Marlin_main.cpp 224 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  178. // M907 - Set digital trimpot motor current using axis codes.
  179. // M908 - Control digital trimpot directly.
  180. // M350 - Set microstepping mode.
  181. // M351 - Toggle MS1 MS2 pins directly.
  182. // M928 - Start SD logging (M928 filename.g) - ended by M29
  183. // M999 - Restart after being stopped by error
  184. //Stepper Movement Variables
  185. //===========================================================================
  186. //=============================imported variables============================
  187. //===========================================================================
  188. //===========================================================================
  189. //=============================public variables=============================
  190. //===========================================================================
  191. #ifdef SDSUPPORT
  192. CardReader card;
  193. #endif
  194. unsigned long TimeSent = millis();
  195. unsigned long TimeNow = millis();
  196. unsigned long PingTime = millis();
  197. union Data
  198. {
  199. byte b[2];
  200. int value;
  201. };
  202. float homing_feedrate[] = HOMING_FEEDRATE;
  203. // Currently only the extruder axis may be switched to a relative mode.
  204. // Other axes are always absolute or relative based on the common relative_mode flag.
  205. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  206. int feedmultiply=100; //100->1 200->2
  207. int saved_feedmultiply;
  208. int extrudemultiply=100; //100->1 200->2
  209. int extruder_multiply[EXTRUDERS] = {100
  210. #if EXTRUDERS > 1
  211. , 100
  212. #if EXTRUDERS > 2
  213. , 100
  214. #endif
  215. #endif
  216. };
  217. int bowden_length[4];
  218. bool is_usb_printing = false;
  219. bool homing_flag = false;
  220. bool temp_cal_active = false;
  221. unsigned long kicktime = millis()+100000;
  222. unsigned int usb_printing_counter;
  223. int lcd_change_fil_state = 0;
  224. int feedmultiplyBckp = 100;
  225. float HotendTempBckp = 0;
  226. int fanSpeedBckp = 0;
  227. float pause_lastpos[4];
  228. unsigned long pause_time = 0;
  229. unsigned long start_pause_print = millis();
  230. unsigned long load_filament_time;
  231. bool mesh_bed_leveling_flag = false;
  232. bool mesh_bed_run_from_menu = false;
  233. unsigned char lang_selected = 0;
  234. int8_t FarmMode = 0;
  235. bool prusa_sd_card_upload = false;
  236. unsigned int status_number = 0;
  237. unsigned long total_filament_used;
  238. unsigned int heating_status;
  239. unsigned int heating_status_counter;
  240. bool custom_message;
  241. bool loading_flag = false;
  242. unsigned int custom_message_type;
  243. unsigned int custom_message_state;
  244. char snmm_filaments_used = 0;
  245. float distance_from_min[3];
  246. float angleDiff;
  247. bool volumetric_enabled = false;
  248. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  249. #if EXTRUDERS > 1
  250. , DEFAULT_NOMINAL_FILAMENT_DIA
  251. #if EXTRUDERS > 2
  252. , DEFAULT_NOMINAL_FILAMENT_DIA
  253. #endif
  254. #endif
  255. };
  256. float volumetric_multiplier[EXTRUDERS] = {1.0
  257. #if EXTRUDERS > 1
  258. , 1.0
  259. #if EXTRUDERS > 2
  260. , 1.0
  261. #endif
  262. #endif
  263. };
  264. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  265. float add_homing[3]={0,0,0};
  266. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  267. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  268. bool axis_known_position[3] = {false, false, false};
  269. float zprobe_zoffset;
  270. // Extruder offset
  271. #if EXTRUDERS > 1
  272. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  273. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  274. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  275. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  276. #endif
  277. };
  278. #endif
  279. uint8_t active_extruder = 0;
  280. int fanSpeed=0;
  281. #ifdef FWRETRACT
  282. bool autoretract_enabled=false;
  283. bool retracted[EXTRUDERS]={false
  284. #if EXTRUDERS > 1
  285. , false
  286. #if EXTRUDERS > 2
  287. , false
  288. #endif
  289. #endif
  290. };
  291. bool retracted_swap[EXTRUDERS]={false
  292. #if EXTRUDERS > 1
  293. , false
  294. #if EXTRUDERS > 2
  295. , false
  296. #endif
  297. #endif
  298. };
  299. float retract_length = RETRACT_LENGTH;
  300. float retract_length_swap = RETRACT_LENGTH_SWAP;
  301. float retract_feedrate = RETRACT_FEEDRATE;
  302. float retract_zlift = RETRACT_ZLIFT;
  303. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  304. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  305. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  306. #endif
  307. #ifdef ULTIPANEL
  308. #ifdef PS_DEFAULT_OFF
  309. bool powersupply = false;
  310. #else
  311. bool powersupply = true;
  312. #endif
  313. #endif
  314. bool cancel_heatup = false ;
  315. #ifdef FILAMENT_SENSOR
  316. //Variables for Filament Sensor input
  317. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  318. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  319. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  320. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  321. int delay_index1=0; //index into ring buffer
  322. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  323. float delay_dist=0; //delay distance counter
  324. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  325. #endif
  326. const char errormagic[] PROGMEM = "Error:";
  327. const char echomagic[] PROGMEM = "echo:";
  328. //===========================================================================
  329. //=============================Private Variables=============================
  330. //===========================================================================
  331. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  332. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  333. static float delta[3] = {0.0, 0.0, 0.0};
  334. // For tracing an arc
  335. static float offset[3] = {0.0, 0.0, 0.0};
  336. static bool home_all_axis = true;
  337. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  338. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  339. // Determines Absolute or Relative Coordinates.
  340. // Also there is bool axis_relative_modes[] per axis flag.
  341. static bool relative_mode = false;
  342. // String circular buffer. Commands may be pushed to the buffer from both sides:
  343. // Chained commands will be pushed to the front, interactive (from LCD menu)
  344. // and printing commands (from serial line or from SD card) are pushed to the tail.
  345. // First character of each entry indicates the type of the entry:
  346. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  347. // Command in cmdbuffer was sent over USB.
  348. #define CMDBUFFER_CURRENT_TYPE_USB 1
  349. // Command in cmdbuffer was read from SDCARD.
  350. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  351. // Command in cmdbuffer was generated by the UI.
  352. #define CMDBUFFER_CURRENT_TYPE_UI 3
  353. // Command in cmdbuffer was generated by another G-code.
  354. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  355. // How much space to reserve for the chained commands
  356. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  357. // which are pushed to the front of the queue?
  358. // Maximum 5 commands of max length 20 + null terminator.
  359. #define CMDBUFFER_RESERVE_FRONT (5*21)
  360. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  361. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  362. // Head of the circular buffer, where to read.
  363. static int bufindr = 0;
  364. // Tail of the buffer, where to write.
  365. static int bufindw = 0;
  366. // Number of lines in cmdbuffer.
  367. static int buflen = 0;
  368. // Flag for processing the current command inside the main Arduino loop().
  369. // If a new command was pushed to the front of a command buffer while
  370. // processing another command, this replaces the command on the top.
  371. // Therefore don't remove the command from the queue in the loop() function.
  372. static bool cmdbuffer_front_already_processed = false;
  373. // Type of a command, which is to be executed right now.
  374. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  375. // String of a command, which is to be executed right now.
  376. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  377. // Enable debugging of the command buffer.
  378. // Debugging information will be sent to serial line.
  379. // #define CMDBUFFER_DEBUG
  380. static int serial_count = 0; //index of character read from serial line
  381. static boolean comment_mode = false;
  382. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  383. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  384. //static float tt = 0;
  385. //static float bt = 0;
  386. //Inactivity shutdown variables
  387. static unsigned long previous_millis_cmd = 0;
  388. unsigned long max_inactive_time = 0;
  389. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  390. unsigned long starttime=0;
  391. unsigned long stoptime=0;
  392. unsigned long _usb_timer = 0;
  393. static uint8_t tmp_extruder;
  394. bool Stopped=false;
  395. #if NUM_SERVOS > 0
  396. Servo servos[NUM_SERVOS];
  397. #endif
  398. bool CooldownNoWait = true;
  399. bool target_direction;
  400. //Insert variables if CHDK is defined
  401. #ifdef CHDK
  402. unsigned long chdkHigh = 0;
  403. boolean chdkActive = false;
  404. #endif
  405. //===========================================================================
  406. //=============================Routines======================================
  407. //===========================================================================
  408. void get_arc_coordinates();
  409. bool setTargetedHotend(int code);
  410. void serial_echopair_P(const char *s_P, float v)
  411. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  412. void serial_echopair_P(const char *s_P, double v)
  413. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  414. void serial_echopair_P(const char *s_P, unsigned long v)
  415. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  416. #ifdef SDSUPPORT
  417. #include "SdFatUtil.h"
  418. int freeMemory() { return SdFatUtil::FreeRam(); }
  419. #else
  420. extern "C" {
  421. extern unsigned int __bss_end;
  422. extern unsigned int __heap_start;
  423. extern void *__brkval;
  424. int freeMemory() {
  425. int free_memory;
  426. if ((int)__brkval == 0)
  427. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  428. else
  429. free_memory = ((int)&free_memory) - ((int)__brkval);
  430. return free_memory;
  431. }
  432. }
  433. #endif //!SDSUPPORT
  434. // Pop the currently processed command from the queue.
  435. // It is expected, that there is at least one command in the queue.
  436. bool cmdqueue_pop_front()
  437. {
  438. if (buflen > 0) {
  439. #ifdef CMDBUFFER_DEBUG
  440. SERIAL_ECHOPGM("Dequeing ");
  441. SERIAL_ECHO(cmdbuffer+bufindr+1);
  442. SERIAL_ECHOLNPGM("");
  443. SERIAL_ECHOPGM("Old indices: buflen ");
  444. SERIAL_ECHO(buflen);
  445. SERIAL_ECHOPGM(", bufindr ");
  446. SERIAL_ECHO(bufindr);
  447. SERIAL_ECHOPGM(", bufindw ");
  448. SERIAL_ECHO(bufindw);
  449. SERIAL_ECHOPGM(", serial_count ");
  450. SERIAL_ECHO(serial_count);
  451. SERIAL_ECHOPGM(", bufsize ");
  452. SERIAL_ECHO(sizeof(cmdbuffer));
  453. SERIAL_ECHOLNPGM("");
  454. #endif /* CMDBUFFER_DEBUG */
  455. if (-- buflen == 0) {
  456. // Empty buffer.
  457. if (serial_count == 0)
  458. // No serial communication is pending. Reset both pointers to zero.
  459. bufindw = 0;
  460. bufindr = bufindw;
  461. } else {
  462. // There is at least one ready line in the buffer.
  463. // First skip the current command ID and iterate up to the end of the string.
  464. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  465. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  466. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  467. // If the end of the buffer was empty,
  468. if (bufindr == sizeof(cmdbuffer)) {
  469. // skip to the start and find the nonzero command.
  470. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  471. }
  472. #ifdef CMDBUFFER_DEBUG
  473. SERIAL_ECHOPGM("New indices: buflen ");
  474. SERIAL_ECHO(buflen);
  475. SERIAL_ECHOPGM(", bufindr ");
  476. SERIAL_ECHO(bufindr);
  477. SERIAL_ECHOPGM(", bufindw ");
  478. SERIAL_ECHO(bufindw);
  479. SERIAL_ECHOPGM(", serial_count ");
  480. SERIAL_ECHO(serial_count);
  481. SERIAL_ECHOPGM(" new command on the top: ");
  482. SERIAL_ECHO(cmdbuffer+bufindr+1);
  483. SERIAL_ECHOLNPGM("");
  484. #endif /* CMDBUFFER_DEBUG */
  485. }
  486. return true;
  487. }
  488. return false;
  489. }
  490. void cmdqueue_reset()
  491. {
  492. while (cmdqueue_pop_front()) ;
  493. }
  494. // How long a string could be pushed to the front of the command queue?
  495. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  496. // len_asked does not contain the zero terminator size.
  497. bool cmdqueue_could_enqueue_front(int len_asked)
  498. {
  499. // MAX_CMD_SIZE has to accommodate the zero terminator.
  500. if (len_asked >= MAX_CMD_SIZE)
  501. return false;
  502. // Remove the currently processed command from the queue.
  503. if (! cmdbuffer_front_already_processed) {
  504. cmdqueue_pop_front();
  505. cmdbuffer_front_already_processed = true;
  506. }
  507. if (bufindr == bufindw && buflen > 0)
  508. // Full buffer.
  509. return false;
  510. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  511. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  512. if (bufindw < bufindr) {
  513. int bufindr_new = bufindr - len_asked - 2;
  514. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  515. if (endw <= bufindr_new) {
  516. bufindr = bufindr_new;
  517. return true;
  518. }
  519. } else {
  520. // Otherwise the free space is split between the start and end.
  521. if (len_asked + 2 <= bufindr) {
  522. // Could fit at the start.
  523. bufindr -= len_asked + 2;
  524. return true;
  525. }
  526. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  527. if (endw <= bufindr_new) {
  528. memset(cmdbuffer, 0, bufindr);
  529. bufindr = bufindr_new;
  530. return true;
  531. }
  532. }
  533. return false;
  534. }
  535. // Could one enqueue a command of lenthg len_asked into the buffer,
  536. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  537. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  538. // len_asked does not contain the zero terminator size.
  539. bool cmdqueue_could_enqueue_back(int len_asked)
  540. {
  541. // MAX_CMD_SIZE has to accommodate the zero terminator.
  542. if (len_asked >= MAX_CMD_SIZE)
  543. return false;
  544. if (bufindr == bufindw && buflen > 0)
  545. // Full buffer.
  546. return false;
  547. if (serial_count > 0) {
  548. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  549. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  550. // serial data.
  551. // How much memory to reserve for the commands pushed to the front?
  552. // End of the queue, when pushing to the end.
  553. int endw = bufindw + len_asked + 2;
  554. if (bufindw < bufindr)
  555. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  556. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  557. // Otherwise the free space is split between the start and end.
  558. if (// Could one fit to the end, including the reserve?
  559. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  560. // Could one fit to the end, and the reserve to the start?
  561. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  562. return true;
  563. // Could one fit both to the start?
  564. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  565. // Mark the rest of the buffer as used.
  566. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  567. // and point to the start.
  568. bufindw = 0;
  569. return true;
  570. }
  571. } else {
  572. // How much memory to reserve for the commands pushed to the front?
  573. // End of the queue, when pushing to the end.
  574. int endw = bufindw + len_asked + 2;
  575. if (bufindw < bufindr)
  576. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  577. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  578. // Otherwise the free space is split between the start and end.
  579. if (// Could one fit to the end, including the reserve?
  580. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  581. // Could one fit to the end, and the reserve to the start?
  582. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  583. return true;
  584. // Could one fit both to the start?
  585. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  586. // Mark the rest of the buffer as used.
  587. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  588. // and point to the start.
  589. bufindw = 0;
  590. return true;
  591. }
  592. }
  593. return false;
  594. }
  595. #ifdef CMDBUFFER_DEBUG
  596. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  597. {
  598. SERIAL_ECHOPGM("Entry nr: ");
  599. SERIAL_ECHO(nr);
  600. SERIAL_ECHOPGM(", type: ");
  601. SERIAL_ECHO(int(*p));
  602. SERIAL_ECHOPGM(", cmd: ");
  603. SERIAL_ECHO(p+1);
  604. SERIAL_ECHOLNPGM("");
  605. }
  606. static void cmdqueue_dump_to_serial()
  607. {
  608. if (buflen == 0) {
  609. SERIAL_ECHOLNPGM("The command buffer is empty.");
  610. } else {
  611. SERIAL_ECHOPGM("Content of the buffer: entries ");
  612. SERIAL_ECHO(buflen);
  613. SERIAL_ECHOPGM(", indr ");
  614. SERIAL_ECHO(bufindr);
  615. SERIAL_ECHOPGM(", indw ");
  616. SERIAL_ECHO(bufindw);
  617. SERIAL_ECHOLNPGM("");
  618. int nr = 0;
  619. if (bufindr < bufindw) {
  620. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  621. cmdqueue_dump_to_serial_single_line(nr, p);
  622. // Skip the command.
  623. for (++p; *p != 0; ++ p);
  624. // Skip the gaps.
  625. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  626. }
  627. } else {
  628. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  629. cmdqueue_dump_to_serial_single_line(nr, p);
  630. // Skip the command.
  631. for (++p; *p != 0; ++ p);
  632. // Skip the gaps.
  633. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  634. }
  635. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  636. cmdqueue_dump_to_serial_single_line(nr, p);
  637. // Skip the command.
  638. for (++p; *p != 0; ++ p);
  639. // Skip the gaps.
  640. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  641. }
  642. }
  643. SERIAL_ECHOLNPGM("End of the buffer.");
  644. }
  645. }
  646. #endif /* CMDBUFFER_DEBUG */
  647. //adds an command to the main command buffer
  648. //thats really done in a non-safe way.
  649. //needs overworking someday
  650. // Currently the maximum length of a command piped through this function is around 20 characters
  651. void enquecommand(const char *cmd, bool from_progmem)
  652. {
  653. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  654. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  655. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  656. if (cmdqueue_could_enqueue_back(len)) {
  657. // This is dangerous if a mixing of serial and this happens
  658. // This may easily be tested: If serial_count > 0, we have a problem.
  659. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  660. if (from_progmem)
  661. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  662. else
  663. strcpy(cmdbuffer + bufindw + 1, cmd);
  664. SERIAL_ECHO_START;
  665. SERIAL_ECHORPGM(MSG_Enqueing);
  666. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  667. SERIAL_ECHOLNPGM("\"");
  668. bufindw += len + 2;
  669. if (bufindw == sizeof(cmdbuffer))
  670. bufindw = 0;
  671. ++ buflen;
  672. #ifdef CMDBUFFER_DEBUG
  673. cmdqueue_dump_to_serial();
  674. #endif /* CMDBUFFER_DEBUG */
  675. } else {
  676. SERIAL_ERROR_START;
  677. SERIAL_ECHORPGM(MSG_Enqueing);
  678. if (from_progmem)
  679. SERIAL_PROTOCOLRPGM(cmd);
  680. else
  681. SERIAL_ECHO(cmd);
  682. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  683. #ifdef CMDBUFFER_DEBUG
  684. cmdqueue_dump_to_serial();
  685. #endif /* CMDBUFFER_DEBUG */
  686. }
  687. }
  688. void enquecommand_front(const char *cmd, bool from_progmem)
  689. {
  690. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  691. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  692. if (cmdqueue_could_enqueue_front(len)) {
  693. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  694. if (from_progmem)
  695. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  696. else
  697. strcpy(cmdbuffer + bufindr + 1, cmd);
  698. ++ buflen;
  699. SERIAL_ECHO_START;
  700. SERIAL_ECHOPGM("Enqueing to the front: \"");
  701. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  702. SERIAL_ECHOLNPGM("\"");
  703. #ifdef CMDBUFFER_DEBUG
  704. cmdqueue_dump_to_serial();
  705. #endif /* CMDBUFFER_DEBUG */
  706. } else {
  707. SERIAL_ERROR_START;
  708. SERIAL_ECHOPGM("Enqueing to the front: \"");
  709. if (from_progmem)
  710. SERIAL_PROTOCOLRPGM(cmd);
  711. else
  712. SERIAL_ECHO(cmd);
  713. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  714. #ifdef CMDBUFFER_DEBUG
  715. cmdqueue_dump_to_serial();
  716. #endif /* CMDBUFFER_DEBUG */
  717. }
  718. }
  719. // Mark the command at the top of the command queue as new.
  720. // Therefore it will not be removed from the queue.
  721. void repeatcommand_front()
  722. {
  723. cmdbuffer_front_already_processed = true;
  724. }
  725. bool is_buffer_empty()
  726. {
  727. if (buflen == 0) return true;
  728. else return false;
  729. }
  730. void setup_killpin()
  731. {
  732. #if defined(KILL_PIN) && KILL_PIN > -1
  733. SET_INPUT(KILL_PIN);
  734. WRITE(KILL_PIN,HIGH);
  735. #endif
  736. }
  737. // Set home pin
  738. void setup_homepin(void)
  739. {
  740. #if defined(HOME_PIN) && HOME_PIN > -1
  741. SET_INPUT(HOME_PIN);
  742. WRITE(HOME_PIN,HIGH);
  743. #endif
  744. }
  745. void setup_photpin()
  746. {
  747. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  748. SET_OUTPUT(PHOTOGRAPH_PIN);
  749. WRITE(PHOTOGRAPH_PIN, LOW);
  750. #endif
  751. }
  752. void setup_powerhold()
  753. {
  754. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  755. SET_OUTPUT(SUICIDE_PIN);
  756. WRITE(SUICIDE_PIN, HIGH);
  757. #endif
  758. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  759. SET_OUTPUT(PS_ON_PIN);
  760. #if defined(PS_DEFAULT_OFF)
  761. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  762. #else
  763. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  764. #endif
  765. #endif
  766. }
  767. void suicide()
  768. {
  769. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  770. SET_OUTPUT(SUICIDE_PIN);
  771. WRITE(SUICIDE_PIN, LOW);
  772. #endif
  773. }
  774. void servo_init()
  775. {
  776. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  777. servos[0].attach(SERVO0_PIN);
  778. #endif
  779. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  780. servos[1].attach(SERVO1_PIN);
  781. #endif
  782. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  783. servos[2].attach(SERVO2_PIN);
  784. #endif
  785. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  786. servos[3].attach(SERVO3_PIN);
  787. #endif
  788. #if (NUM_SERVOS >= 5)
  789. #error "TODO: enter initalisation code for more servos"
  790. #endif
  791. }
  792. static void lcd_language_menu();
  793. #ifdef MESH_BED_LEVELING
  794. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  795. #endif
  796. // Factory reset function
  797. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  798. // Level input parameter sets depth of reset
  799. // Quiet parameter masks all waitings for user interact.
