stepper.cpp 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //=============================public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //=============================private variables ============================
  35. //===========================================================================
  36. //static makes it inpossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static long counter_x, // Counter variables for the bresenham line tracer
  40. counter_y,
  41. counter_z,
  42. counter_e;
  43. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  44. #ifdef ADVANCE
  45. static long advance_rate, advance, final_advance = 0;
  46. static long old_advance = 0;
  47. static long e_steps[3];
  48. #endif
  49. static long acceleration_time, deceleration_time;
  50. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  51. static unsigned short acc_step_rate; // needed for deccelaration start point
  52. static char step_loops;
  53. static unsigned short OCR1A_nominal;
  54. static unsigned short step_loops_nominal;
  55. volatile long endstops_trigsteps[3]={0,0,0};
  56. volatile long endstops_stepsTotal,endstops_stepsDone;
  57. static volatile bool endstop_x_hit=false;
  58. static volatile bool endstop_y_hit=false;
  59. static volatile bool endstop_z_hit=false;
  60. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  61. bool abort_on_endstop_hit = false;
  62. #endif
  63. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  64. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  65. int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
  66. int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  67. #endif
  68. static bool old_x_min_endstop=false;
  69. static bool old_x_max_endstop=false;
  70. static bool old_y_min_endstop=false;
  71. static bool old_y_max_endstop=false;
  72. static bool old_z_min_endstop=false;
  73. static bool old_z_max_endstop=false;
  74. static bool check_endstops = true;
  75. int8_t SilentMode;
  76. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  77. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  78. //===========================================================================
  79. //=============================functions ============================
  80. //===========================================================================
  81. #define CHECK_ENDSTOPS if(check_endstops)
  82. // intRes = intIn1 * intIn2 >> 16
  83. // uses:
  84. // r26 to store 0
  85. // r27 to store the byte 1 of the 24 bit result
  86. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  87. asm volatile ( \
  88. "clr r26 \n\t" \
  89. "mul %A1, %B2 \n\t" \
  90. "movw %A0, r0 \n\t" \
  91. "mul %A1, %A2 \n\t" \
  92. "add %A0, r1 \n\t" \
  93. "adc %B0, r26 \n\t" \
  94. "lsr r0 \n\t" \
  95. "adc %A0, r26 \n\t" \
  96. "adc %B0, r26 \n\t" \
  97. "clr r1 \n\t" \
  98. : \
  99. "=&r" (intRes) \
  100. : \
  101. "d" (charIn1), \
  102. "d" (intIn2) \
  103. : \
  104. "r26" \
  105. )
  106. // intRes = longIn1 * longIn2 >> 24
  107. // uses:
  108. // r26 to store 0
  109. // r27 to store the byte 1 of the 48bit result
  110. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  111. asm volatile ( \
  112. "clr r26 \n\t" \
  113. "mul %A1, %B2 \n\t" \
  114. "mov r27, r1 \n\t" \
  115. "mul %B1, %C2 \n\t" \
  116. "movw %A0, r0 \n\t" \
  117. "mul %C1, %C2 \n\t" \
  118. "add %B0, r0 \n\t" \
  119. "mul %C1, %B2 \n\t" \
  120. "add %A0, r0 \n\t" \
  121. "adc %B0, r1 \n\t" \
  122. "mul %A1, %C2 \n\t" \
  123. "add r27, r0 \n\t" \
  124. "adc %A0, r1 \n\t" \
  125. "adc %B0, r26 \n\t" \
  126. "mul %B1, %B2 \n\t" \
  127. "add r27, r0 \n\t" \
  128. "adc %A0, r1 \n\t" \
  129. "adc %B0, r26 \n\t" \
  130. "mul %C1, %A2 \n\t" \
  131. "add r27, r0 \n\t" \
  132. "adc %A0, r1 \n\t" \
  133. "adc %B0, r26 \n\t" \
  134. "mul %B1, %A2 \n\t" \
  135. "add r27, r1 \n\t" \
  136. "adc %A0, r26 \n\t" \
  137. "adc %B0, r26 \n\t" \
  138. "lsr r27 \n\t" \
  139. "adc %A0, r26 \n\t" \
  140. "adc %B0, r26 \n\t" \
  141. "clr r1 \n\t" \
  142. : \
  143. "=&r" (intRes) \
  144. : \
  145. "d" (longIn1), \
  146. "d" (longIn2) \
  147. : \
  148. "r26" , "r27" \
  149. )
  150. // Some useful constants
  151. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
  152. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
  153. void checkHitEndstops()
  154. {
  155. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  156. SERIAL_ECHO_START;
  157. SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT);
  158. if(endstop_x_hit) {
  159. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
  160. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("X")));
  161. }
  162. if(endstop_y_hit) {
  163. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
  164. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("Y")));
  165. }
  166. if(endstop_z_hit) {
  167. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
  168. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT,PSTR("Z")));
  169. }
  170. SERIAL_ECHOLN("");
  171. endstop_x_hit=false;
  172. endstop_y_hit=false;
  173. endstop_z_hit=false;
  174. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  175. if (abort_on_endstop_hit)
  176. {
  177. card.sdprinting = false;
  178. card.closefile();
  179. quickStop();
  180. setTargetHotend0(0);
  181. setTargetHotend1(0);
  182. setTargetHotend2(0);
  183. }
  184. #endif
  185. }
  186. }
  187. void endstops_hit_on_purpose()
  188. {
  189. endstop_x_hit=false;
  190. endstop_y_hit=false;
  191. endstop_z_hit=false;
  192. }
  193. void enable_endstops(bool check)
  194. {
  195. check_endstops = check;
  196. }
  197. // __________________________
  198. // /| |\ _________________ ^
  199. // / | | \ /| |\ |
  200. // / | | \ / | | \ s
  201. // / | | | | | \ p
  202. // / | | | | | \ e
  203. // +-----+------------------------+---+--+---------------+----+ e
  204. // | BLOCK 1 | BLOCK 2 | d
  205. //
  206. // time ----->
  207. //
  208. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  209. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  210. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  211. // The slope of acceleration is calculated with the leib ramp alghorithm.
