypnuto pro hw pwm bedu
  1534. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1535. // teoreticky by se tato cast uz vubec nemusela poustet
  1536. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1537. {
  1538. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1539. # ifndef SYSTEM_TIMER_2
  1540. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1541. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1542. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1543. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1544. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1545. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1546. # endif //SYSTEM_TIMER_2
  1547. }
  1548. #endif
  1549. #endif
  1550. #ifdef FAN_SOFT_PWM
  1551. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1552. {
  1553. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1554. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1555. }
  1556. #endif
  1557. if(soft_pwm_0 < pwm_count)
  1558. {
  1559. WRITE(HEATER_0_PIN,0);
  1560. #ifdef HEATERS_PARALLEL
  1561. WRITE(HEATER_1_PIN,0);
  1562. #endif
  1563. }
  1564. #if EXTRUDERS > 1
  1565. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1566. #endif
  1567. #if EXTRUDERS > 2
  1568. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1569. #endif
  1570. #if 0 // @@DR
  1571. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1572. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1573. //WRITE(HEATER_BED_PIN,0);
  1574. }
  1575. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1576. #endif
  1577. #endif
  1578. #ifdef FAN_SOFT_PWM
  1579. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1580. #endif
  1581. pwm_count += (1 << SOFT_PWM_SCALE);
  1582. pwm_count &= 0x7f;
  1583. #else //ifndef SLOW_PWM_HEATERS
  1584. /*
  1585. * SLOW PWM HEATERS
  1586. *
  1587. * for heaters drived by relay
  1588. */
  1589. #ifndef MIN_STATE_TIME
  1590. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1591. #endif
  1592. if (slow_pwm_count == 0) {
  1593. // EXTRUDER 0
  1594. soft_pwm_0 = soft_pwm[0];
  1595. if (soft_pwm_0 > 0) {
  1596. // turn ON heather only if the minimum time is up
  1597. if (state_timer_heater_0 == 0) {
  1598. // if change state set timer
  1599. if (state_heater_0 == 0) {
  1600. state_timer_heater_0 = MIN_STATE_TIME;
  1601. }
  1602. state_heater_0 = 1;
  1603. WRITE(HEATER_0_PIN, 1);
  1604. #ifdef HEATERS_PARALLEL
  1605. WRITE(HEATER_1_PIN, 1);
  1606. #endif
  1607. }
  1608. } else {
  1609. // turn OFF heather only if the minimum time is up
  1610. if (state_timer_heater_0 == 0) {
  1611. // if change state set timer
  1612. if (state_heater_0 == 1) {
  1613. state_timer_heater_0 = MIN_STATE_TIME;
  1614. }
  1615. state_heater_0 = 0;
  1616. WRITE(HEATER_0_PIN, 0);
  1617. #ifdef HEATERS_PARALLEL
  1618. WRITE(HEATER_1_PIN, 0);
  1619. #endif
  1620. }
  1621. }
  1622. #if EXTRUDERS > 1
  1623. // EXTRUDER 1
  1624. soft_pwm_1 = soft_pwm[1];
  1625. if (soft_pwm_1 > 0) {
  1626. // turn ON heather only if the minimum time is up
  1627. if (state_timer_heater_1 == 0) {
  1628. // if change state set timer
  1629. if (state_heater_1 == 0) {
  1630. state_timer_heater_1 = MIN_STATE_TIME;
  1631. }
  1632. state_heater_1 = 1;
  1633. WRITE(HEATER_1_PIN, 1);
  1634. }
  1635. } else {
  1636. // turn OFF heather only if the minimum time is up
  1637. if (state_timer_heater_1 == 0) {
  1638. // if change state set timer
  1639. if (state_heater_1 == 1) {
  1640. state_timer_heater_1 = MIN_STATE_TIME;
  1641. }
  1642. state_heater_1 = 0;
  1643. WRITE(HEATER_1_PIN, 0);
  1644. }
  1645. }
  1646. #endif
  1647. #if EXTRUDERS > 2
  1648. // EXTRUDER 2