  800. int er_progress = 0;
  801. void factory_reset(char level, bool quiet)
  802. {
  803. lcd_implementation_clear();
  804. int cursor_pos = 0;
  805. switch (level) {
  806. // Level 0: Language reset
  807. case 0:
  808. WRITE(BEEPER, HIGH);
  809. _delay_ms(100);
  810. WRITE(BEEPER, LOW);
  811. lcd_force_language_selection();
  812. break;
  813. //Level 1: Reset statistics
  814. case 1:
  815. WRITE(BEEPER, HIGH);
  816. _delay_ms(100);
  817. WRITE(BEEPER, LOW);
  818. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  819. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  820. lcd_menu_statistics();
  821. break;
  822. // Level 2: Prepare for shipping
  823. case 2:
  824. //lcd_printPGM(PSTR("Factory RESET"));
  825. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  826. // Force language selection at the next boot up.
  827. lcd_force_language_selection();
  828. // Force the "Follow calibration flow" message at the next boot up.
  829. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  830. farm_no = 0;
  831. farm_mode == false;
  832. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  833. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  834. WRITE(BEEPER, HIGH);
  835. _delay_ms(100);
  836. WRITE(BEEPER, LOW);
  837. //_delay_ms(2000);
  838. break;
  839. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  840. case 3:
  841. lcd_printPGM(PSTR("Factory RESET"));
  842. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  843. WRITE(BEEPER, HIGH);
  844. _delay_ms(100);
  845. WRITE(BEEPER, LOW);
  846. er_progress = 0;
  847. lcd_print_at_PGM(3, 3, PSTR(" "));
  848. lcd_implementation_print_at(3, 3, er_progress);
  849. // Erase EEPROM
  850. for (int i = 0; i < 4096; i++) {
  851. eeprom_write_byte((uint8_t*)i, 0xFF);
  852. if (i % 41 == 0) {
  853. er_progress++;
  854. lcd_print_at_PGM(3, 3, PSTR(" "));
  855. lcd_implementation_print_at(3, 3, er_progress);
  856. lcd_printPGM(PSTR("%"));
  857. }
  858. }
  859. break;
  860. case 4:
  861. bowden_menu();
  862. break;
  863. default:
  864. break;
  865. }
  866. }
  867. // "Setup" function is called by the Arduino framework on startup.
  868. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  869. // are initialized by the main() routine provided by the Arduino framework.
  870. void setup()
  871. {
  872. setup_killpin();
  873. setup_powerhold();
  874. MYSERIAL.begin(BAUDRATE);
  875. SERIAL_PROTOCOLLNPGM("start");
  876. SERIAL_ECHO_START;
  877. #if 0
  878. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  879. for (int i = 0; i < 4096; ++i) {
  880. int b = eeprom_read_byte((unsigned char*)i);
  881. if (b != 255) {
  882. SERIAL_ECHO(i);
  883. SERIAL_ECHO(":");
  884. SERIAL_ECHO(b);
  885. SERIAL_ECHOLN("");
  886. }
  887. }
  888. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  889. #endif
  890. // Check startup - does nothing if bootloader sets MCUSR to 0
  891. byte mcu = MCUSR;
  892. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  893. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  894. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  895. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  896. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  897. MCUSR = 0;
  898. //SERIAL_ECHORPGM(MSG_MARLIN);
  899. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  900. #ifdef STRING_VERSION_CONFIG_H
  901. #ifdef STRING_CONFIG_H_AUTHOR
  902. SERIAL_ECHO_START;
  903. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  904. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  905. SERIAL_ECHORPGM(MSG_AUTHOR);
  906. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  907. SERIAL_ECHOPGM("Compiled: ");
  908. SERIAL_ECHOLNPGM(__DATE__);
  909. #endif
  910. #endif
  911. SERIAL_ECHO_START;
  912. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  913. SERIAL_ECHO(freeMemory());
  914. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  915. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  916. lcd_update_enable(false);
  917. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  918. Config_RetrieveSettings();
  919. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  920. tp_init(); // Initialize temperature loop
  921. plan_init(); // Initialize planner;
  922. watchdog_init();
  923. st_init(); // Initialize stepper, this enables interrupts!
  924. setup_photpin();
  925. servo_init();
  926. // Reset the machine correction matrix.
  927. // It does not make sense to load the correction matrix until the machine is homed.
  928. world2machine_reset();
  929. lcd_init();
  930. if (!READ(BTN_ENC))
  931. {
  932. _delay_ms(1000);
  933. if (!READ(BTN_ENC))
  934. {
  935. lcd_implementation_clear();
  936. lcd_printPGM(PSTR("Factory RESET"));
  937. SET_OUTPUT(BEEPER);
  938. WRITE(BEEPER, HIGH);
  939. while (!READ(BTN_ENC));
  940. WRITE(BEEPER, LOW);
  941. _delay_ms(2000);
  942. char level = reset_menu();
  943. factory_reset(level, false);
  944. switch (level) {
  945. case 0: _delay_ms(0); break;
  946. case 1: _delay_ms(0); break;
  947. case 2: _delay_ms(0); break;
  948. case 3: _delay_ms(0); break;
  949. }
  950. // _delay_ms(100);
  951. /*
  952. #ifdef MESH_BED_LEVELING
  953. _delay_ms(2000);
  954. if (!READ(BTN_ENC))
  955. {
  956. WRITE(BEEPER, HIGH);
  957. _delay_ms(100);
  958. WRITE(BEEPER, LOW);
  959. _delay_ms(200);
  960. WRITE(BEEPER, HIGH);
  961. _delay_ms(100);
  962. WRITE(BEEPER, LOW);
  963. int _z = 0;
  964. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  965. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  966. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  967. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  968. }
  969. else
  970. {
  971. WRITE(BEEPER, HIGH);
  972. _delay_ms(100);
  973. WRITE(BEEPER, LOW);
  974. }
  975. #endif // mesh */
  976. }
  977. }
  978. else
  979. {
  980. _delay_ms(1000); // wait 1sec to display the splash screen
  981. }
  982. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  983. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  984. #endif
  985. #ifdef DIGIPOT_I2C
  986. digipot_i2c_init();
  987. #endif
  988. setup_homepin();
  989. #if defined(Z_AXIS_ALWAYS_ON)
  990. enable_z();
  991. #endif
  992. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  993. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  994. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  995. if (farm_no == 0xFFFF) farm_no = 0;
  996. if (farm_mode)
  997. {
  998. prusa_statistics(8);
  999. }
  1000. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1001. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1002. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1003. // but this times out if a blocking dialog is shown in setup().
  1004. card.initsd();
  1005. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1006. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  1007. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  1008. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1009. // where all the EEPROM entries are set to 0x0ff.
  1010. // Once a firmware boots up, it forces at least a language selection, which changes
  1011. // EEPROM_LANG to number lower than 0x0ff.
  1012. // 1) Set a high power mode.
  1013. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1014. }
  1015. #ifdef SNMM
  1016. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1017. int _z = BOWDEN_LENGTH;
  1018. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1019. }
  1020. #endif
  1021. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1022. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1023. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1024. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1025. if (lang_selected >= LANG_NUM){
  1026. lcd_mylang();
  1027. }
  1028. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1029. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1030. temp_cal_active = false;
  1031. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1032. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1033. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1034. }
  1035. check_babystep(); //checking if Z babystep is in allowed range
  1036. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1037. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1038. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1039. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1040. // Show the message.
  1041. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1042. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1043. // Show the message.
  1044. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1045. lcd_update_enable(true);
  1046. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1047. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1048. lcd_update_enable(true);
  1049. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1050. // Show the message.
  1051. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1052. }
  1053. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1054. lcd_update_enable(true);
  1055. // Store the currently running firmware into an eeprom,
  1056. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1057. update_current_firmware_version_to_eeprom();
  1058. }
  1059. void trace();
  1060. #define CHUNK_SIZE 64 // bytes
  1061. #define SAFETY_MARGIN 1
  1062. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1063. int chunkHead = 0;
  1064. int serial_read_stream() {
  1065. setTargetHotend(0, 0);
  1066. setTargetBed(0);
  1067. lcd_implementation_clear();
  1068. lcd_printPGM(PSTR(" Upload in progress"));
  1069. // first wait for how many bytes we will receive
  1070. uint32_t bytesToReceive;
  1071. // receive the four bytes
  1072. char bytesToReceiveBuffer[4];
  1073. for (int i=0; i<4; i++) {
  1074. int data;
  1075. while ((data = MYSERIAL.read()) == -1) {};
  1076. bytesToReceiveBuffer[i] = data;
  1077. }
  1078. // make it a uint32
  1079. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1080. // we're ready, notify the sender
  1081. MYSERIAL.write('+');
  1082. // lock in the routine
  1083. uint32_t receivedBytes = 0;
  1084. while (prusa_sd_card_upload) {
  1085. int i;
  1086. for (i=0; i<CHUNK_SIZE; i++) {
  1087. int data;
  1088. // check if we're not done
  1089. if (receivedBytes == bytesToReceive) {
  1090. break;
  1091. }
  1092. // read the next byte
  1093. while ((data = MYSERIAL.read()) == -1) {};
  1094. receivedBytes++;
  1095. // save it to the chunk
  1096. chunk[i] = data;
  1097. }
  1098. // write the chunk to SD
  1099. card.write_command_no_newline(&chunk[0]);
  1100. // notify the sender we're ready for more data
  1101. MYSERIAL.write('+');
  1102. // for safety
  1103. manage_heater();
  1104. // check if we're done
  1105. if(receivedBytes == bytesToReceive) {
  1106. trace(); // beep
  1107. card.closefile();
  1108. prusa_sd_card_upload = false;
  1109. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1110. return 0;
  1111. }
  1112. }
  1113. }
  1114. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1115. // Before loop(), the setup() function is called by the main() routine.
  1116. void loop()
  1117. {
  1118. bool stack_integrity = true;
  1119. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1120. {
  1121. is_usb_printing = true;
  1122. usb_printing_counter--;
  1123. _usb_timer = millis();
  1124. }
  1125. if (usb_printing_counter == 0)
  1126. {
  1127. is_usb_printing = false;
  1128. }
  1129. if (prusa_sd_card_upload)
  1130. {
  1131. //we read byte-by byte
  1132. serial_read_stream();
  1133. } else
  1134. {
  1135. get_command();
  1136. #ifdef SDSUPPORT
  1137. card.checkautostart(false);
  1138. #endif
  1139. if(buflen)
  1140. {
  1141. #ifdef SDSUPPORT
  1142. if(card.saving)
  1143. {
  1144. // Saving a G-code file onto an SD-card is in progress.
  1145. // Saving starts with M28, saving until M29 is seen.
  1146. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1147. card.write_command(CMDBUFFER_CURRENT_STRING);
  1148. if(card.logging)
  1149. process_commands();
  1150. else
  1151. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1152. } else {
  1153. card.closefile();
  1154. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1155. }
  1156. } else {
  1157. process_commands();
  1158. }
  1159. #else
  1160. process_commands();
  1161. #endif //SDSUPPORT
  1162. if (! cmdbuffer_front_already_processed)
  1163. cmdqueue_pop_front();
  1164. cmdbuffer_front_already_processed = false;
  1165. }
  1166. }
  1167. //check heater every n milliseconds
  1168. manage_heater();
  1169. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1170. checkHitEndstops();
  1171. lcd_update();
  1172. }
  1173. void get_command()
  1174. {
  1175. // Test and reserve space for the new command string.
  1176. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1177. return;
  1178. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1179. while (MYSERIAL.available() > 0) {
  1180. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1181. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1182. rx_buffer_full = true; //sets flag that buffer was full
  1183. }
  1184. char serial_char = MYSERIAL.read();
  1185. TimeSent = millis();
  1186. TimeNow = millis();
  1187. if (serial_char < 0)
  1188. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1189. // and Marlin does not support such file names anyway.
  1190. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1191. // to a hang-up of the print process from an SD card.
  1192. continue;
  1193. if(serial_char == '\n' ||
  1194. serial_char == '\r' ||
  1195. (serial_char == ':' && comment_mode == false) ||
  1196. serial_count >= (MAX_CMD_SIZE - 1) )
  1197. {
  1198. if(!serial_count) { //if empty line
  1199. comment_mode = false; //for new command
  1200. return;
  1201. }
  1202. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1203. if(!comment_mode){
  1204. comment_mode = false; //for new command
  1205. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1206. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1207. {
  1208. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1209. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1210. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1211. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1212. // M110 - set current line number.
  1213. // Line numbers not sent in succession.
  1214. SERIAL_ERROR_START;
  1215. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1216. SERIAL_ERRORLN(gcode_LastN);
  1217. //Serial.println(gcode_N);
  1218. FlushSerialRequestResend();
  1219. serial_count = 0;
  1220. return;
  1221. }
  1222. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1223. {
  1224. byte checksum = 0;
  1225. char *p = cmdbuffer+bufindw+1;
  1226. while (p != strchr_pointer)
  1227. checksum = checksum^(*p++);
  1228. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1229. SERIAL_ERROR_START;
  1230. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1231. SERIAL_ERRORLN(gcode_LastN);
  1232. FlushSerialRequestResend();
  1233. serial_count = 0;
  1234. return;
  1235. }
  1236. // If no errors, remove the checksum and continue parsing.
  1237. *strchr_pointer = 0;
  1238. }
  1239. else
  1240. {
  1241. SERIAL_ERROR_START;
  1242. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1243. SERIAL_ERRORLN(gcode_LastN);
  1244. FlushSerialRequestResend();
  1245. serial_count = 0;
  1246. return;
  1247. }
  1248. gcode_LastN = gcode_N;
  1249. //if no errors, continue parsing
  1250. } // end of 'N' command
  1251. }
  1252. else // if we don't receive 'N' but still see '*'
  1253. {
  1254. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1255. {
  1256. SERIAL_ERROR_START;
  1257. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1258. SERIAL_ERRORLN(gcode_LastN);
  1259. serial_count = 0;
  1260. return;
  1261. }
  1262. } // end of '*' command
  1263. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1264. if (! IS_SD_PRINTING) {
  1265. usb_printing_counter = 10;
  1266. is_usb_printing = true;
  1267. }
  1268. if (Stopped == true) {
  1269. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1270. if (gcode >= 0 && gcode <= 3) {
  1271. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1272. LCD_MESSAGERPGM(MSG_STOPPED);
  1273. }
  1274. }
  1275. } // end of 'G' command
  1276. //If command was e-stop process now
  1277. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1278. kill();
  1279. // Store the current line into buffer, move to the next line.
  1280. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1281. #ifdef CMDBUFFER_DEBUG
  1282. SERIAL_ECHO_START;
  1283. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1284. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1285. SERIAL_ECHOLNPGM("");
  1286. #endif /* CMDBUFFER_DEBUG */
  1287. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1288. if (bufindw == sizeof(cmdbuffer))
  1289. bufindw = 0;
  1290. ++ buflen;
  1291. #ifdef CMDBUFFER_DEBUG
  1292. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1293. SERIAL_ECHO(buflen);
  1294. SERIAL_ECHOLNPGM("");
  1295. #endif /* CMDBUFFER_DEBUG */
  1296. } // end of 'not comment mode'
  1297. serial_count = 0; //clear buffer
  1298. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1299. // in the queue, as this function will reserve the memory.
  1300. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1301. return;
  1302. } // end of "end of line" processing
  1303. else {
  1304. // Not an "end of line" symbol. Store the new character into a buffer.
  1305. if(serial_char == ';') comment_mode = true;
  1306. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1307. }
  1308. } // end of serial line processing loop
  1309. if(farm_mode){
  1310. TimeNow = millis();
  1311. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1312. cmdbuffer[bufindw+serial_count+1] = 0;
  1313. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1314. if (bufindw == sizeof(cmdbuffer))
  1315. bufindw = 0;
  1316. ++ buflen;
  1317. serial_count = 0;
  1318. SERIAL_ECHOPGM("TIMEOUT:");
  1319. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1320. return;
  1321. }
  1322. }
  1323. //add comment
  1324. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1325. rx_buffer_full = false;
  1326. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1327. serial_count = 0;
  1328. }
  1329. #ifdef SDSUPPORT
  1330. if(!card.sdprinting || serial_count!=0){
  1331. // If there is a half filled buffer from serial line, wait until return before
  1332. // continuing with the serial line.
  1333. return;
  1334. }
  1335. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1336. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1337. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1338. static bool stop_buffering=false;
  1339. if(buflen==0) stop_buffering=false;
  1340. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1341. while( !card.eof() && !stop_buffering) {
  1342. int16_t n=card.get();
  1343. char serial_char = (char)n;
  1344. if(serial_char == '\n' ||
  1345. serial_char == '\r' ||
  1346. (serial_char == '#' && comment_mode == false) ||
  1347. (serial_char == ':' && comment_mode == false) ||
  1348. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1349. {
  1350. if(card.eof()){
  1351. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1352. stoptime=millis();
  1353. char time[30];
  1354. unsigned long t=(stoptime-starttime-pause_time)/1000;
  1355. pause_time = 0;
  1356. int hours, minutes;
  1357. minutes=(t/60)%60;
  1358. hours=t/60/60;
  1359. save_statistics(total_filament_used, t);
  1360. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1361. SERIAL_ECHO_START;
  1362. SERIAL_ECHOLN(time);
  1363. lcd_setstatus(time);
  1364. card.printingHasFinished();
  1365. card.checkautostart(true);
  1366. if (farm_mode)
  1367. {
  1368. prusa_statistics(6);
  1369. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1370. }
  1371. }
  1372. if(serial_char=='#')
  1373. stop_buffering=true;
  1374. if(!serial_count)
  1375. {
  1376. comment_mode = false; //for new command
  1377. return; //if empty line
  1378. }
  1379. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1380. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1381. ++ buflen;
  1382. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1383. if (bufindw == sizeof(cmdbuffer))
  1384. bufindw = 0;
  1385. comment_mode = false; //for new command
  1386. serial_count = 0; //clear buffer
  1387. // The following line will reserve buffer space if available.
  1388. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1389. return;
  1390. }
  1391. else
  1392. {
  1393. if(serial_char == ';') comment_mode = true;
  1394. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1395. }
  1396. }
  1397. #endif //SDSUPPORT
  1398. }
  1399. // Return True if a character was found
  1400. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1401. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1402. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1403. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1404. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1405. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1406. static inline float code_value_float() {
  1407. char* e = strchr(strchr_pointer, 'E');
  1408. if (!e) return strtod(strchr_pointer + 1, NULL);
  1409. *e = 0;
  1410. float ret = strtod(strchr_pointer + 1, NULL);
  1411. *e = 'E';
  1412. return ret;
  1413. }
  1414. #define DEFINE_PGM_READ_ANY(type, reader) \
  1415. static inline type pgm_read_any(const type *p) \
  1416. { return pgm_read_##reader##_near(p); }
  1417. DEFINE_PGM_READ_ANY(float, float);
  1418. DEFINE_PGM_READ_ANY(signed char, byte);
  1419. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1420. static const PROGMEM type array##_P[3] = \
  1421. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1422. static inline type array(int axis) \
  1423. { return pgm_read_any(&array##_P[axis]); } \
  1424. type array##_ext(int axis) \
  1425. { return pgm_read_any(&array##_P[axis]); }
  1426. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1427. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1428. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1429. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1430. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1431. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1432. static void axis_is_at_home(int axis) {
  1433. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1434. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1435. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1436. }
  1437. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1438. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1439. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1440. saved_feedrate = feedrate;
  1441. saved_feedmultiply = feedmultiply;
  1442. feedmultiply = 100;
  1443. previous_millis_cmd = millis();
  1444. enable_endstops(enable_endstops_now);
  1445. }
  1446. static void clean_up_after_endstop_move() {
  1447. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1448. enable_endstops(false);
  1449. #endif
  1450. feedrate = saved_feedrate;
  1451. feedmultiply = saved_feedmultiply;
  1452. previous_millis_cmd = millis();
  1453. }
  1454. #ifdef ENABLE_AUTO_BED_LEVELING
  1455. #ifdef AUTO_BED_LEVELING_GRID
  1456. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1457. {
  1458. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1459. planeNormal.debug("planeNormal");
  1460. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1461. //bedLevel.debug("bedLevel");
  1462. //plan_bed_level_matrix.debug("bed level before");
  1463. //vector_3 uncorrected_position = plan_get_position_mm();
  1464. //uncorrected_position.debug("position before");
  1465. vector_3 corrected_position = plan_get_position();
  1466. // corrected_position.debug("position after");
  1467. current_position[X_AXIS] = corrected_position.x;
  1468. current_position[Y_AXIS] = corrected_position.y;
  1469. current_position[Z_AXIS] = corrected_position.z;
  1470. // put the bed at 0 so we don't go below it.
  1471. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1472. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1473. }
  1474. #else // not AUTO_BED_LEVELING_GRID
  1475. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1476. plan_bed_level_matrix.set_to_identity();
  1477. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1478. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1479. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1480. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1481. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1482. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1483. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1484. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1485. vector_3 corrected_position = plan_get_position();
  1486. current_position[X_AXIS] = corrected_position.x;
  1487. current_position[Y_AXIS] = corrected_position.y;
  1488. current_position[Z_AXIS] = corrected_position.z;
  1489. // put the bed at 0 so we don't go below it.
  1490. current_position[Z_AXIS] = zprobe_zoffset;
  1491. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1492. }
  1493. #endif // AUTO_BED_LEVELING_GRID
  1494. static void run_z_probe() {
  1495. plan_bed_level_matrix.set_to_identity();
  1496. feedrate = homing_feedrate[Z_AXIS];
  1497. // move down until you find the bed
  1498. float zPosition = -10;
  1499. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1500. st_synchronize();
  1501. // we have to let the planner know where we are right now as it is not where we said to go.