  212. void st_wake_up() {
  213. // TCNT1 = 0;
  214. ENABLE_STEPPER_DRIVER_INTERRUPT();
  215. }
  216. void step_wait(){
  217. for(int8_t i=0; i < 6; i++){
  218. }
  219. }
  220. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  221. unsigned short timer;
  222. if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  223. if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  224. step_rate = (step_rate >> 2)&0x3fff;
  225. step_loops = 4;
  226. }
  227. else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  228. step_rate = (step_rate >> 1)&0x7fff;
  229. step_loops = 2;
  230. }
  231. else {
  232. step_loops = 1;
  233. }
  234. if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
  235. step_rate -= (F_CPU/500000); // Correct for minimal speed
  236. if(step_rate >= (8*256)){ // higher step rate
  237. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  238. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  239. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  240. MultiU16X8toH16(timer, tmp_step_rate, gain);
  241. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  242. }
  243. else { // lower step rates
  244. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  245. table_address += ((step_rate)>>1) & 0xfffc;
  246. timer = (unsigned short)pgm_read_word_near(table_address);
  247. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  248. }
  249. if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  250. return timer;
  251. }
  252. // Initializes the trapezoid generator from the current block. Called whenever a new
  253. // block begins.
  254. FORCE_INLINE void trapezoid_generator_reset() {
  255. #ifdef ADVANCE
  256. advance = current_block->initial_advance;
  257. final_advance = current_block->final_advance;
  258. // Do E steps + advance steps
  259. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  260. old_advance = advance >>8;
  261. #endif
  262. deceleration_time = 0;
  263. // step_rate to timer interval
  264. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  265. // make a note of the number of step loops required at nominal speed
  266. step_loops_nominal = step_loops;
  267. acc_step_rate = current_block->initial_rate;
  268. acceleration_time = calc_timer(acc_step_rate);
  269. OCR1A = acceleration_time;
  270. // SERIAL_ECHO_START;
  271. // SERIAL_ECHOPGM("advance :");
  272. // SERIAL_ECHO(current_block->advance/256.0);
  273. // SERIAL_ECHOPGM("advance rate :");
  274. // SERIAL_ECHO(current_block->advance_rate/256.0);
  275. // SERIAL_ECHOPGM("initial advance :");
  276. // SERIAL_ECHO(current_block->initial_advance/256.0);
  277. // SERIAL_ECHOPGM("final advance :");
  278. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  279. }
  280. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  281. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  282. ISR(TIMER1_COMPA_vect)
  283. {
  284. // If there is no current block, attempt to pop one from the buffer
  285. if (current_block == NULL) {
  286. // Anything in the buffer?
  287. current_block = plan_get_current_block();
  288. if (current_block != NULL) {
  289. current_block->busy = true;
  290. trapezoid_generator_reset();
  291. counter_x = -(current_block->step_event_count >> 1);
  292. counter_y = counter_x;
  293. counter_z = counter_x;
  294. counter_e = counter_x;
  295. step_events_completed = 0;
  296. #ifdef Z_LATE_ENABLE
  297. if(current_block->steps_z > 0) {
  298. enable_z();
  299. OCR1A = 2000; //1ms wait
  300. return;
  301. }
  302. #endif
  303. // #ifdef ADVANCE
  304. // e_steps[current_block->active_extruder] = 0;
