Marlin_main.cpp 248 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M114 - Output current position to serial port
  147. // M115 - Capabilities string
  148. // M117 - display message
  149. // M119 - Output Endstop status to serial port
  150. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  151. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  152. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  153. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M140 - Set bed target temp
  155. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  156. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  157. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  158. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  159. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  160. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  161. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  162. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  163. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  164. // M206 - set additional homing offset
  165. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  166. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  167. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  168. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  169. // M220 S<factor in percent>- set speed factor override percentage
  170. // M221 S<factor in percent>- set extrude factor override percentage
  171. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  172. // M240 - Trigger a camera to take a photograph
  173. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  174. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  175. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  176. // M301 - Set PID parameters P I and D
  177. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  178. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  179. // M304 - Set bed PID parameters P I and D
  180. // M400 - Finish all moves
  181. // M401 - Lower z-probe if present
  182. // M402 - Raise z-probe if present
  183. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  184. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  185. // M406 - Turn off Filament Sensor extrusion control
  186. // M407 - Displays measured filament diameter
  187. // M500 - stores parameters in EEPROM
  188. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  189. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  190. // M503 - print the current settings (from memory not from EEPROM)
  191. // M509 - force language selection on next restart
  192. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  193. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  194. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  195. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  196. // M907 - Set digital trimpot motor current using axis codes.
  197. // M908 - Control digital trimpot directly.
  198. // M350 - Set microstepping mode.
  199. // M351 - Toggle MS1 MS2 pins directly.
  200. // M928 - Start SD logging (M928 filename.g) - ended by M29
  201. // M999 - Restart after being stopped by error
  202. //Stepper Movement Variables
  203. //===========================================================================
  204. //=============================imported variables============================
  205. //===========================================================================
  206. //===========================================================================
  207. //=============================public variables=============================
  208. //===========================================================================
  209. #ifdef SDSUPPORT
  210. CardReader card;
  211. #endif
  212. unsigned long PingTime = millis();
  213. union Data
  214. {
  215. byte b[2];
  216. int value;
  217. };
  218. float homing_feedrate[] = HOMING_FEEDRATE;
  219. // Currently only the extruder axis may be switched to a relative mode.
  220. // Other axes are always absolute or relative based on the common relative_mode flag.
  221. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  222. int feedmultiply=100; //100->1 200->2
  223. int saved_feedmultiply;
  224. int extrudemultiply=100; //100->1 200->2
  225. int extruder_multiply[EXTRUDERS] = {100
  226. #if EXTRUDERS > 1
  227. , 100
  228. #if EXTRUDERS > 2
  229. , 100
  230. #endif
  231. #endif
  232. };
  233. int bowden_length[4];
  234. bool is_usb_printing = false;
  235. bool homing_flag = false;
