Marlin_main.cpp 223 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. unsigned long TimeSent = millis();
  194. unsigned long TimeNow = millis();
  195. unsigned long PingTime = millis();
  196. union Data
  197. {
  198. byte b[2];
  199. int value;
  200. };
  201. float homing_feedrate[] = HOMING_FEEDRATE;
  202. // Currently only the extruder axis may be switched to a relative mode.
  203. // Other axes are always absolute or relative based on the common relative_mode flag.
  204. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  205. int feedmultiply=100; //100->1 200->2
  206. int saved_feedmultiply;
  207. int extrudemultiply=100; //100->1 200->2
  208. int extruder_multiply[EXTRUDERS] = {100
  209. #if EXTRUDERS > 1
  210. , 100
  211. #if EXTRUDERS > 2
  212. , 100
  213. #endif
  214. #endif
  215. };
  216. int bowden_length[4];
  217. bool is_usb_printing = false;
  218. bool homing_flag = false;
  219. bool temp_cal_active = false;
  220. unsigned long kicktime = millis()+100000;
  221. unsigned int usb_printing_counter;
  222. int lcd_change_fil_state = 0;
  223. int feedmultiplyBckp = 100;
  224. float HotendTempBckp = 0;
  225. int fanSpeedBckp = 0;
  226. float pause_lastpos[4];
  227. unsigned long pause_time = 0;
  228. unsigned long start_pause_print = millis();
  229. unsigned long load_filament_time;
  230. bool mesh_bed_leveling_flag = false;
  231. bool mesh_bed_run_from_menu = false;
  232. unsigned char lang_selected = 0;
  233. int8_t FarmMode = 0;
  234. bool prusa_sd_card_upload = false;
  235. unsigned int status_number = 0;
  236. unsigned long total_filament_used;
  237. unsigned int heating_status;
  238. unsigned int heating_status_counter;
  239. bool custom_message;
  240. bool loading_flag = false;
  241. unsigned int custom_message_type;
  242. unsigned int custom_message_state;
  243. char snmm_filaments_used = 0;
  244. float distance_from_min[3];
  245. float angleDiff;
  246. bool sortAlpha = false;
  247. bool volumetric_enabled = false;
  248. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  249. #if EXTRUDERS > 1
  250. , DEFAULT_NOMINAL_FILAMENT_DIA
  251. #if EXTRUDERS > 2
  252. , DEFAULT_NOMINAL_FILAMENT_DIA
  253. #endif
  254. #endif
  255. };
  256. float volumetric_multiplier[EXTRUDERS] = {1.0
  257. #if EXTRUDERS > 1
  258. , 1.0
  259. #if EXTRUDERS > 2
  260. , 1.0
  261. #endif
  262. #endif
  263. };
  264. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  265. float add_homing[3]={0,0,0};
  266. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  267. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  268. bool axis_known_position[3] = {false, false, false};
  269. float zprobe_zoffset;
  270. // Extruder offset
  271. #if EXTRUDERS > 1
  272. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  273. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  274. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  275. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  276. #endif
  277. };
  278. #endif
  279. uint8_t active_extruder = 0;
  280. int fanSpeed=0;
  281. #ifdef FWRETRACT
  282. bool autoretract_enabled=false;
  283. bool retracted[EXTRUDERS]={false
  284. #if EXTRUDERS > 1
  285. , false
  286. #if EXTRUDERS > 2
  287. , false
  288. #endif
  289. #endif
  290. };
  291. bool retracted_swap[EXTRUDERS]={false
  292. #if EXTRUDERS > 1
  293. , false
  294. #if EXTRUDERS > 2
  295. , false
  296. #endif
  297. #endif
  298. };
  299. float retract_length = RETRACT_LENGTH;
  300. float retract_length_swap = RETRACT_LENGTH_SWAP;
  301. float retract_feedrate = RETRACT_FEEDRATE;
  302. float retract_zlift = RETRACT_ZLIFT;
  303. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  304. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  305. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  306. #endif
  307. #ifdef ULTIPANEL
  308. #ifdef PS_DEFAULT_OFF
  309. bool powersupply = false;
  310. #else
  311. bool powersupply = true;
  312. #endif
  313. #endif
  314. bool cancel_heatup = false ;
  315. #ifdef FILAMENT_SENSOR
  316. //Variables for Filament Sensor input
  317. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  318. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  319. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  320. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  321. int delay_index1=0; //index into ring buffer
  322. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  323. float delay_dist=0; //delay distance counter
  324. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  325. #endif
  326. const char errormagic[] PROGMEM = "Error:";
  327. const char echomagic[] PROGMEM = "echo:";
  328. //===========================================================================
  329. //=============================Private Variables=============================
  330. //===========================================================================
  331. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  332. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  333. static float delta[3] = {0.0, 0.0, 0.0};
  334. // For tracing an arc
  335. static float offset[3] = {0.0, 0.0, 0.0};
  336. static bool home_all_axis = true;
  337. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  338. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  339. // Determines Absolute or Relative Coordinates.
  340. // Also there is bool axis_relative_modes[] per axis flag.
  341. static bool relative_mode = false;
  342. // String circular buffer. Commands may be pushed to the buffer from both sides:
  343. // Chained commands will be pushed to the front, interactive (from LCD menu)
  344. // and printing commands (from serial line or from SD card) are pushed to the tail.
  345. // First character of each entry indicates the type of the entry:
  346. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  347. // Command in cmdbuffer was sent over USB.
  348. #define CMDBUFFER_CURRENT_TYPE_USB 1
  349. // Command in cmdbuffer was read from SDCARD.
  350. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  351. // Command in cmdbuffer was generated by the UI.
  352. #define CMDBUFFER_CURRENT_TYPE_UI 3
  353. // Command in cmdbuffer was generated by another G-code.
  354. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  355. // How much space to reserve for the chained commands
  356. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  357. // which are pushed to the front of the queue?
  358. // Maximum 5 commands of max length 20 + null terminator.
  359. #define CMDBUFFER_RESERVE_FRONT (5*21)
  360. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  361. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  362. // Head of the circular buffer, where to read.
  363. static int bufindr = 0;
  364. // Tail of the buffer, where to write.
  365. static int bufindw = 0;
  366. // Number of lines in cmdbuffer.
  367. static int buflen = 0;
  368. // Flag for processing the current command inside the main Arduino loop().
  369. // If a new command was pushed to the front of a command buffer while
  370. // processing another command, this replaces the command on the top.
  371. // Therefore don't remove the command from the queue in the loop() function.
  372. static bool cmdbuffer_front_already_processed = false;
  373. // Type of a command, which is to be executed right now.
  374. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  375. // String of a command, which is to be executed right now.
  376. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  377. // Enable debugging of the command buffer.
  378. // Debugging information will be sent to serial line.
  379. // #define CMDBUFFER_DEBUG
  380. static int serial_count = 0; //index of character read from serial line
  381. static boolean comment_mode = false;
  382. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  383. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  384. //static float tt = 0;
  385. //static float bt = 0;
  386. //Inactivity shutdown variables
  387. static unsigned long previous_millis_cmd = 0;
  388. unsigned long max_inactive_time = 0;
  389. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  390. unsigned long starttime=0;
  391. unsigned long stoptime=0;
  392. unsigned long _usb_timer = 0;
  393. static uint8_t tmp_extruder;
  394. bool Stopped=false;
  395. #if NUM_SERVOS > 0
  396. Servo servos[NUM_SERVOS];
  397. #endif
  398. bool CooldownNoWait = true;
  399. bool target_direction;
  400. //Insert variables if CHDK is defined
  401. #ifdef CHDK
  402. unsigned long chdkHigh = 0;
  403. boolean chdkActive = false;
  404. #endif
  405. //===========================================================================
  406. //=============================Routines======================================
  407. //===========================================================================
  408. void get_arc_coordinates();
  409. bool setTargetedHotend(int code);
  410. void serial_echopair_P(const char *s_P, float v)
  411. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  412. void serial_echopair_P(const char *s_P, double v)
  413. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  414. void serial_echopair_P(const char *s_P, unsigned long v)
  415. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  416. #ifdef SDSUPPORT
  417. #include "SdFatUtil.h"
  418. int freeMemory() { return SdFatUtil::FreeRam(); }
  419. #else
  420. extern "C" {
  421. extern unsigned int __bss_end;
  422. extern unsigned int __heap_start;
  423. extern void *__brkval;
  424. int freeMemory() {
  425. int free_memory;
  426. if ((int)__brkval == 0)
  427. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  428. else
  429. free_memory = ((int)&free_memory) - ((int)__brkval);
  430. return free_memory;
  431. }
  432. }
  433. #endif //!SDSUPPORT
  434. // Pop the currently processed command from the queue.
  435. // It is expected, that there is at least one command in the queue.
  436. bool cmdqueue_pop_front()
  437. {
  438. if (buflen > 0) {
  439. #ifdef CMDBUFFER_DEBUG
  440. SERIAL_ECHOPGM("Dequeing ");
  441. SERIAL_ECHO(cmdbuffer+bufindr+1);
  442. SERIAL_ECHOLNPGM("");
  443. SERIAL_ECHOPGM("Old indices: buflen ");
  444. SERIAL_ECHO(buflen);
  445. SERIAL_ECHOPGM(", bufindr ");
  446. SERIAL_ECHO(bufindr);
  447. SERIAL_ECHOPGM(", bufindw ");
  448. SERIAL_ECHO(bufindw);
  449. SERIAL_ECHOPGM(", serial_count ");
  450. SERIAL_ECHO(serial_count);
  451. SERIAL_ECHOPGM(", bufsize ");
  452. SERIAL_ECHO(sizeof(cmdbuffer));
  453. SERIAL_ECHOLNPGM("");
  454. #endif /* CMDBUFFER_DEBUG */
  455. if (-- buflen == 0) {
  456. // Empty buffer.
  457. if (serial_count == 0)
  458. // No serial communication is pending. Reset both pointers to zero.
  459. bufindw = 0;
  460. bufindr = bufindw;
  461. } else {
  462. // There is at least one ready line in the buffer.
  463. // First skip the current command ID and iterate up to the end of the string.
  464. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  465. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  466. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  467. // If the end of the buffer was empty,
  468. if (bufindr == sizeof(cmdbuffer)) {
  469. // skip to the start and find the nonzero command.
  470. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  471. }
  472. #ifdef CMDBUFFER_DEBUG
  473. SERIAL_ECHOPGM("New indices: buflen ");
  474. SERIAL_ECHO(buflen);
  475. SERIAL_ECHOPGM(", bufindr ");
  476. SERIAL_ECHO(bufindr);
  477. SERIAL_ECHOPGM(", bufindw ");
  478. SERIAL_ECHO(bufindw);
  479. SERIAL_ECHOPGM(", serial_count ");
  480. SERIAL_ECHO(serial_count);
  481. SERIAL_ECHOPGM(" new command on the top: ");
  482. SERIAL_ECHO(cmdbuffer+bufindr+1);
  483. SERIAL_ECHOLNPGM("");
  484. #endif /* CMDBUFFER_DEBUG */
  485. }
  486. return true;
  487. }
  488. return false;
  489. }
  490. void cmdqueue_reset()
  491. {
  492. while (cmdqueue_pop_front()) ;
  493. }
  494. // How long a string could be pushed to the front of the command queue?
  495. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  496. // len_asked does not contain the zero terminator size.
  497. bool cmdqueue_could_enqueue_front(int len_asked)
  498. {
  499. // MAX_CMD_SIZE has to accommodate the zero terminator.
  500. if (len_asked >= MAX_CMD_SIZE)
  501. return false;
  502. // Remove the currently processed command from the queue.
  503. if (! cmdbuffer_front_already_processed) {
  504. cmdqueue_pop_front();
  505. cmdbuffer_front_already_processed = true;
  506. }
  507. if (bufindr == bufindw && buflen > 0)
  508. // Full buffer.
  509. return false;
  510. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  511. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  512. if (bufindw < bufindr) {
  513. int bufindr_new = bufindr - len_asked - 2;
  514. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  515. if (endw <= bufindr_new) {
  516. bufindr = bufindr_new;
  517. return true;
  518. }
  519. } else {
  520. // Otherwise the free space is split between the start and end.
  521. if (len_asked + 2 <= bufindr) {
  522. // Could fit at the start.
  523. bufindr -= len_asked + 2;
  524. return true;
  525. }
  526. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  527. if (endw <= bufindr_new) {
  528. memset(cmdbuffer, 0, bufindr);
  529. bufindr = bufindr_new;
  530. return true;
  531. }
  532. }
  533. return false;
  534. }
  535. // Could one enqueue a command of lenthg len_asked into the buffer,
  536. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  537. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  538. // len_asked does not contain the zero terminator size.
  539. bool cmdqueue_could_enqueue_back(int len_asked)
  540. {
  541. // MAX_CMD_SIZE has to accommodate the zero terminator.
  542. if (len_asked >= MAX_CMD_SIZE)
  543. return false;
  544. if (bufindr == bufindw && buflen > 0)
  545. // Full buffer.
  546. return false;
  547. if (serial_count > 0) {
  548. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  549. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  550. // serial data.
  551. // How much memory to reserve for the commands pushed to the front?
  552. // End of the queue, when pushing to the end.
  553. int endw = bufindw + len_asked + 2;
  554. if (bufindw < bufindr)
  555. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  556. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  557. // Otherwise the free space is split between the start and end.
  558. if (// Could one fit to the end, including the reserve?
  559. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  560. // Could one fit to the end, and the reserve to the start?
  561. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  562. return true;
  563. // Could one fit both to the start?
  564. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  565. // Mark the rest of the buffer as used.
  566. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  567. // and point to the start.
  568. bufindw = 0;
  569. return true;
  570. }
  571. } else {
  572. // How much memory to reserve for the commands pushed to the front?
  573. // End of the queue, when pushing to the end.
  574. int endw = bufindw + len_asked + 2;
  575. if (bufindw < bufindr)
  576. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  577. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  578. // Otherwise the free space is split between the start and end.
  579. if (// Could one fit to the end, including the reserve?
  580. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  581. // Could one fit to the end, and the reserve to the start?
  582. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  583. return true;
  584. // Could one fit both to the start?
  585. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  586. // Mark the rest of the buffer as used.
  587. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  588. // and point to the start.
  589. bufindw = 0;
  590. return true;
  591. }
  592. }
  593. return false;
  594. }
  595. #ifdef CMDBUFFER_DEBUG
  596. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  597. {
  598. SERIAL_ECHOPGM("Entry nr: ");
  599. SERIAL_ECHO(nr);
  600. SERIAL_ECHOPGM(", type: ");
  601. SERIAL_ECHO(int(*p));
  602. SERIAL_ECHOPGM(", cmd: ");
  603. SERIAL_ECHO(p+1);
  604. SERIAL_ECHOLNPGM("");
  605. }
  606. static void cmdqueue_dump_to_serial()
  607. {
  608. if (buflen == 0) {
  609. SERIAL_ECHOLNPGM("The command buffer is empty.");
  610. } else {
  611. SERIAL_ECHOPGM("Content of the buffer: entries ");
  612. SERIAL_ECHO(buflen);
  613. SERIAL_ECHOPGM(", indr ");
  614. SERIAL_ECHO(bufindr);
  615. SERIAL_ECHOPGM(", indw ");
  616. SERIAL_ECHO(bufindw);
  617. SERIAL_ECHOLNPGM("");
  618. int nr = 0;
  619. if (bufindr < bufindw) {
  620. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  621. cmdqueue_dump_to_serial_single_line(nr, p);
  622. // Skip the command.
  623. for (++p; *p != 0; ++ p);
  624. // Skip the gaps.
  625. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  626. }
  627. } else {
  628. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  629. cmdqueue_dump_to_serial_single_line(nr, p);
  630. // Skip the command.
  631. for (++p; *p != 0; ++ p);
  632. // Skip the gaps.
  633. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  634. }
  635. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  636. cmdqueue_dump_to_serial_single_line(nr, p);
  637. // Skip the command.
  638. for (++p; *p != 0; ++ p);
  639. // Skip the gaps.
  640. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  641. }
  642. }
  643. SERIAL_ECHOLNPGM("End of the buffer.");
  644. }
  645. }
  646. #endif /* CMDBUFFER_DEBUG */
  647. //adds an command to the main command buffer
  648. //thats really done in a non-safe way.
  649. //needs overworking someday
  650. // Currently the maximum length of a command piped through this function is around 20 characters
  651. void enquecommand(const char *cmd, bool from_progmem)
  652. {
  653. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  654. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  655. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  656. if (cmdqueue_could_enqueue_back(len)) {
  657. // This is dangerous if a mixing of serial and this happens
  658. // This may easily be tested: If serial_count > 0, we have a problem.
  659. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  660. if (from_progmem)
  661. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  662. else
  663. strcpy(cmdbuffer + bufindw + 1, cmd);
  664. SERIAL_ECHO_START;
  665. SERIAL_ECHORPGM(MSG_Enqueing);
  666. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  667. SERIAL_ECHOLNPGM("\"");
  668. bufindw += len + 2;
  669. if (bufindw == sizeof(cmdbuffer))
  670. bufindw = 0;
  671. ++ buflen;
  672. #ifdef CMDBUFFER_DEBUG
  673. cmdqueue_dump_to_serial();
  674. #endif /* CMDBUFFER_DEBUG */
  675. } else {
  676. SERIAL_ERROR_START;
  677. SERIAL_ECHORPGM(MSG_Enqueing);
  678. if (from_progmem)
  679. SERIAL_PROTOCOLRPGM(cmd);
  680. else
  681. SERIAL_ECHO(cmd);
  682. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  683. #ifdef CMDBUFFER_DEBUG
  684. cmdqueue_dump_to_serial();
  685. #endif /* CMDBUFFER_DEBUG */
  686. }
  687. }
  688. void enquecommand_front(const char *cmd, bool from_progmem)
  689. {
  690. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  691. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  692. if (cmdqueue_could_enqueue_front(len)) {
  693. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  694. if (from_progmem)
  695. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  696. else
  697. strcpy(cmdbuffer + bufindr + 1, cmd);
  698. ++ buflen;
  699. SERIAL_ECHO_START;
  700. SERIAL_ECHOPGM("Enqueing to the front: \"");
  701. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  702. SERIAL_ECHOLNPGM("\"");
  703. #ifdef CMDBUFFER_DEBUG
  704. cmdqueue_dump_to_serial();
  705. #endif /* CMDBUFFER_DEBUG */
  706. } else {
  707. SERIAL_ERROR_START;
  708. SERIAL_ECHOPGM("Enqueing to the front: \"");
  709. if (from_progmem)
  710. SERIAL_PROTOCOLRPGM(cmd);
  711. else
  712. SERIAL_ECHO(cmd);
  713. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  714. #ifdef CMDBUFFER_DEBUG
  715. cmdqueue_dump_to_serial();
  716. #endif /* CMDBUFFER_DEBUG */
  717. }
  718. }
  719. // Mark the command at the top of the command queue as new.
  720. // Therefore it will not be removed from the queue.
  721. void repeatcommand_front()
  722. {
  723. cmdbuffer_front_already_processed = true;
  724. }
  725. bool is_buffer_empty()
  726. {
  727. if (buflen == 0) return true;
  728. else return false;
  729. }
  730. void setup_killpin()
  731. {
  732. #if defined(KILL_PIN) && KILL_PIN > -1
  733. SET_INPUT(KILL_PIN);
  734. WRITE(KILL_PIN,HIGH);
  735. #endif
  736. }
  737. // Set home pin
  738. void setup_homepin(void)
  739. {
  740. #if defined(HOME_PIN) && HOME_PIN > -1
  741. SET_INPUT(HOME_PIN);
  742. WRITE(HOME_PIN,HIGH);
  743. #endif
  744. }
  745. void setup_photpin()
  746. {
  747. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  748. SET_OUTPUT(PHOTOGRAPH_PIN);
  749. WRITE(PHOTOGRAPH_PIN, LOW);
  750. #endif
  751. }
  752. void setup_powerhold()
  753. {
  754. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  755. SET_OUTPUT(SUICIDE_PIN);
  756. WRITE(SUICIDE_PIN, HIGH);
  757. #endif
  758. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  759. SET_OUTPUT(PS_ON_PIN);
  760. #if defined(PS_DEFAULT_OFF)
  761. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  762. #else
  763. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  764. #endif
  765. #endif
  766. }
  767. void suicide()
  768. {
  769. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  770. SET_OUTPUT(SUICIDE_PIN);
  771. WRITE(SUICIDE_PIN, LOW);
  772. #endif
  773. }
  774. void servo_init()
  775. {
  776. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  777. servos[0].attach(SERVO0_PIN);
  778. #endif
  779. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  780. servos[1].attach(SERVO1_PIN);
  781. #endif
  782. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  783. servos[2].attach(SERVO2_PIN);
  784. #endif
  785. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  786. servos[3].attach(SERVO3_PIN);
  787. #endif
  788. #if (NUM_SERVOS >= 5)
  789. #error "TODO: enter initalisation code for more servos"
  790. #endif
  791. }
  792. static void lcd_language_menu();
  793. #ifdef MESH_BED_LEVELING
  794. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  795. #endif
  796. // Factory reset function
  797. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  798. // Level input parameter sets depth of reset
  799. // Quiet parameter masks all waitings for user interact.
  800. int er_progress = 0;
  801. void factory_reset(char level, bool quiet)
  802. {
  803. lcd_implementation_clear();
  804. int cursor_pos = 0;
  805. switch (level) {
  806. // Level 0: Language reset
  807. case 0:
  808. WRITE(BEEPER, HIGH);
  809. _delay_ms(100);
  810. WRITE(BEEPER, LOW);
  811. lcd_force_language_selection();
  812. break;
  813. //Level 1: Reset statistics
  814. case 1:
  815. WRITE(BEEPER, HIGH);
  816. _delay_ms(100);
  817. WRITE(BEEPER, LOW);
  818. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  819. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  820. lcd_menu_statistics();
  821. break;
  822. // Level 2: Prepare for shipping
  823. case 2:
  824. //lcd_printPGM(PSTR("Factory RESET"));
  825. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  826. // Force language selection at the next boot up.