  305. // #endif
  306. }
  307. else {
  308. OCR1A=2000; // 1kHz.
  309. }
  310. }
  311. if (current_block != NULL) {
  312. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  313. out_bits = current_block->direction_bits;
  314. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  315. if((out_bits & (1<<X_AXIS))!=0){
  316. #ifdef DUAL_X_CARRIAGE
  317. if (extruder_duplication_enabled){
  318. WRITE(X_DIR_PIN, INVERT_X_DIR);
  319. WRITE(X2_DIR_PIN, INVERT_X_DIR);
  320. }
  321. else{
  322. if (current_block->active_extruder != 0)
  323. WRITE(X2_DIR_PIN, INVERT_X_DIR);
  324. else
  325. WRITE(X_DIR_PIN, INVERT_X_DIR);
  326. }
  327. #else
  328. WRITE(X_DIR_PIN, INVERT_X_DIR);
  329. #endif
  330. count_direction[X_AXIS]=-1;
  331. }
  332. else{
  333. #ifdef DUAL_X_CARRIAGE
  334. if (extruder_duplication_enabled){
  335. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  336. WRITE(X2_DIR_PIN, !INVERT_X_DIR);
  337. }
  338. else{
  339. if (current_block->active_extruder != 0)
  340. WRITE(X2_DIR_PIN, !INVERT_X_DIR);
  341. else
  342. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  343. }
  344. #else
  345. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  346. #endif
  347. count_direction[X_AXIS]=1;
  348. }
  349. if((out_bits & (1<<Y_AXIS))!=0){
  350. WRITE(Y_DIR_PIN, INVERT_Y_DIR);
  351. #ifdef Y_DUAL_STEPPER_DRIVERS
  352. WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  353. #endif
  354. count_direction[Y_AXIS]=-1;
  355. }
  356. else{
  357. WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
  358. #ifdef Y_DUAL_STEPPER_DRIVERS
  359. WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  360. #endif
  361. count_direction[Y_AXIS]=1;
  362. }
  363. // Set direction en check limit switches
  364. #ifndef COREXY
  365. if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
  366. #else
  367. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) { //-X occurs for -A and -B
  368. #endif
  369. CHECK_ENDSTOPS
  370. {
  371. #ifdef DUAL_X_CARRIAGE
  372. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  373. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1)
  374. || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  375. #endif
  376. {
  377. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  378. bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
  379. if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
  380. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  381. endstop_x_hit=true;
  382. step_events_completed = current_block->step_event_count;
  383. }
  384. old_x_min_endstop = x_min_endstop;
  385. #endif
  386. }
  387. }
  388. }
  389. else { // +direction
  390. CHECK_ENDSTOPS
  391. {
  392. #ifdef DUAL_X_CARRIAGE
  393. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  394. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1)
  395. || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  396. #endif
  397. {
  398. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  399. bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
  400. if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
  401. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  402. endstop_x_hit=true;
  403. step_events_completed = current_block->step_event_count;
  404. }
  405. old_x_max_endstop = x_max_endstop;
  406. #endif
  407. }
  408. }
  409. }
  410. #ifndef COREXY
  411. if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
  412. #else
  413. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) { // -Y occurs for -A and +B
  414. #endif
  415. CHECK_ENDSTOPS
  416. {
  417. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  418. bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
  419. if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
  420. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  421. endstop_y_hit=true;
  422. step_events_completed = current_block->step_event_count;
  423. }
  424. old_y_min_endstop = y_min_endstop;
  425. #endif
  426. }
  427. }
  428. else { // +direction
  429. CHECK_ENDSTOPS
  430. {
  431. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  432. bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
  433. if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
  434. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  435. endstop_y_hit=true;
  436. step_events_completed = current_block->step_event_count;
  437. }
  438. old_y_max_endstop = y_max_endstop;
  439. #endif
  440. }
  441. }
  442. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  443. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  444. #ifdef Z_DUAL_STEPPER_DRIVERS
  445. WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
  446. #endif
  447. count_direction[Z_AXIS]=-1;
  448. CHECK_ENDSTOPS
  449. {
  450. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  451. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  452. if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
  453. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  454. endstop_z_hit=true;
  455. step_events_completed = current_block->step_event_count;
  456. }
  457. old_z_min_endstop = z_min_endstop;
  458. #endif
  459. }
  460. }
  461. else { // +direction
  462. WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
  463. #ifdef Z_DUAL_STEPPER_DRIVERS
  464. WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
  465. #endif
  466. count_direction[Z_AXIS]=1;
  467. CHECK_ENDSTOPS
  468. {
  469. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  470. bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  471. if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
  472. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  473. endstop_z_hit=true;
  474. step_events_completed = current_block->step_event_count;
  475. }
  476. old_z_max_endstop = z_max_endstop;
  477. #endif
  478. }
  479. }
  480. #ifndef ADVANCE
  481. if ((out_bits & (1<<E_AXIS)) != 0) { // -direction
  482. REV_E_DIR();
  483. count_direction[E_AXIS]=-1;
  484. }
  485. else { // +direction
  486. NORM_E_DIR();
  487. count_direction[E_AXIS]=1;