  1502. zPosition = st_get_position_mm(Z_AXIS);
  1503. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1504. // move up the retract distance
  1505. zPosition += home_retract_mm(Z_AXIS);
  1506. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1507. st_synchronize();
  1508. // move back down slowly to find bed
  1509. feedrate = homing_feedrate[Z_AXIS]/4;
  1510. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1511. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1512. st_synchronize();
  1513. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1514. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1515. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1516. }
  1517. static void do_blocking_move_to(float x, float y, float z) {
  1518. float oldFeedRate = feedrate;
  1519. feedrate = homing_feedrate[Z_AXIS];
  1520. current_position[Z_AXIS] = z;
  1521. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1522. st_synchronize();
  1523. feedrate = XY_TRAVEL_SPEED;
  1524. current_position[X_AXIS] = x;
  1525. current_position[Y_AXIS] = y;
  1526. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1527. st_synchronize();
  1528. feedrate = oldFeedRate;
  1529. }
  1530. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1531. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1532. }
  1533. /// Probe bed height at position (x,y), returns the measured z value
  1534. static float probe_pt(float x, float y, float z_before) {
  1535. // move to right place
  1536. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1537. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1538. run_z_probe();
  1539. float measured_z = current_position[Z_AXIS];
  1540. SERIAL_PROTOCOLRPGM(MSG_BED);
  1541. SERIAL_PROTOCOLPGM(" x: ");
  1542. SERIAL_PROTOCOL(x);
  1543. SERIAL_PROTOCOLPGM(" y: ");
  1544. SERIAL_PROTOCOL(y);
  1545. SERIAL_PROTOCOLPGM(" z: ");
  1546. SERIAL_PROTOCOL(measured_z);
  1547. SERIAL_PROTOCOLPGM("\n");
  1548. return measured_z;
  1549. }
  1550. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1551. #ifdef LIN_ADVANCE
  1552. /**
  1553. * M900: Set and/or Get advance K factor and WH/D ratio
  1554. *
  1555. * K<factor> Set advance K factor
  1556. * R<ratio> Set ratio directly (overrides WH/D)
  1557. * W<width> H<height> D<diam> Set ratio from WH/D
  1558. */
  1559. inline void gcode_M900() {
  1560. st_synchronize();
  1561. const float newK = code_seen('K') ? code_value_float() : -1;
  1562. if (newK >= 0) extruder_advance_k = newK;
  1563. float newR = code_seen('R') ? code_value_float() : -1;
  1564. if (newR < 0) {
  1565. const float newD = code_seen('D') ? code_value_float() : -1,
  1566. newW = code_seen('W') ? code_value_float() : -1,
  1567. newH = code_seen('H') ? code_value_float() : -1;
  1568. if (newD >= 0 && newW >= 0 && newH >= 0)
  1569. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1570. }
  1571. if (newR >= 0) advance_ed_ratio = newR;
  1572. SERIAL_ECHO_START;
  1573. SERIAL_ECHOPGM("Advance K=");
  1574. SERIAL_ECHOLN(extruder_advance_k);
  1575. SERIAL_ECHOPGM(" E/D=");
  1576. const float ratio = advance_ed_ratio;
  1577. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1578. }
  1579. #endif // LIN_ADVANCE
  1580. void homeaxis(int axis) {
  1581. #define HOMEAXIS_DO(LETTER) \
  1582. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1583. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1584. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1585. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1586. 0) {
  1587. int axis_home_dir = home_dir(axis);
  1588. current_position[axis] = 0;
  1589. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1590. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1591. feedrate = homing_feedrate[axis];
  1592. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1593. st_synchronize();
  1594. current_position[axis] = 0;
  1595. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1596. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1597. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1598. st_synchronize();
  1599. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1600. feedrate = homing_feedrate[axis]/2 ;
  1601. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1602. st_synchronize();
  1603. axis_is_at_home(axis);
  1604. destination[axis] = current_position[axis];
  1605. feedrate = 0.0;
  1606. endstops_hit_on_purpose();
  1607. axis_known_position[axis] = true;
  1608. }
  1609. }
  1610. void home_xy()
  1611. {
  1612. set_destination_to_current();
  1613. homeaxis(X_AXIS);
  1614. homeaxis(Y_AXIS);
  1615. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1616. endstops_hit_on_purpose();
  1617. }
  1618. void refresh_cmd_timeout(void)
  1619. {
  1620. previous_millis_cmd = millis();
  1621. }
  1622. #ifdef FWRETRACT
  1623. void retract(bool retracting, bool swapretract = false) {
  1624. if(retracting && !retracted[active_extruder]) {
  1625. destination[X_AXIS]=current_position[X_AXIS];
  1626. destination[Y_AXIS]=current_position[Y_AXIS];
  1627. destination[Z_AXIS]=current_position[Z_AXIS];
  1628. destination[E_AXIS]=current_position[E_AXIS];
  1629. if (swapretract) {
  1630. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1631. } else {
  1632. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1633. }
  1634. plan_set_e_position(current_position[E_AXIS]);
  1635. float oldFeedrate = feedrate;
  1636. feedrate=retract_feedrate*60;
  1637. retracted[active_extruder]=true;
  1638. prepare_move();
  1639. current_position[Z_AXIS]-=retract_zlift;
  1640. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1641. prepare_move();
  1642. feedrate = oldFeedrate;
  1643. } else if(!retracting && retracted[active_extruder]) {
  1644. destination[X_AXIS]=current_position[X_AXIS];
  1645. destination[Y_AXIS]=current_position[Y_AXIS];
  1646. destination[Z_AXIS]=current_position[Z_AXIS];
  1647. destination[E_AXIS]=current_position[E_AXIS];
  1648. current_position[Z_AXIS]+=retract_zlift;
  1649. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1650. //prepare_move();
  1651. if (swapretract) {
  1652. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1653. } else {
  1654. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1655. }
  1656. plan_set_e_position(current_position[E_AXIS]);
  1657. float oldFeedrate = feedrate;
  1658. feedrate=retract_recover_feedrate*60;
  1659. retracted[active_extruder]=false;
  1660. prepare_move();
  1661. feedrate = oldFeedrate;
  1662. }
  1663. } //retract
  1664. #endif //FWRETRACT
  1665. void trace() {
  1666. tone(BEEPER, 440);
  1667. delay(25);
  1668. noTone(BEEPER);
  1669. delay(20);
  1670. }
  1671. /*
  1672. void ramming() {
  1673. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1674. if (current_temperature[0] < 230) {
  1675. //PLA
  1676. max_feedrate[E_AXIS] = 50;
  1677. //current_position[E_AXIS] -= 8;
  1678. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1679. //current_position[E_AXIS] += 8;
  1680. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1681. current_position[E_AXIS] += 5.4;
  1682. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1683. current_position[E_AXIS] += 3.2;
  1684. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1685. current_position[E_AXIS] += 3;
  1686. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1687. st_synchronize();
  1688. max_feedrate[E_AXIS] = 80;
  1689. current_position[E_AXIS] -= 82;
  1690. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1691. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1692. current_position[E_AXIS] -= 20;
  1693. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1694. current_position[E_AXIS] += 5;
  1695. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1696. current_position[E_AXIS] += 5;
  1697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1698. current_position[E_AXIS] -= 10;
  1699. st_synchronize();
  1700. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1701. current_position[E_AXIS] += 10;
  1702. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1703. current_position[E_AXIS] -= 10;
  1704. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1705. current_position[E_AXIS] += 10;
  1706. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1707. current_position[E_AXIS] -= 10;
  1708. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1709. st_synchronize();
  1710. }
  1711. else {
  1712. //ABS
  1713. max_feedrate[E_AXIS] = 50;
  1714. //current_position[E_AXIS] -= 8;
  1715. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1716. //current_position[E_AXIS] += 8;
  1717. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1718. current_position[E_AXIS] += 3.1;
  1719. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1720. current_position[E_AXIS] += 3.1;
  1721. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1722. current_position[E_AXIS] += 4;
  1723. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1724. st_synchronize();
  1725. //current_position[X_AXIS] += 23; //delay
  1726. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1727. //current_position[X_AXIS] -= 23; //delay
  1728. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1729. delay(4700);
  1730. max_feedrate[E_AXIS] = 80;
  1731. current_position[E_AXIS] -= 92;
  1732. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1733. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1734. current_position[E_AXIS] -= 5;
  1735. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1736. current_position[E_AXIS] += 5;
  1737. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1738. current_position[E_AXIS] -= 5;
  1739. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1740. st_synchronize();
  1741. current_position[E_AXIS] += 5;
  1742. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1743. current_position[E_AXIS] -= 5;
  1744. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1745. current_position[E_AXIS] += 5;
  1746. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1747. current_position[E_AXIS] -= 5;
  1748. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1749. st_synchronize();
  1750. }
  1751. }
  1752. */
  1753. void process_commands()
  1754. {
  1755. #ifdef FILAMENT_RUNOUT_SUPPORT
  1756. SET_INPUT(FR_SENS);
  1757. #endif
  1758. #ifdef CMDBUFFER_DEBUG
  1759. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1760. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1761. SERIAL_ECHOLNPGM("");
  1762. SERIAL_ECHOPGM("In cmdqueue: ");
  1763. SERIAL_ECHO(buflen);
  1764. SERIAL_ECHOLNPGM("");
  1765. #endif /* CMDBUFFER_DEBUG */
  1766. unsigned long codenum; //throw away variable
  1767. char *starpos = NULL;
  1768. #ifdef ENABLE_AUTO_BED_LEVELING
  1769. float x_tmp, y_tmp, z_tmp, real_z;
  1770. #endif
  1771. // PRUSA GCODES
  1772. #ifdef SNMM
  1773. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1774. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1775. int8_t SilentMode;
  1776. #endif
  1777. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1778. starpos = (strchr(strchr_pointer + 5, '*'));
  1779. if (starpos != NULL)
  1780. *(starpos) = '\0';
  1781. lcd_setstatus(strchr_pointer + 5);
  1782. }
  1783. else if(code_seen("PRUSA")){
  1784. if (code_seen("Ping")) { //PRUSA Ping
  1785. if (farm_mode) {
  1786. PingTime = millis();
  1787. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1788. }
  1789. }
  1790. else if (code_seen("PRN")) {
  1791. MYSERIAL.println(status_number);
  1792. }else if (code_seen("fn")) {
  1793. if (farm_mode) {
  1794. MYSERIAL.println(farm_no);
  1795. }
  1796. else {
  1797. MYSERIAL.println("Not in farm mode.");
  1798. }
  1799. }else if (code_seen("fv")) {
  1800. // get file version
  1801. #ifdef SDSUPPORT
  1802. card.openFile(strchr_pointer + 3,true);
  1803. while (true) {
  1804. uint16_t readByte = card.get();
  1805. MYSERIAL.write(readByte);
  1806. if (readByte=='\n') {
  1807. break;
  1808. }
  1809. }
  1810. card.closefile();
  1811. #endif // SDSUPPORT
  1812. } else if (code_seen("M28")) {
  1813. trace();
  1814. prusa_sd_card_upload = true;
  1815. card.openFile(strchr_pointer+4,false);
  1816. } else if(code_seen("Fir")){
  1817. SERIAL_PROTOCOLLN(FW_version);
  1818. } else if(code_seen("Rev")){
  1819. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1820. } else if(code_seen("Lang")) {
  1821. lcd_force_language_selection();
  1822. } else if(code_seen("Lz")) {
  1823. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1824. } else if (code_seen("SERIAL LOW")) {
  1825. MYSERIAL.println("SERIAL LOW");
  1826. MYSERIAL.begin(BAUDRATE);
  1827. return;
  1828. } else if (code_seen("SERIAL HIGH")) {
  1829. MYSERIAL.println("SERIAL HIGH");
  1830. MYSERIAL.begin(1152000);
  1831. return;
  1832. } else if(code_seen("Beat")) {
  1833. // Kick farm link timer
  1834. kicktime = millis();
  1835. } else if(code_seen("FR")) {
  1836. // Factory full reset
  1837. factory_reset(0,true);
  1838. }
  1839. //else if (code_seen('Cal')) {
  1840. // lcd_calibration();
  1841. // }
  1842. }
  1843. else if (code_seen('^')) {
  1844. // nothing, this is a version line
  1845. } else if(code_seen('G'))
  1846. {
  1847. switch((int)code_value())
  1848. {
  1849. case 0: // G0 -> G1
  1850. case 1: // G1
  1851. if(Stopped == false) {
  1852. #ifdef FILAMENT_RUNOUT_SUPPORT
  1853. if(READ(FR_SENS)){
  1854. feedmultiplyBckp=feedmultiply;
  1855. float target[4];
  1856. float lastpos[4];
  1857. target[X_AXIS]=current_position[X_AXIS];
  1858. target[Y_AXIS]=current_position[Y_AXIS];
  1859. target[Z_AXIS]=current_position[Z_AXIS];
  1860. target[E_AXIS]=current_position[E_AXIS];
  1861. lastpos[X_AXIS]=current_position[X_AXIS];
  1862. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1863. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1864. lastpos[E_AXIS]=current_position[E_AXIS];
  1865. //retract by E
  1866. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1867. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1868. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1869. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1870. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1871. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1872. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1873. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1874. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1875. //finish moves
  1876. st_synchronize();
  1877. //disable extruder steppers so filament can be removed
  1878. disable_e0();
  1879. disable_e1();
  1880. disable_e2();
  1881. delay(100);
  1882. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1883. uint8_t cnt=0;
  1884. int counterBeep = 0;
  1885. lcd_wait_interact();
  1886. while(!lcd_clicked()){
  1887. cnt++;
  1888. manage_heater();
  1889. manage_inactivity(true);
  1890. //lcd_update();
  1891. if(cnt==0)
  1892. {
  1893. #if BEEPER > 0
  1894. if (counterBeep== 500){
  1895. counterBeep = 0;
  1896. }
  1897. SET_OUTPUT(BEEPER);
  1898. if (counterBeep== 0){
  1899. WRITE(BEEPER,HIGH);
  1900. }
  1901. if (counterBeep== 20){
  1902. WRITE(BEEPER,LOW);
  1903. }
  1904. counterBeep++;
  1905. #else
  1906. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1907. lcd_buzz(1000/6,100);
  1908. #else
  1909. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1910. #endif
  1911. #endif
  1912. }
  1913. }
  1914. WRITE(BEEPER,LOW);
  1915. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1916. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1917. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1918. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1919. lcd_change_fil_state = 0;
  1920. lcd_loading_filament();
  1921. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1922. lcd_change_fil_state = 0;
  1923. lcd_alright();
  1924. switch(lcd_change_fil_state){
  1925. case 2:
  1926. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1927. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1928. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1929. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1930. lcd_loading_filament();
  1931. break;
  1932. case 3:
  1933. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1934. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1935. lcd_loading_color();
  1936. break;
  1937. default:
  1938. lcd_change_success();
  1939. break;
  1940. }
  1941. }
  1942. target[E_AXIS]+= 5;
  1943. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1944. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1945. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1946. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1947. //plan_set_e_position(current_position[E_AXIS]);
  1948. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1949. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1950. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1951. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1952. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1953. plan_set_e_position(lastpos[E_AXIS]);
  1954. feedmultiply=feedmultiplyBckp;
  1955. char cmd[9];
  1956. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1957. enquecommand(cmd);
  1958. }
  1959. #endif
  1960. get_coordinates(); // For X Y Z E F
  1961. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1962. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1963. }
  1964. #ifdef FWRETRACT
  1965. if(autoretract_enabled)
  1966. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1967. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1968. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1969. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1970. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1971. retract(!retracted);
  1972. return;
  1973. }
  1974. }
  1975. #endif //FWRETRACT
  1976. prepare_move();
  1977. //ClearToSend();
  1978. }
  1979. break;
  1980. case 2: // G2 - CW ARC
  1981. if(Stopped == false) {
  1982. get_arc_coordinates();
  1983. prepare_arc_move(true);
  1984. }
  1985. break;
  1986. case 3: // G3 - CCW ARC
  1987. if(Stopped == false) {
  1988. get_arc_coordinates();
  1989. prepare_arc_move(false);
  1990. }
  1991. break;
  1992. case 4: // G4 dwell
  1993. codenum = 0;
  1994. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1995. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1996. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  1997. st_synchronize();
  1998. codenum += millis(); // keep track of when we started waiting
  1999. previous_millis_cmd = millis();
  2000. while(millis() < codenum) {
  2001. manage_heater();
  2002. manage_inactivity();
  2003. lcd_update();
  2004. }
  2005. break;
  2006. #ifdef FWRETRACT
  2007. case 10: // G10 retract
  2008. #if EXTRUDERS > 1
  2009. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2010. retract(true,retracted_swap[active_extruder]);
  2011. #else
  2012. retract(true);
  2013. #endif
  2014. break;
  2015. case 11: // G11 retract_recover
  2016. #if EXTRUDERS > 1
  2017. retract(false,retracted_swap[active_extruder]);
  2018. #else
  2019. retract(false);
  2020. #endif
  2021. break;
  2022. #endif //FWRETRACT
  2023. case 28: //G28 Home all Axis one at a time
  2024. homing_flag = true;
  2025. #ifdef ENABLE_AUTO_BED_LEVELING
  2026. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2027. #endif //ENABLE_AUTO_BED_LEVELING
  2028. // For mesh bed leveling deactivate the matrix temporarily
  2029. #ifdef MESH_BED_LEVELING
  2030. mbl.active = 0;
  2031. #endif
  2032. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2033. // the planner will not perform any adjustments in the XY plane.
  2034. // Wait for the motors to stop and update the current position with the absolute values.
  2035. world2machine_revert_to_uncorrected();
  2036. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2037. // consumed during the first movements following this statement.
  2038. babystep_undo();
  2039. saved_feedrate = feedrate;
  2040. saved_feedmultiply = feedmultiply;
  2041. feedmultiply = 100;
  2042. previous_millis_cmd = millis();
  2043. enable_endstops(true);
  2044. for(int8_t i=0; i < NUM_AXIS; i++)
  2045. destination[i] = current_position[i];
  2046. feedrate = 0.0;
  2047. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2048. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2049. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2050. homeaxis(Z_AXIS);
  2051. }
  2052. #endif
  2053. #ifdef QUICK_HOME
  2054. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2055. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2056. {
  2057. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2058. int x_axis_home_dir = home_dir(X_AXIS);
  2059. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2060. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2061. feedrate = homing_feedrate[X_AXIS];
  2062. if(homing_feedrate[Y_AXIS]<feedrate)
  2063. feedrate = homing_feedrate[Y_AXIS];
  2064. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2065. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2066. } else {
  2067. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2068. }
  2069. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2070. st_synchronize();
  2071. axis_is_at_home(X_AXIS);
  2072. axis_is_at_home(Y_AXIS);
  2073. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2074. destination[X_AXIS] = current_position[X_AXIS];
  2075. destination[Y_AXIS] = current_position[Y_AXIS];
  2076. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2077. feedrate = 0.0;
  2078. st_synchronize();
  2079. endstops_hit_on_purpose();
  2080. current_position[X_AXIS] = destination[X_AXIS];
  2081. current_position[Y_AXIS] = destination[Y_AXIS];
  2082. current_position[Z_AXIS] = destination[Z_AXIS];
  2083. }
  2084. #endif /* QUICK_HOME */
  2085. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2086. homeaxis(X_AXIS);
  2087. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2088. homeaxis(Y_AXIS);
  2089. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2090. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2091. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2092. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2093. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2094. #ifndef Z_SAFE_HOMING
  2095. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2096. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2097. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2098. feedrate = max_feedrate[Z_AXIS];
  2099. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2100. st_synchronize();
  2101. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2102. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2103. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2104. {
  2105. homeaxis(X_AXIS);
  2106. homeaxis(Y_AXIS);
  2107. }
  2108. // 1st mesh bed leveling measurement point, corrected.
  2109. world2machine_initialize();
  2110. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2111. world2machine_reset();
  2112. if (destination[Y_AXIS] < Y_MIN_POS)
  2113. destination[Y_AXIS] = Y_MIN_POS;
  2114. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2115. feedrate = homing_feedrate[Z_AXIS]/10;
  2116. current_position[Z_AXIS] = 0;
  2117. enable_endstops(false);
  2118. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2119. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2120. st_synchronize();
  2121. current_position[X_AXIS] = destination[X_AXIS];
  2122. current_position[Y_AXIS] = destination[Y_AXIS];
  2123. enable_endstops(true);
  2124. endstops_hit_on_purpose();
  2125. homeaxis(Z_AXIS);
  2126. #else // MESH_BED_LEVELING
  2127. homeaxis(Z_AXIS);
  2128. #endif // MESH_BED_LEVELING
  2129. }
  2130. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2131. if(home_all_axis) {
  2132. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2133. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2134. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2135. feedrate = XY_TRAVEL_SPEED/60;
  2136. current_position[Z_AXIS] = 0;
  2137. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2138. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2139. st_synchronize();
  2140. current_position[X_AXIS] = destination[X_AXIS];
  2141. current_position[Y_AXIS] = destination[Y_AXIS];
  2142. homeaxis(Z_AXIS);
  2143. }
  2144. // Let's see if X and Y are homed and probe is inside bed area.
  2145. if(code_seen(axis_codes[Z_AXIS])) {
  2146. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2147. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2148. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2149. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2150. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2151. current_position[Z_AXIS] = 0;
  2152. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2153. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2154. feedrate = max_feedrate[Z_AXIS];
  2155. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2156. st_synchronize();
  2157. homeaxis(Z_AXIS);
  2158. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2159. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2160. SERIAL_ECHO_START;
  2161. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2162. } else {
  2163. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2164. SERIAL_ECHO_START;
  2165. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2166. }
  2167. }
  2168. #endif // Z_SAFE_HOMING
  2169. #endif // Z_HOME_DIR < 0
  2170. if(code_seen(axis_codes[Z_AXIS])) {
  2171. if(code_value_long() != 0) {
  2172. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2173. }
  2174. }
  2175. #ifdef ENABLE_AUTO_BED_LEVELING
  2176. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2177. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2178. }
  2179. #endif
  2180. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2181. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2182. enable_endstops(false);
  2183. #endif
  2184. feedrate = saved_feedrate;
  2185. feedmultiply = saved_feedmultiply;
  2186. previous_millis_cmd = millis();
  2187. endstops_hit_on_purpose();
  2188. #ifndef MESH_BED_LEVELING
  2189. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2190. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2191. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2192. lcd_adjust_z();
  2193. #endif
  2194. // Load the machine correction matrix
  2195. world2machine_initialize();
  2196. // and correct the current_position to match the transformed coordinate system.
  2197. world2machine_update_current();
  2198. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2199. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2200. {
  2201. }
  2202. else
  2203. {
  2204. st_synchronize();
  2205. homing_flag = false;
  2206. // Push the commands to the front of the message queue in the reverse order!
  2207. // There shall be always enough space reserved for these commands.