  827. lcd_force_language_selection();
  828. // Force the "Follow calibration flow" message at the next boot up.
  829. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  830. farm_no = 0;
  831. farm_mode == false;
  832. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  833. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  834. WRITE(BEEPER, HIGH);
  835. _delay_ms(100);
  836. WRITE(BEEPER, LOW);
  837. //_delay_ms(2000);
  838. break;
  839. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  840. case 3:
  841. lcd_printPGM(PSTR("Factory RESET"));
  842. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  843. WRITE(BEEPER, HIGH);
  844. _delay_ms(100);
  845. WRITE(BEEPER, LOW);
  846. er_progress = 0;
  847. lcd_print_at_PGM(3, 3, PSTR(" "));
  848. lcd_implementation_print_at(3, 3, er_progress);
  849. // Erase EEPROM
  850. for (int i = 0; i < 4096; i++) {
  851. eeprom_write_byte((uint8_t*)i, 0xFF);
  852. if (i % 41 == 0) {
  853. er_progress++;
  854. lcd_print_at_PGM(3, 3, PSTR(" "));
  855. lcd_implementation_print_at(3, 3, er_progress);
  856. lcd_printPGM(PSTR("%"));
  857. }
  858. }
  859. break;
  860. case 4:
  861. bowden_menu();
  862. break;
  863. default:
  864. break;
  865. }
  866. }
  867. // "Setup" function is called by the Arduino framework on startup.
  868. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  869. // are initialized by the main() routine provided by the Arduino framework.
  870. void setup()
  871. {
  872. setup_killpin();
  873. setup_powerhold();
  874. MYSERIAL.begin(BAUDRATE);
  875. SERIAL_PROTOCOLLNPGM("start");
  876. SERIAL_ECHO_START;
  877. #if 0
  878. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  879. for (int i = 0; i < 4096; ++i) {
  880. int b = eeprom_read_byte((unsigned char*)i);
  881. if (b != 255) {
  882. SERIAL_ECHO(i);
  883. SERIAL_ECHO(":");
  884. SERIAL_ECHO(b);
  885. SERIAL_ECHOLN("");
  886. }
  887. }
  888. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  889. #endif
  890. // Check startup - does nothing if bootloader sets MCUSR to 0
  891. byte mcu = MCUSR;
  892. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  893. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  894. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  895. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  896. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  897. MCUSR = 0;
  898. //SERIAL_ECHORPGM(MSG_MARLIN);
  899. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  900. #ifdef STRING_VERSION_CONFIG_H
  901. #ifdef STRING_CONFIG_H_AUTHOR
  902. SERIAL_ECHO_START;
  903. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  904. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  905. SERIAL_ECHORPGM(MSG_AUTHOR);
  906. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  907. SERIAL_ECHOPGM("Compiled: ");
  908. SERIAL_ECHOLNPGM(__DATE__);
  909. #endif
  910. #endif
  911. SERIAL_ECHO_START;
  912. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  913. SERIAL_ECHO(freeMemory());
  914. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  915. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  916. lcd_update_enable(false);
  917. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  918. bool previous_settings_retrieved = Config_RetrieveSettings();
  919. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  920. tp_init(); // Initialize temperature loop
  921. plan_init(); // Initialize planner;
  922. watchdog_init();
  923. st_init(); // Initialize stepper, this enables interrupts!
  924. setup_photpin();
  925. servo_init();
  926. // Reset the machine correction matrix.
  927. // It does not make sense to load the correction matrix until the machine is homed.
  928. world2machine_reset();
  929. lcd_init();
  930. if (!READ(BTN_ENC))
  931. {
  932. _delay_ms(1000);
  933. if (!READ(BTN_ENC))
  934. {
  935. lcd_implementation_clear();
  936. lcd_printPGM(PSTR("Factory RESET"));
  937. SET_OUTPUT(BEEPER);
  938. WRITE(BEEPER, HIGH);
  939. while (!READ(BTN_ENC));
  940. WRITE(BEEPER, LOW);
  941. _delay_ms(2000);
  942. char level = reset_menu();
  943. factory_reset(level, false);
  944. switch (level) {
  945. case 0: _delay_ms(0); break;
  946. case 1: _delay_ms(0); break;
  947. case 2: _delay_ms(0); break;
  948. case 3: _delay_ms(0); break;
  949. }
  950. // _delay_ms(100);
  951. /*
  952. #ifdef MESH_BED_LEVELING
  953. _delay_ms(2000);
  954. if (!READ(BTN_ENC))
  955. {
  956. WRITE(BEEPER, HIGH);
  957. _delay_ms(100);
  958. WRITE(BEEPER, LOW);
  959. _delay_ms(200);
  960. WRITE(BEEPER, HIGH);
  961. _delay_ms(100);
  962. WRITE(BEEPER, LOW);
  963. int _z = 0;
  964. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  965. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  966. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  967. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  968. }
  969. else
  970. {
  971. WRITE(BEEPER, HIGH);
  972. _delay_ms(100);
  973. WRITE(BEEPER, LOW);
  974. }
  975. #endif // mesh */
  976. }
  977. }
  978. else
  979. {
  980. _delay_ms(1000); // wait 1sec to display the splash screen
  981. }
  982. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  983. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  984. #endif
  985. #ifdef DIGIPOT_I2C
  986. digipot_i2c_init();
  987. #endif
  988. setup_homepin();
  989. #if defined(Z_AXIS_ALWAYS_ON)
  990. enable_z();
  991. #endif
  992. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  993. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  994. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  995. if (farm_no == 0xFFFF) farm_no = 0;
  996. if (farm_mode)
  997. {
  998. prusa_statistics(8);
  999. }
  1000. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1001. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1002. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1003. // but this times out if a blocking dialog is shown in setup().
  1004. card.initsd();
  1005. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1006. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  1007. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  1008. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1009. // where all the EEPROM entries are set to 0x0ff.
  1010. // Once a firmware boots up, it forces at least a language selection, which changes
  1011. // EEPROM_LANG to number lower than 0x0ff.
  1012. // 1) Set a high power mode.
  1013. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1014. }
  1015. #ifdef SNMM
  1016. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1017. int _z = BOWDEN_LENGTH;
  1018. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1019. }
  1020. #endif
  1021. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1022. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1023. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1024. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1025. if (lang_selected >= LANG_NUM){
  1026. lcd_mylang();
  1027. }
  1028. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1029. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1030. temp_cal_active = false;
  1031. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1032. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1033. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1034. }
  1035. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1036. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1037. }
  1038. check_babystep(); //checking if Z babystep is in allowed range
  1039. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1040. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1041. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1042. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1043. // Show the message.
  1044. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1045. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1046. // Show the message.
  1047. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1048. lcd_update_enable(true);
  1049. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1050. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1051. lcd_update_enable(true);
  1052. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1053. // Show the message.
  1054. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1055. }
  1056. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1057. //If eeprom version for storing parameters to eeprom using M500 changed, default settings are used. Inform user in this case
  1058. if (!previous_settings_retrieved) {
  1059. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED);
  1060. }
  1061. lcd_update_enable(true);
  1062. // Store the currently running firmware into an eeprom,
  1063. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1064. update_current_firmware_version_to_eeprom();
  1065. }
  1066. void trace();
  1067. #define CHUNK_SIZE 64 // bytes
  1068. #define SAFETY_MARGIN 1
  1069. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1070. int chunkHead = 0;
  1071. int serial_read_stream() {
  1072. setTargetHotend(0, 0);
  1073. setTargetBed(0);
  1074. lcd_implementation_clear();
  1075. lcd_printPGM(PSTR(" Upload in progress"));
  1076. // first wait for how many bytes we will receive
  1077. uint32_t bytesToReceive;
  1078. // receive the four bytes
  1079. char bytesToReceiveBuffer[4];
  1080. for (int i=0; i<4; i++) {
  1081. int data;
  1082. while ((data = MYSERIAL.read()) == -1) {};
  1083. bytesToReceiveBuffer[i] = data;
  1084. }
  1085. // make it a uint32
  1086. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1087. // we're ready, notify the sender
  1088. MYSERIAL.write('+');
  1089. // lock in the routine
  1090. uint32_t receivedBytes = 0;
  1091. while (prusa_sd_card_upload) {
  1092. int i;
  1093. for (i=0; i<CHUNK_SIZE; i++) {
  1094. int data;
  1095. // check if we're not done
  1096. if (receivedBytes == bytesToReceive) {
  1097. break;
  1098. }
  1099. // read the next byte
  1100. while ((data = MYSERIAL.read()) == -1) {};
  1101. receivedBytes++;
  1102. // save it to the chunk
  1103. chunk[i] = data;
  1104. }
  1105. // write the chunk to SD
  1106. card.write_command_no_newline(&chunk[0]);
  1107. // notify the sender we're ready for more data
  1108. MYSERIAL.write('+');
  1109. // for safety
  1110. manage_heater();
  1111. // check if we're done
  1112. if(receivedBytes == bytesToReceive) {
  1113. trace(); // beep
  1114. card.closefile();
  1115. prusa_sd_card_upload = false;
  1116. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1117. return 0;
  1118. }
  1119. }
  1120. }
  1121. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1122. // Before loop(), the setup() function is called by the main() routine.
  1123. void loop()
  1124. {
  1125. bool stack_integrity = true;
  1126. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1127. {
  1128. is_usb_printing = true;
  1129. usb_printing_counter--;
  1130. _usb_timer = millis();
  1131. }
  1132. if (usb_printing_counter == 0)
  1133. {
  1134. is_usb_printing = false;
  1135. }
  1136. if (prusa_sd_card_upload)
  1137. {
  1138. //we read byte-by byte
  1139. serial_read_stream();
  1140. } else
  1141. {
  1142. get_command();
  1143. #ifdef SDSUPPORT
  1144. card.checkautostart(false);
  1145. #endif
  1146. if(buflen)
  1147. {
  1148. #ifdef SDSUPPORT
  1149. if(card.saving)
  1150. {
  1151. // Saving a G-code file onto an SD-card is in progress.
  1152. // Saving starts with M28, saving until M29 is seen.
  1153. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1154. card.write_command(CMDBUFFER_CURRENT_STRING);
  1155. if(card.logging)
  1156. process_commands();
  1157. else
  1158. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1159. } else {
  1160. card.closefile();
  1161. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1162. }
  1163. } else {
  1164. process_commands();
  1165. }
  1166. #else
  1167. process_commands();
  1168. #endif //SDSUPPORT
  1169. if (! cmdbuffer_front_already_processed)
  1170. cmdqueue_pop_front();
  1171. cmdbuffer_front_already_processed = false;
  1172. }
  1173. }
  1174. //check heater every n milliseconds
  1175. manage_heater();
  1176. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1177. checkHitEndstops();
  1178. lcd_update();
  1179. }
  1180. void get_command()
  1181. {
  1182. // Test and reserve space for the new command string.
  1183. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1184. return;
  1185. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1186. while (MYSERIAL.available() > 0) {
  1187. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1188. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1189. rx_buffer_full = true; //sets flag that buffer was full
  1190. }
  1191. char serial_char = MYSERIAL.read();
  1192. TimeSent = millis();
  1193. TimeNow = millis();
  1194. if (serial_char < 0)
  1195. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1196. // and Marlin does not support such file names anyway.
  1197. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1198. // to a hang-up of the print process from an SD card.
  1199. continue;
  1200. if(serial_char == '\n' ||
  1201. serial_char == '\r' ||
  1202. (serial_char == ':' && comment_mode == false) ||
  1203. serial_count >= (MAX_CMD_SIZE - 1) )
  1204. {
  1205. if(!serial_count) { //if empty line
  1206. comment_mode = false; //for new command
  1207. return;
  1208. }
  1209. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1210. if(!comment_mode){
  1211. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1212. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1213. {
  1214. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1215. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1216. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1217. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1218. // M110 - set current line number.
  1219. // Line numbers not sent in succession.
  1220. SERIAL_ERROR_START;
  1221. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1222. SERIAL_ERRORLN(gcode_LastN);
  1223. //Serial.println(gcode_N);
  1224. FlushSerialRequestResend();
  1225. serial_count = 0;
  1226. return;
  1227. }
  1228. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1229. {
  1230. byte checksum = 0;
  1231. char *p = cmdbuffer+bufindw+1;
  1232. while (p != strchr_pointer)
  1233. checksum = checksum^(*p++);
  1234. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1235. SERIAL_ERROR_START;
  1236. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1237. SERIAL_ERRORLN(gcode_LastN);
  1238. FlushSerialRequestResend();
  1239. serial_count = 0;
  1240. return;
  1241. }
  1242. // If no errors, remove the checksum and continue parsing.
  1243. *strchr_pointer = 0;
  1244. }
  1245. else
  1246. {
  1247. SERIAL_ERROR_START;
  1248. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1249. SERIAL_ERRORLN(gcode_LastN);
  1250. FlushSerialRequestResend();
  1251. serial_count = 0;
  1252. return;
  1253. }
  1254. gcode_LastN = gcode_N;
  1255. //if no errors, continue parsing
  1256. } // end of 'N' command
  1257. }
  1258. else // if we don't receive 'N' but still see '*'
  1259. {
  1260. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1261. {
  1262. SERIAL_ERROR_START;
  1263. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1264. SERIAL_ERRORLN(gcode_LastN);
  1265. serial_count = 0;
  1266. return;
  1267. }
  1268. } // end of '*' command
  1269. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1270. if (! IS_SD_PRINTING) {
  1271. usb_printing_counter = 10;
  1272. is_usb_printing = true;
  1273. }
  1274. if (Stopped == true) {
  1275. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1276. if (gcode >= 0 && gcode <= 3) {
  1277. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1278. LCD_MESSAGERPGM(MSG_STOPPED);
  1279. }
  1280. }
  1281. } // end of 'G' command
  1282. //If command was e-stop process now
  1283. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1284. kill();
  1285. // Store the current line into buffer, move to the next line.
  1286. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1287. #ifdef CMDBUFFER_DEBUG
  1288. SERIAL_ECHO_START;
  1289. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1290. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1291. SERIAL_ECHOLNPGM("");
  1292. #endif /* CMDBUFFER_DEBUG */
  1293. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1294. if (bufindw == sizeof(cmdbuffer))
  1295. bufindw = 0;
  1296. ++ buflen;
  1297. #ifdef CMDBUFFER_DEBUG
  1298. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1299. SERIAL_ECHO(buflen);
  1300. SERIAL_ECHOLNPGM("");
  1301. #endif /* CMDBUFFER_DEBUG */
  1302. } // end of 'not comment mode'
  1303. serial_count = 0; //clear buffer
  1304. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1305. // in the queue, as this function will reserve the memory.
  1306. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1307. return;
  1308. } // end of "end of line" processing
  1309. else {
  1310. // Not an "end of line" symbol. Store the new character into a buffer.
  1311. if(serial_char == ';') comment_mode = true;
  1312. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1313. }
  1314. } // end of serial line processing loop
  1315. if(farm_mode){
  1316. TimeNow = millis();
  1317. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1318. cmdbuffer[bufindw+serial_count+1] = 0;
  1319. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1320. if (bufindw == sizeof(cmdbuffer))
  1321. bufindw = 0;
  1322. ++ buflen;
  1323. serial_count = 0;
  1324. SERIAL_ECHOPGM("TIMEOUT:");
  1325. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1326. return;
  1327. }
  1328. }
  1329. //add comment
  1330. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1331. rx_buffer_full = false;
  1332. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1333. serial_count = 0;
  1334. }
  1335. #ifdef SDSUPPORT
  1336. if(!card.sdprinting || serial_count!=0){
  1337. // If there is a half filled buffer from serial line, wait until return before
  1338. // continuing with the serial line.
  1339. return;
  1340. }
  1341. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1342. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1343. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1344. static bool stop_buffering=false;
  1345. if(buflen==0) stop_buffering=false;
  1346. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1347. while( !card.eof() && !stop_buffering) {
  1348. int16_t n=card.get();
  1349. char serial_char = (char)n;
  1350. if(serial_char == '\n' ||
  1351. serial_char == '\r' ||
  1352. (serial_char == '#' && comment_mode == false) ||
  1353. (serial_char == ':' && comment_mode == false) ||
  1354. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1355. {
  1356. if(card.eof()){
  1357. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1358. stoptime=millis();
  1359. char time[30];
  1360. unsigned long t=(stoptime-starttime-pause_time)/1000;
  1361. pause_time = 0;
  1362. int hours, minutes;
  1363. minutes=(t/60)%60;
  1364. hours=t/60/60;
  1365. save_statistics(total_filament_used, t);
  1366. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1367. SERIAL_ECHO_START;
  1368. SERIAL_ECHOLN(time);
  1369. lcd_setstatus(time);
  1370. card.printingHasFinished();
  1371. card.checkautostart(true);
  1372. if (farm_mode)
  1373. {
  1374. prusa_statistics(6);
  1375. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1376. }
  1377. }
  1378. if(serial_char=='#')
  1379. stop_buffering=true;
  1380. if(!serial_count)
  1381. {
  1382. comment_mode = false; //for new command
  1383. return; //if empty line
  1384. }
  1385. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1386. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1387. ++ buflen;
  1388. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1389. if (bufindw == sizeof(cmdbuffer))
  1390. bufindw = 0;
  1391. comment_mode = false; //for new command
  1392. serial_count = 0; //clear buffer
  1393. // The following line will reserve buffer space if available.
  1394. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1395. return;
  1396. }
  1397. else
  1398. {
  1399. if(serial_char == ';') comment_mode = true;
  1400. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1401. }
  1402. }
  1403. #endif //SDSUPPORT
  1404. }
  1405. // Return True if a character was found
  1406. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1407. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1408. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1409. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1410. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1411. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1412. #define DEFINE_PGM_READ_ANY(type, reader) \
  1413. static inline type pgm_read_any(const type *p) \
  1414. { return pgm_read_##reader##_near(p); }
  1415. DEFINE_PGM_READ_ANY(float, float);
  1416. DEFINE_PGM_READ_ANY(signed char, byte);
  1417. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1418. static const PROGMEM type array##_P[3] = \
  1419. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1420. static inline type array(int axis) \
  1421. { return pgm_read_any(&array##_P[axis]); } \
  1422. type array##_ext(int axis) \
  1423. { return pgm_read_any(&array##_P[axis]); }
  1424. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1425. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1426. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1427. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1428. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1429. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1430. static void axis_is_at_home(int axis) {
  1431. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1432. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1433. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1434. }
  1435. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1436. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1437. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1438. saved_feedrate = feedrate;
  1439. saved_feedmultiply = feedmultiply;
  1440. feedmultiply = 100;
  1441. previous_millis_cmd = millis();
  1442. enable_endstops(enable_endstops_now);
  1443. }
  1444. static void clean_up_after_endstop_move() {
  1445. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1446. enable_endstops(false);
  1447. #endif
  1448. feedrate = saved_feedrate;
  1449. feedmultiply = saved_feedmultiply;
  1450. previous_millis_cmd = millis();
  1451. }
  1452. #ifdef ENABLE_AUTO_BED_LEVELING
  1453. #ifdef AUTO_BED_LEVELING_GRID
  1454. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1455. {
  1456. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1457. planeNormal.debug("planeNormal");
  1458. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1459. //bedLevel.debug("bedLevel");
  1460. //plan_bed_level_matrix.debug("bed level before");
  1461. //vector_3 uncorrected_position = plan_get_position_mm();
  1462. //uncorrected_position.debug("position before");
  1463. vector_3 corrected_position = plan_get_position();
  1464. // corrected_position.debug("position after");
  1465. current_position[X_AXIS] = corrected_position.x;
  1466. current_position[Y_AXIS] = corrected_position.y;
  1467. current_position[Z_AXIS] = corrected_position.z;
  1468. // put the bed at 0 so we don't go below it.
  1469. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1470. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1471. }
  1472. #else // not AUTO_BED_LEVELING_GRID
  1473. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1474. plan_bed_level_matrix.set_to_identity();
  1475. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1476. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1477. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1478. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1479. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1480. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1481. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1482. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1483. vector_3 corrected_position = plan_get_position();
  1484. current_position[X_AXIS] = corrected_position.x;
  1485. current_position[Y_AXIS] = corrected_position.y;
  1486. current_position[Z_AXIS] = corrected_position.z;
  1487. // put the bed at 0 so we don't go below it.
  1488. current_position[Z_AXIS] = zprobe_zoffset;
  1489. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1490. }
  1491. #endif // AUTO_BED_LEVELING_GRID
  1492. static void run_z_probe() {
  1493. plan_bed_level_matrix.set_to_identity();
  1494. feedrate = homing_feedrate[Z_AXIS];
  1495. // move down until you find the bed
  1496. float zPosition = -10;
  1497. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1498. st_synchronize();
  1499. // we have to let the planner know where we are right now as it is not where we said to go.