  488. }
  489. #endif //!ADVANCE
  490. for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
  491. #ifndef AT90USB
  492. MSerial.checkRx(); // Check for serial chars.
  493. #endif
  494. #ifdef ADVANCE
  495. counter_e += current_block->steps_e;
  496. if (counter_e > 0) {
  497. counter_e -= current_block->step_event_count;
  498. if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
  499. e_steps[current_block->active_extruder]--;
  500. }
  501. else {
  502. e_steps[current_block->active_extruder]++;
  503. }
  504. }
  505. #endif //ADVANCE
  506. counter_x += current_block->steps_x;
  507. #ifdef CONFIG_STEPPERS_TOSHIBA
  508. /* The toshiba stepper controller require much longer pulses
  509. * tjerfore we 'stage' decompose the pulses between high, and
  510. * low instead of doing each in turn. The extra tests add enough
  511. * lag to allow it work with without needing NOPs */
  512. if (counter_x > 0) {
  513. WRITE(X_STEP_PIN, HIGH);
  514. }
  515. counter_y += current_block->steps_y;
  516. if (counter_y > 0) {
  517. WRITE(Y_STEP_PIN, HIGH);
  518. }
  519. counter_z += current_block->steps_z;
  520. if (counter_z > 0) {
  521. WRITE(Z_STEP_PIN, HIGH);
  522. }
  523. #ifndef ADVANCE
  524. counter_e += current_block->steps_e;
  525. if (counter_e > 0) {
  526. WRITE_E_STEP(HIGH);
  527. }
  528. #endif //!ADVANCE
  529. if (counter_x > 0) {
  530. counter_x -= current_block->step_event_count;
  531. count_position[X_AXIS]+=count_direction[X_AXIS];
  532. WRITE(X_STEP_PIN, LOW);
  533. }
  534. if (counter_y > 0) {
  535. counter_y -= current_block->step_event_count;
  536. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  537. WRITE(Y_STEP_PIN, LOW);
  538. }
  539. if (counter_z > 0) {
  540. counter_z -= current_block->step_event_count;
  541. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  542. WRITE(Z_STEP_PIN, LOW);
  543. }
  544. #ifndef ADVANCE
  545. if (counter_e > 0) {
  546. counter_e -= current_block->step_event_count;
  547. count_position[E_AXIS]+=count_direction[E_AXIS];
  548. WRITE_E_STEP(LOW);
  549. }
  550. #endif //!ADVANCE
  551. #else
  552. if (counter_x > 0) {
  553. #ifdef DUAL_X_CARRIAGE
  554. if (extruder_duplication_enabled){
  555. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  556. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  557. }
  558. else {
  559. if (current_block->active_extruder != 0)
  560. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  561. else
  562. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  563. }
  564. #else
  565. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  566. #endif
  567. counter_x -= current_block->step_event_count;
  568. count_position[X_AXIS]+=count_direction[X_AXIS];
  569. #ifdef DUAL_X_CARRIAGE
  570. if (extruder_duplication_enabled){
  571. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  572. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  573. }
  574. else {
  575. if (current_block->active_extruder != 0)
  576. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  577. else
  578. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  579. }
  580. #else
  581. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  582. #endif
  583. }
  584. counter_y += current_block->steps_y;
  585. if (counter_y > 0) {
  586. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  587. #ifdef Y_DUAL_STEPPER_DRIVERS
  588. WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
  589. #endif
  590. counter_y -= current_block->step_event_count;
  591. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  592. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  593. #ifdef Y_DUAL_STEPPER_DRIVERS
  594. WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
  595. #endif
  596. }
  597. counter_z += current_block->steps_z;
  598. if (counter_z > 0) {
  599. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  600. #ifdef Z_DUAL_STEPPER_DRIVERS
  601. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  602. #endif
  603. counter_z -= current_block->step_event_count;
  604. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  605. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  606. #ifdef Z_DUAL_STEPPER_DRIVERS
  607. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  608. #endif
  609. }
  610. #ifndef ADVANCE
  611. counter_e += current_block->steps_e;
  612. if (counter_e > 0) {
  613. WRITE_E_STEP(!INVERT_E_STEP_PIN);
  614. counter_e -= current_block->step_event_count;
  615. count_position[E_AXIS]+=count_direction[E_AXIS];
  616. WRITE_E_STEP(INVERT_E_STEP_PIN);
  617. }
  618. #endif //!ADVANCE
  619. #endif
  620. step_events_completed += 1;
  621. if(step_events_completed >= current_block->step_event_count) break;
  622. }
  623. // Calculare new timer value
  624. unsigned short timer;
  625. unsigned short step_rate;
  626. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  627. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  628. acc_step_rate += current_block->initial_rate;
