Marlin_main.cpp 310 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef FILAMENT_SENSOR
  80. #include "fsensor.h"
  81. #endif //FILAMENT_SENSOR
  82. #ifdef TMC2130
  83. #include "tmc2130.h"
  84. #endif //TMC2130
  85. #ifdef W25X20CL
  86. #include "w25x20cl.h"
  87. #include "optiboot_w25x20cl.h"
  88. #endif //W25X20CL
  89. #ifdef BLINKM
  90. #include "BlinkM.h"
  91. #include "Wire.h"
  92. #endif
  93. #ifdef ULTRALCD
  94. #include "ultralcd.h"
  95. #endif
  96. #if NUM_SERVOS > 0
  97. #include "Servo.h"
  98. #endif
  99. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  100. #include <SPI.h>
  101. #endif
  102. #include "mmu.h"
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "sound.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. //filament types
  116. #define FILAMENT_DEFAULT 0
  117. #define FILAMENT_FLEX 1
  118. #define FILAMENT_PVA 2
  119. #define FILAMENT_UNDEFINED 255
  120. //Stepper Movement Variables
  121. //===========================================================================
  122. //=============================imported variables============================
  123. //===========================================================================
  124. //===========================================================================
  125. //=============================public variables=============================
  126. //===========================================================================
  127. #ifdef SDSUPPORT
  128. CardReader card;
  129. #endif
  130. unsigned long PingTime = millis();
  131. unsigned long NcTime;
  132. //used for PINDA temp calibration and pause print
  133. #define DEFAULT_RETRACTION 1
  134. #define DEFAULT_RETRACTION_MM 4 //MM
  135. float default_retraction = DEFAULT_RETRACTION;
  136. float homing_feedrate[] = HOMING_FEEDRATE;
  137. // Currently only the extruder axis may be switched to a relative mode.
  138. // Other axes are always absolute or relative based on the common relative_mode flag.
  139. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  140. int feedmultiply=100; //100->1 200->2
  141. int extrudemultiply=100; //100->1 200->2
  142. int extruder_multiply[EXTRUDERS] = {100
  143. #if EXTRUDERS > 1
  144. , 100
  145. #if EXTRUDERS > 2
  146. , 100
  147. #endif
  148. #endif
  149. };
  150. int bowden_length[4] = {385, 385, 385, 385};
  151. bool is_usb_printing = false;
  152. bool homing_flag = false;
  153. bool temp_cal_active = false;
  154. unsigned long kicktime = millis()+100000;
  155. unsigned int usb_printing_counter;
  156. int8_t lcd_change_fil_state = 0;
  157. unsigned long pause_time = 0;
  158. unsigned long start_pause_print = millis();
  159. unsigned long t_fan_rising_edge = millis();
  160. LongTimer safetyTimer;
  161. LongTimer crashDetTimer;
  162. //unsigned long load_filament_time;
  163. bool mesh_bed_leveling_flag = false;
  164. bool mesh_bed_run_from_menu = false;
  165. int8_t FarmMode = 0;
  166. bool prusa_sd_card_upload = false;
  167. unsigned int status_number = 0;
  168. unsigned long total_filament_used;
  169. unsigned int heating_status;
  170. unsigned int heating_status_counter;
  171. bool loading_flag = false;
  172. char snmm_filaments_used = 0;
  173. bool fan_state[2];
  174. int fan_edge_counter[2];
  175. int fan_speed[2];
  176. char dir_names[3][9];
  177. bool sortAlpha = false;
  178. float extruder_multiplier[EXTRUDERS] = {1.0
  179. #if EXTRUDERS > 1
  180. , 1.0
  181. #if EXTRUDERS > 2
  182. , 1.0
  183. #endif
  184. #endif
  185. };
  186. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  187. //shortcuts for more readable code
  188. #define _x current_position[X_AXIS]
  189. #define _y current_position[Y_AXIS]
  190. #define _z current_position[Z_AXIS]
  191. #define _e current_position[E_AXIS]
  192. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  193. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  194. bool axis_known_position[3] = {false, false, false};
  195. // Extruder offset
  196. #if EXTRUDERS > 1
  197. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  198. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  199. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  200. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  201. #endif
  202. };
  203. #endif
  204. uint8_t active_extruder = 0;
  205. int fanSpeed=0;
  206. #ifdef FWRETRACT
  207. bool retracted[EXTRUDERS]={false
  208. #if EXTRUDERS > 1
  209. , false
  210. #if EXTRUDERS > 2
  211. , false
  212. #endif
  213. #endif
  214. };
  215. bool retracted_swap[EXTRUDERS]={false
  216. #if EXTRUDERS > 1
  217. , false
  218. #if EXTRUDERS > 2
  219. , false
  220. #endif
  221. #endif
  222. };
  223. float retract_length_swap = RETRACT_LENGTH_SWAP;
  224. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  225. #endif
  226. #ifdef PS_DEFAULT_OFF
  227. bool powersupply = false;
  228. #else
  229. bool powersupply = true;
  230. #endif
  231. bool cancel_heatup = false ;
  232. #ifdef HOST_KEEPALIVE_FEATURE
  233. int busy_state = NOT_BUSY;
  234. static long prev_busy_signal_ms = -1;
  235. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  236. #else
  237. #define host_keepalive();
  238. #define KEEPALIVE_STATE(n);
  239. #endif
  240. const char errormagic[] PROGMEM = "Error:";
  241. const char echomagic[] PROGMEM = "echo:";
  242. bool no_response = false;
  243. uint8_t important_status;
  244. uint8_t saved_filament_type;
  245. // save/restore printing in case that mmu was not responding
  246. bool mmu_print_saved = false;
  247. // storing estimated time to end of print counted by slicer
  248. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  249. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  250. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  251. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  252. bool wizard_active = false; //autoload temporarily disabled during wizard
  253. //===========================================================================
  254. //=============================Private Variables=============================
  255. //===========================================================================
  256. #define MSG_BED_LEVELING_FAILED "Some problem encountered, Z-leveling enforced ..."
  257. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  258. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  259. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  260. // For tracing an arc
  261. static float offset[3] = {0.0, 0.0, 0.0};
  262. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  263. // Determines Absolute or Relative Coordinates.
  264. // Also there is bool axis_relative_modes[] per axis flag.
  265. static bool relative_mode = false;
  266. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  267. //static float tt = 0;
  268. //static float bt = 0;
  269. //Inactivity shutdown variables
  270. static unsigned long previous_millis_cmd = 0;
  271. unsigned long max_inactive_time = 0;
  272. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  273. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  274. unsigned long starttime=0;
  275. unsigned long stoptime=0;
  276. unsigned long _usb_timer = 0;
  277. bool extruder_under_pressure = true;
  278. bool Stopped=false;
  279. #if NUM_SERVOS > 0
  280. Servo servos[NUM_SERVOS];
  281. #endif
  282. bool CooldownNoWait = true;
  283. bool target_direction;
  284. //Insert variables if CHDK is defined
  285. #ifdef CHDK
  286. unsigned long chdkHigh = 0;
  287. boolean chdkActive = false;
  288. #endif
  289. //! @name RAM save/restore printing
  290. //! @{
  291. bool saved_printing = false; //!< Print is paused and saved in RAM
  292. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  293. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  294. static float saved_pos[4] = { 0, 0, 0, 0 };
  295. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  296. static float saved_feedrate2 = 0;
  297. static uint8_t saved_active_extruder = 0;
  298. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  299. static bool saved_extruder_under_pressure = false;
  300. static bool saved_extruder_relative_mode = false;
  301. static int saved_fanSpeed = 0; //!< Print fan speed
  302. //! @}
  303. //===========================================================================
  304. //=============================Routines======================================
  305. //===========================================================================
  306. static void get_arc_coordinates();
  307. static bool setTargetedHotend(int code, uint8_t &extruder);
  308. static void print_time_remaining_init();
  309. static void wait_for_heater(long codenum, uint8_t extruder);
  310. uint16_t gcode_in_progress = 0;
  311. uint16_t mcode_in_progress = 0;
  312. void serial_echopair_P(const char *s_P, float v)
  313. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  314. void serial_echopair_P(const char *s_P, double v)
  315. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  316. void serial_echopair_P(const char *s_P, unsigned long v)
  317. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  318. #ifdef SDSUPPORT
  319. #include "SdFatUtil.h"
  320. int freeMemory() { return SdFatUtil::FreeRam(); }
  321. #else
  322. extern "C" {
  323. extern unsigned int __bss_end;
  324. extern unsigned int __heap_start;
  325. extern void *__brkval;
  326. int freeMemory() {
  327. int free_memory;
  328. if ((int)__brkval == 0)
  329. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  330. else
  331. free_memory = ((int)&free_memory) - ((int)__brkval);
  332. return free_memory;
  333. }
  334. }
  335. #endif //!SDSUPPORT
  336. void setup_killpin()
  337. {
  338. #if defined(KILL_PIN) && KILL_PIN > -1
  339. SET_INPUT(KILL_PIN);
  340. WRITE(KILL_PIN,HIGH);
  341. #endif
  342. }
  343. // Set home pin
  344. void setup_homepin(void)
  345. {
  346. #if defined(HOME_PIN) && HOME_PIN > -1
  347. SET_INPUT(HOME_PIN);
  348. WRITE(HOME_PIN,HIGH);
  349. #endif
  350. }
  351. void setup_photpin()
  352. {
  353. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  354. SET_OUTPUT(PHOTOGRAPH_PIN);
  355. WRITE(PHOTOGRAPH_PIN, LOW);
  356. #endif
  357. }
  358. void setup_powerhold()
  359. {
  360. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  361. SET_OUTPUT(SUICIDE_PIN);
  362. WRITE(SUICIDE_PIN, HIGH);
  363. #endif
  364. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  365. SET_OUTPUT(PS_ON_PIN);
  366. #if defined(PS_DEFAULT_OFF)
  367. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  368. #else
  369. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  370. #endif
  371. #endif
  372. }
  373. void suicide()
  374. {
  375. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  376. SET_OUTPUT(SUICIDE_PIN);
  377. WRITE(SUICIDE_PIN, LOW);
  378. #endif
  379. }
  380. void servo_init()
  381. {
  382. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  383. servos[0].attach(SERVO0_PIN);
  384. #endif
  385. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  386. servos[1].attach(SERVO1_PIN);
  387. #endif
  388. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  389. servos[2].attach(SERVO2_PIN);
  390. #endif
  391. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  392. servos[3].attach(SERVO3_PIN);
  393. #endif
  394. #if (NUM_SERVOS >= 5)
  395. #error "TODO: enter initalisation code for more servos"
  396. #endif
  397. }
  398. bool fans_check_enabled = true;
  399. #ifdef TMC2130
  400. extern int8_t CrashDetectMenu;
  401. void crashdet_enable()
  402. {
  403. tmc2130_sg_stop_on_crash = true;
  404. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  405. CrashDetectMenu = 1;
  406. }
  407. void crashdet_disable()
  408. {
  409. tmc2130_sg_stop_on_crash = false;
  410. tmc2130_sg_crash = 0;
  411. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  412. CrashDetectMenu = 0;
  413. }
  414. void crashdet_stop_and_save_print()
  415. {
  416. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  417. }
  418. void crashdet_restore_print_and_continue()
  419. {
  420. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  421. // babystep_apply();
  422. }
  423. void crashdet_stop_and_save_print2()
  424. {
  425. cli();
  426. planner_abort_hard(); //abort printing
  427. cmdqueue_reset(); //empty cmdqueue
  428. card.sdprinting = false;
  429. card.closefile();
  430. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  431. st_reset_timer();
  432. sei();
  433. }
  434. void crashdet_detected(uint8_t mask)
  435. {
  436. st_synchronize();
  437. static uint8_t crashDet_counter = 0;
  438. bool automatic_recovery_after_crash = true;
  439. if (crashDet_counter++ == 0) {
  440. crashDetTimer.start();
  441. }
  442. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  443. crashDetTimer.stop();
  444. crashDet_counter = 0;
  445. }
  446. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  447. automatic_recovery_after_crash = false;
  448. crashDetTimer.stop();
  449. crashDet_counter = 0;
  450. }
  451. else {
  452. crashDetTimer.start();
  453. }
  454. lcd_update_enable(true);
  455. lcd_clear();
  456. lcd_update(2);
  457. if (mask & X_AXIS_MASK)
  458. {
  459. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  460. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  461. }
  462. if (mask & Y_AXIS_MASK)
  463. {
  464. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  465. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  466. }
  467. lcd_update_enable(true);
  468. lcd_update(2);
  469. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  470. gcode_G28(true, true, false); //home X and Y
  471. st_synchronize();
  472. if (automatic_recovery_after_crash) {
  473. enquecommand_P(PSTR("CRASH_RECOVER"));
  474. }else{
  475. setTargetHotend(0, active_extruder);
  476. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  477. lcd_update_enable(true);
  478. if (yesno)
  479. {
  480. enquecommand_P(PSTR("CRASH_RECOVER"));
  481. }
  482. else
  483. {
  484. enquecommand_P(PSTR("CRASH_CANCEL"));
  485. }
  486. }
  487. }
  488. void crashdet_recover()
  489. {
  490. crashdet_restore_print_and_continue();
  491. tmc2130_sg_stop_on_crash = true;
  492. }
  493. void crashdet_cancel()
  494. {
  495. saved_printing = false;
  496. tmc2130_sg_stop_on_crash = true;
  497. if (saved_printing_type == PRINTING_TYPE_SD) {
  498. lcd_print_stop();
  499. }else if(saved_printing_type == PRINTING_TYPE_USB){
  500. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  501. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  502. }
  503. }
  504. #endif //TMC2130
  505. void failstats_reset_print()
  506. {
  507. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  508. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  511. }
  512. #ifdef MESH_BED_LEVELING
  513. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  514. #endif
  515. // Factory reset function
  516. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  517. // Level input parameter sets depth of reset
  518. int er_progress = 0;
  519. static void factory_reset(char level)
  520. {
  521. lcd_clear();
  522. switch (level) {
  523. // Level 0: Language reset
  524. case 0:
  525. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  526. WRITE(BEEPER, HIGH);
  527. _delay_ms(100);
  528. WRITE(BEEPER, LOW);
  529. lang_reset();
  530. break;
  531. //Level 1: Reset statistics
  532. case 1:
  533. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  534. WRITE(BEEPER, HIGH);
  535. _delay_ms(100);
  536. WRITE(BEEPER, LOW);
  537. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  538. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  539. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  540. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  541. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  542. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  543. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  544. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  546. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  547. lcd_menu_statistics();
  548. break;
  549. // Level 2: Prepare for shipping
  550. case 2:
  551. //lcd_puts_P(PSTR("Factory RESET"));
  552. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  553. // Force language selection at the next boot up.
  554. lang_reset();
  555. // Force the "Follow calibration flow" message at the next boot up.
  556. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  557. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  558. farm_no = 0;
  559. farm_mode = false;
  560. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  561. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  562. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  563. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  564. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  565. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  566. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  567. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  568. #ifdef FILAMENT_SENSOR
  569. fsensor_enable();
  570. fsensor_autoload_set(true);
  571. #endif //FILAMENT_SENSOR
  572. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  573. WRITE(BEEPER, HIGH);
  574. _delay_ms(100);
  575. WRITE(BEEPER, LOW);
  576. //_delay_ms(2000);
  577. break;
  578. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  579. case 3:
  580. lcd_puts_P(PSTR("Factory RESET"));
  581. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  582. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  583. WRITE(BEEPER, HIGH);
  584. _delay_ms(100);
  585. WRITE(BEEPER, LOW);
  586. er_progress = 0;
  587. lcd_puts_at_P(3, 3, PSTR(" "));
  588. lcd_set_cursor(3, 3);
  589. lcd_print(er_progress);
  590. // Erase EEPROM
  591. for (int i = 0; i < 4096; i++) {
  592. eeprom_update_byte((uint8_t*)i, 0xFF);
  593. if (i % 41 == 0) {
  594. er_progress++;
  595. lcd_puts_at_P(3, 3, PSTR(" "));
  596. lcd_set_cursor(3, 3);
  597. lcd_print(er_progress);
  598. lcd_puts_P(PSTR("%"));
  599. }
  600. }
  601. break;
  602. case 4:
  603. bowden_menu();
  604. break;
  605. default:
  606. break;
  607. }
  608. }
  609. extern "C" {
  610. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  611. }
  612. int uart_putchar(char c, FILE *)
  613. {
  614. MYSERIAL.write(c);
  615. return 0;
  616. }
  617. void lcd_splash()
  618. {
  619. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  620. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  621. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  622. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  623. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  624. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  625. }
  626. void factory_reset()
  627. {
  628. KEEPALIVE_STATE(PAUSED_FOR_USER);
  629. if (!READ(BTN_ENC))
  630. {
  631. _delay_ms(1000);
  632. if (!READ(BTN_ENC))
  633. {
  634. lcd_clear();
  635. lcd_puts_P(PSTR("Factory RESET"));
  636. SET_OUTPUT(BEEPER);
  637. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  638. WRITE(BEEPER, HIGH);
  639. while (!READ(BTN_ENC));
  640. WRITE(BEEPER, LOW);
  641. _delay_ms(2000);
  642. char level = reset_menu();
  643. factory_reset(level);
  644. switch (level) {
  645. case 0: _delay_ms(0); break;
  646. case 1: _delay_ms(0); break;
  647. case 2: _delay_ms(0); break;
  648. case 3: _delay_ms(0); break;
  649. }
  650. }
  651. }
  652. KEEPALIVE_STATE(IN_HANDLER);
  653. }
  654. void show_fw_version_warnings() {
  655. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  656. switch (FW_DEV_VERSION) {
  657. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  658. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  659. case(FW_VERSION_DEVEL):
  660. case(FW_VERSION_DEBUG):
  661. lcd_update_enable(false);
  662. lcd_clear();
  663. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  664. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  665. #else
  666. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  667. #endif
  668. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  669. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  670. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  671. lcd_wait_for_click();
  672. break;
  673. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  674. }
  675. lcd_update_enable(true);
  676. }
  677. uint8_t check_printer_version()
  678. {
  679. uint8_t version_changed = 0;
  680. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  681. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  682. if (printer_type != PRINTER_TYPE) {
  683. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  684. else version_changed |= 0b10;
  685. }
  686. if (motherboard != MOTHERBOARD) {
  687. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  688. else version_changed |= 0b01;
  689. }
  690. return version_changed;
  691. }
  692. #ifdef BOOTAPP
  693. #include "bootapp.h" //bootloader support
  694. #endif //BOOTAPP
  695. #if (LANG_MODE != 0) //secondary language support
  696. #ifdef W25X20CL
  697. // language update from external flash
  698. #define LANGBOOT_BLOCKSIZE 0x1000u
  699. #define LANGBOOT_RAMBUFFER 0x0800
  700. void update_sec_lang_from_external_flash()
  701. {
  702. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  703. {
  704. uint8_t lang = boot_reserved >> 4;
  705. uint8_t state = boot_reserved & 0xf;
  706. lang_table_header_t header;
  707. uint32_t src_addr;
  708. if (lang_get_header(lang, &header, &src_addr))
  709. {
  710. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  711. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  712. delay(100);
  713. boot_reserved = (state + 1) | (lang << 4);
  714. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  715. {
  716. cli();
  717. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  718. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  719. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  720. if (state == 0)
  721. {
  722. //TODO - check header integrity
  723. }
  724. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  725. }
  726. else
  727. {
  728. //TODO - check sec lang data integrity
  729. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  730. }
  731. }
  732. }
  733. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  734. }
  735. #ifdef DEBUG_W25X20CL
  736. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  737. {
  738. lang_table_header_t header;
  739. uint8_t count = 0;
  740. uint32_t addr = 0x00000;
  741. while (1)
  742. {
  743. printf_P(_n("LANGTABLE%d:"), count);
  744. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  745. if (header.magic != LANG_MAGIC)
  746. {
  747. printf_P(_n("NG!\n"));
  748. break;
  749. }
  750. printf_P(_n("OK\n"));
  751. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  752. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  753. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  754. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  755. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  756. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  757. addr += header.size;
  758. codes[count] = header.code;
  759. count ++;
  760. }
  761. return count;
  762. }
  763. void list_sec_lang_from_external_flash()
  764. {
  765. uint16_t codes[8];
  766. uint8_t count = lang_xflash_enum_codes(codes);
  767. printf_P(_n("XFlash lang count = %hhd\n"), count);
  768. }
  769. #endif //DEBUG_W25X20CL
  770. #endif //W25X20CL
  771. #endif //(LANG_MODE != 0)
  772. // "Setup" function is called by the Arduino framework on startup.
  773. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  774. // are initialized by the main() routine provided by the Arduino framework.
  775. void setup()
  776. {
  777. mmu_init();
  778. ultralcd_init();
  779. spi_init();
  780. lcd_splash();
  781. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  782. #ifdef W25X20CL
  783. if (!w25x20cl_init())
  784. kill(_i("External SPI flash W25X20CL not responding."));
  785. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  786. optiboot_w25x20cl_enter();
  787. #endif
  788. #if (LANG_MODE != 0) //secondary language support
  789. #ifdef W25X20CL
  790. if (w25x20cl_init())
  791. update_sec_lang_from_external_flash();
  792. #endif //W25X20CL
  793. #endif //(LANG_MODE != 0)
  794. setup_killpin();
  795. setup_powerhold();
  796. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  797. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  798. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  799. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  800. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  801. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  802. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  803. if (farm_mode)
  804. {
  805. no_response = true; //we need confirmation by recieving PRUSA thx
  806. important_status = 8;
  807. prusa_statistics(8);
  808. selectedSerialPort = 1;
  809. #ifdef TMC2130
  810. //increased extruder current (PFW363)
  811. tmc2130_current_h[E_AXIS] = 36;
  812. tmc2130_current_r[E_AXIS] = 36;
  813. #endif //TMC2130
  814. #ifdef FILAMENT_SENSOR
  815. //disabled filament autoload (PFW360)
  816. fsensor_autoload_set(false);
  817. #endif //FILAMENT_SENSOR
  818. }
  819. MYSERIAL.begin(BAUDRATE);
  820. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  821. #ifndef W25X20CL
  822. SERIAL_PROTOCOLLNPGM("start");
  823. #endif //W25X20CL
  824. stdout = uartout;
  825. SERIAL_ECHO_START;
  826. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  827. #ifdef DEBUG_SEC_LANG
  828. lang_table_header_t header;
  829. uint32_t src_addr = 0x00000;
  830. if (lang_get_header(1, &header, &src_addr))
  831. {
  832. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  833. #define LT_PRINT_TEST 2
  834. // flash usage
  835. // total p.test
  836. //0 252718 t+c text code
  837. //1 253142 424 170 254
  838. //2 253040 322 164 158
  839. //3 253248 530 135 395
  840. #if (LT_PRINT_TEST==1) //not optimized printf
  841. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  842. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  843. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  844. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  845. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  846. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  847. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  848. #elif (LT_PRINT_TEST==2) //optimized printf
  849. printf_P(
  850. _n(
  851. " _src_addr = 0x%08lx\n"
  852. " _lt_magic = 0x%08lx %S\n"
  853. " _lt_size = 0x%04x (%d)\n"
  854. " _lt_count = 0x%04x (%d)\n"
  855. " _lt_chsum = 0x%04x\n"
  856. " _lt_code = 0x%04x (%c%c)\n"
  857. " _lt_resv1 = 0x%08lx\n"
  858. ),
  859. src_addr,
  860. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  861. header.size, header.size,
  862. header.count, header.count,
  863. header.checksum,
  864. header.code, header.code >> 8, header.code & 0xff,
  865. header.signature
  866. );
  867. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  868. MYSERIAL.print(" _src_addr = 0x");
  869. MYSERIAL.println(src_addr, 16);
  870. MYSERIAL.print(" _lt_magic = 0x");
  871. MYSERIAL.print(header.magic, 16);
  872. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  873. MYSERIAL.print(" _lt_size = 0x");
  874. MYSERIAL.print(header.size, 16);
  875. MYSERIAL.print(" (");
  876. MYSERIAL.print(header.size, 10);
  877. MYSERIAL.println(")");
  878. MYSERIAL.print(" _lt_count = 0x");
  879. MYSERIAL.print(header.count, 16);
  880. MYSERIAL.print(" (");
  881. MYSERIAL.print(header.count, 10);
  882. MYSERIAL.println(")");
  883. MYSERIAL.print(" _lt_chsum = 0x");
  884. MYSERIAL.println(header.checksum, 16);
  885. MYSERIAL.print(" _lt_code = 0x");
  886. MYSERIAL.print(header.code, 16);
  887. MYSERIAL.print(" (");
  888. MYSERIAL.print((char)(header.code >> 8), 0);
  889. MYSERIAL.print((char)(header.code & 0xff), 0);
  890. MYSERIAL.println(")");
  891. MYSERIAL.print(" _lt_resv1 = 0x");
  892. MYSERIAL.println(header.signature, 16);
  893. #endif //(LT_PRINT_TEST==)
  894. #undef LT_PRINT_TEST
  895. #if 0
  896. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  897. for (uint16_t i = 0; i < 1024; i++)
  898. {
  899. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  900. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  901. if ((i % 16) == 15) putchar('\n');
  902. }
  903. #endif
  904. uint16_t sum = 0;
  905. for (uint16_t i = 0; i < header.size; i++)
  906. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  907. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  908. sum -= header.checksum; //subtract checksum
  909. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  910. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  911. if (sum == header.checksum)
  912. printf_P(_n("Checksum OK\n"), sum);
  913. else
  914. printf_P(_n("Checksum NG\n"), sum);
  915. }
  916. else
  917. printf_P(_n("lang_get_header failed!\n"));
  918. #if 0
  919. for (uint16_t i = 0; i < 1024*10; i++)
  920. {
  921. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  922. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  923. if ((i % 16) == 15) putchar('\n');
  924. }
  925. #endif
  926. #if 0
  927. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  928. for (int i = 0; i < 4096; ++i) {
  929. int b = eeprom_read_byte((unsigned char*)i);
  930. if (b != 255) {
  931. SERIAL_ECHO(i);
  932. SERIAL_ECHO(":");
  933. SERIAL_ECHO(b);
  934. SERIAL_ECHOLN("");
  935. }
  936. }
  937. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  938. #endif
  939. #endif //DEBUG_SEC_LANG
  940. // Check startup - does nothing if bootloader sets MCUSR to 0
  941. byte mcu = MCUSR;
  942. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  943. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  944. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  945. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  946. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  947. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  948. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  949. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  950. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  951. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  952. MCUSR = 0;
  953. //SERIAL_ECHORPGM(MSG_MARLIN);
  954. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  955. #ifdef STRING_VERSION_CONFIG_H
  956. #ifdef STRING_CONFIG_H_AUTHOR
  957. SERIAL_ECHO_START;
  958. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  959. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  960. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  961. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  962. SERIAL_ECHOPGM("Compiled: ");
  963. SERIAL_ECHOLNPGM(__DATE__);
  964. #endif
  965. #endif
  966. SERIAL_ECHO_START;
  967. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  968. SERIAL_ECHO(freeMemory());
  969. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  970. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  971. //lcd_update_enable(false); // why do we need this?? - andre
  972. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  973. bool previous_settings_retrieved = false;
  974. uint8_t hw_changed = check_printer_version();
  975. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  976. previous_settings_retrieved = Config_RetrieveSettings();
  977. }
  978. else { //printer version was changed so use default settings
  979. Config_ResetDefault();
  980. }
  981. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  982. tp_init(); // Initialize temperature loop
  983. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  984. plan_init(); // Initialize planner;
  985. factory_reset();
  986. lcd_encoder_diff=0;
  987. #ifdef TMC2130
  988. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  989. if (silentMode == 0xff) silentMode = 0;
  990. tmc2130_mode = TMC2130_MODE_NORMAL;
  991. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  992. if (crashdet && !farm_mode)
  993. {
  994. crashdet_enable();
  995. puts_P(_N("CrashDetect ENABLED!"));
  996. }
  997. else
  998. {
  999. crashdet_disable();
  1000. puts_P(_N("CrashDetect DISABLED"));
  1001. }
  1002. #ifdef TMC2130_LINEARITY_CORRECTION
  1003. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1004. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1005. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1006. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1007. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1008. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1009. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1010. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1011. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1012. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1013. #endif //TMC2130_LINEARITY_CORRECTION
  1014. #ifdef TMC2130_VARIABLE_RESOLUTION
  1015. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1016. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1017. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1018. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1019. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1020. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1021. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1022. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1023. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1024. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1025. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1026. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1027. #else //TMC2130_VARIABLE_RESOLUTION
  1028. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1029. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1030. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1031. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1032. #endif //TMC2130_VARIABLE_RESOLUTION
  1033. #endif //TMC2130
  1034. st_init(); // Initialize stepper, this enables interrupts!
  1035. #ifdef TMC2130
  1036. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1037. update_mode_profile();
  1038. tmc2130_init();
  1039. #endif //TMC2130
  1040. setup_photpin();
  1041. servo_init();
  1042. // Reset the machine correction matrix.
  1043. // It does not make sense to load the correction matrix until the machine is homed.
  1044. world2machine_reset();
  1045. #ifdef FILAMENT_SENSOR
  1046. fsensor_init();
  1047. #endif //FILAMENT_SENSOR
  1048. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1049. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1050. #endif
  1051. setup_homepin();
  1052. #ifdef TMC2130
  1053. if (1) {
  1054. // try to run to zero phase before powering the Z motor.
  1055. // Move in negative direction
  1056. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1057. // Round the current micro-micro steps to micro steps.
  1058. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1059. // Until the phase counter is reset to zero.
  1060. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1061. delay(2);
  1062. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1063. delay(2);
  1064. }
  1065. }
  1066. #endif //TMC2130
  1067. #if defined(Z_AXIS_ALWAYS_ON)
  1068. enable_z();
  1069. #endif
  1070. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1071. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1072. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1073. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1074. if (farm_mode)
  1075. {
  1076. prusa_statistics(8);
  1077. }
  1078. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1079. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1080. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1081. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1082. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1083. // where all the EEPROM entries are set to 0x0ff.
  1084. // Once a firmware boots up, it forces at least a language selection, which changes
  1085. // EEPROM_LANG to number lower than 0x0ff.
  1086. // 1) Set a high power mode.
  1087. #ifdef TMC2130
  1088. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1089. tmc2130_mode = TMC2130_MODE_NORMAL;
  1090. #endif //TMC2130
  1091. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1092. }
  1093. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1094. // but this times out if a blocking dialog is shown in setup().