  1500. zPosition = st_get_position_mm(Z_AXIS);
  1501. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1502. // move up the retract distance
  1503. zPosition += home_retract_mm(Z_AXIS);
  1504. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1505. st_synchronize();
  1506. // move back down slowly to find bed
  1507. feedrate = homing_feedrate[Z_AXIS]/4;
  1508. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1509. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1510. st_synchronize();
  1511. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1512. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1513. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1514. }
  1515. static void do_blocking_move_to(float x, float y, float z) {
  1516. float oldFeedRate = feedrate;
  1517. feedrate = homing_feedrate[Z_AXIS];
  1518. current_position[Z_AXIS] = z;
  1519. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1520. st_synchronize();
  1521. feedrate = XY_TRAVEL_SPEED;
  1522. current_position[X_AXIS] = x;
  1523. current_position[Y_AXIS] = y;
  1524. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1525. st_synchronize();
  1526. feedrate = oldFeedRate;
  1527. }
  1528. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1529. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1530. }
  1531. /// Probe bed height at position (x,y), returns the measured z value
  1532. static float probe_pt(float x, float y, float z_before) {
  1533. // move to right place
  1534. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1535. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1536. run_z_probe();
  1537. float measured_z = current_position[Z_AXIS];
  1538. SERIAL_PROTOCOLRPGM(MSG_BED);
  1539. SERIAL_PROTOCOLPGM(" x: ");
  1540. SERIAL_PROTOCOL(x);
  1541. SERIAL_PROTOCOLPGM(" y: ");
  1542. SERIAL_PROTOCOL(y);
  1543. SERIAL_PROTOCOLPGM(" z: ");
  1544. SERIAL_PROTOCOL(measured_z);
  1545. SERIAL_PROTOCOLPGM("\n");
  1546. return measured_z;
  1547. }
  1548. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1549. void homeaxis(int axis) {
  1550. #define HOMEAXIS_DO(LETTER) \
  1551. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1552. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1553. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1554. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1555. 0) {
  1556. int axis_home_dir = home_dir(axis);
  1557. current_position[axis] = 0;
  1558. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1559. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1560. feedrate = homing_feedrate[axis];
  1561. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1562. st_synchronize();
  1563. current_position[axis] = 0;
  1564. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1565. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1566. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1567. st_synchronize();
  1568. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1569. feedrate = homing_feedrate[axis]/2 ;
  1570. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1571. st_synchronize();
  1572. axis_is_at_home(axis);
  1573. destination[axis] = current_position[axis];
  1574. feedrate = 0.0;
  1575. endstops_hit_on_purpose();
  1576. axis_known_position[axis] = true;
  1577. }
  1578. }
  1579. void home_xy()
  1580. {
  1581. set_destination_to_current();
  1582. homeaxis(X_AXIS);
  1583. homeaxis(Y_AXIS);
  1584. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1585. endstops_hit_on_purpose();
  1586. }
  1587. void refresh_cmd_timeout(void)
  1588. {
  1589. previous_millis_cmd = millis();
  1590. }
  1591. #ifdef FWRETRACT
  1592. void retract(bool retracting, bool swapretract = false) {
  1593. if(retracting && !retracted[active_extruder]) {
  1594. destination[X_AXIS]=current_position[X_AXIS];
  1595. destination[Y_AXIS]=current_position[Y_AXIS];
  1596. destination[Z_AXIS]=current_position[Z_AXIS];
  1597. destination[E_AXIS]=current_position[E_AXIS];
  1598. if (swapretract) {
  1599. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1600. } else {
  1601. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1602. }
  1603. plan_set_e_position(current_position[E_AXIS]);
  1604. float oldFeedrate = feedrate;
  1605. feedrate=retract_feedrate*60;
  1606. retracted[active_extruder]=true;
  1607. prepare_move();
  1608. current_position[Z_AXIS]-=retract_zlift;
  1609. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1610. prepare_move();
  1611. feedrate = oldFeedrate;
  1612. } else if(!retracting && retracted[active_extruder]) {
  1613. destination[X_AXIS]=current_position[X_AXIS];
  1614. destination[Y_AXIS]=current_position[Y_AXIS];
  1615. destination[Z_AXIS]=current_position[Z_AXIS];
  1616. destination[E_AXIS]=current_position[E_AXIS];
  1617. current_position[Z_AXIS]+=retract_zlift;
  1618. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1619. //prepare_move();
  1620. if (swapretract) {
  1621. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1622. } else {
  1623. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1624. }
  1625. plan_set_e_position(current_position[E_AXIS]);
  1626. float oldFeedrate = feedrate;
  1627. feedrate=retract_recover_feedrate*60;
  1628. retracted[active_extruder]=false;
  1629. prepare_move();
  1630. feedrate = oldFeedrate;
  1631. }
  1632. } //retract
  1633. #endif //FWRETRACT
  1634. void trace() {
  1635. tone(BEEPER, 440);
  1636. delay(25);
  1637. noTone(BEEPER);
  1638. delay(20);
  1639. }
  1640. /*
  1641. void ramming() {
  1642. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1643. if (current_temperature[0] < 230) {
  1644. //PLA
  1645. max_feedrate[E_AXIS] = 50;
  1646. //current_position[E_AXIS] -= 8;
  1647. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1648. //current_position[E_AXIS] += 8;
  1649. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1650. current_position[E_AXIS] += 5.4;
  1651. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1652. current_position[E_AXIS] += 3.2;
  1653. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1654. current_position[E_AXIS] += 3;
  1655. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1656. st_synchronize();
  1657. max_feedrate[E_AXIS] = 80;
  1658. current_position[E_AXIS] -= 82;
  1659. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1660. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1661. current_position[E_AXIS] -= 20;
  1662. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1663. current_position[E_AXIS] += 5;
  1664. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1665. current_position[E_AXIS] += 5;
  1666. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1667. current_position[E_AXIS] -= 10;
  1668. st_synchronize();
  1669. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1670. current_position[E_AXIS] += 10;
  1671. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1672. current_position[E_AXIS] -= 10;
  1673. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1674. current_position[E_AXIS] += 10;
  1675. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1676. current_position[E_AXIS] -= 10;
  1677. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1678. st_synchronize();
  1679. }
  1680. else {
  1681. //ABS
  1682. max_feedrate[E_AXIS] = 50;
  1683. //current_position[E_AXIS] -= 8;
  1684. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1685. //current_position[E_AXIS] += 8;
  1686. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1687. current_position[E_AXIS] += 3.1;
  1688. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1689. current_position[E_AXIS] += 3.1;
  1690. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1691. current_position[E_AXIS] += 4;
  1692. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1693. st_synchronize();
  1694. //current_position[X_AXIS] += 23; //delay
  1695. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1696. //current_position[X_AXIS] -= 23; //delay
  1697. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1698. delay(4700);
  1699. max_feedrate[E_AXIS] = 80;
  1700. current_position[E_AXIS] -= 92;
  1701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1702. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1703. current_position[E_AXIS] -= 5;
  1704. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1705. current_position[E_AXIS] += 5;
  1706. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1707. current_position[E_AXIS] -= 5;
  1708. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1709. st_synchronize();
  1710. current_position[E_AXIS] += 5;
  1711. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1712. current_position[E_AXIS] -= 5;
  1713. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1714. current_position[E_AXIS] += 5;
  1715. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1716. current_position[E_AXIS] -= 5;
  1717. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1718. st_synchronize();
  1719. }
  1720. }
  1721. */
  1722. void process_commands()
  1723. {
  1724. #ifdef FILAMENT_RUNOUT_SUPPORT
  1725. SET_INPUT(FR_SENS);
  1726. #endif
  1727. #ifdef CMDBUFFER_DEBUG
  1728. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1729. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1730. SERIAL_ECHOLNPGM("");
  1731. SERIAL_ECHOPGM("In cmdqueue: ");
  1732. SERIAL_ECHO(buflen);
  1733. SERIAL_ECHOLNPGM("");
  1734. #endif /* CMDBUFFER_DEBUG */
  1735. unsigned long codenum; //throw away variable
  1736. char *starpos = NULL;
  1737. #ifdef ENABLE_AUTO_BED_LEVELING
  1738. float x_tmp, y_tmp, z_tmp, real_z;
  1739. #endif
  1740. // PRUSA GCODES
  1741. #ifdef SNMM
  1742. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1743. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1744. int8_t SilentMode;
  1745. #endif
  1746. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1747. starpos = (strchr(strchr_pointer + 5, '*'));
  1748. if (starpos != NULL)
  1749. *(starpos) = '\0';
  1750. lcd_setstatus(strchr_pointer + 5);
  1751. }
  1752. else if(code_seen("PRUSA")){
  1753. if (code_seen("Ping")) { //PRUSA Ping
  1754. if (farm_mode) {
  1755. PingTime = millis();
  1756. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1757. }
  1758. }
  1759. else if (code_seen("PRN")) {
  1760. MYSERIAL.println(status_number);
  1761. }else if (code_seen("fn")) {
  1762. if (farm_mode) {
  1763. MYSERIAL.println(farm_no);
  1764. }
  1765. else {
  1766. MYSERIAL.println("Not in farm mode.");
  1767. }
  1768. }else if (code_seen("fv")) {
  1769. // get file version
  1770. #ifdef SDSUPPORT
  1771. card.openFile(strchr_pointer + 3,true);
  1772. while (true) {
  1773. uint16_t readByte = card.get();
  1774. MYSERIAL.write(readByte);
  1775. if (readByte=='\n') {
  1776. break;
  1777. }
  1778. }
  1779. card.closefile();
  1780. #endif // SDSUPPORT
  1781. } else if (code_seen("M28")) {
  1782. trace();
  1783. prusa_sd_card_upload = true;
  1784. card.openFile(strchr_pointer+4,false);
  1785. } else if(code_seen("Fir")){
  1786. SERIAL_PROTOCOLLN(FW_version);
  1787. } else if(code_seen("Rev")){
  1788. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1789. } else if(code_seen("Lang")) {
  1790. lcd_force_language_selection();
  1791. } else if(code_seen("Lz")) {
  1792. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1793. } else if (code_seen("SERIAL LOW")) {
  1794. MYSERIAL.println("SERIAL LOW");
  1795. MYSERIAL.begin(BAUDRATE);
  1796. return;
  1797. } else if (code_seen("SERIAL HIGH")) {
  1798. MYSERIAL.println("SERIAL HIGH");
  1799. MYSERIAL.begin(1152000);
  1800. return;
  1801. } else if(code_seen("Beat")) {
  1802. // Kick farm link timer
  1803. kicktime = millis();
  1804. } else if(code_seen("FR")) {
  1805. // Factory full reset
  1806. factory_reset(0,true);
  1807. }
  1808. //else if (code_seen('Cal')) {
  1809. // lcd_calibration();
  1810. // }
  1811. }
  1812. else if (code_seen('^')) {
  1813. // nothing, this is a version line
  1814. } else if(code_seen('G'))
  1815. {
  1816. switch((int)code_value())
  1817. {
  1818. case 0: // G0 -> G1
  1819. case 1: // G1
  1820. if(Stopped == false) {
  1821. #ifdef FILAMENT_RUNOUT_SUPPORT
  1822. if(READ(FR_SENS)){
  1823. feedmultiplyBckp=feedmultiply;
  1824. float target[4];
  1825. float lastpos[4];
  1826. target[X_AXIS]=current_position[X_AXIS];
  1827. target[Y_AXIS]=current_position[Y_AXIS];
  1828. target[Z_AXIS]=current_position[Z_AXIS];
  1829. target[E_AXIS]=current_position[E_AXIS];
  1830. lastpos[X_AXIS]=current_position[X_AXIS];
  1831. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1832. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1833. lastpos[E_AXIS]=current_position[E_AXIS];
  1834. //retract by E
  1835. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1836. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1837. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1838. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1839. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1840. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1841. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1842. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1843. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1844. //finish moves
  1845. st_synchronize();
  1846. //disable extruder steppers so filament can be removed
  1847. disable_e0();
  1848. disable_e1();
  1849. disable_e2();
  1850. delay(100);
  1851. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1852. uint8_t cnt=0;
  1853. int counterBeep = 0;
  1854. lcd_wait_interact();
  1855. while(!lcd_clicked()){
  1856. cnt++;
  1857. manage_heater();
  1858. manage_inactivity(true);
  1859. //lcd_update();
  1860. if(cnt==0)
  1861. {
  1862. #if BEEPER > 0
  1863. if (counterBeep== 500){
  1864. counterBeep = 0;
  1865. }
  1866. SET_OUTPUT(BEEPER);
  1867. if (counterBeep== 0){
  1868. WRITE(BEEPER,HIGH);
  1869. }
  1870. if (counterBeep== 20){
  1871. WRITE(BEEPER,LOW);
  1872. }
  1873. counterBeep++;
  1874. #else
  1875. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1876. lcd_buzz(1000/6,100);
  1877. #else
  1878. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1879. #endif
  1880. #endif
  1881. }
  1882. }
  1883. WRITE(BEEPER,LOW);
  1884. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1885. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1886. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1887. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1888. lcd_change_fil_state = 0;
  1889. lcd_loading_filament();
  1890. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1891. lcd_change_fil_state = 0;
  1892. lcd_alright();
  1893. switch(lcd_change_fil_state){
  1894. case 2:
  1895. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1896. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1897. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1898. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1899. lcd_loading_filament();
  1900. break;
  1901. case 3:
  1902. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1903. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1904. lcd_loading_color();
  1905. break;
  1906. default:
  1907. lcd_change_success();
  1908. break;
  1909. }
  1910. }
  1911. target[E_AXIS]+= 5;
  1912. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1913. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1914. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1915. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1916. //plan_set_e_position(current_position[E_AXIS]);
  1917. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1918. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1919. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1920. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1921. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1922. plan_set_e_position(lastpos[E_AXIS]);
  1923. feedmultiply=feedmultiplyBckp;
  1924. char cmd[9];
  1925. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1926. enquecommand(cmd);
  1927. }
  1928. #endif
  1929. get_coordinates(); // For X Y Z E F
  1930. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1931. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1932. }
  1933. #ifdef FWRETRACT
  1934. if(autoretract_enabled)
  1935. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1936. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1937. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1938. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1939. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1940. retract(!retracted);
  1941. return;
  1942. }
  1943. }
  1944. #endif //FWRETRACT
  1945. prepare_move();
  1946. //ClearToSend();
  1947. }
  1948. break;
  1949. case 2: // G2 - CW ARC
  1950. if(Stopped == false) {
  1951. get_arc_coordinates();
  1952. prepare_arc_move(true);
  1953. }
  1954. break;
  1955. case 3: // G3 - CCW ARC
  1956. if(Stopped == false) {
  1957. get_arc_coordinates();
  1958. prepare_arc_move(false);
  1959. }
  1960. break;
  1961. case 4: // G4 dwell
  1962. codenum = 0;
  1963. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1964. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1965. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  1966. st_synchronize();
  1967. codenum += millis(); // keep track of when we started waiting
  1968. previous_millis_cmd = millis();
  1969. while(millis() < codenum) {
  1970. manage_heater();
  1971. manage_inactivity();
  1972. lcd_update();
  1973. }
  1974. break;
  1975. #ifdef FWRETRACT
  1976. case 10: // G10 retract
  1977. #if EXTRUDERS > 1
  1978. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1979. retract(true,retracted_swap[active_extruder]);
  1980. #else
  1981. retract(true);
  1982. #endif
  1983. break;
  1984. case 11: // G11 retract_recover
  1985. #if EXTRUDERS > 1
  1986. retract(false,retracted_swap[active_extruder]);
  1987. #else
  1988. retract(false);
  1989. #endif
  1990. break;
  1991. #endif //FWRETRACT
  1992. case 28: //G28 Home all Axis one at a time
  1993. homing_flag = true;
  1994. #ifdef ENABLE_AUTO_BED_LEVELING
  1995. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1996. #endif //ENABLE_AUTO_BED_LEVELING
  1997. // For mesh bed leveling deactivate the matrix temporarily
  1998. #ifdef MESH_BED_LEVELING
  1999. mbl.active = 0;
  2000. #endif
  2001. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2002. // the planner will not perform any adjustments in the XY plane.
  2003. // Wait for the motors to stop and update the current position with the absolute values.
  2004. world2machine_revert_to_uncorrected();
  2005. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2006. // consumed during the first movements following this statement.
  2007. babystep_undo();
  2008. saved_feedrate = feedrate;
  2009. saved_feedmultiply = feedmultiply;
  2010. feedmultiply = 100;
  2011. previous_millis_cmd = millis();
  2012. enable_endstops(true);
  2013. for(int8_t i=0; i < NUM_AXIS; i++)
  2014. destination[i] = current_position[i];
  2015. feedrate = 0.0;
  2016. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2017. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2018. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2019. homeaxis(Z_AXIS);
  2020. }
  2021. #endif
  2022. #ifdef QUICK_HOME
  2023. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2024. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2025. {
  2026. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2027. int x_axis_home_dir = home_dir(X_AXIS);
  2028. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2029. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2030. feedrate = homing_feedrate[X_AXIS];
  2031. if(homing_feedrate[Y_AXIS]<feedrate)
  2032. feedrate = homing_feedrate[Y_AXIS];
  2033. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2034. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2035. } else {
  2036. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2037. }
  2038. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2039. st_synchronize();
  2040. axis_is_at_home(X_AXIS);
  2041. axis_is_at_home(Y_AXIS);
  2042. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2043. destination[X_AXIS] = current_position[X_AXIS];
  2044. destination[Y_AXIS] = current_position[Y_AXIS];
  2045. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2046. feedrate = 0.0;
  2047. st_synchronize();
  2048. endstops_hit_on_purpose();
  2049. current_position[X_AXIS] = destination[X_AXIS];
  2050. current_position[Y_AXIS] = destination[Y_AXIS];
  2051. current_position[Z_AXIS] = destination[Z_AXIS];
  2052. }
  2053. #endif /* QUICK_HOME */
  2054. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2055. homeaxis(X_AXIS);
  2056. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2057. homeaxis(Y_AXIS);
  2058. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2059. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2060. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2061. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2062. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2063. #ifndef Z_SAFE_HOMING
  2064. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2065. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2066. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2067. feedrate = max_feedrate[Z_AXIS];
  2068. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2069. st_synchronize();
  2070. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2071. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2072. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2073. {
  2074. homeaxis(X_AXIS);
  2075. homeaxis(Y_AXIS);
  2076. }
  2077. // 1st mesh bed leveling measurement point, corrected.
  2078. world2machine_initialize();
  2079. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2080. world2machine_reset();
  2081. if (destination[Y_AXIS] < Y_MIN_POS)
  2082. destination[Y_AXIS] = Y_MIN_POS;
  2083. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2084. feedrate = homing_feedrate[Z_AXIS]/10;
  2085. current_position[Z_AXIS] = 0;
  2086. enable_endstops(false);
  2087. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2088. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2089. st_synchronize();
  2090. current_position[X_AXIS] = destination[X_AXIS];
  2091. current_position[Y_AXIS] = destination[Y_AXIS];
  2092. enable_endstops(true);
  2093. endstops_hit_on_purpose();
  2094. homeaxis(Z_AXIS);
  2095. #else // MESH_BED_LEVELING
  2096. homeaxis(Z_AXIS);
  2097. #endif // MESH_BED_LEVELING
  2098. }
  2099. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2100. if(home_all_axis) {
  2101. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2102. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2103. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2104. feedrate = XY_TRAVEL_SPEED/60;
  2105. current_position[Z_AXIS] = 0;
  2106. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2107. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2108. st_synchronize();
  2109. current_position[X_AXIS] = destination[X_AXIS];
  2110. current_position[Y_AXIS] = destination[Y_AXIS];
  2111. homeaxis(Z_AXIS);
  2112. }
  2113. // Let's see if X and Y are homed and probe is inside bed area.
  2114. if(code_seen(axis_codes[Z_AXIS])) {
  2115. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2116. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2117. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2118. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2119. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2120. current_position[Z_AXIS] = 0;
  2121. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2122. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2123. feedrate = max_feedrate[Z_AXIS];
  2124. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2125. st_synchronize();
  2126. homeaxis(Z_AXIS);
  2127. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2128. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2129. SERIAL_ECHO_START;
  2130. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2131. } else {
  2132. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2133. SERIAL_ECHO_START;
  2134. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2135. }
  2136. }
  2137. #endif // Z_SAFE_HOMING
  2138. #endif // Z_HOME_DIR < 0
  2139. if(code_seen(axis_codes[Z_AXIS])) {
  2140. if(code_value_long() != 0) {
  2141. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2142. }
  2143. }
  2144. #ifdef ENABLE_AUTO_BED_LEVELING
  2145. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2146. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2147. }
  2148. #endif
  2149. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2150. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2151. enable_endstops(false);
  2152. #endif
  2153. feedrate = saved_feedrate;
  2154. feedmultiply = saved_feedmultiply;
  2155. previous_millis_cmd = millis();
  2156. endstops_hit_on_purpose();
  2157. #ifndef MESH_BED_LEVELING
  2158. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2159. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2160. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2161. lcd_adjust_z();
  2162. #endif
  2163. // Load the machine correction matrix
  2164. world2machine_initialize();
  2165. // and correct the current_position to match the transformed coordinate system.
  2166. world2machine_update_current();
  2167. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2168. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2169. {
  2170. }
  2171. else
  2172. {
  2173. st_synchronize();
  2174. homing_flag = false;
  2175. // Push the commands to the front of the message queue in the reverse order!
  2176. // There shall be always enough space reserved for these commands.
