Marlin_main.cpp 177 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #endif
  33. #include "ultralcd.h"
  34. #include "Configuration_prusa.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #ifdef ULTRALCD
  50. #include "ultralcd.h"
  51. #endif
  52. #if NUM_SERVOS > 0
  53. #include "Servo.h"
  54. #endif
  55. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  56. #include <SPI.h>
  57. #endif
  58. #define VERSION_STRING "1.0.2"
  59. #include "ultralcd.h"
  60. // Macros for bit masks
  61. #define BIT(b) (1<<(b))
  62. #define TEST(n,b) (((n)&BIT(b))!=0)
  63. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  64. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  65. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  66. //Implemented Codes
  67. //-------------------
  68. // PRUSA CODES
  69. // P F - Returns FW versions
  70. // P R - Returns revision of printer
  71. // G0 -> G1
  72. // G1 - Coordinated Movement X Y Z E
  73. // G2 - CW ARC
  74. // G3 - CCW ARC
  75. // G4 - Dwell S<seconds> or P<milliseconds>
  76. // G10 - retract filament according to settings of M207
  77. // G11 - retract recover filament according to settings of M208
  78. // G28 - Home all Axis
  79. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  80. // G30 - Single Z Probe, probes bed at current XY location.
  81. // G31 - Dock sled (Z_PROBE_SLED only)
  82. // G32 - Undock sled (Z_PROBE_SLED only)
  83. // G80 - Automatic mesh bed leveling
  84. // G81 - Print bed profile
  85. // G90 - Use Absolute Coordinates
  86. // G91 - Use Relative Coordinates
  87. // G92 - Set current position to coordinates given
  88. // M Codes
  89. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  90. // M1 - Same as M0
  91. // M17 - Enable/Power all stepper motors
  92. // M18 - Disable all stepper motors; same as M84
  93. // M20 - List SD card
  94. // M21 - Init SD card
  95. // M22 - Release SD card
  96. // M23 - Select SD file (M23 filename.g)
  97. // M24 - Start/resume SD print
  98. // M25 - Pause SD print
  99. // M26 - Set SD position in bytes (M26 S12345)
  100. // M27 - Report SD print status
  101. // M28 - Start SD write (M28 filename.g)
  102. // M29 - Stop SD write
  103. // M30 - Delete file from SD (M30 filename.g)
  104. // M31 - Output time since last M109 or SD card start to serial
  105. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  106. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  107. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  108. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  109. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  110. // M80 - Turn on Power Supply
  111. // M81 - Turn off Power Supply
  112. // M82 - Set E codes absolute (default)
  113. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  114. // M84 - Disable steppers until next move,
  115. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  116. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  117. // M92 - Set axis_steps_per_unit - same syntax as G92
  118. // M104 - Set extruder target temp
  119. // M105 - Read current temp
  120. // M106 - Fan on
  121. // M107 - Fan off
  122. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  123. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  124. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  125. // M112 - Emergency stop
  126. // M114 - Output current position to serial port
  127. // M115 - Capabilities string
  128. // M117 - display message
  129. // M119 - Output Endstop status to serial port
  130. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  131. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  132. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  133. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  134. // M140 - Set bed target temp
  135. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  136. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  137. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  138. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  139. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  140. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  141. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  142. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  143. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  144. // M206 - set additional homing offset
  145. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  146. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  147. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  148. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  149. // M220 S<factor in percent>- set speed factor override percentage
  150. // M221 S<factor in percent>- set extrude factor override percentage
  151. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  152. // M240 - Trigger a camera to take a photograph
  153. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  154. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  155. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  156. // M301 - Set PID parameters P I and D
  157. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  158. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  159. // M304 - Set bed PID parameters P I and D
  160. // M400 - Finish all moves
  161. // M401 - Lower z-probe if present
  162. // M402 - Raise z-probe if present
  163. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  164. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  165. // M406 - Turn off Filament Sensor extrusion control
  166. // M407 - Displays measured filament diameter
  167. // M500 - stores parameters in EEPROM
  168. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  169. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  170. // M503 - print the current settings (from memory not from EEPROM)
  171. // M509 - force language selection on next restart
  172. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  173. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  174. // M665 - set delta configurations
  175. // M666 - set delta endstop adjustment
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // ************ SCARA Specific - This can change to suit future G-code regulations
  182. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  183. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  184. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  185. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  186. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  187. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  188. //************* SCARA End ***************
  189. // M928 - Start SD logging (M928 filename.g) - ended by M29
  190. // M999 - Restart after being stopped by error
  191. //Stepper Movement Variables
  192. //===========================================================================
  193. //=============================imported variables============================
  194. //===========================================================================
  195. //===========================================================================
  196. //=============================public variables=============================
  197. //===========================================================================
  198. #ifdef SDSUPPORT
  199. CardReader card;
  200. #endif
  201. union Data
  202. {
  203. byte b[2];
  204. int value;
  205. };
  206. int babystepLoad[3];
  207. float homing_feedrate[] = HOMING_FEEDRATE;
  208. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  209. int feedmultiply=100; //100->1 200->2
  210. int saved_feedmultiply;
  211. int extrudemultiply=100; //100->1 200->2
  212. int extruder_multiply[EXTRUDERS] = {100
  213. #if EXTRUDERS > 1
  214. , 100
  215. #if EXTRUDERS > 2
  216. , 100
  217. #endif
  218. #endif
  219. };
  220. int lcd_change_fil_state = 0;
  221. int feedmultiplyBckp = 100;
  222. unsigned char lang_selected = 0;
  223. bool volumetric_enabled = false;
  224. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  225. #if EXTRUDERS > 1
  226. , DEFAULT_NOMINAL_FILAMENT_DIA
  227. #if EXTRUDERS > 2
  228. , DEFAULT_NOMINAL_FILAMENT_DIA
  229. #endif
  230. #endif
  231. };
  232. float volumetric_multiplier[EXTRUDERS] = {1.0
  233. #if EXTRUDERS > 1
  234. , 1.0
  235. #if EXTRUDERS > 2
  236. , 1.0
  237. #endif
  238. #endif
  239. };
  240. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  241. float add_homing[3]={0,0,0};
  242. #ifdef DELTA
  243. float endstop_adj[3]={0,0,0};
  244. #endif
  245. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  246. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  247. bool axis_known_position[3] = {false, false, false};
  248. float zprobe_zoffset;
  249. // Extruder offset
  250. #if EXTRUDERS > 1
  251. #ifndef DUAL_X_CARRIAGE
  252. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  253. #else
  254. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  255. #endif
  256. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  257. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  258. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  259. #endif
  260. };
  261. #endif
  262. uint8_t active_extruder = 0;
  263. int fanSpeed=0;
  264. #ifdef SERVO_ENDSTOPS
  265. int servo_endstops[] = SERVO_ENDSTOPS;
  266. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  267. #endif
  268. #ifdef BARICUDA
  269. int ValvePressure=0;
  270. int EtoPPressure=0;
  271. #endif
  272. #ifdef FWRETRACT
  273. bool autoretract_enabled=false;
  274. bool retracted[EXTRUDERS]={false
  275. #if EXTRUDERS > 1
  276. , false
  277. #if EXTRUDERS > 2
  278. , false
  279. #endif
  280. #endif
  281. };
  282. bool retracted_swap[EXTRUDERS]={false
  283. #if EXTRUDERS > 1
  284. , false
  285. #if EXTRUDERS > 2
  286. , false
  287. #endif
  288. #endif
  289. };
  290. float retract_length = RETRACT_LENGTH;
  291. float retract_length_swap = RETRACT_LENGTH_SWAP;
  292. float retract_feedrate = RETRACT_FEEDRATE;
  293. float retract_zlift = RETRACT_ZLIFT;
  294. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  295. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  296. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  297. #endif
  298. #ifdef ULTIPANEL
  299. #ifdef PS_DEFAULT_OFF
  300. bool powersupply = false;
  301. #else
  302. bool powersupply = true;
  303. #endif
  304. #endif
  305. #ifdef DELTA
  306. float delta[3] = {0.0, 0.0, 0.0};
  307. #define SIN_60 0.8660254037844386
  308. #define COS_60 0.5
  309. // these are the default values, can be overriden with M665
  310. float delta_radius= DELTA_RADIUS;
  311. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  312. float delta_tower1_y= -COS_60*delta_radius;
  313. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  314. float delta_tower2_y= -COS_60*delta_radius;
  315. float delta_tower3_x= 0.0; // back middle tower
  316. float delta_tower3_y= delta_radius;
  317. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  318. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  319. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  320. #endif
  321. #ifdef SCARA // Build size scaling
  322. float axis_scaling[3]={1,1,1}; // Build size scaling, default to 1
  323. #endif
  324. bool cancel_heatup = false ;
  325. #ifdef FILAMENT_SENSOR
  326. //Variables for Filament Sensor input
  327. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  328. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  329. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  330. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  331. int delay_index1=0; //index into ring buffer
  332. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  333. float delay_dist=0; //delay distance counter
  334. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  335. #endif
  336. const char errormagic[] PROGMEM = "Error:";
  337. const char echomagic[] PROGMEM = "echo:";
  338. //===========================================================================
  339. //=============================Private Variables=============================
  340. //===========================================================================
  341. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  342. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  343. #ifndef DELTA
  344. static float delta[3] = {0.0, 0.0, 0.0};
  345. #endif
  346. static float offset[3] = {0.0, 0.0, 0.0};
  347. static bool home_all_axis = true;
  348. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  349. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  350. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  351. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  352. static bool fromsd[BUFSIZE];
  353. static int bufindr = 0;
  354. static int bufindw = 0;
  355. static int buflen = 0;
  356. //static int i = 0;
  357. static char serial_char;
  358. static int serial_count = 0;
  359. static boolean comment_mode = false;
  360. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  361. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  362. //static float tt = 0;
  363. //static float bt = 0;
  364. //Inactivity shutdown variables
  365. static unsigned long previous_millis_cmd = 0;
  366. static unsigned long max_inactive_time = 0;
  367. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  368. unsigned long starttime=0;
  369. unsigned long stoptime=0;
  370. static uint8_t tmp_extruder;
  371. bool Stopped=false;
  372. #if NUM_SERVOS > 0
  373. Servo servos[NUM_SERVOS];
  374. #endif
  375. bool CooldownNoWait = true;
  376. bool target_direction;
  377. //Insert variables if CHDK is defined
  378. #ifdef CHDK
  379. unsigned long chdkHigh = 0;
  380. boolean chdkActive = false;
  381. #endif
  382. //===========================================================================
  383. //=============================Routines======================================
  384. //===========================================================================
  385. void get_arc_coordinates();
  386. bool setTargetedHotend(int code);
  387. void serial_echopair_P(const char *s_P, float v)
  388. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  389. void serial_echopair_P(const char *s_P, double v)
  390. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  391. void serial_echopair_P(const char *s_P, unsigned long v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. #ifdef SDSUPPORT
  394. #include "SdFatUtil.h"
  395. int freeMemory() { return SdFatUtil::FreeRam(); }
  396. #else
  397. extern "C" {
  398. extern unsigned int __bss_end;
  399. extern unsigned int __heap_start;
  400. extern void *__brkval;
  401. int freeMemory() {
  402. int free_memory;
  403. if ((int)__brkval == 0)
  404. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  405. else
  406. free_memory = ((int)&free_memory) - ((int)__brkval);
  407. return free_memory;
  408. }
  409. }
  410. #endif //!SDSUPPORT
  411. #ifdef MESH_BED_LEVELING
  412. static void find_bed();
  413. #endif
  414. //adds an command to the main command buffer
  415. //thats really done in a non-safe way.
  416. //needs overworking someday
  417. void enquecommand(const char *cmd)
  418. {
  419. if(buflen < BUFSIZE)
  420. {
  421. //this is dangerous if a mixing of serial and this happens
  422. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  423. SERIAL_ECHO_START;
  424. SERIAL_ECHORPGM(MSG_Enqueing);
  425. SERIAL_ECHO(cmdbuffer[bufindw]);
  426. SERIAL_ECHOLNPGM("\"");
  427. bufindw= (bufindw + 1)%BUFSIZE;
  428. buflen += 1;
  429. }
  430. }
  431. void enquecommand_P(const char *cmd)
  432. {
  433. if(buflen < BUFSIZE)
  434. {
  435. //this is dangerous if a mixing of serial and this happens
  436. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  437. SERIAL_ECHO_START;
  438. SERIAL_ECHORPGM(MSG_Enqueing);
  439. SERIAL_ECHO(cmdbuffer[bufindw]);
  440. SERIAL_ECHOLNPGM("\"");
  441. bufindw= (bufindw + 1)%BUFSIZE;
  442. buflen += 1;
  443. }
  444. }
  445. void setup_killpin()
  446. {
  447. #if defined(KILL_PIN) && KILL_PIN > -1
  448. SET_INPUT(KILL_PIN);
  449. WRITE(KILL_PIN,HIGH);
  450. #endif
  451. }
  452. // Set home pin
  453. void setup_homepin(void)
  454. {
  455. #if defined(HOME_PIN) && HOME_PIN > -1
  456. SET_INPUT(HOME_PIN);
  457. WRITE(HOME_PIN,HIGH);
  458. #endif
  459. }
  460. void setup_photpin()
  461. {
  462. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  463. SET_OUTPUT(PHOTOGRAPH_PIN);
  464. WRITE(PHOTOGRAPH_PIN, LOW);
  465. #endif
  466. }
  467. void setup_powerhold()
  468. {
  469. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  470. SET_OUTPUT(SUICIDE_PIN);
  471. WRITE(SUICIDE_PIN, HIGH);
  472. #endif
  473. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  474. SET_OUTPUT(PS_ON_PIN);
  475. #if defined(PS_DEFAULT_OFF)
  476. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  477. #else
  478. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  479. #endif
  480. #endif
  481. }
  482. void suicide()
  483. {
  484. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  485. SET_OUTPUT(SUICIDE_PIN);
  486. WRITE(SUICIDE_PIN, LOW);
  487. #endif
  488. }
  489. void servo_init()
  490. {
  491. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  492. servos[0].attach(SERVO0_PIN);
  493. #endif
  494. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  495. servos[1].attach(SERVO1_PIN);
  496. #endif
  497. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  498. servos[2].attach(SERVO2_PIN);
  499. #endif
  500. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  501. servos[3].attach(SERVO3_PIN);
  502. #endif
  503. #if (NUM_SERVOS >= 5)
  504. #error "TODO: enter initalisation code for more servos"
  505. #endif
  506. // Set position of Servo Endstops that are defined
  507. #ifdef SERVO_ENDSTOPS
  508. for(int8_t i = 0; i < 3; i++)
  509. {
  510. if(servo_endstops[i] > -1) {
  511. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  512. }
  513. }
  514. #endif
  515. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  516. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  517. servos[servo_endstops[Z_AXIS]].detach();
  518. #endif
  519. }
  520. static void lcd_language_menu();
  521. #ifdef MESH_BED_LEVELING
  522. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  523. #endif
  524. void setup()
  525. {
  526. setup_killpin();
  527. setup_powerhold();
  528. MYSERIAL.begin(BAUDRATE);
  529. SERIAL_PROTOCOLLNPGM("start");
  530. SERIAL_ECHO_START;
  531. // Check startup - does nothing if bootloader sets MCUSR to 0
  532. byte mcu = MCUSR;
  533. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  534. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  535. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  536. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  537. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  538. MCUSR=0;
  539. SERIAL_ECHORPGM(MSG_MARLIN);
  540. SERIAL_ECHOLNRPGM(VERSION_STRING);
  541. #ifdef STRING_VERSION_CONFIG_H
  542. #ifdef STRING_CONFIG_H_AUTHOR
  543. SERIAL_ECHO_START;
  544. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  545. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  546. SERIAL_ECHORPGM(MSG_AUTHOR);
  547. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  548. SERIAL_ECHOPGM("Compiled: ");
  549. SERIAL_ECHOLNPGM(__DATE__);
  550. #endif
  551. #endif
  552. SERIAL_ECHO_START;
  553. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  554. SERIAL_ECHO(freeMemory());
  555. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  556. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  557. for(int8_t i = 0; i < BUFSIZE; i++)
  558. {
  559. fromsd[i] = false;
  560. }
  561. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  562. Config_RetrieveSettings();
  563. tp_init(); // Initialize temperature loop
  564. plan_init(); // Initialize planner;
  565. watchdog_init();
  566. st_init(); // Initialize stepper, this enables interrupts!