  1095. card.initsd();
  1096. #ifdef DEBUG_SD_SPEED_TEST
  1097. if (card.cardOK)
  1098. {
  1099. uint8_t* buff = (uint8_t*)block_buffer;
  1100. uint32_t block = 0;
  1101. uint32_t sumr = 0;
  1102. uint32_t sumw = 0;
  1103. for (int i = 0; i < 1024; i++)
  1104. {
  1105. uint32_t u = micros();
  1106. bool res = card.card.readBlock(i, buff);
  1107. u = micros() - u;
  1108. if (res)
  1109. {
  1110. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1111. sumr += u;
  1112. u = micros();
  1113. res = card.card.writeBlock(i, buff);
  1114. u = micros() - u;
  1115. if (res)
  1116. {
  1117. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1118. sumw += u;
  1119. }
  1120. else
  1121. {
  1122. printf_P(PSTR("writeBlock %4d error\n"), i);
  1123. break;
  1124. }
  1125. }
  1126. else
  1127. {
  1128. printf_P(PSTR("readBlock %4d error\n"), i);
  1129. break;
  1130. }
  1131. }
  1132. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1133. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1134. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1135. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1136. }
  1137. else
  1138. printf_P(PSTR("Card NG!\n"));
  1139. #endif //DEBUG_SD_SPEED_TEST
  1140. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1141. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1142. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1143. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1144. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1145. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1146. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1147. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1148. #ifdef SNMM
  1149. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1150. int _z = BOWDEN_LENGTH;
  1151. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1152. }
  1153. #endif
  1154. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1155. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1156. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1157. #if (LANG_MODE != 0) //secondary language support
  1158. #ifdef DEBUG_W25X20CL
  1159. W25X20CL_SPI_ENTER();
  1160. uint8_t uid[8]; // 64bit unique id
  1161. w25x20cl_rd_uid(uid);
  1162. puts_P(_n("W25X20CL UID="));
  1163. for (uint8_t i = 0; i < 8; i ++)
  1164. printf_P(PSTR("%02hhx"), uid[i]);
  1165. putchar('\n');
  1166. list_sec_lang_from_external_flash();
  1167. #endif //DEBUG_W25X20CL
  1168. // lang_reset();
  1169. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1170. lcd_language();
  1171. #ifdef DEBUG_SEC_LANG
  1172. uint16_t sec_lang_code = lang_get_code(1);
  1173. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1174. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1175. lang_print_sec_lang(uartout);
  1176. #endif //DEBUG_SEC_LANG
  1177. #endif //(LANG_MODE != 0)
  1178. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1179. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1180. temp_cal_active = false;
  1181. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1182. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1183. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1184. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1185. int16_t z_shift = 0;
  1186. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1187. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1188. temp_cal_active = false;
  1189. }
  1190. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1191. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1192. }
  1193. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1194. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1195. }
  1196. check_babystep(); //checking if Z babystep is in allowed range
  1197. #ifdef UVLO_SUPPORT
  1198. setup_uvlo_interrupt();
  1199. #endif //UVLO_SUPPORT
  1200. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1201. setup_fan_interrupt();
  1202. #endif //DEBUG_DISABLE_FANCHECK
  1203. #ifdef FILAMENT_SENSOR
  1204. fsensor_setup_interrupt();
  1205. #endif //FILAMENT_SENSOR
  1206. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1207. #ifndef DEBUG_DISABLE_STARTMSGS
  1208. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1209. show_fw_version_warnings();
  1210. switch (hw_changed) {
  1211. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1212. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1213. case(0b01):
  1214. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1215. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1216. break;
  1217. case(0b10):
  1218. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1219. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1220. break;
  1221. case(0b11):
  1222. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1223. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1224. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1225. break;
  1226. default: break; //no change, show no message
  1227. }
  1228. if (!previous_settings_retrieved) {
  1229. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1230. Config_StoreSettings();
  1231. }
  1232. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1233. lcd_wizard(WizState::Run);
  1234. }
  1235. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1236. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1237. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1238. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1239. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1240. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1241. // Show the message.
  1242. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1243. }
  1244. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1245. // Show the message.
  1246. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1247. lcd_update_enable(true);
  1248. }
  1249. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1250. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1251. lcd_update_enable(true);
  1252. }
  1253. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1254. // Show the message.
  1255. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1256. }
  1257. }
  1258. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1259. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1260. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1261. update_current_firmware_version_to_eeprom();
  1262. lcd_selftest();
  1263. }
  1264. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1265. KEEPALIVE_STATE(IN_PROCESS);
  1266. #endif //DEBUG_DISABLE_STARTMSGS
  1267. lcd_update_enable(true);
  1268. lcd_clear();
  1269. lcd_update(2);
  1270. // Store the currently running firmware into an eeprom,
  1271. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1272. update_current_firmware_version_to_eeprom();
  1273. #ifdef TMC2130
  1274. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1275. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1276. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1277. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1278. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1279. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1280. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1281. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1282. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1283. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1284. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1285. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1286. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1287. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1288. #endif //TMC2130
  1289. #ifdef UVLO_SUPPORT
  1290. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1291. /*
  1292. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1293. else {
  1294. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1295. lcd_update_enable(true);
  1296. lcd_update(2);
  1297. lcd_setstatuspgm(_T(WELCOME_MSG));
  1298. }
  1299. */
  1300. manage_heater(); // Update temperatures
  1301. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1302. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1303. #endif
  1304. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1305. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1306. puts_P(_N("Automatic recovery!"));
  1307. #endif
  1308. recover_print(1);
  1309. }
  1310. else{
  1311. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1312. puts_P(_N("Normal recovery!"));
  1313. #endif
  1314. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1315. else {
  1316. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1317. lcd_update_enable(true);
  1318. lcd_update(2);
  1319. lcd_setstatuspgm(_T(WELCOME_MSG));
  1320. }
  1321. }
  1322. }
  1323. #endif //UVLO_SUPPORT
  1324. KEEPALIVE_STATE(NOT_BUSY);
  1325. #ifdef WATCHDOG
  1326. wdt_enable(WDTO_4S);
  1327. #endif //WATCHDOG
  1328. }
  1329. void trace();
  1330. #define CHUNK_SIZE 64 // bytes
  1331. #define SAFETY_MARGIN 1
  1332. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1333. int chunkHead = 0;
  1334. void serial_read_stream() {
  1335. setAllTargetHotends(0);
  1336. setTargetBed(0);
  1337. lcd_clear();
  1338. lcd_puts_P(PSTR(" Upload in progress"));
  1339. // first wait for how many bytes we will receive
  1340. uint32_t bytesToReceive;
  1341. // receive the four bytes
  1342. char bytesToReceiveBuffer[4];
  1343. for (int i=0; i<4; i++) {
  1344. int data;
  1345. while ((data = MYSERIAL.read()) == -1) {};
  1346. bytesToReceiveBuffer[i] = data;
  1347. }
  1348. // make it a uint32
  1349. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1350. // we're ready, notify the sender
  1351. MYSERIAL.write('+');
  1352. // lock in the routine
  1353. uint32_t receivedBytes = 0;
  1354. while (prusa_sd_card_upload) {
  1355. int i;
  1356. for (i=0; i<CHUNK_SIZE; i++) {
  1357. int data;
  1358. // check if we're not done
  1359. if (receivedBytes == bytesToReceive) {
  1360. break;
  1361. }
  1362. // read the next byte
  1363. while ((data = MYSERIAL.read()) == -1) {};
  1364. receivedBytes++;
  1365. // save it to the chunk
  1366. chunk[i] = data;
  1367. }
  1368. // write the chunk to SD
  1369. card.write_command_no_newline(&chunk[0]);
  1370. // notify the sender we're ready for more data
  1371. MYSERIAL.write('+');
  1372. // for safety
  1373. manage_heater();
  1374. // check if we're done
  1375. if(receivedBytes == bytesToReceive) {
  1376. trace(); // beep
  1377. card.closefile();
  1378. prusa_sd_card_upload = false;
  1379. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1380. }
  1381. }
  1382. }
  1383. #ifdef HOST_KEEPALIVE_FEATURE
  1384. /**
  1385. * Output a "busy" message at regular intervals
  1386. * while the machine is not accepting commands.
  1387. */
  1388. void host_keepalive() {
  1389. if (farm_mode) return;
  1390. long ms = millis();
  1391. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1392. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1393. switch (busy_state) {
  1394. case IN_HANDLER:
  1395. case IN_PROCESS:
  1396. SERIAL_ECHO_START;
  1397. SERIAL_ECHOLNPGM("busy: processing");
  1398. break;
  1399. case PAUSED_FOR_USER:
  1400. SERIAL_ECHO_START;
  1401. SERIAL_ECHOLNPGM("busy: paused for user");
  1402. break;
  1403. case PAUSED_FOR_INPUT:
  1404. SERIAL_ECHO_START;
  1405. SERIAL_ECHOLNPGM("busy: paused for input");
  1406. break;
  1407. default:
  1408. break;
  1409. }
  1410. }
  1411. prev_busy_signal_ms = ms;
  1412. }
  1413. #endif
  1414. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1415. // Before loop(), the setup() function is called by the main() routine.
  1416. void loop()
  1417. {
  1418. KEEPALIVE_STATE(NOT_BUSY);
  1419. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1420. {
  1421. is_usb_printing = true;
  1422. usb_printing_counter--;
  1423. _usb_timer = millis();
  1424. }
  1425. if (usb_printing_counter == 0)
  1426. {
  1427. is_usb_printing = false;
  1428. }
  1429. if (prusa_sd_card_upload)
  1430. {
  1431. //we read byte-by byte
  1432. serial_read_stream();
  1433. } else
  1434. {
  1435. get_command();
  1436. #ifdef SDSUPPORT
  1437. card.checkautostart(false);
  1438. #endif
  1439. if(buflen)
  1440. {
  1441. cmdbuffer_front_already_processed = false;
  1442. #ifdef SDSUPPORT
  1443. if(card.saving)
  1444. {
  1445. // Saving a G-code file onto an SD-card is in progress.
  1446. // Saving starts with M28, saving until M29 is seen.
  1447. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1448. card.write_command(CMDBUFFER_CURRENT_STRING);
  1449. if(card.logging)
  1450. process_commands();
  1451. else
  1452. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1453. } else {
  1454. card.closefile();
  1455. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1456. }
  1457. } else {
  1458. process_commands();
  1459. }
  1460. #else
  1461. process_commands();
  1462. #endif //SDSUPPORT
  1463. if (! cmdbuffer_front_already_processed && buflen)
  1464. {
  1465. // ptr points to the start of the block currently being processed.
  1466. // The first character in the block is the block type.
  1467. char *ptr = cmdbuffer + bufindr;
  1468. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1469. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1470. union {
  1471. struct {
  1472. char lo;
  1473. char hi;
  1474. } lohi;
  1475. uint16_t value;
  1476. } sdlen;
  1477. sdlen.value = 0;
  1478. {
  1479. // This block locks the interrupts globally for 3.25 us,
  1480. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1481. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1482. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1483. cli();
  1484. // Reset the command to something, which will be ignored by the power panic routine,
  1485. // so this buffer length will not be counted twice.
  1486. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1487. // Extract the current buffer length.
  1488. sdlen.lohi.lo = *ptr ++;
  1489. sdlen.lohi.hi = *ptr;
  1490. // and pass it to the planner queue.
  1491. planner_add_sd_length(sdlen.value);
  1492. sei();
  1493. }
  1494. }
  1495. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1496. cli();
  1497. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1498. // and one for each command to previous block in the planner queue.
  1499. planner_add_sd_length(1);
  1500. sei();
  1501. }
  1502. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1503. // this block's SD card length will not be counted twice as its command type has been replaced
  1504. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1505. cmdqueue_pop_front();
  1506. }
  1507. host_keepalive();
  1508. }
  1509. }
  1510. //check heater every n milliseconds
  1511. manage_heater();
  1512. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1513. checkHitEndstops();
  1514. lcd_update(0);
  1515. #ifdef TMC2130
  1516. tmc2130_check_overtemp();
  1517. if (tmc2130_sg_crash)
  1518. {
  1519. uint8_t crash = tmc2130_sg_crash;
  1520. tmc2130_sg_crash = 0;
  1521. // crashdet_stop_and_save_print();
  1522. switch (crash)
  1523. {
  1524. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1525. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1526. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1527. }
  1528. }
  1529. #endif //TMC2130
  1530. mmu_loop();
  1531. }
  1532. #define DEFINE_PGM_READ_ANY(type, reader) \
  1533. static inline type pgm_read_any(const type *p) \
  1534. { return pgm_read_##reader##_near(p); }
  1535. DEFINE_PGM_READ_ANY(float, float);
  1536. DEFINE_PGM_READ_ANY(signed char, byte);
  1537. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1538. static const PROGMEM type array##_P[3] = \
  1539. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1540. static inline type array(int axis) \
  1541. { return pgm_read_any(&array##_P[axis]); } \
  1542. type array##_ext(int axis) \
  1543. { return pgm_read_any(&array##_P[axis]); }
  1544. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1545. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1546. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1547. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1548. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1549. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1550. static void axis_is_at_home(int axis) {
  1551. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1552. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1553. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1554. }
  1555. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1556. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1557. //! @return original feedmultiply
  1558. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1559. saved_feedrate = feedrate;
  1560. int l_feedmultiply = feedmultiply;
  1561. feedmultiply = 100;
  1562. previous_millis_cmd = millis();
  1563. enable_endstops(enable_endstops_now);
  1564. return l_feedmultiply;
  1565. }
  1566. //! @param original_feedmultiply feedmultiply to restore
  1567. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1568. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1569. enable_endstops(false);
  1570. #endif
  1571. feedrate = saved_feedrate;
  1572. feedmultiply = original_feedmultiply;
  1573. previous_millis_cmd = millis();
  1574. }
  1575. #ifdef ENABLE_AUTO_BED_LEVELING
  1576. #ifdef AUTO_BED_LEVELING_GRID
  1577. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1578. {
  1579. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1580. planeNormal.debug("planeNormal");
  1581. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1582. //bedLevel.debug("bedLevel");
  1583. //plan_bed_level_matrix.debug("bed level before");
  1584. //vector_3 uncorrected_position = plan_get_position_mm();
  1585. //uncorrected_position.debug("position before");
  1586. vector_3 corrected_position = plan_get_position();
  1587. // corrected_position.debug("position after");
  1588. current_position[X_AXIS] = corrected_position.x;
  1589. current_position[Y_AXIS] = corrected_position.y;
  1590. current_position[Z_AXIS] = corrected_position.z;
  1591. // put the bed at 0 so we don't go below it.
  1592. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1593. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1594. }
  1595. #else // not AUTO_BED_LEVELING_GRID
  1596. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1597. plan_bed_level_matrix.set_to_identity();
  1598. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1599. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1600. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1601. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1602. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1603. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1604. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1605. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1606. vector_3 corrected_position = plan_get_position();
  1607. current_position[X_AXIS] = corrected_position.x;
  1608. current_position[Y_AXIS] = corrected_position.y;
  1609. current_position[Z_AXIS] = corrected_position.z;
  1610. // put the bed at 0 so we don't go below it.
  1611. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1612. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1613. }
  1614. #endif // AUTO_BED_LEVELING_GRID
  1615. static void run_z_probe() {
  1616. plan_bed_level_matrix.set_to_identity();
  1617. feedrate = homing_feedrate[Z_AXIS];
  1618. // move down until you find the bed
  1619. float zPosition = -10;
  1620. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1621. st_synchronize();
  1622. // we have to let the planner know where we are right now as it is not where we said to go.
  1623. zPosition = st_get_position_mm(Z_AXIS);
  1624. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1625. // move up the retract distance
  1626. zPosition += home_retract_mm(Z_AXIS);
  1627. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1628. st_synchronize();
  1629. // move back down slowly to find bed
  1630. feedrate = homing_feedrate[Z_AXIS]/4;
  1631. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1632. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1633. st_synchronize();
  1634. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1635. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1636. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1637. }
  1638. static void do_blocking_move_to(float x, float y, float z) {
  1639. float oldFeedRate = feedrate;
  1640. feedrate = homing_feedrate[Z_AXIS];
  1641. current_position[Z_AXIS] = z;
  1642. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1643. st_synchronize();
  1644. feedrate = XY_TRAVEL_SPEED;
  1645. current_position[X_AXIS] = x;
  1646. current_position[Y_AXIS] = y;
  1647. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1648. st_synchronize();
  1649. feedrate = oldFeedRate;
  1650. }
  1651. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1652. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1653. }
  1654. /// Probe bed height at position (x,y), returns the measured z value
  1655. static float probe_pt(float x, float y, float z_before) {
  1656. // move to right place
  1657. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1658. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1659. run_z_probe();
  1660. float measured_z = current_position[Z_AXIS];
  1661. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1662. SERIAL_PROTOCOLPGM(" x: ");
  1663. SERIAL_PROTOCOL(x);
  1664. SERIAL_PROTOCOLPGM(" y: ");
  1665. SERIAL_PROTOCOL(y);
  1666. SERIAL_PROTOCOLPGM(" z: ");
  1667. SERIAL_PROTOCOL(measured_z);
  1668. SERIAL_PROTOCOLPGM("\n");
  1669. return measured_z;
  1670. }
  1671. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1672. #ifdef LIN_ADVANCE
  1673. /**
  1674. * M900: Set and/or Get advance K factor and WH/D ratio
  1675. *
  1676. * K<factor> Set advance K factor
  1677. * R<ratio> Set ratio directly (overrides WH/D)
  1678. * W<width> H<height> D<diam> Set ratio from WH/D
  1679. */
  1680. inline void gcode_M900() {
  1681. st_synchronize();
  1682. const float newK = code_seen('K') ? code_value_float() : -1;
  1683. if (newK >= 0) extruder_advance_k = newK;
  1684. float newR = code_seen('R') ? code_value_float() : -1;
  1685. if (newR < 0) {
  1686. const float newD = code_seen('D') ? code_value_float() : -1,
  1687. newW = code_seen('W') ? code_value_float() : -1,
  1688. newH = code_seen('H') ? code_value_float() : -1;
  1689. if (newD >= 0 && newW >= 0 && newH >= 0)
  1690. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1691. }
  1692. if (newR >= 0) advance_ed_ratio = newR;
  1693. SERIAL_ECHO_START;
  1694. SERIAL_ECHOPGM("Advance K=");
  1695. SERIAL_ECHOLN(extruder_advance_k);
  1696. SERIAL_ECHOPGM(" E/D=");
  1697. const float ratio = advance_ed_ratio;
  1698. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1699. }
  1700. #endif // LIN_ADVANCE
  1701. bool check_commands() {
  1702. bool end_command_found = false;
  1703. while (buflen)
  1704. {
  1705. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1706. if (!cmdbuffer_front_already_processed)
  1707. cmdqueue_pop_front();
  1708. cmdbuffer_front_already_processed = false;
  1709. }
  1710. return end_command_found;
  1711. }
  1712. #ifdef TMC2130
  1713. bool calibrate_z_auto()
  1714. {
  1715. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1716. lcd_clear();
  1717. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1718. bool endstops_enabled = enable_endstops(true);
  1719. int axis_up_dir = -home_dir(Z_AXIS);
  1720. tmc2130_home_enter(Z_AXIS_MASK);
  1721. current_position[Z_AXIS] = 0;
  1722. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1723. set_destination_to_current();
  1724. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1725. feedrate = homing_feedrate[Z_AXIS];
  1726. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1727. st_synchronize();
  1728. // current_position[axis] = 0;
  1729. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1730. tmc2130_home_exit();
  1731. enable_endstops(false);
  1732. current_position[Z_AXIS] = 0;
  1733. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1734. set_destination_to_current();
  1735. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1736. feedrate = homing_feedrate[Z_AXIS] / 2;
  1737. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1738. st_synchronize();
  1739. enable_endstops(endstops_enabled);
  1740. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1741. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1742. return true;
  1743. }
  1744. #endif //TMC2130
  1745. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1746. {
  1747. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1748. #define HOMEAXIS_DO(LETTER) \
  1749. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1750. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1751. {
  1752. int axis_home_dir = home_dir(axis);
  1753. feedrate = homing_feedrate[axis];
  1754. #ifdef TMC2130
  1755. tmc2130_home_enter(X_AXIS_MASK << axis);
  1756. #endif //TMC2130
  1757. // Move away a bit, so that the print head does not touch the end position,
  1758. // and the following movement to endstop has a chance to achieve the required velocity
  1759. // for the stall guard to work.
  1760. current_position[axis] = 0;
  1761. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1762. set_destination_to_current();
  1763. // destination[axis] = 11.f;
  1764. destination[axis] = -3.f * axis_home_dir;
  1765. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1766. st_synchronize();
  1767. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1768. endstops_hit_on_purpose();
  1769. enable_endstops(false);
  1770. current_position[axis] = 0;
  1771. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1772. destination[axis] = 1. * axis_home_dir;
  1773. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1774. st_synchronize();
  1775. // Now continue to move up to the left end stop with the collision detection enabled.
  1776. enable_endstops(true);
  1777. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1778. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1779. st_synchronize();
  1780. for (uint8_t i = 0; i < cnt; i++)
  1781. {
  1782. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1783. endstops_hit_on_purpose();
  1784. enable_endstops(false);
  1785. current_position[axis] = 0;
  1786. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1787. destination[axis] = -10.f * axis_home_dir;
  1788. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1789. st_synchronize();
  1790. endstops_hit_on_purpose();
  1791. // Now move left up to the collision, this time with a repeatable velocity.
  1792. enable_endstops(true);
  1793. destination[axis] = 11.f * axis_home_dir;
  1794. #ifdef TMC2130
  1795. feedrate = homing_feedrate[axis];
  1796. #else //TMC2130
  1797. feedrate = homing_feedrate[axis] / 2;
  1798. #endif //TMC2130
  1799. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1800. st_synchronize();
  1801. #ifdef TMC2130
  1802. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1803. if (pstep) pstep[i] = mscnt >> 4;
  1804. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1805. #endif //TMC2130
  1806. }
  1807. endstops_hit_on_purpose();
  1808. enable_endstops(false);
  1809. #ifdef TMC2130
  1810. uint8_t orig = tmc2130_home_origin[axis];
  1811. uint8_t back = tmc2130_home_bsteps[axis];
  1812. if (tmc2130_home_enabled && (orig <= 63))
  1813. {
  1814. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1815. if (back > 0)
  1816. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1817. }
  1818. else
  1819. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1820. tmc2130_home_exit();
  1821. #endif //TMC2130
  1822. axis_is_at_home(axis);
  1823. axis_known_position[axis] = true;
  1824. // Move from minimum
  1825. #ifdef TMC2130
  1826. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1827. #else //TMC2130
  1828. float dist = - axis_home_dir * 0.01f * 64;
  1829. #endif //TMC2130
  1830. current_position[axis] -= dist;
  1831. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1832. current_position[axis] += dist;
  1833. destination[axis] = current_position[axis];
  1834. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1835. st_synchronize();
  1836. feedrate = 0.0;
  1837. }
  1838. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1839. {
  1840. #ifdef TMC2130
  1841. FORCE_HIGH_POWER_START;
  1842. #endif
  1843. int axis_home_dir = home_dir(axis);
  1844. current_position[axis] = 0;
  1845. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1846. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1847. feedrate = homing_feedrate[axis];
  1848. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1849. st_synchronize();
  1850. #ifdef TMC2130
  1851. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1852. FORCE_HIGH_POWER_END;
  1853. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1854. return;
  1855. }
  1856. #endif //TMC2130
  1857. current_position[axis] = 0;
  1858. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1859. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1860. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1861. st_synchronize();
  1862. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1863. feedrate = homing_feedrate[axis]/2 ;
  1864. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1865. st_synchronize();
  1866. #ifdef TMC2130
  1867. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1868. FORCE_HIGH_POWER_END;
  1869. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1870. return;
  1871. }
  1872. #endif //TMC2130
  1873. axis_is_at_home(axis);
  1874. destination[axis] = current_position[axis];
  1875. feedrate = 0.0;
  1876. endstops_hit_on_purpose();
  1877. axis_known_position[axis] = true;
  1878. #ifdef TMC2130
  1879. FORCE_HIGH_POWER_END;
  1880. #endif
  1881. }
  1882. enable_endstops(endstops_enabled);
  1883. }
  1884. /**/
  1885. void home_xy()
  1886. {
  1887. set_destination_to_current();
  1888. homeaxis(X_AXIS);
  1889. homeaxis(Y_AXIS);
  1890. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1891. endstops_hit_on_purpose();
  1892. }
  1893. void refresh_cmd_timeout(void)
  1894. {
  1895. previous_millis_cmd = millis();
  1896. }
  1897. #ifdef FWRETRACT
  1898. void retract(bool retracting, bool swapretract = false) {
  1899. if(retracting && !retracted[active_extruder]) {
  1900. destination[X_AXIS]=current_position[X_AXIS];
  1901. destination[Y_AXIS]=current_position[Y_AXIS];
  1902. destination[Z_AXIS]=current_position[Z_AXIS];
  1903. destination[E_AXIS]=current_position[E_AXIS];
  1904. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1905. plan_set_e_position(current_position[E_AXIS]);
  1906. float oldFeedrate = feedrate;
  1907. feedrate=cs.retract_feedrate*60;
  1908. retracted[active_extruder]=true;
  1909. prepare_move();
  1910. current_position[Z_AXIS]-=cs.retract_zlift;
  1911. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1912. prepare_move();
  1913. feedrate = oldFeedrate;
  1914. } else if(!retracting && retracted[active_extruder]) {
  1915. destination[X_AXIS]=current_position[X_AXIS];
  1916. destination[Y_AXIS]=current_position[Y_AXIS];
  1917. destination[Z_AXIS]=current_position[Z_AXIS];
  1918. destination[E_AXIS]=current_position[E_AXIS];
  1919. current_position[Z_AXIS]+=cs.retract_zlift;
  1920. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1921. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1922. plan_set_e_position(current_position[E_AXIS]);
  1923. float oldFeedrate = feedrate;
  1924. feedrate=cs.retract_recover_feedrate*60;
  1925. retracted[active_extruder]=false;
  1926. prepare_move();
  1927. feedrate = oldFeedrate;
  1928. }
  1929. } //retract
  1930. #endif //FWRETRACT
  1931. void trace() {
  1932. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  1933. tone(BEEPER, 440);
  1934. delay(25);
  1935. noTone(BEEPER);
  1936. delay(20);
  1937. }
  1938. /*
  1939. void ramming() {
  1940. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1941. if (current_temperature[0] < 230) {
  1942. //PLA
  1943. max_feedrate[E_AXIS] = 50;
  1944. //current_position[E_AXIS] -= 8;
  1945. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1946. //current_position[E_AXIS] += 8;
  1947. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1948. current_position[E_AXIS] += 5.4;
  1949. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1950. current_position[E_AXIS] += 3.2;
  1951. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1952. current_position[E_AXIS] += 3;
  1953. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1954. st_synchronize();
  1955. max_feedrate[E_AXIS] = 80;
  1956. current_position[E_AXIS] -= 82;
  1957. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1958. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1959. current_position[E_AXIS] -= 20;
  1960. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1961. current_position[E_AXIS] += 5;
  1962. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1963. current_position[E_AXIS] += 5;
  1964. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1965. current_position[E_AXIS] -= 10;
  1966. st_synchronize();
  1967. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1968. current_position[E_AXIS] += 10;
  1969. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1970. current_position[E_AXIS] -= 10;
  1971. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1972. current_position[E_AXIS] += 10;
  1973. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1974. current_position[E_AXIS] -= 10;
  1975. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1976. st_synchronize();
  1977. }
  1978. else {
  1979. //ABS
  1980. max_feedrate[E_AXIS] = 50;
  1981. //current_position[E_AXIS] -= 8;
  1982. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1983. //current_position[E_AXIS] += 8;
  1984. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1985. current_position[E_AXIS] += 3.1;
  1986. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1987. current_position[E_AXIS] += 3.1;
  1988. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1989. current_position[E_AXIS] += 4;
  1990. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1991. st_synchronize();
  1992. //current_position[X_AXIS] += 23; //delay
  1993. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1994. //current_position[X_AXIS] -= 23; //delay
  1995. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1996. delay(4700);
  1997. max_feedrate[E_AXIS] = 80;
  1998. current_position[E_AXIS] -= 92;
  1999. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2000. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2001. current_position[E_AXIS] -= 5;
  2002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2003. current_position[E_AXIS] += 5;
  2004. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2005. current_position[E_AXIS] -= 5;
  2006. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2007. st_synchronize();
  2008. current_position[E_AXIS] += 5;
  2009. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2010. current_position[E_AXIS] -= 5;
  2011. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2012. current_position[E_AXIS] += 5;
  2013. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2014. current_position[E_AXIS] -= 5;
  2015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2016. st_synchronize();
  2017. }
  2018. }
  2019. */
  2020. #ifdef TMC2130
  2021. void force_high_power_mode(bool start_high_power_section) {
  2022. uint8_t silent;
  2023. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2024. if (silent == 1) {
  2025. //we are in silent mode, set to normal mode to enable crash detection
  2026. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2027. st_synchronize();
  2028. cli();
  2029. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2030. update_mode_profile();
  2031. tmc2130_init();
  2032. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2033. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2034. st_reset_timer();
  2035. sei();
  2036. }
  2037. }
  2038. #endif //TMC2130
  2039. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2040. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2041. }
  2042. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2043. st_synchronize();
  2044. #if 0
  2045. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2046. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2047. #endif
  2048. // Flag for the display update routine and to disable the print cancelation during homing.
  2049. homing_flag = true;
  2050. // Which axes should be homed?
  2051. bool home_x = home_x_axis;
  2052. bool home_y = home_y_axis;
  2053. bool home_z = home_z_axis;
  2054. // Either all X,Y,Z codes are present, or none of them.
  2055. bool home_all_axes = home_x == home_y && home_x == home_z;
  2056. if (home_all_axes)
  2057. // No X/Y/Z code provided means to home all axes.
  2058. home_x = home_y = home_z = true;
  2059. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2060. if (home_all_axes) {
  2061. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2062. feedrate = homing_feedrate[Z_AXIS];
  2063. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2064. st_synchronize();
  2065. }
  2066. #ifdef ENABLE_AUTO_BED_LEVELING
  2067. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2068. #endif //ENABLE_AUTO_BED_LEVELING
  2069. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2070. // the planner will not perform any adjustments in the XY plane.
  2071. // Wait for the motors to stop and update the current position with the absolute values.
  2072. world2machine_revert_to_uncorrected();
  2073. // For mesh bed leveling deactivate the matrix temporarily.
  2074. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2075. // in a single axis only.
  2076. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2077. #ifdef MESH_BED_LEVELING
  2078. uint8_t mbl_was_active = mbl.active;
  2079. mbl.active = 0;
  2080. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2081. #endif
  2082. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2083. // consumed during the first movements following this statement.