  2208. // enquecommand_front_P((PSTR("G80")));
  2209. goto case_G80;
  2210. }
  2211. #endif
  2212. if (farm_mode) { prusa_statistics(20); };
  2213. homing_flag = false;
  2214. break;
  2215. #ifdef ENABLE_AUTO_BED_LEVELING
  2216. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2217. {
  2218. #if Z_MIN_PIN == -1
  2219. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2220. #endif
  2221. // Prevent user from running a G29 without first homing in X and Y
  2222. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2223. {
  2224. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2225. SERIAL_ECHO_START;
  2226. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2227. break; // abort G29, since we don't know where we are
  2228. }
  2229. st_synchronize();
  2230. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2231. //vector_3 corrected_position = plan_get_position_mm();
  2232. //corrected_position.debug("position before G29");
  2233. plan_bed_level_matrix.set_to_identity();
  2234. vector_3 uncorrected_position = plan_get_position();
  2235. //uncorrected_position.debug("position durring G29");
  2236. current_position[X_AXIS] = uncorrected_position.x;
  2237. current_position[Y_AXIS] = uncorrected_position.y;
  2238. current_position[Z_AXIS] = uncorrected_position.z;
  2239. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2240. setup_for_endstop_move();
  2241. feedrate = homing_feedrate[Z_AXIS];
  2242. #ifdef AUTO_BED_LEVELING_GRID
  2243. // probe at the points of a lattice grid
  2244. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2245. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2246. // solve the plane equation ax + by + d = z
  2247. // A is the matrix with rows [x y 1] for all the probed points
  2248. // B is the vector of the Z positions
  2249. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2250. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2251. // "A" matrix of the linear system of equations
  2252. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2253. // "B" vector of Z points
  2254. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2255. int probePointCounter = 0;
  2256. bool zig = true;
  2257. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2258. {
  2259. int xProbe, xInc;
  2260. if (zig)
  2261. {
  2262. xProbe = LEFT_PROBE_BED_POSITION;
  2263. //xEnd = RIGHT_PROBE_BED_POSITION;
  2264. xInc = xGridSpacing;
  2265. zig = false;
  2266. } else // zag
  2267. {
  2268. xProbe = RIGHT_PROBE_BED_POSITION;
  2269. //xEnd = LEFT_PROBE_BED_POSITION;
  2270. xInc = -xGridSpacing;
  2271. zig = true;
  2272. }
  2273. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2274. {
  2275. float z_before;
  2276. if (probePointCounter == 0)
  2277. {
  2278. // raise before probing
  2279. z_before = Z_RAISE_BEFORE_PROBING;
  2280. } else
  2281. {
  2282. // raise extruder
  2283. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2284. }
  2285. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2286. eqnBVector[probePointCounter] = measured_z;
  2287. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2288. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2289. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2290. probePointCounter++;
  2291. xProbe += xInc;
  2292. }
  2293. }
  2294. clean_up_after_endstop_move();
  2295. // solve lsq problem
  2296. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2297. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2298. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2299. SERIAL_PROTOCOLPGM(" b: ");
  2300. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2301. SERIAL_PROTOCOLPGM(" d: ");
  2302. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2303. set_bed_level_equation_lsq(plane_equation_coefficients);
  2304. free(plane_equation_coefficients);
  2305. #else // AUTO_BED_LEVELING_GRID not defined
  2306. // Probe at 3 arbitrary points
  2307. // probe 1
  2308. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2309. // probe 2
  2310. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2311. // probe 3
  2312. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2313. clean_up_after_endstop_move();
  2314. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2315. #endif // AUTO_BED_LEVELING_GRID
  2316. st_synchronize();
  2317. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2318. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2319. // When the bed is uneven, this height must be corrected.
  2320. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2321. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2322. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2323. z_tmp = current_position[Z_AXIS];
  2324. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2325. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2326. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2327. }
  2328. break;
  2329. #ifndef Z_PROBE_SLED
  2330. case 30: // G30 Single Z Probe
  2331. {
  2332. st_synchronize();
  2333. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2334. setup_for_endstop_move();
  2335. feedrate = homing_feedrate[Z_AXIS];
  2336. run_z_probe();
  2337. SERIAL_PROTOCOLPGM(MSG_BED);
  2338. SERIAL_PROTOCOLPGM(" X: ");
  2339. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2340. SERIAL_PROTOCOLPGM(" Y: ");
  2341. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2342. SERIAL_PROTOCOLPGM(" Z: ");
  2343. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2344. SERIAL_PROTOCOLPGM("\n");
  2345. clean_up_after_endstop_move();
  2346. }
  2347. break;
  2348. #else
  2349. case 31: // dock the sled
  2350. dock_sled(true);
  2351. break;
  2352. case 32: // undock the sled
  2353. dock_sled(false);
  2354. break;
  2355. #endif // Z_PROBE_SLED
  2356. #endif // ENABLE_AUTO_BED_LEVELING
  2357. #ifdef MESH_BED_LEVELING
  2358. case 30: // G30 Single Z Probe
  2359. {
  2360. st_synchronize();
  2361. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2362. setup_for_endstop_move();
  2363. feedrate = homing_feedrate[Z_AXIS];
  2364. find_bed_induction_sensor_point_z(-10.f, 3);
  2365. SERIAL_PROTOCOLRPGM(MSG_BED);
  2366. SERIAL_PROTOCOLPGM(" X: ");
  2367. MYSERIAL.print(current_position[X_AXIS], 5);
  2368. SERIAL_PROTOCOLPGM(" Y: ");
  2369. MYSERIAL.print(current_position[Y_AXIS], 5);
  2370. SERIAL_PROTOCOLPGM(" Z: ");
  2371. MYSERIAL.print(current_position[Z_AXIS], 5);
  2372. SERIAL_PROTOCOLPGM("\n");
  2373. clean_up_after_endstop_move();
  2374. }
  2375. break;
  2376. case 75:
  2377. {
  2378. for (int i = 40; i <= 110; i++) {
  2379. MYSERIAL.print(i);
  2380. MYSERIAL.print(" ");
  2381. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2382. }
  2383. }
  2384. break;
  2385. case 76: //PINDA probe temperature calibration
  2386. {
  2387. setTargetBed(PINDA_MIN_T);
  2388. float zero_z;
  2389. int z_shift = 0; //unit: steps
  2390. int t_c; // temperature
  2391. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2392. // We don't know where we are! HOME!
  2393. // Push the commands to the front of the message queue in the reverse order!
  2394. // There shall be always enough space reserved for these commands.
  2395. repeatcommand_front(); // repeat G76 with all its parameters
  2396. enquecommand_front_P((PSTR("G28 W0")));
  2397. break;
  2398. }
  2399. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2400. custom_message = true;
  2401. custom_message_type = 4;
  2402. custom_message_state = 1;
  2403. custom_message = MSG_TEMP_CALIBRATION;
  2404. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2405. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2406. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2407. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2408. st_synchronize();
  2409. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2410. delay_keep_alive(1000);
  2411. serialecho_temperatures();
  2412. }
  2413. //enquecommand_P(PSTR("M190 S50"));
  2414. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2415. delay_keep_alive(1000);
  2416. serialecho_temperatures();
  2417. }
  2418. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2419. current_position[Z_AXIS] = 5;
  2420. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2421. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2422. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2423. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2424. st_synchronize();
  2425. find_bed_induction_sensor_point_z(-1.f);
  2426. zero_z = current_position[Z_AXIS];
  2427. //current_position[Z_AXIS]
  2428. SERIAL_ECHOLNPGM("");
  2429. SERIAL_ECHOPGM("ZERO: ");
  2430. MYSERIAL.print(current_position[Z_AXIS]);
  2431. SERIAL_ECHOLNPGM("");
  2432. for (int i = 0; i<5; i++) {
  2433. SERIAL_ECHOPGM("Step: ");
  2434. MYSERIAL.print(i+2);
  2435. SERIAL_ECHOLNPGM("/6");
  2436. custom_message_state = i + 2;
  2437. t_c = 60 + i * 10;
  2438. setTargetBed(t_c);
  2439. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2440. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2441. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2442. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2443. st_synchronize();
  2444. while (degBed() < t_c) {
  2445. delay_keep_alive(1000);
  2446. serialecho_temperatures();
  2447. }
  2448. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2449. delay_keep_alive(1000);
  2450. serialecho_temperatures();
  2451. }
  2452. current_position[Z_AXIS] = 5;
  2453. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2454. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2455. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2456. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2457. st_synchronize();
  2458. find_bed_induction_sensor_point_z(-1.f);
  2459. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2460. SERIAL_ECHOLNPGM("");
  2461. SERIAL_ECHOPGM("Temperature: ");
  2462. MYSERIAL.print(t_c);
  2463. SERIAL_ECHOPGM(" Z shift (mm):");
  2464. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2465. SERIAL_ECHOLNPGM("");
  2466. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2467. }
  2468. custom_message_type = 0;
  2469. custom_message = false;
  2470. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2471. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2472. disable_x();
  2473. disable_y();
  2474. disable_z();
  2475. disable_e0();
  2476. disable_e1();
  2477. disable_e2();
  2478. setTargetBed(0); //set bed target temperature back to 0
  2479. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2480. lcd_update_enable(true);
  2481. lcd_update(2);
  2482. }
  2483. break;
  2484. #ifdef DIS
  2485. case 77:
  2486. {
  2487. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2488. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2489. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2490. float dimension_x = 40;
  2491. float dimension_y = 40;
  2492. int points_x = 40;
  2493. int points_y = 40;
  2494. float offset_x = 74;
  2495. float offset_y = 33;
  2496. if (code_seen('X')) dimension_x = code_value();
  2497. if (code_seen('Y')) dimension_y = code_value();
  2498. if (code_seen('XP')) points_x = code_value();
  2499. if (code_seen('YP')) points_y = code_value();
  2500. if (code_seen('XO')) offset_x = code_value();
  2501. if (code_seen('YO')) offset_y = code_value();
  2502. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2503. } break;
  2504. #endif
  2505. /**
  2506. * G80: Mesh-based Z probe, probes a grid and produces a
  2507. * mesh to compensate for variable bed height
  2508. *
  2509. * The S0 report the points as below
  2510. *
  2511. * +----> X-axis
  2512. * |
  2513. * |
  2514. * v Y-axis
  2515. *
  2516. */
  2517. case 80:
  2518. #ifdef MK1BP
  2519. break;
  2520. #endif //MK1BP
  2521. case_G80:
  2522. {
  2523. mesh_bed_leveling_flag = true;
  2524. int8_t verbosity_level = 0;
  2525. static bool run = false;
  2526. if (code_seen('V')) {
  2527. // Just 'V' without a number counts as V1.
  2528. char c = strchr_pointer[1];
  2529. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2530. }
  2531. // Firstly check if we know where we are
  2532. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2533. // We don't know where we are! HOME!
  2534. // Push the commands to the front of the message queue in the reverse order!
  2535. // There shall be always enough space reserved for these commands.
  2536. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2537. repeatcommand_front(); // repeat G80 with all its parameters
  2538. enquecommand_front_P((PSTR("G28 W0")));
  2539. }
  2540. else {
  2541. mesh_bed_leveling_flag = false;
  2542. }
  2543. break;
  2544. }
  2545. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2546. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2547. temp_compensation_start();
  2548. run = true;
  2549. repeatcommand_front(); // repeat G80 with all its parameters
  2550. enquecommand_front_P((PSTR("G28 W0")));
  2551. }
  2552. else {
  2553. mesh_bed_leveling_flag = false;
  2554. }
  2555. break;
  2556. }
  2557. run = false;
  2558. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2559. mesh_bed_leveling_flag = false;
  2560. break;
  2561. }
  2562. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2563. bool custom_message_old = custom_message;
  2564. unsigned int custom_message_type_old = custom_message_type;
  2565. unsigned int custom_message_state_old = custom_message_state;
  2566. custom_message = true;
  2567. custom_message_type = 1;
  2568. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2569. lcd_update(1);
  2570. mbl.reset(); //reset mesh bed leveling
  2571. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2572. // consumed during the first movements following this statement.
  2573. babystep_undo();
  2574. // Cycle through all points and probe them
  2575. // First move up. During this first movement, the babystepping will be reverted.
  2576. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2577. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2578. // The move to the first calibration point.
  2579. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2580. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2581. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2582. if (verbosity_level >= 1) {
  2583. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2584. }
  2585. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2586. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2587. // Wait until the move is finished.
  2588. st_synchronize();
  2589. int mesh_point = 0; //index number of calibration point
  2590. int ix = 0;
  2591. int iy = 0;
  2592. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2593. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2594. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2595. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2596. if (verbosity_level >= 1) {
  2597. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2598. }
  2599. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2600. const char *kill_message = NULL;
  2601. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2602. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2603. // Get coords of a measuring point.
  2604. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2605. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2606. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2607. float z0 = 0.f;
  2608. if (has_z && mesh_point > 0) {
  2609. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2610. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2611. //#if 0
  2612. if (verbosity_level >= 1) {
  2613. SERIAL_ECHOPGM("Bed leveling, point: ");
  2614. MYSERIAL.print(mesh_point);
  2615. SERIAL_ECHOPGM(", calibration z: ");
  2616. MYSERIAL.print(z0, 5);
  2617. SERIAL_ECHOLNPGM("");
  2618. }
  2619. //#endif
  2620. }
  2621. // Move Z up to MESH_HOME_Z_SEARCH.
  2622. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2624. st_synchronize();
  2625. // Move to XY position of the sensor point.
  2626. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2627. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2628. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2629. if (verbosity_level >= 1) {
  2630. SERIAL_PROTOCOL(mesh_point);
  2631. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2632. }
  2633. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2634. st_synchronize();
  2635. // Go down until endstop is hit
  2636. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2637. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2638. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2639. break;
  2640. }
  2641. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2642. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2643. break;
  2644. }
  2645. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2646. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2647. break;
  2648. }
  2649. if (verbosity_level >= 10) {
  2650. SERIAL_ECHOPGM("X: ");
  2651. MYSERIAL.print(current_position[X_AXIS], 5);
  2652. SERIAL_ECHOLNPGM("");
  2653. SERIAL_ECHOPGM("Y: ");
  2654. MYSERIAL.print(current_position[Y_AXIS], 5);
  2655. SERIAL_PROTOCOLPGM("\n");
  2656. }
  2657. if (verbosity_level >= 1) {
  2658. SERIAL_ECHOPGM("mesh bed leveling: ");
  2659. MYSERIAL.print(current_position[Z_AXIS], 5);
  2660. SERIAL_ECHOLNPGM("");
  2661. }
  2662. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2663. custom_message_state--;
  2664. mesh_point++;
  2665. lcd_update(1);
  2666. }
  2667. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2668. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2669. if (verbosity_level >= 20) {
  2670. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2671. MYSERIAL.print(current_position[Z_AXIS], 5);
  2672. }
  2673. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2674. st_synchronize();
  2675. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2676. kill(kill_message);
  2677. SERIAL_ECHOLNPGM("killed");
  2678. }
  2679. clean_up_after_endstop_move();
  2680. SERIAL_ECHOLNPGM("clean up finished ");
  2681. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2682. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2683. SERIAL_ECHOLNPGM("babystep applied");
  2684. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2685. if (verbosity_level >= 1) {
  2686. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2687. }
  2688. for (uint8_t i = 0; i < 4; ++i) {
  2689. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2690. long correction = 0;
  2691. if (code_seen(codes[i]))
  2692. correction = code_value_long();
  2693. else if (eeprom_bed_correction_valid) {
  2694. unsigned char *addr = (i < 2) ?
  2695. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2696. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2697. correction = eeprom_read_int8(addr);
  2698. }
  2699. if (correction == 0)
  2700. continue;
  2701. float offset = float(correction) * 0.001f;
  2702. if (fabs(offset) > 0.101f) {
  2703. SERIAL_ERROR_START;
  2704. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2705. SERIAL_ECHO(offset);
  2706. SERIAL_ECHOLNPGM(" microns");
  2707. }
  2708. else {
  2709. switch (i) {
  2710. case 0:
  2711. for (uint8_t row = 0; row < 3; ++row) {
  2712. mbl.z_values[row][1] += 0.5f * offset;
  2713. mbl.z_values[row][0] += offset;
  2714. }
  2715. break;
  2716. case 1:
  2717. for (uint8_t row = 0; row < 3; ++row) {
  2718. mbl.z_values[row][1] += 0.5f * offset;
  2719. mbl.z_values[row][2] += offset;
  2720. }
  2721. break;
  2722. case 2:
  2723. for (uint8_t col = 0; col < 3; ++col) {
  2724. mbl.z_values[1][col] += 0.5f * offset;
  2725. mbl.z_values[0][col] += offset;
  2726. }
  2727. break;
  2728. case 3:
  2729. for (uint8_t col = 0; col < 3; ++col) {
  2730. mbl.z_values[1][col] += 0.5f * offset;
  2731. mbl.z_values[2][col] += offset;
  2732. }
  2733. break;
  2734. }
  2735. }
  2736. }
  2737. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2738. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2739. SERIAL_ECHOLNPGM("Upsample finished");
  2740. mbl.active = 1; //activate mesh bed leveling
  2741. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2742. go_home_with_z_lift();
  2743. SERIAL_ECHOLNPGM("Go home finished");
  2744. //unretract (after PINDA preheat retraction)
  2745. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2746. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2747. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2748. }
  2749. // Restore custom message state
  2750. custom_message = custom_message_old;
  2751. custom_message_type = custom_message_type_old;
  2752. custom_message_state = custom_message_state_old;
  2753. mesh_bed_leveling_flag = false;
  2754. mesh_bed_run_from_menu = false;
  2755. lcd_update(2);
  2756. }
  2757. break;
  2758. /**
  2759. * G81: Print mesh bed leveling status and bed profile if activated
  2760. */
  2761. case 81:
  2762. if (mbl.active) {
  2763. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2764. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2765. SERIAL_PROTOCOLPGM(",");
  2766. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2767. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2768. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2769. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2770. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2771. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2772. SERIAL_PROTOCOLPGM(" ");
  2773. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2774. }
  2775. SERIAL_PROTOCOLPGM("\n");
  2776. }
  2777. }
  2778. else
  2779. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2780. break;
  2781. #if 0
  2782. /**
  2783. * G82: Single Z probe at current location
  2784. *
  2785. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2786. *
  2787. */
  2788. case 82:
  2789. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2790. setup_for_endstop_move();
  2791. find_bed_induction_sensor_point_z();
  2792. clean_up_after_endstop_move();
  2793. SERIAL_PROTOCOLPGM("Bed found at: ");
  2794. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2795. SERIAL_PROTOCOLPGM("\n");
  2796. break;
  2797. /**
  2798. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2799. */
  2800. case 83:
  2801. {
  2802. int babystepz = code_seen('S') ? code_value() : 0;
  2803. int BabyPosition = code_seen('P') ? code_value() : 0;
  2804. if (babystepz != 0) {
  2805. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2806. // Is the axis indexed starting with zero or one?
  2807. if (BabyPosition > 4) {
  2808. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2809. }else{
  2810. // Save it to the eeprom
  2811. babystepLoadZ = babystepz;
  2812. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2813. // adjust the Z
  2814. babystepsTodoZadd(babystepLoadZ);
  2815. }
  2816. }
  2817. }
  2818. break;
  2819. /**
  2820. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2821. */
  2822. case 84:
  2823. babystepsTodoZsubtract(babystepLoadZ);
  2824. // babystepLoadZ = 0;
  2825. break;
  2826. /**
  2827. * G85: Prusa3D specific: Pick best babystep
  2828. */
  2829. case 85:
  2830. lcd_pick_babystep();
  2831. break;
  2832. #endif
  2833. /**
  2834. * G86: Prusa3D specific: Disable babystep correction after home.
  2835. * This G-code will be performed at the start of a calibration script.
  2836. */
  2837. case 86:
  2838. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2839. break;
  2840. /**
  2841. * G87: Prusa3D specific: Enable babystep correction after home
  2842. * This G-code will be performed at the end of a calibration script.