  236. bool temp_cal_active = false;
  237. unsigned long kicktime = millis()+100000;
  238. unsigned int usb_printing_counter;
  239. int lcd_change_fil_state = 0;
  240. int feedmultiplyBckp = 100;
  241. float HotendTempBckp = 0;
  242. int fanSpeedBckp = 0;
  243. float pause_lastpos[4];
  244. unsigned long pause_time = 0;
  245. unsigned long start_pause_print = millis();
  246. unsigned long t_fan_rising_edge = millis();
  247. unsigned long load_filament_time;
  248. bool mesh_bed_leveling_flag = false;
  249. bool mesh_bed_run_from_menu = false;
  250. unsigned char lang_selected = 0;
  251. int8_t FarmMode = 0;
  252. bool prusa_sd_card_upload = false;
  253. unsigned int status_number = 0;
  254. unsigned long total_filament_used;
  255. unsigned int heating_status;
  256. unsigned int heating_status_counter;
  257. bool custom_message;
  258. bool loading_flag = false;
  259. unsigned int custom_message_type;
  260. unsigned int custom_message_state;
  261. char snmm_filaments_used = 0;
  262. float distance_from_min[2];
  263. bool fan_state[2];
  264. int fan_edge_counter[2];
  265. int fan_speed[2];
  266. bool volumetric_enabled = false;
  267. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  268. #if EXTRUDERS > 1
  269. , DEFAULT_NOMINAL_FILAMENT_DIA
  270. #if EXTRUDERS > 2
  271. , DEFAULT_NOMINAL_FILAMENT_DIA
  272. #endif
  273. #endif
  274. };
  275. float volumetric_multiplier[EXTRUDERS] = {1.0
  276. #if EXTRUDERS > 1
  277. , 1.0
  278. #if EXTRUDERS > 2
  279. , 1.0
  280. #endif
  281. #endif
  282. };
  283. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  284. float add_homing[3]={0,0,0};
  285. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  286. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  287. bool axis_known_position[3] = {false, false, false};
  288. float zprobe_zoffset;
  289. // Extruder offset
  290. #if EXTRUDERS > 1
  291. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  292. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  293. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  294. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  295. #endif
  296. };
  297. #endif
  298. uint8_t active_extruder = 0;
  299. int fanSpeed=0;
  300. #ifdef FWRETRACT
  301. bool autoretract_enabled=false;
  302. bool retracted[EXTRUDERS]={false
  303. #if EXTRUDERS > 1
  304. , false
  305. #if EXTRUDERS > 2
  306. , false
  307. #endif
  308. #endif
  309. };
  310. bool retracted_swap[EXTRUDERS]={false
  311. #if EXTRUDERS > 1
  312. , false
  313. #if EXTRUDERS > 2
  314. , false
  315. #endif
  316. #endif
  317. };
  318. float retract_length = RETRACT_LENGTH;
  319. float retract_length_swap = RETRACT_LENGTH_SWAP;
  320. float retract_feedrate = RETRACT_FEEDRATE;
  321. float retract_zlift = RETRACT_ZLIFT;
  322. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  323. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  324. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  325. #endif
  326. #ifdef ULTIPANEL
  327. #ifdef PS_DEFAULT_OFF
  328. bool powersupply = false;
  329. #else
  330. bool powersupply = true;
  331. #endif
  332. #endif
  333. bool cancel_heatup = false ;
  334. #ifdef FILAMENT_SENSOR
  335. //Variables for Filament Sensor input
  336. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  337. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  338. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  339. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  340. int delay_index1=0; //index into ring buffer
  341. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  342. float delay_dist=0; //delay distance counter
  343. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  344. #endif
  345. const char errormagic[] PROGMEM = "Error:";
  346. const char echomagic[] PROGMEM = "echo:";
  347. //===========================================================================
  348. //=============================Private Variables=============================
  349. //===========================================================================
  350. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  351. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  352. static float delta[3] = {0.0, 0.0, 0.0};
  353. // For tracing an arc
  354. static float offset[3] = {0.0, 0.0, 0.0};
  355. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  356. // Determines Absolute or Relative Coordinates.
  357. // Also there is bool axis_relative_modes[] per axis flag.