  2177. // enquecommand_front_P((PSTR("G80")));
  2178. goto case_G80;
  2179. }
  2180. #endif
  2181. if (farm_mode) { prusa_statistics(20); };
  2182. homing_flag = false;
  2183. break;
  2184. #ifdef ENABLE_AUTO_BED_LEVELING
  2185. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2186. {
  2187. #if Z_MIN_PIN == -1
  2188. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2189. #endif
  2190. // Prevent user from running a G29 without first homing in X and Y
  2191. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2192. {
  2193. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2194. SERIAL_ECHO_START;
  2195. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2196. break; // abort G29, since we don't know where we are
  2197. }
  2198. st_synchronize();
  2199. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2200. //vector_3 corrected_position = plan_get_position_mm();
  2201. //corrected_position.debug("position before G29");
  2202. plan_bed_level_matrix.set_to_identity();
  2203. vector_3 uncorrected_position = plan_get_position();
  2204. //uncorrected_position.debug("position durring G29");
  2205. current_position[X_AXIS] = uncorrected_position.x;
  2206. current_position[Y_AXIS] = uncorrected_position.y;
  2207. current_position[Z_AXIS] = uncorrected_position.z;
  2208. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2209. setup_for_endstop_move();
  2210. feedrate = homing_feedrate[Z_AXIS];
  2211. #ifdef AUTO_BED_LEVELING_GRID
  2212. // probe at the points of a lattice grid
  2213. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2214. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2215. // solve the plane equation ax + by + d = z
  2216. // A is the matrix with rows [x y 1] for all the probed points
  2217. // B is the vector of the Z positions
  2218. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2219. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2220. // "A" matrix of the linear system of equations
  2221. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2222. // "B" vector of Z points
  2223. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2224. int probePointCounter = 0;
  2225. bool zig = true;
  2226. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2227. {
  2228. int xProbe, xInc;
  2229. if (zig)
  2230. {
  2231. xProbe = LEFT_PROBE_BED_POSITION;
  2232. //xEnd = RIGHT_PROBE_BED_POSITION;
  2233. xInc = xGridSpacing;
  2234. zig = false;
  2235. } else // zag
  2236. {
  2237. xProbe = RIGHT_PROBE_BED_POSITION;
  2238. //xEnd = LEFT_PROBE_BED_POSITION;
  2239. xInc = -xGridSpacing;
  2240. zig = true;
  2241. }
  2242. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2243. {
  2244. float z_before;
  2245. if (probePointCounter == 0)
  2246. {
  2247. // raise before probing
  2248. z_before = Z_RAISE_BEFORE_PROBING;
  2249. } else
  2250. {
  2251. // raise extruder
  2252. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2253. }
  2254. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2255. eqnBVector[probePointCounter] = measured_z;
  2256. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2257. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2258. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2259. probePointCounter++;
  2260. xProbe += xInc;
  2261. }
  2262. }
  2263. clean_up_after_endstop_move();
  2264. // solve lsq problem
  2265. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2266. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2267. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2268. SERIAL_PROTOCOLPGM(" b: ");
  2269. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2270. SERIAL_PROTOCOLPGM(" d: ");
  2271. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2272. set_bed_level_equation_lsq(plane_equation_coefficients);
  2273. free(plane_equation_coefficients);
  2274. #else // AUTO_BED_LEVELING_GRID not defined
  2275. // Probe at 3 arbitrary points
  2276. // probe 1
  2277. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2278. // probe 2
  2279. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2280. // probe 3
  2281. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2282. clean_up_after_endstop_move();
  2283. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2284. #endif // AUTO_BED_LEVELING_GRID
  2285. st_synchronize();
  2286. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2287. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2288. // When the bed is uneven, this height must be corrected.
  2289. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2290. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2291. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2292. z_tmp = current_position[Z_AXIS];
  2293. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2294. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2295. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2296. }
  2297. break;
  2298. #ifndef Z_PROBE_SLED
  2299. case 30: // G30 Single Z Probe
  2300. {
  2301. st_synchronize();
  2302. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2303. setup_for_endstop_move();
  2304. feedrate = homing_feedrate[Z_AXIS];
  2305. run_z_probe();
  2306. SERIAL_PROTOCOLPGM(MSG_BED);
  2307. SERIAL_PROTOCOLPGM(" X: ");
  2308. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2309. SERIAL_PROTOCOLPGM(" Y: ");
  2310. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2311. SERIAL_PROTOCOLPGM(" Z: ");
  2312. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2313. SERIAL_PROTOCOLPGM("\n");
  2314. clean_up_after_endstop_move();
  2315. }
  2316. break;
  2317. #else
  2318. case 31: // dock the sled
  2319. dock_sled(true);
  2320. break;
  2321. case 32: // undock the sled
  2322. dock_sled(false);
  2323. break;
  2324. #endif // Z_PROBE_SLED
  2325. #endif // ENABLE_AUTO_BED_LEVELING
  2326. #ifdef MESH_BED_LEVELING
  2327. case 30: // G30 Single Z Probe
  2328. {
  2329. st_synchronize();
  2330. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2331. setup_for_endstop_move();
  2332. feedrate = homing_feedrate[Z_AXIS];
  2333. find_bed_induction_sensor_point_z(-10.f, 3);
  2334. SERIAL_PROTOCOLRPGM(MSG_BED);
  2335. SERIAL_PROTOCOLPGM(" X: ");
  2336. MYSERIAL.print(current_position[X_AXIS], 5);
  2337. SERIAL_PROTOCOLPGM(" Y: ");
  2338. MYSERIAL.print(current_position[Y_AXIS], 5);
  2339. SERIAL_PROTOCOLPGM(" Z: ");
  2340. MYSERIAL.print(current_position[Z_AXIS], 5);
  2341. SERIAL_PROTOCOLPGM("\n");
  2342. clean_up_after_endstop_move();
  2343. }
  2344. break;
  2345. case 75:
  2346. {
  2347. for (int i = 40; i <= 110; i++) {
  2348. MYSERIAL.print(i);
  2349. MYSERIAL.print(" ");
  2350. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2351. }
  2352. }
  2353. break;
  2354. case 76: //PINDA probe temperature calibration
  2355. {
  2356. setTargetBed(PINDA_MIN_T);
  2357. float zero_z;
  2358. int z_shift = 0; //unit: steps
  2359. int t_c; // temperature
  2360. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2361. // We don't know where we are! HOME!
  2362. // Push the commands to the front of the message queue in the reverse order!
  2363. // There shall be always enough space reserved for these commands.
  2364. repeatcommand_front(); // repeat G76 with all its parameters
  2365. enquecommand_front_P((PSTR("G28 W0")));
  2366. break;
  2367. }
  2368. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2369. custom_message = true;
  2370. custom_message_type = 4;
  2371. custom_message_state = 1;
  2372. custom_message = MSG_TEMP_CALIBRATION;
  2373. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2374. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2375. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2376. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2377. st_synchronize();
  2378. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2379. delay_keep_alive(1000);
  2380. serialecho_temperatures();
  2381. }
  2382. //enquecommand_P(PSTR("M190 S50"));
  2383. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2384. delay_keep_alive(1000);
  2385. serialecho_temperatures();
  2386. }
  2387. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2388. current_position[Z_AXIS] = 5;
  2389. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2390. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2391. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2392. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2393. st_synchronize();
  2394. find_bed_induction_sensor_point_z(-1.f);
  2395. zero_z = current_position[Z_AXIS];
  2396. //current_position[Z_AXIS]
  2397. SERIAL_ECHOLNPGM("");
  2398. SERIAL_ECHOPGM("ZERO: ");
  2399. MYSERIAL.print(current_position[Z_AXIS]);
  2400. SERIAL_ECHOLNPGM("");
  2401. for (int i = 0; i<5; i++) {
  2402. SERIAL_ECHOPGM("Step: ");
  2403. MYSERIAL.print(i+2);
  2404. SERIAL_ECHOLNPGM("/6");
  2405. custom_message_state = i + 2;
  2406. t_c = 60 + i * 10;
  2407. setTargetBed(t_c);
  2408. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2409. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2410. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2411. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2412. st_synchronize();
  2413. while (degBed() < t_c) {
  2414. delay_keep_alive(1000);
  2415. serialecho_temperatures();
  2416. }
  2417. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2418. delay_keep_alive(1000);
  2419. serialecho_temperatures();
  2420. }
  2421. current_position[Z_AXIS] = 5;
  2422. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2423. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2424. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2425. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2426. st_synchronize();
  2427. find_bed_induction_sensor_point_z(-1.f);
  2428. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2429. SERIAL_ECHOLNPGM("");
  2430. SERIAL_ECHOPGM("Temperature: ");
  2431. MYSERIAL.print(t_c);
  2432. SERIAL_ECHOPGM(" Z shift (mm):");
  2433. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2434. SERIAL_ECHOLNPGM("");
  2435. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2436. }
  2437. custom_message_type = 0;
  2438. custom_message = false;
  2439. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2440. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2441. disable_x();
  2442. disable_y();
  2443. disable_z();
  2444. disable_e0();
  2445. disable_e1();
  2446. disable_e2();
  2447. setTargetBed(0); //set bed target temperature back to 0
  2448. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2449. lcd_update_enable(true);
  2450. lcd_update(2);
  2451. }
  2452. break;
  2453. #ifdef DIS
  2454. case 77:
  2455. {
  2456. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2457. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2458. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2459. float dimension_x = 40;
  2460. float dimension_y = 40;
  2461. int points_x = 40;
  2462. int points_y = 40;
  2463. float offset_x = 74;
  2464. float offset_y = 33;
  2465. if (code_seen('X')) dimension_x = code_value();
  2466. if (code_seen('Y')) dimension_y = code_value();
  2467. if (code_seen('XP')) points_x = code_value();
  2468. if (code_seen('YP')) points_y = code_value();
  2469. if (code_seen('XO')) offset_x = code_value();
  2470. if (code_seen('YO')) offset_y = code_value();
  2471. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2472. } break;
  2473. #endif
  2474. /**
  2475. * G80: Mesh-based Z probe, probes a grid and produces a
  2476. * mesh to compensate for variable bed height
  2477. *
  2478. * The S0 report the points as below
  2479. *
  2480. * +----> X-axis
  2481. * |
  2482. * |
  2483. * v Y-axis
  2484. *
  2485. */
  2486. case 80:
  2487. #ifdef MK1BP
  2488. break;
  2489. #endif //MK1BP
  2490. case_G80:
  2491. {
  2492. mesh_bed_leveling_flag = true;
  2493. int8_t verbosity_level = 0;
  2494. static bool run = false;
  2495. if (code_seen('V')) {
  2496. // Just 'V' without a number counts as V1.
  2497. char c = strchr_pointer[1];
  2498. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2499. }
  2500. // Firstly check if we know where we are
  2501. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2502. // We don't know where we are! HOME!
  2503. // Push the commands to the front of the message queue in the reverse order!
  2504. // There shall be always enough space reserved for these commands.
  2505. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2506. repeatcommand_front(); // repeat G80 with all its parameters
  2507. enquecommand_front_P((PSTR("G28 W0")));
  2508. }
  2509. else {
  2510. mesh_bed_leveling_flag = false;
  2511. }
  2512. break;
  2513. }
  2514. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2515. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2516. temp_compensation_start();
  2517. run = true;
  2518. repeatcommand_front(); // repeat G80 with all its parameters
  2519. enquecommand_front_P((PSTR("G28 W0")));
  2520. }
  2521. else {
  2522. mesh_bed_leveling_flag = false;
  2523. }
  2524. break;
  2525. }
  2526. run = false;
  2527. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2528. mesh_bed_leveling_flag = false;
  2529. break;
  2530. }
  2531. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2532. bool custom_message_old = custom_message;
  2533. unsigned int custom_message_type_old = custom_message_type;
  2534. unsigned int custom_message_state_old = custom_message_state;
  2535. custom_message = true;
  2536. custom_message_type = 1;
  2537. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2538. lcd_update(1);
  2539. mbl.reset(); //reset mesh bed leveling
  2540. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2541. // consumed during the first movements following this statement.
  2542. babystep_undo();
  2543. // Cycle through all points and probe them
  2544. // First move up. During this first movement, the babystepping will be reverted.
  2545. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2546. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2547. // The move to the first calibration point.
  2548. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2549. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2550. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2551. if (verbosity_level >= 1) {
  2552. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2553. }
  2554. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2555. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2556. // Wait until the move is finished.
  2557. st_synchronize();
  2558. int mesh_point = 0; //index number of calibration point
  2559. int ix = 0;
  2560. int iy = 0;
  2561. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2562. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2563. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2564. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2565. if (verbosity_level >= 1) {
  2566. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2567. }
  2568. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2569. const char *kill_message = NULL;
  2570. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2571. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2572. // Get coords of a measuring point.
  2573. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2574. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2575. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2576. float z0 = 0.f;
  2577. if (has_z && mesh_point > 0) {
  2578. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2579. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2580. //#if 0
  2581. if (verbosity_level >= 1) {
  2582. SERIAL_ECHOPGM("Bed leveling, point: ");
  2583. MYSERIAL.print(mesh_point);
  2584. SERIAL_ECHOPGM(", calibration z: ");
  2585. MYSERIAL.print(z0, 5);
  2586. SERIAL_ECHOLNPGM("");
  2587. }
  2588. //#endif
  2589. }
  2590. // Move Z up to MESH_HOME_Z_SEARCH.
  2591. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2592. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2593. st_synchronize();
  2594. // Move to XY position of the sensor point.
  2595. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2596. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2597. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2598. if (verbosity_level >= 1) {
  2599. SERIAL_PROTOCOL(mesh_point);
  2600. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2601. }
  2602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2603. st_synchronize();
  2604. // Go down until endstop is hit
  2605. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2606. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2607. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2608. break;
  2609. }
  2610. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2611. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2612. break;
  2613. }
  2614. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2615. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2616. break;
  2617. }
  2618. if (verbosity_level >= 10) {
  2619. SERIAL_ECHOPGM("X: ");
  2620. MYSERIAL.print(current_position[X_AXIS], 5);
  2621. SERIAL_ECHOLNPGM("");
  2622. SERIAL_ECHOPGM("Y: ");
  2623. MYSERIAL.print(current_position[Y_AXIS], 5);
  2624. SERIAL_PROTOCOLPGM("\n");
  2625. }
  2626. if (verbosity_level >= 1) {
  2627. SERIAL_ECHOPGM("mesh bed leveling: ");
  2628. MYSERIAL.print(current_position[Z_AXIS], 5);
  2629. SERIAL_ECHOLNPGM("");
  2630. }
  2631. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2632. custom_message_state--;
  2633. mesh_point++;
  2634. lcd_update(1);
  2635. }
  2636. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2637. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2638. if (verbosity_level >= 20) {
  2639. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2640. MYSERIAL.print(current_position[Z_AXIS], 5);
  2641. }
  2642. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2643. st_synchronize();
  2644. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2645. kill(kill_message);
  2646. SERIAL_ECHOLNPGM("killed");
  2647. }
  2648. clean_up_after_endstop_move();
  2649. SERIAL_ECHOLNPGM("clean up finished ");
  2650. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2651. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2652. SERIAL_ECHOLNPGM("babystep applied");
  2653. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2654. if (verbosity_level >= 1) {
  2655. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2656. }
  2657. for (uint8_t i = 0; i < 4; ++i) {
  2658. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2659. long correction = 0;
  2660. if (code_seen(codes[i]))
  2661. correction = code_value_long();
  2662. else if (eeprom_bed_correction_valid) {
  2663. unsigned char *addr = (i < 2) ?
  2664. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2665. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2666. correction = eeprom_read_int8(addr);
  2667. }
  2668. if (correction == 0)
  2669. continue;
  2670. float offset = float(correction) * 0.001f;
  2671. if (fabs(offset) > 0.101f) {
  2672. SERIAL_ERROR_START;
  2673. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2674. SERIAL_ECHO(offset);
  2675. SERIAL_ECHOLNPGM(" microns");
  2676. }
  2677. else {
  2678. switch (i) {
  2679. case 0:
  2680. for (uint8_t row = 0; row < 3; ++row) {
  2681. mbl.z_values[row][1] += 0.5f * offset;
  2682. mbl.z_values[row][0] += offset;
  2683. }
  2684. break;
  2685. case 1:
  2686. for (uint8_t row = 0; row < 3; ++row) {
  2687. mbl.z_values[row][1] += 0.5f * offset;
  2688. mbl.z_values[row][2] += offset;
  2689. }
  2690. break;
  2691. case 2:
  2692. for (uint8_t col = 0; col < 3; ++col) {
  2693. mbl.z_values[1][col] += 0.5f * offset;
  2694. mbl.z_values[0][col] += offset;
  2695. }
  2696. break;
  2697. case 3:
  2698. for (uint8_t col = 0; col < 3; ++col) {
  2699. mbl.z_values[1][col] += 0.5f * offset;
  2700. mbl.z_values[2][col] += offset;
  2701. }
  2702. break;
  2703. }
  2704. }
  2705. }
  2706. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2707. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2708. SERIAL_ECHOLNPGM("Upsample finished");
  2709. mbl.active = 1; //activate mesh bed leveling
  2710. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2711. go_home_with_z_lift();
  2712. SERIAL_ECHOLNPGM("Go home finished");
  2713. //unretract (after PINDA preheat retraction)
  2714. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2715. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2716. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2717. }
  2718. // Restore custom message state
  2719. custom_message = custom_message_old;
  2720. custom_message_type = custom_message_type_old;
  2721. custom_message_state = custom_message_state_old;
  2722. mesh_bed_leveling_flag = false;
  2723. mesh_bed_run_from_menu = false;
  2724. lcd_update(2);
  2725. }
  2726. break;
  2727. /**
  2728. * G81: Print mesh bed leveling status and bed profile if activated
  2729. */
  2730. case 81:
  2731. if (mbl.active) {
  2732. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2733. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2734. SERIAL_PROTOCOLPGM(",");
  2735. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2736. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2737. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2738. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2739. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2740. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2741. SERIAL_PROTOCOLPGM(" ");
  2742. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2743. }
  2744. SERIAL_PROTOCOLPGM("\n");
  2745. }
  2746. }
  2747. else
  2748. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2749. break;
  2750. #if 0
  2751. /**
  2752. * G82: Single Z probe at current location
  2753. *
  2754. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2755. *
  2756. */
  2757. case 82:
  2758. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2759. setup_for_endstop_move();
  2760. find_bed_induction_sensor_point_z();
  2761. clean_up_after_endstop_move();
  2762. SERIAL_PROTOCOLPGM("Bed found at: ");
  2763. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2764. SERIAL_PROTOCOLPGM("\n");
  2765. break;
  2766. /**
  2767. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2768. */
  2769. case 83:
  2770. {
  2771. int babystepz = code_seen('S') ? code_value() : 0;
  2772. int BabyPosition = code_seen('P') ? code_value() : 0;
  2773. if (babystepz != 0) {
  2774. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2775. // Is the axis indexed starting with zero or one?
  2776. if (BabyPosition > 4) {
  2777. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2778. }else{
  2779. // Save it to the eeprom
  2780. babystepLoadZ = babystepz;
  2781. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2782. // adjust the Z
  2783. babystepsTodoZadd(babystepLoadZ);
  2784. }
  2785. }
  2786. }
  2787. break;
  2788. /**
  2789. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2790. */
  2791. case 84:
  2792. babystepsTodoZsubtract(babystepLoadZ);
  2793. // babystepLoadZ = 0;
  2794. break;
  2795. /**
  2796. * G85: Prusa3D specific: Pick best babystep
  2797. */
  2798. case 85:
  2799. lcd_pick_babystep();
  2800. break;
  2801. #endif
  2802. /**
  2803. * G86: Prusa3D specific: Disable babystep correction after home.
  2804. * This G-code will be performed at the start of a calibration script.
  2805. */
  2806. case 86:
  2807. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2808. break;
  2809. /**
  2810. * G87: Prusa3D specific: Enable babystep correction after home
  2811. * This G-code will be performed at the end of a calibration script.
  2812. */
  2813. case 87:
  2814. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2815. break;
  2816. /**
  2817. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2818. */
  2819. case 88:
  2820. break;
  2821. #endif // ENABLE_MESH_BED_LEVELING
  2822. case 90: // G90
  2823. relative_mode = false;
  2824. break;
  2825. case 91: // G91
  2826. relative_mode = true;
  2827. break;
  2828. case 92: // G92
  2829. if(!code_seen(axis_codes[E_AXIS]))
  2830. st_synchronize();
  2831. for(int8_t i=0; i < NUM_AXIS; i++) {
  2832. if(code_seen(axis_codes[i])) {
  2833. if(i == E_AXIS) {
  2834. current_position[i] = code_value();
  2835. plan_set_e_position(current_position[E_AXIS]);
  2836. }
  2837. else {
  2838. current_position[i] = code_value()+add_homing[i];
  2839. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2840. }
  2841. }
  2842. }
  2843. break;
  2844. case 98: //activate farm mode
  2845. farm_mode = 1;
  2846. PingTime = millis();
  2847. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2848. break;
  2849. case 99: //deactivate farm mode
  2850. farm_mode = 0;
  2851. lcd_printer_connected();
  2852. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2853. lcd_update(2);
  2854. break;
  2855. }
  2856. } // end if(code_seen('G'))
  2857. else if(code_seen('M'))
  2858. {
  2859. int index;
  2860. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2861. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2862. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2863. SERIAL_ECHOLNPGM("Invalid M code");
  2864. } else
  2865. switch((int)code_value())
  2866. {
  2867. #ifdef ULTIPANEL
  2868. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2869. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2870. {
  2871. char *src = strchr_pointer + 2;
  2872. codenum = 0;
  2873. bool hasP = false, hasS = false;
  2874. if (code_seen('P')) {
  2875. codenum = code_value(); // milliseconds to wait
  2876. hasP = codenum > 0;
  2877. }
  2878. if (code_seen('S')) {
  2879. codenum = code_value() * 1000; // seconds to wait
  2880. hasS = codenum > 0;
  2881. }
  2882. starpos = strchr(src, '*');
  2883. if (starpos != NULL) *(starpos) = '\0';
  2884. while (*src == ' ') ++src;
  2885. if (!hasP && !hasS && *src != '\0') {
  2886. lcd_setstatus(src);
  2887. } else {
  2888. LCD_MESSAGERPGM(MSG_USERWAIT);
  2889. }
  2890. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2891. st_synchronize();
  2892. previous_millis_cmd = millis();
  2893. if (codenum > 0){
  2894. codenum += millis(); // keep track of when we started waiting
  2895. while(millis() < codenum && !lcd_clicked()){
  2896. manage_heater();
  2897. manage_inactivity(true);
  2898. lcd_update();
  2899. }
  2900. lcd_ignore_click(false);
  2901. }else{
  2902. if (!lcd_detected())
  2903. break;
  2904. while(!lcd_clicked()){
  2905. manage_heater();
  2906. manage_inactivity(true);
  2907. lcd_update();
  2908. }
  2909. }
  2910. if (IS_SD_PRINTING)
  2911. LCD_MESSAGERPGM(MSG_RESUMING);
  2912. else
  2913. LCD_MESSAGERPGM(WELCOME_MSG);
  2914. }
  2915. break;
  2916. #endif
  2917. case 17:
  2918. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2919. enable_x();
  2920. enable_y();
  2921. enable_z();
  2922. enable_e0();
  2923. enable_e1();
  2924. enable_e2();
  2925. break;
  2926. #ifdef SDSUPPORT
  2927. case 20: // M20 - list SD card
  2928. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2929. card.ls();
  2930. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2931. break;
  2932. case 21: // M21 - init SD card
  2933. card.initsd();
  2934. break;
  2935. case 22: //M22 - release SD card
  2936. card.release();
  2937. break;
  2938. case 23: //M23 - Select file
  2939. starpos = (strchr(strchr_pointer + 4,'*'));
  2940. if(starpos!=NULL)
  2941. *(starpos)='\0';
  2942. card.openFile(strchr_pointer + 4,true);
  2943. break;
  2944. case 24: //M24 - Start SD print
  2945. card.startFileprint();
  2946. starttime=millis();
  2947. break;
  2948. case 25: //M25 - Pause SD print
  2949. card.pauseSDPrint();
  2950. break;
  2951. case 26: //M26 - Set SD index
  2952. if(card.cardOK && code_seen('S')) {
  2953. card.setIndex(code_value_long());
  2954. }
  2955. break;
  2956. case 27: //M27 - Get SD status
  2957. card.getStatus();
  2958. break;
  2959. case 28: //M28 - Start SD write
  2960. starpos = (strchr(strchr_pointer + 4,'*'));
  2961. if(starpos != NULL){
  2962. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2963. strchr_pointer = strchr(npos,' ') + 1;
  2964. *(starpos) = '\0';
  2965. }
  2966. card.openFile(strchr_pointer+4,false);
  2967. break;
  2968. case 29: //M29 - Stop SD write
  2969. //processed in write to file routine above
  2970. //card,saving = false;
  2971. break;
  2972. case 30: //M30 <filename> Delete File
  2973. if (card.cardOK){
  2974. card.closefile();
  2975. starpos = (strchr(strchr_pointer + 4,'*'));
  2976. if(starpos != NULL){
  2977. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2978. strchr_pointer = strchr(npos,' ') + 1;
  2979. *(starpos) = '\0';
  2980. }
  2981. card.removeFile(strchr_pointer + 4);
  2982. }
  2983. break;
  2984. case 32: //M32 - Select file and start SD print
  2985. {
  2986. if(card.sdprinting) {
  2987. st_synchronize();
  2988. }
  2989. starpos = (strchr(strchr_pointer + 4,'*'));
  2990. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2991. if(namestartpos==NULL)
  2992. {
  2993. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2994. }
  2995. else
  2996. namestartpos++; //to skip the '!'