  629. // upper limit
  630. if(acc_step_rate > current_block->nominal_rate)
  631. acc_step_rate = current_block->nominal_rate;
  632. // step_rate to timer interval
  633. timer = calc_timer(acc_step_rate);
  634. OCR1A = timer;
  635. acceleration_time += timer;
  636. #ifdef ADVANCE
  637. for(int8_t i=0; i < step_loops; i++) {
  638. advance += advance_rate;
  639. }
  640. //if(advance > current_block->advance) advance = current_block->advance;
  641. // Do E steps + advance steps
  642. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  643. old_advance = advance >>8;
  644. #endif
  645. }
  646. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  647. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  648. if(step_rate > acc_step_rate) { // Check step_rate stays positive
  649. step_rate = current_block->final_rate;
  650. }
  651. else {
  652. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  653. }
  654. // lower limit
  655. if(step_rate < current_block->final_rate)
  656. step_rate = current_block->final_rate;
  657. // step_rate to timer interval
  658. timer = calc_timer(step_rate);
  659. OCR1A = timer;
  660. deceleration_time += timer;
  661. #ifdef ADVANCE
  662. for(int8_t i=0; i < step_loops; i++) {
  663. advance -= advance_rate;
  664. }
  665. if(advance < final_advance) advance = final_advance;
  666. // Do E steps + advance steps
  667. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  668. old_advance = advance >>8;
  669. #endif //ADVANCE
  670. }
  671. else {
  672. OCR1A = OCR1A_nominal;
  673. // ensure we're running at the correct step rate, even if we just came off an acceleration
  674. step_loops = step_loops_nominal;
  675. }
  676. // If current block is finished, reset pointer
  677. if (step_events_completed >= current_block->step_event_count) {
  678. current_block = NULL;
  679. plan_discard_current_block();
  680. }
  681. }
  682. }
  683. #ifdef ADVANCE
  684. unsigned char old_OCR0A;
  685. // Timer interrupt for E. e_steps is set in the main routine;
  686. // Timer 0 is shared with millies
  687. ISR(TIMER0_COMPA_vect)
  688. {
  689. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  690. OCR0A = old_OCR0A;
  691. // Set E direction (Depends on E direction + advance)
  692. for(unsigned char i=0; i<4;i++) {
  693. if (e_steps[0] != 0) {
  694. WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
  695. if (e_steps[0] < 0) {
  696. WRITE(E0_DIR_PIN, INVERT_E0_DIR);
  697. e_steps[0]++;
  698. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  699. }
  700. else if (e_steps[0] > 0) {
  701. WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
  702. e_steps[0]--;
  703. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  704. }
  705. }
  706. #if EXTRUDERS > 1
  707. if (e_steps[1] != 0) {
  708. WRITE(E1_STEP_PIN, INVERT_E_STEP_PIN);
  709. if (e_steps[1] < 0) {
  710. WRITE(E1_DIR_PIN, INVERT_E1_DIR);
  711. e_steps[1]++;
  712. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  713. }
  714. else if (e_steps[1] > 0) {
  715. WRITE(E1_DIR_PIN, !INVERT_E1_DIR);
  716. e_steps[1]--;
  717. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  718. }
  719. }
  720. #endif
  721. #if EXTRUDERS > 2
  722. if (e_steps[2] != 0) {
  723. WRITE(E2_STEP_PIN, INVERT_E_STEP_PIN);
  724. if (e_steps[2] < 0) {
  725. WRITE(E2_DIR_PIN, INVERT_E2_DIR);
  726. e_steps[2]++;
  727. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  728. }
  729. else if (e_steps[2] > 0) {
  730. WRITE(E2_DIR_PIN, !INVERT_E2_DIR);
  731. e_steps[2]--;
  732. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  733. }
  734. }
  735. #endif
  736. }
  737. }
  738. #endif // ADVANCE
  739. void st_init()
  740. {
  741. digipot_init(); //Initialize Digipot Motor Current
  742. microstep_init(); //Initialize Microstepping Pins
  743. //Initialize Dir Pins
  744. #if defined(X_DIR_PIN) && X_DIR_PIN > -1
  745. SET_OUTPUT(X_DIR_PIN);
  746. #endif
  747. #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
  748. SET_OUTPUT(X2_DIR_PIN);
  749. #endif
  750. #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
  751. SET_OUTPUT(Y_DIR_PIN);
  752. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
  753. SET_OUTPUT(Y2_DIR_PIN);
  754. #endif
  755. #endif
  756. #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
  757. SET_OUTPUT(Z_DIR_PIN);
  758. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
  759. SET_OUTPUT(Z2_DIR_PIN);
  760. #endif
  761. #endif
  762. #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
  763. SET_OUTPUT(E0_DIR_PIN);
  764. #endif
  765. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  766. SET_OUTPUT(E1_DIR_PIN);
  767. #endif
  768. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  769. SET_OUTPUT(E2_DIR_PIN);
  770. #endif
  771. //Initialize Enable Pins - steppers default to disabled.