  1649. soft_pwm_2 = soft_pwm[2];
  1650. if (soft_pwm_2 > 0) {
  1651. // turn ON heather only if the minimum time is up
  1652. if (state_timer_heater_2 == 0) {
  1653. // if change state set timer
  1654. if (state_heater_2 == 0) {
  1655. state_timer_heater_2 = MIN_STATE_TIME;
  1656. }
  1657. state_heater_2 = 1;
  1658. WRITE(HEATER_2_PIN, 1);
  1659. }
  1660. } else {
  1661. // turn OFF heather only if the minimum time is up
  1662. if (state_timer_heater_2 == 0) {
  1663. // if change state set timer
  1664. if (state_heater_2 == 1) {
  1665. state_timer_heater_2 = MIN_STATE_TIME;
  1666. }
  1667. state_heater_2 = 0;
  1668. WRITE(HEATER_2_PIN, 0);
  1669. }
  1670. }
  1671. #endif
  1672. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1673. // BED
  1674. soft_pwm_b = soft_pwm_bed;
  1675. if (soft_pwm_b > 0) {
  1676. // turn ON heather only if the minimum time is up
  1677. if (state_timer_heater_b == 0) {
  1678. // if change state set timer
  1679. if (state_heater_b == 0) {
  1680. state_timer_heater_b = MIN_STATE_TIME;
  1681. }
  1682. state_heater_b = 1;
  1683. //WRITE(HEATER_BED_PIN, 1);
  1684. }
  1685. } else {
  1686. // turn OFF heather only if the minimum time is up
  1687. if (state_timer_heater_b == 0) {
  1688. // if change state set timer
  1689. if (state_heater_b == 1) {
  1690. state_timer_heater_b = MIN_STATE_TIME;
  1691. }
  1692. state_heater_b = 0;
  1693. WRITE(HEATER_BED_PIN, 0);
  1694. }
  1695. }
  1696. #endif
  1697. } // if (slow_pwm_count == 0)
  1698. // EXTRUDER 0
  1699. if (soft_pwm_0 < slow_pwm_count) {
  1700. // turn OFF heather only if the minimum time is up
  1701. if (state_timer_heater_0 == 0) {
  1702. // if change state set timer
  1703. if (state_heater_0 == 1) {
  1704. state_timer_heater_0 = MIN_STATE_TIME;
  1705. }
  1706. state_heater_0 = 0;
  1707. WRITE(HEATER_0_PIN, 0);
  1708. #ifdef HEATERS_PARALLEL
  1709. WRITE(HEATER_1_PIN, 0);
  1710. #endif
  1711. }
  1712. }
  1713. #if EXTRUDERS > 1
  1714. // EXTRUDER 1
  1715. if (soft_pwm_1 < slow_pwm_count) {
  1716. // turn OFF heather only if the minimum time is up
  1717. if (state_timer_heater_1 == 0) {
  1718. // if change state set timer
  1719. if (state_heater_1 == 1) {
  1720. state_timer_heater_1 = MIN_STATE_TIME;
  1721. }
  1722. state_heater_1 = 0;
  1723. WRITE(HEATER_1_PIN, 0);
  1724. }
  1725. }
  1726. #endif
  1727. #if EXTRUDERS > 2
  1728. // EXTRUDER 2
  1729. if (soft_pwm_2 < slow_pwm_count) {
  1730. // turn OFF heather only if the minimum time is up
  1731. if (state_timer_heater_2 == 0) {
  1732. // if change state set timer
  1733. if (state_heater_2 == 1) {
  1734. state_timer_heater_2 = MIN_STATE_TIME;
  1735. }
  1736. state_heater_2 = 0;
  1737. WRITE(HEATER_2_PIN, 0);
  1738. }
  1739. }
  1740. #endif
  1741. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1742. // BED
  1743. if (soft_pwm_b < slow_pwm_count) {
  1744. // turn OFF heather only if the minimum time is up
  1745. if (state_timer_heater_b == 0) {
  1746. // if change state set timer
  1747. if (state_heater_b == 1) {
  1748. state_timer_heater_b = MIN_STATE_TIME;
  1749. }
  1750. state_heater_b = 0;
  1751. WRITE(HEATER_BED_PIN, 0);
  1752. }
  1753. }
  1754. #endif
  1755. #ifdef FAN_SOFT_PWM
  1756. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1757. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1758. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1759. }
  1760. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1761. #endif
  1762. pwm_count += (1 << SOFT_PWM_SCALE);
  1763. pwm_count &= 0x7f;
  1764. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1765. if ((pwm_count % 64) == 0) {