  358. static bool relative_mode = false;
  359. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  360. //static float tt = 0;
  361. //static float bt = 0;
  362. //Inactivity shutdown variables
  363. static unsigned long previous_millis_cmd = 0;
  364. unsigned long max_inactive_time = 0;
  365. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  366. unsigned long starttime=0;
  367. unsigned long stoptime=0;
  368. unsigned long _usb_timer = 0;
  369. static uint8_t tmp_extruder;
  370. bool extruder_under_pressure = true;
  371. bool Stopped=false;
  372. #if NUM_SERVOS > 0
  373. Servo servos[NUM_SERVOS];
  374. #endif
  375. bool CooldownNoWait = true;
  376. bool target_direction;
  377. //Insert variables if CHDK is defined
  378. #ifdef CHDK
  379. unsigned long chdkHigh = 0;
  380. boolean chdkActive = false;
  381. #endif
  382. //===========================================================================
  383. //=============================Routines======================================
  384. //===========================================================================
  385. void get_arc_coordinates();
  386. bool setTargetedHotend(int code);
  387. void serial_echopair_P(const char *s_P, float v)
  388. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  389. void serial_echopair_P(const char *s_P, double v)
  390. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  391. void serial_echopair_P(const char *s_P, unsigned long v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. #ifdef SDSUPPORT
  394. #include "SdFatUtil.h"
  395. int freeMemory() { return SdFatUtil::FreeRam(); }
  396. #else
  397. extern "C" {
  398. extern unsigned int __bss_end;
  399. extern unsigned int __heap_start;
  400. extern void *__brkval;
  401. int freeMemory() {
  402. int free_memory;
  403. if ((int)__brkval == 0)
  404. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  405. else
  406. free_memory = ((int)&free_memory) - ((int)__brkval);
  407. return free_memory;
  408. }
  409. }
  410. #endif //!SDSUPPORT
  411. void setup_killpin()
  412. {
  413. #if defined(KILL_PIN) && KILL_PIN > -1
  414. SET_INPUT(KILL_PIN);
  415. WRITE(KILL_PIN,HIGH);
  416. #endif
  417. }
  418. // Set home pin
  419. void setup_homepin(void)
  420. {
  421. #if defined(HOME_PIN) && HOME_PIN > -1
  422. SET_INPUT(HOME_PIN);
  423. WRITE(HOME_PIN,HIGH);
  424. #endif
  425. }
  426. void setup_photpin()
  427. {
  428. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  429. SET_OUTPUT(PHOTOGRAPH_PIN);
  430. WRITE(PHOTOGRAPH_PIN, LOW);
  431. #endif
  432. }
  433. void setup_powerhold()
  434. {
  435. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  436. SET_OUTPUT(SUICIDE_PIN);
  437. WRITE(SUICIDE_PIN, HIGH);
  438. #endif
  439. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  440. SET_OUTPUT(PS_ON_PIN);
  441. #if defined(PS_DEFAULT_OFF)
  442. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  443. #else
  444. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  445. #endif
  446. #endif
  447. }
  448. void suicide()
  449. {
  450. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  451. SET_OUTPUT(SUICIDE_PIN);
  452. WRITE(SUICIDE_PIN, LOW);
  453. #endif
  454. }
  455. void servo_init()
  456. {
  457. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  458. servos[0].attach(SERVO0_PIN);
  459. #endif
  460. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  461. servos[1].attach(SERVO1_PIN);
  462. #endif
  463. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  464. servos[2].attach(SERVO2_PIN);
  465. #endif
  466. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  467. servos[3].attach(SERVO3_PIN);
  468. #endif
  469. #if (NUM_SERVOS >= 5)
  470. #error "TODO: enter initalisation code for more servos"
  471. #endif
  472. }
  473. static void lcd_language_menu();
  474. void stop_and_save_print_to_ram(float z_move, float e_move);
  475. void restore_print_from_ram_and_continue(float e_move);
  476. extern int8_t CrashDetectMenu;
  477. void crashdet_enable()
  478. {
  479. MYSERIAL.println("crashdet_enable");
  480. tmc2130_sg_stop_on_crash = true;
  481. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  482. CrashDetectMenu = 1;
  483. }
  484. void crashdet_disable()
  485. {
  486. MYSERIAL.println("crashdet_disable");
  487. tmc2130_sg_stop_on_crash = false;
  488. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  489. CrashDetectMenu = 0;
  490. }
  491. void crashdet_stop_and_save_print()
  492. {
  493. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  494. }
  495. void crashdet_restore_print_and_continue()
  496. {
  497. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  498. // babystep_apply();
  499. }
  500. void crashdet_stop_and_save_print2()
  501. {
  502. cli();
  503. planner_abort_hard(); //abort printing
  504. cmdqueue_reset(); //empty cmdqueue
  505. card.sdprinting = false;
  506. card.closefile();
  507. sei();
  508. }
  509. #ifdef MESH_BED_LEVELING
  510. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  511. #endif
  512. // Factory reset function
  513. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  514. // Level input parameter sets depth of reset
  515. // Quiet parameter masks all waitings for user interact.