  2843. */
  2844. case 87:
  2845. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2846. break;
  2847. /**
  2848. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2849. */
  2850. case 88:
  2851. break;
  2852. #endif // ENABLE_MESH_BED_LEVELING
  2853. case 90: // G90
  2854. relative_mode = false;
  2855. break;
  2856. case 91: // G91
  2857. relative_mode = true;
  2858. break;
  2859. case 92: // G92
  2860. if(!code_seen(axis_codes[E_AXIS]))
  2861. st_synchronize();
  2862. for(int8_t i=0; i < NUM_AXIS; i++) {
  2863. if(code_seen(axis_codes[i])) {
  2864. if(i == E_AXIS) {
  2865. current_position[i] = code_value();
  2866. plan_set_e_position(current_position[E_AXIS]);
  2867. }
  2868. else {
  2869. current_position[i] = code_value()+add_homing[i];
  2870. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2871. }
  2872. }
  2873. }
  2874. break;
  2875. case 98: //activate farm mode
  2876. farm_mode = 1;
  2877. PingTime = millis();
  2878. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2879. break;
  2880. case 99: //deactivate farm mode
  2881. farm_mode = 0;
  2882. lcd_printer_connected();
  2883. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2884. lcd_update(2);
  2885. break;
  2886. }
  2887. } // end if(code_seen('G'))
  2888. else if(code_seen('M'))
  2889. {
  2890. int index;
  2891. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2892. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2893. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2894. SERIAL_ECHOLNPGM("Invalid M code");
  2895. } else
  2896. switch((int)code_value())
  2897. {
  2898. #ifdef ULTIPANEL
  2899. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2900. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2901. {
  2902. char *src = strchr_pointer + 2;
  2903. codenum = 0;
  2904. bool hasP = false, hasS = false;
  2905. if (code_seen('P')) {
  2906. codenum = code_value(); // milliseconds to wait
  2907. hasP = codenum > 0;
  2908. }
  2909. if (code_seen('S')) {
  2910. codenum = code_value() * 1000; // seconds to wait
  2911. hasS = codenum > 0;
  2912. }
  2913. starpos = strchr(src, '*');
  2914. if (starpos != NULL) *(starpos) = '\0';
  2915. while (*src == ' ') ++src;
  2916. if (!hasP && !hasS && *src != '\0') {
  2917. lcd_setstatus(src);
  2918. } else {
  2919. LCD_MESSAGERPGM(MSG_USERWAIT);
  2920. }
  2921. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2922. st_synchronize();
  2923. previous_millis_cmd = millis();
  2924. if (codenum > 0){
  2925. codenum += millis(); // keep track of when we started waiting
  2926. while(millis() < codenum && !lcd_clicked()){
  2927. manage_heater();
  2928. manage_inactivity(true);
  2929. lcd_update();
  2930. }
  2931. lcd_ignore_click(false);
  2932. }else{
  2933. if (!lcd_detected())
  2934. break;
  2935. while(!lcd_clicked()){
  2936. manage_heater();
  2937. manage_inactivity(true);
  2938. lcd_update();
  2939. }
  2940. }
  2941. if (IS_SD_PRINTING)
  2942. LCD_MESSAGERPGM(MSG_RESUMING);
  2943. else
  2944. LCD_MESSAGERPGM(WELCOME_MSG);
  2945. }
  2946. break;
  2947. #endif
  2948. case 17:
  2949. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2950. enable_x();
  2951. enable_y();
  2952. enable_z();
  2953. enable_e0();
  2954. enable_e1();
  2955. enable_e2();
  2956. break;
  2957. #ifdef SDSUPPORT
  2958. case 20: // M20 - list SD card
  2959. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2960. card.ls();
  2961. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2962. break;
  2963. case 21: // M21 - init SD card
  2964. card.initsd();
  2965. break;
  2966. case 22: //M22 - release SD card
  2967. card.release();
  2968. break;
  2969. case 23: //M23 - Select file
  2970. starpos = (strchr(strchr_pointer + 4,'*'));
  2971. if(starpos!=NULL)
  2972. *(starpos)='\0';
  2973. card.openFile(strchr_pointer + 4,true);
  2974. break;
  2975. case 24: //M24 - Start SD print
  2976. card.startFileprint();
  2977. starttime=millis();
  2978. break;
  2979. case 25: //M25 - Pause SD print
  2980. card.pauseSDPrint();
  2981. break;
  2982. case 26: //M26 - Set SD index
  2983. if(card.cardOK && code_seen('S')) {
  2984. card.setIndex(code_value_long());
  2985. }
  2986. break;
  2987. case 27: //M27 - Get SD status
  2988. card.getStatus();
  2989. break;
  2990. case 28: //M28 - Start SD write
  2991. starpos = (strchr(strchr_pointer + 4,'*'));
  2992. if(starpos != NULL){
  2993. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2994. strchr_pointer = strchr(npos,' ') + 1;
  2995. *(starpos) = '\0';
  2996. }
  2997. card.openFile(strchr_pointer+4,false);
  2998. break;
  2999. case 29: //M29 - Stop SD write
  3000. //processed in write to file routine above
  3001. //card,saving = false;
  3002. break;
  3003. case 30: //M30 <filename> Delete File
  3004. if (card.cardOK){
  3005. card.closefile();
  3006. starpos = (strchr(strchr_pointer + 4,'*'));
  3007. if(starpos != NULL){
  3008. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3009. strchr_pointer = strchr(npos,' ') + 1;
  3010. *(starpos) = '\0';
  3011. }
  3012. card.removeFile(strchr_pointer + 4);
  3013. }
  3014. break;
  3015. case 32: //M32 - Select file and start SD print
  3016. {
  3017. if(card.sdprinting) {
  3018. st_synchronize();
  3019. }
  3020. starpos = (strchr(strchr_pointer + 4,'*'));
  3021. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3022. if(namestartpos==NULL)
  3023. {
  3024. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3025. }
  3026. else
  3027. namestartpos++; //to skip the '!'
  3028. if(starpos!=NULL)
  3029. *(starpos)='\0';
  3030. bool call_procedure=(code_seen('P'));
  3031. if(strchr_pointer>namestartpos)
  3032. call_procedure=false; //false alert, 'P' found within filename
  3033. if( card.cardOK )
  3034. {
  3035. card.openFile(namestartpos,true,!call_procedure);
  3036. if(code_seen('S'))
  3037. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3038. card.setIndex(code_value_long());
  3039. card.startFileprint();
  3040. if(!call_procedure)
  3041. starttime=millis(); //procedure calls count as normal print time.
  3042. }
  3043. } break;
  3044. case 928: //M928 - Start SD write
  3045. starpos = (strchr(strchr_pointer + 5,'*'));
  3046. if(starpos != NULL){
  3047. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3048. strchr_pointer = strchr(npos,' ') + 1;
  3049. *(starpos) = '\0';
  3050. }
  3051. card.openLogFile(strchr_pointer+5);
  3052. break;
  3053. #endif //SDSUPPORT
  3054. case 31: //M31 take time since the start of the SD print or an M109 command
  3055. {
  3056. stoptime=millis();
  3057. char time[30];
  3058. unsigned long t=(stoptime-starttime)/1000;
  3059. int sec,min;
  3060. min=t/60;
  3061. sec=t%60;
  3062. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3063. SERIAL_ECHO_START;
  3064. SERIAL_ECHOLN(time);
  3065. lcd_setstatus(time);
  3066. autotempShutdown();
  3067. }
  3068. break;
  3069. case 42: //M42 -Change pin status via gcode
  3070. if (code_seen('S'))
  3071. {
  3072. int pin_status = code_value();
  3073. int pin_number = LED_PIN;
  3074. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3075. pin_number = code_value();
  3076. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3077. {
  3078. if (sensitive_pins[i] == pin_number)
  3079. {
  3080. pin_number = -1;
  3081. break;
  3082. }
  3083. }
  3084. #if defined(FAN_PIN) && FAN_PIN > -1
  3085. if (pin_number == FAN_PIN)
  3086. fanSpeed = pin_status;
  3087. #endif
  3088. if (pin_number > -1)
  3089. {
  3090. pinMode(pin_number, OUTPUT);
  3091. digitalWrite(pin_number, pin_status);
  3092. analogWrite(pin_number, pin_status);
  3093. }
  3094. }
  3095. break;
  3096. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3097. // Reset the baby step value and the baby step applied flag.
  3098. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3099. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3100. // Reset the skew and offset in both RAM and EEPROM.
  3101. reset_bed_offset_and_skew();
  3102. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3103. // the planner will not perform any adjustments in the XY plane.
  3104. // Wait for the motors to stop and update the current position with the absolute values.
  3105. world2machine_revert_to_uncorrected();
  3106. break;
  3107. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3108. {
  3109. // Only Z calibration?
  3110. bool onlyZ = code_seen('Z');
  3111. if (!onlyZ) {
  3112. setTargetBed(0);
  3113. setTargetHotend(0, 0);
  3114. setTargetHotend(0, 1);
  3115. setTargetHotend(0, 2);
  3116. adjust_bed_reset(); //reset bed level correction
  3117. }
  3118. // Disable the default update procedure of the display. We will do a modal dialog.
  3119. lcd_update_enable(false);
  3120. // Let the planner use the uncorrected coordinates.
  3121. mbl.reset();
  3122. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3123. // the planner will not perform any adjustments in the XY plane.
  3124. // Wait for the motors to stop and update the current position with the absolute values.
  3125. world2machine_revert_to_uncorrected();
  3126. // Reset the baby step value applied without moving the axes.
  3127. babystep_reset();
  3128. // Mark all axes as in a need for homing.
  3129. memset(axis_known_position, 0, sizeof(axis_known_position));
  3130. // Let the user move the Z axes up to the end stoppers.
  3131. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3132. refresh_cmd_timeout();
  3133. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3134. lcd_wait_for_cool_down();
  3135. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3136. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3137. lcd_implementation_print_at(0, 2, 1);
  3138. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3139. }
  3140. // Move the print head close to the bed.
  3141. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3142. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3143. st_synchronize();
  3144. // Home in the XY plane.
  3145. set_destination_to_current();
  3146. setup_for_endstop_move();
  3147. home_xy();
  3148. int8_t verbosity_level = 0;
  3149. if (code_seen('V')) {
  3150. // Just 'V' without a number counts as V1.
  3151. char c = strchr_pointer[1];
  3152. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3153. }
  3154. if (onlyZ) {
  3155. clean_up_after_endstop_move();
  3156. // Z only calibration.
  3157. // Load the machine correction matrix
  3158. world2machine_initialize();
  3159. // and correct the current_position to match the transformed coordinate system.
  3160. world2machine_update_current();
  3161. //FIXME
  3162. bool result = sample_mesh_and_store_reference();
  3163. if (result) {
  3164. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3165. // Shipped, the nozzle height has been set already. The user can start printing now.
  3166. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3167. // babystep_apply();
  3168. }
  3169. } else {
  3170. // Reset the baby step value and the baby step applied flag.
  3171. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3172. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3173. // Complete XYZ calibration.
  3174. uint8_t point_too_far_mask = 0;
  3175. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3176. clean_up_after_endstop_move();
  3177. // Print head up.
  3178. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3179. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3180. st_synchronize();
  3181. if (result >= 0) {
  3182. point_too_far_mask = 0;
  3183. // Second half: The fine adjustment.
  3184. // Let the planner use the uncorrected coordinates.
  3185. mbl.reset();
  3186. world2machine_reset();
  3187. // Home in the XY plane.
  3188. setup_for_endstop_move();
  3189. home_xy();
  3190. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3191. clean_up_after_endstop_move();
  3192. // Print head up.
  3193. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3194. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3195. st_synchronize();
  3196. // if (result >= 0) babystep_apply();
  3197. }
  3198. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3199. if (result >= 0) {
  3200. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3201. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3202. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3203. }
  3204. }
  3205. } else {
  3206. // Timeouted.
  3207. }
  3208. lcd_update_enable(true);
  3209. break;
  3210. }
  3211. /*
  3212. case 46:
  3213. {
  3214. // M46: Prusa3D: Show the assigned IP address.
  3215. uint8_t ip[4];
  3216. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3217. if (hasIP) {
  3218. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3219. SERIAL_ECHO(int(ip[0]));
  3220. SERIAL_ECHOPGM(".");
  3221. SERIAL_ECHO(int(ip[1]));
  3222. SERIAL_ECHOPGM(".");
  3223. SERIAL_ECHO(int(ip[2]));
  3224. SERIAL_ECHOPGM(".");
  3225. SERIAL_ECHO(int(ip[3]));
  3226. SERIAL_ECHOLNPGM("");
  3227. } else {
  3228. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3229. }
  3230. break;
  3231. }
  3232. */
  3233. case 47:
  3234. // M47: Prusa3D: Show end stops dialog on the display.
  3235. lcd_diag_show_end_stops();
  3236. break;
  3237. #if 0
  3238. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3239. {
  3240. // Disable the default update procedure of the display. We will do a modal dialog.
  3241. lcd_update_enable(false);
  3242. // Let the planner use the uncorrected coordinates.
  3243. mbl.reset();
  3244. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3245. // the planner will not perform any adjustments in the XY plane.
  3246. // Wait for the motors to stop and update the current position with the absolute values.
  3247. world2machine_revert_to_uncorrected();
  3248. // Move the print head close to the bed.
  3249. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3250. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3251. st_synchronize();
  3252. // Home in the XY plane.
  3253. set_destination_to_current();
  3254. setup_for_endstop_move();
  3255. home_xy();
  3256. int8_t verbosity_level = 0;
  3257. if (code_seen('V')) {
  3258. // Just 'V' without a number counts as V1.
  3259. char c = strchr_pointer[1];
  3260. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3261. }
  3262. bool success = scan_bed_induction_points(verbosity_level);
  3263. clean_up_after_endstop_move();
  3264. // Print head up.
  3265. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3266. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3267. st_synchronize();
  3268. lcd_update_enable(true);
  3269. break;
  3270. }
  3271. #endif
  3272. // M48 Z-Probe repeatability measurement function.
  3273. //
  3274. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3275. //
  3276. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3277. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3278. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3279. // regenerated.
  3280. //
  3281. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3282. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3283. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3284. //
  3285. #ifdef ENABLE_AUTO_BED_LEVELING
  3286. #ifdef Z_PROBE_REPEATABILITY_TEST
  3287. case 48: // M48 Z-Probe repeatability
  3288. {
  3289. #if Z_MIN_PIN == -1
  3290. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3291. #endif
  3292. double sum=0.0;
  3293. double mean=0.0;
  3294. double sigma=0.0;
  3295. double sample_set[50];
  3296. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3297. double X_current, Y_current, Z_current;
  3298. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3299. if (code_seen('V') || code_seen('v')) {
  3300. verbose_level = code_value();
  3301. if (verbose_level<0 || verbose_level>4 ) {
  3302. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3303. goto Sigma_Exit;
  3304. }
  3305. }
  3306. if (verbose_level > 0) {
  3307. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3308. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3309. }
  3310. if (code_seen('n')) {
  3311. n_samples = code_value();
  3312. if (n_samples<4 || n_samples>50 ) {
  3313. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3314. goto Sigma_Exit;
  3315. }
  3316. }
  3317. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3318. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3319. Z_current = st_get_position_mm(Z_AXIS);
  3320. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3321. ext_position = st_get_position_mm(E_AXIS);
  3322. if (code_seen('X') || code_seen('x') ) {
  3323. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3324. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3325. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3326. goto Sigma_Exit;
  3327. }
  3328. }
  3329. if (code_seen('Y') || code_seen('y') ) {
  3330. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3331. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3332. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3333. goto Sigma_Exit;
  3334. }
  3335. }
  3336. if (code_seen('L') || code_seen('l') ) {
  3337. n_legs = code_value();
  3338. if ( n_legs==1 )
  3339. n_legs = 2;
  3340. if ( n_legs<0 || n_legs>15 ) {
  3341. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3342. goto Sigma_Exit;
  3343. }
  3344. }
  3345. //
  3346. // Do all the preliminary setup work. First raise the probe.
  3347. //
  3348. st_synchronize();
  3349. plan_bed_level_matrix.set_to_identity();
  3350. plan_buffer_line( X_current, Y_current, Z_start_location,
  3351. ext_position,
  3352. homing_feedrate[Z_AXIS]/60,
  3353. active_extruder);
  3354. st_synchronize();
  3355. //
  3356. // Now get everything to the specified probe point So we can safely do a probe to
  3357. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3358. // use that as a starting point for each probe.
  3359. //
  3360. if (verbose_level > 2)
  3361. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3362. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3363. ext_position,
  3364. homing_feedrate[X_AXIS]/60,
  3365. active_extruder);
  3366. st_synchronize();
  3367. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3368. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3369. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3370. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3371. //
  3372. // OK, do the inital probe to get us close to the bed.
  3373. // Then retrace the right amount and use that in subsequent probes
  3374. //
  3375. setup_for_endstop_move();
  3376. run_z_probe();
  3377. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3378. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3379. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3380. ext_position,
  3381. homing_feedrate[X_AXIS]/60,
  3382. active_extruder);
  3383. st_synchronize();
  3384. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3385. for( n=0; n<n_samples; n++) {
  3386. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3387. if ( n_legs) {
  3388. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3389. int rotational_direction, l;
  3390. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3391. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3392. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3393. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3394. //SERIAL_ECHOPAIR(" theta: ",theta);
  3395. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3396. //SERIAL_PROTOCOLLNPGM("");
  3397. for( l=0; l<n_legs-1; l++) {
  3398. if (rotational_direction==1)
  3399. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3400. else
  3401. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3402. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3403. if ( radius<0.0 )
  3404. radius = -radius;
  3405. X_current = X_probe_location + cos(theta) * radius;
  3406. Y_current = Y_probe_location + sin(theta) * radius;
  3407. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3408. X_current = X_MIN_POS;
  3409. if ( X_current>X_MAX_POS)
  3410. X_current = X_MAX_POS;
  3411. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3412. Y_current = Y_MIN_POS;
  3413. if ( Y_current>Y_MAX_POS)
  3414. Y_current = Y_MAX_POS;
  3415. if (verbose_level>3 ) {
  3416. SERIAL_ECHOPAIR("x: ", X_current);
  3417. SERIAL_ECHOPAIR("y: ", Y_current);
  3418. SERIAL_PROTOCOLLNPGM("");
  3419. }
  3420. do_blocking_move_to( X_current, Y_current, Z_current );
  3421. }
  3422. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3423. }
  3424. setup_for_endstop_move();
  3425. run_z_probe();
  3426. sample_set[n] = current_position[Z_AXIS];
  3427. //
  3428. // Get the current mean for the data points we have so far
  3429. //
  3430. sum=0.0;
  3431. for( j=0; j<=n; j++) {
  3432. sum = sum + sample_set[j];
  3433. }
  3434. mean = sum / (double (n+1));
  3435. //
  3436. // Now, use that mean to calculate the standard deviation for the
  3437. // data points we have so far
  3438. //
  3439. sum=0.0;
  3440. for( j=0; j<=n; j++) {
  3441. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3442. }
  3443. sigma = sqrt( sum / (double (n+1)) );
  3444. if (verbose_level > 1) {
  3445. SERIAL_PROTOCOL(n+1);
  3446. SERIAL_PROTOCOL(" of ");
  3447. SERIAL_PROTOCOL(n_samples);
  3448. SERIAL_PROTOCOLPGM(" z: ");
  3449. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3450. }
  3451. if (verbose_level > 2) {
  3452. SERIAL_PROTOCOL(" mean: ");
  3453. SERIAL_PROTOCOL_F(mean,6);
  3454. SERIAL_PROTOCOL(" sigma: ");
  3455. SERIAL_PROTOCOL_F(sigma,6);
  3456. }
  3457. if (verbose_level > 0)
  3458. SERIAL_PROTOCOLPGM("\n");
  3459. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3460. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3461. st_synchronize();
  3462. }
  3463. delay(1000);
  3464. clean_up_after_endstop_move();
  3465. // enable_endstops(true);
  3466. if (verbose_level > 0) {
  3467. SERIAL_PROTOCOLPGM("Mean: ");
  3468. SERIAL_PROTOCOL_F(mean, 6);
  3469. SERIAL_PROTOCOLPGM("\n");
  3470. }
  3471. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3472. SERIAL_PROTOCOL_F(sigma, 6);
  3473. SERIAL_PROTOCOLPGM("\n\n");
  3474. Sigma_Exit:
  3475. break;
  3476. }
  3477. #endif // Z_PROBE_REPEATABILITY_TEST
  3478. #endif // ENABLE_AUTO_BED_LEVELING
  3479. case 104: // M104
  3480. if(setTargetedHotend(104)){
  3481. break;
  3482. }
  3483. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3484. setWatch();
  3485. break;
  3486. case 112: // M112 -Emergency Stop
  3487. kill();
  3488. break;
  3489. case 140: // M140 set bed temp
  3490. if (code_seen('S')) setTargetBed(code_value());
  3491. break;
  3492. case 105 : // M105
  3493. if(setTargetedHotend(105)){
  3494. break;
  3495. }
  3496. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3497. SERIAL_PROTOCOLPGM("ok T:");
  3498. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3499. SERIAL_PROTOCOLPGM(" /");
  3500. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3501. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3502. SERIAL_PROTOCOLPGM(" B:");
  3503. SERIAL_PROTOCOL_F(degBed(),1);
  3504. SERIAL_PROTOCOLPGM(" /");
  3505. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3506. #endif //TEMP_BED_PIN
  3507. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3508. SERIAL_PROTOCOLPGM(" T");
  3509. SERIAL_PROTOCOL(cur_extruder);
  3510. SERIAL_PROTOCOLPGM(":");
  3511. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3512. SERIAL_PROTOCOLPGM(" /");
  3513. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3514. }
  3515. #else
  3516. SERIAL_ERROR_START;
  3517. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3518. #endif
  3519. SERIAL_PROTOCOLPGM(" @:");
  3520. #ifdef EXTRUDER_WATTS
  3521. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3522. SERIAL_PROTOCOLPGM("W");
  3523. #else
  3524. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3525. #endif
  3526. SERIAL_PROTOCOLPGM(" B@:");
  3527. #ifdef BED_WATTS
  3528. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3529. SERIAL_PROTOCOLPGM("W");
  3530. #else
  3531. SERIAL_PROTOCOL(getHeaterPower(-1));
  3532. #endif
  3533. #ifdef SHOW_TEMP_ADC_VALUES
  3534. {float raw = 0.0;
  3535. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3536. SERIAL_PROTOCOLPGM(" ADC B:");
  3537. SERIAL_PROTOCOL_F(degBed(),1);
  3538. SERIAL_PROTOCOLPGM("C->");
  3539. raw = rawBedTemp();
  3540. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3541. SERIAL_PROTOCOLPGM(" Rb->");
  3542. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3543. SERIAL_PROTOCOLPGM(" Rxb->");
  3544. SERIAL_PROTOCOL_F(raw, 5);
  3545. #endif
  3546. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3547. SERIAL_PROTOCOLPGM(" T");
  3548. SERIAL_PROTOCOL(cur_extruder);
  3549. SERIAL_PROTOCOLPGM(":");
  3550. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3551. SERIAL_PROTOCOLPGM("C->");
  3552. raw = rawHotendTemp(cur_extruder);
  3553. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3554. SERIAL_PROTOCOLPGM(" Rt");
  3555. SERIAL_PROTOCOL(cur_extruder);
  3556. SERIAL_PROTOCOLPGM("->");
  3557. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3558. SERIAL_PROTOCOLPGM(" Rx");
  3559. SERIAL_PROTOCOL(cur_extruder);
  3560. SERIAL_PROTOCOLPGM("->");
  3561. SERIAL_PROTOCOL_F(raw, 5);
  3562. }}
  3563. #endif
  3564. SERIAL_PROTOCOLLN("");
  3565. return;
  3566. break;
  3567. case 109:
  3568. {// M109 - Wait for extruder heater to reach target.