  2997. if(starpos!=NULL)
  2998. *(starpos)='\0';
  2999. bool call_procedure=(code_seen('P'));
  3000. if(strchr_pointer>namestartpos)
  3001. call_procedure=false; //false alert, 'P' found within filename
  3002. if( card.cardOK )
  3003. {
  3004. card.openFile(namestartpos,true,!call_procedure);
  3005. if(code_seen('S'))
  3006. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3007. card.setIndex(code_value_long());
  3008. card.startFileprint();
  3009. if(!call_procedure)
  3010. starttime=millis(); //procedure calls count as normal print time.
  3011. }
  3012. } break;
  3013. case 928: //M928 - Start SD write
  3014. starpos = (strchr(strchr_pointer + 5,'*'));
  3015. if(starpos != NULL){
  3016. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3017. strchr_pointer = strchr(npos,' ') + 1;
  3018. *(starpos) = '\0';
  3019. }
  3020. card.openLogFile(strchr_pointer+5);
  3021. break;
  3022. #endif //SDSUPPORT
  3023. case 31: //M31 take time since the start of the SD print or an M109 command
  3024. {
  3025. stoptime=millis();
  3026. char time[30];
  3027. unsigned long t=(stoptime-starttime)/1000;
  3028. int sec,min;
  3029. min=t/60;
  3030. sec=t%60;
  3031. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3032. SERIAL_ECHO_START;
  3033. SERIAL_ECHOLN(time);
  3034. lcd_setstatus(time);
  3035. autotempShutdown();
  3036. }
  3037. break;
  3038. case 42: //M42 -Change pin status via gcode
  3039. if (code_seen('S'))
  3040. {
  3041. int pin_status = code_value();
  3042. int pin_number = LED_PIN;
  3043. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3044. pin_number = code_value();
  3045. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3046. {
  3047. if (sensitive_pins[i] == pin_number)
  3048. {
  3049. pin_number = -1;
  3050. break;
  3051. }
  3052. }
  3053. #if defined(FAN_PIN) && FAN_PIN > -1
  3054. if (pin_number == FAN_PIN)
  3055. fanSpeed = pin_status;
  3056. #endif
  3057. if (pin_number > -1)
  3058. {
  3059. pinMode(pin_number, OUTPUT);
  3060. digitalWrite(pin_number, pin_status);
  3061. analogWrite(pin_number, pin_status);
  3062. }
  3063. }
  3064. break;
  3065. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3066. // Reset the baby step value and the baby step applied flag.
  3067. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3068. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3069. // Reset the skew and offset in both RAM and EEPROM.
  3070. reset_bed_offset_and_skew();
  3071. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3072. // the planner will not perform any adjustments in the XY plane.
  3073. // Wait for the motors to stop and update the current position with the absolute values.
  3074. world2machine_revert_to_uncorrected();
  3075. break;
  3076. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3077. {
  3078. // Only Z calibration?
  3079. bool onlyZ = code_seen('Z');
  3080. if (!onlyZ) {
  3081. setTargetBed(0);
  3082. setTargetHotend(0, 0);
  3083. setTargetHotend(0, 1);
  3084. setTargetHotend(0, 2);
  3085. adjust_bed_reset(); //reset bed level correction
  3086. }
  3087. // Disable the default update procedure of the display. We will do a modal dialog.
  3088. lcd_update_enable(false);
  3089. // Let the planner use the uncorrected coordinates.
  3090. mbl.reset();
  3091. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3092. // the planner will not perform any adjustments in the XY plane.
  3093. // Wait for the motors to stop and update the current position with the absolute values.
  3094. world2machine_revert_to_uncorrected();
  3095. // Reset the baby step value applied without moving the axes.
  3096. babystep_reset();
  3097. // Mark all axes as in a need for homing.
  3098. memset(axis_known_position, 0, sizeof(axis_known_position));
  3099. // Let the user move the Z axes up to the end stoppers.
  3100. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3101. refresh_cmd_timeout();
  3102. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3103. lcd_wait_for_cool_down();
  3104. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3105. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3106. lcd_implementation_print_at(0, 2, 1);
  3107. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3108. }
  3109. // Move the print head close to the bed.
  3110. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3111. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3112. st_synchronize();
  3113. // Home in the XY plane.
  3114. set_destination_to_current();
  3115. setup_for_endstop_move();
  3116. home_xy();
  3117. int8_t verbosity_level = 0;
  3118. if (code_seen('V')) {
  3119. // Just 'V' without a number counts as V1.
  3120. char c = strchr_pointer[1];
  3121. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3122. }
  3123. if (onlyZ) {
  3124. clean_up_after_endstop_move();
  3125. // Z only calibration.
  3126. // Load the machine correction matrix
  3127. world2machine_initialize();
  3128. // and correct the current_position to match the transformed coordinate system.
  3129. world2machine_update_current();
  3130. //FIXME
  3131. bool result = sample_mesh_and_store_reference();
  3132. if (result) {
  3133. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3134. // Shipped, the nozzle height has been set already. The user can start printing now.
  3135. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3136. // babystep_apply();
  3137. }
  3138. } else {
  3139. // Reset the baby step value and the baby step applied flag.
  3140. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3141. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3142. // Complete XYZ calibration.
  3143. uint8_t point_too_far_mask = 0;
  3144. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3145. clean_up_after_endstop_move();
  3146. // Print head up.
  3147. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3148. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3149. st_synchronize();
  3150. if (result >= 0) {
  3151. point_too_far_mask = 0;
  3152. // Second half: The fine adjustment.
  3153. // Let the planner use the uncorrected coordinates.
  3154. mbl.reset();
  3155. world2machine_reset();
  3156. // Home in the XY plane.
  3157. setup_for_endstop_move();
  3158. home_xy();
  3159. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3160. clean_up_after_endstop_move();
  3161. // Print head up.
  3162. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3163. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3164. st_synchronize();
  3165. // if (result >= 0) babystep_apply();
  3166. }
  3167. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3168. if (result >= 0) {
  3169. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3170. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3171. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3172. }
  3173. }
  3174. } else {
  3175. // Timeouted.
  3176. }
  3177. lcd_update_enable(true);
  3178. break;
  3179. }
  3180. /*
  3181. case 46:
  3182. {
  3183. // M46: Prusa3D: Show the assigned IP address.
  3184. uint8_t ip[4];
  3185. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3186. if (hasIP) {
  3187. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3188. SERIAL_ECHO(int(ip[0]));
  3189. SERIAL_ECHOPGM(".");
  3190. SERIAL_ECHO(int(ip[1]));
  3191. SERIAL_ECHOPGM(".");
  3192. SERIAL_ECHO(int(ip[2]));
  3193. SERIAL_ECHOPGM(".");
  3194. SERIAL_ECHO(int(ip[3]));
  3195. SERIAL_ECHOLNPGM("");
  3196. } else {
  3197. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3198. }
  3199. break;
  3200. }
  3201. */
  3202. case 47:
  3203. // M47: Prusa3D: Show end stops dialog on the display.
  3204. lcd_diag_show_end_stops();
  3205. break;
  3206. #if 0
  3207. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3208. {
  3209. // Disable the default update procedure of the display. We will do a modal dialog.
  3210. lcd_update_enable(false);
  3211. // Let the planner use the uncorrected coordinates.
  3212. mbl.reset();
  3213. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3214. // the planner will not perform any adjustments in the XY plane.
  3215. // Wait for the motors to stop and update the current position with the absolute values.
  3216. world2machine_revert_to_uncorrected();
  3217. // Move the print head close to the bed.
  3218. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3219. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3220. st_synchronize();
  3221. // Home in the XY plane.
  3222. set_destination_to_current();
  3223. setup_for_endstop_move();
  3224. home_xy();
  3225. int8_t verbosity_level = 0;
  3226. if (code_seen('V')) {
  3227. // Just 'V' without a number counts as V1.
  3228. char c = strchr_pointer[1];
  3229. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3230. }
  3231. bool success = scan_bed_induction_points(verbosity_level);
  3232. clean_up_after_endstop_move();
  3233. // Print head up.
  3234. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3235. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3236. st_synchronize();
  3237. lcd_update_enable(true);
  3238. break;
  3239. }
  3240. #endif
  3241. // M48 Z-Probe repeatability measurement function.
  3242. //
  3243. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3244. //
  3245. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3246. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3247. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3248. // regenerated.
  3249. //
  3250. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3251. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3252. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3253. //
  3254. #ifdef ENABLE_AUTO_BED_LEVELING
  3255. #ifdef Z_PROBE_REPEATABILITY_TEST
  3256. case 48: // M48 Z-Probe repeatability
  3257. {
  3258. #if Z_MIN_PIN == -1
  3259. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3260. #endif
  3261. double sum=0.0;
  3262. double mean=0.0;
  3263. double sigma=0.0;
  3264. double sample_set[50];
  3265. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3266. double X_current, Y_current, Z_current;
  3267. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3268. if (code_seen('V') || code_seen('v')) {
  3269. verbose_level = code_value();
  3270. if (verbose_level<0 || verbose_level>4 ) {
  3271. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3272. goto Sigma_Exit;
  3273. }
  3274. }
  3275. if (verbose_level > 0) {
  3276. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3277. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3278. }
  3279. if (code_seen('n')) {
  3280. n_samples = code_value();
  3281. if (n_samples<4 || n_samples>50 ) {
  3282. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3283. goto Sigma_Exit;
  3284. }
  3285. }
  3286. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3287. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3288. Z_current = st_get_position_mm(Z_AXIS);
  3289. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3290. ext_position = st_get_position_mm(E_AXIS);
  3291. if (code_seen('X') || code_seen('x') ) {
  3292. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3293. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3294. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3295. goto Sigma_Exit;
  3296. }
  3297. }
  3298. if (code_seen('Y') || code_seen('y') ) {
  3299. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3300. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3301. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3302. goto Sigma_Exit;
  3303. }
  3304. }
  3305. if (code_seen('L') || code_seen('l') ) {
  3306. n_legs = code_value();
  3307. if ( n_legs==1 )
  3308. n_legs = 2;
  3309. if ( n_legs<0 || n_legs>15 ) {
  3310. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3311. goto Sigma_Exit;
  3312. }
  3313. }
  3314. //
  3315. // Do all the preliminary setup work. First raise the probe.
  3316. //
  3317. st_synchronize();
  3318. plan_bed_level_matrix.set_to_identity();
  3319. plan_buffer_line( X_current, Y_current, Z_start_location,
  3320. ext_position,
  3321. homing_feedrate[Z_AXIS]/60,
  3322. active_extruder);
  3323. st_synchronize();
  3324. //
  3325. // Now get everything to the specified probe point So we can safely do a probe to
  3326. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3327. // use that as a starting point for each probe.
  3328. //
  3329. if (verbose_level > 2)
  3330. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3331. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3332. ext_position,
  3333. homing_feedrate[X_AXIS]/60,
  3334. active_extruder);
  3335. st_synchronize();
  3336. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3337. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3338. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3339. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3340. //
  3341. // OK, do the inital probe to get us close to the bed.
  3342. // Then retrace the right amount and use that in subsequent probes
  3343. //
  3344. setup_for_endstop_move();
  3345. run_z_probe();
  3346. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3347. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3348. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3349. ext_position,
  3350. homing_feedrate[X_AXIS]/60,
  3351. active_extruder);
  3352. st_synchronize();
  3353. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3354. for( n=0; n<n_samples; n++) {
  3355. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3356. if ( n_legs) {
  3357. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3358. int rotational_direction, l;
  3359. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3360. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3361. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3362. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3363. //SERIAL_ECHOPAIR(" theta: ",theta);
  3364. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3365. //SERIAL_PROTOCOLLNPGM("");
  3366. for( l=0; l<n_legs-1; l++) {
  3367. if (rotational_direction==1)
  3368. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3369. else
  3370. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3371. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3372. if ( radius<0.0 )
  3373. radius = -radius;
  3374. X_current = X_probe_location + cos(theta) * radius;
  3375. Y_current = Y_probe_location + sin(theta) * radius;
  3376. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3377. X_current = X_MIN_POS;
  3378. if ( X_current>X_MAX_POS)
  3379. X_current = X_MAX_POS;
  3380. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3381. Y_current = Y_MIN_POS;
  3382. if ( Y_current>Y_MAX_POS)
  3383. Y_current = Y_MAX_POS;
  3384. if (verbose_level>3 ) {
  3385. SERIAL_ECHOPAIR("x: ", X_current);
  3386. SERIAL_ECHOPAIR("y: ", Y_current);
  3387. SERIAL_PROTOCOLLNPGM("");
  3388. }
  3389. do_blocking_move_to( X_current, Y_current, Z_current );
  3390. }
  3391. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3392. }
  3393. setup_for_endstop_move();
  3394. run_z_probe();
  3395. sample_set[n] = current_position[Z_AXIS];
  3396. //
  3397. // Get the current mean for the data points we have so far
  3398. //
  3399. sum=0.0;
  3400. for( j=0; j<=n; j++) {
  3401. sum = sum + sample_set[j];
  3402. }
  3403. mean = sum / (double (n+1));
  3404. //
  3405. // Now, use that mean to calculate the standard deviation for the
  3406. // data points we have so far
  3407. //
  3408. sum=0.0;
  3409. for( j=0; j<=n; j++) {
  3410. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3411. }
  3412. sigma = sqrt( sum / (double (n+1)) );
  3413. if (verbose_level > 1) {
  3414. SERIAL_PROTOCOL(n+1);
  3415. SERIAL_PROTOCOL(" of ");
  3416. SERIAL_PROTOCOL(n_samples);
  3417. SERIAL_PROTOCOLPGM(" z: ");
  3418. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3419. }
  3420. if (verbose_level > 2) {
  3421. SERIAL_PROTOCOL(" mean: ");
  3422. SERIAL_PROTOCOL_F(mean,6);
  3423. SERIAL_PROTOCOL(" sigma: ");
  3424. SERIAL_PROTOCOL_F(sigma,6);
  3425. }
  3426. if (verbose_level > 0)
  3427. SERIAL_PROTOCOLPGM("\n");
  3428. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3429. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3430. st_synchronize();
  3431. }
  3432. delay(1000);
  3433. clean_up_after_endstop_move();
  3434. // enable_endstops(true);
  3435. if (verbose_level > 0) {
  3436. SERIAL_PROTOCOLPGM("Mean: ");
  3437. SERIAL_PROTOCOL_F(mean, 6);
  3438. SERIAL_PROTOCOLPGM("\n");
  3439. }
  3440. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3441. SERIAL_PROTOCOL_F(sigma, 6);
  3442. SERIAL_PROTOCOLPGM("\n\n");
  3443. Sigma_Exit:
  3444. break;
  3445. }
  3446. #endif // Z_PROBE_REPEATABILITY_TEST
  3447. #endif // ENABLE_AUTO_BED_LEVELING
  3448. case 104: // M104
  3449. if(setTargetedHotend(104)){
  3450. break;
  3451. }
  3452. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3453. setWatch();
  3454. break;
  3455. case 112: // M112 -Emergency Stop
  3456. kill();
  3457. break;
  3458. case 140: // M140 set bed temp
  3459. if (code_seen('S')) setTargetBed(code_value());
  3460. break;
  3461. case 105 : // M105
  3462. if(setTargetedHotend(105)){
  3463. break;
  3464. }
  3465. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3466. SERIAL_PROTOCOLPGM("ok T:");
  3467. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3468. SERIAL_PROTOCOLPGM(" /");
  3469. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3470. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3471. SERIAL_PROTOCOLPGM(" B:");
  3472. SERIAL_PROTOCOL_F(degBed(),1);
  3473. SERIAL_PROTOCOLPGM(" /");
  3474. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3475. #endif //TEMP_BED_PIN
  3476. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3477. SERIAL_PROTOCOLPGM(" T");
  3478. SERIAL_PROTOCOL(cur_extruder);
  3479. SERIAL_PROTOCOLPGM(":");
  3480. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3481. SERIAL_PROTOCOLPGM(" /");
  3482. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3483. }
  3484. #else
  3485. SERIAL_ERROR_START;
  3486. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3487. #endif
  3488. SERIAL_PROTOCOLPGM(" @:");
  3489. #ifdef EXTRUDER_WATTS
  3490. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3491. SERIAL_PROTOCOLPGM("W");
  3492. #else
  3493. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3494. #endif
  3495. SERIAL_PROTOCOLPGM(" B@:");
  3496. #ifdef BED_WATTS
  3497. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3498. SERIAL_PROTOCOLPGM("W");
  3499. #else
  3500. SERIAL_PROTOCOL(getHeaterPower(-1));
  3501. #endif
  3502. #ifdef SHOW_TEMP_ADC_VALUES
  3503. {float raw = 0.0;
  3504. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3505. SERIAL_PROTOCOLPGM(" ADC B:");
  3506. SERIAL_PROTOCOL_F(degBed(),1);
  3507. SERIAL_PROTOCOLPGM("C->");
  3508. raw = rawBedTemp();
  3509. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3510. SERIAL_PROTOCOLPGM(" Rb->");
  3511. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3512. SERIAL_PROTOCOLPGM(" Rxb->");
  3513. SERIAL_PROTOCOL_F(raw, 5);
  3514. #endif
  3515. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3516. SERIAL_PROTOCOLPGM(" T");
  3517. SERIAL_PROTOCOL(cur_extruder);
  3518. SERIAL_PROTOCOLPGM(":");
  3519. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3520. SERIAL_PROTOCOLPGM("C->");
  3521. raw = rawHotendTemp(cur_extruder);
  3522. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3523. SERIAL_PROTOCOLPGM(" Rt");
  3524. SERIAL_PROTOCOL(cur_extruder);
  3525. SERIAL_PROTOCOLPGM("->");
  3526. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3527. SERIAL_PROTOCOLPGM(" Rx");
  3528. SERIAL_PROTOCOL(cur_extruder);
  3529. SERIAL_PROTOCOLPGM("->");
  3530. SERIAL_PROTOCOL_F(raw, 5);
  3531. }}
  3532. #endif
  3533. SERIAL_PROTOCOLLN("");
  3534. return;
  3535. break;
  3536. case 109:
  3537. {// M109 - Wait for extruder heater to reach target.
  3538. if(setTargetedHotend(109)){
  3539. break;
  3540. }
  3541. LCD_MESSAGERPGM(MSG_HEATING);
  3542. heating_status = 1;
  3543. if (farm_mode) { prusa_statistics(1); };
  3544. #ifdef AUTOTEMP
  3545. autotemp_enabled=false;
  3546. #endif
  3547. if (code_seen('S')) {
  3548. setTargetHotend(code_value(), tmp_extruder);
  3549. CooldownNoWait = true;
  3550. } else if (code_seen('R')) {
  3551. setTargetHotend(code_value(), tmp_extruder);
  3552. CooldownNoWait = false;
  3553. }
  3554. #ifdef AUTOTEMP
  3555. if (code_seen('S')) autotemp_min=code_value();
  3556. if (code_seen('B')) autotemp_max=code_value();
  3557. if (code_seen('F'))
  3558. {
  3559. autotemp_factor=code_value();
  3560. autotemp_enabled=true;
  3561. }
  3562. #endif
  3563. setWatch();
  3564. codenum = millis();
  3565. /* See if we are heating up or cooling down */
  3566. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3567. cancel_heatup = false;
  3568. wait_for_heater(codenum); //loops until target temperature is reached
  3569. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3570. heating_status = 2;
  3571. if (farm_mode) { prusa_statistics(2); };
  3572. //starttime=millis();
  3573. previous_millis_cmd = millis();
  3574. }
  3575. break;
  3576. case 190: // M190 - Wait for bed heater to reach target.