  2084. if (home_z)
  2085. babystep_undo();
  2086. saved_feedrate = feedrate;
  2087. int l_feedmultiply = feedmultiply;
  2088. feedmultiply = 100;
  2089. previous_millis_cmd = millis();
  2090. enable_endstops(true);
  2091. memcpy(destination, current_position, sizeof(destination));
  2092. feedrate = 0.0;
  2093. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2094. if(home_z)
  2095. homeaxis(Z_AXIS);
  2096. #endif
  2097. #ifdef QUICK_HOME
  2098. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2099. if(home_x && home_y) //first diagonal move
  2100. {
  2101. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2102. int x_axis_home_dir = home_dir(X_AXIS);
  2103. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2104. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2105. feedrate = homing_feedrate[X_AXIS];
  2106. if(homing_feedrate[Y_AXIS]<feedrate)
  2107. feedrate = homing_feedrate[Y_AXIS];
  2108. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2109. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2110. } else {
  2111. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2112. }
  2113. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2114. st_synchronize();
  2115. axis_is_at_home(X_AXIS);
  2116. axis_is_at_home(Y_AXIS);
  2117. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2118. destination[X_AXIS] = current_position[X_AXIS];
  2119. destination[Y_AXIS] = current_position[Y_AXIS];
  2120. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2121. feedrate = 0.0;
  2122. st_synchronize();
  2123. endstops_hit_on_purpose();
  2124. current_position[X_AXIS] = destination[X_AXIS];
  2125. current_position[Y_AXIS] = destination[Y_AXIS];
  2126. current_position[Z_AXIS] = destination[Z_AXIS];
  2127. }
  2128. #endif /* QUICK_HOME */
  2129. #ifdef TMC2130
  2130. if(home_x)
  2131. {
  2132. if (!calib)
  2133. homeaxis(X_AXIS);
  2134. else
  2135. tmc2130_home_calibrate(X_AXIS);
  2136. }
  2137. if(home_y)
  2138. {
  2139. if (!calib)
  2140. homeaxis(Y_AXIS);
  2141. else
  2142. tmc2130_home_calibrate(Y_AXIS);
  2143. }
  2144. #endif //TMC2130
  2145. if(home_x_axis && home_x_value != 0)
  2146. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2147. if(home_y_axis && home_y_value != 0)
  2148. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2149. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2150. #ifndef Z_SAFE_HOMING
  2151. if(home_z) {
  2152. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2153. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2154. feedrate = max_feedrate[Z_AXIS];
  2155. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2156. st_synchronize();
  2157. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2158. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2159. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2160. {
  2161. homeaxis(X_AXIS);
  2162. homeaxis(Y_AXIS);
  2163. }
  2164. // 1st mesh bed leveling measurement point, corrected.
  2165. world2machine_initialize();
  2166. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2167. world2machine_reset();
  2168. if (destination[Y_AXIS] < Y_MIN_POS)
  2169. destination[Y_AXIS] = Y_MIN_POS;
  2170. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2171. feedrate = homing_feedrate[Z_AXIS]/10;
  2172. current_position[Z_AXIS] = 0;
  2173. enable_endstops(false);
  2174. #ifdef DEBUG_BUILD
  2175. SERIAL_ECHOLNPGM("plan_set_position()");
  2176. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2177. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2178. #endif
  2179. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2180. #ifdef DEBUG_BUILD
  2181. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2182. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2183. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2184. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2185. #endif
  2186. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2187. st_synchronize();
  2188. current_position[X_AXIS] = destination[X_AXIS];
  2189. current_position[Y_AXIS] = destination[Y_AXIS];
  2190. enable_endstops(true);
  2191. endstops_hit_on_purpose();
  2192. homeaxis(Z_AXIS);
  2193. #else // MESH_BED_LEVELING
  2194. homeaxis(Z_AXIS);
  2195. #endif // MESH_BED_LEVELING
  2196. }
  2197. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2198. if(home_all_axes) {
  2199. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2200. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2201. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2202. feedrate = XY_TRAVEL_SPEED/60;
  2203. current_position[Z_AXIS] = 0;
  2204. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2205. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2206. st_synchronize();
  2207. current_position[X_AXIS] = destination[X_AXIS];
  2208. current_position[Y_AXIS] = destination[Y_AXIS];
  2209. homeaxis(Z_AXIS);
  2210. }
  2211. // Let's see if X and Y are homed and probe is inside bed area.
  2212. if(home_z) {
  2213. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2214. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2215. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2216. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2217. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2218. current_position[Z_AXIS] = 0;
  2219. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2220. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2221. feedrate = max_feedrate[Z_AXIS];
  2222. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2223. st_synchronize();
  2224. homeaxis(Z_AXIS);
  2225. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2226. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2227. SERIAL_ECHO_START;
  2228. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2229. } else {
  2230. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2231. SERIAL_ECHO_START;
  2232. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2233. }
  2234. }
  2235. #endif // Z_SAFE_HOMING
  2236. #endif // Z_HOME_DIR < 0
  2237. if(home_z_axis && home_z_value != 0)
  2238. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2239. #ifdef ENABLE_AUTO_BED_LEVELING
  2240. if(home_z)
  2241. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2242. #endif
  2243. // Set the planner and stepper routine positions.
  2244. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2245. // contains the machine coordinates.
  2246. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2247. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2248. enable_endstops(false);
  2249. #endif
  2250. feedrate = saved_feedrate;
  2251. feedmultiply = l_feedmultiply;
  2252. previous_millis_cmd = millis();
  2253. endstops_hit_on_purpose();
  2254. #ifndef MESH_BED_LEVELING
  2255. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2256. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2257. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2258. lcd_adjust_z();
  2259. #endif
  2260. // Load the machine correction matrix
  2261. world2machine_initialize();
  2262. // and correct the current_position XY axes to match the transformed coordinate system.
  2263. world2machine_update_current();
  2264. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2265. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2266. {
  2267. if (! home_z && mbl_was_active) {
  2268. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2269. mbl.active = true;
  2270. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2271. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2272. }
  2273. }
  2274. else
  2275. {
  2276. st_synchronize();
  2277. homing_flag = false;
  2278. }
  2279. #endif
  2280. if (farm_mode) { prusa_statistics(20); };
  2281. homing_flag = false;
  2282. #if 0
  2283. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2284. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2285. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2286. #endif
  2287. }
  2288. void adjust_bed_reset()
  2289. {
  2290. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2291. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2292. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2293. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2294. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2295. }
  2296. //! @brief Calibrate XYZ
  2297. //! @param onlyZ if true, calibrate only Z axis
  2298. //! @param verbosity_level
  2299. //! @retval true Succeeded
  2300. //! @retval false Failed
  2301. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2302. {
  2303. bool final_result = false;
  2304. #ifdef TMC2130
  2305. FORCE_HIGH_POWER_START;
  2306. #endif // TMC2130
  2307. // Only Z calibration?
  2308. if (!onlyZ)
  2309. {
  2310. setTargetBed(0);
  2311. setAllTargetHotends(0);
  2312. adjust_bed_reset(); //reset bed level correction
  2313. }
  2314. // Disable the default update procedure of the display. We will do a modal dialog.
  2315. lcd_update_enable(false);
  2316. // Let the planner use the uncorrected coordinates.
  2317. mbl.reset();
  2318. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2319. // the planner will not perform any adjustments in the XY plane.
  2320. // Wait for the motors to stop and update the current position with the absolute values.
  2321. world2machine_revert_to_uncorrected();
  2322. // Reset the baby step value applied without moving the axes.
  2323. babystep_reset();
  2324. // Mark all axes as in a need for homing.
  2325. memset(axis_known_position, 0, sizeof(axis_known_position));
  2326. // Home in the XY plane.
  2327. //set_destination_to_current();
  2328. int l_feedmultiply = setup_for_endstop_move();
  2329. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2330. home_xy();
  2331. enable_endstops(false);
  2332. current_position[X_AXIS] += 5;
  2333. current_position[Y_AXIS] += 5;
  2334. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2335. st_synchronize();
  2336. // Let the user move the Z axes up to the end stoppers.
  2337. #ifdef TMC2130
  2338. if (calibrate_z_auto())
  2339. {
  2340. #else //TMC2130
  2341. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2342. {
  2343. #endif //TMC2130
  2344. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2345. if(onlyZ){
  2346. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2347. lcd_set_cursor(0, 3);
  2348. lcd_print(1);
  2349. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2350. }else{
  2351. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2352. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2353. lcd_set_cursor(0, 2);
  2354. lcd_print(1);
  2355. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2356. }
  2357. refresh_cmd_timeout();
  2358. #ifndef STEEL_SHEET
  2359. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2360. {
  2361. lcd_wait_for_cool_down();
  2362. }
  2363. #endif //STEEL_SHEET
  2364. if(!onlyZ)
  2365. {
  2366. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2367. #ifdef STEEL_SHEET
  2368. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2369. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2370. #endif //STEEL_SHEET
  2371. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2372. KEEPALIVE_STATE(IN_HANDLER);
  2373. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2374. lcd_set_cursor(0, 2);
  2375. lcd_print(1);
  2376. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2377. }
  2378. // Move the print head close to the bed.
  2379. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2380. bool endstops_enabled = enable_endstops(true);
  2381. #ifdef TMC2130
  2382. tmc2130_home_enter(Z_AXIS_MASK);
  2383. #endif //TMC2130
  2384. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2385. st_synchronize();
  2386. #ifdef TMC2130
  2387. tmc2130_home_exit();
  2388. #endif //TMC2130
  2389. enable_endstops(endstops_enabled);
  2390. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2391. {
  2392. if (onlyZ)
  2393. {
  2394. clean_up_after_endstop_move(l_feedmultiply);
  2395. // Z only calibration.
  2396. // Load the machine correction matrix
  2397. world2machine_initialize();
  2398. // and correct the current_position to match the transformed coordinate system.
  2399. world2machine_update_current();
  2400. //FIXME
  2401. bool result = sample_mesh_and_store_reference();
  2402. if (result)
  2403. {
  2404. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2405. // Shipped, the nozzle height has been set already. The user can start printing now.
  2406. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2407. final_result = true;
  2408. // babystep_apply();
  2409. }
  2410. }
  2411. else
  2412. {
  2413. // Reset the baby step value and the baby step applied flag.
  2414. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2415. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2416. // Complete XYZ calibration.
  2417. uint8_t point_too_far_mask = 0;
  2418. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2419. clean_up_after_endstop_move(l_feedmultiply);
  2420. // Print head up.
  2421. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2422. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2423. st_synchronize();
  2424. //#ifndef NEW_XYZCAL
  2425. if (result >= 0)
  2426. {
  2427. #ifdef HEATBED_V2
  2428. sample_z();
  2429. #else //HEATBED_V2
  2430. point_too_far_mask = 0;
  2431. // Second half: The fine adjustment.
  2432. // Let the planner use the uncorrected coordinates.
  2433. mbl.reset();
  2434. world2machine_reset();
  2435. // Home in the XY plane.
  2436. int l_feedmultiply = setup_for_endstop_move();
  2437. home_xy();
  2438. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2439. clean_up_after_endstop_move(l_feedmultiply);
  2440. // Print head up.
  2441. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2442. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2443. st_synchronize();
  2444. // if (result >= 0) babystep_apply();
  2445. #endif //HEATBED_V2
  2446. }
  2447. //#endif //NEW_XYZCAL
  2448. lcd_update_enable(true);
  2449. lcd_update(2);
  2450. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2451. if (result >= 0)
  2452. {
  2453. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2454. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2455. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2456. final_result = true;
  2457. }
  2458. }
  2459. #ifdef TMC2130
  2460. tmc2130_home_exit();
  2461. #endif
  2462. }
  2463. else
  2464. {
  2465. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2466. final_result = false;
  2467. }
  2468. }
  2469. else
  2470. {
  2471. // Timeouted.
  2472. }
  2473. lcd_update_enable(true);
  2474. #ifdef TMC2130
  2475. FORCE_HIGH_POWER_END;
  2476. #endif // TMC2130
  2477. return final_result;
  2478. }
  2479. void gcode_M114()
  2480. {
  2481. SERIAL_PROTOCOLPGM("X:");
  2482. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2483. SERIAL_PROTOCOLPGM(" Y:");
  2484. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2485. SERIAL_PROTOCOLPGM(" Z:");
  2486. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2487. SERIAL_PROTOCOLPGM(" E:");
  2488. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2489. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2490. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2491. SERIAL_PROTOCOLPGM(" Y:");
  2492. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2493. SERIAL_PROTOCOLPGM(" Z:");
  2494. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2495. SERIAL_PROTOCOLPGM(" E:");
  2496. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2497. SERIAL_PROTOCOLLN("");
  2498. }
  2499. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2500. {
  2501. st_synchronize();
  2502. float lastpos[4];
  2503. if (farm_mode)
  2504. {
  2505. prusa_statistics(22);
  2506. }
  2507. //First backup current position and settings
  2508. int feedmultiplyBckp = feedmultiply;
  2509. float HotendTempBckp = degTargetHotend(active_extruder);
  2510. int fanSpeedBckp = fanSpeed;
  2511. lastpos[X_AXIS] = current_position[X_AXIS];
  2512. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2513. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2514. lastpos[E_AXIS] = current_position[E_AXIS];
  2515. //Retract E
  2516. current_position[E_AXIS] += e_shift;
  2517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2518. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2519. st_synchronize();
  2520. //Lift Z
  2521. current_position[Z_AXIS] += z_shift;
  2522. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2523. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2524. st_synchronize();
  2525. //Move XY to side
  2526. current_position[X_AXIS] = x_position;
  2527. current_position[Y_AXIS] = y_position;
  2528. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2529. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2530. st_synchronize();
  2531. //Beep, manage nozzle heater and wait for user to start unload filament
  2532. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2533. lcd_change_fil_state = 0;
  2534. // Unload filament
  2535. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2536. else unload_filament(); //unload filament for single material (used also in M702)
  2537. //finish moves
  2538. st_synchronize();
  2539. if (!mmu_enabled)
  2540. {
  2541. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2542. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2543. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2544. if (lcd_change_fil_state == 0)
  2545. {
  2546. lcd_clear();
  2547. lcd_set_cursor(0, 2);
  2548. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2549. current_position[X_AXIS] -= 100;
  2550. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2551. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2552. st_synchronize();
  2553. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2554. lcd_update_enable(true);
  2555. }
  2556. }
  2557. if (mmu_enabled)
  2558. {
  2559. if (!automatic) {
  2560. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2561. mmu_M600_wait_and_beep();
  2562. if (saved_printing) {
  2563. lcd_clear();
  2564. lcd_set_cursor(0, 2);
  2565. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2566. mmu_command(MMU_CMD_R0);
  2567. manage_response(false, false);
  2568. }
  2569. }
  2570. mmu_M600_load_filament(automatic);
  2571. }
  2572. else
  2573. M600_load_filament();
  2574. if (!automatic) M600_check_state();
  2575. lcd_update_enable(true);
  2576. //Not let's go back to print
  2577. fanSpeed = fanSpeedBckp;
  2578. //Feed a little of filament to stabilize pressure
  2579. if (!automatic)
  2580. {
  2581. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2582. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2583. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2584. }
  2585. //Move XY back
  2586. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2587. FILAMENTCHANGE_XYFEED, active_extruder);
  2588. st_synchronize();
  2589. //Move Z back
  2590. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2591. FILAMENTCHANGE_ZFEED, active_extruder);
  2592. st_synchronize();
  2593. //Set E position to original
  2594. plan_set_e_position(lastpos[E_AXIS]);
  2595. memcpy(current_position, lastpos, sizeof(lastpos));
  2596. memcpy(destination, current_position, sizeof(current_position));
  2597. //Recover feed rate
  2598. feedmultiply = feedmultiplyBckp;
  2599. char cmd[9];
  2600. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2601. enquecommand(cmd);
  2602. lcd_setstatuspgm(_T(WELCOME_MSG));
  2603. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2604. }
  2605. void gcode_M701()
  2606. {
  2607. printf_P(PSTR("gcode_M701 begin\n"));
  2608. if (mmu_enabled)
  2609. {
  2610. extr_adj(tmp_extruder);//loads current extruder
  2611. mmu_extruder = tmp_extruder;
  2612. }
  2613. else
  2614. {
  2615. enable_z();
  2616. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2617. #ifdef FSENSOR_QUALITY
  2618. fsensor_oq_meassure_start(40);
  2619. #endif //FSENSOR_QUALITY
  2620. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2621. current_position[E_AXIS] += 40;
  2622. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2623. st_synchronize();
  2624. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2625. current_position[E_AXIS] += 30;
  2626. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2627. load_filament_final_feed(); //slow sequence
  2628. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) tone(BEEPER, 500);
  2629. delay_keep_alive(50);
  2630. noTone(BEEPER);
  2631. if (!farm_mode && loading_flag) {
  2632. lcd_load_filament_color_check();
  2633. }
  2634. lcd_update_enable(true);
  2635. lcd_update(2);
  2636. lcd_setstatuspgm(_T(WELCOME_MSG));
  2637. disable_z();
  2638. loading_flag = false;
  2639. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2640. #ifdef FSENSOR_QUALITY
  2641. fsensor_oq_meassure_stop();
  2642. if (!fsensor_oq_result())
  2643. {
  2644. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2645. lcd_update_enable(true);
  2646. lcd_update(2);
  2647. if (disable)
  2648. fsensor_disable();
  2649. }
  2650. #endif //FSENSOR_QUALITY
  2651. }
  2652. }
  2653. /**
  2654. * @brief Get serial number from 32U2 processor
  2655. *
  2656. * Typical format of S/N is:CZPX0917X003XC13518
  2657. *
  2658. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2659. *
  2660. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2661. * reply is transmitted to serial port 1 character by character.
  2662. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2663. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2664. * in any case.
  2665. */
  2666. static void gcode_PRUSA_SN()
  2667. {
  2668. if (farm_mode) {
  2669. selectedSerialPort = 0;
  2670. putchar(';');
  2671. putchar('S');
  2672. int numbersRead = 0;
  2673. ShortTimer timeout;
  2674. timeout.start();
  2675. while (numbersRead < 19) {
  2676. while (MSerial.available() > 0) {
  2677. uint8_t serial_char = MSerial.read();
  2678. selectedSerialPort = 1;
  2679. putchar(serial_char);
  2680. numbersRead++;
  2681. selectedSerialPort = 0;
  2682. }
  2683. if (timeout.expired(100u)) break;
  2684. }
  2685. selectedSerialPort = 1;
  2686. putchar('\n');
  2687. #if 0
  2688. for (int b = 0; b < 3; b++) {
  2689. tone(BEEPER, 110);
  2690. delay(50);
  2691. noTone(BEEPER);
  2692. delay(50);
  2693. }
  2694. #endif
  2695. } else {
  2696. puts_P(_N("Not in farm mode."));
  2697. }
  2698. }
  2699. #ifdef BACKLASH_X
  2700. extern uint8_t st_backlash_x;
  2701. #endif //BACKLASH_X
  2702. #ifdef BACKLASH_Y
  2703. extern uint8_t st_backlash_y;
  2704. #endif //BACKLASH_Y
  2705. //! @brief Parse and process commands
  2706. //!
  2707. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2708. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2709. //!
  2710. //! Implemented Codes
  2711. //! -------------------
  2712. //!
  2713. //!@n PRUSA CODES
  2714. //!@n P F - Returns FW versions
  2715. //!@n P R - Returns revision of printer
  2716. //!
  2717. //!@n G0 -> G1
  2718. //!@n G1 - Coordinated Movement X Y Z E
  2719. //!@n G2 - CW ARC
  2720. //!@n G3 - CCW ARC
  2721. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2722. //!@n G10 - retract filament according to settings of M207
  2723. //!@n G11 - retract recover filament according to settings of M208
  2724. //!@n G28 - Home all Axis
  2725. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2726. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2727. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2728. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2729. //!@n G80 - Automatic mesh bed leveling
  2730. //!@n G81 - Print bed profile
  2731. //!@n G90 - Use Absolute Coordinates
  2732. //!@n G91 - Use Relative Coordinates
  2733. //!@n G92 - Set current position to coordinates given
  2734. //!
  2735. //!@n M Codes
  2736. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2737. //!@n M1 - Same as M0
  2738. //!@n M17 - Enable/Power all stepper motors
  2739. //!@n M18 - Disable all stepper motors; same as M84
  2740. //!@n M20 - List SD card
  2741. //!@n M21 - Init SD card
  2742. //!@n M22 - Release SD card
  2743. //!@n M23 - Select SD file (M23 filename.g)
  2744. //!@n M24 - Start/resume SD print
  2745. //!@n M25 - Pause SD print
  2746. //!@n M26 - Set SD position in bytes (M26 S12345)
  2747. //!@n M27 - Report SD print status
  2748. //!@n M28 - Start SD write (M28 filename.g)
  2749. //!@n M29 - Stop SD write
  2750. //!@n M30 - Delete file from SD (M30 filename.g)
  2751. //!@n M31 - Output time since last M109 or SD card start to serial
  2752. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2753. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2754. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2755. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2756. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2757. //!@n M73 - Show percent done and print time remaining
  2758. //!@n M80 - Turn on Power Supply
  2759. //!@n M81 - Turn off Power Supply
  2760. //!@n M82 - Set E codes absolute (default)
  2761. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2762. //!@n M84 - Disable steppers until next move,
  2763. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2764. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2765. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2766. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2767. //!@n M104 - Set extruder target temp
  2768. //!@n M105 - Read current temp
  2769. //!@n M106 - Fan on
  2770. //!@n M107 - Fan off
  2771. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2772. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2773. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2774. //!@n M112 - Emergency stop
  2775. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2776. //!@n M114 - Output current position to serial port
  2777. //!@n M115 - Capabilities string
  2778. //!@n M117 - display message
  2779. //!@n M119 - Output Endstop status to serial port
  2780. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2781. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2782. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2783. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2784. //!@n M140 - Set bed target temp
  2785. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2786. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2787. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2788. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2789. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2790. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2791. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2792. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2793. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2794. //!@n M206 - set additional homing offset
  2795. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2796. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2797. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2798. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2799. //!@n M220 S<factor in percent>- set speed factor override percentage
  2800. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2801. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2802. //!@n M240 - Trigger a camera to take a photograph
  2803. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2804. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2805. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2806. //!@n M301 - Set PID parameters P I and D
  2807. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2808. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2809. //!@n M304 - Set bed PID parameters P I and D
  2810. //!@n M400 - Finish all moves
  2811. //!@n M401 - Lower z-probe if present
  2812. //!@n M402 - Raise z-probe if present
  2813. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2814. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2815. //!@n M406 - Turn off Filament Sensor extrusion control
  2816. //!@n M407 - Displays measured filament diameter
  2817. //!@n M500 - stores parameters in EEPROM
  2818. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2819. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2820. //!@n M503 - print the current settings (from memory not from EEPROM)
  2821. //!@n M509 - force language selection on next restart
  2822. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2823. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2824. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2825. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2826. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2827. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2828. //!@n M907 - Set digital trimpot motor current using axis codes.
  2829. //!@n M908 - Control digital trimpot directly.
  2830. //!@n M350 - Set microstepping mode.
  2831. //!@n M351 - Toggle MS1 MS2 pins directly.
  2832. //!
  2833. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2834. //!@n M999 - Restart after being stopped by error
  2835. void process_commands()
  2836. {
  2837. if (!buflen) return; //empty command
  2838. #ifdef FILAMENT_RUNOUT_SUPPORT
  2839. SET_INPUT(FR_SENS);
  2840. #endif
  2841. #ifdef CMDBUFFER_DEBUG
  2842. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2843. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2844. SERIAL_ECHOLNPGM("");
  2845. SERIAL_ECHOPGM("In cmdqueue: ");
  2846. SERIAL_ECHO(buflen);
  2847. SERIAL_ECHOLNPGM("");
  2848. #endif /* CMDBUFFER_DEBUG */
  2849. unsigned long codenum; //throw away variable
  2850. char *starpos = NULL;
  2851. #ifdef ENABLE_AUTO_BED_LEVELING
  2852. float x_tmp, y_tmp, z_tmp, real_z;
  2853. #endif
  2854. // PRUSA GCODES
  2855. KEEPALIVE_STATE(IN_HANDLER);
  2856. #ifdef SNMM
  2857. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2858. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2859. int8_t SilentMode;
  2860. #endif
  2861. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2862. starpos = (strchr(strchr_pointer + 5, '*'));
  2863. if (starpos != NULL)
  2864. *(starpos) = '\0';
  2865. lcd_setstatus(strchr_pointer + 5);
  2866. }
  2867. #ifdef TMC2130
  2868. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2869. {
  2870. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2871. {
  2872. uint8_t mask = 0;
  2873. if (code_seen('X')) mask |= X_AXIS_MASK;
  2874. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2875. crashdet_detected(mask);
  2876. }
  2877. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2878. crashdet_recover();
  2879. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  2880. crashdet_cancel();
  2881. }
  2882. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2883. {
  2884. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  2885. {
  2886. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2887. axis = (axis == 'E')?3:(axis - 'X');
  2888. if (axis < 4)
  2889. {
  2890. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2891. tmc2130_set_wave(axis, 247, fac);
  2892. }
  2893. }
  2894. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  2895. {
  2896. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2897. axis = (axis == 'E')?3:(axis - 'X');
  2898. if (axis < 4)
  2899. {
  2900. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2901. uint16_t res = tmc2130_get_res(axis);
  2902. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2903. }
  2904. }
  2905. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  2906. {
  2907. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2908. axis = (axis == 'E')?3:(axis - 'X');
  2909. if (axis < 4)
  2910. {
  2911. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2912. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2913. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2914. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2915. char* str_end = 0;
  2916. if (CMDBUFFER_CURRENT_STRING[14])
  2917. {
  2918. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2919. if (str_end && *str_end)
  2920. {
  2921. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2922. if (str_end && *str_end)
  2923. {
  2924. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2925. if (str_end && *str_end)
  2926. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2927. }
  2928. }
  2929. }
  2930. tmc2130_chopper_config[axis].toff = chop0;
  2931. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2932. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2933. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2934. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2935. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2936. }
  2937. }
  2938. }
  2939. #ifdef BACKLASH_X
  2940. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2941. {
  2942. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2943. st_backlash_x = bl;
  2944. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2945. }
  2946. #endif //BACKLASH_X
  2947. #ifdef BACKLASH_Y
  2948. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2949. {
  2950. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2951. st_backlash_y = bl;
  2952. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2953. }
  2954. #endif //BACKLASH_Y
  2955. #endif //TMC2130
  2956. else if (code_seen("FSENSOR_RECOVER")) { //! FSENSOR_RECOVER
  2957. fsensor_restore_print_and_continue();
  2958. }
  2959. else if(code_seen("PRUSA")){
  2960. if (code_seen("Ping")) { //! PRUSA Ping
  2961. if (farm_mode) {
  2962. PingTime = millis();
  2963. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2964. }
  2965. }
  2966. else if (code_seen("PRN")) { //! PRUSA PRN
  2967. printf_P(_N("%d"), status_number);
  2968. }else if (code_seen("FAN")) { //! PRUSA FAN
  2969. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2970. }else if (code_seen("fn")) { //! PRUSA fn
  2971. if (farm_mode) {
  2972. printf_P(_N("%d"), farm_no);
  2973. }
  2974. else {
  2975. puts_P(_N("Not in farm mode."));
  2976. }
  2977. }
  2978. else if (code_seen("thx")) //! PRUSA thx
  2979. {
  2980. no_response = false;
  2981. }
  2982. else if (code_seen("uvlo")) //! PRUSA uvlo
  2983. {
  2984. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  2985. enquecommand_P(PSTR("M24"));
  2986. }
  2987. else if (code_seen("MMURES")) //! PRUSA MMURES
  2988. {
  2989. mmu_reset();
  2990. }
  2991. else if (code_seen("RESET")) { //! PRUSA RESET
  2992. // careful!