  3569. if(setTargetedHotend(109)){
  3570. break;
  3571. }
  3572. LCD_MESSAGERPGM(MSG_HEATING);
  3573. heating_status = 1;
  3574. if (farm_mode) { prusa_statistics(1); };
  3575. #ifdef AUTOTEMP
  3576. autotemp_enabled=false;
  3577. #endif
  3578. if (code_seen('S')) {
  3579. setTargetHotend(code_value(), tmp_extruder);
  3580. CooldownNoWait = true;
  3581. } else if (code_seen('R')) {
  3582. setTargetHotend(code_value(), tmp_extruder);
  3583. CooldownNoWait = false;
  3584. }
  3585. #ifdef AUTOTEMP
  3586. if (code_seen('S')) autotemp_min=code_value();
  3587. if (code_seen('B')) autotemp_max=code_value();
  3588. if (code_seen('F'))
  3589. {
  3590. autotemp_factor=code_value();
  3591. autotemp_enabled=true;
  3592. }
  3593. #endif
  3594. setWatch();
  3595. codenum = millis();
  3596. /* See if we are heating up or cooling down */
  3597. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3598. cancel_heatup = false;
  3599. wait_for_heater(codenum); //loops until target temperature is reached
  3600. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3601. heating_status = 2;
  3602. if (farm_mode) { prusa_statistics(2); };
  3603. //starttime=millis();
  3604. previous_millis_cmd = millis();
  3605. }
  3606. break;
  3607. case 190: // M190 - Wait for bed heater to reach target.
  3608. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3609. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3610. heating_status = 3;
  3611. if (farm_mode) { prusa_statistics(1); };
  3612. if (code_seen('S'))
  3613. {
  3614. setTargetBed(code_value());
  3615. CooldownNoWait = true;
  3616. }
  3617. else if (code_seen('R'))
  3618. {
  3619. setTargetBed(code_value());
  3620. CooldownNoWait = false;
  3621. }
  3622. codenum = millis();
  3623. cancel_heatup = false;
  3624. target_direction = isHeatingBed(); // true if heating, false if cooling
  3625. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3626. {
  3627. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3628. {
  3629. if (!farm_mode) {
  3630. float tt = degHotend(active_extruder);
  3631. SERIAL_PROTOCOLPGM("T:");
  3632. SERIAL_PROTOCOL(tt);
  3633. SERIAL_PROTOCOLPGM(" E:");
  3634. SERIAL_PROTOCOL((int)active_extruder);
  3635. SERIAL_PROTOCOLPGM(" B:");
  3636. SERIAL_PROTOCOL_F(degBed(), 1);
  3637. SERIAL_PROTOCOLLN("");
  3638. }
  3639. codenum = millis();
  3640. }
  3641. manage_heater();
  3642. manage_inactivity();
  3643. lcd_update();
  3644. }
  3645. LCD_MESSAGERPGM(MSG_BED_DONE);
  3646. heating_status = 4;
  3647. previous_millis_cmd = millis();
  3648. #endif
  3649. break;
  3650. #if defined(FAN_PIN) && FAN_PIN > -1
  3651. case 106: //M106 Fan On
  3652. if (code_seen('S')){
  3653. fanSpeed=constrain(code_value(),0,255);
  3654. }
  3655. else {
  3656. fanSpeed=255;
  3657. }
  3658. break;
  3659. case 107: //M107 Fan Off
  3660. fanSpeed = 0;
  3661. break;
  3662. #endif //FAN_PIN
  3663. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3664. case 80: // M80 - Turn on Power Supply
  3665. SET_OUTPUT(PS_ON_PIN); //GND
  3666. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3667. // If you have a switch on suicide pin, this is useful
  3668. // if you want to start another print with suicide feature after
  3669. // a print without suicide...
  3670. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3671. SET_OUTPUT(SUICIDE_PIN);
  3672. WRITE(SUICIDE_PIN, HIGH);
  3673. #endif
  3674. #ifdef ULTIPANEL
  3675. powersupply = true;
  3676. LCD_MESSAGERPGM(WELCOME_MSG);
  3677. lcd_update();
  3678. #endif
  3679. break;
  3680. #endif
  3681. case 81: // M81 - Turn off Power Supply
  3682. disable_heater();
  3683. st_synchronize();
  3684. disable_e0();
  3685. disable_e1();
  3686. disable_e2();
  3687. finishAndDisableSteppers();
  3688. fanSpeed = 0;
  3689. delay(1000); // Wait a little before to switch off
  3690. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3691. st_synchronize();
  3692. suicide();
  3693. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3694. SET_OUTPUT(PS_ON_PIN);
  3695. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3696. #endif
  3697. #ifdef ULTIPANEL
  3698. powersupply = false;
  3699. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3700. /*
  3701. MACHNAME = "Prusa i3"
  3702. MSGOFF = "Vypnuto"
  3703. "Prusai3"" ""vypnuto""."
  3704. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3705. */
  3706. lcd_update();
  3707. #endif
  3708. break;
  3709. case 82:
  3710. axis_relative_modes[3] = false;
  3711. break;
  3712. case 83:
  3713. axis_relative_modes[3] = true;
  3714. break;
  3715. case 18: //compatibility
  3716. case 84: // M84
  3717. if(code_seen('S')){
  3718. stepper_inactive_time = code_value() * 1000;
  3719. }
  3720. else
  3721. {
  3722. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3723. if(all_axis)
  3724. {
  3725. st_synchronize();
  3726. disable_e0();
  3727. disable_e1();
  3728. disable_e2();
  3729. finishAndDisableSteppers();
  3730. }
  3731. else
  3732. {
  3733. st_synchronize();
  3734. if (code_seen('X')) disable_x();
  3735. if (code_seen('Y')) disable_y();
  3736. if (code_seen('Z')) disable_z();
  3737. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3738. if (code_seen('E')) {
  3739. disable_e0();
  3740. disable_e1();
  3741. disable_e2();
  3742. }
  3743. #endif
  3744. }
  3745. }
  3746. snmm_filaments_used = 0;
  3747. break;
  3748. case 85: // M85
  3749. if(code_seen('S')) {
  3750. max_inactive_time = code_value() * 1000;
  3751. }
  3752. break;
  3753. case 92: // M92
  3754. for(int8_t i=0; i < NUM_AXIS; i++)
  3755. {
  3756. if(code_seen(axis_codes[i]))
  3757. {
  3758. if(i == 3) { // E
  3759. float value = code_value();
  3760. if(value < 20.0) {
  3761. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3762. max_jerk[E_AXIS] *= factor;
  3763. max_feedrate[i] *= factor;
  3764. axis_steps_per_sqr_second[i] *= factor;
  3765. }
  3766. axis_steps_per_unit[i] = value;
  3767. }
  3768. else {
  3769. axis_steps_per_unit[i] = code_value();
  3770. }
  3771. }
  3772. }
  3773. break;
  3774. case 115: // M115
  3775. if (code_seen('V')) {
  3776. // Report the Prusa version number.
  3777. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3778. } else if (code_seen('U')) {
  3779. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3780. // pause the print and ask the user to upgrade the firmware.
  3781. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3782. } else {
  3783. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3784. }
  3785. break;
  3786. /* case 117: // M117 display message
  3787. starpos = (strchr(strchr_pointer + 5,'*'));
  3788. if(starpos!=NULL)
  3789. *(starpos)='\0';
  3790. lcd_setstatus(strchr_pointer + 5);
  3791. break;*/
  3792. case 114: // M114
  3793. SERIAL_PROTOCOLPGM("X:");
  3794. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3795. SERIAL_PROTOCOLPGM(" Y:");
  3796. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3797. SERIAL_PROTOCOLPGM(" Z:");
  3798. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3799. SERIAL_PROTOCOLPGM(" E:");
  3800. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3801. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3802. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3803. SERIAL_PROTOCOLPGM(" Y:");
  3804. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3805. SERIAL_PROTOCOLPGM(" Z:");
  3806. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3807. SERIAL_PROTOCOLLN("");
  3808. break;
  3809. case 120: // M120
  3810. enable_endstops(false) ;
  3811. break;
  3812. case 121: // M121
  3813. enable_endstops(true) ;
  3814. break;
  3815. case 119: // M119
  3816. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3817. SERIAL_PROTOCOLLN("");
  3818. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3819. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3820. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3821. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3822. }else{
  3823. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3824. }
  3825. SERIAL_PROTOCOLLN("");
  3826. #endif
  3827. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3828. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3829. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3830. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3831. }else{
  3832. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3833. }
  3834. SERIAL_PROTOCOLLN("");
  3835. #endif
  3836. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3837. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3838. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3839. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3840. }else{
  3841. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3842. }
  3843. SERIAL_PROTOCOLLN("");
  3844. #endif
  3845. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3846. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3847. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3848. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3849. }else{
  3850. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3851. }
  3852. SERIAL_PROTOCOLLN("");
  3853. #endif
  3854. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3855. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3856. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3857. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3858. }else{
  3859. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3860. }
  3861. SERIAL_PROTOCOLLN("");
  3862. #endif
  3863. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3864. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3865. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3866. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3867. }else{
  3868. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3869. }
  3870. SERIAL_PROTOCOLLN("");
  3871. #endif
  3872. break;
  3873. //TODO: update for all axis, use for loop
  3874. #ifdef BLINKM
  3875. case 150: // M150
  3876. {
  3877. byte red;
  3878. byte grn;
  3879. byte blu;
  3880. if(code_seen('R')) red = code_value();
  3881. if(code_seen('U')) grn = code_value();
  3882. if(code_seen('B')) blu = code_value();
  3883. SendColors(red,grn,blu);
  3884. }
  3885. break;
  3886. #endif //BLINKM
  3887. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3888. {
  3889. tmp_extruder = active_extruder;
  3890. if(code_seen('T')) {
  3891. tmp_extruder = code_value();
  3892. if(tmp_extruder >= EXTRUDERS) {
  3893. SERIAL_ECHO_START;
  3894. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3895. break;
  3896. }
  3897. }
  3898. float area = .0;
  3899. if(code_seen('D')) {
  3900. float diameter = (float)code_value();
  3901. if (diameter == 0.0) {
  3902. // setting any extruder filament size disables volumetric on the assumption that
  3903. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3904. // for all extruders
  3905. volumetric_enabled = false;
  3906. } else {
  3907. filament_size[tmp_extruder] = (float)code_value();
  3908. // make sure all extruders have some sane value for the filament size
  3909. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3910. #if EXTRUDERS > 1
  3911. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3912. #if EXTRUDERS > 2
  3913. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3914. #endif
  3915. #endif
  3916. volumetric_enabled = true;
  3917. }
  3918. } else {
  3919. //reserved for setting filament diameter via UFID or filament measuring device
  3920. break;
  3921. }
  3922. calculate_volumetric_multipliers();
  3923. }
  3924. break;
  3925. case 201: // M201
  3926. for(int8_t i=0; i < NUM_AXIS; i++)
  3927. {
  3928. if(code_seen(axis_codes[i]))
  3929. {
  3930. max_acceleration_units_per_sq_second[i] = code_value();
  3931. }
  3932. }
  3933. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3934. reset_acceleration_rates();
  3935. break;
  3936. #if 0 // Not used for Sprinter/grbl gen6
  3937. case 202: // M202
  3938. for(int8_t i=0; i < NUM_AXIS; i++) {
  3939. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3940. }
  3941. break;
  3942. #endif
  3943. case 203: // M203 max feedrate mm/sec
  3944. for(int8_t i=0; i < NUM_AXIS; i++) {
  3945. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3946. }
  3947. break;
  3948. case 204: // M204 acclereration S normal moves T filmanent only moves
  3949. {
  3950. if(code_seen('S')) acceleration = code_value() ;
  3951. if(code_seen('T')) retract_acceleration = code_value() ;
  3952. }
  3953. break;
  3954. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3955. {
  3956. if(code_seen('S')) minimumfeedrate = code_value();
  3957. if(code_seen('T')) mintravelfeedrate = code_value();
  3958. if(code_seen('B')) minsegmenttime = code_value() ;
  3959. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3960. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3961. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3962. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3963. }
  3964. break;
  3965. case 206: // M206 additional homing offset
  3966. for(int8_t i=0; i < 3; i++)
  3967. {
  3968. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3969. }
  3970. break;
  3971. #ifdef FWRETRACT
  3972. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3973. {
  3974. if(code_seen('S'))
  3975. {
  3976. retract_length = code_value() ;
  3977. }
  3978. if(code_seen('F'))
  3979. {
  3980. retract_feedrate = code_value()/60 ;
  3981. }
  3982. if(code_seen('Z'))
  3983. {
  3984. retract_zlift = code_value() ;
  3985. }
  3986. }break;
  3987. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3988. {
  3989. if(code_seen('S'))
  3990. {
  3991. retract_recover_length = code_value() ;
  3992. }
  3993. if(code_seen('F'))
  3994. {
  3995. retract_recover_feedrate = code_value()/60 ;
  3996. }
  3997. }break;
  3998. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3999. {
  4000. if(code_seen('S'))
  4001. {
  4002. int t= code_value() ;
  4003. switch(t)
  4004. {
  4005. case 0:
  4006. {
  4007. autoretract_enabled=false;
  4008. retracted[0]=false;
  4009. #if EXTRUDERS > 1
  4010. retracted[1]=false;
  4011. #endif
  4012. #if EXTRUDERS > 2
  4013. retracted[2]=false;
  4014. #endif
  4015. }break;
  4016. case 1:
  4017. {
  4018. autoretract_enabled=true;
  4019. retracted[0]=false;
  4020. #if EXTRUDERS > 1
  4021. retracted[1]=false;
  4022. #endif
  4023. #if EXTRUDERS > 2
  4024. retracted[2]=false;
  4025. #endif
  4026. }break;
  4027. default:
  4028. SERIAL_ECHO_START;
  4029. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4030. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4031. SERIAL_ECHOLNPGM("\"");
  4032. }
  4033. }
  4034. }break;
  4035. #endif // FWRETRACT
  4036. #if EXTRUDERS > 1
  4037. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4038. {
  4039. if(setTargetedHotend(218)){
  4040. break;
  4041. }
  4042. if(code_seen('X'))
  4043. {
  4044. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4045. }
  4046. if(code_seen('Y'))
  4047. {
  4048. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4049. }
  4050. SERIAL_ECHO_START;
  4051. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4052. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4053. {
  4054. SERIAL_ECHO(" ");
  4055. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4056. SERIAL_ECHO(",");
  4057. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4058. }
  4059. SERIAL_ECHOLN("");
  4060. }break;
  4061. #endif
  4062. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4063. {
  4064. if(code_seen('S'))
  4065. {
  4066. feedmultiply = code_value() ;
  4067. }
  4068. }
  4069. break;
  4070. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4071. {
  4072. if(code_seen('S'))
  4073. {
  4074. int tmp_code = code_value();
  4075. if (code_seen('T'))
  4076. {
  4077. if(setTargetedHotend(221)){
  4078. break;
  4079. }
  4080. extruder_multiply[tmp_extruder] = tmp_code;
  4081. }
  4082. else
  4083. {
  4084. extrudemultiply = tmp_code ;
  4085. }
  4086. }
  4087. }
  4088. break;
  4089. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4090. {
  4091. if(code_seen('P')){
  4092. int pin_number = code_value(); // pin number
  4093. int pin_state = -1; // required pin state - default is inverted
  4094. if(code_seen('S')) pin_state = code_value(); // required pin state
  4095. if(pin_state >= -1 && pin_state <= 1){
  4096. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4097. {
  4098. if (sensitive_pins[i] == pin_number)
  4099. {
  4100. pin_number = -1;
  4101. break;
  4102. }
  4103. }
  4104. if (pin_number > -1)
  4105. {
  4106. int target = LOW;
  4107. st_synchronize();
  4108. pinMode(pin_number, INPUT);
  4109. switch(pin_state){
  4110. case 1:
  4111. target = HIGH;
  4112. break;
  4113. case 0:
  4114. target = LOW;
  4115. break;
  4116. case -1:
  4117. target = !digitalRead(pin_number);
  4118. break;
  4119. }
  4120. while(digitalRead(pin_number) != target){
  4121. manage_heater();
  4122. manage_inactivity();
  4123. lcd_update();
  4124. }
  4125. }
  4126. }
  4127. }
  4128. }
  4129. break;
  4130. #if NUM_SERVOS > 0
  4131. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4132. {
  4133. int servo_index = -1;
  4134. int servo_position = 0;
  4135. if (code_seen('P'))
  4136. servo_index = code_value();
  4137. if (code_seen('S')) {
  4138. servo_position = code_value();
  4139. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4140. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4141. servos[servo_index].attach(0);
  4142. #endif
  4143. servos[servo_index].write(servo_position);
  4144. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4145. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4146. servos[servo_index].detach();
  4147. #endif
  4148. }
  4149. else {
  4150. SERIAL_ECHO_START;
  4151. SERIAL_ECHO("Servo ");
  4152. SERIAL_ECHO(servo_index);
  4153. SERIAL_ECHOLN(" out of range");
  4154. }
  4155. }
  4156. else if (servo_index >= 0) {
  4157. SERIAL_PROTOCOL(MSG_OK);
  4158. SERIAL_PROTOCOL(" Servo ");
  4159. SERIAL_PROTOCOL(servo_index);
  4160. SERIAL_PROTOCOL(": ");
  4161. SERIAL_PROTOCOL(servos[servo_index].read());
  4162. SERIAL_PROTOCOLLN("");
  4163. }
  4164. }
  4165. break;
  4166. #endif // NUM_SERVOS > 0
  4167. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4168. case 300: // M300
  4169. {
  4170. int beepS = code_seen('S') ? code_value() : 110;
  4171. int beepP = code_seen('P') ? code_value() : 1000;
  4172. if (beepS > 0)
  4173. {
  4174. #if BEEPER > 0
  4175. tone(BEEPER, beepS);
  4176. delay(beepP);
  4177. noTone(BEEPER);
  4178. #elif defined(ULTRALCD)
  4179. lcd_buzz(beepS, beepP);
  4180. #elif defined(LCD_USE_I2C_BUZZER)
  4181. lcd_buzz(beepP, beepS);
  4182. #endif
  4183. }
  4184. else
  4185. {
  4186. delay(beepP);
  4187. }
  4188. }
  4189. break;
  4190. #endif // M300
  4191. #ifdef PIDTEMP
  4192. case 301: // M301
  4193. {
  4194. if(code_seen('P')) Kp = code_value();
  4195. if(code_seen('I')) Ki = scalePID_i(code_value());
  4196. if(code_seen('D')) Kd = scalePID_d(code_value());
  4197. #ifdef PID_ADD_EXTRUSION_RATE
  4198. if(code_seen('C')) Kc = code_value();
  4199. #endif
  4200. updatePID();
  4201. SERIAL_PROTOCOLRPGM(MSG_OK);
  4202. SERIAL_PROTOCOL(" p:");
  4203. SERIAL_PROTOCOL(Kp);
  4204. SERIAL_PROTOCOL(" i:");
  4205. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4206. SERIAL_PROTOCOL(" d:");
  4207. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4208. #ifdef PID_ADD_EXTRUSION_RATE
  4209. SERIAL_PROTOCOL(" c:");
  4210. //Kc does not have scaling applied above, or in resetting defaults
  4211. SERIAL_PROTOCOL(Kc);
  4212. #endif
  4213. SERIAL_PROTOCOLLN("");
  4214. }
  4215. break;
  4216. #endif //PIDTEMP
  4217. #ifdef PIDTEMPBED
  4218. case 304: // M304
  4219. {
  4220. if(code_seen('P')) bedKp = code_value();
  4221. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4222. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4223. updatePID();
  4224. SERIAL_PROTOCOLRPGM(MSG_OK);
  4225. SERIAL_PROTOCOL(" p:");
  4226. SERIAL_PROTOCOL(bedKp);
  4227. SERIAL_PROTOCOL(" i:");
  4228. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4229. SERIAL_PROTOCOL(" d:");
  4230. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4231. SERIAL_PROTOCOLLN("");
  4232. }
  4233. break;
  4234. #endif //PIDTEMP
  4235. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4236. {
  4237. #ifdef CHDK
  4238. SET_OUTPUT(CHDK);
  4239. WRITE(CHDK, HIGH);
  4240. chdkHigh = millis();
  4241. chdkActive = true;
  4242. #else
  4243. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4244. const uint8_t NUM_PULSES=16;
  4245. const float PULSE_LENGTH=0.01524;
  4246. for(int i=0; i < NUM_PULSES; i++) {
  4247. WRITE(PHOTOGRAPH_PIN, HIGH);
  4248. _delay_ms(PULSE_LENGTH);
  4249. WRITE(PHOTOGRAPH_PIN, LOW);
  4250. _delay_ms(PULSE_LENGTH);
  4251. }
  4252. delay(7.33);
  4253. for(int i=0; i < NUM_PULSES; i++) {
  4254. WRITE(PHOTOGRAPH_PIN, HIGH);
  4255. _delay_ms(PULSE_LENGTH);
  4256. WRITE(PHOTOGRAPH_PIN, LOW);
  4257. _delay_ms(PULSE_LENGTH);
  4258. }
  4259. #endif
  4260. #endif //chdk end if
  4261. }
  4262. break;
  4263. #ifdef DOGLCD
  4264. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4265. {
  4266. if (code_seen('C')) {
  4267. lcd_setcontrast( ((int)code_value())&63 );
  4268. }
  4269. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4270. SERIAL_PROTOCOL(lcd_contrast);
  4271. SERIAL_PROTOCOLLN("");
  4272. }
  4273. break;
  4274. #endif
  4275. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4276. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4277. {
  4278. float temp = .0;
  4279. if (code_seen('S')) temp=code_value();
  4280. set_extrude_min_temp(temp);
  4281. }
  4282. break;
  4283. #endif
  4284. case 303: // M303 PID autotune
  4285. {
  4286. float temp = 150.0;
  4287. int e=0;
  4288. int c=5;
  4289. if (code_seen('E')) e=code_value();
  4290. if (e<0)
  4291. temp=70;
  4292. if (code_seen('S')) temp=code_value();
  4293. if (code_seen('C')) c=code_value();
  4294. PID_autotune(temp, e, c);
  4295. }
  4296. break;
  4297. case 400: // M400 finish all moves
  4298. {
  4299. st_synchronize();
  4300. }
  4301. break;
  4302. #ifdef FILAMENT_SENSOR
  4303. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4304. {
  4305. #if (FILWIDTH_PIN > -1)
  4306. if(code_seen('N')) filament_width_nominal=code_value();
  4307. else{
  4308. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4309. SERIAL_PROTOCOLLN(filament_width_nominal);
  4310. }
  4311. #endif
  4312. }
  4313. break;
  4314. case 405: //M405 Turn on filament sensor for control
  4315. {
  4316. if(code_seen('D')) meas_delay_cm=code_value();
  4317. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4318. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4319. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4320. {
  4321. int temp_ratio = widthFil_to_size_ratio();
  4322. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4323. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4324. }
  4325. delay_index1=0;
  4326. delay_index2=0;
  4327. }