  516. int er_progress = 0;
  517. void factory_reset(char level, bool quiet)
  518. {
  519. lcd_implementation_clear();
  520. int cursor_pos = 0;
  521. switch (level) {
  522. // Level 0: Language reset
  523. case 0:
  524. WRITE(BEEPER, HIGH);
  525. _delay_ms(100);
  526. WRITE(BEEPER, LOW);
  527. lcd_force_language_selection();
  528. break;
  529. //Level 1: Reset statistics
  530. case 1:
  531. WRITE(BEEPER, HIGH);
  532. _delay_ms(100);
  533. WRITE(BEEPER, LOW);
  534. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  535. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  536. lcd_menu_statistics();
  537. break;
  538. // Level 2: Prepare for shipping
  539. case 2:
  540. //lcd_printPGM(PSTR("Factory RESET"));
  541. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  542. // Force language selection at the next boot up.
  543. lcd_force_language_selection();
  544. // Force the "Follow calibration flow" message at the next boot up.
  545. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  546. farm_no = 0;
  547. farm_mode == false;
  548. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  549. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  550. WRITE(BEEPER, HIGH);
  551. _delay_ms(100);
  552. WRITE(BEEPER, LOW);
  553. //_delay_ms(2000);
  554. break;
  555. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  556. case 3:
  557. lcd_printPGM(PSTR("Factory RESET"));
  558. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  559. WRITE(BEEPER, HIGH);
  560. _delay_ms(100);
  561. WRITE(BEEPER, LOW);
  562. er_progress = 0;
  563. lcd_print_at_PGM(3, 3, PSTR(" "));
  564. lcd_implementation_print_at(3, 3, er_progress);
  565. // Erase EEPROM
  566. for (int i = 0; i < 4096; i++) {
  567. eeprom_write_byte((uint8_t*)i, 0xFF);
  568. if (i % 41 == 0) {
  569. er_progress++;
  570. lcd_print_at_PGM(3, 3, PSTR(" "));
  571. lcd_implementation_print_at(3, 3, er_progress);
  572. lcd_printPGM(PSTR("%"));
  573. }
  574. }
  575. break;
  576. case 4:
  577. bowden_menu();
  578. break;
  579. default:
  580. break;
  581. }
  582. }
  583. // "Setup" function is called by the Arduino framework on startup.
  584. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  585. // are initialized by the main() routine provided by the Arduino framework.
  586. void setup()
  587. {
  588. lcd_init();
  589. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  590. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  591. setup_killpin();
  592. setup_powerhold();
  593. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  594. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  595. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  596. if (farm_no == 0xFFFF) farm_no = 0;
  597. if (farm_mode)
  598. {
  599. prusa_statistics(8);
  600. selectedSerialPort = 1;
  601. }
  602. else
  603. selectedSerialPort = 0;
  604. MYSERIAL.begin(BAUDRATE);
  605. SERIAL_PROTOCOLLNPGM("start");
  606. SERIAL_ECHO_START;
  607. #if 0
  608. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  609. for (int i = 0; i < 4096; ++i) {
  610. int b = eeprom_read_byte((unsigned char*)i);
  611. if (b != 255) {
  612. SERIAL_ECHO(i);
  613. SERIAL_ECHO(":");
  614. SERIAL_ECHO(b);
  615. SERIAL_ECHOLN("");
  616. }
  617. }
  618. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  619. #endif
  620. // Check startup - does nothing if bootloader sets MCUSR to 0
  621. byte mcu = MCUSR;
  622. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  623. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  624. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  625. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  626. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  627. MCUSR = 0;
  628. //SERIAL_ECHORPGM(MSG_MARLIN);
  629. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  630. #ifdef STRING_VERSION_CONFIG_H
  631. #ifdef STRING_CONFIG_H_AUTHOR
  632. SERIAL_ECHO_START;