  2993. if (farm_mode) {
  2994. #ifdef WATCHDOG
  2995. boot_app_magic = BOOT_APP_MAGIC;
  2996. boot_app_flags = BOOT_APP_FLG_RUN;
  2997. wdt_enable(WDTO_15MS);
  2998. cli();
  2999. while(1);
  3000. #else //WATCHDOG
  3001. asm volatile("jmp 0x3E000");
  3002. #endif //WATCHDOG
  3003. }
  3004. else {
  3005. MYSERIAL.println("Not in farm mode.");
  3006. }
  3007. }else if (code_seen("fv")) { //! PRUSA fv
  3008. // get file version
  3009. #ifdef SDSUPPORT
  3010. card.openFile(strchr_pointer + 3,true);
  3011. while (true) {
  3012. uint16_t readByte = card.get();
  3013. MYSERIAL.write(readByte);
  3014. if (readByte=='\n') {
  3015. break;
  3016. }
  3017. }
  3018. card.closefile();
  3019. #endif // SDSUPPORT
  3020. } else if (code_seen("M28")) { //! PRUSA M28
  3021. trace();
  3022. prusa_sd_card_upload = true;
  3023. card.openFile(strchr_pointer+4,false);
  3024. } else if (code_seen("SN")) { //! PRUSA SN
  3025. gcode_PRUSA_SN();
  3026. } else if(code_seen("Fir")){ //! PRUSA Fir
  3027. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3028. } else if(code_seen("Rev")){ //! PRUSA Rev
  3029. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3030. } else if(code_seen("Lang")) { //! PRUSA Lang
  3031. lang_reset();
  3032. } else if(code_seen("Lz")) { //! PRUSA Lz
  3033. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3034. } else if(code_seen("Beat")) { //! PRUSA Beat
  3035. // Kick farm link timer
  3036. kicktime = millis();
  3037. } else if(code_seen("FR")) { //! PRUSA FR
  3038. // Factory full reset
  3039. factory_reset(0);
  3040. }
  3041. //else if (code_seen('Cal')) {
  3042. // lcd_calibration();
  3043. // }
  3044. }
  3045. else if (code_seen('^')) {
  3046. // nothing, this is a version line
  3047. } else if(code_seen('G'))
  3048. {
  3049. gcode_in_progress = (int)code_value();
  3050. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3051. switch (gcode_in_progress)
  3052. {
  3053. case 0: // G0 -> G1
  3054. case 1: // G1
  3055. if(Stopped == false) {
  3056. #ifdef FILAMENT_RUNOUT_SUPPORT
  3057. if(READ(FR_SENS)){
  3058. int feedmultiplyBckp=feedmultiply;
  3059. float target[4];
  3060. float lastpos[4];
  3061. target[X_AXIS]=current_position[X_AXIS];
  3062. target[Y_AXIS]=current_position[Y_AXIS];
  3063. target[Z_AXIS]=current_position[Z_AXIS];
  3064. target[E_AXIS]=current_position[E_AXIS];
  3065. lastpos[X_AXIS]=current_position[X_AXIS];
  3066. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3067. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3068. lastpos[E_AXIS]=current_position[E_AXIS];
  3069. //retract by E
  3070. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3071. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3072. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3073. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3074. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3075. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3076. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3077. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3078. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3079. //finish moves
  3080. st_synchronize();
  3081. //disable extruder steppers so filament can be removed
  3082. disable_e0();
  3083. disable_e1();
  3084. disable_e2();
  3085. delay(100);
  3086. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3087. uint8_t cnt=0;
  3088. int counterBeep = 0;
  3089. lcd_wait_interact();
  3090. while(!lcd_clicked()){
  3091. cnt++;
  3092. manage_heater();
  3093. manage_inactivity(true);
  3094. //lcd_update(0);
  3095. if(cnt==0)
  3096. {
  3097. #if BEEPER > 0
  3098. if (counterBeep== 500){
  3099. counterBeep = 0;
  3100. }
  3101. SET_OUTPUT(BEEPER);
  3102. if (counterBeep== 0){
  3103. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3104. WRITE(BEEPER,HIGH);
  3105. }
  3106. if (counterBeep== 20){
  3107. WRITE(BEEPER,LOW);
  3108. }
  3109. counterBeep++;
  3110. #else
  3111. #endif
  3112. }
  3113. }
  3114. WRITE(BEEPER,LOW);
  3115. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3116. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3117. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3118. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3119. lcd_change_fil_state = 0;
  3120. lcd_loading_filament();
  3121. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3122. lcd_change_fil_state = 0;
  3123. lcd_alright();
  3124. switch(lcd_change_fil_state){
  3125. case 2:
  3126. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3127. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3128. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3129. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3130. lcd_loading_filament();
  3131. break;
  3132. case 3:
  3133. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3134. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3135. lcd_loading_color();
  3136. break;
  3137. default:
  3138. lcd_change_success();
  3139. break;
  3140. }
  3141. }
  3142. target[E_AXIS]+= 5;
  3143. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3144. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3145. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3146. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3147. //plan_set_e_position(current_position[E_AXIS]);
  3148. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3149. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3150. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3151. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3152. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3153. plan_set_e_position(lastpos[E_AXIS]);
  3154. feedmultiply=feedmultiplyBckp;
  3155. char cmd[9];
  3156. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3157. enquecommand(cmd);
  3158. }
  3159. #endif
  3160. get_coordinates(); // For X Y Z E F
  3161. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3162. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3163. }
  3164. #ifdef FWRETRACT
  3165. if(cs.autoretract_enabled)
  3166. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3167. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3168. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3169. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3170. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3171. retract(!retracted[active_extruder]);
  3172. return;
  3173. }
  3174. }
  3175. #endif //FWRETRACT
  3176. prepare_move();
  3177. //ClearToSend();
  3178. }
  3179. break;
  3180. case 2: // G2 - CW ARC
  3181. if(Stopped == false) {
  3182. get_arc_coordinates();
  3183. prepare_arc_move(true);
  3184. }
  3185. break;
  3186. case 3: // G3 - CCW ARC
  3187. if(Stopped == false) {
  3188. get_arc_coordinates();
  3189. prepare_arc_move(false);
  3190. }
  3191. break;
  3192. case 4: // G4 dwell
  3193. codenum = 0;
  3194. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3195. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3196. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3197. st_synchronize();
  3198. codenum += millis(); // keep track of when we started waiting
  3199. previous_millis_cmd = millis();
  3200. while(millis() < codenum) {
  3201. manage_heater();
  3202. manage_inactivity();
  3203. lcd_update(0);
  3204. }
  3205. break;
  3206. #ifdef FWRETRACT
  3207. case 10: // G10 retract
  3208. #if EXTRUDERS > 1
  3209. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3210. retract(true,retracted_swap[active_extruder]);
  3211. #else
  3212. retract(true);
  3213. #endif
  3214. break;
  3215. case 11: // G11 retract_recover
  3216. #if EXTRUDERS > 1
  3217. retract(false,retracted_swap[active_extruder]);
  3218. #else
  3219. retract(false);
  3220. #endif
  3221. break;
  3222. #endif //FWRETRACT
  3223. case 28: //G28 Home all Axis one at a time
  3224. {
  3225. long home_x_value = 0;
  3226. long home_y_value = 0;
  3227. long home_z_value = 0;
  3228. // Which axes should be homed?
  3229. bool home_x = code_seen(axis_codes[X_AXIS]);
  3230. home_x_value = code_value_long();
  3231. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3232. home_y_value = code_value_long();
  3233. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3234. home_z_value = code_value_long();
  3235. bool without_mbl = code_seen('W');
  3236. // calibrate?
  3237. bool calib = code_seen('C');
  3238. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3239. if ((home_x || home_y || without_mbl || home_z) == false) {
  3240. // Push the commands to the front of the message queue in the reverse order!
  3241. // There shall be always enough space reserved for these commands.
  3242. goto case_G80;
  3243. }
  3244. break;
  3245. }
  3246. #ifdef ENABLE_AUTO_BED_LEVELING
  3247. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3248. {
  3249. #if Z_MIN_PIN == -1
  3250. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3251. #endif
  3252. // Prevent user from running a G29 without first homing in X and Y
  3253. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3254. {
  3255. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3256. SERIAL_ECHO_START;
  3257. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3258. break; // abort G29, since we don't know where we are
  3259. }
  3260. st_synchronize();
  3261. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3262. //vector_3 corrected_position = plan_get_position_mm();
  3263. //corrected_position.debug("position before G29");
  3264. plan_bed_level_matrix.set_to_identity();
  3265. vector_3 uncorrected_position = plan_get_position();
  3266. //uncorrected_position.debug("position durring G29");
  3267. current_position[X_AXIS] = uncorrected_position.x;
  3268. current_position[Y_AXIS] = uncorrected_position.y;
  3269. current_position[Z_AXIS] = uncorrected_position.z;
  3270. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3271. int l_feedmultiply = setup_for_endstop_move();
  3272. feedrate = homing_feedrate[Z_AXIS];
  3273. #ifdef AUTO_BED_LEVELING_GRID
  3274. // probe at the points of a lattice grid
  3275. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3276. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3277. // solve the plane equation ax + by + d = z
  3278. // A is the matrix with rows [x y 1] for all the probed points
  3279. // B is the vector of the Z positions
  3280. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3281. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3282. // "A" matrix of the linear system of equations
  3283. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3284. // "B" vector of Z points
  3285. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3286. int probePointCounter = 0;
  3287. bool zig = true;
  3288. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3289. {
  3290. int xProbe, xInc;
  3291. if (zig)
  3292. {
  3293. xProbe = LEFT_PROBE_BED_POSITION;
  3294. //xEnd = RIGHT_PROBE_BED_POSITION;
  3295. xInc = xGridSpacing;
  3296. zig = false;
  3297. } else // zag
  3298. {
  3299. xProbe = RIGHT_PROBE_BED_POSITION;
  3300. //xEnd = LEFT_PROBE_BED_POSITION;
  3301. xInc = -xGridSpacing;
  3302. zig = true;
  3303. }
  3304. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3305. {
  3306. float z_before;
  3307. if (probePointCounter == 0)
  3308. {
  3309. // raise before probing
  3310. z_before = Z_RAISE_BEFORE_PROBING;
  3311. } else
  3312. {
  3313. // raise extruder
  3314. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3315. }
  3316. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3317. eqnBVector[probePointCounter] = measured_z;
  3318. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3319. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3320. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3321. probePointCounter++;
  3322. xProbe += xInc;
  3323. }
  3324. }
  3325. clean_up_after_endstop_move(l_feedmultiply);
  3326. // solve lsq problem
  3327. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3328. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3329. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3330. SERIAL_PROTOCOLPGM(" b: ");
  3331. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3332. SERIAL_PROTOCOLPGM(" d: ");
  3333. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3334. set_bed_level_equation_lsq(plane_equation_coefficients);
  3335. free(plane_equation_coefficients);
  3336. #else // AUTO_BED_LEVELING_GRID not defined
  3337. // Probe at 3 arbitrary points
  3338. // probe 1
  3339. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3340. // probe 2
  3341. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3342. // probe 3
  3343. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3344. clean_up_after_endstop_move(l_feedmultiply);
  3345. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3346. #endif // AUTO_BED_LEVELING_GRID
  3347. st_synchronize();
  3348. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3349. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3350. // When the bed is uneven, this height must be corrected.
  3351. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3352. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3353. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3354. z_tmp = current_position[Z_AXIS];
  3355. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3356. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3357. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3358. }
  3359. break;
  3360. #ifndef Z_PROBE_SLED
  3361. case 30: // G30 Single Z Probe
  3362. {
  3363. st_synchronize();
  3364. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3365. int l_feedmultiply = setup_for_endstop_move();
  3366. feedrate = homing_feedrate[Z_AXIS];
  3367. run_z_probe();
  3368. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3369. SERIAL_PROTOCOLPGM(" X: ");
  3370. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3371. SERIAL_PROTOCOLPGM(" Y: ");
  3372. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3373. SERIAL_PROTOCOLPGM(" Z: ");
  3374. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3375. SERIAL_PROTOCOLPGM("\n");
  3376. clean_up_after_endstop_move(l_feedmultiply);
  3377. }
  3378. break;
  3379. #else
  3380. case 31: // dock the sled
  3381. dock_sled(true);
  3382. break;
  3383. case 32: // undock the sled
  3384. dock_sled(false);
  3385. break;
  3386. #endif // Z_PROBE_SLED
  3387. #endif // ENABLE_AUTO_BED_LEVELING
  3388. #ifdef MESH_BED_LEVELING
  3389. case 30: // G30 Single Z Probe
  3390. {
  3391. st_synchronize();
  3392. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3393. int l_feedmultiply = setup_for_endstop_move();
  3394. feedrate = homing_feedrate[Z_AXIS];
  3395. find_bed_induction_sensor_point_z(-10.f, 3);
  3396. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3397. clean_up_after_endstop_move(l_feedmultiply);
  3398. }
  3399. break;
  3400. case 75:
  3401. {
  3402. for (int i = 40; i <= 110; i++)
  3403. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3404. }
  3405. break;
  3406. case 76: //! G76 - PINDA probe temperature calibration
  3407. {
  3408. #ifdef PINDA_THERMISTOR
  3409. if (true)
  3410. {
  3411. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3412. //we need to know accurate position of first calibration point
  3413. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3414. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3415. break;
  3416. }
  3417. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3418. {
  3419. // We don't know where we are! HOME!
  3420. // Push the commands to the front of the message queue in the reverse order!
  3421. // There shall be always enough space reserved for these commands.
  3422. repeatcommand_front(); // repeat G76 with all its parameters
  3423. enquecommand_front_P((PSTR("G28 W0")));
  3424. break;
  3425. }
  3426. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3427. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3428. if (result)
  3429. {
  3430. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3431. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3432. current_position[Z_AXIS] = 50;
  3433. current_position[Y_AXIS] = 180;
  3434. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3435. st_synchronize();
  3436. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3437. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3438. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3439. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3440. st_synchronize();
  3441. gcode_G28(false, false, true);
  3442. }
  3443. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3444. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3445. current_position[Z_AXIS] = 100;
  3446. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3447. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3448. lcd_temp_cal_show_result(false);
  3449. break;
  3450. }
  3451. }
  3452. lcd_update_enable(true);
  3453. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3454. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3455. float zero_z;
  3456. int z_shift = 0; //unit: steps
  3457. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3458. if (start_temp < 35) start_temp = 35;
  3459. if (start_temp < current_temperature_pinda) start_temp += 5;
  3460. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3461. // setTargetHotend(200, 0);
  3462. setTargetBed(70 + (start_temp - 30));
  3463. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3464. custom_message_state = 1;
  3465. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3466. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3467. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3468. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3469. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3470. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3471. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3472. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3473. st_synchronize();
  3474. while (current_temperature_pinda < start_temp)
  3475. {
  3476. delay_keep_alive(1000);
  3477. serialecho_temperatures();
  3478. }
  3479. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3480. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3481. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3482. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3483. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3484. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3485. st_synchronize();
  3486. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3487. if (find_z_result == false) {
  3488. lcd_temp_cal_show_result(find_z_result);
  3489. break;
  3490. }
  3491. zero_z = current_position[Z_AXIS];
  3492. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3493. int i = -1; for (; i < 5; i++)
  3494. {
  3495. float temp = (40 + i * 5);
  3496. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3497. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3498. if (start_temp <= temp) break;
  3499. }
  3500. for (i++; i < 5; i++)
  3501. {
  3502. float temp = (40 + i * 5);
  3503. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3504. custom_message_state = i + 2;
  3505. setTargetBed(50 + 10 * (temp - 30) / 5);
  3506. // setTargetHotend(255, 0);
  3507. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3508. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3509. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3510. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3511. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3512. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3513. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3514. st_synchronize();
  3515. while (current_temperature_pinda < temp)
  3516. {
  3517. delay_keep_alive(1000);
  3518. serialecho_temperatures();
  3519. }
  3520. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3521. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3522. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3523. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3524. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3525. st_synchronize();
  3526. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3527. if (find_z_result == false) {
  3528. lcd_temp_cal_show_result(find_z_result);
  3529. break;
  3530. }
  3531. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3532. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3533. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3534. }
  3535. lcd_temp_cal_show_result(true);
  3536. break;
  3537. }
  3538. #endif //PINDA_THERMISTOR
  3539. setTargetBed(PINDA_MIN_T);
  3540. float zero_z;
  3541. int z_shift = 0; //unit: steps
  3542. int t_c; // temperature
  3543. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3544. // We don't know where we are! HOME!
  3545. // Push the commands to the front of the message queue in the reverse order!
  3546. // There shall be always enough space reserved for these commands.
  3547. repeatcommand_front(); // repeat G76 with all its parameters
  3548. enquecommand_front_P((PSTR("G28 W0")));
  3549. break;
  3550. }
  3551. puts_P(_N("PINDA probe calibration start"));
  3552. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3553. custom_message_state = 1;
  3554. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3555. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3556. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3557. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3558. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3559. st_synchronize();
  3560. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3561. delay_keep_alive(1000);
  3562. serialecho_temperatures();
  3563. }
  3564. //enquecommand_P(PSTR("M190 S50"));
  3565. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3566. delay_keep_alive(1000);
  3567. serialecho_temperatures();
  3568. }
  3569. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3570. current_position[Z_AXIS] = 5;
  3571. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3572. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3573. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3574. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3575. st_synchronize();
  3576. find_bed_induction_sensor_point_z(-1.f);
  3577. zero_z = current_position[Z_AXIS];
  3578. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3579. for (int i = 0; i<5; i++) {
  3580. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3581. custom_message_state = i + 2;
  3582. t_c = 60 + i * 10;
  3583. setTargetBed(t_c);
  3584. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3585. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3586. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3587. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3588. st_synchronize();
  3589. while (degBed() < t_c) {
  3590. delay_keep_alive(1000);
  3591. serialecho_temperatures();
  3592. }
  3593. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3594. delay_keep_alive(1000);
  3595. serialecho_temperatures();
  3596. }
  3597. current_position[Z_AXIS] = 5;
  3598. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3599. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3600. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3602. st_synchronize();
  3603. find_bed_induction_sensor_point_z(-1.f);
  3604. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3605. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3606. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3607. }
  3608. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3609. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3610. puts_P(_N("Temperature calibration done."));
  3611. disable_x();
  3612. disable_y();
  3613. disable_z();
  3614. disable_e0();
  3615. disable_e1();
  3616. disable_e2();
  3617. setTargetBed(0); //set bed target temperature back to 0
  3618. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3619. temp_cal_active = true;
  3620. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3621. lcd_update_enable(true);
  3622. lcd_update(2);
  3623. }
  3624. break;
  3625. #ifdef DIS
  3626. case 77:
  3627. {
  3628. //! G77 X200 Y150 XP100 YP15 XO10 Y015
  3629. //! for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3630. //! G77 X232 Y218 XP116 YP109 XO-11 YO0
  3631. float dimension_x = 40;
  3632. float dimension_y = 40;
  3633. int points_x = 40;
  3634. int points_y = 40;
  3635. float offset_x = 74;
  3636. float offset_y = 33;
  3637. if (code_seen('X')) dimension_x = code_value();
  3638. if (code_seen('Y')) dimension_y = code_value();
  3639. if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
  3640. if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
  3641. if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
  3642. if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
  3643. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3644. } break;
  3645. #endif
  3646. case 79: {
  3647. for (int i = 255; i > 0; i = i - 5) {
  3648. fanSpeed = i;
  3649. //delay_keep_alive(2000);
  3650. for (int j = 0; j < 100; j++) {
  3651. delay_keep_alive(100);
  3652. }
  3653. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3654. }
  3655. }break;
  3656. /**
  3657. * G80: Mesh-based Z probe, probes a grid and produces a
  3658. * mesh to compensate for variable bed height
  3659. *
  3660. * The S0 report the points as below
  3661. * @code{.unparsed}
  3662. * +----> X-axis
  3663. * |
  3664. * |
  3665. * v Y-axis
  3666. * @endcode
  3667. */
  3668. case 80:
  3669. #ifdef MK1BP
  3670. break;
  3671. #endif //MK1BP
  3672. case_G80:
  3673. {
  3674. mesh_bed_leveling_flag = true;
  3675. static bool run = false;
  3676. #ifdef SUPPORT_VERBOSITY
  3677. int8_t verbosity_level = 0;
  3678. if (code_seen('V')) {
  3679. // Just 'V' without a number counts as V1.
  3680. char c = strchr_pointer[1];
  3681. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3682. }
  3683. #endif //SUPPORT_VERBOSITY
  3684. // Firstly check if we know where we are
  3685. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3686. // We don't know where we are! HOME!
  3687. // Push the commands to the front of the message queue in the reverse order!
  3688. // There shall be always enough space reserved for these commands.
  3689. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3690. repeatcommand_front(); // repeat G80 with all its parameters
  3691. enquecommand_front_P((PSTR("G28 W0")));
  3692. }
  3693. else {
  3694. mesh_bed_leveling_flag = false;
  3695. }
  3696. break;
  3697. }
  3698. bool temp_comp_start = true;
  3699. #ifdef PINDA_THERMISTOR
  3700. temp_comp_start = false;
  3701. #endif //PINDA_THERMISTOR
  3702. if (temp_comp_start)
  3703. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3704. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3705. temp_compensation_start();
  3706. run = true;
  3707. repeatcommand_front(); // repeat G80 with all its parameters
  3708. enquecommand_front_P((PSTR("G28 W0")));
  3709. }
  3710. else {
  3711. mesh_bed_leveling_flag = false;
  3712. }
  3713. break;
  3714. }
  3715. run = false;
  3716. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3717. mesh_bed_leveling_flag = false;
  3718. break;
  3719. }
  3720. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3721. unsigned int custom_message_type_old = custom_message_type;
  3722. unsigned int custom_message_state_old = custom_message_state;
  3723. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3724. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3725. lcd_update(1);
  3726. mbl.reset(); //reset mesh bed leveling
  3727. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3728. // consumed during the first movements following this statement.
  3729. babystep_undo();
  3730. // Cycle through all points and probe them
  3731. // First move up. During this first movement, the babystepping will be reverted.
  3732. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3733. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3734. // The move to the first calibration point.
  3735. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3736. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3737. #ifdef SUPPORT_VERBOSITY
  3738. if (verbosity_level >= 1)
  3739. {
  3740. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3741. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3742. }
  3743. #endif //SUPPORT_VERBOSITY
  3744. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3746. // Wait until the move is finished.
  3747. st_synchronize();
  3748. int mesh_point = 0; //index number of calibration point
  3749. int ix = 0;
  3750. int iy = 0;
  3751. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3752. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3753. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3754. #ifdef SUPPORT_VERBOSITY
  3755. if (verbosity_level >= 1) {
  3756. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3757. }
  3758. #endif // SUPPORT_VERBOSITY
  3759. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3760. const char *kill_message = NULL;
  3761. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3762. // Get coords of a measuring point.
  3763. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3764. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3765. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3766. float z0 = 0.f;
  3767. if (has_z && mesh_point > 0) {
  3768. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3769. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3770. //#if 0
  3771. #ifdef SUPPORT_VERBOSITY
  3772. if (verbosity_level >= 1) {
  3773. SERIAL_ECHOLNPGM("");
  3774. SERIAL_ECHOPGM("Bed leveling, point: ");
  3775. MYSERIAL.print(mesh_point);
  3776. SERIAL_ECHOPGM(", calibration z: ");
  3777. MYSERIAL.print(z0, 5);
  3778. SERIAL_ECHOLNPGM("");
  3779. }
  3780. #endif // SUPPORT_VERBOSITY
  3781. //#endif
  3782. }
  3783. // Move Z up to MESH_HOME_Z_SEARCH.
  3784. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3786. st_synchronize();
  3787. // Move to XY position of the sensor point.
  3788. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3789. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3790. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3791. #ifdef SUPPORT_VERBOSITY
  3792. if (verbosity_level >= 1) {
  3793. SERIAL_PROTOCOL(mesh_point);
  3794. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3795. }
  3796. #endif // SUPPORT_VERBOSITY
  3797. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3798. st_synchronize();
  3799. // Go down until endstop is hit
  3800. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3801. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3802. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3803. break;
  3804. }
  3805. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3806. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3807. break;
  3808. }
  3809. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3810. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3811. break;
  3812. }
  3813. #ifdef SUPPORT_VERBOSITY
  3814. if (verbosity_level >= 10) {
  3815. SERIAL_ECHOPGM("X: ");
  3816. MYSERIAL.print(current_position[X_AXIS], 5);
  3817. SERIAL_ECHOLNPGM("");
  3818. SERIAL_ECHOPGM("Y: ");
  3819. MYSERIAL.print(current_position[Y_AXIS], 5);
  3820. SERIAL_PROTOCOLPGM("\n");
  3821. }
  3822. #endif // SUPPORT_VERBOSITY
  3823. float offset_z = 0;
  3824. #ifdef PINDA_THERMISTOR
  3825. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3826. #endif //PINDA_THERMISTOR
  3827. // #ifdef SUPPORT_VERBOSITY
  3828. /* if (verbosity_level >= 1)
  3829. {
  3830. SERIAL_ECHOPGM("mesh bed leveling: ");
  3831. MYSERIAL.print(current_position[Z_AXIS], 5);
  3832. SERIAL_ECHOPGM(" offset: ");
  3833. MYSERIAL.print(offset_z, 5);
  3834. SERIAL_ECHOLNPGM("");
  3835. }*/
  3836. // #endif // SUPPORT_VERBOSITY
  3837. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3838. custom_message_state--;
  3839. mesh_point++;
  3840. lcd_update(1);
  3841. }
  3842. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3843. #ifdef SUPPORT_VERBOSITY
  3844. if (verbosity_level >= 20) {
  3845. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3846. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3847. MYSERIAL.print(current_position[Z_AXIS], 5);
  3848. }
  3849. #endif // SUPPORT_VERBOSITY
  3850. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3851. st_synchronize();
  3852. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3853. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  3854. lcd_display_message_fullscreen_P(_i(MSG_BED_LEVELING_FAILED));
  3855. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  3856. #ifdef TMC2130
  3857. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  3858. #else // TMC2130
  3859. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  3860. #endif // TMC2130
  3861. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  3862. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3863. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3864. st_synchronize();
  3865. //
  3866. custom_message_type=CUSTOM_MSG_TYPE_STATUS; // display / status-line recovery
  3867. lcd_update_enable(true); // display / status-line recovery
  3868. gcode_G28(true, true, false); // X & Y-homing (must be after Z-homing (problem with spool-holder)!)
  3869. repeatcommand_front(); // re-run (i.e. of "G80")
  3870. break;
  3871. }
  3872. clean_up_after_endstop_move(l_feedmultiply);
  3873. // SERIAL_ECHOLNPGM("clean up finished ");
  3874. bool apply_temp_comp = true;
  3875. #ifdef PINDA_THERMISTOR
  3876. apply_temp_comp = false;
  3877. #endif
  3878. if (apply_temp_comp)
  3879. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3880. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3881. // SERIAL_ECHOLNPGM("babystep applied");
  3882. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3883. #ifdef SUPPORT_VERBOSITY
  3884. if (verbosity_level >= 1) {
  3885. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3886. }
  3887. #endif // SUPPORT_VERBOSITY
  3888. for (uint8_t i = 0; i < 4; ++i) {
  3889. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3890. long correction = 0;
  3891. if (code_seen(codes[i]))
  3892. correction = code_value_long();
  3893. else if (eeprom_bed_correction_valid) {
  3894. unsigned char *addr = (i < 2) ?
  3895. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3896. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3897. correction = eeprom_read_int8(addr);
  3898. }
  3899. if (correction == 0)
  3900. continue;
  3901. float offset = float(correction) * 0.001f;
  3902. if (fabs(offset) > 0.101f) {
  3903. SERIAL_ERROR_START;
  3904. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3905. SERIAL_ECHO(offset);
  3906. SERIAL_ECHOLNPGM(" microns");
  3907. }
  3908. else {
  3909. switch (i) {
  3910. case 0:
  3911. for (uint8_t row = 0; row < 3; ++row) {
  3912. mbl.z_values[row][1] += 0.5f * offset;
  3913. mbl.z_values[row][0] += offset;
  3914. }
  3915. break;
  3916. case 1:
  3917. for (uint8_t row = 0; row < 3; ++row) {
  3918. mbl.z_values[row][1] += 0.5f * offset;
  3919. mbl.z_values[row][2] += offset;
  3920. }
  3921. break;
  3922. case 2:
  3923. for (uint8_t col = 0; col < 3; ++col) {
  3924. mbl.z_values[1][col] += 0.5f * offset;
  3925. mbl.z_values[0][col] += offset;
  3926. }
  3927. break;
  3928. case 3:
  3929. for (uint8_t col = 0; col < 3; ++col) {
  3930. mbl.z_values[1][col] += 0.5f * offset;
  3931. mbl.z_values[2][col] += offset;
  3932. }
  3933. break;
  3934. }
  3935. }
  3936. }
  3937. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3938. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3939. // SERIAL_ECHOLNPGM("Upsample finished");
  3940. mbl.active = 1; //activate mesh bed leveling
  3941. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3942. go_home_with_z_lift();
  3943. // SERIAL_ECHOLNPGM("Go home finished");
  3944. //unretract (after PINDA preheat retraction)
  3945. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3946. current_position[E_AXIS] += default_retraction;
  3947. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3948. }
  3949. KEEPALIVE_STATE(NOT_BUSY);
  3950. // Restore custom message state
  3951. lcd_setstatuspgm(_T(WELCOME_MSG));
  3952. custom_message_type = custom_message_type_old;
  3953. custom_message_state = custom_message_state_old;
  3954. mesh_bed_leveling_flag = false;
  3955. mesh_bed_run_from_menu = false;
  3956. lcd_update(2);
  3957. }
  3958. break;
  3959. /**
  3960. * G81: Print mesh bed leveling status and bed profile if activated
  3961. */
  3962. case 81:
  3963. if (mbl.active) {
  3964. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3965. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3966. SERIAL_PROTOCOLPGM(",");
  3967. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3968. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3969. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3970. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3971. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3972. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3973. SERIAL_PROTOCOLPGM(" ");
  3974. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3975. }
  3976. SERIAL_PROTOCOLPGM("\n");
  3977. }
  3978. }
  3979. else
  3980. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3981. break;
  3982. #if 0
  3983. /**
  3984. * G82: Single Z probe at current location
  3985. *
  3986. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3987. *
  3988. */
  3989. case 82:
  3990. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3991. int l_feedmultiply = setup_for_endstop_move();
  3992. find_bed_induction_sensor_point_z();
  3993. clean_up_after_endstop_move(l_feedmultiply);
  3994. SERIAL_PROTOCOLPGM("Bed found at: ");
  3995. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3996. SERIAL_PROTOCOLPGM("\n");
  3997. break;
  3998. /**
  3999. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4000. */
  4001. case 83:
  4002. {
  4003. int babystepz = code_seen('S') ? code_value() : 0;
  4004. int BabyPosition = code_seen('P') ? code_value() : 0;
  4005. if (babystepz != 0) {
  4006. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4007. // Is the axis indexed starting with zero or one?
  4008. if (BabyPosition > 4) {
  4009. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4010. }else{
  4011. // Save it to the eeprom
  4012. babystepLoadZ = babystepz;
  4013. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4014. // adjust the Z
  4015. babystepsTodoZadd(babystepLoadZ);
  4016. }
  4017. }
  4018. }
  4019. break;
  4020. /**
  4021. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4022. */
  4023. case 84:
  4024. babystepsTodoZsubtract(babystepLoadZ);
  4025. // babystepLoadZ = 0;
  4026. break;
  4027. /**
  4028. * G85: Prusa3D specific: Pick best babystep
  4029. */
  4030. case 85:
  4031. lcd_pick_babystep();
  4032. break;
  4033. #endif
  4034. /**
  4035. * G86: Prusa3D specific: Disable babystep correction after home.
  4036. * This G-code will be performed at the start of a calibration script.
  4037. */
  4038. case 86:
  4039. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4040. break;
  4041. /**
  4042. * G87: Prusa3D specific: Enable babystep correction after home
  4043. * This G-code will be performed at the end of a calibration script.