  567. setup_photpin();
  568. servo_init();
  569. lcd_init();
  570. if(!READ(BTN_ENC) ){
  571. _delay_ms(1000);
  572. if(!READ(BTN_ENC) ){
  573. SET_OUTPUT(BEEPER);
  574. WRITE(BEEPER,HIGH);
  575. lcd_force_language_selection();
  576. while(!READ(BTN_ENC));
  577. WRITE(BEEPER,LOW);
  578. }
  579. }else{
  580. _delay_ms(1000); // wait 1sec to display the splash screen
  581. }
  582. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  583. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  584. #endif
  585. #ifdef DIGIPOT_I2C
  586. digipot_i2c_init();
  587. #endif
  588. #ifdef Z_PROBE_SLED
  589. pinMode(SERVO0_PIN, OUTPUT);
  590. digitalWrite(SERVO0_PIN, LOW); // turn it off
  591. #endif // Z_PROBE_SLED
  592. setup_homepin();
  593. }
  594. //unsigned char first_run_ever=1;
  595. //void first_time_menu();
  596. void loop()
  597. {
  598. if(buflen < (BUFSIZE-1))
  599. get_command();
  600. #ifdef SDSUPPORT
  601. card.checkautostart(false);
  602. #endif
  603. if(buflen)
  604. {
  605. #ifdef SDSUPPORT
  606. if(card.saving)
  607. {
  608. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  609. {
  610. card.write_command(cmdbuffer[bufindr]);
  611. if(card.logging)
  612. {
  613. process_commands();
  614. }
  615. else
  616. {
  617. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  618. }
  619. }
  620. else
  621. {
  622. card.closefile();
  623. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  624. }
  625. }
  626. else
  627. {
  628. process_commands();
  629. }
  630. #else
  631. process_commands();
  632. #endif //SDSUPPORT
  633. buflen = (buflen-1);
  634. bufindr = (bufindr + 1)%BUFSIZE;
  635. }
  636. //check heater every n milliseconds
  637. manage_heater();
  638. manage_inactivity();
  639. checkHitEndstops();
  640. lcd_update();
  641. }
  642. void get_command()
  643. {
  644. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  645. serial_char = MYSERIAL.read();
  646. if(serial_char == '\n' ||
  647. serial_char == '\r' ||
  648. (serial_char == ':' && comment_mode == false) ||
  649. serial_count >= (MAX_CMD_SIZE - 1) )
  650. {
  651. if(!serial_count) { //if empty line
  652. comment_mode = false; //for new command
  653. return;
  654. }
  655. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  656. if(!comment_mode){
  657. comment_mode = false; //for new command
  658. fromsd[bufindw] = false;
  659. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  660. {
  661. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  662. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  663. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  664. SERIAL_ERROR_START;
  665. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  666. SERIAL_ERRORLN(gcode_LastN);
  667. //Serial.println(gcode_N);
  668. FlushSerialRequestResend();
  669. serial_count = 0;
  670. return;
  671. }
  672. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  673. {
  674. byte checksum = 0;
  675. byte count = 0;
  676. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  677. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  678. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  679. SERIAL_ERROR_START;
  680. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  681. SERIAL_ERRORLN(gcode_LastN);
  682. FlushSerialRequestResend();
  683. serial_count = 0;
  684. return;
  685. }
  686. //if no errors, continue parsing
  687. }
  688. else
  689. {
  690. SERIAL_ERROR_START;
  691. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  692. SERIAL_ERRORLN(gcode_LastN);
  693. FlushSerialRequestResend();
  694. serial_count = 0;
  695. return;
  696. }
  697. gcode_LastN = gcode_N;
  698. //if no errors, continue parsing
  699. }
  700. else // if we don't receive 'N' but still see '*'
  701. {
  702. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  703. {
  704. SERIAL_ERROR_START;
  705. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  706. SERIAL_ERRORLN(gcode_LastN);
  707. serial_count = 0;
  708. return;
  709. }
  710. }
  711. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  712. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  713. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  714. case 0:
  715. case 1:
  716. case 2:
  717. case 3:
  718. if (Stopped == true) {
  719. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  720. LCD_MESSAGERPGM(MSG_STOPPED);
  721. }
  722. break;
  723. default:
  724. break;
  725. }
  726. }
  727. //If command was e-stop process now
  728. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  729. kill();
  730. bufindw = (bufindw + 1)%BUFSIZE;
  731. buflen += 1;
  732. }
  733. serial_count = 0; //clear buffer
  734. }
  735. else
  736. {
  737. if(serial_char == ';') comment_mode = true;
  738. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  739. }
  740. }
  741. #ifdef SDSUPPORT
  742. if(!card.sdprinting || serial_count!=0){
  743. return;
  744. }
  745. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  746. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  747. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  748. static bool stop_buffering=false;
  749. if(buflen==0) stop_buffering=false;
  750. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  751. int16_t n=card.get();
  752. serial_char = (char)n;
  753. if(serial_char == '\n' ||
  754. serial_char == '\r' ||
  755. (serial_char == '#' && comment_mode == false) ||
  756. (serial_char == ':' && comment_mode == false) ||
  757. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  758. {
  759. if(card.eof()){
  760. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  761. stoptime=millis();
  762. char time[30];
  763. unsigned long t=(stoptime-starttime)/1000;
  764. int hours, minutes;
  765. minutes=(t/60)%60;
  766. hours=t/60/60;
  767. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  768. SERIAL_ECHO_START;
  769. SERIAL_ECHOLN(time);
  770. lcd_setstatus(time);
  771. card.printingHasFinished();
  772. card.checkautostart(true);
  773. }
  774. if(serial_char=='#')
  775. stop_buffering=true;
  776. if(!serial_count)
  777. {
  778. comment_mode = false; //for new command
  779. return; //if empty line
  780. }
  781. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  782. // if(!comment_mode){
  783. fromsd[bufindw] = true;
  784. buflen += 1;
  785. bufindw = (bufindw + 1)%BUFSIZE;
  786. // }
  787. comment_mode = false; //for new command
  788. serial_count = 0; //clear buffer
  789. }
  790. else
  791. {
  792. if(serial_char == ';') comment_mode = true;
  793. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  794. }
  795. }
  796. #endif //SDSUPPORT
  797. }
  798. float code_value()
  799. {
  800. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  801. }
  802. long code_value_long()
  803. {
  804. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  805. }
  806. int16_t code_value_short() {
  807. return (int16_t)(strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  808. }
  809. bool code_seen(char code)
  810. {
  811. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  812. return (strchr_pointer != NULL); //Return True if a character was found
  813. }
  814. #define DEFINE_PGM_READ_ANY(type, reader) \
  815. static inline type pgm_read_any(const type *p) \
  816. { return pgm_read_##reader##_near(p); }
  817. DEFINE_PGM_READ_ANY(float, float);
  818. DEFINE_PGM_READ_ANY(signed char, byte);
  819. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  820. static const PROGMEM type array##_P[3] = \
  821. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  822. static inline type array(int axis) \
  823. { return pgm_read_any(&array##_P[axis]); }
  824. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  825. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  826. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  827. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  828. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  829. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  830. #ifdef DUAL_X_CARRIAGE
  831. #if EXTRUDERS == 1 || defined(COREXY) \
  832. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  833. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  834. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  835. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  836. #endif
  837. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  838. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  839. #endif
  840. #define DXC_FULL_CONTROL_MODE 0
  841. #define DXC_AUTO_PARK_MODE 1
  842. #define DXC_DUPLICATION_MODE 2
  843. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  844. static float x_home_pos(int extruder) {
  845. if (extruder == 0)
  846. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  847. else
  848. // In dual carriage mode the extruder offset provides an override of the
  849. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  850. // This allow soft recalibration of the second extruder offset position without firmware reflash
  851. // (through the M218 command).
  852. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  853. }
  854. static int x_home_dir(int extruder) {
  855. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  856. }
  857. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  858. static bool active_extruder_parked = false; // used in mode 1 & 2
  859. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  860. static unsigned long delayed_move_time = 0; // used in mode 1
  861. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  862. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  863. bool extruder_duplication_enabled = false; // used in mode 2
  864. #endif //DUAL_X_CARRIAGE
  865. static void axis_is_at_home(int axis) {
  866. #ifdef DUAL_X_CARRIAGE
  867. if (axis == X_AXIS) {
  868. if (active_extruder != 0) {
  869. current_position[X_AXIS] = x_home_pos(active_extruder);
  870. min_pos[X_AXIS] = X2_MIN_POS;
  871. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  872. return;
  873. }
  874. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  875. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  876. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  877. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  878. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  879. return;
  880. }
  881. }
  882. #endif
  883. #ifdef SCARA
  884. float homeposition[3];
  885. char i;
  886. if (axis < 2)
  887. {
  888. for (i=0; i<3; i++)
  889. {
  890. homeposition[i] = base_home_pos(i);
  891. }
  892. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  893. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  894. // Works out real Homeposition angles using inverse kinematics,
  895. // and calculates homing offset using forward kinematics
  896. calculate_delta(homeposition);
  897. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  898. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  899. for (i=0; i<2; i++)
  900. {
  901. delta[i] -= add_homing[i];
  902. }
  903. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  904. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  905. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  906. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  907. calculate_SCARA_forward_Transform(delta);
  908. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  909. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  910. current_position[axis] = delta[axis];
  911. // SCARA home positions are based on configuration since the actual limits are determined by the
  912. // inverse kinematic transform.
  913. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  914. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  915. }
  916. else
  917. {
  918. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  919. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  920. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  921. }
  922. #else
  923. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  924. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  925. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  926. #endif
  927. }
  928. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  929. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  930. static void setup_for_endstop_move() {
  931. saved_feedrate = feedrate;
  932. saved_feedmultiply = feedmultiply;
  933. feedmultiply = 100;
  934. previous_millis_cmd = millis();
  935. enable_endstops(true);
  936. }
  937. static void clean_up_after_endstop_move() {
  938. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  939. enable_endstops(false);
  940. #endif
  941. feedrate = saved_feedrate;
  942. feedmultiply = saved_feedmultiply;
  943. previous_millis_cmd = millis();
  944. }
  945. #ifdef ENABLE_AUTO_BED_LEVELING
  946. #ifdef AUTO_BED_LEVELING_GRID
  947. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  948. {
  949. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  950. planeNormal.debug("planeNormal");
  951. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  952. //bedLevel.debug("bedLevel");
  953. //plan_bed_level_matrix.debug("bed level before");
  954. //vector_3 uncorrected_position = plan_get_position_mm();
  955. //uncorrected_position.debug("position before");
  956. vector_3 corrected_position = plan_get_position();
  957. // corrected_position.debug("position after");
  958. current_position[X_AXIS] = corrected_position.x;
  959. current_position[Y_AXIS] = corrected_position.y;
  960. current_position[Z_AXIS] = corrected_position.z;
  961. // put the bed at 0 so we don't go below it.
  962. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  963. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  964. }
  965. #else // not AUTO_BED_LEVELING_GRID
  966. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  967. plan_bed_level_matrix.set_to_identity();
  968. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  969. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  970. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  971. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  972. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  973. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  974. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  975. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  976. vector_3 corrected_position = plan_get_position();
  977. current_position[X_AXIS] = corrected_position.x;
  978. current_position[Y_AXIS] = corrected_position.y;
  979. current_position[Z_AXIS] = corrected_position.z;
  980. // put the bed at 0 so we don't go below it.
  981. current_position[Z_AXIS] = zprobe_zoffset;
  982. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  983. }
  984. #endif // AUTO_BED_LEVELING_GRID
  985. static void run_z_probe() {
  986. plan_bed_level_matrix.set_to_identity();
  987. feedrate = homing_feedrate[Z_AXIS];
  988. // move down until you find the bed
  989. float zPosition = -10;
  990. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  991. st_synchronize();
  992. // we have to let the planner know where we are right now as it is not where we said to go.
  993. zPosition = st_get_position_mm(Z_AXIS);
  994. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  995. // move up the retract distance
  996. zPosition += home_retract_mm(Z_AXIS);
  997. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  998. st_synchronize();
  999. // move back down slowly to find bed
  1000. feedrate = homing_feedrate[Z_AXIS]/4;
  1001. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1003. st_synchronize();
  1004. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1005. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1006. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1007. }
  1008. static void do_blocking_move_to(float x, float y, float z) {
  1009. float oldFeedRate = feedrate;
  1010. feedrate = homing_feedrate[Z_AXIS];
  1011. current_position[Z_AXIS] = z;
  1012. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1013. st_synchronize();
  1014. feedrate = XY_TRAVEL_SPEED;
  1015. current_position[X_AXIS] = x;
  1016. current_position[Y_AXIS] = y;
  1017. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1018. st_synchronize();
  1019. feedrate = oldFeedRate;
  1020. }
  1021. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1022. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1023. }
  1024. static void engage_z_probe() {
  1025. // Engage Z Servo endstop if enabled
  1026. #ifdef SERVO_ENDSTOPS
  1027. if (servo_endstops[Z_AXIS] > -1) {
  1028. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1029. servos[servo_endstops[Z_AXIS]].attach(0);
  1030. #endif
  1031. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1032. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1033. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1034. servos[servo_endstops[Z_AXIS]].detach();
  1035. #endif
  1036. }
  1037. #endif
  1038. }
  1039. static void retract_z_probe() {
  1040. // Retract Z Servo endstop if enabled
  1041. #ifdef SERVO_ENDSTOPS
  1042. if (servo_endstops[Z_AXIS] > -1) {
  1043. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1044. servos[servo_endstops[Z_AXIS]].attach(0);
  1045. #endif
  1046. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1047. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1048. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1049. servos[servo_endstops[Z_AXIS]].detach();
  1050. #endif
  1051. }
  1052. #endif
  1053. }
  1054. /// Probe bed height at position (x,y), returns the measured z value
  1055. static float probe_pt(float x, float y, float z_before) {
  1056. // move to right place
  1057. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1058. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1059. #ifndef Z_PROBE_SLED
  1060. engage_z_probe(); // Engage Z Servo endstop if available
  1061. #endif // Z_PROBE_SLED
  1062. run_z_probe();
  1063. float measured_z = current_position[Z_AXIS];
  1064. #ifndef Z_PROBE_SLED
  1065. retract_z_probe();
  1066. #endif // Z_PROBE_SLED
  1067. SERIAL_PROTOCOLRPGM(MSG_BED);
  1068. SERIAL_PROTOCOLPGM(" x: ");
  1069. SERIAL_PROTOCOL(x);
  1070. SERIAL_PROTOCOLPGM(" y: ");
  1071. SERIAL_PROTOCOL(y);
  1072. SERIAL_PROTOCOLPGM(" z: ");
  1073. SERIAL_PROTOCOL(measured_z);
  1074. SERIAL_PROTOCOLPGM("\n");
  1075. return measured_z;
  1076. }
  1077. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1078. static void homeaxis(int axis) {
  1079. #define HOMEAXIS_DO(LETTER) \
  1080. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1081. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1082. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1083. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1084. 0) {
  1085. int axis_home_dir = home_dir(axis);
  1086. #ifdef DUAL_X_CARRIAGE
  1087. if (axis == X_AXIS)
  1088. axis_home_dir = x_home_dir(active_extruder);
  1089. #endif
  1090. current_position[axis] = 0;
  1091. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1092. #ifndef Z_PROBE_SLED
  1093. // Engage Servo endstop if enabled
  1094. #ifdef SERVO_ENDSTOPS
  1095. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1096. if (axis==Z_AXIS) {
  1097. engage_z_probe();
  1098. }
  1099. else
  1100. #endif
  1101. if (servo_endstops[axis] > -1) {
  1102. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1103. }
  1104. #endif
  1105. #endif // Z_PROBE_SLED
  1106. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1107. feedrate = homing_feedrate[axis];
  1108. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1109. st_synchronize();
  1110. current_position[axis] = 0;
  1111. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1112. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1113. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1114. st_synchronize();
  1115. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1116. #ifdef DELTA
  1117. feedrate = homing_feedrate[axis]/10;
  1118. #else
  1119. feedrate = homing_feedrate[axis]/2 ;
  1120. #endif
  1121. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1122. st_synchronize();
  1123. #ifdef DELTA
  1124. // retrace by the amount specified in endstop_adj
  1125. if (endstop_adj[axis] * axis_home_dir < 0) {
  1126. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1127. destination[axis] = endstop_adj[axis];
  1128. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1129. st_synchronize();
  1130. }
  1131. #endif
  1132. axis_is_at_home(axis);
  1133. destination[axis] = current_position[axis];
  1134. feedrate = 0.0;
  1135. endstops_hit_on_purpose();
  1136. axis_known_position[axis] = true;
  1137. // Retract Servo endstop if enabled
  1138. #ifdef SERVO_ENDSTOPS
  1139. if (servo_endstops[axis] > -1) {
  1140. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1141. }
  1142. #endif
  1143. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1144. #ifndef Z_PROBE_SLED
  1145. if (axis==Z_AXIS) retract_z_probe();
  1146. #endif
  1147. #endif
  1148. }
  1149. }
  1150. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1151. void refresh_cmd_timeout(void)
  1152. {
  1153. previous_millis_cmd = millis();
  1154. }
  1155. #ifdef FWRETRACT
  1156. void retract(bool retracting, bool swapretract = false) {
  1157. if(retracting && !retracted[active_extruder]) {
  1158. destination[X_AXIS]=current_position[X_AXIS];
  1159. destination[Y_AXIS]=current_position[Y_AXIS];
  1160. destination[Z_AXIS]=current_position[Z_AXIS];
  1161. destination[E_AXIS]=current_position[E_AXIS];
  1162. if (swapretract) {
  1163. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1164. } else {
  1165. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1166. }
  1167. plan_set_e_position(current_position[E_AXIS]);
  1168. float oldFeedrate = feedrate;
  1169. feedrate=retract_feedrate*60;
  1170. retracted[active_extruder]=true;
  1171. prepare_move();
  1172. current_position[Z_AXIS]-=retract_zlift;
  1173. #ifdef DELTA
  1174. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1175. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1176. #else
  1177. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1178. #endif
  1179. prepare_move();
  1180. feedrate = oldFeedrate;
  1181. } else if(!retracting && retracted[active_extruder]) {
  1182. destination[X_AXIS]=current_position[X_AXIS];
  1183. destination[Y_AXIS]=current_position[Y_AXIS];
  1184. destination[Z_AXIS]=current_position[Z_AXIS];
  1185. destination[E_AXIS]=current_position[E_AXIS];
  1186. current_position[Z_AXIS]+=retract_zlift;
  1187. #ifdef DELTA
  1188. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1189. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1190. #else
  1191. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1192. #endif
  1193. //prepare_move();
  1194. if (swapretract) {
  1195. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1196. } else {
  1197. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1198. }
  1199. plan_set_e_position(current_position[E_AXIS]);
  1200. float oldFeedrate = feedrate;
  1201. feedrate=retract_recover_feedrate*60;
  1202. retracted[active_extruder]=false;
  1203. prepare_move();
  1204. feedrate = oldFeedrate;
  1205. }
  1206. } //retract
  1207. #endif //FWRETRACT
  1208. #ifdef Z_PROBE_SLED
  1209. //
  1210. // Method to dock/undock a sled designed by Charles Bell.