  1766. slow_pwm_count++;
  1767. slow_pwm_count &= 0x7f;
  1768. // Extruder 0
  1769. if (state_timer_heater_0 > 0) {
  1770. state_timer_heater_0--;
  1771. }
  1772. #if EXTRUDERS > 1
  1773. // Extruder 1
  1774. if (state_timer_heater_1 > 0)
  1775. state_timer_heater_1--;
  1776. #endif
  1777. #if EXTRUDERS > 2
  1778. // Extruder 2
  1779. if (state_timer_heater_2 > 0)
  1780. state_timer_heater_2--;
  1781. #endif
  1782. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1783. // Bed
  1784. if (state_timer_heater_b > 0)
  1785. state_timer_heater_b--;
  1786. #endif
  1787. } //if ((pwm_count % 64) == 0) {
  1788. #endif //ifndef SLOW_PWM_HEATERS
  1789. #ifdef BABYSTEPPING
  1790. for(uint8_t axis=0;axis<3;axis++)
  1791. {
  1792. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1793. if(curTodo>0)
  1794. {
  1795. CRITICAL_SECTION_START;
  1796. babystep(axis,/*fwd*/true);
  1797. babystepsTodo[axis]--; //less to do next time
  1798. CRITICAL_SECTION_END;
  1799. }
  1800. else
  1801. if(curTodo<0)
  1802. {
  1803. CRITICAL_SECTION_START;
  1804. babystep(axis,/*fwd*/false);
  1805. babystepsTodo[axis]++; //less to do next time
  1806. CRITICAL_SECTION_END;
  1807. }
  1808. }
  1809. #endif //BABYSTEPPING
  1810. // Check if a stack overflow happened
  1811. if (!SdFatUtil::test_stack_integrity()) stack_error();
  1812. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1813. check_fans();
  1814. #endif //(defined(TACH_0))
  1815. }
  1816. // Timer2 (originaly timer0) is shared with millies
  1817. #ifdef SYSTEM_TIMER_2
  1818. ISR(TIMER2_COMPB_vect)
  1819. #else //SYSTEM_TIMER_2
  1820. ISR(TIMER0_COMPB_vect)
  1821. #endif //SYSTEM_TIMER_2
  1822. {
  1823. static bool _lock = false;
  1824. if (!_lock)
  1825. {
  1826. _lock = true;
  1827. sei();
  1828. temperature_isr();
  1829. cli();
  1830. _lock = false;
  1831. }
  1832. }
  1833. void check_max_temp()
  1834. {
  1835. //heater
  1836. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1837. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1838. #else
  1839. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1840. #endif
  1841. max_temp_error(0);
  1842. }
  1843. //bed
  1844. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1845. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1846. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1847. #else
  1848. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1849. #endif
  1850. bed_max_temp_error();
  1851. }
  1852. #endif
  1853. //ambient
  1854. #if defined(AMBIENT_MAXTEMP) && (TEMP_SENSOR_AMBIENT != 0)
  1855. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1856. if (current_temperature_raw_ambient <= ambient_maxttemp_raw) {
  1857. #else
  1858. if (current_temperature_raw_ambient >= ambient_maxttemp_raw) {
  1859. #endif
  1860. ambient_max_temp_error();
  1861. }
  1862. #endif
  1863. }
  1864. //! number of repeating the same state with consecutive step() calls
  1865. //! used to slow down text switching
  1866. struct alert_automaton_mintemp {
  1867. const char *m2;
  1868. alert_automaton_mintemp(const char *m2):m2(m2){}
  1869. private:
  1870. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1871. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1872. States state = States::Init;
  1873. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1874. void substep(States next_state){
  1875. if( repeat == 0 ){
  1876. state = next_state; // advance to the next state
  1877. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1878. } else {
  1879. --repeat;
  1880. }
  1881. }
  1882. public:
  1883. //! brief state automaton step routine