  4328. filament_sensor = true ;
  4329. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4330. //SERIAL_PROTOCOL(filament_width_meas);
  4331. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4332. //SERIAL_PROTOCOL(extrudemultiply);
  4333. }
  4334. break;
  4335. case 406: //M406 Turn off filament sensor for control
  4336. {
  4337. filament_sensor = false ;
  4338. }
  4339. break;
  4340. case 407: //M407 Display measured filament diameter
  4341. {
  4342. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4343. SERIAL_PROTOCOLLN(filament_width_meas);
  4344. }
  4345. break;
  4346. #endif
  4347. case 500: // M500 Store settings in EEPROM
  4348. {
  4349. Config_StoreSettings();
  4350. }
  4351. break;
  4352. case 501: // M501 Read settings from EEPROM
  4353. {
  4354. Config_RetrieveSettings();
  4355. }
  4356. break;
  4357. case 502: // M502 Revert to default settings
  4358. {
  4359. Config_ResetDefault();
  4360. }
  4361. break;
  4362. case 503: // M503 print settings currently in memory
  4363. {
  4364. Config_PrintSettings();
  4365. }
  4366. break;
  4367. case 509: //M509 Force language selection
  4368. {
  4369. lcd_force_language_selection();
  4370. SERIAL_ECHO_START;
  4371. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4372. }
  4373. break;
  4374. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4375. case 540:
  4376. {
  4377. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4378. }
  4379. break;
  4380. #endif
  4381. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4382. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4383. {
  4384. float value;
  4385. if (code_seen('Z'))
  4386. {
  4387. value = code_value();
  4388. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4389. {
  4390. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4391. SERIAL_ECHO_START;
  4392. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4393. SERIAL_PROTOCOLLN("");
  4394. }
  4395. else
  4396. {
  4397. SERIAL_ECHO_START;
  4398. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4399. SERIAL_ECHORPGM(MSG_Z_MIN);
  4400. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4401. SERIAL_ECHORPGM(MSG_Z_MAX);
  4402. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4403. SERIAL_PROTOCOLLN("");
  4404. }
  4405. }
  4406. else
  4407. {
  4408. SERIAL_ECHO_START;
  4409. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4410. SERIAL_ECHO(-zprobe_zoffset);
  4411. SERIAL_PROTOCOLLN("");
  4412. }
  4413. break;
  4414. }
  4415. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4416. #ifdef FILAMENTCHANGEENABLE
  4417. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4418. {
  4419. st_synchronize();
  4420. float target[4];
  4421. float lastpos[4];
  4422. if (farm_mode)
  4423. {
  4424. prusa_statistics(22);
  4425. }
  4426. feedmultiplyBckp=feedmultiply;
  4427. int8_t TooLowZ = 0;
  4428. target[X_AXIS]=current_position[X_AXIS];
  4429. target[Y_AXIS]=current_position[Y_AXIS];
  4430. target[Z_AXIS]=current_position[Z_AXIS];
  4431. target[E_AXIS]=current_position[E_AXIS];
  4432. lastpos[X_AXIS]=current_position[X_AXIS];
  4433. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4434. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4435. lastpos[E_AXIS]=current_position[E_AXIS];
  4436. //Restract extruder
  4437. if(code_seen('E'))
  4438. {
  4439. target[E_AXIS]+= code_value();
  4440. }
  4441. else
  4442. {
  4443. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4444. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4445. #endif
  4446. }
  4447. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4448. //Lift Z
  4449. if(code_seen('Z'))
  4450. {
  4451. target[Z_AXIS]+= code_value();
  4452. }
  4453. else
  4454. {
  4455. #ifdef FILAMENTCHANGE_ZADD
  4456. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4457. if(target[Z_AXIS] < 10){
  4458. target[Z_AXIS]+= 10 ;
  4459. TooLowZ = 1;
  4460. }else{
  4461. TooLowZ = 0;
  4462. }
  4463. #endif
  4464. }
  4465. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4466. //Move XY to side
  4467. if(code_seen('X'))
  4468. {
  4469. target[X_AXIS]+= code_value();
  4470. }
  4471. else
  4472. {
  4473. #ifdef FILAMENTCHANGE_XPOS
  4474. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4475. #endif
  4476. }
  4477. if(code_seen('Y'))
  4478. {
  4479. target[Y_AXIS]= code_value();
  4480. }
  4481. else
  4482. {
  4483. #ifdef FILAMENTCHANGE_YPOS
  4484. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4485. #endif
  4486. }
  4487. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4488. st_synchronize();
  4489. custom_message = true;
  4490. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4491. // Unload filament
  4492. if(code_seen('L'))
  4493. {
  4494. target[E_AXIS]+= code_value();
  4495. }
  4496. else
  4497. {
  4498. #ifdef SNMM
  4499. #else
  4500. #ifdef FILAMENTCHANGE_FINALRETRACT
  4501. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4502. #endif
  4503. #endif // SNMM
  4504. }
  4505. #ifdef SNMM
  4506. target[E_AXIS] += 12;
  4507. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4508. target[E_AXIS] += 6;
  4509. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4510. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4511. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4512. st_synchronize();
  4513. target[E_AXIS] += (FIL_COOLING);
  4514. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4515. target[E_AXIS] += (FIL_COOLING*-1);
  4516. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4517. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4518. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4519. st_synchronize();
  4520. #else
  4521. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4522. #endif // SNMM
  4523. //finish moves
  4524. st_synchronize();
  4525. //disable extruder steppers so filament can be removed
  4526. disable_e0();
  4527. disable_e1();
  4528. disable_e2();
  4529. delay(100);
  4530. //Wait for user to insert filament
  4531. uint8_t cnt=0;
  4532. int counterBeep = 0;
  4533. lcd_wait_interact();
  4534. load_filament_time = millis();
  4535. while(!lcd_clicked()){
  4536. cnt++;
  4537. manage_heater();
  4538. manage_inactivity(true);
  4539. /*#ifdef SNMM
  4540. target[E_AXIS] += 0.002;
  4541. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4542. #endif // SNMM*/
  4543. if(cnt==0)
  4544. {
  4545. #if BEEPER > 0
  4546. if (counterBeep== 500){
  4547. counterBeep = 0;
  4548. }
  4549. SET_OUTPUT(BEEPER);
  4550. if (counterBeep== 0){
  4551. WRITE(BEEPER,HIGH);
  4552. }
  4553. if (counterBeep== 20){
  4554. WRITE(BEEPER,LOW);
  4555. }
  4556. counterBeep++;
  4557. #else
  4558. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4559. lcd_buzz(1000/6,100);
  4560. #else
  4561. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4562. #endif
  4563. #endif
  4564. }
  4565. }
  4566. #ifdef SNMM
  4567. display_loading();
  4568. do {
  4569. target[E_AXIS] += 0.002;
  4570. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4571. delay_keep_alive(2);
  4572. } while (!lcd_clicked());
  4573. /*if (millis() - load_filament_time > 2) {
  4574. load_filament_time = millis();
  4575. target[E_AXIS] += 0.001;
  4576. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4577. }*/
  4578. #endif
  4579. //Filament inserted
  4580. WRITE(BEEPER,LOW);
  4581. //Feed the filament to the end of nozzle quickly
  4582. #ifdef SNMM
  4583. st_synchronize();
  4584. target[E_AXIS] += bowden_length[snmm_extruder];
  4585. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4586. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4587. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4588. target[E_AXIS] += 40;
  4589. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4590. target[E_AXIS] += 10;
  4591. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4592. #else
  4593. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4594. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4595. #endif // SNMM
  4596. //Extrude some filament
  4597. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4598. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4599. //Wait for user to check the state
  4600. lcd_change_fil_state = 0;
  4601. lcd_loading_filament();
  4602. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4603. lcd_change_fil_state = 0;
  4604. lcd_alright();
  4605. switch(lcd_change_fil_state){
  4606. // Filament failed to load so load it again
  4607. case 2:
  4608. #ifdef SNMM
  4609. display_loading();
  4610. do {
  4611. target[E_AXIS] += 0.002;
  4612. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4613. delay_keep_alive(2);
  4614. } while (!lcd_clicked());
  4615. st_synchronize();
  4616. target[E_AXIS] += bowden_length[snmm_extruder];
  4617. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4618. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4619. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4620. target[E_AXIS] += 40;
  4621. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4622. target[E_AXIS] += 10;
  4623. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4624. #else
  4625. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4626. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4627. #endif
  4628. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4629. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4630. lcd_loading_filament();
  4631. break;
  4632. // Filament loaded properly but color is not clear
  4633. case 3:
  4634. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4635. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4636. lcd_loading_color();
  4637. break;
  4638. // Everything good
  4639. default:
  4640. lcd_change_success();
  4641. lcd_update_enable(true);
  4642. break;
  4643. }
  4644. }
  4645. //Not let's go back to print
  4646. //Feed a little of filament to stabilize pressure
  4647. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4648. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4649. //Retract
  4650. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4651. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4652. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4653. //Move XY back
  4654. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4655. //Move Z back
  4656. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4657. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4658. //Unretract
  4659. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4660. //Set E position to original
  4661. plan_set_e_position(lastpos[E_AXIS]);
  4662. //Recover feed rate
  4663. feedmultiply=feedmultiplyBckp;
  4664. char cmd[9];
  4665. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4666. enquecommand(cmd);
  4667. lcd_setstatuspgm(WELCOME_MSG);
  4668. custom_message = false;
  4669. custom_message_type = 0;
  4670. }
  4671. break;
  4672. #endif //FILAMENTCHANGEENABLE
  4673. case 601: {
  4674. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4675. }
  4676. break;
  4677. case 602: {
  4678. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4679. }
  4680. break;
  4681. #ifdef LIN_ADVANCE
  4682. case 900: // M900: Set LIN_ADVANCE options.
  4683. gcode_M900();
  4684. break;
  4685. #endif
  4686. case 907: // M907 Set digital trimpot motor current using axis codes.
  4687. {
  4688. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4689. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4690. if(code_seen('B')) digipot_current(4,code_value());
  4691. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4692. #endif
  4693. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4694. if(code_seen('X')) digipot_current(0, code_value());
  4695. #endif
  4696. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4697. if(code_seen('Z')) digipot_current(1, code_value());
  4698. #endif
  4699. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4700. if(code_seen('E')) digipot_current(2, code_value());
  4701. #endif
  4702. #ifdef DIGIPOT_I2C
  4703. // this one uses actual amps in floating point
  4704. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4705. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4706. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4707. #endif
  4708. }
  4709. break;
  4710. case 908: // M908 Control digital trimpot directly.
  4711. {
  4712. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4713. uint8_t channel,current;
  4714. if(code_seen('P')) channel=code_value();
  4715. if(code_seen('S')) current=code_value();
  4716. digitalPotWrite(channel, current);
  4717. #endif
  4718. }
  4719. break;
  4720. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4721. {
  4722. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4723. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4724. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4725. if(code_seen('B')) microstep_mode(4,code_value());
  4726. microstep_readings();
  4727. #endif
  4728. }
  4729. break;
  4730. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4731. {
  4732. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4733. if(code_seen('S')) switch((int)code_value())
  4734. {
  4735. case 1:
  4736. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4737. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4738. break;
  4739. case 2:
  4740. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4741. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4742. break;
  4743. }
  4744. microstep_readings();
  4745. #endif
  4746. }
  4747. break;
  4748. case 701: //M701: load filament
  4749. {
  4750. enable_z();
  4751. custom_message = true;
  4752. custom_message_type = 2;
  4753. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4754. current_position[E_AXIS] += 70;
  4755. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4756. current_position[E_AXIS] += 25;
  4757. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4758. st_synchronize();
  4759. if (!farm_mode && loading_flag) {
  4760. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4761. while (!clean) {
  4762. lcd_update_enable(true);
  4763. lcd_update(2);
  4764. current_position[E_AXIS] += 25;
  4765. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4766. st_synchronize();
  4767. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4768. }
  4769. }
  4770. lcd_update_enable(true);
  4771. lcd_update(2);
  4772. lcd_setstatuspgm(WELCOME_MSG);
  4773. disable_z();
  4774. loading_flag = false;
  4775. custom_message = false;
  4776. custom_message_type = 0;
  4777. }
  4778. break;
  4779. case 702:
  4780. {
  4781. #ifdef SNMM
  4782. if (code_seen('U')) {
  4783. extr_unload_used(); //unload all filaments which were used in current print
  4784. }
  4785. else if (code_seen('C')) {
  4786. extr_unload(); //unload just current filament
  4787. }
  4788. else {
  4789. extr_unload_all(); //unload all filaments
  4790. }
  4791. #else
  4792. custom_message = true;
  4793. custom_message_type = 2;
  4794. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4795. current_position[E_AXIS] -= 80;
  4796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4797. st_synchronize();
  4798. lcd_setstatuspgm(WELCOME_MSG);
  4799. custom_message = false;
  4800. custom_message_type = 0;
  4801. #endif
  4802. }
  4803. break;
  4804. case 999: // M999: Restart after being stopped
  4805. Stopped = false;
  4806. lcd_reset_alert_level();
  4807. gcode_LastN = Stopped_gcode_LastN;
  4808. FlushSerialRequestResend();
  4809. break;
  4810. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4811. }
  4812. } // end if(code_seen('M')) (end of M codes)
  4813. else if(code_seen('T'))
  4814. {
  4815. int index;
  4816. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4817. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  4818. SERIAL_ECHOLNPGM("Invalid T code.");
  4819. }
  4820. else {
  4821. if (*(strchr_pointer + index) == '?') {
  4822. tmp_extruder = choose_extruder_menu();
  4823. }
  4824. else {
  4825. tmp_extruder = code_value();
  4826. }
  4827. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  4828. #ifdef SNMM
  4829. snmm_extruder = tmp_extruder;
  4830. st_synchronize();
  4831. delay(100);
  4832. disable_e0();
  4833. disable_e1();
  4834. disable_e2();
  4835. pinMode(E_MUX0_PIN, OUTPUT);
  4836. pinMode(E_MUX1_PIN, OUTPUT);
  4837. pinMode(E_MUX2_PIN, OUTPUT);
  4838. delay(100);
  4839. SERIAL_ECHO_START;
  4840. SERIAL_ECHO("T:");
  4841. SERIAL_ECHOLN((int)tmp_extruder);
  4842. switch (tmp_extruder) {
  4843. case 1:
  4844. WRITE(E_MUX0_PIN, HIGH);
  4845. WRITE(E_MUX1_PIN, LOW);
  4846. WRITE(E_MUX2_PIN, LOW);
  4847. break;
  4848. case 2:
  4849. WRITE(E_MUX0_PIN, LOW);
  4850. WRITE(E_MUX1_PIN, HIGH);
  4851. WRITE(E_MUX2_PIN, LOW);
  4852. break;
  4853. case 3:
  4854. WRITE(E_MUX0_PIN, HIGH);
  4855. WRITE(E_MUX1_PIN, HIGH);
  4856. WRITE(E_MUX2_PIN, LOW);
  4857. break;
  4858. default:
  4859. WRITE(E_MUX0_PIN, LOW);
  4860. WRITE(E_MUX1_PIN, LOW);
  4861. WRITE(E_MUX2_PIN, LOW);
  4862. break;
  4863. }
  4864. delay(100);
  4865. #else
  4866. if (tmp_extruder >= EXTRUDERS) {
  4867. SERIAL_ECHO_START;
  4868. SERIAL_ECHOPGM("T");
  4869. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4870. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4871. }
  4872. else {
  4873. boolean make_move = false;
  4874. if (code_seen('F')) {
  4875. make_move = true;
  4876. next_feedrate = code_value();
  4877. if (next_feedrate > 0.0) {
  4878. feedrate = next_feedrate;
  4879. }
  4880. }
  4881. #if EXTRUDERS > 1
  4882. if (tmp_extruder != active_extruder) {
  4883. // Save current position to return to after applying extruder offset
  4884. memcpy(destination, current_position, sizeof(destination));
  4885. // Offset extruder (only by XY)
  4886. int i;
  4887. for (i = 0; i < 2; i++) {
  4888. current_position[i] = current_position[i] -
  4889. extruder_offset[i][active_extruder] +
  4890. extruder_offset[i][tmp_extruder];
  4891. }
  4892. // Set the new active extruder and position
  4893. active_extruder = tmp_extruder;
  4894. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4895. // Move to the old position if 'F' was in the parameters
  4896. if (make_move && Stopped == false) {
  4897. prepare_move();
  4898. }
  4899. }
  4900. #endif
  4901. SERIAL_ECHO_START;
  4902. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4903. SERIAL_PROTOCOLLN((int)active_extruder);
  4904. }
  4905. #endif
  4906. }
  4907. } // end if(code_seen('T')) (end of T codes)
  4908. else
  4909. {
  4910. SERIAL_ECHO_START;
  4911. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4912. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4913. SERIAL_ECHOLNPGM("\"");
  4914. }
  4915. ClearToSend();
  4916. }
  4917. void FlushSerialRequestResend()
  4918. {
  4919. //char cmdbuffer[bufindr][100]="Resend:";
  4920. MYSERIAL.flush();
  4921. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4922. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4923. ClearToSend();
  4924. }
  4925. // Confirm the execution of a command, if sent from a serial line.
  4926. // Execution of a command from a SD card will not be confirmed.
  4927. void ClearToSend()
  4928. {
  4929. previous_millis_cmd = millis();
  4930. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4931. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4932. }
  4933. void get_coordinates()
  4934. {
  4935. bool seen[4]={false,false,false,false};
  4936. for(int8_t i=0; i < NUM_AXIS; i++) {
  4937. if(code_seen(axis_codes[i]))
  4938. {
  4939. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4940. seen[i]=true;
  4941. }
  4942. else destination[i] = current_position[i]; //Are these else lines really needed?
  4943. }
  4944. if(code_seen('F')) {
  4945. next_feedrate = code_value();
  4946. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4947. }
  4948. }
  4949. void get_arc_coordinates()
  4950. {
  4951. #ifdef SF_ARC_FIX
  4952. bool relative_mode_backup = relative_mode;
  4953. relative_mode = true;
  4954. #endif
  4955. get_coordinates();
  4956. #ifdef SF_ARC_FIX
  4957. relative_mode=relative_mode_backup;
  4958. #endif
  4959. if(code_seen('I')) {
  4960. offset[0] = code_value();
  4961. }
  4962. else {
  4963. offset[0] = 0.0;
  4964. }
  4965. if(code_seen('J')) {
  4966. offset[1] = code_value();
  4967. }
  4968. else {
  4969. offset[1] = 0.0;
  4970. }
  4971. }
  4972. void clamp_to_software_endstops(float target[3])
  4973. {
  4974. world2machine_clamp(target[0], target[1]);
  4975. // Clamp the Z coordinate.
  4976. if (min_software_endstops) {
  4977. float negative_z_offset = 0;
  4978. #ifdef ENABLE_AUTO_BED_LEVELING
  4979. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4980. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4981. #endif
  4982. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4983. }
  4984. if (max_software_endstops) {
  4985. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4986. }
  4987. }
  4988. #ifdef MESH_BED_LEVELING
  4989. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4990. float dx = x - current_position[X_AXIS];
  4991. float dy = y - current_position[Y_AXIS];
  4992. float dz = z - current_position[Z_AXIS];
  4993. int n_segments = 0;
  4994. if (mbl.active) {
  4995. float len = abs(dx) + abs(dy);
  4996. if (len > 0)
  4997. // Split to 3cm segments or shorter.
  4998. n_segments = int(ceil(len / 30.f));
  4999. }
  5000. if (n_segments > 1) {
  5001. float de = e - current_position[E_AXIS];
  5002. for (int i = 1; i < n_segments; ++ i) {
  5003. float t = float(i) / float(n_segments);
  5004. plan_buffer_line(
  5005. current_position[X_AXIS] + t * dx,
  5006. current_position[Y_AXIS] + t * dy,
  5007. current_position[Z_AXIS] + t * dz,
  5008. current_position[E_AXIS] + t * de,
  5009. feed_rate, extruder);
  5010. }
  5011. }
  5012. // The rest of the path.
  5013. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5014. current_position[X_AXIS] = x;
  5015. current_position[Y_AXIS] = y;
  5016. current_position[Z_AXIS] = z;
  5017. current_position[E_AXIS] = e;
  5018. }
  5019. #endif // MESH_BED_LEVELING
  5020. void prepare_move()
  5021. {
  5022. clamp_to_software_endstops(destination);
  5023. previous_millis_cmd = millis();
  5024. // Do not use feedmultiply for E or Z only moves
  5025. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5026. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5027. }
  5028. else {
  5029. #ifdef MESH_BED_LEVELING
  5030. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5031. #else
  5032. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5033. #endif
  5034. }
  5035. for(int8_t i=0; i < NUM_AXIS; i++) {
  5036. current_position[i] = destination[i];
  5037. }
  5038. }
  5039. void prepare_arc_move(char isclockwise) {
  5040. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5041. // Trace the arc
  5042. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5043. // As far as the parser is concerned, the position is now == target. In reality the
  5044. // motion control system might still be processing the action and the real tool position
  5045. // in any intermediate location.