  1211. //
  1212. // dock[in] If true, move to MAX_X and engage the electromagnet
  1213. // offset[in] The additional distance to move to adjust docking location
  1214. //
  1215. static void dock_sled(bool dock, int offset=0) {
  1216. int z_loc;
  1217. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1218. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1219. SERIAL_ECHO_START;
  1220. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1221. return;
  1222. }
  1223. if (dock) {
  1224. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1225. current_position[Y_AXIS],
  1226. current_position[Z_AXIS]);
  1227. // turn off magnet
  1228. digitalWrite(SERVO0_PIN, LOW);
  1229. } else {
  1230. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1231. z_loc = Z_RAISE_BEFORE_PROBING;
  1232. else
  1233. z_loc = current_position[Z_AXIS];
  1234. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1235. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1236. // turn on magnet
  1237. digitalWrite(SERVO0_PIN, HIGH);
  1238. }
  1239. }
  1240. #endif
  1241. void process_commands()
  1242. {
  1243. #ifdef FILAMENT_RUNOUT_SUPPORT
  1244. SET_INPUT(FR_SENS);
  1245. #endif
  1246. unsigned long codenum; //throw away variable
  1247. char *starpos = NULL;
  1248. #ifdef ENABLE_AUTO_BED_LEVELING
  1249. float x_tmp, y_tmp, z_tmp, real_z;
  1250. #endif
  1251. // PRUSA GCODES
  1252. if(code_seen('PRUSA')){
  1253. if(code_seen('Fir')){
  1254. SERIAL_PROTOCOLLN(FW_version);
  1255. } else if(code_seen('Rev')){
  1256. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1257. } else if(code_seen('Lang')) {
  1258. lcd_force_language_selection();
  1259. } else if(code_seen('Lz')) {
  1260. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1261. }
  1262. }
  1263. else if(code_seen('G'))
  1264. {
  1265. switch((int)code_value())
  1266. {
  1267. case 0: // G0 -> G1
  1268. case 1: // G1
  1269. if(Stopped == false) {
  1270. #ifdef FILAMENT_RUNOUT_SUPPORT
  1271. if(READ(FR_SENS)){
  1272. feedmultiplyBckp=feedmultiply;
  1273. float target[4];
  1274. float lastpos[4];
  1275. target[X_AXIS]=current_position[X_AXIS];
  1276. target[Y_AXIS]=current_position[Y_AXIS];
  1277. target[Z_AXIS]=current_position[Z_AXIS];
  1278. target[E_AXIS]=current_position[E_AXIS];
  1279. lastpos[X_AXIS]=current_position[X_AXIS];
  1280. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1281. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1282. lastpos[E_AXIS]=current_position[E_AXIS];
  1283. //retract by E
  1284. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1285. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1286. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1287. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1288. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1289. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1290. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1291. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1292. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1293. //finish moves
  1294. st_synchronize();
  1295. //disable extruder steppers so filament can be removed
  1296. disable_e0();
  1297. disable_e1();
  1298. disable_e2();
  1299. delay(100);
  1300. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1301. uint8_t cnt=0;
  1302. int counterBeep = 0;
  1303. lcd_wait_interact();
  1304. while(!lcd_clicked()){
  1305. cnt++;
  1306. manage_heater();
  1307. manage_inactivity(true);
  1308. //lcd_update();
  1309. if(cnt==0)
  1310. {
  1311. #if BEEPER > 0
  1312. if (counterBeep== 500){
  1313. counterBeep = 0;
  1314. }
  1315. SET_OUTPUT(BEEPER);
  1316. if (counterBeep== 0){
  1317. WRITE(BEEPER,HIGH);
  1318. }
  1319. if (counterBeep== 20){
  1320. WRITE(BEEPER,LOW);
  1321. }
  1322. counterBeep++;
  1323. #else
  1324. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1325. lcd_buzz(1000/6,100);
  1326. #else
  1327. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1328. #endif
  1329. #endif
  1330. }
  1331. }
  1332. WRITE(BEEPER,LOW);
  1333. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1334. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1335. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1336. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1337. lcd_change_fil_state = 0;
  1338. lcd_loading_filament();
  1339. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1340. lcd_change_fil_state = 0;
  1341. lcd_alright();
  1342. switch(lcd_change_fil_state){
  1343. case 2:
  1344. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1345. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1346. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1347. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1348. lcd_loading_filament();
  1349. break;
  1350. case 3:
  1351. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1352. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1353. lcd_loading_color();
  1354. break;
  1355. default:
  1356. lcd_change_success();
  1357. break;
  1358. }
  1359. }
  1360. target[E_AXIS]+= 5;
  1361. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1362. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1363. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1364. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1365. //plan_set_e_position(current_position[E_AXIS]);
  1366. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1367. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1368. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1369. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1370. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1371. plan_set_e_position(lastpos[E_AXIS]);
  1372. feedmultiply=feedmultiplyBckp;
  1373. char cmd[9];
  1374. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1375. enquecommand(cmd);
  1376. }
  1377. #endif
  1378. get_coordinates(); // For X Y Z E F
  1379. #ifdef FWRETRACT
  1380. if(autoretract_enabled)
  1381. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1382. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1383. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1384. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1385. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1386. retract(!retracted);
  1387. return;
  1388. }
  1389. }
  1390. #endif //FWRETRACT
  1391. prepare_move();
  1392. //ClearToSend();
  1393. }
  1394. break;
  1395. #ifndef SCARA //disable arc support
  1396. case 2: // G2 - CW ARC
  1397. if(Stopped == false) {
  1398. get_arc_coordinates();
  1399. prepare_arc_move(true);
  1400. }
  1401. break;
  1402. case 3: // G3 - CCW ARC
  1403. if(Stopped == false) {
  1404. get_arc_coordinates();
  1405. prepare_arc_move(false);
  1406. }
  1407. break;
  1408. #endif
  1409. case 4: // G4 dwell
  1410. LCD_MESSAGERPGM(MSG_DWELL);
  1411. codenum = 0;
  1412. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1413. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1414. st_synchronize();
  1415. codenum += millis(); // keep track of when we started waiting
  1416. previous_millis_cmd = millis();
  1417. while(millis() < codenum) {
  1418. manage_heater();
  1419. manage_inactivity();
  1420. lcd_update();
  1421. }
  1422. break;
  1423. #ifdef FWRETRACT
  1424. case 10: // G10 retract
  1425. #if EXTRUDERS > 1
  1426. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1427. retract(true,retracted_swap[active_extruder]);
  1428. #else
  1429. retract(true);
  1430. #endif
  1431. break;
  1432. case 11: // G11 retract_recover
  1433. #if EXTRUDERS > 1
  1434. retract(false,retracted_swap[active_extruder]);
  1435. #else
  1436. retract(false);
  1437. #endif
  1438. break;
  1439. #endif //FWRETRACT
  1440. case 28: //G28 Home all Axis one at a time
  1441. #ifdef ENABLE_AUTO_BED_LEVELING
  1442. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1443. #endif //ENABLE_AUTO_BED_LEVELING
  1444. // For mesh bed leveling deactivate the matrix temporarily
  1445. #ifdef MESH_BED_LEVELING
  1446. mbl.active = 0;
  1447. #endif
  1448. saved_feedrate = feedrate;
  1449. saved_feedmultiply = feedmultiply;
  1450. feedmultiply = 100;
  1451. previous_millis_cmd = millis();
  1452. enable_endstops(true);
  1453. for(int8_t i=0; i < NUM_AXIS; i++) {
  1454. destination[i] = current_position[i];
  1455. }
  1456. feedrate = 0.0;
  1457. #ifdef DELTA
  1458. // A delta can only safely home all axis at the same time
  1459. // all axis have to home at the same time
  1460. // Move all carriages up together until the first endstop is hit.
  1461. current_position[X_AXIS] = 0;
  1462. current_position[Y_AXIS] = 0;
  1463. current_position[Z_AXIS] = 0;
  1464. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1465. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1466. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1467. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1468. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1469. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1470. st_synchronize();
  1471. endstops_hit_on_purpose();
  1472. current_position[X_AXIS] = destination[X_AXIS];
  1473. current_position[Y_AXIS] = destination[Y_AXIS];
  1474. current_position[Z_AXIS] = destination[Z_AXIS];
  1475. // take care of back off and rehome now we are all at the top
  1476. HOMEAXIS(X);
  1477. HOMEAXIS(Y);
  1478. HOMEAXIS(Z);
  1479. calculate_delta(current_position);
  1480. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1481. #else // NOT DELTA
  1482. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1483. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1484. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1485. HOMEAXIS(Z);
  1486. }
  1487. #endif
  1488. #ifdef QUICK_HOME
  1489. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1490. {
  1491. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1492. #ifndef DUAL_X_CARRIAGE
  1493. int x_axis_home_dir = home_dir(X_AXIS);
  1494. #else
  1495. int x_axis_home_dir = x_home_dir(active_extruder);
  1496. extruder_duplication_enabled = false;
  1497. #endif
  1498. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1499. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1500. feedrate = homing_feedrate[X_AXIS];
  1501. if(homing_feedrate[Y_AXIS]<feedrate)
  1502. feedrate = homing_feedrate[Y_AXIS];
  1503. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1504. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1505. } else {
  1506. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1507. }
  1508. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1509. st_synchronize();
  1510. axis_is_at_home(X_AXIS);
  1511. axis_is_at_home(Y_AXIS);
  1512. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1513. destination[X_AXIS] = current_position[X_AXIS];
  1514. destination[Y_AXIS] = current_position[Y_AXIS];
  1515. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1516. feedrate = 0.0;
  1517. st_synchronize();
  1518. endstops_hit_on_purpose();
  1519. current_position[X_AXIS] = destination[X_AXIS];
  1520. current_position[Y_AXIS] = destination[Y_AXIS];
  1521. #ifndef SCARA
  1522. current_position[Z_AXIS] = destination[Z_AXIS];
  1523. #endif
  1524. }
  1525. #endif
  1526. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1527. {
  1528. #ifdef DUAL_X_CARRIAGE
  1529. int tmp_extruder = active_extruder;
  1530. extruder_duplication_enabled = false;
  1531. active_extruder = !active_extruder;
  1532. HOMEAXIS(X);
  1533. inactive_extruder_x_pos = current_position[X_AXIS];
  1534. active_extruder = tmp_extruder;
  1535. HOMEAXIS(X);
  1536. // reset state used by the different modes
  1537. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1538. delayed_move_time = 0;
  1539. active_extruder_parked = true;
  1540. #else
  1541. HOMEAXIS(X);
  1542. #endif
  1543. }
  1544. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1545. HOMEAXIS(Y);
  1546. }
  1547. if(code_seen(axis_codes[X_AXIS]))
  1548. {
  1549. if(code_value_long() != 0) {
  1550. #ifdef SCARA
  1551. current_position[X_AXIS]=code_value();
  1552. #else
  1553. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1554. #endif
  1555. }
  1556. }
  1557. if(code_seen(axis_codes[Y_AXIS])) {
  1558. if(code_value_long() != 0) {
  1559. #ifdef SCARA
  1560. current_position[Y_AXIS]=code_value();
  1561. #else
  1562. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1563. #endif
  1564. }
  1565. }
  1566. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1567. #ifndef Z_SAFE_HOMING
  1568. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1569. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1570. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1571. feedrate = max_feedrate[Z_AXIS];
  1572. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1573. st_synchronize();
  1574. #endif
  1575. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  1576. destination[X_AXIS] = MESH_MIN_X - X_PROBE_OFFSET_FROM_EXTRUDER;
  1577. destination[Y_AXIS] = MESH_MIN_Y - Y_PROBE_OFFSET_FROM_EXTRUDER;
  1578. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1579. feedrate = homing_feedrate[Z_AXIS]/10;
  1580. current_position[Z_AXIS] = 0;
  1581. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1582. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1583. st_synchronize();
  1584. current_position[X_AXIS] = destination[X_AXIS];
  1585. current_position[Y_AXIS] = destination[Y_AXIS];
  1586. HOMEAXIS(Z);
  1587. #else
  1588. HOMEAXIS(Z);
  1589. #endif
  1590. }
  1591. #else // Z Safe mode activated.
  1592. if(home_all_axis) {
  1593. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1594. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1595. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1596. feedrate = XY_TRAVEL_SPEED/60;
  1597. current_position[Z_AXIS] = 0;
  1598. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1599. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1600. st_synchronize();
  1601. current_position[X_AXIS] = destination[X_AXIS];
  1602. current_position[Y_AXIS] = destination[Y_AXIS];
  1603. HOMEAXIS(Z);
  1604. }
  1605. // Let's see if X and Y are homed and probe is inside bed area.
  1606. if(code_seen(axis_codes[Z_AXIS])) {
  1607. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1608. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1609. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1610. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1611. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1612. current_position[Z_AXIS] = 0;
  1613. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1614. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1615. feedrate = max_feedrate[Z_AXIS];
  1616. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1617. st_synchronize();
  1618. HOMEAXIS(Z);
  1619. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1620. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1621. SERIAL_ECHO_START;
  1622. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1623. } else {
  1624. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1625. SERIAL_ECHO_START;
  1626. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1627. }
  1628. }
  1629. #endif
  1630. #endif
  1631. if(code_seen(axis_codes[Z_AXIS])) {
  1632. if(code_value_long() != 0) {
  1633. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1634. }
  1635. }
  1636. #ifdef ENABLE_AUTO_BED_LEVELING
  1637. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1638. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1639. }
  1640. #endif
  1641. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1642. #endif // else DELTA
  1643. #ifdef SCARA
  1644. calculate_delta(current_position);
  1645. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1646. #endif // SCARA
  1647. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1648. enable_endstops(false);
  1649. #endif
  1650. feedrate = saved_feedrate;
  1651. feedmultiply = saved_feedmultiply;
  1652. previous_millis_cmd = millis();
  1653. endstops_hit_on_purpose();
  1654. #ifndef MESH_BED_LEVELING
  1655. if(card.sdprinting) {
  1656. EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoad[2]);
  1657. if(babystepLoad[2] != 0){
  1658. lcd_adjust_z();
  1659. }
  1660. }
  1661. #endif
  1662. break;
  1663. #ifdef ENABLE_AUTO_BED_LEVELING
  1664. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1665. {
  1666. #if Z_MIN_PIN == -1
  1667. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1668. #endif
  1669. // Prevent user from running a G29 without first homing in X and Y
  1670. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1671. {
  1672. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1673. SERIAL_ECHO_START;
  1674. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1675. break; // abort G29, since we don't know where we are
  1676. }
  1677. #ifdef Z_PROBE_SLED
  1678. dock_sled(false);
  1679. #endif // Z_PROBE_SLED
  1680. st_synchronize();
  1681. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1682. //vector_3 corrected_position = plan_get_position_mm();
  1683. //corrected_position.debug("position before G29");
  1684. plan_bed_level_matrix.set_to_identity();
  1685. vector_3 uncorrected_position = plan_get_position();
  1686. //uncorrected_position.debug("position durring G29");
  1687. current_position[X_AXIS] = uncorrected_position.x;
  1688. current_position[Y_AXIS] = uncorrected_position.y;
  1689. current_position[Z_AXIS] = uncorrected_position.z;
  1690. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1691. setup_for_endstop_move();
  1692. feedrate = homing_feedrate[Z_AXIS];
  1693. #ifdef AUTO_BED_LEVELING_GRID
  1694. // probe at the points of a lattice grid
  1695. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1696. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1697. // solve the plane equation ax + by + d = z
  1698. // A is the matrix with rows [x y 1] for all the probed points
  1699. // B is the vector of the Z positions
  1700. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1701. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1702. // "A" matrix of the linear system of equations
  1703. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1704. // "B" vector of Z points
  1705. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1706. int probePointCounter = 0;
  1707. bool zig = true;
  1708. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1709. {
  1710. int xProbe, xInc;
  1711. if (zig)
  1712. {
  1713. xProbe = LEFT_PROBE_BED_POSITION;
  1714. //xEnd = RIGHT_PROBE_BED_POSITION;
  1715. xInc = xGridSpacing;
  1716. zig = false;
  1717. } else // zag
  1718. {
  1719. xProbe = RIGHT_PROBE_BED_POSITION;
  1720. //xEnd = LEFT_PROBE_BED_POSITION;
  1721. xInc = -xGridSpacing;
  1722. zig = true;
  1723. }
  1724. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1725. {
  1726. float z_before;
  1727. if (probePointCounter == 0)
  1728. {
  1729. // raise before probing
  1730. z_before = Z_RAISE_BEFORE_PROBING;
  1731. } else
  1732. {
  1733. // raise extruder
  1734. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1735. }
  1736. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1737. eqnBVector[probePointCounter] = measured_z;
  1738. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1739. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1740. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1741. probePointCounter++;
  1742. xProbe += xInc;
  1743. }
  1744. }
  1745. clean_up_after_endstop_move();
  1746. // solve lsq problem
  1747. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1748. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1749. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1750. SERIAL_PROTOCOLPGM(" b: ");
  1751. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1752. SERIAL_PROTOCOLPGM(" d: ");
  1753. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1754. set_bed_level_equation_lsq(plane_equation_coefficients);
  1755. free(plane_equation_coefficients);
  1756. #else // AUTO_BED_LEVELING_GRID not defined
  1757. // Probe at 3 arbitrary points
  1758. // probe 1
  1759. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1760. // probe 2
  1761. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1762. // probe 3
  1763. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1764. clean_up_after_endstop_move();
  1765. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1766. #endif // AUTO_BED_LEVELING_GRID
  1767. st_synchronize();
  1768. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1769. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1770. // When the bed is uneven, this height must be corrected.