  1884. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1885. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1886. void step(float current_temp, float mintemp){
  1887. static const char m1[] PROGMEM = "Please restart";
  1888. switch(state){
  1889. case States::Init: // initial state - check hysteresis
  1890. if( current_temp > mintemp ){
  1891. state = States::TempAboveMintemp;
  1892. }
  1893. // otherwise keep the Err MINTEMP alert message on the display,
  1894. // i.e. do not transfer to state 1
  1895. break;
  1896. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1897. lcd_setalertstatuspgm(m2);
  1898. substep(States::ShowMintemp);
  1899. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1900. break;
  1901. case States::ShowPleaseRestart: // displaying "Please restart"
  1902. lcd_updatestatuspgm(m1);
  1903. substep(States::ShowMintemp);
  1904. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1905. break;
  1906. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1907. lcd_updatestatuspgm(m2);
  1908. substep(States::ShowPleaseRestart);
  1909. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1910. break;
  1911. }
  1912. }
  1913. };
  1914. static const char m2hotend[] PROGMEM = "MINTEMP HOTEND fixed";
  1915. static const char m2bed[] PROGMEM = "MINTEMP BED fixed";
  1916. static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton_bed(m2bed);
  1917. void check_min_temp_heater0()
  1918. {
  1919. //heater
  1920. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1921. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1922. #else
  1923. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1924. #endif
  1925. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1926. min_temp_error(0);
  1927. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1928. // no recovery, just force the user to restart the printer
  1929. // which is a safer variant than just continuing printing
  1930. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1931. // we shall signalize, that MINTEMP has been fixed
  1932. // Code notice: normally the alert_automaton instance would have been placed here
  1933. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1934. // due to stupid compiler that takes 16 more bytes.
  1935. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1936. }
  1937. }
  1938. void check_min_temp_bed()
  1939. {
  1940. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1941. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1942. #else
  1943. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1944. #endif
  1945. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1946. bed_min_temp_error();
  1947. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1948. // no recovery, just force the user to restart the printer
  1949. // which is a safer variant than just continuing printing
  1950. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1951. }
  1952. }
  1953. #ifdef AMBIENT_MINTEMP
  1954. void check_min_temp_ambient()
  1955. {
  1956. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1957. if (current_temperature_raw_ambient >= ambient_minttemp_raw) {
  1958. #else
  1959. if (current_temperature_raw_ambient <= ambient_minttemp_raw) {
  1960. #endif
  1961. ambient_min_temp_error();
  1962. }
  1963. }
  1964. #endif
  1965. void check_min_temp()
  1966. {
  1967. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1968. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1969. #ifdef AMBIENT_THERMISTOR
  1970. #ifdef AMBIENT_MINTEMP
  1971. check_min_temp_ambient();
  1972. #endif
  1973. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1974. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type