  5046. for(int8_t i=0; i < NUM_AXIS; i++) {
  5047. current_position[i] = destination[i];
  5048. }
  5049. previous_millis_cmd = millis();
  5050. }
  5051. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5052. #if defined(FAN_PIN)
  5053. #if CONTROLLERFAN_PIN == FAN_PIN
  5054. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5055. #endif
  5056. #endif
  5057. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5058. unsigned long lastMotorCheck = 0;
  5059. void controllerFan()
  5060. {
  5061. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5062. {
  5063. lastMotorCheck = millis();
  5064. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5065. #if EXTRUDERS > 2
  5066. || !READ(E2_ENABLE_PIN)
  5067. #endif
  5068. #if EXTRUDER > 1
  5069. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5070. || !READ(X2_ENABLE_PIN)
  5071. #endif
  5072. || !READ(E1_ENABLE_PIN)
  5073. #endif
  5074. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5075. {
  5076. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5077. }
  5078. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5079. {
  5080. digitalWrite(CONTROLLERFAN_PIN, 0);
  5081. analogWrite(CONTROLLERFAN_PIN, 0);
  5082. }
  5083. else
  5084. {
  5085. // allows digital or PWM fan output to be used (see M42 handling)
  5086. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5087. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5088. }
  5089. }
  5090. }
  5091. #endif
  5092. #ifdef TEMP_STAT_LEDS
  5093. static bool blue_led = false;
  5094. static bool red_led = false;
  5095. static uint32_t stat_update = 0;
  5096. void handle_status_leds(void) {
  5097. float max_temp = 0.0;
  5098. if(millis() > stat_update) {
  5099. stat_update += 500; // Update every 0.5s
  5100. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5101. max_temp = max(max_temp, degHotend(cur_extruder));
  5102. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5103. }
  5104. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5105. max_temp = max(max_temp, degTargetBed());
  5106. max_temp = max(max_temp, degBed());
  5107. #endif
  5108. if((max_temp > 55.0) && (red_led == false)) {
  5109. digitalWrite(STAT_LED_RED, 1);
  5110. digitalWrite(STAT_LED_BLUE, 0);
  5111. red_led = true;
  5112. blue_led = false;
  5113. }
  5114. if((max_temp < 54.0) && (blue_led == false)) {
  5115. digitalWrite(STAT_LED_RED, 0);
  5116. digitalWrite(STAT_LED_BLUE, 1);
  5117. red_led = false;
  5118. blue_led = true;
  5119. }
  5120. }
  5121. }
  5122. #endif
  5123. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5124. {
  5125. #if defined(KILL_PIN) && KILL_PIN > -1
  5126. static int killCount = 0; // make the inactivity button a bit less responsive
  5127. const int KILL_DELAY = 10000;
  5128. #endif
  5129. if(buflen < (BUFSIZE-1)){
  5130. get_command();
  5131. }
  5132. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5133. if(max_inactive_time)
  5134. kill();
  5135. if(stepper_inactive_time) {
  5136. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5137. {
  5138. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5139. disable_x();
  5140. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5141. disable_y();
  5142. disable_z();
  5143. disable_e0();
  5144. disable_e1();
  5145. disable_e2();
  5146. }
  5147. }
  5148. }
  5149. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5150. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5151. {
  5152. chdkActive = false;
  5153. WRITE(CHDK, LOW);
  5154. }
  5155. #endif
  5156. #if defined(KILL_PIN) && KILL_PIN > -1
  5157. // Check if the kill button was pressed and wait just in case it was an accidental
  5158. // key kill key press
  5159. // -------------------------------------------------------------------------------
  5160. if( 0 == READ(KILL_PIN) )
  5161. {
  5162. killCount++;
  5163. }
  5164. else if (killCount > 0)
  5165. {
  5166. killCount--;
  5167. }
  5168. // Exceeded threshold and we can confirm that it was not accidental
  5169. // KILL the machine
  5170. // ----------------------------------------------------------------
  5171. if ( killCount >= KILL_DELAY)
  5172. {
  5173. kill();
  5174. }
  5175. #endif
  5176. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5177. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5178. #endif
  5179. #ifdef EXTRUDER_RUNOUT_PREVENT
  5180. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5181. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5182. {
  5183. bool oldstatus=READ(E0_ENABLE_PIN);
  5184. enable_e0();
  5185. float oldepos=current_position[E_AXIS];
  5186. float oldedes=destination[E_AXIS];
  5187. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5188. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5189. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5190. current_position[E_AXIS]=oldepos;
  5191. destination[E_AXIS]=oldedes;
  5192. plan_set_e_position(oldepos);
  5193. previous_millis_cmd=millis();
  5194. st_synchronize();
  5195. WRITE(E0_ENABLE_PIN,oldstatus);
  5196. }
  5197. #endif
  5198. #ifdef TEMP_STAT_LEDS
  5199. handle_status_leds();
  5200. #endif
  5201. check_axes_activity();
  5202. }
  5203. void kill(const char *full_screen_message)
  5204. {
  5205. cli(); // Stop interrupts
  5206. disable_heater();
  5207. disable_x();
  5208. // SERIAL_ECHOLNPGM("kill - disable Y");
  5209. disable_y();
  5210. disable_z();
  5211. disable_e0();
  5212. disable_e1();
  5213. disable_e2();
  5214. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5215. pinMode(PS_ON_PIN,INPUT);
  5216. #endif
  5217. SERIAL_ERROR_START;
  5218. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5219. if (full_screen_message != NULL) {
  5220. SERIAL_ERRORLNRPGM(full_screen_message);
  5221. lcd_display_message_fullscreen_P(full_screen_message);
  5222. } else {
  5223. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5224. }
  5225. // FMC small patch to update the LCD before ending
  5226. sei(); // enable interrupts
  5227. for ( int i=5; i--; lcd_update())
  5228. {
  5229. delay(200);
  5230. }
  5231. cli(); // disable interrupts
  5232. suicide();
  5233. while(1) { /* Intentionally left empty */ } // Wait for reset
  5234. }
  5235. void Stop()
  5236. {
  5237. disable_heater();
  5238. if(Stopped == false) {
  5239. Stopped = true;
  5240. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5241. SERIAL_ERROR_START;
  5242. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5243. LCD_MESSAGERPGM(MSG_STOPPED);
  5244. }
  5245. }
  5246. bool IsStopped() { return Stopped; };
  5247. #ifdef FAST_PWM_FAN
  5248. void setPwmFrequency(uint8_t pin, int val)
  5249. {
  5250. val &= 0x07;
  5251. switch(digitalPinToTimer(pin))
  5252. {
  5253. #if defined(TCCR0A)
  5254. case TIMER0A:
  5255. case TIMER0B:
  5256. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5257. // TCCR0B |= val;
  5258. break;
  5259. #endif
  5260. #if defined(TCCR1A)
  5261. case TIMER1A:
  5262. case TIMER1B:
  5263. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5264. // TCCR1B |= val;
  5265. break;
  5266. #endif
  5267. #if defined(TCCR2)
  5268. case TIMER2:
  5269. case TIMER2:
  5270. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5271. TCCR2 |= val;
  5272. break;
  5273. #endif
  5274. #if defined(TCCR2A)
  5275. case TIMER2A:
  5276. case TIMER2B:
  5277. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5278. TCCR2B |= val;
  5279. break;
  5280. #endif
  5281. #if defined(TCCR3A)
  5282. case TIMER3A:
  5283. case TIMER3B:
  5284. case TIMER3C:
  5285. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5286. TCCR3B |= val;
  5287. break;
  5288. #endif
  5289. #if defined(TCCR4A)
  5290. case TIMER4A:
  5291. case TIMER4B:
  5292. case TIMER4C:
  5293. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5294. TCCR4B |= val;
  5295. break;
  5296. #endif
  5297. #if defined(TCCR5A)
  5298. case TIMER5A:
  5299. case TIMER5B:
  5300. case TIMER5C:
  5301. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5302. TCCR5B |= val;
  5303. break;
  5304. #endif
  5305. }
  5306. }
  5307. #endif //FAST_PWM_FAN
  5308. bool setTargetedHotend(int code){
  5309. tmp_extruder = active_extruder;
  5310. if(code_seen('T')) {
  5311. tmp_extruder = code_value();
  5312. if(tmp_extruder >= EXTRUDERS) {
  5313. SERIAL_ECHO_START;
  5314. switch(code){
  5315. case 104:
  5316. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5317. break;
  5318. case 105:
  5319. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5320. break;
  5321. case 109:
  5322. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5323. break;
  5324. case 218:
  5325. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5326. break;
  5327. case 221:
  5328. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5329. break;
  5330. }
  5331. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5332. return true;
  5333. }
  5334. }
  5335. return false;
  5336. }
  5337. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5338. {
  5339. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5340. {
  5341. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5342. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5343. }
  5344. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5345. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5346. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5347. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5348. total_filament_used = 0;
  5349. }
  5350. float calculate_volumetric_multiplier(float diameter) {
  5351. float area = .0;
  5352. float radius = .0;
  5353. radius = diameter * .5;
  5354. if (! volumetric_enabled || radius == 0) {
  5355. area = 1;
  5356. }
  5357. else {
  5358. area = M_PI * pow(radius, 2);
  5359. }
  5360. return 1.0 / area;
  5361. }
  5362. void calculate_volumetric_multipliers() {
  5363. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5364. #if EXTRUDERS > 1
  5365. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5366. #if EXTRUDERS > 2
  5367. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5368. #endif
  5369. #endif
  5370. }
  5371. void delay_keep_alive(unsigned int ms)
  5372. {
  5373. for (;;) {
  5374. manage_heater();
  5375. // Manage inactivity, but don't disable steppers on timeout.
  5376. manage_inactivity(true);
  5377. lcd_update();
  5378. if (ms == 0)
  5379. break;
  5380. else if (ms >= 50) {
  5381. delay(50);
  5382. ms -= 50;
  5383. } else {
  5384. delay(ms);
  5385. ms = 0;
  5386. }
  5387. }
  5388. }
  5389. void wait_for_heater(long codenum) {
  5390. #ifdef TEMP_RESIDENCY_TIME
  5391. long residencyStart;
  5392. residencyStart = -1;
  5393. /* continue to loop until we have reached the target temp
  5394. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5395. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5396. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5397. #else
  5398. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5399. #endif //TEMP_RESIDENCY_TIME
  5400. if ((millis() - codenum) > 1000UL)
  5401. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5402. if (!farm_mode) {
  5403. SERIAL_PROTOCOLPGM("T:");
  5404. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5405. SERIAL_PROTOCOLPGM(" E:");
  5406. SERIAL_PROTOCOL((int)tmp_extruder);
  5407. #ifdef TEMP_RESIDENCY_TIME
  5408. SERIAL_PROTOCOLPGM(" W:");
  5409. if (residencyStart > -1)
  5410. {
  5411. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5412. SERIAL_PROTOCOLLN(codenum);
  5413. }
  5414. else
  5415. {
  5416. SERIAL_PROTOCOLLN("?");
  5417. }
  5418. }
  5419. #else
  5420. SERIAL_PROTOCOLLN("");
  5421. #endif
  5422. codenum = millis();
  5423. }
  5424. manage_heater();
  5425. manage_inactivity();
  5426. lcd_update();
  5427. #ifdef TEMP_RESIDENCY_TIME
  5428. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5429. or when current temp falls outside the hysteresis after target temp was reached */
  5430. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5431. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5432. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5433. {
  5434. residencyStart = millis();
  5435. }
  5436. #endif //TEMP_RESIDENCY_TIME
  5437. }
  5438. }
  5439. void check_babystep() {
  5440. int babystep_z;
  5441. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5442. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5443. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5444. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5445. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5446. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5447. lcd_update_enable(true);
  5448. }
  5449. }
  5450. #ifdef DIS
  5451. void d_setup()
  5452. {
  5453. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5454. pinMode(D_DATA, INPUT_PULLUP);
  5455. pinMode(D_REQUIRE, OUTPUT);
  5456. digitalWrite(D_REQUIRE, HIGH);
  5457. }
  5458. float d_ReadData()
  5459. {
  5460. int digit[13];
  5461. String mergeOutput;
  5462. float output;
  5463. digitalWrite(D_REQUIRE, HIGH);
  5464. for (int i = 0; i<13; i++)
  5465. {
  5466. for (int j = 0; j < 4; j++)
  5467. {
  5468. while (digitalRead(D_DATACLOCK) == LOW) {}
  5469. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5470. bitWrite(digit[i], j, digitalRead(D_DATA));
  5471. }
  5472. }
  5473. digitalWrite(D_REQUIRE, LOW);
  5474. mergeOutput = "";
  5475. output = 0;
  5476. for (int r = 5; r <= 10; r++) //Merge digits
  5477. {
  5478. mergeOutput += digit[r];
  5479. }
  5480. output = mergeOutput.toFloat();
  5481. if (digit[4] == 8) //Handle sign
  5482. {
  5483. output *= -1;
  5484. }
  5485. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5486. {
  5487. output /= 10;
  5488. }
  5489. return output;
  5490. }
  5491. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5492. int t1 = 0;
  5493. int t_delay = 0;
  5494. int digit[13];
  5495. int m;
  5496. char str[3];
  5497. //String mergeOutput;
  5498. char mergeOutput[15];
  5499. float output;
  5500. int mesh_point = 0; //index number of calibration point
  5501. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5502. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5503. float mesh_home_z_search = 4;
  5504. float row[x_points_num];
  5505. int ix = 0;
  5506. int iy = 0;
  5507. char* filename_wldsd = "wldsd.txt";
  5508. char data_wldsd[70];
  5509. char numb_wldsd[10];
  5510. d_setup();
  5511. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5512. // We don't know where we are! HOME!
  5513. // Push the commands to the front of the message queue in the reverse order!
  5514. // There shall be always enough space reserved for these commands.
  5515. repeatcommand_front(); // repeat G80 with all its parameters
  5516. enquecommand_front_P((PSTR("G28 W0")));
  5517. enquecommand_front_P((PSTR("G1 Z5")));
  5518. return;
  5519. }
  5520. bool custom_message_old = custom_message;
  5521. unsigned int custom_message_type_old = custom_message_type;
  5522. unsigned int custom_message_state_old = custom_message_state;
  5523. custom_message = true;
  5524. custom_message_type = 1;
  5525. custom_message_state = (x_points_num * y_points_num) + 10;
  5526. lcd_update(1);
  5527. mbl.reset();
  5528. babystep_undo();
  5529. card.openFile(filename_wldsd, false);
  5530. current_position[Z_AXIS] = mesh_home_z_search;
  5531. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5532. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5533. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5534. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5535. setup_for_endstop_move(false);
  5536. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5537. SERIAL_PROTOCOL(x_points_num);
  5538. SERIAL_PROTOCOLPGM(",");
  5539. SERIAL_PROTOCOL(y_points_num);
  5540. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5541. SERIAL_PROTOCOL(mesh_home_z_search);
  5542. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5543. SERIAL_PROTOCOL(x_dimension);
  5544. SERIAL_PROTOCOLPGM(",");
  5545. SERIAL_PROTOCOL(y_dimension);
  5546. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5547. while (mesh_point != x_points_num * y_points_num) {
  5548. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5549. iy = mesh_point / x_points_num;
  5550. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5551. float z0 = 0.f;
  5552. current_position[Z_AXIS] = mesh_home_z_search;
  5553. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5554. st_synchronize();
  5555. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5556. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5557. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5558. st_synchronize();
  5559. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5560. break;
  5561. card.closefile();
  5562. }
  5563. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5564. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5565. //strcat(data_wldsd, numb_wldsd);
  5566. //MYSERIAL.println(data_wldsd);
  5567. //delay(1000);
  5568. //delay(3000);
  5569. //t1 = millis();
  5570. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5571. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5572. memset(digit, 0, sizeof(digit));
  5573. //cli();
  5574. digitalWrite(D_REQUIRE, LOW);
  5575. for (int i = 0; i<13; i++)
  5576. {
  5577. //t1 = millis();
  5578. for (int j = 0; j < 4; j++)
  5579. {
  5580. while (digitalRead(D_DATACLOCK) == LOW) {}
  5581. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5582. bitWrite(digit[i], j, digitalRead(D_DATA));
  5583. }
  5584. //t_delay = (millis() - t1);
  5585. //SERIAL_PROTOCOLPGM(" ");
  5586. //SERIAL_PROTOCOL_F(t_delay, 5);
  5587. //SERIAL_PROTOCOLPGM(" ");
  5588. }
  5589. //sei();
  5590. digitalWrite(D_REQUIRE, HIGH);
  5591. mergeOutput[0] = '\0';
  5592. output = 0;
  5593. for (int r = 5; r <= 10; r++) //Merge digits
  5594. {
  5595. sprintf(str, "%d", digit[r]);
  5596. strcat(mergeOutput, str);
  5597. }
  5598. output = atof(mergeOutput);
  5599. if (digit[4] == 8) //Handle sign
  5600. {
  5601. output *= -1;
  5602. }
  5603. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5604. {
  5605. output *= 0.1;
  5606. }
  5607. //output = d_ReadData();
  5608. //row[ix] = current_position[Z_AXIS];
  5609. memset(data_wldsd, 0, sizeof(data_wldsd));
  5610. for (int i = 0; i <3; i++) {
  5611. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5612. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5613. strcat(data_wldsd, numb_wldsd);
  5614. strcat(data_wldsd, ";");
  5615. }
  5616. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5617. dtostrf(output, 8, 5, numb_wldsd);
  5618. strcat(data_wldsd, numb_wldsd);
  5619. //strcat(data_wldsd, ";");
  5620. card.write_command(data_wldsd);
  5621. //row[ix] = d_ReadData();
  5622. row[ix] = output; // current_position[Z_AXIS];
  5623. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5624. for (int i = 0; i < x_points_num; i++) {
  5625. SERIAL_PROTOCOLPGM(" ");
  5626. SERIAL_PROTOCOL_F(row[i], 5);
  5627. }
  5628. SERIAL_PROTOCOLPGM("\n");
  5629. }
  5630. custom_message_state--;
  5631. mesh_point++;
  5632. lcd_update(1);
  5633. }
  5634. card.closefile();
  5635. }
  5636. #endif
  5637. void temp_compensation_start() {
  5638. custom_message = true;
  5639. custom_message_type = 5;
  5640. custom_message_state = PINDA_HEAT_T + 1;
  5641. lcd_update(2);
  5642. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5643. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5644. }
  5645. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5646. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5647. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5648. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5649. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5650. st_synchronize();
  5651. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5652. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5653. delay_keep_alive(1000);
  5654. custom_message_state = PINDA_HEAT_T - i;
  5655. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5656. else lcd_update(1);
  5657. }
  5658. custom_message_type = 0;
  5659. custom_message_state = 0;
  5660. custom_message = false;
  5661. }
  5662. void temp_compensation_apply() {
  5663. int i_add;
  5664. int compensation_value;
  5665. int z_shift = 0;
  5666. float z_shift_mm;
  5667. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5668. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5669. i_add = (target_temperature_bed - 60) / 10;
  5670. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5671. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5672. }else {
  5673. //interpolation
  5674. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5675. }
  5676. SERIAL_PROTOCOLPGM("\n");
  5677. SERIAL_PROTOCOLPGM("Z shift applied:");
  5678. MYSERIAL.print(z_shift_mm);
  5679. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5680. st_synchronize();
  5681. plan_set_z_position(current_position[Z_AXIS]);
  5682. }
  5683. else {
  5684. //we have no temp compensation data
  5685. }
  5686. }
  5687. float temp_comp_interpolation(float inp_temperature) {
  5688. //cubic spline interpolation
  5689. int n, i, j, k;
  5690. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5691. int shift[10];
  5692. int temp_C[10];
  5693. n = 6; //number of measured points
  5694. shift[0] = 0;
  5695. for (i = 0; i < n; i++) {
  5696. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5697. temp_C[i] = 50 + i * 10; //temperature in C
  5698. x[i] = (float)temp_C[i];
  5699. f[i] = (float)shift[i];
  5700. }
  5701. if (inp_temperature < x[0]) return 0;
  5702. for (i = n - 1; i>0; i--) {
  5703. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5704. h[i - 1] = x[i] - x[i - 1];
  5705. }
  5706. //*********** formation of h, s , f matrix **************
  5707. for (i = 1; i<n - 1; i++) {
  5708. m[i][i] = 2 * (h[i - 1] + h[i]);
  5709. if (i != 1) {
  5710. m[i][i - 1] = h[i - 1];
  5711. m[i - 1][i] = h[i - 1];
  5712. }
  5713. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5714. }
  5715. //*********** forward elimination **************
  5716. for (i = 1; i<n - 2; i++) {
  5717. temp = (m[i + 1][i] / m[i][i]);
  5718. for (j = 1; j <= n - 1; j++)
  5719. m[i + 1][j] -= temp*m[i][j];
  5720. }
  5721. //*********** backward substitution *********
  5722. for (i = n - 2; i>0; i--) {
  5723. sum = 0;
  5724. for (j = i; j <= n - 2; j++)
  5725. sum += m[i][j] * s[j];
  5726. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5727. }
  5728. for (i = 0; i<n - 1; i++)
  5729. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5730. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5731. b = s[i] / 2;
  5732. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5733. d = f[i];
  5734. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5735. }
  5736. return sum;
  5737. }
  5738. void long_pause() //long pause print
  5739. {
  5740. st_synchronize();
  5741. //save currently set parameters to global variables
  5742. saved_feedmultiply = feedmultiply;
  5743. HotendTempBckp = degTargetHotend(active_extruder);
  5744. fanSpeedBckp = fanSpeed;
  5745. start_pause_print = millis();
  5746. //save position
  5747. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  5748. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  5749. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  5750. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  5751. //retract
  5752. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5753. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5754. //lift z
  5755. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  5756. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  5757. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  5758. //set nozzle target temperature to 0
  5759. setTargetHotend(0, 0);
  5760. setTargetHotend(0, 1);
  5761. setTargetHotend(0, 2);
  5762. //Move XY to side
  5763. current_position[X_AXIS] = X_PAUSE_POS;
  5764. current_position[Y_AXIS] = Y_PAUSE_POS;
  5765. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5766. // Turn off the print fan
  5767. fanSpeed = 0;
  5768. st_synchronize();
  5769. }
  5770. void serialecho_temperatures() {
  5771. float tt = degHotend(active_extruder);
  5772. SERIAL_PROTOCOLPGM("T:");
  5773. SERIAL_PROTOCOL(tt);
  5774. SERIAL_PROTOCOLPGM(" E:");
  5775. SERIAL_PROTOCOL((int)active_extruder);
  5776. SERIAL_PROTOCOLPGM(" B:");
  5777. SERIAL_PROTOCOL_F(degBed(), 1);
  5778. SERIAL_PROTOCOLLN("");
  5779. }