  1771. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1772. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1773. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1774. z_tmp = current_position[Z_AXIS];
  1775. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1776. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1777. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1778. #ifdef Z_PROBE_SLED
  1779. dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
  1780. #endif // Z_PROBE_SLED
  1781. }
  1782. break;
  1783. #ifndef Z_PROBE_SLED
  1784. case 30: // G30 Single Z Probe
  1785. {
  1786. engage_z_probe(); // Engage Z Servo endstop if available
  1787. st_synchronize();
  1788. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1789. setup_for_endstop_move();
  1790. feedrate = homing_feedrate[Z_AXIS];
  1791. run_z_probe();
  1792. SERIAL_PROTOCOLPGM(MSG_BED);
  1793. SERIAL_PROTOCOLPGM(" X: ");
  1794. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1795. SERIAL_PROTOCOLPGM(" Y: ");
  1796. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1797. SERIAL_PROTOCOLPGM(" Z: ");
  1798. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1799. SERIAL_PROTOCOLPGM("\n");
  1800. clean_up_after_endstop_move();
  1801. retract_z_probe(); // Retract Z Servo endstop if available
  1802. }
  1803. break;
  1804. #else
  1805. case 31: // dock the sled
  1806. dock_sled(true);
  1807. break;
  1808. case 32: // undock the sled
  1809. dock_sled(false);
  1810. break;
  1811. #endif // Z_PROBE_SLED
  1812. #endif // ENABLE_AUTO_BED_LEVELING
  1813. #ifdef MESH_BED_LEVELING
  1814. /**
  1815. * G80: Mesh-based Z probe, probes a grid and produces a
  1816. * mesh to compensate for variable bed height
  1817. *
  1818. * The S0 report the points as below
  1819. *
  1820. * +----> X-axis
  1821. * |
  1822. * |
  1823. * v Y-axis
  1824. *
  1825. */
  1826. case 80:
  1827. {
  1828. // Firstly check if we know where we are
  1829. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  1830. // We don't know where we are!!! HOME!
  1831. enquecommand_P((PSTR("G28")));
  1832. enquecommand_P((PSTR("G80")));
  1833. break;
  1834. }
  1835. mbl.reset();
  1836. // Cycle through all points and probe them
  1837. current_position[X_AXIS] = MESH_MIN_X - X_PROBE_OFFSET_FROM_EXTRUDER;
  1838. current_position[Y_AXIS] = MESH_MIN_Y - Y_PROBE_OFFSET_FROM_EXTRUDER;
  1839. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  1840. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1841. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  1842. st_synchronize();
  1843. int mesh_point = 0;
  1844. int ix = 0;
  1845. int iy = 0;
  1846. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  1847. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  1848. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  1849. setup_for_endstop_move();
  1850. while (!(mesh_point == ((MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) ))) {
  1851. // Move Z to proper distance
  1852. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  1854. st_synchronize();
  1855. // Get cords of measuring point
  1856. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  1857. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  1858. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  1859. current_position[X_AXIS] = mbl.get_meas_x(ix);
  1860. current_position[Y_AXIS] = mbl.get_meas_y(iy);
  1861. current_position[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  1862. current_position[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  1863. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  1864. st_synchronize();
  1865. // Go down until endstop is hit
  1866. find_bed();
  1867. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1868. mesh_point++;
  1869. }
  1870. clean_up_after_endstop_move();
  1871. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1872. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  1873. mbl.upsample_3x3();
  1874. mbl.active = 1;
  1875. current_position[X_AXIS] = X_MIN_POS+0.2;
  1876. current_position[Y_AXIS] = Y_MIN_POS+0.2;
  1877. current_position[Z_AXIS] = Z_MIN_POS;
  1878. plan_buffer_line(current_position[X_AXIS], current_position[X_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  1879. st_synchronize();
  1880. }
  1881. break;
  1882. /**
  1883. * G81: Print mesh bed leveling status and bed profile if activated
  1884. */
  1885. case 81:
  1886. if (mbl.active) {
  1887. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1888. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1889. SERIAL_PROTOCOLPGM(",");
  1890. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1891. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1892. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  1893. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1894. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  1895. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1896. SERIAL_PROTOCOLPGM(" ");
  1897. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1898. }
  1899. SERIAL_PROTOCOLPGM("\n");
  1900. }
  1901. }
  1902. else
  1903. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1904. break;
  1905. /**
  1906. * G82: Single Z probe at current location
  1907. *
  1908. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  1909. *
  1910. */
  1911. case 82:
  1912. SERIAL_PROTOCOLLNPGM("Finding bed ");
  1913. setup_for_endstop_move();
  1914. find_bed();
  1915. clean_up_after_endstop_move();
  1916. SERIAL_PROTOCOLPGM("Bed found at: ");
  1917. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  1918. SERIAL_PROTOCOLPGM("\n");
  1919. break;
  1920. #endif // ENABLE_MESH_BED_LEVELING
  1921. case 90: // G90
  1922. relative_mode = false;
  1923. break;
  1924. case 91: // G91
  1925. relative_mode = true;
  1926. break;
  1927. case 92: // G92
  1928. if(!code_seen(axis_codes[E_AXIS]))
  1929. st_synchronize();
  1930. for(int8_t i=0; i < NUM_AXIS; i++) {
  1931. if(code_seen(axis_codes[i])) {
  1932. if(i == E_AXIS) {
  1933. current_position[i] = code_value();
  1934. plan_set_e_position(current_position[E_AXIS]);
  1935. }
  1936. else {
  1937. #ifdef SCARA
  1938. if (i == X_AXIS || i == Y_AXIS) {
  1939. current_position[i] = code_value();
  1940. }
  1941. else {
  1942. current_position[i] = code_value()+add_homing[i];
  1943. }
  1944. #else
  1945. current_position[i] = code_value()+add_homing[i];
  1946. #endif
  1947. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1948. }
  1949. }
  1950. }
  1951. break;
  1952. }
  1953. }
  1954. else if(code_seen('M'))
  1955. {
  1956. switch( (int)code_value() )
  1957. {
  1958. #ifdef ULTIPANEL
  1959. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1960. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1961. {
  1962. char *src = strchr_pointer + 2;
  1963. codenum = 0;
  1964. bool hasP = false, hasS = false;
  1965. if (code_seen('P')) {
  1966. codenum = code_value(); // milliseconds to wait
  1967. hasP = codenum > 0;
  1968. }
  1969. if (code_seen('S')) {
  1970. codenum = code_value() * 1000; // seconds to wait
  1971. hasS = codenum > 0;
  1972. }
  1973. starpos = strchr(src, '*');
  1974. if (starpos != NULL) *(starpos) = '\0';
  1975. while (*src == ' ') ++src;
  1976. if (!hasP && !hasS && *src != '\0') {
  1977. lcd_setstatus(src);
  1978. } else {
  1979. LCD_MESSAGERPGM(MSG_USERWAIT);
  1980. }
  1981. lcd_ignore_click();
  1982. st_synchronize();
  1983. previous_millis_cmd = millis();
  1984. if (codenum > 0){
  1985. codenum += millis(); // keep track of when we started waiting
  1986. while(millis() < codenum && !lcd_clicked()){
  1987. manage_heater();
  1988. manage_inactivity();
  1989. lcd_update();
  1990. }
  1991. lcd_ignore_click(false);
  1992. }else{
  1993. if (!lcd_detected())
  1994. break;
  1995. while(!lcd_clicked()){
  1996. manage_heater();
  1997. manage_inactivity();
  1998. lcd_update();
  1999. }
  2000. }
  2001. if (IS_SD_PRINTING)
  2002. LCD_MESSAGERPGM(MSG_RESUMING);
  2003. else
  2004. LCD_MESSAGERPGM(WELCOME_MSG);
  2005. }
  2006. break;
  2007. #endif
  2008. case 17:
  2009. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2010. enable_x();
  2011. enable_y();
  2012. enable_z();
  2013. enable_e0();
  2014. enable_e1();
  2015. enable_e2();
  2016. break;
  2017. #ifdef SDSUPPORT
  2018. case 20: // M20 - list SD card
  2019. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2020. card.ls();
  2021. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2022. break;
  2023. case 21: // M21 - init SD card
  2024. card.initsd();
  2025. break;
  2026. case 22: //M22 - release SD card
  2027. card.release();
  2028. break;
  2029. case 23: //M23 - Select file
  2030. starpos = (strchr(strchr_pointer + 4,'*'));
  2031. if(starpos!=NULL)
  2032. *(starpos)='\0';
  2033. card.openFile(strchr_pointer + 4,true);
  2034. break;
  2035. case 24: //M24 - Start SD print
  2036. card.startFileprint();
  2037. starttime=millis();
  2038. break;
  2039. case 25: //M25 - Pause SD print
  2040. card.pauseSDPrint();
  2041. break;
  2042. case 26: //M26 - Set SD index
  2043. if(card.cardOK && code_seen('S')) {
  2044. card.setIndex(code_value_long());
  2045. }
  2046. break;
  2047. case 27: //M27 - Get SD status
  2048. card.getStatus();
  2049. break;
  2050. case 28: //M28 - Start SD write
  2051. starpos = (strchr(strchr_pointer + 4,'*'));
  2052. if(starpos != NULL){
  2053. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2054. strchr_pointer = strchr(npos,' ') + 1;
  2055. *(starpos) = '\0';
  2056. }
  2057. card.openFile(strchr_pointer+4,false);
  2058. break;
  2059. case 29: //M29 - Stop SD write
  2060. //processed in write to file routine above
  2061. //card,saving = false;
  2062. break;
  2063. case 30: //M30 <filename> Delete File
  2064. if (card.cardOK){
  2065. card.closefile();
  2066. starpos = (strchr(strchr_pointer + 4,'*'));
  2067. if(starpos != NULL){
  2068. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2069. strchr_pointer = strchr(npos,' ') + 1;
  2070. *(starpos) = '\0';
  2071. }
  2072. card.removeFile(strchr_pointer + 4);
  2073. }
  2074. break;
  2075. case 32: //M32 - Select file and start SD print
  2076. {
  2077. if(card.sdprinting) {
  2078. st_synchronize();
  2079. }
  2080. starpos = (strchr(strchr_pointer + 4,'*'));
  2081. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2082. if(namestartpos==NULL)
  2083. {
  2084. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2085. }
  2086. else
  2087. namestartpos++; //to skip the '!'
  2088. if(starpos!=NULL)
  2089. *(starpos)='\0';
  2090. bool call_procedure=(code_seen('P'));
  2091. if(strchr_pointer>namestartpos)
  2092. call_procedure=false; //false alert, 'P' found within filename
  2093. if( card.cardOK )
  2094. {
  2095. card.openFile(namestartpos,true,!call_procedure);
  2096. if(code_seen('S'))
  2097. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2098. card.setIndex(code_value_long());
  2099. card.startFileprint();
  2100. if(!call_procedure)
  2101. starttime=millis(); //procedure calls count as normal print time.
  2102. }
  2103. } break;
  2104. case 928: //M928 - Start SD write
  2105. starpos = (strchr(strchr_pointer + 5,'*'));
  2106. if(starpos != NULL){
  2107. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2108. strchr_pointer = strchr(npos,' ') + 1;
  2109. *(starpos) = '\0';
  2110. }
  2111. card.openLogFile(strchr_pointer+5);
  2112. break;
  2113. #endif //SDSUPPORT
  2114. case 31: //M31 take time since the start of the SD print or an M109 command
  2115. {
  2116. stoptime=millis();
  2117. char time[30];
  2118. unsigned long t=(stoptime-starttime)/1000;
  2119. int sec,min;
  2120. min=t/60;
  2121. sec=t%60;
  2122. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2123. SERIAL_ECHO_START;
  2124. SERIAL_ECHOLN(time);
  2125. lcd_setstatus(time);
  2126. autotempShutdown();
  2127. }
  2128. break;
  2129. case 42: //M42 -Change pin status via gcode
  2130. if (code_seen('S'))
  2131. {
  2132. int pin_status = code_value();
  2133. int pin_number = LED_PIN;
  2134. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2135. pin_number = code_value();
  2136. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2137. {
  2138. if (sensitive_pins[i] == pin_number)
  2139. {
  2140. pin_number = -1;
  2141. break;
  2142. }
  2143. }
  2144. #if defined(FAN_PIN) && FAN_PIN > -1
  2145. if (pin_number == FAN_PIN)
  2146. fanSpeed = pin_status;
  2147. #endif
  2148. if (pin_number > -1)
  2149. {
  2150. pinMode(pin_number, OUTPUT);
  2151. digitalWrite(pin_number, pin_status);
  2152. analogWrite(pin_number, pin_status);
  2153. }
  2154. }
  2155. break;
  2156. // M48 Z-Probe repeatability measurement function.
  2157. //
  2158. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  2159. //
  2160. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2161. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2162. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2163. // regenerated.
  2164. //
  2165. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2166. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2167. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2168. //
  2169. #ifdef ENABLE_AUTO_BED_LEVELING
  2170. #ifdef Z_PROBE_REPEATABILITY_TEST
  2171. case 48: // M48 Z-Probe repeatability
  2172. {
  2173. #if Z_MIN_PIN == -1
  2174. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2175. #endif
  2176. double sum=0.0;
  2177. double mean=0.0;
  2178. double sigma=0.0;
  2179. double sample_set[50];
  2180. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  2181. double X_current, Y_current, Z_current;
  2182. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2183. if (code_seen('V') || code_seen('v')) {
  2184. verbose_level = code_value();
  2185. if (verbose_level<0 || verbose_level>4 ) {
  2186. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2187. goto Sigma_Exit;
  2188. }
  2189. }
  2190. if (verbose_level > 0) {
  2191. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2192. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2193. }
  2194. if (code_seen('n')) {
  2195. n_samples = code_value();
  2196. if (n_samples<4 || n_samples>50 ) {
  2197. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2198. goto Sigma_Exit;
  2199. }
  2200. }
  2201. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2202. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2203. Z_current = st_get_position_mm(Z_AXIS);
  2204. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2205. ext_position = st_get_position_mm(E_AXIS);
  2206. if (code_seen('E') || code_seen('e') )
  2207. engage_probe_for_each_reading++;
  2208. if (code_seen('X') || code_seen('x') ) {
  2209. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2210. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2211. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2212. goto Sigma_Exit;
  2213. }
  2214. }
  2215. if (code_seen('Y') || code_seen('y') ) {
  2216. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2217. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2218. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2219. goto Sigma_Exit;
  2220. }
  2221. }
  2222. if (code_seen('L') || code_seen('l') ) {
  2223. n_legs = code_value();
  2224. if ( n_legs==1 )
  2225. n_legs = 2;
  2226. if ( n_legs<0 || n_legs>15 ) {
  2227. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2228. goto Sigma_Exit;
  2229. }
  2230. }
  2231. //
  2232. // Do all the preliminary setup work. First raise the probe.
  2233. //
  2234. st_synchronize();
  2235. plan_bed_level_matrix.set_to_identity();
  2236. plan_buffer_line( X_current, Y_current, Z_start_location,
  2237. ext_position,
  2238. homing_feedrate[Z_AXIS]/60,
  2239. active_extruder);
  2240. st_synchronize();
  2241. //
  2242. // Now get everything to the specified probe point So we can safely do a probe to
  2243. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2244. // use that as a starting point for each probe.
  2245. //
  2246. if (verbose_level > 2)
  2247. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2248. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2249. ext_position,
  2250. homing_feedrate[X_AXIS]/60,
  2251. active_extruder);
  2252. st_synchronize();
  2253. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2254. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2255. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2256. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2257. //
  2258. // OK, do the inital probe to get us close to the bed.