  3577. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3578. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3579. heating_status = 3;
  3580. if (farm_mode) { prusa_statistics(1); };
  3581. if (code_seen('S'))
  3582. {
  3583. setTargetBed(code_value());
  3584. CooldownNoWait = true;
  3585. }
  3586. else if (code_seen('R'))
  3587. {
  3588. setTargetBed(code_value());
  3589. CooldownNoWait = false;
  3590. }
  3591. codenum = millis();
  3592. cancel_heatup = false;
  3593. target_direction = isHeatingBed(); // true if heating, false if cooling
  3594. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3595. {
  3596. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3597. {
  3598. if (!farm_mode) {
  3599. float tt = degHotend(active_extruder);
  3600. SERIAL_PROTOCOLPGM("T:");
  3601. SERIAL_PROTOCOL(tt);
  3602. SERIAL_PROTOCOLPGM(" E:");
  3603. SERIAL_PROTOCOL((int)active_extruder);
  3604. SERIAL_PROTOCOLPGM(" B:");
  3605. SERIAL_PROTOCOL_F(degBed(), 1);
  3606. SERIAL_PROTOCOLLN("");
  3607. }
  3608. codenum = millis();
  3609. }
  3610. manage_heater();
  3611. manage_inactivity();
  3612. lcd_update();
  3613. }
  3614. LCD_MESSAGERPGM(MSG_BED_DONE);
  3615. heating_status = 4;
  3616. previous_millis_cmd = millis();
  3617. #endif
  3618. break;
  3619. #if defined(FAN_PIN) && FAN_PIN > -1
  3620. case 106: //M106 Fan On
  3621. if (code_seen('S')){
  3622. fanSpeed=constrain(code_value(),0,255);
  3623. }
  3624. else {
  3625. fanSpeed=255;
  3626. }
  3627. break;
  3628. case 107: //M107 Fan Off
  3629. fanSpeed = 0;
  3630. break;
  3631. #endif //FAN_PIN
  3632. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3633. case 80: // M80 - Turn on Power Supply
  3634. SET_OUTPUT(PS_ON_PIN); //GND
  3635. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3636. // If you have a switch on suicide pin, this is useful
  3637. // if you want to start another print with suicide feature after
  3638. // a print without suicide...
  3639. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3640. SET_OUTPUT(SUICIDE_PIN);
  3641. WRITE(SUICIDE_PIN, HIGH);
  3642. #endif
  3643. #ifdef ULTIPANEL
  3644. powersupply = true;
  3645. LCD_MESSAGERPGM(WELCOME_MSG);
  3646. lcd_update();
  3647. #endif
  3648. break;
  3649. #endif
  3650. case 81: // M81 - Turn off Power Supply
  3651. disable_heater();
  3652. st_synchronize();
  3653. disable_e0();
  3654. disable_e1();
  3655. disable_e2();
  3656. finishAndDisableSteppers();
  3657. fanSpeed = 0;
  3658. delay(1000); // Wait a little before to switch off
  3659. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3660. st_synchronize();
  3661. suicide();
  3662. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3663. SET_OUTPUT(PS_ON_PIN);
  3664. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3665. #endif
  3666. #ifdef ULTIPANEL
  3667. powersupply = false;
  3668. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3669. /*
  3670. MACHNAME = "Prusa i3"
  3671. MSGOFF = "Vypnuto"
  3672. "Prusai3"" ""vypnuto""."
  3673. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3674. */
  3675. lcd_update();
  3676. #endif
  3677. break;
  3678. case 82:
  3679. axis_relative_modes[3] = false;
  3680. break;
  3681. case 83:
  3682. axis_relative_modes[3] = true;
  3683. break;
  3684. case 18: //compatibility
  3685. case 84: // M84
  3686. if(code_seen('S')){
  3687. stepper_inactive_time = code_value() * 1000;
  3688. }
  3689. else
  3690. {
  3691. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3692. if(all_axis)
  3693. {
  3694. st_synchronize();
  3695. disable_e0();
  3696. disable_e1();
  3697. disable_e2();
  3698. finishAndDisableSteppers();
  3699. }
  3700. else
  3701. {
  3702. st_synchronize();
  3703. if (code_seen('X')) disable_x();
  3704. if (code_seen('Y')) disable_y();
  3705. if (code_seen('Z')) disable_z();
  3706. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3707. if (code_seen('E')) {
  3708. disable_e0();
  3709. disable_e1();
  3710. disable_e2();
  3711. }
  3712. #endif
  3713. }
  3714. }
  3715. snmm_filaments_used = 0;
  3716. break;
  3717. case 85: // M85
  3718. if(code_seen('S')) {
  3719. max_inactive_time = code_value() * 1000;
  3720. }
  3721. break;
  3722. case 92: // M92
  3723. for(int8_t i=0; i < NUM_AXIS; i++)
  3724. {
  3725. if(code_seen(axis_codes[i]))
  3726. {
  3727. if(i == 3) { // E
  3728. float value = code_value();
  3729. if(value < 20.0) {
  3730. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3731. max_jerk[E_AXIS] *= factor;
  3732. max_feedrate[i] *= factor;
  3733. axis_steps_per_sqr_second[i] *= factor;
  3734. }
  3735. axis_steps_per_unit[i] = value;
  3736. }
  3737. else {
  3738. axis_steps_per_unit[i] = code_value();
  3739. }
  3740. }
  3741. }
  3742. break;
  3743. case 110: // M110 - reset line pos
  3744. if (code_seen('N'))
  3745. gcode_LastN = code_value_long();
  3746. else
  3747. gcode_LastN = 0;
  3748. break;
  3749. case 115: // M115
  3750. if (code_seen('V')) {
  3751. // Report the Prusa version number.
  3752. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3753. } else if (code_seen('U')) {
  3754. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3755. // pause the print and ask the user to upgrade the firmware.
  3756. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3757. } else {
  3758. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3759. }
  3760. break;
  3761. /* case 117: // M117 display message
  3762. starpos = (strchr(strchr_pointer + 5,'*'));
  3763. if(starpos!=NULL)
  3764. *(starpos)='\0';
  3765. lcd_setstatus(strchr_pointer + 5);
  3766. break;*/
  3767. case 114: // M114
  3768. SERIAL_PROTOCOLPGM("X:");
  3769. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3770. SERIAL_PROTOCOLPGM(" Y:");
  3771. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3772. SERIAL_PROTOCOLPGM(" Z:");
  3773. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3774. SERIAL_PROTOCOLPGM(" E:");
  3775. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3776. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3777. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3778. SERIAL_PROTOCOLPGM(" Y:");
  3779. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3780. SERIAL_PROTOCOLPGM(" Z:");
  3781. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3782. SERIAL_PROTOCOLLN("");
  3783. break;
  3784. case 120: // M120
  3785. enable_endstops(false) ;
  3786. break;
  3787. case 121: // M121
  3788. enable_endstops(true) ;
  3789. break;
  3790. case 119: // M119
  3791. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3792. SERIAL_PROTOCOLLN("");
  3793. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3794. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3795. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3796. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3797. }else{
  3798. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3799. }
  3800. SERIAL_PROTOCOLLN("");
  3801. #endif
  3802. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3803. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3804. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3805. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3806. }else{
  3807. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3808. }
  3809. SERIAL_PROTOCOLLN("");
  3810. #endif
  3811. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3812. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3813. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3814. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3815. }else{
  3816. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3817. }
  3818. SERIAL_PROTOCOLLN("");
  3819. #endif
  3820. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3821. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3822. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3823. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3824. }else{
  3825. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3826. }
  3827. SERIAL_PROTOCOLLN("");
  3828. #endif
  3829. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3830. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3831. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3832. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3833. }else{
  3834. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3835. }
  3836. SERIAL_PROTOCOLLN("");
  3837. #endif
  3838. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3839. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3840. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3841. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3842. }else{
  3843. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3844. }
  3845. SERIAL_PROTOCOLLN("");
  3846. #endif
  3847. break;
  3848. //TODO: update for all axis, use for loop
  3849. #ifdef BLINKM
  3850. case 150: // M150
  3851. {
  3852. byte red;
  3853. byte grn;
  3854. byte blu;
  3855. if(code_seen('R')) red = code_value();
  3856. if(code_seen('U')) grn = code_value();
  3857. if(code_seen('B')) blu = code_value();
  3858. SendColors(red,grn,blu);
  3859. }
  3860. break;
  3861. #endif //BLINKM
  3862. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3863. {
  3864. tmp_extruder = active_extruder;
  3865. if(code_seen('T')) {
  3866. tmp_extruder = code_value();
  3867. if(tmp_extruder >= EXTRUDERS) {
  3868. SERIAL_ECHO_START;
  3869. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3870. break;
  3871. }
  3872. }
  3873. float area = .0;
  3874. if(code_seen('D')) {
  3875. float diameter = (float)code_value();
  3876. if (diameter == 0.0) {
  3877. // setting any extruder filament size disables volumetric on the assumption that
  3878. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3879. // for all extruders
  3880. volumetric_enabled = false;
  3881. } else {
  3882. filament_size[tmp_extruder] = (float)code_value();
  3883. // make sure all extruders have some sane value for the filament size
  3884. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3885. #if EXTRUDERS > 1
  3886. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3887. #if EXTRUDERS > 2
  3888. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3889. #endif
  3890. #endif
  3891. volumetric_enabled = true;
  3892. }
  3893. } else {
  3894. //reserved for setting filament diameter via UFID or filament measuring device
  3895. break;
  3896. }
  3897. calculate_volumetric_multipliers();
  3898. }
  3899. break;
  3900. case 201: // M201
  3901. for(int8_t i=0; i < NUM_AXIS; i++)
  3902. {
  3903. if(code_seen(axis_codes[i]))
  3904. {
  3905. max_acceleration_units_per_sq_second[i] = code_value();
  3906. }
  3907. }
  3908. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3909. reset_acceleration_rates();
  3910. break;
  3911. #if 0 // Not used for Sprinter/grbl gen6
  3912. case 202: // M202
  3913. for(int8_t i=0; i < NUM_AXIS; i++) {
  3914. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3915. }
  3916. break;
  3917. #endif
  3918. case 203: // M203 max feedrate mm/sec
  3919. for(int8_t i=0; i < NUM_AXIS; i++) {
  3920. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3921. }
  3922. break;
  3923. case 204: // M204 acclereration S normal moves T filmanent only moves
  3924. {
  3925. if(code_seen('S')) acceleration = code_value() ;
  3926. if(code_seen('T')) retract_acceleration = code_value() ;
  3927. }
  3928. break;
  3929. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3930. {
  3931. if(code_seen('S')) minimumfeedrate = code_value();
  3932. if(code_seen('T')) mintravelfeedrate = code_value();
  3933. if(code_seen('B')) minsegmenttime = code_value() ;
  3934. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3935. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3936. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3937. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3938. }
  3939. break;
  3940. case 206: // M206 additional homing offset
  3941. for(int8_t i=0; i < 3; i++)
  3942. {
  3943. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3944. }
  3945. break;
  3946. #ifdef FWRETRACT
  3947. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3948. {
  3949. if(code_seen('S'))
  3950. {
  3951. retract_length = code_value() ;
  3952. }
  3953. if(code_seen('F'))
  3954. {
  3955. retract_feedrate = code_value()/60 ;
  3956. }
  3957. if(code_seen('Z'))
  3958. {
  3959. retract_zlift = code_value() ;
  3960. }
  3961. }break;
  3962. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3963. {
  3964. if(code_seen('S'))
  3965. {
  3966. retract_recover_length = code_value() ;
  3967. }
  3968. if(code_seen('F'))
  3969. {
  3970. retract_recover_feedrate = code_value()/60 ;
  3971. }
  3972. }break;
  3973. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3974. {
  3975. if(code_seen('S'))
  3976. {
  3977. int t= code_value() ;
  3978. switch(t)
  3979. {
  3980. case 0:
  3981. {
  3982. autoretract_enabled=false;
  3983. retracted[0]=false;
  3984. #if EXTRUDERS > 1
  3985. retracted[1]=false;
  3986. #endif
  3987. #if EXTRUDERS > 2
  3988. retracted[2]=false;
  3989. #endif
  3990. }break;
  3991. case 1:
  3992. {
  3993. autoretract_enabled=true;
  3994. retracted[0]=false;
  3995. #if EXTRUDERS > 1
  3996. retracted[1]=false;
  3997. #endif
  3998. #if EXTRUDERS > 2
  3999. retracted[2]=false;
  4000. #endif
  4001. }break;
  4002. default:
  4003. SERIAL_ECHO_START;
  4004. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4005. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4006. SERIAL_ECHOLNPGM("\"");
  4007. }
  4008. }
  4009. }break;
  4010. #endif // FWRETRACT
  4011. #if EXTRUDERS > 1
  4012. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4013. {
  4014. if(setTargetedHotend(218)){
  4015. break;
  4016. }
  4017. if(code_seen('X'))
  4018. {
  4019. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4020. }
  4021. if(code_seen('Y'))
  4022. {
  4023. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4024. }
  4025. SERIAL_ECHO_START;
  4026. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4027. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4028. {
  4029. SERIAL_ECHO(" ");
  4030. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4031. SERIAL_ECHO(",");
  4032. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4033. }
  4034. SERIAL_ECHOLN("");
  4035. }break;
  4036. #endif
  4037. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4038. {
  4039. if(code_seen('S'))
  4040. {
  4041. feedmultiply = code_value() ;
  4042. }
  4043. }
  4044. break;
  4045. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4046. {
  4047. if(code_seen('S'))
  4048. {
  4049. int tmp_code = code_value();
  4050. if (code_seen('T'))
  4051. {
  4052. if(setTargetedHotend(221)){
  4053. break;
  4054. }
  4055. extruder_multiply[tmp_extruder] = tmp_code;
  4056. }
  4057. else
  4058. {
  4059. extrudemultiply = tmp_code ;
  4060. }
  4061. }
  4062. }
  4063. break;
  4064. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4065. {
  4066. if(code_seen('P')){
  4067. int pin_number = code_value(); // pin number
  4068. int pin_state = -1; // required pin state - default is inverted
  4069. if(code_seen('S')) pin_state = code_value(); // required pin state
  4070. if(pin_state >= -1 && pin_state <= 1){
  4071. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4072. {
  4073. if (sensitive_pins[i] == pin_number)
  4074. {
  4075. pin_number = -1;
  4076. break;
  4077. }
  4078. }
  4079. if (pin_number > -1)
  4080. {
  4081. int target = LOW;
  4082. st_synchronize();
  4083. pinMode(pin_number, INPUT);
  4084. switch(pin_state){
  4085. case 1:
  4086. target = HIGH;
  4087. break;
  4088. case 0:
  4089. target = LOW;
  4090. break;
  4091. case -1:
  4092. target = !digitalRead(pin_number);
  4093. break;
  4094. }
  4095. while(digitalRead(pin_number) != target){
  4096. manage_heater();
  4097. manage_inactivity();
  4098. lcd_update();
  4099. }
  4100. }
  4101. }
  4102. }
  4103. }
  4104. break;
  4105. #if NUM_SERVOS > 0
  4106. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4107. {
  4108. int servo_index = -1;
  4109. int servo_position = 0;
  4110. if (code_seen('P'))
  4111. servo_index = code_value();
  4112. if (code_seen('S')) {
  4113. servo_position = code_value();
  4114. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4115. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4116. servos[servo_index].attach(0);
  4117. #endif
  4118. servos[servo_index].write(servo_position);
  4119. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4120. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4121. servos[servo_index].detach();
  4122. #endif
  4123. }
  4124. else {
  4125. SERIAL_ECHO_START;
  4126. SERIAL_ECHO("Servo ");
  4127. SERIAL_ECHO(servo_index);
  4128. SERIAL_ECHOLN(" out of range");
  4129. }
  4130. }
  4131. else if (servo_index >= 0) {
  4132. SERIAL_PROTOCOL(MSG_OK);
  4133. SERIAL_PROTOCOL(" Servo ");
  4134. SERIAL_PROTOCOL(servo_index);
  4135. SERIAL_PROTOCOL(": ");
  4136. SERIAL_PROTOCOL(servos[servo_index].read());
  4137. SERIAL_PROTOCOLLN("");
  4138. }
  4139. }
  4140. break;
  4141. #endif // NUM_SERVOS > 0
  4142. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4143. case 300: // M300
  4144. {
  4145. int beepS = code_seen('S') ? code_value() : 110;
  4146. int beepP = code_seen('P') ? code_value() : 1000;
  4147. if (beepS > 0)
  4148. {
  4149. #if BEEPER > 0
  4150. tone(BEEPER, beepS);
  4151. delay(beepP);
  4152. noTone(BEEPER);
  4153. #elif defined(ULTRALCD)
  4154. lcd_buzz(beepS, beepP);
  4155. #elif defined(LCD_USE_I2C_BUZZER)
  4156. lcd_buzz(beepP, beepS);
  4157. #endif
  4158. }
  4159. else
  4160. {
  4161. delay(beepP);
  4162. }
  4163. }
  4164. break;
  4165. #endif // M300
  4166. #ifdef PIDTEMP
  4167. case 301: // M301
  4168. {
  4169. if(code_seen('P')) Kp = code_value();
  4170. if(code_seen('I')) Ki = scalePID_i(code_value());
  4171. if(code_seen('D')) Kd = scalePID_d(code_value());
  4172. #ifdef PID_ADD_EXTRUSION_RATE
  4173. if(code_seen('C')) Kc = code_value();
  4174. #endif
  4175. updatePID();
  4176. SERIAL_PROTOCOLRPGM(MSG_OK);
  4177. SERIAL_PROTOCOL(" p:");
  4178. SERIAL_PROTOCOL(Kp);
  4179. SERIAL_PROTOCOL(" i:");
  4180. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4181. SERIAL_PROTOCOL(" d:");
  4182. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4183. #ifdef PID_ADD_EXTRUSION_RATE
  4184. SERIAL_PROTOCOL(" c:");
  4185. //Kc does not have scaling applied above, or in resetting defaults
  4186. SERIAL_PROTOCOL(Kc);
  4187. #endif
  4188. SERIAL_PROTOCOLLN("");
  4189. }
  4190. break;
  4191. #endif //PIDTEMP
  4192. #ifdef PIDTEMPBED
  4193. case 304: // M304
  4194. {
  4195. if(code_seen('P')) bedKp = code_value();
  4196. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4197. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4198. updatePID();
  4199. SERIAL_PROTOCOLRPGM(MSG_OK);
  4200. SERIAL_PROTOCOL(" p:");
  4201. SERIAL_PROTOCOL(bedKp);
  4202. SERIAL_PROTOCOL(" i:");
  4203. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4204. SERIAL_PROTOCOL(" d:");
  4205. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4206. SERIAL_PROTOCOLLN("");
  4207. }
  4208. break;
  4209. #endif //PIDTEMP
  4210. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4211. {
  4212. #ifdef CHDK
  4213. SET_OUTPUT(CHDK);
  4214. WRITE(CHDK, HIGH);
  4215. chdkHigh = millis();
  4216. chdkActive = true;
  4217. #else
  4218. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4219. const uint8_t NUM_PULSES=16;
  4220. const float PULSE_LENGTH=0.01524;
  4221. for(int i=0; i < NUM_PULSES; i++) {
  4222. WRITE(PHOTOGRAPH_PIN, HIGH);
  4223. _delay_ms(PULSE_LENGTH);
  4224. WRITE(PHOTOGRAPH_PIN, LOW);
  4225. _delay_ms(PULSE_LENGTH);
  4226. }
  4227. delay(7.33);
  4228. for(int i=0; i < NUM_PULSES; i++) {
  4229. WRITE(PHOTOGRAPH_PIN, HIGH);
  4230. _delay_ms(PULSE_LENGTH);
  4231. WRITE(PHOTOGRAPH_PIN, LOW);
  4232. _delay_ms(PULSE_LENGTH);
  4233. }
  4234. #endif
  4235. #endif //chdk end if
  4236. }
  4237. break;
  4238. #ifdef DOGLCD
  4239. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4240. {
  4241. if (code_seen('C')) {
  4242. lcd_setcontrast( ((int)code_value())&63 );
  4243. }
  4244. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4245. SERIAL_PROTOCOL(lcd_contrast);
  4246. SERIAL_PROTOCOLLN("");
  4247. }
  4248. break;
  4249. #endif
  4250. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4251. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4252. {
  4253. float temp = .0;
  4254. if (code_seen('S')) temp=code_value();
  4255. set_extrude_min_temp(temp);
  4256. }
  4257. break;
  4258. #endif
  4259. case 303: // M303 PID autotune
  4260. {
  4261. float temp = 150.0;
  4262. int e=0;
  4263. int c=5;
  4264. if (code_seen('E')) e=code_value();
  4265. if (e<0)
  4266. temp=70;
  4267. if (code_seen('S')) temp=code_value();
  4268. if (code_seen('C')) c=code_value();
  4269. PID_autotune(temp, e, c);
  4270. }
  4271. break;
  4272. case 400: // M400 finish all moves
  4273. {
  4274. st_synchronize();
  4275. }
  4276. break;
  4277. #ifdef FILAMENT_SENSOR
  4278. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4279. {
  4280. #if (FILWIDTH_PIN > -1)
  4281. if(code_seen('N')) filament_width_nominal=code_value();
  4282. else{
  4283. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4284. SERIAL_PROTOCOLLN(filament_width_nominal);
  4285. }
  4286. #endif
  4287. }
  4288. break;
  4289. case 405: //M405 Turn on filament sensor for control
  4290. {
  4291. if(code_seen('D')) meas_delay_cm=code_value();
  4292. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4293. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4294. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4295. {
  4296. int temp_ratio = widthFil_to_size_ratio();
  4297. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4298. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4299. }
  4300. delay_index1=0;
  4301. delay_index2=0;
  4302. }
  4303. filament_sensor = true ;
  4304. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4305. //SERIAL_PROTOCOL(filament_width_meas);
  4306. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4307. //SERIAL_PROTOCOL(extrudemultiply);
  4308. }
  4309. break;
  4310. case 406: //M406 Turn off filament sensor for control
  4311. {
  4312. filament_sensor = false ;
  4313. }
  4314. break;
  4315. case 407: //M407 Display measured filament diameter
  4316. {