  4044. */
  4045. case 87:
  4046. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4047. break;
  4048. /**
  4049. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4050. */
  4051. case 88:
  4052. break;
  4053. #endif // ENABLE_MESH_BED_LEVELING
  4054. case 90: // G90
  4055. relative_mode = false;
  4056. break;
  4057. case 91: // G91
  4058. relative_mode = true;
  4059. break;
  4060. case 92: // G92
  4061. if(!code_seen(axis_codes[E_AXIS]))
  4062. st_synchronize();
  4063. for(int8_t i=0; i < NUM_AXIS; i++) {
  4064. if(code_seen(axis_codes[i])) {
  4065. if(i == E_AXIS) {
  4066. current_position[i] = code_value();
  4067. plan_set_e_position(current_position[E_AXIS]);
  4068. }
  4069. else {
  4070. current_position[i] = code_value()+cs.add_homing[i];
  4071. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4072. }
  4073. }
  4074. }
  4075. break;
  4076. case 98: //! G98 (activate farm mode)
  4077. farm_mode = 1;
  4078. PingTime = millis();
  4079. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4080. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4081. SilentModeMenu = SILENT_MODE_OFF;
  4082. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4083. break;
  4084. case 99: //! G99 (deactivate farm mode)
  4085. farm_mode = 0;
  4086. lcd_printer_connected();
  4087. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4088. lcd_update(2);
  4089. break;
  4090. default:
  4091. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4092. }
  4093. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4094. gcode_in_progress = 0;
  4095. } // end if(code_seen('G'))
  4096. else if(code_seen('M'))
  4097. {
  4098. int index;
  4099. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4100. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4101. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4102. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4103. } else
  4104. {
  4105. mcode_in_progress = (int)code_value();
  4106. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4107. switch(mcode_in_progress)
  4108. {
  4109. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4110. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4111. {
  4112. char *src = strchr_pointer + 2;
  4113. codenum = 0;
  4114. bool hasP = false, hasS = false;
  4115. if (code_seen('P')) {
  4116. codenum = code_value(); // milliseconds to wait
  4117. hasP = codenum > 0;
  4118. }
  4119. if (code_seen('S')) {
  4120. codenum = code_value() * 1000; // seconds to wait
  4121. hasS = codenum > 0;
  4122. }
  4123. starpos = strchr(src, '*');
  4124. if (starpos != NULL) *(starpos) = '\0';
  4125. while (*src == ' ') ++src;
  4126. if (!hasP && !hasS && *src != '\0') {
  4127. lcd_setstatus(src);
  4128. } else {
  4129. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4130. }
  4131. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4132. st_synchronize();
  4133. previous_millis_cmd = millis();
  4134. if (codenum > 0){
  4135. codenum += millis(); // keep track of when we started waiting
  4136. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4137. while(millis() < codenum && !lcd_clicked()){
  4138. manage_heater();
  4139. manage_inactivity(true);
  4140. lcd_update(0);
  4141. }
  4142. KEEPALIVE_STATE(IN_HANDLER);
  4143. lcd_ignore_click(false);
  4144. }else{
  4145. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4146. while(!lcd_clicked()){
  4147. manage_heater();
  4148. manage_inactivity(true);
  4149. lcd_update(0);
  4150. }
  4151. KEEPALIVE_STATE(IN_HANDLER);
  4152. }
  4153. if (IS_SD_PRINTING)
  4154. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4155. else
  4156. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4157. }
  4158. break;
  4159. case 17:
  4160. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4161. enable_x();
  4162. enable_y();
  4163. enable_z();
  4164. enable_e0();
  4165. enable_e1();
  4166. enable_e2();
  4167. break;
  4168. #ifdef SDSUPPORT
  4169. case 20: // M20 - list SD card
  4170. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4171. card.ls();
  4172. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4173. break;
  4174. case 21: // M21 - init SD card
  4175. card.initsd();
  4176. break;
  4177. case 22: //M22 - release SD card
  4178. card.release();
  4179. break;
  4180. case 23: //M23 - Select file
  4181. starpos = (strchr(strchr_pointer + 4,'*'));
  4182. if(starpos!=NULL)
  4183. *(starpos)='\0';
  4184. card.openFile(strchr_pointer + 4,true);
  4185. break;
  4186. case 24: //M24 - Start SD print
  4187. if (!card.paused)
  4188. failstats_reset_print();
  4189. card.startFileprint();
  4190. starttime=millis();
  4191. break;
  4192. case 25: //M25 - Pause SD print
  4193. card.pauseSDPrint();
  4194. break;
  4195. case 26: //M26 - Set SD index
  4196. if(card.cardOK && code_seen('S')) {
  4197. card.setIndex(code_value_long());
  4198. }
  4199. break;
  4200. case 27: //M27 - Get SD status
  4201. card.getStatus();
  4202. break;
  4203. case 28: //M28 - Start SD write
  4204. starpos = (strchr(strchr_pointer + 4,'*'));
  4205. if(starpos != NULL){
  4206. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4207. strchr_pointer = strchr(npos,' ') + 1;
  4208. *(starpos) = '\0';
  4209. }
  4210. card.openFile(strchr_pointer+4,false);
  4211. break;
  4212. case 29: //M29 - Stop SD write
  4213. //processed in write to file routine above
  4214. //card,saving = false;
  4215. break;
  4216. case 30: //M30 <filename> Delete File
  4217. if (card.cardOK){
  4218. card.closefile();
  4219. starpos = (strchr(strchr_pointer + 4,'*'));
  4220. if(starpos != NULL){
  4221. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4222. strchr_pointer = strchr(npos,' ') + 1;
  4223. *(starpos) = '\0';
  4224. }
  4225. card.removeFile(strchr_pointer + 4);
  4226. }
  4227. break;
  4228. case 32: //M32 - Select file and start SD print
  4229. {
  4230. if(card.sdprinting) {
  4231. st_synchronize();
  4232. }
  4233. starpos = (strchr(strchr_pointer + 4,'*'));
  4234. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4235. if(namestartpos==NULL)
  4236. {
  4237. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4238. }
  4239. else
  4240. namestartpos++; //to skip the '!'
  4241. if(starpos!=NULL)
  4242. *(starpos)='\0';
  4243. bool call_procedure=(code_seen('P'));
  4244. if(strchr_pointer>namestartpos)
  4245. call_procedure=false; //false alert, 'P' found within filename
  4246. if( card.cardOK )
  4247. {
  4248. card.openFile(namestartpos,true,!call_procedure);
  4249. if(code_seen('S'))
  4250. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4251. card.setIndex(code_value_long());
  4252. card.startFileprint();
  4253. if(!call_procedure)
  4254. starttime=millis(); //procedure calls count as normal print time.
  4255. }
  4256. } break;
  4257. case 928: //M928 - Start SD write
  4258. starpos = (strchr(strchr_pointer + 5,'*'));
  4259. if(starpos != NULL){
  4260. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4261. strchr_pointer = strchr(npos,' ') + 1;
  4262. *(starpos) = '\0';
  4263. }
  4264. card.openLogFile(strchr_pointer+5);
  4265. break;
  4266. #endif //SDSUPPORT
  4267. case 31: //M31 take time since the start of the SD print or an M109 command
  4268. {
  4269. stoptime=millis();
  4270. char time[30];
  4271. unsigned long t=(stoptime-starttime)/1000;
  4272. int sec,min;
  4273. min=t/60;
  4274. sec=t%60;
  4275. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4276. SERIAL_ECHO_START;
  4277. SERIAL_ECHOLN(time);
  4278. lcd_setstatus(time);
  4279. autotempShutdown();
  4280. }
  4281. break;
  4282. case 42: //M42 -Change pin status via gcode
  4283. if (code_seen('S'))
  4284. {
  4285. int pin_status = code_value();
  4286. int pin_number = LED_PIN;
  4287. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4288. pin_number = code_value();
  4289. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4290. {
  4291. if (sensitive_pins[i] == pin_number)
  4292. {
  4293. pin_number = -1;
  4294. break;
  4295. }
  4296. }
  4297. #if defined(FAN_PIN) && FAN_PIN > -1
  4298. if (pin_number == FAN_PIN)
  4299. fanSpeed = pin_status;
  4300. #endif
  4301. if (pin_number > -1)
  4302. {
  4303. pinMode(pin_number, OUTPUT);
  4304. digitalWrite(pin_number, pin_status);
  4305. analogWrite(pin_number, pin_status);
  4306. }
  4307. }
  4308. break;
  4309. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4310. // Reset the baby step value and the baby step applied flag.
  4311. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4312. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4313. // Reset the skew and offset in both RAM and EEPROM.
  4314. reset_bed_offset_and_skew();
  4315. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4316. // the planner will not perform any adjustments in the XY plane.
  4317. // Wait for the motors to stop and update the current position with the absolute values.
  4318. world2machine_revert_to_uncorrected();
  4319. break;
  4320. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4321. {
  4322. int8_t verbosity_level = 0;
  4323. bool only_Z = code_seen('Z');
  4324. #ifdef SUPPORT_VERBOSITY
  4325. if (code_seen('V'))
  4326. {
  4327. // Just 'V' without a number counts as V1.
  4328. char c = strchr_pointer[1];
  4329. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4330. }
  4331. #endif //SUPPORT_VERBOSITY
  4332. gcode_M45(only_Z, verbosity_level);
  4333. }
  4334. break;
  4335. /*
  4336. case 46:
  4337. {
  4338. // M46: Prusa3D: Show the assigned IP address.
  4339. uint8_t ip[4];
  4340. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4341. if (hasIP) {
  4342. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4343. SERIAL_ECHO(int(ip[0]));
  4344. SERIAL_ECHOPGM(".");
  4345. SERIAL_ECHO(int(ip[1]));
  4346. SERIAL_ECHOPGM(".");
  4347. SERIAL_ECHO(int(ip[2]));
  4348. SERIAL_ECHOPGM(".");
  4349. SERIAL_ECHO(int(ip[3]));
  4350. SERIAL_ECHOLNPGM("");
  4351. } else {
  4352. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4353. }
  4354. break;
  4355. }
  4356. */
  4357. case 47:
  4358. //! M47: Prusa3D: Show end stops dialog on the display.
  4359. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4360. lcd_diag_show_end_stops();
  4361. KEEPALIVE_STATE(IN_HANDLER);
  4362. break;
  4363. #if 0
  4364. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4365. {
  4366. // Disable the default update procedure of the display. We will do a modal dialog.
  4367. lcd_update_enable(false);
  4368. // Let the planner use the uncorrected coordinates.
  4369. mbl.reset();
  4370. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4371. // the planner will not perform any adjustments in the XY plane.
  4372. // Wait for the motors to stop and update the current position with the absolute values.
  4373. world2machine_revert_to_uncorrected();
  4374. // Move the print head close to the bed.
  4375. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4376. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4377. st_synchronize();
  4378. // Home in the XY plane.
  4379. set_destination_to_current();
  4380. int l_feedmultiply = setup_for_endstop_move();
  4381. home_xy();
  4382. int8_t verbosity_level = 0;
  4383. if (code_seen('V')) {
  4384. // Just 'V' without a number counts as V1.
  4385. char c = strchr_pointer[1];
  4386. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4387. }
  4388. bool success = scan_bed_induction_points(verbosity_level);
  4389. clean_up_after_endstop_move(l_feedmultiply);
  4390. // Print head up.
  4391. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4392. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4393. st_synchronize();
  4394. lcd_update_enable(true);
  4395. break;
  4396. }
  4397. #endif
  4398. #ifdef ENABLE_AUTO_BED_LEVELING
  4399. #ifdef Z_PROBE_REPEATABILITY_TEST
  4400. //! M48 Z-Probe repeatability measurement function.
  4401. //!
  4402. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4403. //!
  4404. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4405. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4406. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4407. //! regenerated.
  4408. //!
  4409. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4410. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4411. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4412. //!
  4413. case 48: // M48 Z-Probe repeatability
  4414. {
  4415. #if Z_MIN_PIN == -1
  4416. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4417. #endif
  4418. double sum=0.0;
  4419. double mean=0.0;
  4420. double sigma=0.0;
  4421. double sample_set[50];
  4422. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4423. double X_current, Y_current, Z_current;
  4424. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4425. if (code_seen('V') || code_seen('v')) {
  4426. verbose_level = code_value();
  4427. if (verbose_level<0 || verbose_level>4 ) {
  4428. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4429. goto Sigma_Exit;
  4430. }
  4431. }
  4432. if (verbose_level > 0) {
  4433. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4434. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4435. }
  4436. if (code_seen('n')) {
  4437. n_samples = code_value();
  4438. if (n_samples<4 || n_samples>50 ) {
  4439. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4440. goto Sigma_Exit;
  4441. }
  4442. }
  4443. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4444. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4445. Z_current = st_get_position_mm(Z_AXIS);
  4446. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4447. ext_position = st_get_position_mm(E_AXIS);
  4448. if (code_seen('X') || code_seen('x') ) {
  4449. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4450. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4451. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4452. goto Sigma_Exit;
  4453. }
  4454. }
  4455. if (code_seen('Y') || code_seen('y') ) {
  4456. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4457. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4458. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4459. goto Sigma_Exit;
  4460. }
  4461. }
  4462. if (code_seen('L') || code_seen('l') ) {
  4463. n_legs = code_value();
  4464. if ( n_legs==1 )
  4465. n_legs = 2;
  4466. if ( n_legs<0 || n_legs>15 ) {
  4467. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4468. goto Sigma_Exit;
  4469. }
  4470. }
  4471. //
  4472. // Do all the preliminary setup work. First raise the probe.
  4473. //
  4474. st_synchronize();
  4475. plan_bed_level_matrix.set_to_identity();
  4476. plan_buffer_line( X_current, Y_current, Z_start_location,
  4477. ext_position,
  4478. homing_feedrate[Z_AXIS]/60,
  4479. active_extruder);
  4480. st_synchronize();
  4481. //
  4482. // Now get everything to the specified probe point So we can safely do a probe to
  4483. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4484. // use that as a starting point for each probe.
  4485. //
  4486. if (verbose_level > 2)
  4487. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4488. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4489. ext_position,
  4490. homing_feedrate[X_AXIS]/60,
  4491. active_extruder);
  4492. st_synchronize();
  4493. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4494. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4495. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4496. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4497. //
  4498. // OK, do the inital probe to get us close to the bed.
  4499. // Then retrace the right amount and use that in subsequent probes
  4500. //
  4501. int l_feedmultiply = setup_for_endstop_move();
  4502. run_z_probe();
  4503. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4504. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4505. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4506. ext_position,
  4507. homing_feedrate[X_AXIS]/60,
  4508. active_extruder);
  4509. st_synchronize();
  4510. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4511. for( n=0; n<n_samples; n++) {
  4512. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4513. if ( n_legs) {
  4514. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4515. int rotational_direction, l;
  4516. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4517. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4518. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4519. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4520. //SERIAL_ECHOPAIR(" theta: ",theta);
  4521. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4522. //SERIAL_PROTOCOLLNPGM("");
  4523. for( l=0; l<n_legs-1; l++) {
  4524. if (rotational_direction==1)
  4525. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4526. else
  4527. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4528. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4529. if ( radius<0.0 )
  4530. radius = -radius;
  4531. X_current = X_probe_location + cos(theta) * radius;
  4532. Y_current = Y_probe_location + sin(theta) * radius;
  4533. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4534. X_current = X_MIN_POS;
  4535. if ( X_current>X_MAX_POS)
  4536. X_current = X_MAX_POS;
  4537. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4538. Y_current = Y_MIN_POS;
  4539. if ( Y_current>Y_MAX_POS)
  4540. Y_current = Y_MAX_POS;
  4541. if (verbose_level>3 ) {
  4542. SERIAL_ECHOPAIR("x: ", X_current);
  4543. SERIAL_ECHOPAIR("y: ", Y_current);
  4544. SERIAL_PROTOCOLLNPGM("");
  4545. }
  4546. do_blocking_move_to( X_current, Y_current, Z_current );
  4547. }
  4548. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4549. }
  4550. int l_feedmultiply = setup_for_endstop_move();
  4551. run_z_probe();
  4552. sample_set[n] = current_position[Z_AXIS];
  4553. //
  4554. // Get the current mean for the data points we have so far
  4555. //
  4556. sum=0.0;
  4557. for( j=0; j<=n; j++) {
  4558. sum = sum + sample_set[j];
  4559. }
  4560. mean = sum / (double (n+1));
  4561. //
  4562. // Now, use that mean to calculate the standard deviation for the
  4563. // data points we have so far
  4564. //
  4565. sum=0.0;
  4566. for( j=0; j<=n; j++) {
  4567. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4568. }
  4569. sigma = sqrt( sum / (double (n+1)) );
  4570. if (verbose_level > 1) {
  4571. SERIAL_PROTOCOL(n+1);
  4572. SERIAL_PROTOCOL(" of ");
  4573. SERIAL_PROTOCOL(n_samples);
  4574. SERIAL_PROTOCOLPGM(" z: ");
  4575. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4576. }
  4577. if (verbose_level > 2) {
  4578. SERIAL_PROTOCOL(" mean: ");
  4579. SERIAL_PROTOCOL_F(mean,6);
  4580. SERIAL_PROTOCOL(" sigma: ");
  4581. SERIAL_PROTOCOL_F(sigma,6);
  4582. }
  4583. if (verbose_level > 0)
  4584. SERIAL_PROTOCOLPGM("\n");
  4585. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4586. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4587. st_synchronize();
  4588. }
  4589. delay(1000);
  4590. clean_up_after_endstop_move(l_feedmultiply);
  4591. // enable_endstops(true);
  4592. if (verbose_level > 0) {
  4593. SERIAL_PROTOCOLPGM("Mean: ");
  4594. SERIAL_PROTOCOL_F(mean, 6);
  4595. SERIAL_PROTOCOLPGM("\n");
  4596. }
  4597. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4598. SERIAL_PROTOCOL_F(sigma, 6);
  4599. SERIAL_PROTOCOLPGM("\n\n");
  4600. Sigma_Exit:
  4601. break;
  4602. }
  4603. #endif // Z_PROBE_REPEATABILITY_TEST
  4604. #endif // ENABLE_AUTO_BED_LEVELING
  4605. case 73: //M73 show percent done and time remaining
  4606. if(code_seen('P')) print_percent_done_normal = code_value();
  4607. if(code_seen('R')) print_time_remaining_normal = code_value();
  4608. if(code_seen('Q')) print_percent_done_silent = code_value();
  4609. if(code_seen('S')) print_time_remaining_silent = code_value();
  4610. {
  4611. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4612. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4613. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4614. }
  4615. break;
  4616. case 104: // M104
  4617. {
  4618. uint8_t extruder;
  4619. if(setTargetedHotend(104,extruder)){
  4620. break;
  4621. }
  4622. if (code_seen('S'))
  4623. {
  4624. setTargetHotendSafe(code_value(), extruder);
  4625. }
  4626. setWatch();
  4627. break;
  4628. }
  4629. case 112: // M112 -Emergency Stop
  4630. kill(_n(""), 3);
  4631. break;
  4632. case 140: // M140 set bed temp
  4633. if (code_seen('S')) setTargetBed(code_value());
  4634. break;
  4635. case 105 : // M105
  4636. {
  4637. uint8_t extruder;
  4638. if(setTargetedHotend(105, extruder)){
  4639. break;
  4640. }
  4641. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4642. SERIAL_PROTOCOLPGM("ok T:");
  4643. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4644. SERIAL_PROTOCOLPGM(" /");
  4645. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4646. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4647. SERIAL_PROTOCOLPGM(" B:");
  4648. SERIAL_PROTOCOL_F(degBed(),1);
  4649. SERIAL_PROTOCOLPGM(" /");
  4650. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4651. #endif //TEMP_BED_PIN
  4652. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4653. SERIAL_PROTOCOLPGM(" T");
  4654. SERIAL_PROTOCOL(cur_extruder);
  4655. SERIAL_PROTOCOLPGM(":");
  4656. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4657. SERIAL_PROTOCOLPGM(" /");
  4658. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4659. }
  4660. #else
  4661. SERIAL_ERROR_START;
  4662. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4663. #endif
  4664. SERIAL_PROTOCOLPGM(" @:");
  4665. #ifdef EXTRUDER_WATTS
  4666. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4667. SERIAL_PROTOCOLPGM("W");
  4668. #else
  4669. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4670. #endif
  4671. SERIAL_PROTOCOLPGM(" B@:");
  4672. #ifdef BED_WATTS
  4673. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4674. SERIAL_PROTOCOLPGM("W");
  4675. #else
  4676. SERIAL_PROTOCOL(getHeaterPower(-1));
  4677. #endif
  4678. #ifdef PINDA_THERMISTOR
  4679. SERIAL_PROTOCOLPGM(" P:");
  4680. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4681. #endif //PINDA_THERMISTOR
  4682. #ifdef AMBIENT_THERMISTOR
  4683. SERIAL_PROTOCOLPGM(" A:");
  4684. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4685. #endif //AMBIENT_THERMISTOR
  4686. #ifdef SHOW_TEMP_ADC_VALUES
  4687. {float raw = 0.0;
  4688. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4689. SERIAL_PROTOCOLPGM(" ADC B:");
  4690. SERIAL_PROTOCOL_F(degBed(),1);
  4691. SERIAL_PROTOCOLPGM("C->");
  4692. raw = rawBedTemp();
  4693. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4694. SERIAL_PROTOCOLPGM(" Rb->");
  4695. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4696. SERIAL_PROTOCOLPGM(" Rxb->");
  4697. SERIAL_PROTOCOL_F(raw, 5);
  4698. #endif
  4699. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4700. SERIAL_PROTOCOLPGM(" T");
  4701. SERIAL_PROTOCOL(cur_extruder);
  4702. SERIAL_PROTOCOLPGM(":");
  4703. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4704. SERIAL_PROTOCOLPGM("C->");
  4705. raw = rawHotendTemp(cur_extruder);
  4706. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4707. SERIAL_PROTOCOLPGM(" Rt");
  4708. SERIAL_PROTOCOL(cur_extruder);
  4709. SERIAL_PROTOCOLPGM("->");
  4710. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4711. SERIAL_PROTOCOLPGM(" Rx");
  4712. SERIAL_PROTOCOL(cur_extruder);
  4713. SERIAL_PROTOCOLPGM("->");
  4714. SERIAL_PROTOCOL_F(raw, 5);
  4715. }}
  4716. #endif
  4717. SERIAL_PROTOCOLLN("");
  4718. KEEPALIVE_STATE(NOT_BUSY);
  4719. return;
  4720. break;
  4721. }
  4722. case 109:
  4723. {// M109 - Wait for extruder heater to reach target.
  4724. uint8_t extruder;
  4725. if(setTargetedHotend(109, extruder)){
  4726. break;
  4727. }
  4728. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4729. heating_status = 1;
  4730. if (farm_mode) { prusa_statistics(1); };
  4731. #ifdef AUTOTEMP
  4732. autotemp_enabled=false;
  4733. #endif
  4734. if (code_seen('S')) {
  4735. setTargetHotendSafe(code_value(), extruder);
  4736. CooldownNoWait = true;
  4737. } else if (code_seen('R')) {
  4738. setTargetHotendSafe(code_value(), extruder);
  4739. CooldownNoWait = false;
  4740. }
  4741. #ifdef AUTOTEMP
  4742. if (code_seen('S')) autotemp_min=code_value();
  4743. if (code_seen('B')) autotemp_max=code_value();
  4744. if (code_seen('F'))
  4745. {
  4746. autotemp_factor=code_value();
  4747. autotemp_enabled=true;
  4748. }
  4749. #endif
  4750. setWatch();
  4751. codenum = millis();
  4752. /* See if we are heating up or cooling down */
  4753. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4754. KEEPALIVE_STATE(NOT_BUSY);
  4755. cancel_heatup = false;
  4756. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4757. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4758. KEEPALIVE_STATE(IN_HANDLER);
  4759. heating_status = 2;
  4760. if (farm_mode) { prusa_statistics(2); };
  4761. //starttime=millis();
  4762. previous_millis_cmd = millis();
  4763. }
  4764. break;
  4765. case 190: // M190 - Wait for bed heater to reach target.
  4766. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4767. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4768. heating_status = 3;
  4769. if (farm_mode) { prusa_statistics(1); };
  4770. if (code_seen('S'))
  4771. {
  4772. setTargetBed(code_value());
  4773. CooldownNoWait = true;
  4774. }
  4775. else if (code_seen('R'))
  4776. {
  4777. setTargetBed(code_value());
  4778. CooldownNoWait = false;
  4779. }
  4780. codenum = millis();
  4781. cancel_heatup = false;
  4782. target_direction = isHeatingBed(); // true if heating, false if cooling
  4783. KEEPALIVE_STATE(NOT_BUSY);
  4784. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4785. {
  4786. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4787. {
  4788. if (!farm_mode) {
  4789. float tt = degHotend(active_extruder);
  4790. SERIAL_PROTOCOLPGM("T:");
  4791. SERIAL_PROTOCOL(tt);
  4792. SERIAL_PROTOCOLPGM(" E:");
  4793. SERIAL_PROTOCOL((int)active_extruder);
  4794. SERIAL_PROTOCOLPGM(" B:");
  4795. SERIAL_PROTOCOL_F(degBed(), 1);
  4796. SERIAL_PROTOCOLLN("");
  4797. }
  4798. codenum = millis();
  4799. }
  4800. manage_heater();
  4801. manage_inactivity();
  4802. lcd_update(0);
  4803. }
  4804. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4805. KEEPALIVE_STATE(IN_HANDLER);
  4806. heating_status = 4;
  4807. previous_millis_cmd = millis();
  4808. #endif
  4809. break;
  4810. #if defined(FAN_PIN) && FAN_PIN > -1
  4811. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  4812. if (code_seen('S')){
  4813. fanSpeed=constrain(code_value(),0,255);
  4814. }
  4815. else {
  4816. fanSpeed=255;
  4817. }
  4818. break;
  4819. case 107: //M107 Fan Off
  4820. fanSpeed = 0;
  4821. break;
  4822. #endif //FAN_PIN
  4823. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4824. case 80: // M80 - Turn on Power Supply
  4825. SET_OUTPUT(PS_ON_PIN); //GND
  4826. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4827. // If you have a switch on suicide pin, this is useful
  4828. // if you want to start another print with suicide feature after
  4829. // a print without suicide...
  4830. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4831. SET_OUTPUT(SUICIDE_PIN);
  4832. WRITE(SUICIDE_PIN, HIGH);
  4833. #endif
  4834. powersupply = true;
  4835. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4836. lcd_update(0);
  4837. break;
  4838. #endif
  4839. case 81: // M81 - Turn off Power Supply
  4840. disable_heater();
  4841. st_synchronize();
  4842. disable_e0();
  4843. disable_e1();
  4844. disable_e2();
  4845. finishAndDisableSteppers();
  4846. fanSpeed = 0;
  4847. delay(1000); // Wait a little before to switch off
  4848. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4849. st_synchronize();
  4850. suicide();
  4851. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4852. SET_OUTPUT(PS_ON_PIN);
  4853. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4854. #endif
  4855. powersupply = false;
  4856. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4857. lcd_update(0);
  4858. break;
  4859. case 82:
  4860. axis_relative_modes[3] = false;
  4861. break;
  4862. case 83:
  4863. axis_relative_modes[3] = true;
  4864. break;
  4865. case 18: //compatibility
  4866. case 84: // M84
  4867. if(code_seen('S')){
  4868. stepper_inactive_time = code_value() * 1000;
  4869. }
  4870. else
  4871. {
  4872. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4873. if(all_axis)
  4874. {
  4875. st_synchronize();
  4876. disable_e0();
  4877. disable_e1();
  4878. disable_e2();
  4879. finishAndDisableSteppers();
  4880. }
  4881. else
  4882. {
  4883. st_synchronize();
  4884. if (code_seen('X')) disable_x();
  4885. if (code_seen('Y')) disable_y();
  4886. if (code_seen('Z')) disable_z();
  4887. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4888. if (code_seen('E')) {
  4889. disable_e0();
  4890. disable_e1();
  4891. disable_e2();
  4892. }
  4893. #endif
  4894. }
  4895. }
  4896. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4897. print_time_remaining_init();
  4898. snmm_filaments_used = 0;
  4899. break;
  4900. case 85: // M85
  4901. if(code_seen('S')) {
  4902. max_inactive_time = code_value() * 1000;
  4903. }
  4904. break;
  4905. #ifdef SAFETYTIMER
  4906. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4907. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4908. if (code_seen('S')) {
  4909. safetytimer_inactive_time = code_value() * 1000;
  4910. safetyTimer.start();
  4911. }
  4912. break;
  4913. #endif
  4914. case 92: // M92
  4915. for(int8_t i=0; i < NUM_AXIS; i++)
  4916. {
  4917. if(code_seen(axis_codes[i]))
  4918. {
  4919. if(i == 3) { // E
  4920. float value = code_value();
  4921. if(value < 20.0) {
  4922. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4923. cs.max_jerk[E_AXIS] *= factor;
  4924. max_feedrate[i] *= factor;
  4925. axis_steps_per_sqr_second[i] *= factor;
  4926. }
  4927. cs.axis_steps_per_unit[i] = value;
  4928. }
  4929. else {
  4930. cs.axis_steps_per_unit[i] = code_value();
  4931. }
  4932. }
  4933. }
  4934. break;
  4935. case 110: //! M110 N<line number> - reset line pos
  4936. if (code_seen('N'))
  4937. gcode_LastN = code_value_long();
  4938. break;
  4939. #ifdef HOST_KEEPALIVE_FEATURE
  4940. case 113: // M113 - Get or set Host Keepalive interval
  4941. if (code_seen('S')) {
  4942. host_keepalive_interval = (uint8_t)code_value_short();
  4943. // NOMORE(host_keepalive_interval, 60);
  4944. }
  4945. else {
  4946. SERIAL_ECHO_START;
  4947. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4948. SERIAL_PROTOCOLLN("");
  4949. }
  4950. break;
  4951. #endif
  4952. case 115: // M115
  4953. if (code_seen('V')) {
  4954. // Report the Prusa version number.
  4955. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4956. } else if (code_seen('U')) {
  4957. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4958. // pause the print and ask the user to upgrade the firmware.