  633. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  634. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  635. SERIAL_ECHORPGM(MSG_AUTHOR);
  636. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  637. SERIAL_ECHOPGM("Compiled: ");
  638. SERIAL_ECHOLNPGM(__DATE__);
  639. #endif
  640. #endif
  641. SERIAL_ECHO_START;
  642. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  643. SERIAL_ECHO(freeMemory());
  644. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  645. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  646. //lcd_update_enable(false); // why do we need this?? - andre
  647. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  648. Config_RetrieveSettings(EEPROM_OFFSET);
  649. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  650. tp_init(); // Initialize temperature loop
  651. plan_init(); // Initialize planner;
  652. watchdog_init();
  653. #ifdef TMC2130
  654. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  655. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  656. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  657. if (crashdet)
  658. {
  659. crashdet_enable();
  660. MYSERIAL.println("CrashDetect ENABLED!");
  661. }
  662. else
  663. {
  664. crashdet_disable();
  665. MYSERIAL.println("CrashDetect DISABLED");
  666. }
  667. #endif //TMC2130
  668. #ifdef PAT9125
  669. MYSERIAL.print("PAT9125_init:");
  670. int pat9125 = pat9125_init(200, 200);
  671. MYSERIAL.println(pat9125);
  672. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  673. if (!pat9125) fsensor = 0; //disable sensor
  674. if (fsensor)
  675. {
  676. fsensor_enable();
  677. MYSERIAL.println("Filament Sensor ENABLED!");
  678. }
  679. else
  680. {
  681. fsensor_disable();
  682. MYSERIAL.println("Filament Sensor DISABLED");
  683. }
  684. #endif //PAT9125
  685. st_init(); // Initialize stepper, this enables interrupts!
  686. setup_photpin();
  687. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
  688. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  689. servo_init();
  690. // Reset the machine correction matrix.
  691. // It does not make sense to load the correction matrix until the machine is homed.
  692. world2machine_reset();
  693. if (!READ(BTN_ENC))
  694. {
  695. _delay_ms(1000);
  696. if (!READ(BTN_ENC))
  697. {
  698. lcd_implementation_clear();
  699. lcd_printPGM(PSTR("Factory RESET"));
  700. SET_OUTPUT(BEEPER);
  701. WRITE(BEEPER, HIGH);
  702. while (!READ(BTN_ENC));
  703. WRITE(BEEPER, LOW);
  704. _delay_ms(2000);
  705. char level = reset_menu();
  706. factory_reset(level, false);
  707. switch (level) {
  708. case 0: _delay_ms(0); break;
  709. case 1: _delay_ms(0); break;
  710. case 2: _delay_ms(0); break;
  711. case 3: _delay_ms(0); break;
  712. }
  713. // _delay_ms(100);
  714. /*
  715. #ifdef MESH_BED_LEVELING
  716. _delay_ms(2000);
  717. if (!READ(BTN_ENC))
  718. {
  719. WRITE(BEEPER, HIGH);
  720. _delay_ms(100);
  721. WRITE(BEEPER, LOW);
  722. _delay_ms(200);
  723. WRITE(BEEPER, HIGH);
  724. _delay_ms(100);
  725. WRITE(BEEPER, LOW);
  726. int _z = 0;
  727. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  728. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  729. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  730. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  731. }
  732. else
  733. {
  734. WRITE(BEEPER, HIGH);
  735. _delay_ms(100);
  736. WRITE(BEEPER, LOW);
  737. }
  738. #endif // mesh */
  739. }
  740. }
  741. else
  742. {
  743. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  744. }
  745. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  746. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  747. #endif
  748. #if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
  749. SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
  750. #endif
  751. #ifdef DIGIPOT_I2C
  752. digipot_i2c_init();
  753. #endif
  754. setup_homepin();
  755. if (1) {
  756. SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  757. // try to run to zero phase before powering the Z motor.