  4317. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4318. SERIAL_PROTOCOLLN(filament_width_meas);
  4319. }
  4320. break;
  4321. #endif
  4322. case 500: // M500 Store settings in EEPROM
  4323. {
  4324. Config_StoreSettings();
  4325. }
  4326. break;
  4327. case 501: // M501 Read settings from EEPROM
  4328. {
  4329. Config_RetrieveSettings();
  4330. }
  4331. break;
  4332. case 502: // M502 Revert to default settings
  4333. {
  4334. Config_ResetDefault();
  4335. }
  4336. break;
  4337. case 503: // M503 print settings currently in memory
  4338. {
  4339. Config_PrintSettings();
  4340. }
  4341. break;
  4342. case 509: //M509 Force language selection
  4343. {
  4344. lcd_force_language_selection();
  4345. SERIAL_ECHO_START;
  4346. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4347. }
  4348. break;
  4349. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4350. case 540:
  4351. {
  4352. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4353. }
  4354. break;
  4355. #endif
  4356. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4357. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4358. {
  4359. float value;
  4360. if (code_seen('Z'))
  4361. {
  4362. value = code_value();
  4363. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4364. {
  4365. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4366. SERIAL_ECHO_START;
  4367. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4368. SERIAL_PROTOCOLLN("");
  4369. }
  4370. else
  4371. {
  4372. SERIAL_ECHO_START;
  4373. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4374. SERIAL_ECHORPGM(MSG_Z_MIN);
  4375. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4376. SERIAL_ECHORPGM(MSG_Z_MAX);
  4377. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4378. SERIAL_PROTOCOLLN("");
  4379. }
  4380. }
  4381. else
  4382. {
  4383. SERIAL_ECHO_START;
  4384. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4385. SERIAL_ECHO(-zprobe_zoffset);
  4386. SERIAL_PROTOCOLLN("");
  4387. }
  4388. break;
  4389. }
  4390. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4391. #ifdef FILAMENTCHANGEENABLE
  4392. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4393. {
  4394. st_synchronize();
  4395. float target[4];
  4396. float lastpos[4];
  4397. if (farm_mode)
  4398. {
  4399. prusa_statistics(22);
  4400. }
  4401. feedmultiplyBckp=feedmultiply;
  4402. int8_t TooLowZ = 0;
  4403. target[X_AXIS]=current_position[X_AXIS];
  4404. target[Y_AXIS]=current_position[Y_AXIS];
  4405. target[Z_AXIS]=current_position[Z_AXIS];
  4406. target[E_AXIS]=current_position[E_AXIS];
  4407. lastpos[X_AXIS]=current_position[X_AXIS];
  4408. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4409. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4410. lastpos[E_AXIS]=current_position[E_AXIS];
  4411. //Retract extruder
  4412. if(code_seen('E'))
  4413. {
  4414. target[E_AXIS]+= code_value();
  4415. }
  4416. else
  4417. {
  4418. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4419. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4420. #endif
  4421. }
  4422. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4423. //Lift Z
  4424. if(code_seen('Z'))
  4425. {
  4426. target[Z_AXIS]+= code_value();
  4427. }
  4428. else
  4429. {
  4430. #ifdef FILAMENTCHANGE_ZADD
  4431. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4432. if(target[Z_AXIS] < 10){
  4433. target[Z_AXIS]+= 10 ;
  4434. TooLowZ = 1;
  4435. }else{
  4436. TooLowZ = 0;
  4437. }
  4438. #endif
  4439. }
  4440. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4441. //Move XY to side
  4442. if(code_seen('X'))
  4443. {
  4444. target[X_AXIS]+= code_value();
  4445. }
  4446. else
  4447. {
  4448. #ifdef FILAMENTCHANGE_XPOS
  4449. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4450. #endif
  4451. }
  4452. if(code_seen('Y'))
  4453. {
  4454. target[Y_AXIS]= code_value();
  4455. }
  4456. else
  4457. {
  4458. #ifdef FILAMENTCHANGE_YPOS
  4459. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4460. #endif
  4461. }
  4462. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4463. st_synchronize();
  4464. custom_message = true;
  4465. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4466. // Unload filament
  4467. if(code_seen('L'))
  4468. {
  4469. target[E_AXIS]+= code_value();
  4470. }
  4471. else
  4472. {
  4473. #ifdef SNMM
  4474. #else
  4475. #ifdef FILAMENTCHANGE_FINALRETRACT
  4476. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4477. #endif
  4478. #endif // SNMM
  4479. }
  4480. #ifdef SNMM
  4481. target[E_AXIS] += 12;
  4482. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4483. target[E_AXIS] += 6;
  4484. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4485. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4486. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4487. st_synchronize();
  4488. target[E_AXIS] += (FIL_COOLING);
  4489. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4490. target[E_AXIS] += (FIL_COOLING*-1);
  4491. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4492. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4493. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4494. st_synchronize();
  4495. #else
  4496. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4497. #endif // SNMM
  4498. //finish moves
  4499. st_synchronize();
  4500. //disable extruder steppers so filament can be removed
  4501. disable_e0();
  4502. disable_e1();
  4503. disable_e2();
  4504. delay(100);
  4505. //Wait for user to insert filament
  4506. uint8_t cnt=0;
  4507. int counterBeep = 0;
  4508. lcd_wait_interact();
  4509. load_filament_time = millis();
  4510. while(!lcd_clicked()){
  4511. cnt++;
  4512. manage_heater();
  4513. manage_inactivity(true);
  4514. /*#ifdef SNMM
  4515. target[E_AXIS] += 0.002;
  4516. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4517. #endif // SNMM*/
  4518. if(cnt==0)
  4519. {
  4520. #if BEEPER > 0
  4521. if (counterBeep== 500){
  4522. counterBeep = 0;
  4523. }
  4524. SET_OUTPUT(BEEPER);
  4525. if (counterBeep== 0){
  4526. WRITE(BEEPER,HIGH);
  4527. }
  4528. if (counterBeep== 20){
  4529. WRITE(BEEPER,LOW);
  4530. }
  4531. counterBeep++;
  4532. #else
  4533. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4534. lcd_buzz(1000/6,100);
  4535. #else
  4536. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4537. #endif
  4538. #endif
  4539. }
  4540. }
  4541. WRITE(BEEPER, LOW);
  4542. #ifdef SNMM
  4543. display_loading();
  4544. do {
  4545. target[E_AXIS] += 0.002;
  4546. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4547. delay_keep_alive(2);
  4548. } while (!lcd_clicked());
  4549. /*if (millis() - load_filament_time > 2) {
  4550. load_filament_time = millis();
  4551. target[E_AXIS] += 0.001;
  4552. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4553. }*/
  4554. #endif
  4555. //Filament inserted
  4556. //Feed the filament to the end of nozzle quickly
  4557. #ifdef SNMM
  4558. st_synchronize();
  4559. target[E_AXIS] += bowden_length[snmm_extruder];
  4560. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4561. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4562. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4563. target[E_AXIS] += 40;
  4564. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4565. target[E_AXIS] += 10;
  4566. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4567. #else
  4568. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4569. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4570. #endif // SNMM
  4571. //Extrude some filament
  4572. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4573. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4574. //Wait for user to check the state
  4575. lcd_change_fil_state = 0;
  4576. lcd_loading_filament();
  4577. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4578. lcd_change_fil_state = 0;
  4579. lcd_alright();
  4580. switch(lcd_change_fil_state){
  4581. // Filament failed to load so load it again
  4582. case 2:
  4583. #ifdef SNMM
  4584. display_loading();
  4585. do {
  4586. target[E_AXIS] += 0.002;
  4587. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4588. delay_keep_alive(2);
  4589. } while (!lcd_clicked());
  4590. st_synchronize();
  4591. target[E_AXIS] += bowden_length[snmm_extruder];
  4592. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4593. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4594. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4595. target[E_AXIS] += 40;
  4596. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4597. target[E_AXIS] += 10;
  4598. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4599. #else
  4600. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4601. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4602. #endif
  4603. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4604. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4605. lcd_loading_filament();
  4606. break;
  4607. // Filament loaded properly but color is not clear
  4608. case 3:
  4609. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4610. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4611. lcd_loading_color();
  4612. break;
  4613. // Everything good
  4614. default:
  4615. lcd_change_success();
  4616. lcd_update_enable(true);
  4617. break;
  4618. }
  4619. }
  4620. //Not let's go back to print
  4621. //Feed a little of filament to stabilize pressure
  4622. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4623. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4624. //Retract
  4625. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4626. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4627. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4628. //Move XY back
  4629. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4630. //Move Z back
  4631. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4632. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4633. //Unretract
  4634. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4635. //Set E position to original
  4636. plan_set_e_position(lastpos[E_AXIS]);
  4637. //Recover feed rate
  4638. feedmultiply=feedmultiplyBckp;
  4639. char cmd[9];
  4640. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4641. enquecommand(cmd);
  4642. lcd_setstatuspgm(WELCOME_MSG);
  4643. custom_message = false;
  4644. custom_message_type = 0;
  4645. }
  4646. break;
  4647. #endif //FILAMENTCHANGEENABLE
  4648. case 601: {
  4649. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4650. }
  4651. break;
  4652. case 602: {
  4653. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4654. }
  4655. break;
  4656. case 907: // M907 Set digital trimpot motor current using axis codes.
  4657. {
  4658. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4659. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4660. if(code_seen('B')) digipot_current(4,code_value());
  4661. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4662. #endif
  4663. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4664. if(code_seen('X')) digipot_current(0, code_value());
  4665. #endif
  4666. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4667. if(code_seen('Z')) digipot_current(1, code_value());
  4668. #endif
  4669. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4670. if(code_seen('E')) digipot_current(2, code_value());
  4671. #endif
  4672. #ifdef DIGIPOT_I2C
  4673. // this one uses actual amps in floating point
  4674. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4675. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4676. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4677. #endif
  4678. }
  4679. break;
  4680. case 908: // M908 Control digital trimpot directly.
  4681. {
  4682. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4683. uint8_t channel,current;
  4684. if(code_seen('P')) channel=code_value();
  4685. if(code_seen('S')) current=code_value();
  4686. digitalPotWrite(channel, current);
  4687. #endif
  4688. }
  4689. break;
  4690. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4691. {
  4692. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4693. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4694. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4695. if(code_seen('B')) microstep_mode(4,code_value());
  4696. microstep_readings();
  4697. #endif
  4698. }
  4699. break;
  4700. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4701. {
  4702. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4703. if(code_seen('S')) switch((int)code_value())
  4704. {
  4705. case 1:
  4706. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4707. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4708. break;
  4709. case 2:
  4710. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4711. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4712. break;
  4713. }
  4714. microstep_readings();
  4715. #endif
  4716. }
  4717. break;
  4718. case 701: //M701: load filament
  4719. {
  4720. enable_z();
  4721. custom_message = true;
  4722. custom_message_type = 2;
  4723. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4724. current_position[E_AXIS] += 70;
  4725. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4726. current_position[E_AXIS] += 25;
  4727. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4728. st_synchronize();
  4729. if (!farm_mode && loading_flag) {
  4730. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4731. while (!clean) {
  4732. lcd_update_enable(true);
  4733. lcd_update(2);
  4734. current_position[E_AXIS] += 25;
  4735. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4736. st_synchronize();
  4737. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4738. }
  4739. }
  4740. lcd_update_enable(true);
  4741. lcd_update(2);
  4742. lcd_setstatuspgm(WELCOME_MSG);
  4743. disable_z();
  4744. loading_flag = false;
  4745. custom_message = false;
  4746. custom_message_type = 0;
  4747. }
  4748. break;
  4749. case 702:
  4750. {
  4751. #ifdef SNMM
  4752. if (code_seen('U')) {
  4753. extr_unload_used(); //unload all filaments which were used in current print
  4754. }
  4755. else if (code_seen('C')) {
  4756. extr_unload(); //unload just current filament
  4757. }
  4758. else {
  4759. extr_unload_all(); //unload all filaments
  4760. }
  4761. #else
  4762. custom_message = true;
  4763. custom_message_type = 2;
  4764. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4765. current_position[E_AXIS] -= 80;
  4766. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4767. st_synchronize();
  4768. lcd_setstatuspgm(WELCOME_MSG);
  4769. custom_message = false;
  4770. custom_message_type = 0;
  4771. #endif
  4772. }
  4773. break;
  4774. case 999: // M999: Restart after being stopped
  4775. Stopped = false;
  4776. lcd_reset_alert_level();
  4777. gcode_LastN = Stopped_gcode_LastN;
  4778. FlushSerialRequestResend();
  4779. break;
  4780. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4781. }
  4782. } // end if(code_seen('M')) (end of M codes)
  4783. else if(code_seen('T'))
  4784. {
  4785. int index;
  4786. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4787. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  4788. SERIAL_ECHOLNPGM("Invalid T code.");
  4789. }
  4790. else {
  4791. if (*(strchr_pointer + index) == '?') {
  4792. tmp_extruder = choose_extruder_menu();
  4793. }
  4794. else {
  4795. tmp_extruder = code_value();
  4796. }
  4797. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  4798. #ifdef SNMM
  4799. snmm_extruder = tmp_extruder;
  4800. st_synchronize();
  4801. delay(100);
  4802. disable_e0();
  4803. disable_e1();
  4804. disable_e2();
  4805. pinMode(E_MUX0_PIN, OUTPUT);
  4806. pinMode(E_MUX1_PIN, OUTPUT);
  4807. pinMode(E_MUX2_PIN, OUTPUT);
  4808. delay(100);
  4809. SERIAL_ECHO_START;
  4810. SERIAL_ECHO("T:");
  4811. SERIAL_ECHOLN((int)tmp_extruder);
  4812. switch (tmp_extruder) {
  4813. case 1:
  4814. WRITE(E_MUX0_PIN, HIGH);
  4815. WRITE(E_MUX1_PIN, LOW);
  4816. WRITE(E_MUX2_PIN, LOW);
  4817. break;
  4818. case 2:
  4819. WRITE(E_MUX0_PIN, LOW);
  4820. WRITE(E_MUX1_PIN, HIGH);
  4821. WRITE(E_MUX2_PIN, LOW);
  4822. break;
  4823. case 3:
  4824. WRITE(E_MUX0_PIN, HIGH);
  4825. WRITE(E_MUX1_PIN, HIGH);
  4826. WRITE(E_MUX2_PIN, LOW);
  4827. break;
  4828. default:
  4829. WRITE(E_MUX0_PIN, LOW);
  4830. WRITE(E_MUX1_PIN, LOW);
  4831. WRITE(E_MUX2_PIN, LOW);
  4832. break;
  4833. }
  4834. delay(100);
  4835. #else
  4836. if (tmp_extruder >= EXTRUDERS) {
  4837. SERIAL_ECHO_START;
  4838. SERIAL_ECHOPGM("T");
  4839. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4840. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4841. }
  4842. else {
  4843. boolean make_move = false;
  4844. if (code_seen('F')) {
  4845. make_move = true;
  4846. next_feedrate = code_value();
  4847. if (next_feedrate > 0.0) {
  4848. feedrate = next_feedrate;
  4849. }
  4850. }
  4851. #if EXTRUDERS > 1
  4852. if (tmp_extruder != active_extruder) {
  4853. // Save current position to return to after applying extruder offset
  4854. memcpy(destination, current_position, sizeof(destination));
  4855. // Offset extruder (only by XY)
  4856. int i;
  4857. for (i = 0; i < 2; i++) {
  4858. current_position[i] = current_position[i] -
  4859. extruder_offset[i][active_extruder] +
  4860. extruder_offset[i][tmp_extruder];
  4861. }
  4862. // Set the new active extruder and position
  4863. active_extruder = tmp_extruder;
  4864. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4865. // Move to the old position if 'F' was in the parameters
  4866. if (make_move && Stopped == false) {
  4867. prepare_move();
  4868. }
  4869. }
  4870. #endif
  4871. SERIAL_ECHO_START;
  4872. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4873. SERIAL_PROTOCOLLN((int)active_extruder);
  4874. }
  4875. #endif
  4876. }
  4877. } // end if(code_seen('T')) (end of T codes)
  4878. else
  4879. {
  4880. SERIAL_ECHO_START;
  4881. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4882. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4883. SERIAL_ECHOLNPGM("\"");
  4884. }
  4885. ClearToSend();
  4886. }
  4887. void FlushSerialRequestResend()
  4888. {
  4889. //char cmdbuffer[bufindr][100]="Resend:";
  4890. MYSERIAL.flush();
  4891. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4892. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4893. ClearToSend();
  4894. }
  4895. // Confirm the execution of a command, if sent from a serial line.
  4896. // Execution of a command from a SD card will not be confirmed.
  4897. void ClearToSend()
  4898. {
  4899. previous_millis_cmd = millis();
  4900. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4901. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4902. }
  4903. void get_coordinates()
  4904. {
  4905. bool seen[4]={false,false,false,false};
  4906. for(int8_t i=0; i < NUM_AXIS; i++) {
  4907. if(code_seen(axis_codes[i]))
  4908. {
  4909. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4910. seen[i]=true;
  4911. }
  4912. else destination[i] = current_position[i]; //Are these else lines really needed?
  4913. }
  4914. if(code_seen('F')) {
  4915. next_feedrate = code_value();
  4916. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4917. }
  4918. }
  4919. void get_arc_coordinates()
  4920. {
  4921. #ifdef SF_ARC_FIX
  4922. bool relative_mode_backup = relative_mode;
  4923. relative_mode = true;
  4924. #endif
  4925. get_coordinates();
  4926. #ifdef SF_ARC_FIX
  4927. relative_mode=relative_mode_backup;
  4928. #endif
  4929. if(code_seen('I')) {
  4930. offset[0] = code_value();
  4931. }
  4932. else {
  4933. offset[0] = 0.0;
  4934. }
  4935. if(code_seen('J')) {
  4936. offset[1] = code_value();
  4937. }
  4938. else {
  4939. offset[1] = 0.0;
  4940. }
  4941. }
  4942. void clamp_to_software_endstops(float target[3])
  4943. {
  4944. world2machine_clamp(target[0], target[1]);
  4945. // Clamp the Z coordinate.
  4946. if (min_software_endstops) {
  4947. float negative_z_offset = 0;
  4948. #ifdef ENABLE_AUTO_BED_LEVELING
  4949. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4950. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4951. #endif
  4952. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4953. }
  4954. if (max_software_endstops) {
  4955. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4956. }
  4957. }
  4958. #ifdef MESH_BED_LEVELING
  4959. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4960. float dx = x - current_position[X_AXIS];
  4961. float dy = y - current_position[Y_AXIS];
  4962. float dz = z - current_position[Z_AXIS];
  4963. int n_segments = 0;
  4964. if (mbl.active) {
  4965. float len = abs(dx) + abs(dy);
  4966. if (len > 0)
  4967. // Split to 3cm segments or shorter.
  4968. n_segments = int(ceil(len / 30.f));
  4969. }
  4970. if (n_segments > 1) {
  4971. float de = e - current_position[E_AXIS];
  4972. for (int i = 1; i < n_segments; ++ i) {
  4973. float t = float(i) / float(n_segments);
  4974. plan_buffer_line(
  4975. current_position[X_AXIS] + t * dx,
  4976. current_position[Y_AXIS] + t * dy,
  4977. current_position[Z_AXIS] + t * dz,
  4978. current_position[E_AXIS] + t * de,
  4979. feed_rate, extruder);
  4980. }
  4981. }
  4982. // The rest of the path.
  4983. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4984. current_position[X_AXIS] = x;
  4985. current_position[Y_AXIS] = y;
  4986. current_position[Z_AXIS] = z;
  4987. current_position[E_AXIS] = e;
  4988. }
  4989. #endif // MESH_BED_LEVELING
  4990. void prepare_move()
  4991. {
  4992. clamp_to_software_endstops(destination);
  4993. previous_millis_cmd = millis();
  4994. // Do not use feedmultiply for E or Z only moves
  4995. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4996. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4997. }
  4998. else {
  4999. #ifdef MESH_BED_LEVELING
  5000. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5001. #else
  5002. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5003. #endif
  5004. }
  5005. for(int8_t i=0; i < NUM_AXIS; i++) {
  5006. current_position[i] = destination[i];
  5007. }
  5008. }
  5009. void prepare_arc_move(char isclockwise) {
  5010. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5011. // Trace the arc
  5012. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5013. // As far as the parser is concerned, the position is now == target. In reality the
  5014. // motion control system might still be processing the action and the real tool position
  5015. // in any intermediate location.