  2259. // Then retrace the right amount and use that in subsequent probes
  2260. //
  2261. engage_z_probe();
  2262. setup_for_endstop_move();
  2263. run_z_probe();
  2264. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2265. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2266. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2267. ext_position,
  2268. homing_feedrate[X_AXIS]/60,
  2269. active_extruder);
  2270. st_synchronize();
  2271. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2272. if (engage_probe_for_each_reading)
  2273. retract_z_probe();
  2274. for( n=0; n<n_samples; n++) {
  2275. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2276. if ( n_legs) {
  2277. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2278. int rotational_direction, l;
  2279. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2280. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2281. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2282. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2283. //SERIAL_ECHOPAIR(" theta: ",theta);
  2284. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2285. //SERIAL_PROTOCOLLNPGM("");
  2286. for( l=0; l<n_legs-1; l++) {
  2287. if (rotational_direction==1)
  2288. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2289. else
  2290. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2291. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2292. if ( radius<0.0 )
  2293. radius = -radius;
  2294. X_current = X_probe_location + cos(theta) * radius;
  2295. Y_current = Y_probe_location + sin(theta) * radius;
  2296. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2297. X_current = X_MIN_POS;
  2298. if ( X_current>X_MAX_POS)
  2299. X_current = X_MAX_POS;
  2300. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2301. Y_current = Y_MIN_POS;
  2302. if ( Y_current>Y_MAX_POS)
  2303. Y_current = Y_MAX_POS;
  2304. if (verbose_level>3 ) {
  2305. SERIAL_ECHOPAIR("x: ", X_current);
  2306. SERIAL_ECHOPAIR("y: ", Y_current);
  2307. SERIAL_PROTOCOLLNPGM("");
  2308. }
  2309. do_blocking_move_to( X_current, Y_current, Z_current );
  2310. }
  2311. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2312. }
  2313. if (engage_probe_for_each_reading) {
  2314. engage_z_probe();
  2315. delay(1000);
  2316. }
  2317. setup_for_endstop_move();
  2318. run_z_probe();
  2319. sample_set[n] = current_position[Z_AXIS];
  2320. //
  2321. // Get the current mean for the data points we have so far
  2322. //
  2323. sum=0.0;
  2324. for( j=0; j<=n; j++) {
  2325. sum = sum + sample_set[j];
  2326. }
  2327. mean = sum / (double (n+1));
  2328. //
  2329. // Now, use that mean to calculate the standard deviation for the
  2330. // data points we have so far
  2331. //
  2332. sum=0.0;
  2333. for( j=0; j<=n; j++) {
  2334. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2335. }
  2336. sigma = sqrt( sum / (double (n+1)) );
  2337. if (verbose_level > 1) {
  2338. SERIAL_PROTOCOL(n+1);
  2339. SERIAL_PROTOCOL(" of ");
  2340. SERIAL_PROTOCOL(n_samples);
  2341. SERIAL_PROTOCOLPGM(" z: ");
  2342. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2343. }
  2344. if (verbose_level > 2) {
  2345. SERIAL_PROTOCOL(" mean: ");
  2346. SERIAL_PROTOCOL_F(mean,6);
  2347. SERIAL_PROTOCOL(" sigma: ");
  2348. SERIAL_PROTOCOL_F(sigma,6);
  2349. }
  2350. if (verbose_level > 0)
  2351. SERIAL_PROTOCOLPGM("\n");
  2352. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2353. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2354. st_synchronize();
  2355. if (engage_probe_for_each_reading) {
  2356. retract_z_probe();
  2357. delay(1000);
  2358. }
  2359. }
  2360. retract_z_probe();
  2361. delay(1000);
  2362. clean_up_after_endstop_move();
  2363. // enable_endstops(true);
  2364. if (verbose_level > 0) {
  2365. SERIAL_PROTOCOLPGM("Mean: ");
  2366. SERIAL_PROTOCOL_F(mean, 6);
  2367. SERIAL_PROTOCOLPGM("\n");
  2368. }
  2369. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2370. SERIAL_PROTOCOL_F(sigma, 6);
  2371. SERIAL_PROTOCOLPGM("\n\n");
  2372. Sigma_Exit:
  2373. break;
  2374. }
  2375. #endif // Z_PROBE_REPEATABILITY_TEST
  2376. #endif // ENABLE_AUTO_BED_LEVELING
  2377. case 104: // M104
  2378. if(setTargetedHotend(104)){
  2379. break;
  2380. }
  2381. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2382. #ifdef DUAL_X_CARRIAGE
  2383. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2384. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2385. #endif
  2386. setWatch();
  2387. break;
  2388. case 112: // M112 -Emergency Stop
  2389. kill();
  2390. break;
  2391. case 140: // M140 set bed temp
  2392. if (code_seen('S')) setTargetBed(code_value());
  2393. break;
  2394. case 105 : // M105
  2395. if(setTargetedHotend(105)){
  2396. break;
  2397. }
  2398. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2399. SERIAL_PROTOCOLPGM("ok T:");
  2400. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2401. SERIAL_PROTOCOLPGM(" /");
  2402. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2403. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2404. SERIAL_PROTOCOLPGM(" B:");
  2405. SERIAL_PROTOCOL_F(degBed(),1);
  2406. SERIAL_PROTOCOLPGM(" /");
  2407. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2408. #endif //TEMP_BED_PIN
  2409. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2410. SERIAL_PROTOCOLPGM(" T");
  2411. SERIAL_PROTOCOL(cur_extruder);
  2412. SERIAL_PROTOCOLPGM(":");
  2413. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2414. SERIAL_PROTOCOLPGM(" /");
  2415. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2416. }
  2417. #else
  2418. SERIAL_ERROR_START;
  2419. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  2420. #endif
  2421. SERIAL_PROTOCOLPGM(" @:");
  2422. #ifdef EXTRUDER_WATTS
  2423. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2424. SERIAL_PROTOCOLPGM("W");
  2425. #else
  2426. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2427. #endif
  2428. SERIAL_PROTOCOLPGM(" B@:");
  2429. #ifdef BED_WATTS
  2430. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2431. SERIAL_PROTOCOLPGM("W");
  2432. #else
  2433. SERIAL_PROTOCOL(getHeaterPower(-1));
  2434. #endif
  2435. #ifdef SHOW_TEMP_ADC_VALUES
  2436. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2437. SERIAL_PROTOCOLPGM(" ADC B:");
  2438. SERIAL_PROTOCOL_F(degBed(),1);
  2439. SERIAL_PROTOCOLPGM("C->");
  2440. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2441. #endif
  2442. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2443. SERIAL_PROTOCOLPGM(" T");
  2444. SERIAL_PROTOCOL(cur_extruder);
  2445. SERIAL_PROTOCOLPGM(":");
  2446. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2447. SERIAL_PROTOCOLPGM("C->");
  2448. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2449. }
  2450. #endif
  2451. SERIAL_PROTOCOLLN("");
  2452. return;
  2453. break;
  2454. case 109:
  2455. {// M109 - Wait for extruder heater to reach target.
  2456. if(setTargetedHotend(109)){
  2457. break;
  2458. }
  2459. LCD_MESSAGERPGM(MSG_HEATING);
  2460. #ifdef AUTOTEMP
  2461. autotemp_enabled=false;
  2462. #endif
  2463. if (code_seen('S')) {
  2464. setTargetHotend(code_value(), tmp_extruder);
  2465. #ifdef DUAL_X_CARRIAGE
  2466. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2467. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2468. #endif
  2469. CooldownNoWait = true;
  2470. } else if (code_seen('R')) {
  2471. setTargetHotend(code_value(), tmp_extruder);
  2472. #ifdef DUAL_X_CARRIAGE
  2473. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2474. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2475. #endif
  2476. CooldownNoWait = false;
  2477. }
  2478. #ifdef AUTOTEMP
  2479. if (code_seen('S')) autotemp_min=code_value();
  2480. if (code_seen('B')) autotemp_max=code_value();
  2481. if (code_seen('F'))
  2482. {
  2483. autotemp_factor=code_value();
  2484. autotemp_enabled=true;
  2485. }
  2486. #endif
  2487. setWatch();
  2488. codenum = millis();
  2489. /* See if we are heating up or cooling down */
  2490. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2491. cancel_heatup = false;
  2492. #ifdef TEMP_RESIDENCY_TIME
  2493. long residencyStart;
  2494. residencyStart = -1;
  2495. /* continue to loop until we have reached the target temp
  2496. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2497. while((!cancel_heatup)&&((residencyStart == -1) ||
  2498. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2499. #else
  2500. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2501. #endif //TEMP_RESIDENCY_TIME
  2502. if( (millis() - codenum) > 1000UL )
  2503. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2504. SERIAL_PROTOCOLPGM("T:");
  2505. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2506. SERIAL_PROTOCOLPGM(" E:");
  2507. SERIAL_PROTOCOL((int)tmp_extruder);
  2508. #ifdef TEMP_RESIDENCY_TIME
  2509. SERIAL_PROTOCOLPGM(" W:");
  2510. if(residencyStart > -1)
  2511. {
  2512. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2513. SERIAL_PROTOCOLLN( codenum );
  2514. }
  2515. else
  2516. {
  2517. SERIAL_PROTOCOLLN( "?" );
  2518. }
  2519. #else
  2520. SERIAL_PROTOCOLLN("");
  2521. #endif
  2522. codenum = millis();
  2523. }
  2524. manage_heater();
  2525. manage_inactivity();
  2526. lcd_update();
  2527. #ifdef TEMP_RESIDENCY_TIME
  2528. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2529. or when current temp falls outside the hysteresis after target temp was reached */
  2530. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2531. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2532. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2533. {
  2534. residencyStart = millis();
  2535. }
  2536. #endif //TEMP_RESIDENCY_TIME
  2537. }
  2538. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  2539. if(IS_SD_PRINTING){
  2540. lcd_setstatus("SD-PRINTING ");
  2541. }
  2542. starttime=millis();
  2543. previous_millis_cmd = millis();
  2544. }
  2545. break;
  2546. case 190: // M190 - Wait for bed heater to reach target.
  2547. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2548. LCD_MESSAGERPGM(MSG_BED_HEATING);
  2549. if (code_seen('S')) {
  2550. setTargetBed(code_value());
  2551. CooldownNoWait = true;
  2552. } else if (code_seen('R')) {
  2553. setTargetBed(code_value());
  2554. CooldownNoWait = false;
  2555. }
  2556. codenum = millis();
  2557. cancel_heatup = false;
  2558. target_direction = isHeatingBed(); // true if heating, false if cooling
  2559. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2560. {
  2561. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2562. {
  2563. float tt=degHotend(active_extruder);
  2564. SERIAL_PROTOCOLPGM("T:");
  2565. SERIAL_PROTOCOL(tt);
  2566. SERIAL_PROTOCOLPGM(" E:");
  2567. SERIAL_PROTOCOL((int)active_extruder);
  2568. SERIAL_PROTOCOLPGM(" B:");
  2569. SERIAL_PROTOCOL_F(degBed(),1);
  2570. SERIAL_PROTOCOLLN("");
  2571. codenum = millis();
  2572. }
  2573. manage_heater();
  2574. manage_inactivity();
  2575. lcd_update();
  2576. }
  2577. LCD_MESSAGERPGM(MSG_BED_DONE);
  2578. if(IS_SD_PRINTING){
  2579. lcd_setstatus("SD-PRINTING ");
  2580. }
  2581. previous_millis_cmd = millis();
  2582. #endif
  2583. break;
  2584. #if defined(FAN_PIN) && FAN_PIN > -1
  2585. case 106: //M106 Fan On
  2586. if (code_seen('S')){
  2587. fanSpeed=constrain(code_value(),0,255);
  2588. }
  2589. else {
  2590. fanSpeed=255;
  2591. }
  2592. break;
  2593. case 107: //M107 Fan Off
  2594. fanSpeed = 0;
  2595. break;
  2596. #endif //FAN_PIN
  2597. #ifdef BARICUDA
  2598. // PWM for HEATER_1_PIN
  2599. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2600. case 126: //M126 valve open
  2601. if (code_seen('S')){
  2602. ValvePressure=constrain(code_value(),0,255);
  2603. }
  2604. else {
  2605. ValvePressure=255;
  2606. }
  2607. break;
  2608. case 127: //M127 valve closed
  2609. ValvePressure = 0;
  2610. break;
  2611. #endif //HEATER_1_PIN
  2612. // PWM for HEATER_2_PIN
  2613. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2614. case 128: //M128 valve open
  2615. if (code_seen('S')){
  2616. EtoPPressure=constrain(code_value(),0,255);
  2617. }
  2618. else {
  2619. EtoPPressure=255;
  2620. }
  2621. break;
  2622. case 129: //M129 valve closed
  2623. EtoPPressure = 0;
  2624. break;
  2625. #endif //HEATER_2_PIN
  2626. #endif
  2627. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2628. case 80: // M80 - Turn on Power Supply
  2629. SET_OUTPUT(PS_ON_PIN); //GND
  2630. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2631. // If you have a switch on suicide pin, this is useful
  2632. // if you want to start another print with suicide feature after
  2633. // a print without suicide...
  2634. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2635. SET_OUTPUT(SUICIDE_PIN);
  2636. WRITE(SUICIDE_PIN, HIGH);
  2637. #endif
  2638. #ifdef ULTIPANEL
  2639. powersupply = true;
  2640. LCD_MESSAGERPGM(WELCOME_MSG);
  2641. lcd_update();
  2642. #endif
  2643. break;
  2644. #endif
  2645. case 81: // M81 - Turn off Power Supply
  2646. disable_heater();
  2647. st_synchronize();
  2648. disable_e0();
  2649. disable_e1();
  2650. disable_e2();
  2651. finishAndDisableSteppers();
  2652. fanSpeed = 0;
  2653. delay(1000); // Wait a little before to switch off
  2654. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2655. st_synchronize();
  2656. suicide();
  2657. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2658. SET_OUTPUT(PS_ON_PIN);
  2659. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2660. #endif
  2661. #ifdef ULTIPANEL
  2662. powersupply = false;
  2663. LCD_MESSAGERPGM(CAT4(MACHINE_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!!!!!!!!!!!!!
  2664. /*
  2665. MACHNAME = "Prusa i3"
  2666. MSGOFF = "Vypnuto"
  2667. "Prusai3"" ""vypnuto""."