  772. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
  773. SET_OUTPUT(X_ENABLE_PIN);
  774. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  775. #endif
  776. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  777. SET_OUTPUT(X2_ENABLE_PIN);
  778. if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
  779. #endif
  780. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
  781. SET_OUTPUT(Y_ENABLE_PIN);
  782. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  783. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
  784. SET_OUTPUT(Y2_ENABLE_PIN);
  785. if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
  786. #endif
  787. #endif
  788. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
  789. SET_OUTPUT(Z_ENABLE_PIN);
  790. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  791. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
  792. SET_OUTPUT(Z2_ENABLE_PIN);
  793. if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
  794. #endif
  795. #endif
  796. #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
  797. SET_OUTPUT(E0_ENABLE_PIN);
  798. if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  799. #endif
  800. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  801. SET_OUTPUT(E1_ENABLE_PIN);
  802. if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  803. #endif
  804. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  805. SET_OUTPUT(E2_ENABLE_PIN);
  806. if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  807. #endif
  808. //endstops and pullups
  809. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  810. SET_INPUT(X_MIN_PIN);
  811. #ifdef ENDSTOPPULLUP_XMIN
  812. WRITE(X_MIN_PIN,HIGH);
  813. #endif
  814. #endif
  815. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  816. SET_INPUT(Y_MIN_PIN);
  817. #ifdef ENDSTOPPULLUP_YMIN
  818. WRITE(Y_MIN_PIN,HIGH);
  819. #endif
  820. #endif
  821. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  822. SET_INPUT(Z_MIN_PIN);
  823. #ifdef ENDSTOPPULLUP_ZMIN
  824. WRITE(Z_MIN_PIN,HIGH);
  825. #endif
  826. #endif
  827. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  828. SET_INPUT(X_MAX_PIN);
  829. #ifdef ENDSTOPPULLUP_XMAX
  830. WRITE(X_MAX_PIN,HIGH);
  831. #endif
  832. #endif
  833. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  834. SET_INPUT(Y_MAX_PIN);
  835. #ifdef ENDSTOPPULLUP_YMAX
  836. WRITE(Y_MAX_PIN,HIGH);
  837. #endif
  838. #endif
  839. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  840. SET_INPUT(Z_MAX_PIN);
  841. #ifdef ENDSTOPPULLUP_ZMAX
  842. WRITE(Z_MAX_PIN,HIGH);
  843. #endif
  844. #endif
  845. //Initialize Step Pins
  846. #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
  847. SET_OUTPUT(X_STEP_PIN);
  848. WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
  849. disable_x();
  850. #endif
  851. #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
  852. SET_OUTPUT(X2_STEP_PIN);
  853. WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
  854. disable_x();
  855. #endif
  856. #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
  857. SET_OUTPUT(Y_STEP_PIN);
  858. WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
  859. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
  860. SET_OUTPUT(Y2_STEP_PIN);
  861. WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
  862. #endif
  863. disable_y();
  864. #endif
  865. #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
  866. SET_OUTPUT(Z_STEP_PIN);
  867. WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
  868. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
  869. SET_OUTPUT(Z2_STEP_PIN);
  870. WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
  871. #endif
  872. disable_z();
  873. #endif
  874. #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
  875. SET_OUTPUT(E0_STEP_PIN);
  876. WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
  877. disable_e0();
  878. #endif
  879. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  880. SET_OUTPUT(E1_STEP_PIN);
  881. WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
  882. disable_e1();
  883. #endif
  884. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  885. SET_OUTPUT(E2_STEP_PIN);
  886. WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
  887. disable_e2();
  888. #endif
  889. // waveform generation = 0100 = CTC
  890. TCCR1B &= ~(1<<WGM13);
  891. TCCR1B |= (1<<WGM12);
  892. TCCR1A &= ~(1<<WGM11);
  893. TCCR1A &= ~(1<<WGM10);
  894. // output mode = 00 (disconnected)
  895. TCCR1A &= ~(3<<COM1A0);
  896. TCCR1A &= ~(3<<COM1B0);
  897. // Set the timer pre-scaler
  898. // Generally we use a divider of 8, resulting in a 2MHz timer
  899. // frequency on a 16MHz MCU. If you are going to change this, be
  900. // sure to regenerate speed_lookuptable.h with
  901. // create_speed_lookuptable.py
  902. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  903. OCR1A = 0x4000;
  904. TCNT1 = 0;
  905. ENABLE_STEPPER_DRIVER_INTERRUPT();
  906. #ifdef ADVANCE
  907. #if defined(TCCR0A) && defined(WGM01)
  908. TCCR0A &= ~(1<<WGM01);
  909. TCCR0A &= ~(1<<WGM00);
  910. #endif
  911. e_steps[0] = 0;
  912. e_steps[1] = 0;
  913. e_steps[2] = 0;
  914. TIMSK0 |= (1<<OCIE0A);
  915. #endif //ADVANCE
  916. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  917. sei();
  918. }
  919. // Block until all buffered steps are executed
  920. void st_synchronize()
  921. {
  922. while( blocks_queued()) {
  923. manage_heater();
  924. manage_inactivity();
  925. lcd_update();
  926. }
  927. }
  928. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  929. {
  930. CRITICAL_SECTION_START;
  931. count_position[X_AXIS] = x;
  932. count_position[Y_AXIS] = y;
  933. count_position[Z_AXIS] = z;
  934. count_position[E_AXIS] = e;
  935. CRITICAL_SECTION_END;
  936. }
  937. void st_set_e_position(const long &e)
  938. {
  939. CRITICAL_SECTION_START;
  940. count_position[E_AXIS] = e;
  941. CRITICAL_SECTION_END;
  942. }
  943. long st_get_position(uint8_t axis)
  944. {
  945. long count_pos;
  946. CRITICAL_SECTION_START;
  947. count_pos = count_position[axis];
  948. CRITICAL_SECTION_END;
  949. return count_pos;
  950. }
  951. float st_get_position_mm(uint8_t axis)
  952. {
  953. float steper_position_in_steps = st_get_position(axis);
  954. return steper_position_in_steps / axis_steps_per_unit[axis];
  955. }
  956. void finishAndDisableSteppers()
  957. {
  958. st_synchronize();
  959. disable_x();
  960. disable_y();
  961. disable_z();
  962. disable_e0();
  963. disable_e1();
  964. disable_e2();
  965. }
  966. void quickStop()
  967. {
  968. DISABLE_STEPPER_DRIVER_INTERRUPT();
  969. while(blocks_queued())
  970. plan_discard_current_block();
  971. current_block = NULL;
  972. ENABLE_STEPPER_DRIVER_INTERRUPT();
  973. }
  974. #ifdef BABYSTEPPING
  975. void babystep(const uint8_t axis,const bool direction)
  976. {
  977. //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
  978. //store initial pin states
  979. switch(axis)
  980. {
  981. case X_AXIS:
  982. {
  983. enable_x();
  984. uint8_t old_x_dir_pin= READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
  985. //setup new step
  986. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
  987. #ifdef DUAL_X_CARRIAGE
  988. WRITE(X2_DIR_PIN,(INVERT_X_DIR)^direction);
  989. #endif
  990. //perform step
  991. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  992. #ifdef DUAL_X_CARRIAGE
  993. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  994. #endif
  995. {
  996. float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  997. }
  998. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  999. #ifdef DUAL_X_CARRIAGE
  1000. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  1001. #endif
  1002. //get old pin state back.