  5016. for(int8_t i=0; i < NUM_AXIS; i++) {
  5017. current_position[i] = destination[i];
  5018. }
  5019. previous_millis_cmd = millis();
  5020. }
  5021. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5022. #if defined(FAN_PIN)
  5023. #if CONTROLLERFAN_PIN == FAN_PIN
  5024. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5025. #endif
  5026. #endif
  5027. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5028. unsigned long lastMotorCheck = 0;
  5029. void controllerFan()
  5030. {
  5031. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5032. {
  5033. lastMotorCheck = millis();
  5034. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5035. #if EXTRUDERS > 2
  5036. || !READ(E2_ENABLE_PIN)
  5037. #endif
  5038. #if EXTRUDER > 1
  5039. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5040. || !READ(X2_ENABLE_PIN)
  5041. #endif
  5042. || !READ(E1_ENABLE_PIN)
  5043. #endif
  5044. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5045. {
  5046. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5047. }
  5048. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5049. {
  5050. digitalWrite(CONTROLLERFAN_PIN, 0);
  5051. analogWrite(CONTROLLERFAN_PIN, 0);
  5052. }
  5053. else
  5054. {
  5055. // allows digital or PWM fan output to be used (see M42 handling)
  5056. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5057. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5058. }
  5059. }
  5060. }
  5061. #endif
  5062. #ifdef TEMP_STAT_LEDS
  5063. static bool blue_led = false;
  5064. static bool red_led = false;
  5065. static uint32_t stat_update = 0;
  5066. void handle_status_leds(void) {
  5067. float max_temp = 0.0;
  5068. if(millis() > stat_update) {
  5069. stat_update += 500; // Update every 0.5s
  5070. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5071. max_temp = max(max_temp, degHotend(cur_extruder));
  5072. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5073. }
  5074. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5075. max_temp = max(max_temp, degTargetBed());
  5076. max_temp = max(max_temp, degBed());
  5077. #endif
  5078. if((max_temp > 55.0) && (red_led == false)) {
  5079. digitalWrite(STAT_LED_RED, 1);
  5080. digitalWrite(STAT_LED_BLUE, 0);
  5081. red_led = true;
  5082. blue_led = false;
  5083. }
  5084. if((max_temp < 54.0) && (blue_led == false)) {
  5085. digitalWrite(STAT_LED_RED, 0);
  5086. digitalWrite(STAT_LED_BLUE, 1);
  5087. red_led = false;
  5088. blue_led = true;
  5089. }
  5090. }
  5091. }
  5092. #endif
  5093. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5094. {
  5095. #if defined(KILL_PIN) && KILL_PIN > -1
  5096. static int killCount = 0; // make the inactivity button a bit less responsive
  5097. const int KILL_DELAY = 10000;
  5098. #endif
  5099. if(buflen < (BUFSIZE-1)){
  5100. get_command();
  5101. }
  5102. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5103. if(max_inactive_time)
  5104. kill();
  5105. if(stepper_inactive_time) {
  5106. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5107. {
  5108. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5109. disable_x();
  5110. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5111. disable_y();
  5112. disable_z();
  5113. disable_e0();
  5114. disable_e1();
  5115. disable_e2();
  5116. }
  5117. }
  5118. }
  5119. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5120. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5121. {
  5122. chdkActive = false;
  5123. WRITE(CHDK, LOW);
  5124. }
  5125. #endif
  5126. #if defined(KILL_PIN) && KILL_PIN > -1
  5127. // Check if the kill button was pressed and wait just in case it was an accidental
  5128. // key kill key press
  5129. // -------------------------------------------------------------------------------
  5130. if( 0 == READ(KILL_PIN) )
  5131. {
  5132. killCount++;
  5133. }
  5134. else if (killCount > 0)
  5135. {
  5136. killCount--;
  5137. }
  5138. // Exceeded threshold and we can confirm that it was not accidental
  5139. // KILL the machine
  5140. // ----------------------------------------------------------------
  5141. if ( killCount >= KILL_DELAY)
  5142. {
  5143. kill();
  5144. }
  5145. #endif
  5146. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5147. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5148. #endif
  5149. #ifdef EXTRUDER_RUNOUT_PREVENT
  5150. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5151. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5152. {
  5153. bool oldstatus=READ(E0_ENABLE_PIN);
  5154. enable_e0();
  5155. float oldepos=current_position[E_AXIS];
  5156. float oldedes=destination[E_AXIS];
  5157. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5158. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5159. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5160. current_position[E_AXIS]=oldepos;
  5161. destination[E_AXIS]=oldedes;
  5162. plan_set_e_position(oldepos);
  5163. previous_millis_cmd=millis();
  5164. st_synchronize();
  5165. WRITE(E0_ENABLE_PIN,oldstatus);
  5166. }
  5167. #endif
  5168. #ifdef TEMP_STAT_LEDS
  5169. handle_status_leds();
  5170. #endif
  5171. check_axes_activity();
  5172. }
  5173. void kill(const char *full_screen_message)
  5174. {
  5175. cli(); // Stop interrupts
  5176. disable_heater();
  5177. disable_x();
  5178. // SERIAL_ECHOLNPGM("kill - disable Y");
  5179. disable_y();
  5180. disable_z();
  5181. disable_e0();
  5182. disable_e1();
  5183. disable_e2();
  5184. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5185. pinMode(PS_ON_PIN,INPUT);
  5186. #endif
  5187. SERIAL_ERROR_START;
  5188. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5189. if (full_screen_message != NULL) {
  5190. SERIAL_ERRORLNRPGM(full_screen_message);
  5191. lcd_display_message_fullscreen_P(full_screen_message);
  5192. } else {
  5193. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5194. }
  5195. // FMC small patch to update the LCD before ending
  5196. sei(); // enable interrupts
  5197. for ( int i=5; i--; lcd_update())
  5198. {
  5199. delay(200);
  5200. }
  5201. cli(); // disable interrupts
  5202. suicide();
  5203. while(1) { /* Intentionally left empty */ } // Wait for reset
  5204. }
  5205. void Stop()
  5206. {
  5207. disable_heater();
  5208. if(Stopped == false) {
  5209. Stopped = true;
  5210. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5211. SERIAL_ERROR_START;
  5212. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5213. LCD_MESSAGERPGM(MSG_STOPPED);
  5214. }
  5215. }
  5216. bool IsStopped() { return Stopped; };
  5217. #ifdef FAST_PWM_FAN
  5218. void setPwmFrequency(uint8_t pin, int val)
  5219. {
  5220. val &= 0x07;
  5221. switch(digitalPinToTimer(pin))
  5222. {
  5223. #if defined(TCCR0A)
  5224. case TIMER0A:
  5225. case TIMER0B:
  5226. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5227. // TCCR0B |= val;
  5228. break;
  5229. #endif
  5230. #if defined(TCCR1A)
  5231. case TIMER1A:
  5232. case TIMER1B:
  5233. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5234. // TCCR1B |= val;
  5235. break;
  5236. #endif
  5237. #if defined(TCCR2)
  5238. case TIMER2:
  5239. case TIMER2:
  5240. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5241. TCCR2 |= val;
  5242. break;
  5243. #endif
  5244. #if defined(TCCR2A)
  5245. case TIMER2A:
  5246. case TIMER2B:
  5247. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5248. TCCR2B |= val;
  5249. break;
  5250. #endif
  5251. #if defined(TCCR3A)
  5252. case TIMER3A:
  5253. case TIMER3B:
  5254. case TIMER3C:
  5255. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5256. TCCR3B |= val;
  5257. break;
  5258. #endif
  5259. #if defined(TCCR4A)
  5260. case TIMER4A:
  5261. case TIMER4B:
  5262. case TIMER4C:
  5263. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5264. TCCR4B |= val;
  5265. break;
  5266. #endif
  5267. #if defined(TCCR5A)
  5268. case TIMER5A:
  5269. case TIMER5B:
  5270. case TIMER5C:
  5271. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5272. TCCR5B |= val;
  5273. break;
  5274. #endif
  5275. }
  5276. }
  5277. #endif //FAST_PWM_FAN
  5278. bool setTargetedHotend(int code){
  5279. tmp_extruder = active_extruder;
  5280. if(code_seen('T')) {
  5281. tmp_extruder = code_value();
  5282. if(tmp_extruder >= EXTRUDERS) {
  5283. SERIAL_ECHO_START;
  5284. switch(code){
  5285. case 104:
  5286. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5287. break;
  5288. case 105:
  5289. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5290. break;
  5291. case 109:
  5292. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5293. break;
  5294. case 218:
  5295. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5296. break;
  5297. case 221:
  5298. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5299. break;
  5300. }
  5301. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5302. return true;
  5303. }
  5304. }
  5305. return false;
  5306. }
  5307. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5308. {
  5309. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5310. {
  5311. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5312. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5313. }
  5314. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5315. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5316. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5317. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5318. total_filament_used = 0;
  5319. }
  5320. float calculate_volumetric_multiplier(float diameter) {
  5321. float area = .0;
  5322. float radius = .0;
  5323. radius = diameter * .5;
  5324. if (! volumetric_enabled || radius == 0) {
  5325. area = 1;
  5326. }
  5327. else {
  5328. area = M_PI * pow(radius, 2);
  5329. }
  5330. return 1.0 / area;
  5331. }
  5332. void calculate_volumetric_multipliers() {
  5333. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5334. #if EXTRUDERS > 1
  5335. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5336. #if EXTRUDERS > 2
  5337. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5338. #endif
  5339. #endif
  5340. }
  5341. void delay_keep_alive(unsigned int ms)
  5342. {
  5343. for (;;) {
  5344. manage_heater();
  5345. // Manage inactivity, but don't disable steppers on timeout.
  5346. manage_inactivity(true);
  5347. lcd_update();
  5348. if (ms == 0)
  5349. break;
  5350. else if (ms >= 50) {
  5351. delay(50);
  5352. ms -= 50;
  5353. } else {
  5354. delay(ms);
  5355. ms = 0;
  5356. }
  5357. }
  5358. }
  5359. void wait_for_heater(long codenum) {
  5360. #ifdef TEMP_RESIDENCY_TIME
  5361. long residencyStart;
  5362. residencyStart = -1;
  5363. /* continue to loop until we have reached the target temp
  5364. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5365. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5366. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5367. #else
  5368. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5369. #endif //TEMP_RESIDENCY_TIME
  5370. if ((millis() - codenum) > 1000UL)
  5371. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5372. if (!farm_mode) {
  5373. SERIAL_PROTOCOLPGM("T:");
  5374. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5375. SERIAL_PROTOCOLPGM(" E:");
  5376. SERIAL_PROTOCOL((int)tmp_extruder);
  5377. #ifdef TEMP_RESIDENCY_TIME
  5378. SERIAL_PROTOCOLPGM(" W:");
  5379. if (residencyStart > -1)
  5380. {
  5381. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5382. SERIAL_PROTOCOLLN(codenum);
  5383. }
  5384. else
  5385. {
  5386. SERIAL_PROTOCOLLN("?");
  5387. }
  5388. }
  5389. #else
  5390. SERIAL_PROTOCOLLN("");
  5391. #endif
  5392. codenum = millis();
  5393. }
  5394. manage_heater();
  5395. manage_inactivity();
  5396. lcd_update();
  5397. #ifdef TEMP_RESIDENCY_TIME
  5398. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5399. or when current temp falls outside the hysteresis after target temp was reached */
  5400. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5401. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5402. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5403. {
  5404. residencyStart = millis();
  5405. }
  5406. #endif //TEMP_RESIDENCY_TIME
  5407. }
  5408. }
  5409. void check_babystep() {
  5410. int babystep_z;
  5411. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5412. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5413. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5414. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5415. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5416. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5417. lcd_update_enable(true);
  5418. }
  5419. }
  5420. #ifdef DIS
  5421. void d_setup()
  5422. {
  5423. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5424. pinMode(D_DATA, INPUT_PULLUP);
  5425. pinMode(D_REQUIRE, OUTPUT);
  5426. digitalWrite(D_REQUIRE, HIGH);
  5427. }
  5428. float d_ReadData()
  5429. {
  5430. int digit[13];
  5431. String mergeOutput;
  5432. float output;
  5433. digitalWrite(D_REQUIRE, HIGH);
  5434. for (int i = 0; i<13; i++)
  5435. {
  5436. for (int j = 0; j < 4; j++)
  5437. {
  5438. while (digitalRead(D_DATACLOCK) == LOW) {}
  5439. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5440. bitWrite(digit[i], j, digitalRead(D_DATA));
  5441. }
  5442. }
  5443. digitalWrite(D_REQUIRE, LOW);
  5444. mergeOutput = "";
  5445. output = 0;
  5446. for (int r = 5; r <= 10; r++) //Merge digits
  5447. {
  5448. mergeOutput += digit[r];
  5449. }
  5450. output = mergeOutput.toFloat();
  5451. if (digit[4] == 8) //Handle sign
  5452. {
  5453. output *= -1;
  5454. }
  5455. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5456. {
  5457. output /= 10;
  5458. }
  5459. return output;
  5460. }
  5461. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5462. int t1 = 0;
  5463. int t_delay = 0;
  5464. int digit[13];
  5465. int m;
  5466. char str[3];
  5467. //String mergeOutput;
  5468. char mergeOutput[15];
  5469. float output;
  5470. int mesh_point = 0; //index number of calibration point
  5471. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5472. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5473. float mesh_home_z_search = 4;
  5474. float row[x_points_num];
  5475. int ix = 0;
  5476. int iy = 0;
  5477. char* filename_wldsd = "wldsd.txt";
  5478. char data_wldsd[70];
  5479. char numb_wldsd[10];
  5480. d_setup();
  5481. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5482. // We don't know where we are! HOME!
  5483. // Push the commands to the front of the message queue in the reverse order!
  5484. // There shall be always enough space reserved for these commands.
  5485. repeatcommand_front(); // repeat G80 with all its parameters
  5486. enquecommand_front_P((PSTR("G28 W0")));
  5487. enquecommand_front_P((PSTR("G1 Z5")));
  5488. return;
  5489. }
  5490. bool custom_message_old = custom_message;
  5491. unsigned int custom_message_type_old = custom_message_type;
  5492. unsigned int custom_message_state_old = custom_message_state;
  5493. custom_message = true;
  5494. custom_message_type = 1;
  5495. custom_message_state = (x_points_num * y_points_num) + 10;
  5496. lcd_update(1);
  5497. mbl.reset();
  5498. babystep_undo();
  5499. card.openFile(filename_wldsd, false);
  5500. current_position[Z_AXIS] = mesh_home_z_search;
  5501. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5502. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5503. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5504. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5505. setup_for_endstop_move(false);
  5506. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5507. SERIAL_PROTOCOL(x_points_num);
  5508. SERIAL_PROTOCOLPGM(",");
  5509. SERIAL_PROTOCOL(y_points_num);
  5510. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5511. SERIAL_PROTOCOL(mesh_home_z_search);
  5512. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5513. SERIAL_PROTOCOL(x_dimension);
  5514. SERIAL_PROTOCOLPGM(",");
  5515. SERIAL_PROTOCOL(y_dimension);
  5516. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5517. while (mesh_point != x_points_num * y_points_num) {
  5518. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5519. iy = mesh_point / x_points_num;
  5520. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5521. float z0 = 0.f;
  5522. current_position[Z_AXIS] = mesh_home_z_search;
  5523. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5524. st_synchronize();
  5525. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5526. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5527. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5528. st_synchronize();
  5529. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5530. break;
  5531. card.closefile();
  5532. }
  5533. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5534. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5535. //strcat(data_wldsd, numb_wldsd);
  5536. //MYSERIAL.println(data_wldsd);
  5537. //delay(1000);
  5538. //delay(3000);
  5539. //t1 = millis();
  5540. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5541. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5542. memset(digit, 0, sizeof(digit));
  5543. //cli();
  5544. digitalWrite(D_REQUIRE, LOW);
  5545. for (int i = 0; i<13; i++)
  5546. {
  5547. //t1 = millis();
  5548. for (int j = 0; j < 4; j++)
  5549. {
  5550. while (digitalRead(D_DATACLOCK) == LOW) {}
  5551. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5552. bitWrite(digit[i], j, digitalRead(D_DATA));
  5553. }
  5554. //t_delay = (millis() - t1);
  5555. //SERIAL_PROTOCOLPGM(" ");
  5556. //SERIAL_PROTOCOL_F(t_delay, 5);
  5557. //SERIAL_PROTOCOLPGM(" ");
  5558. }
  5559. //sei();
  5560. digitalWrite(D_REQUIRE, HIGH);
  5561. mergeOutput[0] = '\0';
  5562. output = 0;
  5563. for (int r = 5; r <= 10; r++) //Merge digits
  5564. {
  5565. sprintf(str, "%d", digit[r]);
  5566. strcat(mergeOutput, str);
  5567. }
  5568. output = atof(mergeOutput);
  5569. if (digit[4] == 8) //Handle sign
  5570. {
  5571. output *= -1;
  5572. }
  5573. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5574. {
  5575. output *= 0.1;
  5576. }
  5577. //output = d_ReadData();
  5578. //row[ix] = current_position[Z_AXIS];
  5579. memset(data_wldsd, 0, sizeof(data_wldsd));
  5580. for (int i = 0; i <3; i++) {
  5581. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5582. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5583. strcat(data_wldsd, numb_wldsd);
  5584. strcat(data_wldsd, ";");
  5585. }
  5586. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5587. dtostrf(output, 8, 5, numb_wldsd);
  5588. strcat(data_wldsd, numb_wldsd);
  5589. //strcat(data_wldsd, ";");
  5590. card.write_command(data_wldsd);
  5591. //row[ix] = d_ReadData();
  5592. row[ix] = output; // current_position[Z_AXIS];
  5593. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5594. for (int i = 0; i < x_points_num; i++) {
  5595. SERIAL_PROTOCOLPGM(" ");
  5596. SERIAL_PROTOCOL_F(row[i], 5);
  5597. }
  5598. SERIAL_PROTOCOLPGM("\n");
  5599. }
  5600. custom_message_state--;
  5601. mesh_point++;
  5602. lcd_update(1);
  5603. }
  5604. card.closefile();
  5605. }
  5606. #endif
  5607. void temp_compensation_start() {
  5608. custom_message = true;
  5609. custom_message_type = 5;
  5610. custom_message_state = PINDA_HEAT_T + 1;
  5611. lcd_update(2);
  5612. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5613. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5614. }
  5615. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5616. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5617. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5618. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5619. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5620. st_synchronize();
  5621. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5622. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5623. delay_keep_alive(1000);
  5624. custom_message_state = PINDA_HEAT_T - i;
  5625. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5626. else lcd_update(1);
  5627. }
  5628. custom_message_type = 0;
  5629. custom_message_state = 0;
  5630. custom_message = false;
  5631. }
  5632. void temp_compensation_apply() {
  5633. int i_add;
  5634. int compensation_value;
  5635. int z_shift = 0;
  5636. float z_shift_mm;
  5637. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5638. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5639. i_add = (target_temperature_bed - 60) / 10;
  5640. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5641. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5642. }else {
  5643. //interpolation
  5644. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5645. }
  5646. SERIAL_PROTOCOLPGM("\n");
  5647. SERIAL_PROTOCOLPGM("Z shift applied:");
  5648. MYSERIAL.print(z_shift_mm);
  5649. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5650. st_synchronize();
  5651. plan_set_z_position(current_position[Z_AXIS]);
  5652. }
  5653. else {
  5654. //we have no temp compensation data
  5655. }
  5656. }
  5657. float temp_comp_interpolation(float inp_temperature) {
  5658. //cubic spline interpolation
  5659. int n, i, j, k;
  5660. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5661. int shift[10];
  5662. int temp_C[10];
  5663. n = 6; //number of measured points
  5664. shift[0] = 0;
  5665. for (i = 0; i < n; i++) {
  5666. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5667. temp_C[i] = 50 + i * 10; //temperature in C
  5668. x[i] = (float)temp_C[i];
  5669. f[i] = (float)shift[i];
  5670. }
  5671. if (inp_temperature < x[0]) return 0;
  5672. for (i = n - 1; i>0; i--) {
  5673. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5674. h[i - 1] = x[i] - x[i - 1];
  5675. }
  5676. //*********** formation of h, s , f matrix **************
  5677. for (i = 1; i<n - 1; i++) {
  5678. m[i][i] = 2 * (h[i - 1] + h[i]);
  5679. if (i != 1) {
  5680. m[i][i - 1] = h[i - 1];
  5681. m[i - 1][i] = h[i - 1];
  5682. }
  5683. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5684. }
  5685. //*********** forward elimination **************
  5686. for (i = 1; i<n - 2; i++) {
  5687. temp = (m[i + 1][i] / m[i][i]);
  5688. for (j = 1; j <= n - 1; j++)
  5689. m[i + 1][j] -= temp*m[i][j];
  5690. }
  5691. //*********** backward substitution *********
  5692. for (i = n - 2; i>0; i--) {
  5693. sum = 0;
  5694. for (j = i; j <= n - 2; j++)
  5695. sum += m[i][j] * s[j];
  5696. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5697. }
  5698. for (i = 0; i<n - 1; i++)
  5699. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5700. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5701. b = s[i] / 2;
  5702. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5703. d = f[i];
  5704. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5705. }
  5706. return sum;
  5707. }
  5708. void long_pause() //long pause print
  5709. {
  5710. st_synchronize();
  5711. //save currently set parameters to global variables
  5712. saved_feedmultiply = feedmultiply;
  5713. HotendTempBckp = degTargetHotend(active_extruder);
  5714. fanSpeedBckp = fanSpeed;
  5715. start_pause_print = millis();
  5716. //save position
  5717. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  5718. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  5719. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  5720. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  5721. //retract
  5722. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5723. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5724. //lift z
  5725. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  5726. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  5727. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  5728. //set nozzle target temperature to 0
  5729. setTargetHotend(0, 0);
  5730. setTargetHotend(0, 1);
  5731. setTargetHotend(0, 2);
  5732. //Move XY to side
  5733. current_position[X_AXIS] = X_PAUSE_POS;
  5734. current_position[Y_AXIS] = Y_PAUSE_POS;
  5735. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5736. // Turn off the print fan
  5737. fanSpeed = 0;
  5738. st_synchronize();
  5739. }
  5740. void serialecho_temperatures() {
  5741. float tt = degHotend(active_extruder);
  5742. SERIAL_PROTOCOLPGM("T:");
  5743. SERIAL_PROTOCOL(tt);
  5744. SERIAL_PROTOCOLPGM(" E:");
  5745. SERIAL_PROTOCOL((int)active_extruder);
  5746. SERIAL_PROTOCOLPGM(" B:");
  5747. SERIAL_PROTOCOL_F(degBed(), 1);
  5748. SERIAL_PROTOCOLLN("");
  5749. }