  758. // Move in negative direction
  759. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  760. // Round the current micro-micro steps to micro steps.
  761. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  762. // Until the phase counter is reset to zero.
  763. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  764. delay(2);
  765. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  766. delay(2);
  767. }
  768. SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  769. }
  770. #if defined(Z_AXIS_ALWAYS_ON)
  771. enable_z();
  772. #endif
  773. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  774. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  775. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  776. if (farm_no == 0xFFFF) farm_no = 0;
  777. if (farm_mode)
  778. {
  779. prusa_statistics(8);
  780. }
  781. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  782. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  783. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  784. // but this times out if a blocking dialog is shown in setup().
  785. card.initsd();
  786. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  787. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  788. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  789. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  790. // where all the EEPROM entries are set to 0x0ff.
  791. // Once a firmware boots up, it forces at least a language selection, which changes
  792. // EEPROM_LANG to number lower than 0x0ff.
  793. // 1) Set a high power mode.
  794. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  795. }
  796. #ifdef SNMM
  797. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  798. int _z = BOWDEN_LENGTH;
  799. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  800. }
  801. #endif
  802. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  803. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  804. // is being written into the EEPROM, so the update procedure will be triggered only once.
  805. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  806. if (lang_selected >= LANG_NUM){
  807. lcd_mylang();
  808. }
  809. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  810. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  811. temp_cal_active = false;
  812. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  813. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  814. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  815. }
  816. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  817. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  818. }
  819. check_babystep(); //checking if Z babystep is in allowed range
  820. setup_uvlo_interrupt();
  821. setup_fan_interrupt();
  822. fsensor_setup_interrupt();
  823. #ifndef DEBUG_DISABLE_STARTMSGS
  824. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  825. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  826. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  827. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  828. // Show the message.
  829. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  830. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  831. // Show the message.
  832. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  833. lcd_update_enable(true);
  834. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  835. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  836. lcd_update_enable(true);
  837. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  838. // Show the message.
  839. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  840. }
  841. #endif //DEBUG_DISABLE_STARTMSGS
  842. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  843. lcd_update_enable(true);
  844. lcd_implementation_clear();
  845. lcd_update(2);
  846. // Store the currently running firmware into an eeprom,
  847. // so the next time the firmware gets updated, it will know from which version it has been updated.
  848. update_current_firmware_version_to_eeprom();
  849. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  850. /*
  851. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  852. else {
  853. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  854. lcd_update_enable(true);
  855. lcd_update(2);
  856. lcd_setstatuspgm(WELCOME_MSG);
  857. }
  858. */
  859. manage_heater(); // Update temperatures
  860. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  861. MYSERIAL.println("Power panic detected!");
  862. MYSERIAL.print("Current bed temp:");
  863. MYSERIAL.println(degBed());
  864. MYSERIAL.print("Saved bed temp:");
  865. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  866. #endif
  867. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  868. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  869. MYSERIAL.println("Automatic recovery!");