  2668. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  2669. */
  2670. lcd_update();
  2671. #endif
  2672. break;
  2673. case 82:
  2674. axis_relative_modes[3] = false;
  2675. break;
  2676. case 83:
  2677. axis_relative_modes[3] = true;
  2678. break;
  2679. case 18: //compatibility
  2680. case 84: // M84
  2681. if(code_seen('S')){
  2682. stepper_inactive_time = code_value() * 1000;
  2683. }
  2684. else
  2685. {
  2686. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2687. if(all_axis)
  2688. {
  2689. st_synchronize();
  2690. disable_e0();
  2691. disable_e1();
  2692. disable_e2();
  2693. finishAndDisableSteppers();
  2694. }
  2695. else
  2696. {
  2697. st_synchronize();
  2698. if(code_seen('X')) disable_x();
  2699. if(code_seen('Y')) disable_y();
  2700. if(code_seen('Z')) disable_z();
  2701. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2702. if(code_seen('E')) {
  2703. disable_e0();
  2704. disable_e1();
  2705. disable_e2();
  2706. }
  2707. #endif
  2708. }
  2709. }
  2710. break;
  2711. case 85: // M85
  2712. if(code_seen('S')) {
  2713. max_inactive_time = code_value() * 1000;
  2714. }
  2715. break;
  2716. case 92: // M92
  2717. for(int8_t i=0; i < NUM_AXIS; i++)
  2718. {
  2719. if(code_seen(axis_codes[i]))
  2720. {
  2721. if(i == 3) { // E
  2722. float value = code_value();
  2723. if(value < 20.0) {
  2724. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2725. max_e_jerk *= factor;
  2726. max_feedrate[i] *= factor;
  2727. axis_steps_per_sqr_second[i] *= factor;
  2728. }
  2729. axis_steps_per_unit[i] = value;
  2730. }
  2731. else {
  2732. axis_steps_per_unit[i] = code_value();
  2733. }
  2734. }
  2735. }
  2736. break;
  2737. case 115: // M115
  2738. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  2739. break;
  2740. case 117: // M117 display message
  2741. starpos = (strchr(strchr_pointer + 5,'*'));
  2742. if(starpos!=NULL)
  2743. *(starpos)='\0';
  2744. lcd_setstatus(strchr_pointer + 5);
  2745. break;
  2746. case 114: // M114
  2747. SERIAL_PROTOCOLPGM("X:");
  2748. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2749. SERIAL_PROTOCOLPGM(" Y:");
  2750. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2751. SERIAL_PROTOCOLPGM(" Z:");
  2752. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2753. SERIAL_PROTOCOLPGM(" E:");
  2754. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2755. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  2756. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2757. SERIAL_PROTOCOLPGM(" Y:");
  2758. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2759. SERIAL_PROTOCOLPGM(" Z:");
  2760. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2761. SERIAL_PROTOCOLLN("");
  2762. #ifdef SCARA
  2763. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2764. SERIAL_PROTOCOL(delta[X_AXIS]);
  2765. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2766. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2767. SERIAL_PROTOCOLLN("");
  2768. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2769. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2770. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2771. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2772. SERIAL_PROTOCOLLN("");
  2773. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2774. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2775. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2776. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2777. SERIAL_PROTOCOLLN("");
  2778. SERIAL_PROTOCOLLN("");
  2779. #endif
  2780. break;
  2781. case 120: // M120
  2782. enable_endstops(false) ;
  2783. break;
  2784. case 121: // M121
  2785. enable_endstops(true) ;
  2786. break;
  2787. case 119: // M119
  2788. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  2789. SERIAL_PROTOCOLLN("");
  2790. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2791. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  2792. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  2793. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  2794. }else{
  2795. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  2796. }
  2797. SERIAL_PROTOCOLLN("");
  2798. #endif
  2799. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2800. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  2801. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  2802. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  2803. }else{
  2804. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  2805. }
  2806. SERIAL_PROTOCOLLN("");
  2807. #endif
  2808. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2809. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  2810. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  2811. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  2812. }else{
  2813. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  2814. }
  2815. SERIAL_PROTOCOLLN("");
  2816. #endif
  2817. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2818. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  2819. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  2820. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  2821. }else{
  2822. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  2823. }
  2824. SERIAL_PROTOCOLLN("");
  2825. #endif
  2826. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2827. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  2828. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  2829. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  2830. }else{
  2831. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  2832. }
  2833. SERIAL_PROTOCOLLN("");
  2834. #endif
  2835. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2836. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  2837. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  2838. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  2839. }else{
  2840. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  2841. }
  2842. SERIAL_PROTOCOLLN("");
  2843. #endif
  2844. break;
  2845. //TODO: update for all axis, use for loop
  2846. #ifdef BLINKM
  2847. case 150: // M150
  2848. {
  2849. byte red;
  2850. byte grn;
  2851. byte blu;
  2852. if(code_seen('R')) red = code_value();
  2853. if(code_seen('U')) grn = code_value();
  2854. if(code_seen('B')) blu = code_value();
  2855. SendColors(red,grn,blu);
  2856. }
  2857. break;
  2858. #endif //BLINKM
  2859. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2860. {
  2861. tmp_extruder = active_extruder;
  2862. if(code_seen('T')) {
  2863. tmp_extruder = code_value();
  2864. if(tmp_extruder >= EXTRUDERS) {
  2865. SERIAL_ECHO_START;
  2866. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2867. break;
  2868. }
  2869. }
  2870. float area = .0;
  2871. if(code_seen('D')) {
  2872. float diameter = (float)code_value();
  2873. if (diameter == 0.0) {
  2874. // setting any extruder filament size disables volumetric on the assumption that
  2875. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2876. // for all extruders
  2877. volumetric_enabled = false;
  2878. } else {
  2879. filament_size[tmp_extruder] = (float)code_value();
  2880. // make sure all extruders have some sane value for the filament size
  2881. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  2882. #if EXTRUDERS > 1
  2883. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  2884. #if EXTRUDERS > 2
  2885. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  2886. #endif
  2887. #endif
  2888. volumetric_enabled = true;
  2889. }
  2890. } else {
  2891. //reserved for setting filament diameter via UFID or filament measuring device
  2892. break;
  2893. }
  2894. calculate_volumetric_multipliers();
  2895. }
  2896. break;
  2897. case 201: // M201
  2898. for(int8_t i=0; i < NUM_AXIS; i++)
  2899. {
  2900. if(code_seen(axis_codes[i]))
  2901. {
  2902. max_acceleration_units_per_sq_second[i] = code_value();
  2903. }
  2904. }
  2905. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2906. reset_acceleration_rates();
  2907. break;
  2908. #if 0 // Not used for Sprinter/grbl gen6
  2909. case 202: // M202
  2910. for(int8_t i=0; i < NUM_AXIS; i++) {
  2911. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2912. }
  2913. break;
  2914. #endif
  2915. case 203: // M203 max feedrate mm/sec
  2916. for(int8_t i=0; i < NUM_AXIS; i++) {
  2917. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2918. }
  2919. break;
  2920. case 204: // M204 acclereration S normal moves T filmanent only moves
  2921. {
  2922. if(code_seen('S')) acceleration = code_value() ;
  2923. if(code_seen('T')) retract_acceleration = code_value() ;
  2924. }
  2925. break;
  2926. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2927. {
  2928. if(code_seen('S')) minimumfeedrate = code_value();
  2929. if(code_seen('T')) mintravelfeedrate = code_value();
  2930. if(code_seen('B')) minsegmenttime = code_value() ;
  2931. if(code_seen('X')) max_xy_jerk = code_value() ;
  2932. if(code_seen('Z')) max_z_jerk = code_value() ;
  2933. if(code_seen('E')) max_e_jerk = code_value() ;
  2934. }
  2935. break;
  2936. case 206: // M206 additional homing offset
  2937. for(int8_t i=0; i < 3; i++)
  2938. {
  2939. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  2940. }
  2941. #ifdef SCARA
  2942. if(code_seen('T')) // Theta
  2943. {
  2944. add_homing[X_AXIS] = code_value() ;
  2945. }
  2946. if(code_seen('P')) // Psi
  2947. {
  2948. add_homing[Y_AXIS] = code_value() ;
  2949. }
  2950. #endif
  2951. break;
  2952. #ifdef DELTA
  2953. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2954. if(code_seen('L')) {
  2955. delta_diagonal_rod= code_value();
  2956. }
  2957. if(code_seen('R')) {
  2958. delta_radius= code_value();
  2959. }
  2960. if(code_seen('S')) {
  2961. delta_segments_per_second= code_value();
  2962. }
  2963. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2964. break;
  2965. case 666: // M666 set delta endstop adjustemnt
  2966. for(int8_t i=0; i < 3; i++)
  2967. {
  2968. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2969. }
  2970. break;
  2971. #endif
  2972. #ifdef FWRETRACT
  2973. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2974. {
  2975. if(code_seen('S'))
  2976. {
  2977. retract_length = code_value() ;
  2978. }
  2979. if(code_seen('F'))
  2980. {
  2981. retract_feedrate = code_value()/60 ;
  2982. }
  2983. if(code_seen('Z'))
  2984. {
  2985. retract_zlift = code_value() ;
  2986. }
  2987. }break;
  2988. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2989. {
  2990. if(code_seen('S'))
  2991. {
  2992. retract_recover_length = code_value() ;
  2993. }
  2994. if(code_seen('F'))
  2995. {
  2996. retract_recover_feedrate = code_value()/60 ;
  2997. }
  2998. }break;
  2999. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3000. {
  3001. if(code_seen('S'))
  3002. {
  3003. int t= code_value() ;
  3004. switch(t)
  3005. {
  3006. case 0:
  3007. {
  3008. autoretract_enabled=false;
  3009. retracted[0]=false;
  3010. #if EXTRUDERS > 1
  3011. retracted[1]=false;
  3012. #endif
  3013. #if EXTRUDERS > 2
  3014. retracted[2]=false;
  3015. #endif
  3016. }break;
  3017. case 1:
  3018. {
  3019. autoretract_enabled=true;
  3020. retracted[0]=false;
  3021. #if EXTRUDERS > 1
  3022. retracted[1]=false;
  3023. #endif
  3024. #if EXTRUDERS > 2
  3025. retracted[2]=false;
  3026. #endif
  3027. }break;
  3028. default:
  3029. SERIAL_ECHO_START;
  3030. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3031. SERIAL_ECHO(cmdbuffer[bufindr]);
  3032. SERIAL_ECHOLNPGM("\"");
  3033. }
  3034. }
  3035. }break;
  3036. #endif // FWRETRACT
  3037. #if EXTRUDERS > 1
  3038. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3039. {
  3040. if(setTargetedHotend(218)){
  3041. break;
  3042. }
  3043. if(code_seen('X'))
  3044. {
  3045. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3046. }
  3047. if(code_seen('Y'))
  3048. {
  3049. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3050. }
  3051. #ifdef DUAL_X_CARRIAGE
  3052. if(code_seen('Z'))
  3053. {
  3054. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3055. }
  3056. #endif
  3057. SERIAL_ECHO_START;
  3058. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3059. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3060. {
  3061. SERIAL_ECHO(" ");
  3062. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3063. SERIAL_ECHO(",");
  3064. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3065. #ifdef DUAL_X_CARRIAGE
  3066. SERIAL_ECHO(",");
  3067. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3068. #endif
  3069. }
  3070. SERIAL_ECHOLN("");
  3071. }break;
  3072. #endif
  3073. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3074. {
  3075. if(code_seen('S'))
  3076. {
  3077. feedmultiply = code_value() ;
  3078. }
  3079. }
  3080. break;
  3081. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3082. {
  3083. if(code_seen('S'))
  3084. {
  3085. int tmp_code = code_value();
  3086. if (code_seen('T'))
  3087. {
  3088. if(setTargetedHotend(221)){
  3089. break;
  3090. }
  3091. extruder_multiply[tmp_extruder] = tmp_code;
  3092. }
  3093. else
  3094. {
  3095. extrudemultiply = tmp_code ;
  3096. }
  3097. }
  3098. }
  3099. break;
  3100. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3101. {
  3102. if(code_seen('P')){
  3103. int pin_number = code_value(); // pin number
  3104. int pin_state = -1; // required pin state - default is inverted
  3105. if(code_seen('S')) pin_state = code_value(); // required pin state
  3106. if(pin_state >= -1 && pin_state <= 1){
  3107. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3108. {
  3109. if (sensitive_pins[i] == pin_number)
  3110. {
  3111. pin_number = -1;
  3112. break;
  3113. }
  3114. }
  3115. if (pin_number > -1)
  3116. {
  3117. int target = LOW;
  3118. st_synchronize();
  3119. pinMode(pin_number, INPUT);
  3120. switch(pin_state){
  3121. case 1:
  3122. target = HIGH;
  3123. break;
  3124. case 0:
  3125. target = LOW;
  3126. break;
  3127. case -1:
  3128. target = !digitalRead(pin_number);
  3129. break;
  3130. }
  3131. while(digitalRead(pin_number) != target){
  3132. manage_heater();
  3133. manage_inactivity();
  3134. lcd_update();
  3135. }
  3136. }
  3137. }
  3138. }
  3139. }
  3140. break;
  3141. #if NUM_SERVOS > 0
  3142. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3143. {
  3144. int servo_index = -1;
  3145. int servo_position = 0;
  3146. if (code_seen('P'))
  3147. servo_index = code_value();
  3148. if (code_seen('S')) {
  3149. servo_position = code_value();
  3150. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3151. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3152. servos[servo_index].attach(0);
  3153. #endif
  3154. servos[servo_index].write(servo_position);
  3155. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3156. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3157. servos[servo_index].detach();
  3158. #endif
  3159. }
  3160. else {
  3161. SERIAL_ECHO_START;
  3162. SERIAL_ECHO("Servo ");
  3163. SERIAL_ECHO(servo_index);
  3164. SERIAL_ECHOLN(" out of range");
  3165. }
  3166. }
  3167. else if (servo_index >= 0) {
  3168. SERIAL_PROTOCOL(MSG_OK);
  3169. SERIAL_PROTOCOL(" Servo ");
  3170. SERIAL_PROTOCOL(servo_index);
  3171. SERIAL_PROTOCOL(": ");
  3172. SERIAL_PROTOCOL(servos[servo_index].read());
  3173. SERIAL_PROTOCOLLN("");
  3174. }
  3175. }
  3176. break;
  3177. #endif // NUM_SERVOS > 0
  3178. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3179. case 300: // M300
  3180. {
  3181. int beepS = code_seen('S') ? code_value() : 110;
  3182. int beepP = code_seen('P') ? code_value() : 1000;
  3183. if (beepS > 0)
  3184. {
  3185. #if BEEPER > 0
  3186. tone(BEEPER, beepS);
  3187. delay(beepP);
  3188. noTone(BEEPER);
  3189. #elif defined(ULTRALCD)
  3190. lcd_buzz(beepS, beepP);
  3191. #elif defined(LCD_USE_I2C_BUZZER)
  3192. lcd_buzz(beepP, beepS);
  3193. #endif
  3194. }
  3195. else
  3196. {
  3197. delay(beepP);
  3198. }
  3199. }
  3200. break;
  3201. #endif // M300
  3202. #ifdef PIDTEMP
  3203. case 301: // M301
  3204. {
  3205. if(code_seen('P')) Kp = code_value();
  3206. if(code_seen('I')) Ki = scalePID_i(code_value());
  3207. if(code_seen('D')) Kd = scalePID_d(code_value());
  3208. #ifdef PID_ADD_EXTRUSION_RATE
  3209. if(code_seen('C')) Kc = code_value();
  3210. #endif
  3211. updatePID();
  3212. SERIAL_PROTOCOL(MSG_OK);
  3213. SERIAL_PROTOCOL(" p:");
  3214. SERIAL_PROTOCOL(Kp);
  3215. SERIAL_PROTOCOL(" i:");
  3216. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3217. SERIAL_PROTOCOL(" d:");
  3218. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3219. #ifdef PID_ADD_EXTRUSION_RATE
  3220. SERIAL_PROTOCOL(" c:");
  3221. //Kc does not have scaling applied above, or in resetting defaults
  3222. SERIAL_PROTOCOL(Kc);
  3223. #endif
  3224. SERIAL_PROTOCOLLN("");
  3225. }
  3226. break;
  3227. #endif //PIDTEMP
  3228. #ifdef PIDTEMPBED
  3229. case 304: // M304
  3230. {
  3231. if(code_seen('P')) bedKp = code_value();
  3232. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3233. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3234. updatePID();
  3235. SERIAL_PROTOCOL(MSG_OK);
  3236. SERIAL_PROTOCOL(" p:");
  3237. SERIAL_PROTOCOL(bedKp);
  3238. SERIAL_PROTOCOL(" i:");
  3239. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3240. SERIAL_PROTOCOL(" d:");
  3241. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3242. SERIAL_PROTOCOLLN("");
  3243. }
  3244. break;
  3245. #endif //PIDTEMP
  3246. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3247. {
  3248. #ifdef CHDK
  3249. SET_OUTPUT(CHDK);
  3250. WRITE(CHDK, HIGH);
  3251. chdkHigh = millis();
  3252. chdkActive = true;
  3253. #else
  3254. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3255. const uint8_t NUM_PULSES=16;
  3256. const float PULSE_LENGTH=0.01524;
  3257. for(int i=0; i < NUM_PULSES; i++) {
  3258. WRITE(PHOTOGRAPH_PIN, HIGH);
  3259. _delay_ms(PULSE_LENGTH);
  3260. WRITE(PHOTOGRAPH_PIN, LOW);
  3261. _delay_ms(PULSE_LENGTH);
  3262. }
  3263. delay(7.33);
  3264. for(int i=0; i < NUM_PULSES; i++) {
  3265. WRITE(PHOTOGRAPH_PIN, HIGH);
  3266. _delay_ms(PULSE_LENGTH);
  3267. WRITE(PHOTOGRAPH_PIN, LOW);
  3268. _delay_ms(PULSE_LENGTH);
  3269. }
  3270. #endif
  3271. #endif //chdk end if
  3272. }
  3273. break;
  3274. #ifdef DOGLCD
  3275. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3276. {
  3277. if (code_seen('C')) {
  3278. lcd_setcontrast( ((int)code_value())&63 );
  3279. }
  3280. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3281. SERIAL_PROTOCOL(lcd_contrast);
  3282. SERIAL_PROTOCOLLN("");
  3283. }
  3284. break;
  3285. #endif
  3286. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3287. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3288. {
  3289. float temp = .0;
  3290. if (code_seen('S')) temp=code_value();
  3291. set_extrude_min_temp(temp);
  3292. }
  3293. break;
  3294. #endif
  3295. case 303: // M303 PID autotune
  3296. {
  3297. float temp = 150.0;
  3298. int e=0;
  3299. int c=5;
  3300. if (code_seen('E')) e=code_value();
  3301. if (e<0)
  3302. temp=70;
  3303. if (code_seen('S')) temp=code_value();
  3304. if (code_seen('C')) c=code_value();
  3305. PID_autotune(temp, e, c);
  3306. }
  3307. break;
  3308. #ifdef SCARA
  3309. case 360: // M360 SCARA Theta pos1
  3310. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3311. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3312. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3313. if(Stopped == false) {
  3314. //get_coordinates(); // For X Y Z E F
  3315. delta[X_AXIS] = 0;
  3316. delta[Y_AXIS] = 120;
  3317. calculate_SCARA_forward_Transform(delta);
  3318. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3319. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3320. prepare_move();
  3321. //ClearToSend();
  3322. return;
  3323. }
  3324. break;
  3325. case 361: // SCARA Theta pos2
  3326. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3327. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3328. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3329. if(Stopped == false) {
  3330. //get_coordinates(); // For X Y Z E F
  3331. delta[X_AXIS] = 90;
  3332. delta[Y_AXIS] = 130;
  3333. calculate_SCARA_forward_Transform(delta);
  3334. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3335. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3336. prepare_move();
  3337. //ClearToSend();
  3338. return;
  3339. }
  3340. break;
  3341. case 362: // SCARA Psi pos1
  3342. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3343. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3344. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3345. if(Stopped == false) {
  3346. //get_coordinates(); // For X Y Z E F
  3347. delta[X_AXIS] = 60;
  3348. delta[Y_AXIS] = 180;
  3349. calculate_SCARA_forward_Transform(delta);
  3350. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3351. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3352. prepare_move();
  3353. //ClearToSend();
  3354. return;
  3355. }
  3356. break;
  3357. case 363: // SCARA Psi pos2
  3358. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3359. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3360. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3361. if(Stopped == false) {
  3362. //get_coordinates(); // For X Y Z E F
  3363. delta[X_AXIS] = 50;
  3364. delta[Y_AXIS] = 90;
  3365. calculate_SCARA_forward_Transform(delta);
  3366. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3367. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3368. prepare_move();
  3369. //ClearToSend();
  3370. return;
  3371. }
  3372. break;
  3373. case 364: // SCARA Psi pos3 (90 deg to Theta)
  3374. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3375. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3376. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3377. if(Stopped == false) {
  3378. //get_coordinates(); // For X Y Z E F
  3379. delta[X_AXIS] = 45;