  1975. #else
  1976. if(current_temperature_raw_ambient=<(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW))
  1977. #endif
  1978. { // ambient temperature is low
  1979. #endif //AMBIENT_THERMISTOR
  1980. // *** 'common' part of code for MK2.5 & MK3
  1981. // * nozzle checking
  1982. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1983. { // ~ nozzle heating is on
  1984. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1985. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1986. {
  1987. bCheckingOnHeater=true; // not necessary
  1988. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1989. }
  1990. }
  1991. else { // ~ nozzle heating is off
  1992. oTimer4minTempHeater.start();
  1993. bCheckingOnHeater=false;
  1994. }
  1995. // * bed checking
  1996. if(target_temperature_bed>BED_MINTEMP)
  1997. { // ~ bed heating is on
  1998. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1999. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  2000. {
  2001. bCheckingOnBed=true; // not necessary
  2002. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  2003. }
  2004. }
  2005. else { // ~ bed heating is off
  2006. oTimer4minTempBed.start();
  2007. bCheckingOnBed=false;
  2008. }
  2009. // *** end of 'common' part
  2010. #ifdef AMBIENT_THERMISTOR
  2011. }
  2012. else { // ambient temperature is standard
  2013. check_min_temp_heater0();
  2014. check_min_temp_bed();
  2015. }
  2016. #endif //AMBIENT_THERMISTOR
  2017. }
  2018. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  2019. void check_fans() {
  2020. #ifdef FAN_SOFT_PWM
  2021. if (READ(TACH_0) != fan_state[0]) {
  2022. if(fan_measuring) fan_edge_counter[0] ++;
  2023. fan_state[0] = !fan_state[0];
  2024. }
  2025. #else //FAN_SOFT_PWM
  2026. if (READ(TACH_0) != fan_state[0]) {
  2027. fan_edge_counter[0] ++;
  2028. fan_state[0] = !fan_state[0];
  2029. }
  2030. #endif
  2031. //if (READ(TACH_1) != fan_state[1]) {
  2032. // fan_edge_counter[1] ++;
  2033. // fan_state[1] = !fan_state[1];
  2034. //}
  2035. }
  2036. #endif //TACH_0
  2037. #ifdef PIDTEMP
  2038. // Apply the scale factors to the PID values
  2039. float scalePID_i(float i)
  2040. {
  2041. return i*PID_dT;
  2042. }
  2043. float unscalePID_i(float i)
  2044. {
  2045. return i/PID_dT;
  2046. }
  2047. float scalePID_d(float d)
  2048. {
  2049. return d/PID_dT;
  2050. }
  2051. float unscalePID_d(float d)
  2052. {
  2053. return d*PID_dT;
  2054. }
  2055. #endif //PIDTEMP
  2056. #ifdef PINDA_THERMISTOR
  2057. //! @brief PINDA thermistor detected
  2058. //!
  2059. //! @retval true firmware should do temperature compensation and allow calibration
  2060. //! @retval false PINDA thermistor is not detected, disable temperature compensation and calibration
  2061. //! @retval true/false when forced via LCD menu Settings->HW Setup->SuperPINDA
  2062. //!
  2063. bool has_temperature_compensation()
  2064. {
  2065. #ifdef SUPERPINDA_SUPPORT
  2066. #ifdef PINDA_TEMP_COMP
  2067. uint8_t pinda_temp_compensation = eeprom_read_byte((uint8_t*)EEPROM_PINDA_TEMP_COMPENSATION);
  2068. if (pinda_temp_compensation == EEPROM_EMPTY_VALUE) //Unkown PINDA temp compenstation, so check it.
  2069. {
  2070. #endif //PINDA_TEMP_COMP
  2071. return (current_temperature_pinda >= PINDA_MINTEMP) ? true : false;
  2072. #ifdef PINDA_TEMP_COMP
  2073. }
  2074. else if (pinda_temp_compensation == 0) return true; //Overwritten via LCD menu SuperPINDA [No]
  2075. else return false; //Overwritten via LCD menu SuperPINDA [YES]
  2076. #endif //PINDA_TEMP_COMP
  2077. #else
  2078. return true;
  2079. #endif
  2080. }
  2081. #endif //PINDA_THERMISTOR