  1003. WRITE(X_DIR_PIN,old_x_dir_pin);
  1004. #ifdef DUAL_X_CARRIAGE
  1005. WRITE(X2_DIR_PIN,old_x_dir_pin);
  1006. #endif
  1007. }
  1008. break;
  1009. case Y_AXIS:
  1010. {
  1011. enable_y();
  1012. uint8_t old_y_dir_pin= READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
  1013. //setup new step
  1014. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
  1015. #ifdef DUAL_Y_CARRIAGE
  1016. WRITE(Y2_DIR_PIN,(INVERT_Y_DIR)^direction);
  1017. #endif
  1018. //perform step
  1019. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  1020. #ifdef DUAL_Y_CARRIAGE
  1021. WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
  1022. #endif
  1023. {
  1024. float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  1025. }
  1026. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  1027. #ifdef DUAL_Y_CARRIAGE
  1028. WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
  1029. #endif
  1030. //get old pin state back.
  1031. WRITE(Y_DIR_PIN,old_y_dir_pin);
  1032. #ifdef DUAL_Y_CARRIAGE
  1033. WRITE(Y2_DIR_PIN,old_y_dir_pin);
  1034. #endif
  1035. }
  1036. break;
  1037. #ifndef DELTA
  1038. case Z_AXIS:
  1039. {
  1040. enable_z();
  1041. uint8_t old_z_dir_pin= READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
  1042. //setup new step
  1043. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1044. #ifdef Z_DUAL_STEPPER_DRIVERS
  1045. WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1046. #endif
  1047. //perform step
  1048. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1049. #ifdef Z_DUAL_STEPPER_DRIVERS
  1050. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  1051. #endif
  1052. //wait a tiny bit
  1053. {
  1054. float x=1./float(axis+1); //absolutely useless
  1055. }
  1056. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1057. #ifdef Z_DUAL_STEPPER_DRIVERS
  1058. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  1059. #endif
  1060. //get old pin state back.
  1061. WRITE(Z_DIR_PIN,old_z_dir_pin);
  1062. #ifdef Z_DUAL_STEPPER_DRIVERS
  1063. WRITE(Z2_DIR_PIN,old_z_dir_pin);
  1064. #endif
  1065. }
  1066. break;
  1067. #else //DELTA
  1068. case Z_AXIS:
  1069. {
  1070. enable_x();
  1071. enable_y();
  1072. enable_z();
  1073. uint8_t old_x_dir_pin= READ(X_DIR_PIN);
  1074. uint8_t old_y_dir_pin= READ(Y_DIR_PIN);
  1075. uint8_t old_z_dir_pin= READ(Z_DIR_PIN);
  1076. //setup new step
  1077. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction^BABYSTEP_INVERT_Z);
  1078. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction^BABYSTEP_INVERT_Z);
  1079. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1080. //perform step
  1081. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  1082. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  1083. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1084. //wait a tiny bit
  1085. {
  1086. float x=1./float(axis+1); //absolutely useless
  1087. }
  1088. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  1089. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  1090. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1091. //get old pin state back.