  3380. delta[Y_AXIS] = 135;
  3381. calculate_SCARA_forward_Transform(delta);
  3382. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3383. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3384. prepare_move();
  3385. //ClearToSend();
  3386. return;
  3387. }
  3388. break;
  3389. case 365: // M364 Set SCARA scaling for X Y Z
  3390. for(int8_t i=0; i < 3; i++)
  3391. {
  3392. if(code_seen(axis_codes[i]))
  3393. {
  3394. axis_scaling[i] = code_value();
  3395. }
  3396. }
  3397. break;
  3398. #endif
  3399. case 400: // M400 finish all moves
  3400. {
  3401. st_synchronize();
  3402. }
  3403. break;
  3404. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3405. case 401:
  3406. {
  3407. engage_z_probe(); // Engage Z Servo endstop if available
  3408. }
  3409. break;
  3410. case 402:
  3411. {
  3412. retract_z_probe(); // Retract Z Servo endstop if enabled
  3413. }
  3414. break;
  3415. #endif
  3416. #ifdef FILAMENT_SENSOR
  3417. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3418. {
  3419. #if (FILWIDTH_PIN > -1)
  3420. if(code_seen('N')) filament_width_nominal=code_value();
  3421. else{
  3422. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3423. SERIAL_PROTOCOLLN(filament_width_nominal);
  3424. }
  3425. #endif
  3426. }
  3427. break;
  3428. case 405: //M405 Turn on filament sensor for control
  3429. {
  3430. if(code_seen('D')) meas_delay_cm=code_value();
  3431. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3432. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3433. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3434. {
  3435. int temp_ratio = widthFil_to_size_ratio();
  3436. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3437. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3438. }
  3439. delay_index1=0;
  3440. delay_index2=0;
  3441. }
  3442. filament_sensor = true ;
  3443. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3444. //SERIAL_PROTOCOL(filament_width_meas);
  3445. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3446. //SERIAL_PROTOCOL(extrudemultiply);
  3447. }
  3448. break;
  3449. case 406: //M406 Turn off filament sensor for control
  3450. {
  3451. filament_sensor = false ;
  3452. }
  3453. break;
  3454. case 407: //M407 Display measured filament diameter
  3455. {
  3456. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3457. SERIAL_PROTOCOLLN(filament_width_meas);
  3458. }
  3459. break;
  3460. #endif
  3461. case 500: // M500 Store settings in EEPROM
  3462. {
  3463. Config_StoreSettings();
  3464. }
  3465. break;
  3466. case 501: // M501 Read settings from EEPROM
  3467. {
  3468. Config_RetrieveSettings();
  3469. }
  3470. break;
  3471. case 502: // M502 Revert to default settings
  3472. {
  3473. Config_ResetDefault();
  3474. }
  3475. break;
  3476. case 503: // M503 print settings currently in memory
  3477. {
  3478. Config_PrintSettings();
  3479. }
  3480. break;
  3481. case 509: //M509 Force language selection
  3482. {
  3483. lcd_force_language_selection();
  3484. SERIAL_ECHO_START;
  3485. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  3486. }
  3487. break;
  3488. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3489. case 540:
  3490. {
  3491. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3492. }
  3493. break;
  3494. #endif
  3495. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3496. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3497. {
  3498. float value;
  3499. if (code_seen('Z'))
  3500. {
  3501. value = code_value();
  3502. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3503. {
  3504. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3505. SERIAL_ECHO_START;
  3506. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  3507. SERIAL_PROTOCOLLN("");
  3508. }
  3509. else
  3510. {
  3511. SERIAL_ECHO_START;
  3512. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  3513. SERIAL_ECHORPGM(MSG_Z_MIN);
  3514. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3515. SERIAL_ECHORPGM(MSG_Z_MAX);
  3516. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3517. SERIAL_PROTOCOLLN("");
  3518. }
  3519. }
  3520. else
  3521. {
  3522. SERIAL_ECHO_START;
  3523. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  3524. SERIAL_ECHO(-zprobe_zoffset);
  3525. SERIAL_PROTOCOLLN("");
  3526. }
  3527. break;
  3528. }
  3529. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3530. #ifdef FILAMENTCHANGEENABLE
  3531. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3532. {
  3533. feedmultiplyBckp=feedmultiply;
  3534. int8_t TooLowZ = 0;
  3535. float target[4];
  3536. float lastpos[4];
  3537. target[X_AXIS]=current_position[X_AXIS];
  3538. target[Y_AXIS]=current_position[Y_AXIS];
  3539. target[Z_AXIS]=current_position[Z_AXIS];
  3540. target[E_AXIS]=current_position[E_AXIS];
  3541. lastpos[X_AXIS]=current_position[X_AXIS];
  3542. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3543. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3544. lastpos[E_AXIS]=current_position[E_AXIS];
  3545. //Restract extruder
  3546. if(code_seen('E'))
  3547. {
  3548. target[E_AXIS]+= code_value();
  3549. }
  3550. else
  3551. {
  3552. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3553. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3554. #endif
  3555. }
  3556. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3557. //Lift Z
  3558. if(code_seen('Z'))
  3559. {
  3560. target[Z_AXIS]+= code_value();
  3561. }
  3562. else
  3563. {
  3564. #ifdef FILAMENTCHANGE_ZADD
  3565. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3566. if(target[Z_AXIS] < 10){
  3567. target[Z_AXIS]+= 10 ;
  3568. TooLowZ = 1;
  3569. }else{
  3570. TooLowZ = 0;
  3571. }
  3572. #endif
  3573. }
  3574. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3575. //Move XY to side
  3576. if(code_seen('X'))
  3577. {
  3578. target[X_AXIS]+= code_value();
  3579. }
  3580. else
  3581. {
  3582. #ifdef FILAMENTCHANGE_XPOS
  3583. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3584. #endif
  3585. }
  3586. if(code_seen('Y'))
  3587. {
  3588. target[Y_AXIS]= code_value();
  3589. }
  3590. else
  3591. {
  3592. #ifdef FILAMENTCHANGE_YPOS
  3593. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3594. #endif
  3595. }
  3596. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3597. // Unload filament
  3598. if(code_seen('L'))
  3599. {
  3600. target[E_AXIS]+= code_value();
  3601. }
  3602. else
  3603. {
  3604. #ifdef FILAMENTCHANGE_FINALRETRACT
  3605. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3606. #endif
  3607. }
  3608. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3609. //finish moves
  3610. st_synchronize();
  3611. //disable extruder steppers so filament can be removed
  3612. disable_e0();
  3613. disable_e1();
  3614. disable_e2();
  3615. delay(100);
  3616. //Wait for user to insert filament
  3617. uint8_t cnt=0;
  3618. int counterBeep = 0;
  3619. lcd_wait_interact();
  3620. while(!lcd_clicked()){
  3621. cnt++;
  3622. manage_heater();
  3623. manage_inactivity(true);
  3624. if(cnt==0)
  3625. {
  3626. #if BEEPER > 0
  3627. if (counterBeep== 500){
  3628. counterBeep = 0;
  3629. }
  3630. SET_OUTPUT(BEEPER);
  3631. if (counterBeep== 0){
  3632. WRITE(BEEPER,HIGH);
  3633. }
  3634. if (counterBeep== 20){
  3635. WRITE(BEEPER,LOW);
  3636. }
  3637. counterBeep++;
  3638. #else
  3639. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3640. lcd_buzz(1000/6,100);
  3641. #else
  3642. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3643. #endif
  3644. #endif
  3645. }
  3646. }
  3647. //Filament inserted
  3648. WRITE(BEEPER,LOW);
  3649. //Feed the filament to the end of nozzle quickly
  3650. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3651. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3652. //Extrude some filament
  3653. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3654. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3655. //Wait for user to check the state
  3656. lcd_change_fil_state = 0;
  3657. lcd_loading_filament();
  3658. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3659. lcd_change_fil_state = 0;
  3660. lcd_alright();
  3661. switch(lcd_change_fil_state){
  3662. // Filament failed to load so load it again
  3663. case 2:
  3664. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3665. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3666. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3667. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3668. lcd_loading_filament();
  3669. break;
  3670. // Filament loaded properly but color is not clear
  3671. case 3:
  3672. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3673. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3674. lcd_loading_color();
  3675. break;
  3676. // Everything good
  3677. default:
  3678. lcd_change_success();
  3679. break;
  3680. }
  3681. }
  3682. //Not let's go back to print
  3683. //Feed a little of filament to stabilize pressure
  3684. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  3685. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3686. //Retract
  3687. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3688. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3689. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3690. //Move XY back
  3691. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3692. //Move Z back
  3693. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3694. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3695. //Unretract
  3696. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3697. //Set E position to original
  3698. plan_set_e_position(lastpos[E_AXIS]);
  3699. //Recover feed rate
  3700. feedmultiply=feedmultiplyBckp;
  3701. char cmd[9];
  3702. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3703. enquecommand(cmd);
  3704. }
  3705. break;
  3706. #endif //FILAMENTCHANGEENABLE
  3707. #ifdef DUAL_X_CARRIAGE
  3708. case 605: // Set dual x-carriage movement mode:
  3709. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3710. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3711. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3712. // millimeters x-offset and an optional differential hotend temperature of
  3713. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3714. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3715. //
  3716. // Note: the X axis should be homed after changing dual x-carriage mode.
  3717. {
  3718. st_synchronize();
  3719. if (code_seen('S'))
  3720. dual_x_carriage_mode = code_value();
  3721. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3722. {
  3723. if (code_seen('X'))
  3724. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3725. if (code_seen('R'))
  3726. duplicate_extruder_temp_offset = code_value();
  3727. SERIAL_ECHO_START;
  3728. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3729. SERIAL_ECHO(" ");
  3730. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3731. SERIAL_ECHO(",");
  3732. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3733. SERIAL_ECHO(" ");
  3734. SERIAL_ECHO(duplicate_extruder_x_offset);
  3735. SERIAL_ECHO(",");
  3736. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3737. }
  3738. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3739. {
  3740. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3741. }
  3742. active_extruder_parked = false;
  3743. extruder_duplication_enabled = false;
  3744. delayed_move_time = 0;
  3745. }
  3746. break;
  3747. #endif //DUAL_X_CARRIAGE
  3748. case 907: // M907 Set digital trimpot motor current using axis codes.
  3749. {
  3750. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3751. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3752. if(code_seen('B')) digipot_current(4,code_value());
  3753. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3754. #endif
  3755. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3756. if(code_seen('X')) digipot_current(0, code_value());
  3757. #endif
  3758. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3759. if(code_seen('Z')) digipot_current(1, code_value());
  3760. #endif
  3761. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3762. if(code_seen('E')) digipot_current(2, code_value());
  3763. #endif
  3764. #ifdef DIGIPOT_I2C
  3765. // this one uses actual amps in floating point
  3766. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3767. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3768. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3769. #endif
  3770. }
  3771. break;
  3772. case 908: // M908 Control digital trimpot directly.
  3773. {
  3774. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3775. uint8_t channel,current;
  3776. if(code_seen('P')) channel=code_value();
  3777. if(code_seen('S')) current=code_value();
  3778. digitalPotWrite(channel, current);
  3779. #endif
  3780. }
  3781. break;
  3782. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3783. {
  3784. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3785. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3786. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3787. if(code_seen('B')) microstep_mode(4,code_value());
  3788. microstep_readings();
  3789. #endif
  3790. }
  3791. break;
  3792. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3793. {
  3794. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3795. if(code_seen('S')) switch((int)code_value())
  3796. {
  3797. case 1:
  3798. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3799. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3800. break;
  3801. case 2:
  3802. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3803. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3804. break;
  3805. }
  3806. microstep_readings();
  3807. #endif
  3808. }
  3809. break;
  3810. case 999: // M999: Restart after being stopped
  3811. Stopped = false;
  3812. lcd_reset_alert_level();
  3813. gcode_LastN = Stopped_gcode_LastN;
  3814. FlushSerialRequestResend();
  3815. break;
  3816. }
  3817. }
  3818. else if(code_seen('T'))
  3819. {
  3820. tmp_extruder = code_value();
  3821. if(tmp_extruder >= EXTRUDERS) {
  3822. SERIAL_ECHO_START;
  3823. SERIAL_ECHO("T");
  3824. SERIAL_ECHO(tmp_extruder);
  3825. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3826. }
  3827. else {
  3828. boolean make_move = false;
  3829. if(code_seen('F')) {
  3830. make_move = true;
  3831. next_feedrate = code_value();
  3832. if(next_feedrate > 0.0) {
  3833. feedrate = next_feedrate;
  3834. }
  3835. }
  3836. #if EXTRUDERS > 1
  3837. if(tmp_extruder != active_extruder) {
  3838. // Save current position to return to after applying extruder offset
  3839. memcpy(destination, current_position, sizeof(destination));
  3840. #ifdef DUAL_X_CARRIAGE
  3841. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3842. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3843. {
  3844. // Park old head: 1) raise 2) move to park position 3) lower
  3845. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3846. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3847. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3848. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3849. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3850. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3851. st_synchronize();
  3852. }
  3853. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3854. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3855. extruder_offset[Y_AXIS][active_extruder] +
  3856. extruder_offset[Y_AXIS][tmp_extruder];
  3857. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3858. extruder_offset[Z_AXIS][active_extruder] +
  3859. extruder_offset[Z_AXIS][tmp_extruder];
  3860. active_extruder = tmp_extruder;
  3861. // This function resets the max/min values - the current position may be overwritten below.
  3862. axis_is_at_home(X_AXIS);
  3863. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3864. {
  3865. current_position[X_AXIS] = inactive_extruder_x_pos;
  3866. inactive_extruder_x_pos = destination[X_AXIS];
  3867. }
  3868. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3869. {
  3870. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3871. if (active_extruder == 0 || active_extruder_parked)
  3872. current_position[X_AXIS] = inactive_extruder_x_pos;
  3873. else
  3874. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3875. inactive_extruder_x_pos = destination[X_AXIS];
  3876. extruder_duplication_enabled = false;
  3877. }
  3878. else
  3879. {
  3880. // record raised toolhead position for use by unpark
  3881. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3882. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3883. active_extruder_parked = true;
  3884. delayed_move_time = 0;
  3885. }
  3886. #else
  3887. // Offset extruder (only by XY)
  3888. int i;
  3889. for(i = 0; i < 2; i++) {
  3890. current_position[i] = current_position[i] -
  3891. extruder_offset[i][active_extruder] +
  3892. extruder_offset[i][tmp_extruder];
  3893. }
  3894. // Set the new active extruder and position
  3895. active_extruder = tmp_extruder;
  3896. #endif //else DUAL_X_CARRIAGE
  3897. #ifdef DELTA
  3898. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3899. //sent position to plan_set_position();
  3900. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3901. #else
  3902. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3903. #endif
  3904. // Move to the old position if 'F' was in the parameters
  3905. if(make_move && Stopped == false) {
  3906. prepare_move();
  3907. }
  3908. }
  3909. #endif
  3910. SERIAL_ECHO_START;
  3911. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3912. SERIAL_PROTOCOLLN((int)active_extruder);
  3913. }
  3914. }
  3915. else
  3916. {
  3917. SERIAL_ECHO_START;
  3918. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3919. SERIAL_ECHO(cmdbuffer[bufindr]);
  3920. SERIAL_ECHOLNPGM("\"");
  3921. }
  3922. ClearToSend();
  3923. }
  3924. void FlushSerialRequestResend()
  3925. {
  3926. //char cmdbuffer[bufindr][100]="Resend:";
  3927. MYSERIAL.flush();
  3928. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  3929. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3930. ClearToSend();
  3931. }
  3932. void ClearToSend()
  3933. {
  3934. previous_millis_cmd = millis();
  3935. #ifdef SDSUPPORT
  3936. if(fromsd[bufindr])
  3937. return;
  3938. #endif //SDSUPPORT
  3939. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  3940. }
  3941. void get_coordinates()
  3942. {
  3943. bool seen[4]={false,false,false,false};
  3944. for(int8_t i=0; i < NUM_AXIS; i++) {
  3945. if(code_seen(axis_codes[i]))
  3946. {
  3947. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3948. seen[i]=true;
  3949. }
  3950. else destination[i] = current_position[i]; //Are these else lines really needed?
  3951. }
  3952. if(code_seen('F')) {
  3953. next_feedrate = code_value();
  3954. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3955. }
  3956. }
  3957. void get_arc_coordinates()
  3958. {
  3959. #ifdef SF_ARC_FIX
  3960. bool relative_mode_backup = relative_mode;
  3961. relative_mode = true;
  3962. #endif
  3963. get_coordinates();
  3964. #ifdef SF_ARC_FIX
  3965. relative_mode=relative_mode_backup;
  3966. #endif
  3967. if(code_seen('I')) {
  3968. offset[0] = code_value();
  3969. }
  3970. else {
  3971. offset[0] = 0.0;
  3972. }
  3973. if(code_seen('J')) {
  3974. offset[1] = code_value();
  3975. }
  3976. else {
  3977. offset[1] = 0.0;
  3978. }
  3979. }
  3980. void clamp_to_software_endstops(float target[3])
  3981. {
  3982. if (min_software_endstops) {
  3983. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3984. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3985. float negative_z_offset = 0;
  3986. #ifdef ENABLE_AUTO_BED_LEVELING
  3987. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  3988. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  3989. #endif
  3990. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  3991. }
  3992. if (max_software_endstops) {
  3993. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3994. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3995. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3996. }
  3997. }
  3998. #ifdef DELTA
  3999. void recalc_delta_settings(float radius, float diagonal_rod)
  4000. {
  4001. delta_tower1_x= -SIN_60*radius; // front left tower
  4002. delta_tower1_y= -COS_60*radius;
  4003. delta_tower2_x= SIN_60*radius; // front right tower
  4004. delta_tower2_y= -COS_60*radius;
  4005. delta_tower3_x= 0.0; // back middle tower
  4006. delta_tower3_y= radius;
  4007. delta_diagonal_rod_2= sq(diagonal_rod);
  4008. }
  4009. void calculate_delta(float cartesian[3])
  4010. {
  4011. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4012. - sq(delta_tower1_x-cartesian[X_AXIS])
  4013. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4014. ) + cartesian[Z_AXIS];
  4015. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4016. - sq(delta_tower2_x-cartesian[X_AXIS])
  4017. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4018. ) + cartesian[Z_AXIS];
  4019. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4020. - sq(delta_tower3_x-cartesian[X_AXIS])
  4021. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4022. ) + cartesian[Z_AXIS];
  4023. /*
  4024. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4025. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4026. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4027. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4028. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4029. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4030. */
  4031. }
  4032. #endif
  4033. #ifdef MESH_BED_LEVELING
  4034. static void find_bed() {
  4035. feedrate = homing_feedrate[Z_AXIS];
  4036. // move down until you find the bed
  4037. float zPosition = -10;
  4038. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  4039. st_synchronize();
  4040. // we have to let the planner know where we are right now as it is not where we said to go.