  870. #endif
  871. recover_print(1);
  872. }
  873. else{
  874. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  875. MYSERIAL.println("Normal recovery!");
  876. #endif
  877. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  878. else {
  879. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  880. lcd_update_enable(true);
  881. lcd_update(2);
  882. lcd_setstatuspgm(WELCOME_MSG);
  883. }
  884. }
  885. }
  886. }
  887. void trace();
  888. #define CHUNK_SIZE 64 // bytes
  889. #define SAFETY_MARGIN 1
  890. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  891. int chunkHead = 0;
  892. int serial_read_stream() {
  893. setTargetHotend(0, 0);
  894. setTargetBed(0);
  895. lcd_implementation_clear();
  896. lcd_printPGM(PSTR(" Upload in progress"));
  897. // first wait for how many bytes we will receive
  898. uint32_t bytesToReceive;
  899. // receive the four bytes
  900. char bytesToReceiveBuffer[4];
  901. for (int i=0; i<4; i++) {
  902. int data;
  903. while ((data = MYSERIAL.read()) == -1) {};
  904. bytesToReceiveBuffer[i] = data;
  905. }
  906. // make it a uint32
  907. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  908. // we're ready, notify the sender
  909. MYSERIAL.write('+');
  910. // lock in the routine
  911. uint32_t receivedBytes = 0;
  912. while (prusa_sd_card_upload) {
  913. int i;
  914. for (i=0; i<CHUNK_SIZE; i++) {
  915. int data;
  916. // check if we're not done
  917. if (receivedBytes == bytesToReceive) {
  918. break;
  919. }
  920. // read the next byte
  921. while ((data = MYSERIAL.read()) == -1) {};
  922. receivedBytes++;
  923. // save it to the chunk
  924. chunk[i] = data;
  925. }
  926. // write the chunk to SD
  927. card.write_command_no_newline(&chunk[0]);
  928. // notify the sender we're ready for more data
  929. MYSERIAL.write('+');
  930. // for safety
  931. manage_heater();
  932. // check if we're done
  933. if(receivedBytes == bytesToReceive) {
  934. trace(); // beep
  935. card.closefile();
  936. prusa_sd_card_upload = false;
  937. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  938. return 0;
  939. }
  940. }
  941. }
  942. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  943. // Before loop(), the setup() function is called by the main() routine.
  944. void loop()
  945. {
  946. bool stack_integrity = true;
  947. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  948. {
  949. is_usb_printing = true;
  950. usb_printing_counter--;
  951. _usb_timer = millis();
  952. }
  953. if (usb_printing_counter == 0)
  954. {
  955. is_usb_printing = false;
  956. }
  957. if (prusa_sd_card_upload)
  958. {
  959. //we read byte-by byte
  960. serial_read_stream();
  961. } else
  962. {
  963. get_command();
  964. #ifdef SDSUPPORT
  965. card.checkautostart(false);
  966. #endif
  967. if(buflen)
  968. {
  969. cmdbuffer_front_already_processed = false;
  970. #ifdef SDSUPPORT
  971. if(card.saving)
  972. {
  973. // Saving a G-code file onto an SD-card is in progress.
  974. // Saving starts with M28, saving until M29 is seen.
  975. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  976. card.write_command(CMDBUFFER_CURRENT_STRING);
  977. if(card.logging)
  978. process_commands();
  979. else
  980. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  981. } else {
  982. card.closefile();
  983. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  984. }
  985. } else {
  986. process_commands();
  987. }
  988. #else
  989. process_commands();
  990. #endif //SDSUPPORT
  991. if (! cmdbuffer_front_already_processed && buflen)
  992. {
  993. cli();
  994. union {
  995. struct {
  996. char lo;
  997. char hi;
  998. } lohi;
  999. uint16_t value;
  1000. } sdlen;
  1001. sdlen.value = 0;
  1002. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1003. sdlen.lohi.lo = cmdbuffer[bufindr + 1];
  1004. sdlen.lohi.hi = cmdbuffer[bufindr + 2];
  1005. }
  1006. cmdqueue_pop_front();
  1007. planner_add_sd_length(sdlen.value);
  1008. sei();
  1009. }
  1010. }
  1011. }
  1012. //check heater every n milliseconds
  1013. manage_heater();
  1014. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1015. checkHitEndstops();
  1016. lcd_update();
  1017. #ifdef PAT9125
  1018. fsensor_update();
  1019. #endif //PAT9125
  1020. #ifdef TMC2130
  1021. tmc2130_check_overtemp();
  1022. if (tmc2130_sg_crash)
  1023. {
  1024. tmc2130_sg_crash = false;
  1025. // crashdet_stop_and_save_print();
  1026. enquecommand_P((PSTR("D999")));
  1027. }
  1028. #endif //TMC2130
  1029. }
  1030. #define DEFINE_PGM_READ_ANY(type, reader) \
  1031. static inline type pgm_read_any(const type *p) \
  1032. { return pgm_read_##reader##_near(p); }
  1033. DEFINE_PGM_READ_ANY(float, float);