  4959. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4960. } else {
  4961. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4962. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4963. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4964. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4965. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4966. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4967. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4968. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4969. SERIAL_ECHOPGM(" UUID:");
  4970. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4971. }
  4972. break;
  4973. /* case 117: // M117 display message
  4974. starpos = (strchr(strchr_pointer + 5,'*'));
  4975. if(starpos!=NULL)
  4976. *(starpos)='\0';
  4977. lcd_setstatus(strchr_pointer + 5);
  4978. break;*/
  4979. case 114: // M114
  4980. gcode_M114();
  4981. break;
  4982. case 120: //! M120 - Disable endstops
  4983. enable_endstops(false) ;
  4984. break;
  4985. case 121: //! M121 - Enable endstops
  4986. enable_endstops(true) ;
  4987. break;
  4988. case 119: // M119
  4989. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4990. SERIAL_PROTOCOLLN("");
  4991. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4992. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4993. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4994. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4995. }else{
  4996. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4997. }
  4998. SERIAL_PROTOCOLLN("");
  4999. #endif
  5000. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5001. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  5002. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5003. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5004. }else{
  5005. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5006. }
  5007. SERIAL_PROTOCOLLN("");
  5008. #endif
  5009. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5010. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  5011. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5012. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5013. }else{
  5014. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5015. }
  5016. SERIAL_PROTOCOLLN("");
  5017. #endif
  5018. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5019. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  5020. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5021. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5022. }else{
  5023. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5024. }
  5025. SERIAL_PROTOCOLLN("");
  5026. #endif
  5027. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5028. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5029. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5030. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5031. }else{
  5032. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5033. }
  5034. SERIAL_PROTOCOLLN("");
  5035. #endif
  5036. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5037. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5038. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5039. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5040. }else{
  5041. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5042. }
  5043. SERIAL_PROTOCOLLN("");
  5044. #endif
  5045. break;
  5046. //TODO: update for all axis, use for loop
  5047. #ifdef BLINKM
  5048. case 150: // M150
  5049. {
  5050. byte red;
  5051. byte grn;
  5052. byte blu;
  5053. if(code_seen('R')) red = code_value();
  5054. if(code_seen('U')) grn = code_value();
  5055. if(code_seen('B')) blu = code_value();
  5056. SendColors(red,grn,blu);
  5057. }
  5058. break;
  5059. #endif //BLINKM
  5060. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5061. {
  5062. uint8_t extruder = active_extruder;
  5063. if(code_seen('T')) {
  5064. extruder = code_value();
  5065. if(extruder >= EXTRUDERS) {
  5066. SERIAL_ECHO_START;
  5067. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5068. break;
  5069. }
  5070. }
  5071. if(code_seen('D')) {
  5072. float diameter = (float)code_value();
  5073. if (diameter == 0.0) {
  5074. // setting any extruder filament size disables volumetric on the assumption that
  5075. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5076. // for all extruders
  5077. cs.volumetric_enabled = false;
  5078. } else {
  5079. cs.filament_size[extruder] = (float)code_value();
  5080. // make sure all extruders have some sane value for the filament size
  5081. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5082. #if EXTRUDERS > 1
  5083. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5084. #if EXTRUDERS > 2
  5085. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5086. #endif
  5087. #endif
  5088. cs.volumetric_enabled = true;
  5089. }
  5090. } else {
  5091. //reserved for setting filament diameter via UFID or filament measuring device
  5092. break;
  5093. }
  5094. calculate_extruder_multipliers();
  5095. }
  5096. break;
  5097. case 201: // M201
  5098. for (int8_t i = 0; i < NUM_AXIS; i++)
  5099. {
  5100. if (code_seen(axis_codes[i]))
  5101. {
  5102. unsigned long val = code_value();
  5103. #ifdef TMC2130
  5104. unsigned long val_silent = val;
  5105. if ((i == X_AXIS) || (i == Y_AXIS))
  5106. {
  5107. if (val > NORMAL_MAX_ACCEL_XY)
  5108. val = NORMAL_MAX_ACCEL_XY;
  5109. if (val_silent > SILENT_MAX_ACCEL_XY)
  5110. val_silent = SILENT_MAX_ACCEL_XY;
  5111. }
  5112. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5113. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5114. #else //TMC2130
  5115. max_acceleration_units_per_sq_second[i] = val;
  5116. #endif //TMC2130
  5117. }
  5118. }
  5119. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5120. reset_acceleration_rates();
  5121. break;
  5122. #if 0 // Not used for Sprinter/grbl gen6
  5123. case 202: // M202
  5124. for(int8_t i=0; i < NUM_AXIS; i++) {
  5125. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5126. }
  5127. break;
  5128. #endif
  5129. case 203: // M203 max feedrate mm/sec
  5130. for (int8_t i = 0; i < NUM_AXIS; i++)
  5131. {
  5132. if (code_seen(axis_codes[i]))
  5133. {
  5134. float val = code_value();
  5135. #ifdef TMC2130
  5136. float val_silent = val;
  5137. if ((i == X_AXIS) || (i == Y_AXIS))
  5138. {
  5139. if (val > NORMAL_MAX_FEEDRATE_XY)
  5140. val = NORMAL_MAX_FEEDRATE_XY;
  5141. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5142. val_silent = SILENT_MAX_FEEDRATE_XY;
  5143. }
  5144. cs.max_feedrate_normal[i] = val;
  5145. cs.max_feedrate_silent[i] = val_silent;
  5146. #else //TMC2130
  5147. max_feedrate[i] = val;
  5148. #endif //TMC2130
  5149. }
  5150. }
  5151. break;
  5152. case 204:
  5153. //! M204 acclereration settings.
  5154. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5155. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5156. {
  5157. if(code_seen('S')) {
  5158. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5159. // and it is also generated by Slic3r to control acceleration per extrusion type
  5160. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5161. cs.acceleration = code_value();
  5162. // Interpret the T value as retract acceleration in the old Marlin format.
  5163. if(code_seen('T'))
  5164. cs.retract_acceleration = code_value();
  5165. } else {
  5166. // New acceleration format, compatible with the upstream Marlin.
  5167. if(code_seen('P'))
  5168. cs.acceleration = code_value();
  5169. if(code_seen('R'))
  5170. cs.retract_acceleration = code_value();
  5171. if(code_seen('T')) {
  5172. // Interpret the T value as the travel acceleration in the new Marlin format.
  5173. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5174. // travel_acceleration = code_value();
  5175. }
  5176. }
  5177. }
  5178. break;
  5179. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5180. {
  5181. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5182. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5183. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5184. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5185. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5186. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5187. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5188. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5189. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5190. }
  5191. break;
  5192. case 206: // M206 additional homing offset
  5193. for(int8_t i=0; i < 3; i++)
  5194. {
  5195. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5196. }
  5197. break;
  5198. #ifdef FWRETRACT
  5199. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5200. {
  5201. if(code_seen('S'))
  5202. {
  5203. cs.retract_length = code_value() ;
  5204. }
  5205. if(code_seen('F'))
  5206. {
  5207. cs.retract_feedrate = code_value()/60 ;
  5208. }
  5209. if(code_seen('Z'))
  5210. {
  5211. cs.retract_zlift = code_value() ;
  5212. }
  5213. }break;
  5214. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5215. {
  5216. if(code_seen('S'))
  5217. {
  5218. cs.retract_recover_length = code_value() ;
  5219. }
  5220. if(code_seen('F'))
  5221. {
  5222. cs.retract_recover_feedrate = code_value()/60 ;
  5223. }
  5224. }break;
  5225. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5226. {
  5227. if(code_seen('S'))
  5228. {
  5229. int t= code_value() ;
  5230. switch(t)
  5231. {
  5232. case 0:
  5233. {
  5234. cs.autoretract_enabled=false;
  5235. retracted[0]=false;
  5236. #if EXTRUDERS > 1
  5237. retracted[1]=false;
  5238. #endif
  5239. #if EXTRUDERS > 2
  5240. retracted[2]=false;
  5241. #endif
  5242. }break;
  5243. case 1:
  5244. {
  5245. cs.autoretract_enabled=true;
  5246. retracted[0]=false;
  5247. #if EXTRUDERS > 1
  5248. retracted[1]=false;
  5249. #endif
  5250. #if EXTRUDERS > 2
  5251. retracted[2]=false;
  5252. #endif
  5253. }break;
  5254. default:
  5255. SERIAL_ECHO_START;
  5256. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5257. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5258. SERIAL_ECHOLNPGM("\"(1)");
  5259. }
  5260. }
  5261. }break;
  5262. #endif // FWRETRACT
  5263. #if EXTRUDERS > 1
  5264. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5265. {
  5266. uint8_t extruder;
  5267. if(setTargetedHotend(218, extruder)){
  5268. break;
  5269. }
  5270. if(code_seen('X'))
  5271. {
  5272. extruder_offset[X_AXIS][extruder] = code_value();
  5273. }
  5274. if(code_seen('Y'))
  5275. {
  5276. extruder_offset[Y_AXIS][extruder] = code_value();
  5277. }
  5278. SERIAL_ECHO_START;
  5279. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5280. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5281. {
  5282. SERIAL_ECHO(" ");
  5283. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5284. SERIAL_ECHO(",");
  5285. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5286. }
  5287. SERIAL_ECHOLN("");
  5288. }break;
  5289. #endif
  5290. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5291. {
  5292. if(code_seen('S'))
  5293. {
  5294. feedmultiply = code_value() ;
  5295. }
  5296. }
  5297. break;
  5298. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5299. {
  5300. if(code_seen('S'))
  5301. {
  5302. int tmp_code = code_value();
  5303. if (code_seen('T'))
  5304. {
  5305. uint8_t extruder;
  5306. if(setTargetedHotend(221, extruder)){
  5307. break;
  5308. }
  5309. extruder_multiply[extruder] = tmp_code;
  5310. }
  5311. else
  5312. {
  5313. extrudemultiply = tmp_code ;
  5314. }
  5315. }
  5316. calculate_extruder_multipliers();
  5317. }
  5318. break;
  5319. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5320. {
  5321. if(code_seen('P')){
  5322. int pin_number = code_value(); // pin number
  5323. int pin_state = -1; // required pin state - default is inverted
  5324. if(code_seen('S')) pin_state = code_value(); // required pin state
  5325. if(pin_state >= -1 && pin_state <= 1){
  5326. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5327. {
  5328. if (sensitive_pins[i] == pin_number)
  5329. {
  5330. pin_number = -1;
  5331. break;
  5332. }
  5333. }
  5334. if (pin_number > -1)
  5335. {
  5336. int target = LOW;
  5337. st_synchronize();
  5338. pinMode(pin_number, INPUT);
  5339. switch(pin_state){
  5340. case 1:
  5341. target = HIGH;
  5342. break;
  5343. case 0:
  5344. target = LOW;
  5345. break;
  5346. case -1:
  5347. target = !digitalRead(pin_number);
  5348. break;
  5349. }
  5350. while(digitalRead(pin_number) != target){
  5351. manage_heater();
  5352. manage_inactivity();
  5353. lcd_update(0);
  5354. }
  5355. }
  5356. }
  5357. }
  5358. }
  5359. break;
  5360. #if NUM_SERVOS > 0
  5361. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5362. {
  5363. int servo_index = -1;
  5364. int servo_position = 0;
  5365. if (code_seen('P'))
  5366. servo_index = code_value();
  5367. if (code_seen('S')) {
  5368. servo_position = code_value();
  5369. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5370. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5371. servos[servo_index].attach(0);
  5372. #endif
  5373. servos[servo_index].write(servo_position);
  5374. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5375. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5376. servos[servo_index].detach();
  5377. #endif
  5378. }
  5379. else {
  5380. SERIAL_ECHO_START;
  5381. SERIAL_ECHO("Servo ");
  5382. SERIAL_ECHO(servo_index);
  5383. SERIAL_ECHOLN(" out of range");
  5384. }
  5385. }
  5386. else if (servo_index >= 0) {
  5387. SERIAL_PROTOCOL(_T(MSG_OK));
  5388. SERIAL_PROTOCOL(" Servo ");
  5389. SERIAL_PROTOCOL(servo_index);
  5390. SERIAL_PROTOCOL(": ");
  5391. SERIAL_PROTOCOL(servos[servo_index].read());
  5392. SERIAL_PROTOCOLLN("");
  5393. }
  5394. }
  5395. break;
  5396. #endif // NUM_SERVOS > 0
  5397. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5398. case 300: // M300
  5399. {
  5400. int beepS = code_seen('S') ? code_value() : 110;
  5401. int beepP = code_seen('P') ? code_value() : 1000;
  5402. if (beepS > 0)
  5403. {
  5404. #if BEEPER > 0
  5405. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5406. tone(BEEPER, beepS);
  5407. delay(beepP);
  5408. noTone(BEEPER);
  5409. #endif
  5410. }
  5411. else
  5412. {
  5413. delay(beepP);
  5414. }
  5415. }
  5416. break;
  5417. #endif // M300
  5418. #ifdef PIDTEMP
  5419. case 301: // M301
  5420. {
  5421. if(code_seen('P')) cs.Kp = code_value();
  5422. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5423. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5424. #ifdef PID_ADD_EXTRUSION_RATE
  5425. if(code_seen('C')) Kc = code_value();
  5426. #endif
  5427. updatePID();
  5428. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5429. SERIAL_PROTOCOL(" p:");
  5430. SERIAL_PROTOCOL(cs.Kp);
  5431. SERIAL_PROTOCOL(" i:");
  5432. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5433. SERIAL_PROTOCOL(" d:");
  5434. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5435. #ifdef PID_ADD_EXTRUSION_RATE
  5436. SERIAL_PROTOCOL(" c:");
  5437. //Kc does not have scaling applied above, or in resetting defaults
  5438. SERIAL_PROTOCOL(Kc);
  5439. #endif
  5440. SERIAL_PROTOCOLLN("");
  5441. }
  5442. break;
  5443. #endif //PIDTEMP
  5444. #ifdef PIDTEMPBED
  5445. case 304: // M304
  5446. {
  5447. if(code_seen('P')) cs.bedKp = code_value();
  5448. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5449. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5450. updatePID();
  5451. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5452. SERIAL_PROTOCOL(" p:");
  5453. SERIAL_PROTOCOL(cs.bedKp);
  5454. SERIAL_PROTOCOL(" i:");
  5455. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5456. SERIAL_PROTOCOL(" d:");
  5457. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5458. SERIAL_PROTOCOLLN("");
  5459. }
  5460. break;
  5461. #endif //PIDTEMP
  5462. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5463. {
  5464. #ifdef CHDK
  5465. SET_OUTPUT(CHDK);
  5466. WRITE(CHDK, HIGH);
  5467. chdkHigh = millis();
  5468. chdkActive = true;
  5469. #else
  5470. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5471. const uint8_t NUM_PULSES=16;
  5472. const float PULSE_LENGTH=0.01524;
  5473. for(int i=0; i < NUM_PULSES; i++) {
  5474. WRITE(PHOTOGRAPH_PIN, HIGH);
  5475. _delay_ms(PULSE_LENGTH);
  5476. WRITE(PHOTOGRAPH_PIN, LOW);
  5477. _delay_ms(PULSE_LENGTH);
  5478. }
  5479. delay(7.33);
  5480. for(int i=0; i < NUM_PULSES; i++) {
  5481. WRITE(PHOTOGRAPH_PIN, HIGH);
  5482. _delay_ms(PULSE_LENGTH);
  5483. WRITE(PHOTOGRAPH_PIN, LOW);
  5484. _delay_ms(PULSE_LENGTH);
  5485. }
  5486. #endif
  5487. #endif //chdk end if
  5488. }
  5489. break;
  5490. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5491. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5492. {
  5493. float temp = .0;
  5494. if (code_seen('S')) temp=code_value();
  5495. set_extrude_min_temp(temp);
  5496. }
  5497. break;
  5498. #endif
  5499. case 303: // M303 PID autotune
  5500. {
  5501. float temp = 150.0;
  5502. int e=0;
  5503. int c=5;
  5504. if (code_seen('E')) e=code_value();
  5505. if (e<0)
  5506. temp=70;
  5507. if (code_seen('S')) temp=code_value();
  5508. if (code_seen('C')) c=code_value();
  5509. PID_autotune(temp, e, c);
  5510. }
  5511. break;
  5512. case 400: // M400 finish all moves
  5513. {
  5514. st_synchronize();
  5515. }
  5516. break;
  5517. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5518. {
  5519. //! currently three different materials are needed (default, flex and PVA)
  5520. //! add storing this information for different load/unload profiles etc. in the future
  5521. //!firmware does not wait for "ok" from mmu
  5522. if (mmu_enabled)
  5523. {
  5524. uint8_t extruder = 255;
  5525. uint8_t filament = FILAMENT_UNDEFINED;
  5526. if(code_seen('E')) extruder = code_value();
  5527. if(code_seen('F')) filament = code_value();
  5528. mmu_set_filament_type(extruder, filament);
  5529. }
  5530. }
  5531. break;
  5532. case 500: // M500 Store settings in EEPROM
  5533. {
  5534. Config_StoreSettings();
  5535. }
  5536. break;
  5537. case 501: // M501 Read settings from EEPROM
  5538. {
  5539. Config_RetrieveSettings();
  5540. }
  5541. break;
  5542. case 502: // M502 Revert to default settings
  5543. {
  5544. Config_ResetDefault();
  5545. }
  5546. break;
  5547. case 503: // M503 print settings currently in memory
  5548. {
  5549. Config_PrintSettings();
  5550. }
  5551. break;
  5552. case 509: //M509 Force language selection
  5553. {
  5554. lang_reset();
  5555. SERIAL_ECHO_START;
  5556. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5557. }
  5558. break;
  5559. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5560. case 540:
  5561. {
  5562. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5563. }
  5564. break;
  5565. #endif
  5566. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5567. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5568. {
  5569. float value;
  5570. if (code_seen('Z'))
  5571. {
  5572. value = code_value();
  5573. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5574. {
  5575. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5576. SERIAL_ECHO_START;
  5577. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5578. SERIAL_PROTOCOLLN("");
  5579. }
  5580. else
  5581. {
  5582. SERIAL_ECHO_START;
  5583. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5584. SERIAL_ECHORPGM(MSG_Z_MIN);
  5585. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5586. SERIAL_ECHORPGM(MSG_Z_MAX);
  5587. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5588. SERIAL_PROTOCOLLN("");
  5589. }
  5590. }
  5591. else
  5592. {
  5593. SERIAL_ECHO_START;
  5594. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5595. SERIAL_ECHO(-cs.zprobe_zoffset);
  5596. SERIAL_PROTOCOLLN("");
  5597. }
  5598. break;
  5599. }
  5600. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5601. #ifdef FILAMENTCHANGEENABLE
  5602. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5603. {
  5604. st_synchronize();
  5605. float x_position = current_position[X_AXIS];
  5606. float y_position = current_position[Y_AXIS];
  5607. float z_shift = 0;
  5608. float e_shift_init = 0;
  5609. float e_shift_late = 0;
  5610. bool automatic = false;
  5611. //Retract extruder
  5612. if(code_seen('E'))
  5613. {
  5614. e_shift_init = code_value();
  5615. }
  5616. else
  5617. {
  5618. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5619. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5620. #endif
  5621. }
  5622. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5623. if (code_seen('L'))
  5624. {
  5625. e_shift_late = code_value();
  5626. }
  5627. else
  5628. {
  5629. #ifdef FILAMENTCHANGE_FINALRETRACT
  5630. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5631. #endif
  5632. }
  5633. //Lift Z
  5634. if(code_seen('Z'))
  5635. {
  5636. z_shift = code_value();
  5637. }
  5638. else
  5639. {
  5640. #ifdef FILAMENTCHANGE_ZADD
  5641. z_shift= FILAMENTCHANGE_ZADD ;
  5642. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5643. #endif
  5644. }
  5645. //Move XY to side
  5646. if(code_seen('X'))
  5647. {
  5648. x_position = code_value();
  5649. }
  5650. else
  5651. {
  5652. #ifdef FILAMENTCHANGE_XPOS
  5653. x_position = FILAMENTCHANGE_XPOS;
  5654. #endif
  5655. }
  5656. if(code_seen('Y'))
  5657. {
  5658. y_position = code_value();
  5659. }
  5660. else
  5661. {
  5662. #ifdef FILAMENTCHANGE_YPOS
  5663. y_position = FILAMENTCHANGE_YPOS ;
  5664. #endif
  5665. }
  5666. if (mmu_enabled && code_seen("AUTO"))
  5667. automatic = true;
  5668. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5669. }
  5670. break;
  5671. #endif //FILAMENTCHANGEENABLE
  5672. case 601: //! M601 - Pause print
  5673. {
  5674. lcd_pause_print();
  5675. }
  5676. break;
  5677. case 602: { //! M602 - Resume print
  5678. lcd_resume_print();
  5679. }
  5680. break;
  5681. #ifdef PINDA_THERMISTOR
  5682. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5683. {
  5684. int set_target_pinda = 0;
  5685. if (code_seen('S')) {
  5686. set_target_pinda = code_value();
  5687. }
  5688. else {
  5689. break;
  5690. }
  5691. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5692. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5693. SERIAL_PROTOCOL(set_target_pinda);
  5694. SERIAL_PROTOCOLLN("");
  5695. codenum = millis();
  5696. cancel_heatup = false;
  5697. bool is_pinda_cooling = false;
  5698. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5699. is_pinda_cooling = true;
  5700. }
  5701. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5702. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5703. {
  5704. SERIAL_PROTOCOLPGM("P:");
  5705. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5706. SERIAL_PROTOCOLPGM("/");
  5707. SERIAL_PROTOCOL(set_target_pinda);
  5708. SERIAL_PROTOCOLLN("");
  5709. codenum = millis();
  5710. }
  5711. manage_heater();
  5712. manage_inactivity();
  5713. lcd_update(0);
  5714. }
  5715. LCD_MESSAGERPGM(_T(MSG_OK));
  5716. break;
  5717. }
  5718. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5719. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5720. uint8_t cal_status = calibration_status_pinda();
  5721. int16_t usteps = 0;
  5722. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5723. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5724. for (uint8_t i = 0; i < 6; i++)
  5725. {
  5726. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5727. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5728. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5729. SERIAL_PROTOCOLPGM(", ");
  5730. SERIAL_PROTOCOL(35 + (i * 5));
  5731. SERIAL_PROTOCOLPGM(", ");
  5732. SERIAL_PROTOCOL(usteps);
  5733. SERIAL_PROTOCOLPGM(", ");
  5734. SERIAL_PROTOCOL(mm * 1000);
  5735. SERIAL_PROTOCOLLN("");
  5736. }
  5737. }
  5738. else if (code_seen('!')) { // ! - Set factory default values
  5739. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5740. int16_t z_shift = 8; //40C - 20um - 8usteps
  5741. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5742. z_shift = 24; //45C - 60um - 24usteps
  5743. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5744. z_shift = 48; //50C - 120um - 48usteps
  5745. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5746. z_shift = 80; //55C - 200um - 80usteps
  5747. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5748. z_shift = 120; //60C - 300um - 120usteps
  5749. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5750. SERIAL_PROTOCOLLN("factory restored");
  5751. }
  5752. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5753. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5754. int16_t z_shift = 0;
  5755. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5756. SERIAL_PROTOCOLLN("zerorized");
  5757. }
  5758. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5759. int16_t usteps = code_value();
  5760. if (code_seen('I')) {
  5761. uint8_t index = code_value();
  5762. if (index < 5) {
  5763. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5764. SERIAL_PROTOCOLLN("OK");
  5765. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5766. for (uint8_t i = 0; i < 6; i++)
  5767. {
  5768. usteps = 0;
  5769. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5770. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5771. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5772. SERIAL_PROTOCOLPGM(", ");
  5773. SERIAL_PROTOCOL(35 + (i * 5));
  5774. SERIAL_PROTOCOLPGM(", ");
  5775. SERIAL_PROTOCOL(usteps);
  5776. SERIAL_PROTOCOLPGM(", ");
  5777. SERIAL_PROTOCOL(mm * 1000);
  5778. SERIAL_PROTOCOLLN("");
  5779. }
  5780. }
  5781. }
  5782. }
  5783. else {
  5784. SERIAL_PROTOCOLPGM("no valid command");
  5785. }
  5786. break;
  5787. #endif //PINDA_THERMISTOR
  5788. #ifdef LIN_ADVANCE
  5789. case 900: // M900: Set LIN_ADVANCE options.
  5790. gcode_M900();
  5791. break;
  5792. #endif
  5793. case 907: // M907 Set digital trimpot motor current using axis codes.
  5794. {
  5795. #ifdef TMC2130
  5796. for (int i = 0; i < NUM_AXIS; i++)
  5797. if(code_seen(axis_codes[i]))
  5798. {
  5799. long cur = code_value_long();
  5800. if (cur > MOTOR_CURRENT_PWM_RANGE) cur = MOTOR_CURRENT_PWM_RANGE;
  5801. tmc2130_set_current_h(i, (uint8_t)cur);
  5802. tmc2130_set_current_r(i, (uint8_t)cur);
  5803. }
  5804. #else //TMC2130
  5805. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5806. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5807. if(code_seen('B')) st_current_set(4,code_value());
  5808. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5809. #endif
  5810. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5811. if(code_seen('X')) st_current_set(0, code_value());
  5812. #endif
  5813. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5814. if(code_seen('Z')) st_current_set(1, code_value());
  5815. #endif
  5816. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5817. if(code_seen('E')) st_current_set(2, code_value());
  5818. #endif
  5819. #endif //TMC2130
  5820. }
  5821. break;
  5822. case 908: // M908 Control digital trimpot directly.
  5823. {
  5824. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5825. uint8_t channel,current;
  5826. if(code_seen('P')) channel=code_value();
  5827. if(code_seen('S')) current=code_value();
  5828. digitalPotWrite(channel, current);
  5829. #endif
  5830. }
  5831. break;
  5832. #ifdef TMC2130_SERVICE_CODES_M910_M918
  5833. case 910: //! M910 - TMC2130 init
  5834. {
  5835. tmc2130_init();
  5836. }
  5837. break;
  5838. case 911: //! M911 - Set TMC2130 holding currents
  5839. {
  5840. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5841. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5842. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5843. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5844. }
  5845. break;
  5846. case 912: //! M912 - Set TMC2130 running currents
  5847. {
  5848. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5849. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5850. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5851. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5852. }
  5853. break;
  5854. case 913: //! M913 - Print TMC2130 currents
  5855. {
  5856. tmc2130_print_currents();
  5857. }
  5858. break;
  5859. case 914: //! M914 - Set normal mode
  5860. {
  5861. tmc2130_mode = TMC2130_MODE_NORMAL;
  5862. update_mode_profile();
  5863. tmc2130_init();
  5864. }
  5865. break;
  5866. case 915: //! M915 - Set silent mode
  5867. {
  5868. tmc2130_mode = TMC2130_MODE_SILENT;
  5869. update_mode_profile();
  5870. tmc2130_init();
  5871. }
  5872. break;
  5873. case 916: //! M916 - Set sg_thrs
  5874. {
  5875. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5876. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5877. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5878. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5879. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5880. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5881. }
  5882. break;
  5883. case 917: //! M917 - Set TMC2130 pwm_ampl
  5884. {
  5885. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5886. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5887. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5888. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5889. }
  5890. break;
  5891. case 918: //! M918 - Set TMC2130 pwm_grad
  5892. {
  5893. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5894. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5895. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5896. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5897. }
  5898. break;
  5899. #endif //TMC2130_SERVICE_CODES_M910_M918
  5900. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5901. {
  5902. #ifdef TMC2130
  5903. if(code_seen('E'))
  5904. {
  5905. uint16_t res_new = code_value();
  5906. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5907. {
  5908. st_synchronize();
  5909. uint8_t axis = E_AXIS;
  5910. uint16_t res = tmc2130_get_res(axis);
  5911. tmc2130_set_res(axis, res_new);
  5912. if (res_new > res)
  5913. {
  5914. uint16_t fac = (res_new / res);
  5915. cs.axis_steps_per_unit[axis] *= fac;
  5916. position[E_AXIS] *= fac;
  5917. }
  5918. else
  5919. {
  5920. uint16_t fac = (res / res_new);
  5921. cs.axis_steps_per_unit[axis] /= fac;
  5922. position[E_AXIS] /= fac;
  5923. }
  5924. }
  5925. }
  5926. #else //TMC2130
  5927. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5928. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5929. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5930. if(code_seen('B')) microstep_mode(4,code_value());
  5931. microstep_readings();
  5932. #endif
  5933. #endif //TMC2130
  5934. }
  5935. break;
  5936. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5937. {
  5938. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5939. if(code_seen('S')) switch((int)code_value())
  5940. {
  5941. case 1:
  5942. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5943. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5944. break;
  5945. case 2:
  5946. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5947. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5948. break;
  5949. }
  5950. microstep_readings();
  5951. #endif
  5952. }
  5953. break;
  5954. case 701: //! M701 - load filament
  5955. {
  5956. if (mmu_enabled && code_seen('E'))
  5957. tmp_extruder = code_value();
  5958. gcode_M701();
  5959. }
  5960. break;
  5961. case 702: //! M702 [U C] -
  5962. {
  5963. #ifdef SNMM
  5964. if (code_seen('U'))
  5965. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  5966. else if (code_seen('C'))
  5967. extr_unload(); //! if "C" unload just current filament
  5968. else
  5969. extr_unload_all(); //! otherwise unload all filaments
  5970. #else
  5971. if (code_seen('C')) {
  5972. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  5973. }
  5974. else {
  5975. if(mmu_enabled) extr_unload(); //! unload current filament
  5976. else unload_filament();
  5977. }
  5978. #endif //SNMM
  5979. }
  5980. break;
  5981. case 999: // M999: Restart after being stopped
  5982. Stopped = false;
  5983. lcd_reset_alert_level();
  5984. gcode_LastN = Stopped_gcode_LastN;
  5985. FlushSerialRequestResend();
  5986. break;
  5987. default:
  5988. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5989. }
  5990. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  5991. mcode_in_progress = 0;
  5992. }
  5993. }
  5994. // end if(code_seen('M')) (end of M codes)
  5995. //! T<extruder nr.> - select extruder in case of multi extruder printer
  5996. //! select filament in case of MMU_V2
  5997. //! if extruder is "?", open menu to let the user select extruder/filament
  5998. //!
  5999. //! For MMU_V2:
  6000. //! @n T<n> Gcode to extrude must follow immediately to load to extruder wheels
  6001. //! @n T? Gcode to extrude doesn't have to follow, load to extruder wheels is done automatically
  6002. else if(code_seen('T'))
  6003. {
  6004. int index;
  6005. st_synchronize();
  6006. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6007. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6008. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6009. SERIAL_ECHOLNPGM("Invalid T code.");
  6010. }
  6011. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6012. if (mmu_enabled)
  6013. {
  6014. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6015. mmu_command(MMU_CMD_T0 + tmp_extruder);
  6016. manage_response(true, true);
  6017. }
  6018. }
  6019. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6020. if (mmu_enabled)
  6021. {
  6022. mmu_command(MMU_CMD_C0);
  6023. mmu_extruder = tmp_extruder; //filament change is finished
  6024. mmu_load_to_nozzle();
  6025. }
  6026. }
  6027. else {
  6028. if (*(strchr_pointer + index) == '?')