  1092. WRITE(X_DIR_PIN,old_x_dir_pin);
  1093. WRITE(Y_DIR_PIN,old_y_dir_pin);
  1094. WRITE(Z_DIR_PIN,old_z_dir_pin);
  1095. }
  1096. break;
  1097. #endif
  1098. default: break;
  1099. }
  1100. }
  1101. #endif //BABYSTEPPING
  1102. void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
  1103. {
  1104. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1105. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1106. SPI.transfer(address); // send in the address and value via SPI:
  1107. SPI.transfer(value);
  1108. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1109. //delay(10);
  1110. #endif
  1111. }
  1112. void EEPROM_read_st(int pos, uint8_t* value, uint8_t size)
  1113. {
  1114. do
  1115. {
  1116. *value = eeprom_read_byte((unsigned char*)pos);
  1117. pos++;
  1118. value++;
  1119. }while(--size);
  1120. }
  1121. void digipot_init() //Initialize Digipot Motor Current
  1122. {
  1123. EEPROM_read_st(EEPROM_SILENT,(uint8_t*)&SilentMode,sizeof(SilentMode));
  1124. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1125. if(SilentMode == 0){
  1126. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT_LOUD;
  1127. }else{
  1128. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1129. }
  1130. SPI.begin();
  1131. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1132. for(int i=0;i<=4;i++)
  1133. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1134. digipot_current(i,digipot_motor_current[i]);
  1135. #endif
  1136. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1137. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1138. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1139. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1140. if(SilentMode == 0){
  1141. motor_current_setting[0] = motor_current_setting_loud[0];
  1142. motor_current_setting[1] = motor_current_setting_loud[1];
  1143. motor_current_setting[2] = motor_current_setting_loud[2];
  1144. }else{
  1145. motor_current_setting[0] = motor_current_setting_silent[0];
  1146. motor_current_setting[1] = motor_current_setting_silent[1];
  1147. motor_current_setting[2] = motor_current_setting_silent[2];
  1148. }
  1149. digipot_current(0, motor_current_setting[0]);
  1150. digipot_current(1, motor_current_setting[1]);
  1151. digipot_current(2, motor_current_setting[2]);
  1152. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1153. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1154. #endif
  1155. }
  1156. void digipot_current(uint8_t driver, int current)
  1157. {
  1158. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1159. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1160. digitalPotWrite(digipot_ch[driver], current);
  1161. #endif
  1162. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1163. if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1164. if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1165. if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1166. #endif
  1167. }
  1168. void microstep_init()
  1169. {
  1170. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1171. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1172. pinMode(E1_MS1_PIN,OUTPUT);
  1173. pinMode(E1_MS2_PIN,OUTPUT);
  1174. #endif
  1175. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1176. pinMode(X_MS1_PIN,OUTPUT);
  1177. pinMode(X_MS2_PIN,OUTPUT);
  1178. pinMode(Y_MS1_PIN,OUTPUT);
  1179. pinMode(Y_MS2_PIN,OUTPUT);
  1180. pinMode(Z_MS1_PIN,OUTPUT);
  1181. pinMode(Z_MS2_PIN,OUTPUT);
  1182. pinMode(E0_MS1_PIN,OUTPUT);
  1183. pinMode(E0_MS2_PIN,OUTPUT);
  1184. for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  1185. #endif
  1186. }
  1187. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
  1188. {
  1189. if(ms1 > -1) switch(driver)
  1190. {
  1191. case 0: digitalWrite( X_MS1_PIN,ms1); break;
  1192. case 1: digitalWrite( Y_MS1_PIN,ms1); break;
  1193. case 2: digitalWrite( Z_MS1_PIN,ms1); break;
  1194. case 3: digitalWrite(E0_MS1_PIN,ms1); break;
  1195. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1196. case 4: digitalWrite(E1_MS1_PIN,ms1); break;
  1197. #endif
  1198. }
  1199. if(ms2 > -1) switch(driver)
  1200. {
  1201. case 0: digitalWrite( X_MS2_PIN,ms2); break;
  1202. case 1: digitalWrite( Y_MS2_PIN,ms2); break;
  1203. case 2: digitalWrite( Z_MS2_PIN,ms2); break;
  1204. case 3: digitalWrite(E0_MS2_PIN,ms2); break;
  1205. #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
  1206. case 4: digitalWrite(E1_MS2_PIN,ms2); break;
  1207. #endif
  1208. }
  1209. }
  1210. void microstep_mode(uint8_t driver, uint8_t stepping_mode)
  1211. {
  1212. switch(stepping_mode)
  1213. {
  1214. case 1: microstep_ms(driver,MICROSTEP1); break;
  1215. case 2: microstep_ms(driver,MICROSTEP2); break;
  1216. case 4: microstep_ms(driver,MICROSTEP4); break;
  1217. case 8: microstep_ms(driver,MICROSTEP8); break;
  1218. case 16: microstep_ms(driver,MICROSTEP16); break;
  1219. }
  1220. }
  1221. void microstep_readings()
  1222. {
  1223. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1224. SERIAL_PROTOCOLPGM("X: ");
  1225. SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
  1226. SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
  1227. SERIAL_PROTOCOLPGM("Y: ");
  1228. SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
  1229. SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
  1230. SERIAL_PROTOCOLPGM("Z: ");
  1231. SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
  1232. SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
  1233. SERIAL_PROTOCOLPGM("E0: ");
  1234. SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
  1235. SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
  1236. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1237. SERIAL_PROTOCOLPGM("E1: ");
  1238. SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
  1239. SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
  1240. #endif
  1241. }