  4041. zPosition = st_get_position_mm(Z_AXIS);
  4042. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  4043. // move up the retract distance
  4044. zPosition += home_retract_mm(Z_AXIS);
  4045. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  4046. st_synchronize();
  4047. // move back down slowly to find bed
  4048. feedrate = homing_feedrate[Z_AXIS]/4;
  4049. zPosition -= home_retract_mm(Z_AXIS) * 2;
  4050. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  4051. st_synchronize();
  4052. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  4053. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  4054. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4055. }
  4056. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4057. float dx = x - current_position[X_AXIS];
  4058. float dy = y - current_position[Y_AXIS];
  4059. float dz = z - current_position[Z_AXIS];
  4060. int n_segments = 0;
  4061. if (mbl.active) {
  4062. float len = abs(dx) + abs(dy) + abs(dz);
  4063. if (len > 0)
  4064. n_segments = int(floor(len / 30.f));
  4065. }
  4066. if (n_segments > 1) {
  4067. float de = e - current_position[E_AXIS];
  4068. for (int i = 1; i < n_segments; ++ i) {
  4069. float t = float(i) / float(n_segments);
  4070. plan_buffer_line(
  4071. current_position[X_AXIS] + t * dx,
  4072. current_position[Y_AXIS] + t * dy,
  4073. current_position[Z_AXIS] + t * dz,
  4074. current_position[E_AXIS] + t * de,
  4075. feed_rate, extruder);
  4076. }
  4077. }
  4078. // The rest of the path.
  4079. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4080. set_current_to_destination();
  4081. }
  4082. #endif // MESH_BED_LEVELING
  4083. void prepare_move()
  4084. {
  4085. clamp_to_software_endstops(destination);
  4086. previous_millis_cmd = millis();
  4087. #ifdef SCARA //for now same as delta-code
  4088. float difference[NUM_AXIS];
  4089. for (int8_t i=0; i < NUM_AXIS; i++) {
  4090. difference[i] = destination[i] - current_position[i];
  4091. }
  4092. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4093. sq(difference[Y_AXIS]) +
  4094. sq(difference[Z_AXIS]));
  4095. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4096. if (cartesian_mm < 0.000001) { return; }
  4097. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4098. int steps = max(1, int(scara_segments_per_second * seconds));
  4099. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4100. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4101. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4102. for (int s = 1; s <= steps; s++) {
  4103. float fraction = float(s) / float(steps);
  4104. for(int8_t i=0; i < NUM_AXIS; i++) {
  4105. destination[i] = current_position[i] + difference[i] * fraction;
  4106. }
  4107. calculate_delta(destination);
  4108. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4109. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4110. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4111. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4112. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4113. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4114. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4115. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4116. active_extruder);
  4117. }
  4118. #endif // SCARA
  4119. #ifdef DELTA
  4120. float difference[NUM_AXIS];
  4121. for (int8_t i=0; i < NUM_AXIS; i++) {
  4122. difference[i] = destination[i] - current_position[i];
  4123. }
  4124. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4125. sq(difference[Y_AXIS]) +
  4126. sq(difference[Z_AXIS]));
  4127. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4128. if (cartesian_mm < 0.000001) { return; }
  4129. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4130. int steps = max(1, int(delta_segments_per_second * seconds));
  4131. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4132. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4133. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4134. for (int s = 1; s <= steps; s++) {
  4135. float fraction = float(s) / float(steps);
  4136. for(int8_t i=0; i < NUM_AXIS; i++) {
  4137. destination[i] = current_position[i] + difference[i] * fraction;
  4138. }
  4139. calculate_delta(destination);
  4140. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4141. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4142. active_extruder);
  4143. }
  4144. #endif // DELTA
  4145. #ifdef DUAL_X_CARRIAGE
  4146. if (active_extruder_parked)
  4147. {
  4148. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4149. {
  4150. // move duplicate extruder into correct duplication position.
  4151. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4152. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4153. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4154. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4155. st_synchronize();
  4156. extruder_duplication_enabled = true;
  4157. active_extruder_parked = false;
  4158. }
  4159. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4160. {
  4161. if (current_position[E_AXIS] == destination[E_AXIS])
  4162. {
  4163. // this is a travel move - skit it but keep track of current position (so that it can later
  4164. // be used as start of first non-travel move)
  4165. if (delayed_move_time != 0xFFFFFFFFUL)
  4166. {
  4167. memcpy(current_position, destination, sizeof(current_position));
  4168. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4169. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4170. delayed_move_time = millis();
  4171. return;
  4172. }
  4173. }
  4174. delayed_move_time = 0;
  4175. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4176. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4177. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4178. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4179. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4180. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4181. active_extruder_parked = false;
  4182. }
  4183. }
  4184. #endif //DUAL_X_CARRIAGE
  4185. #if ! (defined DELTA || defined SCARA)
  4186. // Do not use feedmultiply for E or Z only moves
  4187. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4188. #ifdef MESH_BED_LEVELING
  4189. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4190. #else
  4191. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4192. #endif
  4193. }
  4194. else {
  4195. #ifdef MESH_BED_LEVELING
  4196. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4197. #else
  4198. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4199. #endif
  4200. }
  4201. #endif // !(DELTA || SCARA)
  4202. for(int8_t i=0; i < NUM_AXIS; i++) {
  4203. current_position[i] = destination[i];
  4204. }
  4205. }
  4206. void prepare_arc_move(char isclockwise) {
  4207. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4208. // Trace the arc
  4209. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4210. // As far as the parser is concerned, the position is now == target. In reality the
  4211. // motion control system might still be processing the action and the real tool position
  4212. // in any intermediate location.
  4213. for(int8_t i=0; i < NUM_AXIS; i++) {
  4214. current_position[i] = destination[i];
  4215. }
  4216. previous_millis_cmd = millis();
  4217. }
  4218. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4219. #if defined(FAN_PIN)
  4220. #if CONTROLLERFAN_PIN == FAN_PIN
  4221. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4222. #endif
  4223. #endif
  4224. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4225. unsigned long lastMotorCheck = 0;
  4226. void controllerFan()
  4227. {
  4228. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4229. {
  4230. lastMotorCheck = millis();
  4231. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4232. #if EXTRUDERS > 2
  4233. || !READ(E2_ENABLE_PIN)
  4234. #endif
  4235. #if EXTRUDER > 1
  4236. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4237. || !READ(X2_ENABLE_PIN)
  4238. #endif
  4239. || !READ(E1_ENABLE_PIN)
  4240. #endif
  4241. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4242. {
  4243. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4244. }
  4245. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4246. {
  4247. digitalWrite(CONTROLLERFAN_PIN, 0);
  4248. analogWrite(CONTROLLERFAN_PIN, 0);
  4249. }
  4250. else
  4251. {
  4252. // allows digital or PWM fan output to be used (see M42 handling)
  4253. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4254. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4255. }
  4256. }
  4257. }
  4258. #endif
  4259. #ifdef SCARA
  4260. void calculate_SCARA_forward_Transform(float f_scara[3])
  4261. {
  4262. // Perform forward kinematics, and place results in delta[3]
  4263. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4264. float x_sin, x_cos, y_sin, y_cos;
  4265. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4266. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4267. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4268. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4269. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4270. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4271. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4272. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4273. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4274. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4275. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4276. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4277. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4278. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4279. }
  4280. void calculate_delta(float cartesian[3]){
  4281. //reverse kinematics.
  4282. // Perform reversed kinematics, and place results in delta[3]
  4283. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4284. float SCARA_pos[2];
  4285. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4286. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4287. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4288. #if (Linkage_1 == Linkage_2)
  4289. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4290. #else
  4291. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4292. #endif
  4293. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4294. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4295. SCARA_K2 = Linkage_2 * SCARA_S2;
  4296. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4297. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4298. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4299. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4300. delta[Z_AXIS] = cartesian[Z_AXIS];
  4301. /*
  4302. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4303. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4304. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4305. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4306. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4307. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4308. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4309. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4310. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4311. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4312. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4313. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4314. SERIAL_ECHOLN(" ");*/
  4315. }
  4316. #endif
  4317. #ifdef TEMP_STAT_LEDS
  4318. static bool blue_led = false;
  4319. static bool red_led = false;
  4320. static uint32_t stat_update = 0;
  4321. void handle_status_leds(void) {
  4322. float max_temp = 0.0;
  4323. if(millis() > stat_update) {
  4324. stat_update += 500; // Update every 0.5s
  4325. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4326. max_temp = max(max_temp, degHotend(cur_extruder));
  4327. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4328. }
  4329. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4330. max_temp = max(max_temp, degTargetBed());
  4331. max_temp = max(max_temp, degBed());
  4332. #endif
  4333. if((max_temp > 55.0) && (red_led == false)) {
  4334. digitalWrite(STAT_LED_RED, 1);
  4335. digitalWrite(STAT_LED_BLUE, 0);
  4336. red_led = true;
  4337. blue_led = false;
  4338. }
  4339. if((max_temp < 54.0) && (blue_led == false)) {
  4340. digitalWrite(STAT_LED_RED, 0);
  4341. digitalWrite(STAT_LED_BLUE, 1);
  4342. red_led = false;
  4343. blue_led = true;
  4344. }
  4345. }
  4346. }
  4347. #endif
  4348. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4349. {
  4350. #if defined(KILL_PIN) && KILL_PIN > -1
  4351. static int killCount = 0; // make the inactivity button a bit less responsive
  4352. const int KILL_DELAY = 10000;
  4353. #endif
  4354. #if defined(HOME_PIN) && HOME_PIN > -1
  4355. static int homeDebounceCount = 0; // poor man's debouncing count
  4356. const int HOME_DEBOUNCE_DELAY = 10000;
  4357. #endif
  4358. if(buflen < (BUFSIZE-1))
  4359. get_command();
  4360. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4361. if(max_inactive_time)
  4362. kill();
  4363. if(stepper_inactive_time) {
  4364. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4365. {
  4366. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4367. disable_x();
  4368. disable_y();
  4369. disable_z();
  4370. disable_e0();
  4371. disable_e1();
  4372. disable_e2();
  4373. }
  4374. }
  4375. }
  4376. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4377. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4378. {
  4379. chdkActive = false;
  4380. WRITE(CHDK, LOW);
  4381. }
  4382. #endif
  4383. #if defined(KILL_PIN) && KILL_PIN > -1
  4384. // Check if the kill button was pressed and wait just in case it was an accidental
  4385. // key kill key press
  4386. // -------------------------------------------------------------------------------
  4387. if( 0 == READ(KILL_PIN) )
  4388. {
  4389. killCount++;
  4390. }
  4391. else if (killCount > 0)
  4392. {
  4393. killCount--;
  4394. }
  4395. // Exceeded threshold and we can confirm that it was not accidental
  4396. // KILL the machine
  4397. // ----------------------------------------------------------------
  4398. if ( killCount >= KILL_DELAY)
  4399. {
  4400. kill();
  4401. }
  4402. #endif
  4403. #if defined(HOME_PIN) && HOME_PIN > -1
  4404. // Check to see if we have to home, use poor man's debouncer
  4405. // ---------------------------------------------------------
  4406. if ( 0 == READ(HOME_PIN) )
  4407. {
  4408. if (homeDebounceCount == 0)
  4409. {
  4410. enquecommand_P((PSTR("G28")));
  4411. homeDebounceCount++;
  4412. LCD_ALERTMESSAGERPGM(MSG_AUTO_HOME);
  4413. }
  4414. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4415. {
  4416. homeDebounceCount++;
  4417. }
  4418. else
  4419. {
  4420. homeDebounceCount = 0;
  4421. }
  4422. }
  4423. #endif
  4424. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4425. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4426. #endif
  4427. #ifdef EXTRUDER_RUNOUT_PREVENT
  4428. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4429. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4430. {
  4431. bool oldstatus=READ(E0_ENABLE_PIN);
  4432. enable_e0();
  4433. float oldepos=current_position[E_AXIS];
  4434. float oldedes=destination[E_AXIS];
  4435. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4436. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4437. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4438. current_position[E_AXIS]=oldepos;
  4439. destination[E_AXIS]=oldedes;
  4440. plan_set_e_position(oldepos);
  4441. previous_millis_cmd=millis();
  4442. st_synchronize();
  4443. WRITE(E0_ENABLE_PIN,oldstatus);
  4444. }
  4445. #endif
  4446. #if defined(DUAL_X_CARRIAGE)
  4447. // handle delayed move timeout
  4448. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4449. {
  4450. // travel moves have been received so enact them
  4451. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4452. memcpy(destination,current_position,sizeof(destination));
  4453. prepare_move();
  4454. }
  4455. #endif
  4456. #ifdef TEMP_STAT_LEDS
  4457. handle_status_leds();
  4458. #endif
  4459. check_axes_activity();
  4460. }
  4461. void kill()
  4462. {
  4463. cli(); // Stop interrupts
  4464. disable_heater();
  4465. disable_x();
  4466. disable_y();
  4467. disable_z();
  4468. disable_e0();
  4469. disable_e1();
  4470. disable_e2();
  4471. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4472. pinMode(PS_ON_PIN,INPUT);
  4473. #endif
  4474. SERIAL_ERROR_START;
  4475. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4476. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4477. // FMC small patch to update the LCD before ending
  4478. sei(); // enable interrupts
  4479. for ( int i=5; i--; lcd_update())
  4480. {
  4481. delay(200);
  4482. }
  4483. cli(); // disable interrupts
  4484. suicide();
  4485. while(1) { /* Intentionally left empty */ } // Wait for reset
  4486. }
  4487. void Stop()
  4488. {
  4489. disable_heater();
  4490. if(Stopped == false) {
  4491. Stopped = true;
  4492. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4493. SERIAL_ERROR_START;
  4494. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4495. LCD_MESSAGERPGM(MSG_STOPPED);
  4496. }
  4497. }
  4498. bool IsStopped() { return Stopped; };
  4499. #ifdef FAST_PWM_FAN
  4500. void setPwmFrequency(uint8_t pin, int val)
  4501. {
  4502. val &= 0x07;
  4503. switch(digitalPinToTimer(pin))
  4504. {
  4505. #if defined(TCCR0A)
  4506. case TIMER0A:
  4507. case TIMER0B:
  4508. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4509. // TCCR0B |= val;
  4510. break;
  4511. #endif
  4512. #if defined(TCCR1A)
  4513. case TIMER1A:
  4514. case TIMER1B:
  4515. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4516. // TCCR1B |= val;
  4517. break;
  4518. #endif
  4519. #if defined(TCCR2)
  4520. case TIMER2:
  4521. case TIMER2:
  4522. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4523. TCCR2 |= val;
  4524. break;
  4525. #endif
  4526. #if defined(TCCR2A)
  4527. case TIMER2A:
  4528. case TIMER2B:
  4529. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4530. TCCR2B |= val;
  4531. break;
  4532. #endif
  4533. #if defined(TCCR3A)
  4534. case TIMER3A:
  4535. case TIMER3B:
  4536. case TIMER3C:
  4537. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4538. TCCR3B |= val;
  4539. break;
  4540. #endif
  4541. #if defined(TCCR4A)
  4542. case TIMER4A:
  4543. case TIMER4B:
  4544. case TIMER4C:
  4545. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4546. TCCR4B |= val;
  4547. break;
  4548. #endif
  4549. #if defined(TCCR5A)
  4550. case TIMER5A:
  4551. case TIMER5B:
  4552. case TIMER5C:
  4553. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4554. TCCR5B |= val;
  4555. break;
  4556. #endif
  4557. }
  4558. }
  4559. #endif //FAST_PWM_FAN
  4560. bool setTargetedHotend(int code){
  4561. tmp_extruder = active_extruder;
  4562. if(code_seen('T')) {
  4563. tmp_extruder = code_value();
  4564. if(tmp_extruder >= EXTRUDERS) {
  4565. SERIAL_ECHO_START;
  4566. switch(code){
  4567. case 104:
  4568. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4569. break;
  4570. case 105:
  4571. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4572. break;
  4573. case 109:
  4574. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4575. break;
  4576. case 218:
  4577. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4578. break;
  4579. case 221:
  4580. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4581. break;
  4582. }
  4583. SERIAL_ECHOLN(tmp_extruder);
  4584. return true;
  4585. }
  4586. }
  4587. return false;
  4588. }
  4589. float calculate_volumetric_multiplier(float diameter) {
  4590. float area = .0;
  4591. float radius = .0;
  4592. radius = diameter * .5;
  4593. if (! volumetric_enabled || radius == 0) {
  4594. area = 1;
  4595. }
  4596. else {
  4597. area = M_PI * pow(radius, 2);
  4598. }
  4599. return 1.0 / area;
  4600. }
  4601. void calculate_volumetric_multipliers() {
  4602. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4603. #if EXTRUDERS > 1
  4604. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4605. #if EXTRUDERS > 2
  4606. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4607. #endif
  4608. #endif
  4609. }