  6029. {
  6030. if(mmu_enabled)
  6031. {
  6032. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6033. } else
  6034. {
  6035. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6036. }
  6037. }
  6038. else {
  6039. tmp_extruder = code_value();
  6040. }
  6041. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6042. if (mmu_enabled)
  6043. {
  6044. mmu_command(MMU_CMD_T0 + tmp_extruder);
  6045. manage_response(true, true);
  6046. mmu_command(MMU_CMD_C0);
  6047. mmu_extruder = tmp_extruder; //filament change is finished
  6048. if (*(strchr_pointer + index) == '?')// for single material usage with mmu
  6049. {
  6050. mmu_load_to_nozzle();
  6051. }
  6052. }
  6053. else
  6054. {
  6055. #ifdef SNMM
  6056. #ifdef LIN_ADVANCE
  6057. if (mmu_extruder != tmp_extruder)
  6058. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6059. #endif
  6060. mmu_extruder = tmp_extruder;
  6061. delay(100);
  6062. disable_e0();
  6063. disable_e1();
  6064. disable_e2();
  6065. pinMode(E_MUX0_PIN, OUTPUT);
  6066. pinMode(E_MUX1_PIN, OUTPUT);
  6067. delay(100);
  6068. SERIAL_ECHO_START;
  6069. SERIAL_ECHO("T:");
  6070. SERIAL_ECHOLN((int)tmp_extruder);
  6071. switch (tmp_extruder) {
  6072. case 1:
  6073. WRITE(E_MUX0_PIN, HIGH);
  6074. WRITE(E_MUX1_PIN, LOW);
  6075. break;
  6076. case 2:
  6077. WRITE(E_MUX0_PIN, LOW);
  6078. WRITE(E_MUX1_PIN, HIGH);
  6079. break;
  6080. case 3:
  6081. WRITE(E_MUX0_PIN, HIGH);
  6082. WRITE(E_MUX1_PIN, HIGH);
  6083. break;
  6084. default:
  6085. WRITE(E_MUX0_PIN, LOW);
  6086. WRITE(E_MUX1_PIN, LOW);
  6087. break;
  6088. }
  6089. delay(100);
  6090. #else //SNMM
  6091. if (tmp_extruder >= EXTRUDERS) {
  6092. SERIAL_ECHO_START;
  6093. SERIAL_ECHOPGM("T");
  6094. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6095. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6096. }
  6097. else {
  6098. #if EXTRUDERS > 1
  6099. boolean make_move = false;
  6100. #endif
  6101. if (code_seen('F')) {
  6102. #if EXTRUDERS > 1
  6103. make_move = true;
  6104. #endif
  6105. next_feedrate = code_value();
  6106. if (next_feedrate > 0.0) {
  6107. feedrate = next_feedrate;
  6108. }
  6109. }
  6110. #if EXTRUDERS > 1
  6111. if (tmp_extruder != active_extruder) {
  6112. // Save current position to return to after applying extruder offset
  6113. memcpy(destination, current_position, sizeof(destination));
  6114. // Offset extruder (only by XY)
  6115. int i;
  6116. for (i = 0; i < 2; i++) {
  6117. current_position[i] = current_position[i] -
  6118. extruder_offset[i][active_extruder] +
  6119. extruder_offset[i][tmp_extruder];
  6120. }
  6121. // Set the new active extruder and position
  6122. active_extruder = tmp_extruder;
  6123. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6124. // Move to the old position if 'F' was in the parameters
  6125. if (make_move && Stopped == false) {
  6126. prepare_move();
  6127. }
  6128. }
  6129. #endif
  6130. SERIAL_ECHO_START;
  6131. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6132. SERIAL_PROTOCOLLN((int)active_extruder);
  6133. }
  6134. #endif //SNMM
  6135. }
  6136. }
  6137. } // end if(code_seen('T')) (end of T codes)
  6138. else if (code_seen('D')) // D codes (debug)
  6139. {
  6140. switch((int)code_value())
  6141. {
  6142. #ifdef DEBUG_DCODES
  6143. case -1: //! D-1 - Endless loop
  6144. dcode__1(); break;
  6145. case 0: //! D0 - Reset
  6146. dcode_0(); break;
  6147. case 1: //! D1 - Clear EEPROM
  6148. dcode_1(); break;
  6149. case 2: //! D2 - Read/Write RAM
  6150. dcode_2(); break;
  6151. #endif //DEBUG_DCODES
  6152. #ifdef DEBUG_DCODE3
  6153. case 3: //! D3 - Read/Write EEPROM
  6154. dcode_3(); break;
  6155. #endif //DEBUG_DCODE3
  6156. #ifdef DEBUG_DCODES
  6157. case 4: //! D4 - Read/Write PIN
  6158. dcode_4(); break;
  6159. #endif //DEBUG_DCODES
  6160. #ifdef DEBUG_DCODE5
  6161. case 5: // D5 - Read/Write FLASH
  6162. dcode_5(); break;
  6163. break;
  6164. #endif //DEBUG_DCODE5
  6165. #ifdef DEBUG_DCODES
  6166. case 6: // D6 - Read/Write external FLASH
  6167. dcode_6(); break;
  6168. case 7: //! D7 - Read/Write Bootloader
  6169. dcode_7(); break;
  6170. case 8: //! D8 - Read/Write PINDA
  6171. dcode_8(); break;
  6172. case 9: //! D9 - Read/Write ADC
  6173. dcode_9(); break;
  6174. case 10: //! D10 - XYZ calibration = OK
  6175. dcode_10(); break;
  6176. #ifdef TMC2130
  6177. case 2130: //! D2130 - TMC2130
  6178. dcode_2130(); break;
  6179. #endif //TMC2130
  6180. #ifdef FILAMENT_SENSOR
  6181. case 9125: //! D9125 - FILAMENT_SENSOR
  6182. dcode_9125(); break;
  6183. #endif //FILAMENT_SENSOR
  6184. #endif //DEBUG_DCODES
  6185. }
  6186. }
  6187. else
  6188. {
  6189. SERIAL_ECHO_START;
  6190. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6191. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6192. SERIAL_ECHOLNPGM("\"(2)");
  6193. }
  6194. KEEPALIVE_STATE(NOT_BUSY);
  6195. ClearToSend();
  6196. }
  6197. void FlushSerialRequestResend()
  6198. {
  6199. //char cmdbuffer[bufindr][100]="Resend:";
  6200. MYSERIAL.flush();
  6201. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6202. }
  6203. // Confirm the execution of a command, if sent from a serial line.
  6204. // Execution of a command from a SD card will not be confirmed.
  6205. void ClearToSend()
  6206. {
  6207. previous_millis_cmd = millis();
  6208. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6209. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6210. }
  6211. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6212. void update_currents() {
  6213. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6214. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6215. float tmp_motor[3];
  6216. //SERIAL_ECHOLNPGM("Currents updated: ");
  6217. if (destination[Z_AXIS] < Z_SILENT) {
  6218. //SERIAL_ECHOLNPGM("LOW");
  6219. for (uint8_t i = 0; i < 3; i++) {
  6220. st_current_set(i, current_low[i]);
  6221. /*MYSERIAL.print(int(i));
  6222. SERIAL_ECHOPGM(": ");
  6223. MYSERIAL.println(current_low[i]);*/
  6224. }
  6225. }
  6226. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6227. //SERIAL_ECHOLNPGM("HIGH");
  6228. for (uint8_t i = 0; i < 3; i++) {
  6229. st_current_set(i, current_high[i]);
  6230. /*MYSERIAL.print(int(i));
  6231. SERIAL_ECHOPGM(": ");
  6232. MYSERIAL.println(current_high[i]);*/
  6233. }
  6234. }
  6235. else {
  6236. for (uint8_t i = 0; i < 3; i++) {
  6237. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6238. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6239. st_current_set(i, tmp_motor[i]);
  6240. /*MYSERIAL.print(int(i));
  6241. SERIAL_ECHOPGM(": ");
  6242. MYSERIAL.println(tmp_motor[i]);*/
  6243. }
  6244. }
  6245. }
  6246. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6247. void get_coordinates()
  6248. {
  6249. bool seen[4]={false,false,false,false};
  6250. for(int8_t i=0; i < NUM_AXIS; i++) {
  6251. if(code_seen(axis_codes[i]))
  6252. {
  6253. bool relative = axis_relative_modes[i] || relative_mode;
  6254. destination[i] = (float)code_value();
  6255. if (i == E_AXIS) {
  6256. float emult = extruder_multiplier[active_extruder];
  6257. if (emult != 1.) {
  6258. if (! relative) {
  6259. destination[i] -= current_position[i];
  6260. relative = true;
  6261. }
  6262. destination[i] *= emult;
  6263. }
  6264. }
  6265. if (relative)
  6266. destination[i] += current_position[i];
  6267. seen[i]=true;
  6268. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6269. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6270. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6271. }
  6272. else destination[i] = current_position[i]; //Are these else lines really needed?
  6273. }
  6274. if(code_seen('F')) {
  6275. next_feedrate = code_value();
  6276. #ifdef MAX_SILENT_FEEDRATE
  6277. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6278. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6279. #endif //MAX_SILENT_FEEDRATE
  6280. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6281. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6282. {
  6283. // float e_max_speed =
  6284. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6285. }
  6286. }
  6287. }
  6288. void get_arc_coordinates()
  6289. {
  6290. #ifdef SF_ARC_FIX
  6291. bool relative_mode_backup = relative_mode;
  6292. relative_mode = true;
  6293. #endif
  6294. get_coordinates();
  6295. #ifdef SF_ARC_FIX
  6296. relative_mode=relative_mode_backup;
  6297. #endif
  6298. if(code_seen('I')) {
  6299. offset[0] = code_value();
  6300. }
  6301. else {
  6302. offset[0] = 0.0;
  6303. }
  6304. if(code_seen('J')) {
  6305. offset[1] = code_value();
  6306. }
  6307. else {
  6308. offset[1] = 0.0;
  6309. }
  6310. }
  6311. void clamp_to_software_endstops(float target[3])
  6312. {
  6313. #ifdef DEBUG_DISABLE_SWLIMITS
  6314. return;
  6315. #endif //DEBUG_DISABLE_SWLIMITS
  6316. world2machine_clamp(target[0], target[1]);
  6317. // Clamp the Z coordinate.
  6318. if (min_software_endstops) {
  6319. float negative_z_offset = 0;
  6320. #ifdef ENABLE_AUTO_BED_LEVELING
  6321. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6322. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6323. #endif
  6324. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6325. }
  6326. if (max_software_endstops) {
  6327. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6328. }
  6329. }
  6330. #ifdef MESH_BED_LEVELING
  6331. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6332. float dx = x - current_position[X_AXIS];
  6333. float dy = y - current_position[Y_AXIS];
  6334. float dz = z - current_position[Z_AXIS];
  6335. int n_segments = 0;
  6336. if (mbl.active) {
  6337. float len = abs(dx) + abs(dy);
  6338. if (len > 0)
  6339. // Split to 3cm segments or shorter.
  6340. n_segments = int(ceil(len / 30.f));
  6341. }
  6342. if (n_segments > 1) {
  6343. float de = e - current_position[E_AXIS];
  6344. for (int i = 1; i < n_segments; ++ i) {
  6345. float t = float(i) / float(n_segments);
  6346. if (saved_printing || (mbl.active == false)) return;
  6347. plan_buffer_line(
  6348. current_position[X_AXIS] + t * dx,
  6349. current_position[Y_AXIS] + t * dy,
  6350. current_position[Z_AXIS] + t * dz,
  6351. current_position[E_AXIS] + t * de,
  6352. feed_rate, extruder);
  6353. }
  6354. }
  6355. // The rest of the path.
  6356. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6357. current_position[X_AXIS] = x;
  6358. current_position[Y_AXIS] = y;
  6359. current_position[Z_AXIS] = z;
  6360. current_position[E_AXIS] = e;
  6361. }
  6362. #endif // MESH_BED_LEVELING
  6363. void prepare_move()
  6364. {
  6365. clamp_to_software_endstops(destination);
  6366. previous_millis_cmd = millis();
  6367. // Do not use feedmultiply for E or Z only moves
  6368. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6369. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6370. }
  6371. else {
  6372. #ifdef MESH_BED_LEVELING
  6373. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6374. #else
  6375. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6376. #endif
  6377. }
  6378. for(int8_t i=0; i < NUM_AXIS; i++) {
  6379. current_position[i] = destination[i];
  6380. }
  6381. }
  6382. void prepare_arc_move(char isclockwise) {
  6383. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6384. // Trace the arc
  6385. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6386. // As far as the parser is concerned, the position is now == target. In reality the
  6387. // motion control system might still be processing the action and the real tool position
  6388. // in any intermediate location.
  6389. for(int8_t i=0; i < NUM_AXIS; i++) {
  6390. current_position[i] = destination[i];
  6391. }
  6392. previous_millis_cmd = millis();
  6393. }
  6394. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6395. #if defined(FAN_PIN)
  6396. #if CONTROLLERFAN_PIN == FAN_PIN
  6397. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6398. #endif
  6399. #endif
  6400. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6401. unsigned long lastMotorCheck = 0;
  6402. void controllerFan()
  6403. {
  6404. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6405. {
  6406. lastMotorCheck = millis();
  6407. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6408. #if EXTRUDERS > 2
  6409. || !READ(E2_ENABLE_PIN)
  6410. #endif
  6411. #if EXTRUDER > 1
  6412. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6413. || !READ(X2_ENABLE_PIN)
  6414. #endif
  6415. || !READ(E1_ENABLE_PIN)
  6416. #endif
  6417. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6418. {
  6419. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6420. }
  6421. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6422. {
  6423. digitalWrite(CONTROLLERFAN_PIN, 0);
  6424. analogWrite(CONTROLLERFAN_PIN, 0);
  6425. }
  6426. else
  6427. {
  6428. // allows digital or PWM fan output to be used (see M42 handling)
  6429. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6430. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6431. }
  6432. }
  6433. }
  6434. #endif
  6435. #ifdef TEMP_STAT_LEDS
  6436. static bool blue_led = false;
  6437. static bool red_led = false;
  6438. static uint32_t stat_update = 0;
  6439. void handle_status_leds(void) {
  6440. float max_temp = 0.0;
  6441. if(millis() > stat_update) {
  6442. stat_update += 500; // Update every 0.5s
  6443. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6444. max_temp = max(max_temp, degHotend(cur_extruder));
  6445. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6446. }
  6447. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6448. max_temp = max(max_temp, degTargetBed());
  6449. max_temp = max(max_temp, degBed());
  6450. #endif
  6451. if((max_temp > 55.0) && (red_led == false)) {
  6452. digitalWrite(STAT_LED_RED, 1);
  6453. digitalWrite(STAT_LED_BLUE, 0);
  6454. red_led = true;
  6455. blue_led = false;
  6456. }
  6457. if((max_temp < 54.0) && (blue_led == false)) {
  6458. digitalWrite(STAT_LED_RED, 0);
  6459. digitalWrite(STAT_LED_BLUE, 1);
  6460. red_led = false;
  6461. blue_led = true;
  6462. }
  6463. }
  6464. }
  6465. #endif
  6466. #ifdef SAFETYTIMER
  6467. /**
  6468. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6469. *
  6470. * Full screen blocking notification message is shown after heater turning off.
  6471. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6472. * damage print.
  6473. *
  6474. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6475. */
  6476. static void handleSafetyTimer()
  6477. {
  6478. #if (EXTRUDERS > 1)
  6479. #error Implemented only for one extruder.
  6480. #endif //(EXTRUDERS > 1)
  6481. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6482. {
  6483. safetyTimer.stop();
  6484. }
  6485. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6486. {
  6487. safetyTimer.start();
  6488. }
  6489. else if (safetyTimer.expired(safetytimer_inactive_time))
  6490. {
  6491. setTargetBed(0);
  6492. setAllTargetHotends(0);
  6493. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6494. }
  6495. }
  6496. #endif //SAFETYTIMER
  6497. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6498. {
  6499. #ifdef FILAMENT_SENSOR
  6500. if (mmu_enabled == false)
  6501. {
  6502. if (mcode_in_progress != 600) //M600 not in progress
  6503. {
  6504. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6505. {
  6506. if (fsensor_check_autoload())
  6507. {
  6508. fsensor_autoload_check_stop();
  6509. if (degHotend0() > EXTRUDE_MINTEMP)
  6510. {
  6511. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6512. tone(BEEPER, 1000);
  6513. delay_keep_alive(50);
  6514. noTone(BEEPER);
  6515. loading_flag = true;
  6516. enquecommand_front_P((PSTR("M701")));
  6517. }
  6518. else
  6519. {
  6520. lcd_update_enable(false);
  6521. show_preheat_nozzle_warning();
  6522. lcd_update_enable(true);
  6523. }
  6524. }
  6525. }
  6526. else
  6527. {
  6528. fsensor_autoload_check_stop();
  6529. fsensor_update();
  6530. }
  6531. }
  6532. }
  6533. #endif //FILAMENT_SENSOR
  6534. #ifdef SAFETYTIMER
  6535. handleSafetyTimer();
  6536. #endif //SAFETYTIMER
  6537. #if defined(KILL_PIN) && KILL_PIN > -1
  6538. static int killCount = 0; // make the inactivity button a bit less responsive
  6539. const int KILL_DELAY = 10000;
  6540. #endif
  6541. if(buflen < (BUFSIZE-1)){
  6542. get_command();
  6543. }
  6544. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6545. if(max_inactive_time)
  6546. kill(_n(""), 4);
  6547. if(stepper_inactive_time) {
  6548. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6549. {
  6550. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6551. disable_x();
  6552. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6553. disable_y();
  6554. disable_z();
  6555. disable_e0();
  6556. disable_e1();
  6557. disable_e2();
  6558. }
  6559. }
  6560. }
  6561. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6562. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6563. {
  6564. chdkActive = false;
  6565. WRITE(CHDK, LOW);
  6566. }
  6567. #endif
  6568. #if defined(KILL_PIN) && KILL_PIN > -1
  6569. // Check if the kill button was pressed and wait just in case it was an accidental
  6570. // key kill key press
  6571. // -------------------------------------------------------------------------------
  6572. if( 0 == READ(KILL_PIN) )
  6573. {
  6574. killCount++;
  6575. }
  6576. else if (killCount > 0)
  6577. {
  6578. killCount--;
  6579. }
  6580. // Exceeded threshold and we can confirm that it was not accidental
  6581. // KILL the machine
  6582. // ----------------------------------------------------------------
  6583. if ( killCount >= KILL_DELAY)
  6584. {
  6585. kill("", 5);
  6586. }
  6587. #endif
  6588. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6589. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6590. #endif
  6591. #ifdef EXTRUDER_RUNOUT_PREVENT
  6592. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6593. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6594. {
  6595. bool oldstatus=READ(E0_ENABLE_PIN);
  6596. enable_e0();
  6597. float oldepos=current_position[E_AXIS];
  6598. float oldedes=destination[E_AXIS];
  6599. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6600. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  6601. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  6602. current_position[E_AXIS]=oldepos;
  6603. destination[E_AXIS]=oldedes;
  6604. plan_set_e_position(oldepos);
  6605. previous_millis_cmd=millis();
  6606. st_synchronize();
  6607. WRITE(E0_ENABLE_PIN,oldstatus);
  6608. }
  6609. #endif
  6610. #ifdef TEMP_STAT_LEDS
  6611. handle_status_leds();
  6612. #endif
  6613. check_axes_activity();
  6614. mmu_loop();
  6615. }
  6616. void kill(const char *full_screen_message, unsigned char id)
  6617. {
  6618. printf_P(_N("KILL: %d\n"), id);
  6619. //return;
  6620. cli(); // Stop interrupts
  6621. disable_heater();
  6622. disable_x();
  6623. // SERIAL_ECHOLNPGM("kill - disable Y");
  6624. disable_y();
  6625. disable_z();
  6626. disable_e0();
  6627. disable_e1();
  6628. disable_e2();
  6629. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6630. pinMode(PS_ON_PIN,INPUT);
  6631. #endif
  6632. SERIAL_ERROR_START;
  6633. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6634. if (full_screen_message != NULL) {
  6635. SERIAL_ERRORLNRPGM(full_screen_message);
  6636. lcd_display_message_fullscreen_P(full_screen_message);
  6637. } else {
  6638. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6639. }
  6640. // FMC small patch to update the LCD before ending
  6641. sei(); // enable interrupts
  6642. for ( int i=5; i--; lcd_update(0))
  6643. {
  6644. delay(200);
  6645. }
  6646. cli(); // disable interrupts
  6647. suicide();
  6648. while(1)
  6649. {
  6650. #ifdef WATCHDOG
  6651. wdt_reset();
  6652. #endif //WATCHDOG
  6653. /* Intentionally left empty */
  6654. } // Wait for reset
  6655. }
  6656. void Stop()
  6657. {
  6658. disable_heater();
  6659. if(Stopped == false) {
  6660. Stopped = true;
  6661. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6662. SERIAL_ERROR_START;
  6663. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6664. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6665. }
  6666. }
  6667. bool IsStopped() { return Stopped; };
  6668. #ifdef FAST_PWM_FAN
  6669. void setPwmFrequency(uint8_t pin, int val)
  6670. {
  6671. val &= 0x07;
  6672. switch(digitalPinToTimer(pin))
  6673. {
  6674. #if defined(TCCR0A)
  6675. case TIMER0A:
  6676. case TIMER0B:
  6677. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6678. // TCCR0B |= val;
  6679. break;
  6680. #endif
  6681. #if defined(TCCR1A)
  6682. case TIMER1A:
  6683. case TIMER1B:
  6684. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6685. // TCCR1B |= val;
  6686. break;
  6687. #endif
  6688. #if defined(TCCR2)
  6689. case TIMER2:
  6690. case TIMER2:
  6691. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6692. TCCR2 |= val;
  6693. break;
  6694. #endif
  6695. #if defined(TCCR2A)
  6696. case TIMER2A:
  6697. case TIMER2B:
  6698. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6699. TCCR2B |= val;
  6700. break;
  6701. #endif
  6702. #if defined(TCCR3A)
  6703. case TIMER3A:
  6704. case TIMER3B:
  6705. case TIMER3C:
  6706. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6707. TCCR3B |= val;
  6708. break;
  6709. #endif
  6710. #if defined(TCCR4A)
  6711. case TIMER4A:
  6712. case TIMER4B:
  6713. case TIMER4C:
  6714. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6715. TCCR4B |= val;
  6716. break;
  6717. #endif
  6718. #if defined(TCCR5A)
  6719. case TIMER5A:
  6720. case TIMER5B:
  6721. case TIMER5C:
  6722. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6723. TCCR5B |= val;
  6724. break;
  6725. #endif
  6726. }
  6727. }
  6728. #endif //FAST_PWM_FAN
  6729. //! @brief Get and validate extruder number
  6730. //!
  6731. //! If it is not specified, active_extruder is returned in parameter extruder.
  6732. //! @param [in] code M code number
  6733. //! @param [out] extruder
  6734. //! @return error
  6735. //! @retval true Invalid extruder specified in T code
  6736. //! @retval false Valid extruder specified in T code, or not specifiead
  6737. bool setTargetedHotend(int code, uint8_t &extruder)
  6738. {
  6739. extruder = active_extruder;
  6740. if(code_seen('T')) {
  6741. extruder = code_value();
  6742. if(extruder >= EXTRUDERS) {
  6743. SERIAL_ECHO_START;
  6744. switch(code){
  6745. case 104:
  6746. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6747. break;
  6748. case 105:
  6749. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6750. break;
  6751. case 109:
  6752. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6753. break;
  6754. case 218:
  6755. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6756. break;
  6757. case 221:
  6758. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6759. break;
  6760. }
  6761. SERIAL_PROTOCOLLN((int)extruder);
  6762. return true;
  6763. }
  6764. }
  6765. return false;
  6766. }
  6767. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6768. {
  6769. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6770. {
  6771. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6772. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6773. }
  6774. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6775. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6776. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6777. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6778. total_filament_used = 0;
  6779. }
  6780. float calculate_extruder_multiplier(float diameter) {
  6781. float out = 1.f;
  6782. if (cs.volumetric_enabled && diameter > 0.f) {
  6783. float area = M_PI * diameter * diameter * 0.25;
  6784. out = 1.f / area;
  6785. }
  6786. if (extrudemultiply != 100)
  6787. out *= float(extrudemultiply) * 0.01f;
  6788. return out;
  6789. }
  6790. void calculate_extruder_multipliers() {
  6791. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  6792. #if EXTRUDERS > 1
  6793. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  6794. #if EXTRUDERS > 2
  6795. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  6796. #endif
  6797. #endif
  6798. }
  6799. void delay_keep_alive(unsigned int ms)
  6800. {
  6801. for (;;) {
  6802. manage_heater();
  6803. // Manage inactivity, but don't disable steppers on timeout.
  6804. manage_inactivity(true);
  6805. lcd_update(0);
  6806. if (ms == 0)
  6807. break;
  6808. else if (ms >= 50) {
  6809. delay(50);
  6810. ms -= 50;
  6811. } else {
  6812. delay(ms);
  6813. ms = 0;
  6814. }
  6815. }
  6816. }
  6817. static void wait_for_heater(long codenum, uint8_t extruder) {
  6818. #ifdef TEMP_RESIDENCY_TIME
  6819. long residencyStart;
  6820. residencyStart = -1;
  6821. /* continue to loop until we have reached the target temp
  6822. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6823. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6824. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6825. #else
  6826. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6827. #endif //TEMP_RESIDENCY_TIME
  6828. if ((millis() - codenum) > 1000UL)
  6829. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6830. if (!farm_mode) {
  6831. SERIAL_PROTOCOLPGM("T:");
  6832. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  6833. SERIAL_PROTOCOLPGM(" E:");
  6834. SERIAL_PROTOCOL((int)extruder);
  6835. #ifdef TEMP_RESIDENCY_TIME
  6836. SERIAL_PROTOCOLPGM(" W:");
  6837. if (residencyStart > -1)
  6838. {
  6839. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6840. SERIAL_PROTOCOLLN(codenum);
  6841. }
  6842. else
  6843. {
  6844. SERIAL_PROTOCOLLN("?");
  6845. }
  6846. }
  6847. #else
  6848. SERIAL_PROTOCOLLN("");
  6849. #endif
  6850. codenum = millis();
  6851. }
  6852. manage_heater();
  6853. manage_inactivity();
  6854. lcd_update(0);
  6855. #ifdef TEMP_RESIDENCY_TIME
  6856. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6857. or when current temp falls outside the hysteresis after target temp was reached */
  6858. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  6859. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  6860. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  6861. {
  6862. residencyStart = millis();
  6863. }
  6864. #endif //TEMP_RESIDENCY_TIME
  6865. }
  6866. }
  6867. void check_babystep()
  6868. {
  6869. int babystep_z;
  6870. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6871. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6872. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6873. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6874. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6875. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6876. lcd_update_enable(true);
  6877. }
  6878. }
  6879. #ifdef DIS
  6880. void d_setup()
  6881. {
  6882. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6883. pinMode(D_DATA, INPUT_PULLUP);
  6884. pinMode(D_REQUIRE, OUTPUT);
  6885. digitalWrite(D_REQUIRE, HIGH);
  6886. }
  6887. float d_ReadData()
  6888. {
  6889. int digit[13];
  6890. String mergeOutput;
  6891. float output;
  6892. digitalWrite(D_REQUIRE, HIGH);
  6893. for (int i = 0; i<13; i++)
  6894. {
  6895. for (int j = 0; j < 4; j++)
  6896. {
  6897. while (digitalRead(D_DATACLOCK) == LOW) {}
  6898. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6899. bitWrite(digit[i], j, digitalRead(D_DATA));
  6900. }
  6901. }
  6902. digitalWrite(D_REQUIRE, LOW);
  6903. mergeOutput = "";
  6904. output = 0;
  6905. for (int r = 5; r <= 10; r++) //Merge digits
  6906. {
  6907. mergeOutput += digit[r];
  6908. }
  6909. output = mergeOutput.toFloat();
  6910. if (digit[4] == 8) //Handle sign
  6911. {
  6912. output *= -1;
  6913. }
  6914. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6915. {
  6916. output /= 10;
  6917. }
  6918. return output;
  6919. }
  6920. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6921. int t1 = 0;
  6922. int t_delay = 0;
  6923. int digit[13];
  6924. int m;
  6925. char str[3];
  6926. //String mergeOutput;
  6927. char mergeOutput[15];
  6928. float output;
  6929. int mesh_point = 0; //index number of calibration point
  6930. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6931. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6932. float mesh_home_z_search = 4;
  6933. float row[x_points_num];
  6934. int ix = 0;
  6935. int iy = 0;
  6936. const char* filename_wldsd = "wldsd.txt";
  6937. char data_wldsd[70];
  6938. char numb_wldsd[10];
  6939. d_setup();
  6940. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6941. // We don't know where we are! HOME!
  6942. // Push the commands to the front of the message queue in the reverse order!
  6943. // There shall be always enough space reserved for these commands.
  6944. repeatcommand_front(); // repeat G80 with all its parameters
  6945. enquecommand_front_P((PSTR("G28 W0")));
  6946. enquecommand_front_P((PSTR("G1 Z5")));
  6947. return;
  6948. }
  6949. unsigned int custom_message_type_old = custom_message_type;
  6950. unsigned int custom_message_state_old = custom_message_state;
  6951. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  6952. custom_message_state = (x_points_num * y_points_num) + 10;
  6953. lcd_update(1);
  6954. mbl.reset();
  6955. babystep_undo();
  6956. card.openFile(filename_wldsd, false);
  6957. current_position[Z_AXIS] = mesh_home_z_search;
  6958. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6959. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6960. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6961. int l_feedmultiply = setup_for_endstop_move(false);
  6962. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6963. SERIAL_PROTOCOL(x_points_num);
  6964. SERIAL_PROTOCOLPGM(",");
  6965. SERIAL_PROTOCOL(y_points_num);
  6966. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6967. SERIAL_PROTOCOL(mesh_home_z_search);
  6968. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6969. SERIAL_PROTOCOL(x_dimension);
  6970. SERIAL_PROTOCOLPGM(",");
  6971. SERIAL_PROTOCOL(y_dimension);
  6972. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6973. while (mesh_point != x_points_num * y_points_num) {
  6974. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6975. iy = mesh_point / x_points_num;
  6976. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6977. float z0 = 0.f;
  6978. current_position[Z_AXIS] = mesh_home_z_search;
  6979. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6980. st_synchronize();
  6981. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6982. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6983. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6984. st_synchronize();
  6985. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6986. break;
  6987. card.closefile();
  6988. }
  6989. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6990. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6991. //strcat(data_wldsd, numb_wldsd);
  6992. //MYSERIAL.println(data_wldsd);
  6993. //delay(1000);
  6994. //delay(3000);
  6995. //t1 = millis();
  6996. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6997. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6998. memset(digit, 0, sizeof(digit));
  6999. //cli();
  7000. digitalWrite(D_REQUIRE, LOW);
  7001. for (int i = 0; i<13; i++)
  7002. {
  7003. //t1 = millis();
  7004. for (int j = 0; j < 4; j++)
  7005. {
  7006. while (digitalRead(D_DATACLOCK) == LOW) {}
  7007. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7008. bitWrite(digit[i], j, digitalRead(D_DATA));
  7009. }
  7010. //t_delay = (millis() - t1);
  7011. //SERIAL_PROTOCOLPGM(" ");
  7012. //SERIAL_PROTOCOL_F(t_delay, 5);
  7013. //SERIAL_PROTOCOLPGM(" ");
  7014. }
  7015. //sei();
  7016. digitalWrite(D_REQUIRE, HIGH);
  7017. mergeOutput[0] = '\0';
  7018. output = 0;
  7019. for (int r = 5; r <= 10; r++) //Merge digits
  7020. {
  7021. sprintf(str, "%d", digit[r]);
  7022. strcat(mergeOutput, str);
  7023. }
  7024. output = atof(mergeOutput);
  7025. if (digit[4] == 8) //Handle sign
  7026. {
  7027. output *= -1;
  7028. }
  7029. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7030. {
  7031. output *= 0.1;
  7032. }
  7033. //output = d_ReadData();
  7034. //row[ix] = current_position[Z_AXIS];
  7035. memset(data_wldsd, 0, sizeof(data_wldsd));
  7036. for (int i = 0; i <3; i++) {
  7037. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7038. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7039. strcat(data_wldsd, numb_wldsd);
  7040. strcat(data_wldsd, ";");
  7041. }
  7042. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7043. dtostrf(output, 8, 5, numb_wldsd);
  7044. strcat(data_wldsd, numb_wldsd);
  7045. //strcat(data_wldsd, ";");
  7046. card.write_command(data_wldsd);
  7047. //row[ix] = d_ReadData();
  7048. row[ix] = output; // current_position[Z_AXIS];
  7049. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7050. for (int i = 0; i < x_points_num; i++) {
  7051. SERIAL_PROTOCOLPGM(" ");
  7052. SERIAL_PROTOCOL_F(row[i], 5);
  7053. }
  7054. SERIAL_PROTOCOLPGM("\n");
  7055. }
  7056. custom_message_state--;
  7057. mesh_point++;
  7058. lcd_update(1);
  7059. }
  7060. card.closefile();
  7061. clean_up_after_endstop_move(l_feedmultiply);
  7062. }
  7063. #endif
  7064. void temp_compensation_start() {
  7065. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  7066. custom_message_state = PINDA_HEAT_T + 1;
  7067. lcd_update(2);
  7068. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7069. current_position[E_AXIS] -= default_retraction;
  7070. }
  7071. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7072. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7073. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7074. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7075. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7076. st_synchronize();
  7077. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7078. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7079. delay_keep_alive(1000);
  7080. custom_message_state = PINDA_HEAT_T - i;
  7081. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7082. else lcd_update(1);
  7083. }
  7084. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7085. custom_message_state = 0;
  7086. }
  7087. void temp_compensation_apply() {
  7088. int i_add;
  7089. int z_shift = 0;
  7090. float z_shift_mm;
  7091. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7092. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7093. i_add = (target_temperature_bed - 60) / 10;
  7094. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7095. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7096. }else {
  7097. //interpolation
  7098. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7099. }
  7100. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7101. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7102. st_synchronize();
  7103. plan_set_z_position(current_position[Z_AXIS]);
  7104. }
  7105. else {
  7106. //we have no temp compensation data
  7107. }
  7108. }
  7109. float temp_comp_interpolation(float inp_temperature) {
  7110. //cubic spline interpolation
  7111. int n, i, j;
  7112. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7113. int shift[10];
  7114. int temp_C[10];
  7115. n = 6; //number of measured points
  7116. shift[0] = 0;
  7117. for (i = 0; i < n; i++) {
  7118. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7119. temp_C[i] = 50 + i * 10; //temperature in C
  7120. #ifdef PINDA_THERMISTOR
  7121. temp_C[i] = 35 + i * 5; //temperature in C
  7122. #else
  7123. temp_C[i] = 50 + i * 10; //temperature in C
  7124. #endif
  7125. x[i] = (float)temp_C[i];
  7126. f[i] = (float)shift[i];
  7127. }
  7128. if (inp_temperature < x[0]) return 0;
  7129. for (i = n - 1; i>0; i--) {
  7130. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7131. h[i - 1] = x[i] - x[i - 1];
  7132. }
  7133. //*********** formation of h, s , f matrix **************
  7134. for (i = 1; i<n - 1; i++) {
  7135. m[i][i] = 2 * (h[i - 1] + h[i]);
  7136. if (i != 1) {
  7137. m[i][i - 1] = h[i - 1];
  7138. m[i - 1][i] = h[i - 1];
  7139. }
  7140. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7141. }
  7142. //*********** forward elimination **************
  7143. for (i = 1; i<n - 2; i++) {
  7144. temp = (m[i + 1][i] / m[i][i]);
  7145. for (j = 1; j <= n - 1; j++)
  7146. m[i + 1][j] -= temp*m[i][j];
  7147. }
  7148. //*********** backward substitution *********
  7149. for (i = n - 2; i>0; i--) {
  7150. sum = 0;
  7151. for (j = i; j <= n - 2; j++)
  7152. sum += m[i][j] * s[j];
  7153. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7154. }
  7155. for (i = 0; i<n - 1; i++)
  7156. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7157. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7158. b = s[i] / 2;
  7159. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7160. d = f[i];
  7161. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7162. }
  7163. return sum;
  7164. }
  7165. #ifdef PINDA_THERMISTOR
  7166. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7167. {
  7168. if (!temp_cal_active) return 0;
  7169. if (!calibration_status_pinda()) return 0;
  7170. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7171. }
  7172. #endif //PINDA_THERMISTOR
  7173. void long_pause() //long pause print
  7174. {
  7175. st_synchronize();
  7176. start_pause_print = millis();
  7177. //retract
  7178. current_position[E_AXIS] -= default_retraction;
  7179. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7180. //lift z
  7181. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7182. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7183. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7184. //Move XY to side
  7185. current_position[X_AXIS] = X_PAUSE_POS;
  7186. current_position[Y_AXIS] = Y_PAUSE_POS;
  7187. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7188. // Turn off the print fan
  7189. fanSpeed = 0;
  7190. st_synchronize();
  7191. }
  7192. void serialecho_temperatures() {
  7193. float tt = degHotend(active_extruder);
  7194. SERIAL_PROTOCOLPGM("T:");
  7195. SERIAL_PROTOCOL(tt);
  7196. SERIAL_PROTOCOLPGM(" E:");
  7197. SERIAL_PROTOCOL((int)active_extruder);
  7198. SERIAL_PROTOCOLPGM(" B:");
  7199. SERIAL_PROTOCOL_F(degBed(), 1);
  7200. SERIAL_PROTOCOLLN("");
  7201. }
  7202. extern uint32_t sdpos_atomic;
  7203. #ifdef UVLO_SUPPORT
  7204. void uvlo_()
  7205. {
  7206. unsigned long time_start = millis();
  7207. bool sd_print = card.sdprinting;
  7208. // Conserve power as soon as possible.
  7209. disable_x();
  7210. disable_y();
  7211. #ifdef TMC2130
  7212. tmc2130_set_current_h(Z_AXIS, 20);
  7213. tmc2130_set_current_r(Z_AXIS, 20);
  7214. tmc2130_set_current_h(E_AXIS, 20);
  7215. tmc2130_set_current_r(E_AXIS, 20);
  7216. #endif //TMC2130
  7217. // Indicate that the interrupt has been triggered.
  7218. // SERIAL_ECHOLNPGM("UVLO");
  7219. // Read out the current Z motor microstep counter. This will be later used
  7220. // for reaching the zero full step before powering off.
  7221. uint16_t z_microsteps = 0;
  7222. #ifdef TMC2130
  7223. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7224. #endif //TMC2130
  7225. // Calculate the file position, from which to resume this print.
  7226. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7227. {
  7228. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7229. sd_position -= sdlen_planner;
  7230. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7231. sd_position -= sdlen_cmdqueue;
  7232. if (sd_position < 0) sd_position = 0;
  7233. }
  7234. // Backup the feedrate in mm/min.
  7235. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7236. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7237. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7238. // are in action.
  7239. planner_abort_hard();
  7240. // Store the current extruder position.
  7241. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7242. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7243. // Clean the input command queue.
  7244. cmdqueue_reset();
  7245. card.sdprinting = false;
  7246. // card.closefile();
  7247. // Enable stepper driver interrupt to move Z axis.
  7248. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7249. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7250. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7251. sei();
  7252. plan_buffer_line(
  7253. current_position[X_AXIS],
  7254. current_position[Y_AXIS],
  7255. current_position[Z_AXIS],
  7256. current_position[E_AXIS] - default_retraction,
  7257. 95, active_extruder);
  7258. st_synchronize();
  7259. disable_e0();
  7260. plan_buffer_line(
  7261. current_position[X_AXIS],
  7262. current_position[Y_AXIS],
  7263. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7264. current_position[E_AXIS] - default_retraction,
  7265. 40, active_extruder);
  7266. st_synchronize();
  7267. disable_e0();
  7268. plan_buffer_line(
  7269. current_position[X_AXIS],
  7270. current_position[Y_AXIS],
  7271. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7272. current_position[E_AXIS] - default_retraction,
  7273. 40, active_extruder);
  7274. st_synchronize();
  7275. disable_e0();
  7276. disable_z();
  7277. // Move Z up to the next 0th full step.
  7278. // Write the file position.
  7279. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7280. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7281. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7282. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7283. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7284. // Scale the z value to 1u resolution.
  7285. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7286. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7287. }
  7288. // Read out the current Z motor microstep counter. This will be later used
  7289. // for reaching the zero full step before powering off.
  7290. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7291. // Store the current position.
  7292. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7293. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7294. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7295. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7296. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7297. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7298. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7299. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7300. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7301. #if EXTRUDERS > 1
  7302. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7303. #if EXTRUDERS > 2
  7304. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7305. #endif
  7306. #endif
  7307. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7308. // Finaly store the "power outage" flag.
  7309. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7310. st_synchronize();
  7311. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7312. disable_z();
  7313. // Increment power failure counter
  7314. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7315. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7316. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7317. #if 0
  7318. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7319. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7320. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7321. st_synchronize();
  7322. #endif
  7323. wdt_enable(WDTO_500MS);
  7324. WRITE(BEEPER,HIGH);
  7325. while(1)
  7326. ;
  7327. }
  7328. void uvlo_tiny()
  7329. {
  7330. uint16_t z_microsteps=0;
  7331. // Conserve power as soon as possible.
  7332. disable_x();
  7333. disable_y();
  7334. disable_e0();
  7335. #ifdef TMC2130
  7336. tmc2130_set_current_h(Z_AXIS, 20);
  7337. tmc2130_set_current_r(Z_AXIS, 20);
  7338. #endif //TMC2130
  7339. // Read out the current Z motor microstep counter
  7340. #ifdef TMC2130
  7341. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7342. #endif //TMC2130
  7343. planner_abort_hard();
  7344. sei();
  7345. plan_buffer_line(
  7346. current_position[X_AXIS],
  7347. current_position[Y_AXIS],
  7348. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7349. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/cs.axis_steps_per_unit[Z_AXIS],
  7350. current_position[E_AXIS],
  7351. 40, active_extruder);
  7352. st_synchronize();
  7353. disable_z();
  7354. // Finaly store the "power outage" flag.
  7355. //if(sd_print)
  7356. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7357. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7358. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7359. // Increment power failure counter
  7360. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7361. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7362. wdt_enable(WDTO_500MS);
  7363. WRITE(BEEPER,HIGH);
  7364. while(1)
  7365. ;
  7366. }
  7367. #endif //UVLO_SUPPORT
  7368. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7369. void setup_fan_interrupt() {
  7370. //INT7
  7371. DDRE &= ~(1 << 7); //input pin
  7372. PORTE &= ~(1 << 7); //no internal pull-up
  7373. //start with sensing rising edge
  7374. EICRB &= ~(1 << 6);
  7375. EICRB |= (1 << 7);
  7376. //enable INT7 interrupt
  7377. EIMSK |= (1 << 7);
  7378. }
  7379. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7380. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7381. ISR(INT7_vect) {
  7382. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7383. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7384. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7385. t_fan_rising_edge = millis_nc();
  7386. }
  7387. else { //interrupt was triggered by falling edge
  7388. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7389. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7390. }
  7391. }
  7392. EICRB ^= (1 << 6); //change edge
  7393. }
  7394. #endif
  7395. #ifdef UVLO_SUPPORT
  7396. void setup_uvlo_interrupt() {
  7397. DDRE &= ~(1 << 4); //input pin
  7398. PORTE &= ~(1 << 4); //no internal pull-up
  7399. //sensing falling edge
  7400. EICRB |= (1 << 0);
  7401. EICRB &= ~(1 << 1);
  7402. //enable INT4 interrupt
  7403. EIMSK |= (1 << 4);
  7404. }
  7405. ISR(INT4_vect) {
  7406. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7407. SERIAL_ECHOLNPGM("INT4");
  7408. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7409. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7410. }
  7411. void recover_print(uint8_t automatic) {
  7412. char cmd[30];
  7413. lcd_update_enable(true);
  7414. lcd_update(2);
  7415. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7416. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7417. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7418. // Lift the print head, so one may remove the excess priming material.
  7419. if(!bTiny&&(current_position[Z_AXIS]<25))
  7420. enquecommand_P(PSTR("G1 Z25 F800"));
  7421. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7422. enquecommand_P(PSTR("G28 X Y"));
  7423. // Set the target bed and nozzle temperatures and wait.
  7424. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7425. enquecommand(cmd);
  7426. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7427. enquecommand(cmd);
  7428. enquecommand_P(PSTR("M83")); //E axis relative mode
  7429. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7430. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7431. if(automatic == 0){
  7432. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7433. }
  7434. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7435. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7436. // Restart the print.
  7437. restore_print_from_eeprom();
  7438. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7439. }
  7440. void recover_machine_state_after_power_panic(bool bTiny)
  7441. {
  7442. char cmd[30];
  7443. // 1) Recover the logical cordinates at the time of the power panic.
  7444. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7445. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7446. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7447. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7448. // The current position after power panic is moved to the next closest 0th full step.
  7449. if(bTiny)
  7450. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7451. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7452. else
  7453. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7454. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7455. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7456. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7457. sprintf_P(cmd, PSTR("G92 E"));
  7458. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7459. enquecommand(cmd);
  7460. }
  7461. memcpy(destination, current_position, sizeof(destination));
  7462. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7463. print_world_coordinates();
  7464. // 2) Initialize the logical to physical coordinate system transformation.
  7465. world2machine_initialize();
  7466. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7467. mbl.active = false;
  7468. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7469. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7470. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7471. // Scale the z value to 10u resolution.
  7472. int16_t v;
  7473. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7474. if (v != 0)
  7475. mbl.active = true;
  7476. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7477. }
  7478. if (mbl.active)
  7479. mbl.upsample_3x3();
  7480. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7481. // print_mesh_bed_leveling_table();
  7482. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7483. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7484. babystep_load();
  7485. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7486. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7487. // 6) Power up the motors, mark their positions as known.
  7488. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7489. axis_known_position[X_AXIS] = true; enable_x();
  7490. axis_known_position[Y_AXIS] = true; enable_y();
  7491. axis_known_position[Z_AXIS] = true; enable_z();
  7492. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7493. print_physical_coordinates();
  7494. // 7) Recover the target temperatures.
  7495. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7496. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7497. // 8) Recover extruder multipilers
  7498. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7499. #if EXTRUDERS > 1
  7500. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7501. #if EXTRUDERS > 2
  7502. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7503. #endif
  7504. #endif
  7505. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7506. }
  7507. void restore_print_from_eeprom() {
  7508. int feedrate_rec;
  7509. uint8_t fan_speed_rec;
  7510. char cmd[30];
  7511. char filename[13];
  7512. uint8_t depth = 0;
  7513. char dir_name[9];
  7514. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7515. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7516. SERIAL_ECHOPGM("Feedrate:");
  7517. MYSERIAL.println(feedrate_rec);
  7518. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7519. MYSERIAL.println(int(depth));
  7520. for (int i = 0; i < depth; i++) {
  7521. for (int j = 0; j < 8; j++) {
  7522. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7523. }
  7524. dir_name[8] = '\0';
  7525. MYSERIAL.println(dir_name);
  7526. strcpy(dir_names[i], dir_name);
  7527. card.chdir(dir_name);
  7528. }
  7529. for (int i = 0; i < 8; i++) {
  7530. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7531. }
  7532. filename[8] = '\0';
  7533. MYSERIAL.print(filename);
  7534. strcat_P(filename, PSTR(".gco"));
  7535. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7536. enquecommand(cmd);
  7537. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7538. SERIAL_ECHOPGM("Position read from eeprom:");
  7539. MYSERIAL.println(position);
  7540. // E axis relative mode.
  7541. enquecommand_P(PSTR("M83"));
  7542. // Move to the XY print position in logical coordinates, where the print has been killed.
  7543. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7544. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7545. strcat_P(cmd, PSTR(" F2000"));
  7546. enquecommand(cmd);
  7547. // Move the Z axis down to the print, in logical coordinates.
  7548. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7549. enquecommand(cmd);
  7550. // Unretract.
  7551. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7552. // Set the feedrate saved at the power panic.
  7553. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7554. enquecommand(cmd);
  7555. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7556. {
  7557. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7558. }
  7559. // Set the fan speed saved at the power panic.
  7560. strcpy_P(cmd, PSTR("M106 S"));
  7561. strcat(cmd, itostr3(int(fan_speed_rec)));
  7562. enquecommand(cmd);
  7563. // Set a position in the file.
  7564. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7565. enquecommand(cmd);
  7566. enquecommand_P(PSTR("G4 S0"));
  7567. enquecommand_P(PSTR("PRUSA uvlo"));
  7568. }
  7569. #endif //UVLO_SUPPORT
  7570. //! @brief Immediately stop print moves
  7571. //!
  7572. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  7573. //! If printing from sd card, position in file is saved.
  7574. //! If printing from USB, line number is saved.
  7575. //!
  7576. //! @param z_move
  7577. //! @param e_move
  7578. void stop_and_save_print_to_ram(float z_move, float e_move)
  7579. {
  7580. if (saved_printing) return;
  7581. #if 0
  7582. unsigned char nplanner_blocks;
  7583. #endif
  7584. unsigned char nlines;
  7585. uint16_t sdlen_planner;
  7586. uint16_t sdlen_cmdqueue;
  7587. cli();
  7588. if (card.sdprinting) {
  7589. #if 0
  7590. nplanner_blocks = number_of_blocks();
  7591. #endif
  7592. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7593. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7594. saved_sdpos -= sdlen_planner;
  7595. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7596. saved_sdpos -= sdlen_cmdqueue;
  7597. saved_printing_type = PRINTING_TYPE_SD;
  7598. }
  7599. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7600. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7601. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7602. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7603. saved_sdpos -= nlines;
  7604. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7605. saved_printing_type = PRINTING_TYPE_USB;
  7606. }
  7607. else {
  7608. //not sd printing nor usb printing
  7609. }
  7610. #if 0
  7611. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7612. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7613. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7614. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7615. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7616. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7617. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7618. {
  7619. card.setIndex(saved_sdpos);
  7620. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7621. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7622. MYSERIAL.print(char(card.get()));
  7623. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7624. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7625. MYSERIAL.print(char(card.get()));
  7626. SERIAL_ECHOLNPGM("End of command buffer");
  7627. }
  7628. {
  7629. // Print the content of the planner buffer, line by line:
  7630. card.setIndex(saved_sdpos);
  7631. int8_t iline = 0;
  7632. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7633. SERIAL_ECHOPGM("Planner line (from file): ");
  7634. MYSERIAL.print(int(iline), DEC);
  7635. SERIAL_ECHOPGM(", length: ");
  7636. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7637. SERIAL_ECHOPGM(", steps: (");
  7638. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7639. SERIAL_ECHOPGM(",");
  7640. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7641. SERIAL_ECHOPGM(",");
  7642. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7643. SERIAL_ECHOPGM(",");
  7644. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7645. SERIAL_ECHOPGM("), events: ");
  7646. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7647. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7648. MYSERIAL.print(char(card.get()));
  7649. }
  7650. }
  7651. {
  7652. // Print the content of the command buffer, line by line:
  7653. int8_t iline = 0;
  7654. union {
  7655. struct {
  7656. char lo;
  7657. char hi;
  7658. } lohi;
  7659. uint16_t value;
  7660. } sdlen_single;
  7661. int _bufindr = bufindr;
  7662. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7663. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7664. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7665. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7666. }
  7667. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7668. MYSERIAL.print(int(iline), DEC);
  7669. SERIAL_ECHOPGM(", type: ");
  7670. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7671. SERIAL_ECHOPGM(", len: ");
  7672. MYSERIAL.println(sdlen_single.value, DEC);
  7673. // Print the content of the buffer line.
  7674. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7675. SERIAL_ECHOPGM("Buffer line (from file): ");
  7676. MYSERIAL.println(int(iline), DEC);
  7677. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7678. MYSERIAL.print(char(card.get()));
  7679. if (-- _buflen == 0)
  7680. break;
  7681. // First skip the current command ID and iterate up to the end of the string.
  7682. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7683. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7684. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7685. // If the end of the buffer was empty,
  7686. if (_bufindr == sizeof(cmdbuffer)) {
  7687. // skip to the start and find the nonzero command.
  7688. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7689. }
  7690. }
  7691. }
  7692. #endif
  7693. #if 0
  7694. saved_feedrate2 = feedrate; //save feedrate
  7695. #else
  7696. // Try to deduce the feedrate from the first block of the planner.
  7697. // Speed is in mm/min.
  7698. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7699. #endif
  7700. planner_abort_hard(); //abort printing
  7701. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7702. saved_active_extruder = active_extruder; //save active_extruder
  7703. saved_extruder_temperature = degTargetHotend(active_extruder);
  7704. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7705. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7706. saved_fanSpeed = fanSpeed;
  7707. cmdqueue_reset(); //empty cmdqueue
  7708. card.sdprinting = false;
  7709. // card.closefile();
  7710. saved_printing = true;
  7711. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7712. st_reset_timer();
  7713. sei();
  7714. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7715. #if 1
  7716. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7717. char buf[48];
  7718. // First unretract (relative extrusion)
  7719. if(!saved_extruder_relative_mode){
  7720. strcpy_P(buf, PSTR("M83"));
  7721. enquecommand(buf, false);
  7722. }
  7723. //retract 45mm/s
  7724. strcpy_P(buf, PSTR("G1 E"));
  7725. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7726. strcat_P(buf, PSTR(" F"));
  7727. dtostrf(2700, 8, 3, buf + strlen(buf));
  7728. enquecommand(buf, false);
  7729. // Then lift Z axis
  7730. strcpy_P(buf, PSTR("G1 Z"));
  7731. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7732. strcat_P(buf, PSTR(" F"));
  7733. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7734. // At this point the command queue is empty.
  7735. enquecommand(buf, false);
  7736. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7737. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7738. repeatcommand_front();
  7739. #else
  7740. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7741. st_synchronize(); //wait moving
  7742. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7743. memcpy(destination, current_position, sizeof(destination));
  7744. #endif
  7745. }
  7746. }
  7747. //! @brief Restore print from ram
  7748. //!
  7749. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  7750. //! waits for extruder temperature restore, then restores position and continues
  7751. //! print moves.
  7752. //! Internaly lcd_update() is called by wait_for_heater().
  7753. //!
  7754. //! @param e_move
  7755. void restore_print_from_ram_and_continue(float e_move)
  7756. {
  7757. if (!saved_printing) return;
  7758. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7759. // current_position[axis] = st_get_position_mm(axis);
  7760. active_extruder = saved_active_extruder; //restore active_extruder
  7761. setTargetHotendSafe(saved_extruder_temperature,saved_active_extruder);
  7762. heating_status = 1;
  7763. wait_for_heater(millis(),saved_active_extruder);
  7764. heating_status = 2;
  7765. feedrate = saved_feedrate2; //restore feedrate
  7766. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7767. fanSpeed = saved_fanSpeed;
  7768. float e = saved_pos[E_AXIS] - e_move;
  7769. plan_set_e_position(e);
  7770. //first move print head in XY to the saved position:
  7771. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7772. st_synchronize();
  7773. //then move Z
  7774. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7775. st_synchronize();
  7776. //and finaly unretract (35mm/s)
  7777. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7778. st_synchronize();
  7779. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7780. memcpy(destination, current_position, sizeof(destination));
  7781. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7782. card.setIndex(saved_sdpos);
  7783. sdpos_atomic = saved_sdpos;
  7784. card.sdprinting = true;
  7785. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7786. }
  7787. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7788. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7789. serial_count = 0;
  7790. FlushSerialRequestResend();
  7791. }
  7792. else {
  7793. //not sd printing nor usb printing
  7794. }
  7795. lcd_setstatuspgm(_T(WELCOME_MSG));
  7796. saved_printing = false;
  7797. }
  7798. void print_world_coordinates()
  7799. {
  7800. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7801. }
  7802. void print_physical_coordinates()
  7803. {
  7804. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7805. }
  7806. void print_mesh_bed_leveling_table()
  7807. {
  7808. SERIAL_ECHOPGM("mesh bed leveling: ");
  7809. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7810. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7811. MYSERIAL.print(mbl.z_values[y][x], 3);
  7812. SERIAL_ECHOPGM(" ");
  7813. }
  7814. SERIAL_ECHOLNPGM("");
  7815. }
  7816. uint16_t print_time_remaining() {
  7817. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7818. #ifdef TMC2130
  7819. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7820. else print_t = print_time_remaining_silent;
  7821. #else
  7822. print_t = print_time_remaining_normal;
  7823. #endif //TMC2130
  7824. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  7825. return print_t;
  7826. }
  7827. uint8_t calc_percent_done()
  7828. {
  7829. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7830. uint8_t percent_done = 0;
  7831. #ifdef TMC2130
  7832. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7833. percent_done = print_percent_done_normal;
  7834. }
  7835. else if (print_percent_done_silent <= 100) {
  7836. percent_done = print_percent_done_silent;
  7837. }
  7838. #else
  7839. if (print_percent_done_normal <= 100) {
  7840. percent_done = print_percent_done_normal;
  7841. }
  7842. #endif //TMC2130
  7843. else {
  7844. percent_done = card.percentDone();
  7845. }
  7846. return percent_done;
  7847. }
  7848. static void print_time_remaining_init()
  7849. {
  7850. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7851. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7852. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7853. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7854. }
  7855. void load_filament_final_feed()
  7856. {
  7857. st_synchronize();
  7858. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  7859. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 200/60, active_extruder);
  7860. st_synchronize();
  7861. }
  7862. void M600_check_state()
  7863. {
  7864. //Wait for user to check the state
  7865. lcd_change_fil_state = 0;
  7866. while (lcd_change_fil_state != 1){
  7867. lcd_change_fil_state = 0;
  7868. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7869. lcd_alright();
  7870. KEEPALIVE_STATE(IN_HANDLER);
  7871. switch(lcd_change_fil_state){
  7872. // Filament failed to load so load it again
  7873. case 2:
  7874. if (mmu_enabled)
  7875. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  7876. else
  7877. M600_load_filament_movements();
  7878. break;
  7879. // Filament loaded properly but color is not clear
  7880. case 3:
  7881. st_synchronize();
  7882. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  7883. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 200/60, active_extruder);
  7884. lcd_loading_color();
  7885. break;
  7886. // Everything good
  7887. default:
  7888. lcd_change_success();
  7889. break;
  7890. }
  7891. }
  7892. }
  7893. //! @brief Wait for user action
  7894. //!
  7895. //! Beep, manage nozzle heater and wait for user to start unload filament
  7896. //! If times out, active extruder temperature is set to 0.
  7897. //!
  7898. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  7899. void M600_wait_for_user(float HotendTempBckp) {
  7900. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7901. int counterBeep = 0;
  7902. unsigned long waiting_start_time = millis();
  7903. uint8_t wait_for_user_state = 0;
  7904. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7905. bool bFirst=true;
  7906. while (!(wait_for_user_state == 0 && lcd_clicked())){
  7907. manage_heater();
  7908. manage_inactivity(true);
  7909. #if BEEPER > 0
  7910. if (counterBeep == 500) {
  7911. counterBeep = 0;
  7912. }
  7913. SET_OUTPUT(BEEPER);
  7914. if (counterBeep == 0) {
  7915. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  7916. {
  7917. bFirst=false;
  7918. WRITE(BEEPER, HIGH);
  7919. }
  7920. }
  7921. if (counterBeep == 20) {
  7922. WRITE(BEEPER, LOW);
  7923. }
  7924. counterBeep++;
  7925. #endif //BEEPER > 0
  7926. switch (wait_for_user_state) {
  7927. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  7928. delay_keep_alive(4);
  7929. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  7930. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  7931. wait_for_user_state = 1;
  7932. setAllTargetHotends(0);
  7933. st_synchronize();
  7934. disable_e0();
  7935. disable_e1();
  7936. disable_e2();
  7937. }
  7938. break;
  7939. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  7940. delay_keep_alive(4);
  7941. if (lcd_clicked()) {
  7942. setTargetHotend(HotendTempBckp, active_extruder);
  7943. lcd_wait_for_heater();
  7944. wait_for_user_state = 2;
  7945. }
  7946. break;
  7947. case 2: //waiting for nozzle to reach target temperature
  7948. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  7949. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7950. waiting_start_time = millis();
  7951. wait_for_user_state = 0;
  7952. }
  7953. else {
  7954. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  7955. lcd_set_cursor(1, 4);
  7956. lcd_print(ftostr3(degHotend(active_extruder)));
  7957. }
  7958. break;
  7959. }
  7960. }
  7961. WRITE(BEEPER, LOW);
  7962. }
  7963. void M600_load_filament_movements()
  7964. {
  7965. #ifdef SNMM
  7966. display_loading();
  7967. do
  7968. {
  7969. current_position[E_AXIS] += 0.002;
  7970. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7971. delay_keep_alive(2);
  7972. }
  7973. while (!lcd_clicked());
  7974. st_synchronize();
  7975. current_position[E_AXIS] += bowden_length[mmu_extruder];
  7976. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  7977. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  7978. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  7979. current_position[E_AXIS] += 40;
  7980. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7981. current_position[E_AXIS] += 10;
  7982. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7983. #else
  7984. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  7985. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  7986. #endif
  7987. load_filament_final_feed();
  7988. lcd_loading_filament();
  7989. }
  7990. void M600_load_filament() {
  7991. //load filament for single material and SNMM
  7992. lcd_wait_interact();
  7993. //load_filament_time = millis();
  7994. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7995. #ifdef FILAMENT_SENSOR
  7996. fsensor_autoload_check_start();
  7997. #endif //FILAMENT_SENSOR
  7998. while(!lcd_clicked())
  7999. {
  8000. manage_heater();
  8001. manage_inactivity(true);
  8002. #ifdef FILAMENT_SENSOR
  8003. if (fsensor_check_autoload())
  8004. {
  8005. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8006. tone(BEEPER, 1000);
  8007. delay_keep_alive(50);
  8008. noTone(BEEPER);
  8009. break;
  8010. }
  8011. #endif //FILAMENT_SENSOR
  8012. }
  8013. #ifdef FILAMENT_SENSOR
  8014. fsensor_autoload_check_stop();
  8015. #endif //FILAMENT_SENSOR
  8016. KEEPALIVE_STATE(IN_HANDLER);
  8017. #ifdef FSENSOR_QUALITY
  8018. fsensor_oq_meassure_start(70);
  8019. #endif //FSENSOR_QUALITY
  8020. M600_load_filament_movements();
  8021. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8022. tone(BEEPER, 500);
  8023. delay_keep_alive(50);
  8024. noTone(BEEPER);
  8025. #ifdef FSENSOR_QUALITY
  8026. fsensor_oq_meassure_stop();
  8027. if (!fsensor_oq_result())
  8028. {
  8029. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8030. lcd_update_enable(true);
  8031. lcd_update(2);
  8032. if (disable)
  8033. fsensor_disable();
  8034. }
  8035. #endif //FSENSOR_QUALITY
  8036. lcd_update_enable(false);
  8037. }
  8038. #define FIL_LOAD_LENGTH 60