  1034. DEFINE_PGM_READ_ANY(signed char, byte);
  1035. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1036. static const PROGMEM type array##_P[3] = \
  1037. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1038. static inline type array(int axis) \
  1039. { return pgm_read_any(&array##_P[axis]); } \
  1040. type array##_ext(int axis) \
  1041. { return pgm_read_any(&array##_P[axis]); }
  1042. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1043. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1044. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1045. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1046. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1047. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1048. static void axis_is_at_home(int axis) {
  1049. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1050. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1051. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1052. }
  1053. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1054. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1055. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1056. saved_feedrate = feedrate;
  1057. saved_feedmultiply = feedmultiply;
  1058. feedmultiply = 100;
  1059. previous_millis_cmd = millis();
  1060. enable_endstops(enable_endstops_now);
  1061. }
  1062. static void clean_up_after_endstop_move() {
  1063. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1064. enable_endstops(false);
  1065. #endif
  1066. feedrate = saved_feedrate;
  1067. feedmultiply = saved_feedmultiply;
  1068. previous_millis_cmd = millis();
  1069. }
  1070. #ifdef ENABLE_AUTO_BED_LEVELING
  1071. #ifdef AUTO_BED_LEVELING_GRID
  1072. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1073. {
  1074. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1075. planeNormal.debug("planeNormal");
  1076. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1077. //bedLevel.debug("bedLevel");
  1078. //plan_bed_level_matrix.debug("bed level before");
  1079. //vector_3 uncorrected_position = plan_get_position_mm();
  1080. //uncorrected_position.debug("position before");
  1081. vector_3 corrected_position = plan_get_position();
  1082. // corrected_position.debug("position after");
  1083. current_position[X_AXIS] = corrected_position.x;
  1084. current_position[Y_AXIS] = corrected_position.y;
  1085. current_position[Z_AXIS] = corrected_position.z;
  1086. // put the bed at 0 so we don't go below it.
  1087. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1088. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1089. }
  1090. #else // not AUTO_BED_LEVELING_GRID
  1091. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1092. plan_bed_level_matrix.set_to_identity();
  1093. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1094. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1095. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1096. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1097. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1098. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1099. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1100. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1101. vector_3 corrected_position = plan_get_position();
  1102. current_position[X_AXIS] = corrected_position.x;
  1103. current_position[Y_AXIS] = corrected_position.y;
  1104. current_position[Z_AXIS] = corrected_position.z;
  1105. // put the bed at 0 so we don't go below it.
  1106. current_position[Z_AXIS] = zprobe_zoffset;
  1107. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1108. }
  1109. #endif // AUTO_BED_LEVELING_GRID
  1110. static void run_z_probe() {
  1111. plan_bed_level_matrix.set_to_identity();
  1112. feedrate = homing_feedrate[Z_AXIS];
  1113. // move down until you find the bed
  1114. float zPosition = -10;
  1115. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1116. st_synchronize();
  1117. // we have to let the planner know where we are right now as it is not where we said to go.
  1118. zPosition = st_get_position_mm(Z_AXIS);
  1119. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1120. // move up the retract distance
  1121. zPosition += home_retract_mm(Z_AXIS);
  1122. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1123. st_synchronize();
  1124. // move back down slowly to find bed
  1125. feedrate = homing_feedrate[Z_AXIS]/4;
  1126. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1127. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1128. st_synchronize();
  1129. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1130. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1131. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1132. }
  1133. static void do_blocking_move_to(float x, float y, float z) {
  1134. float oldFeedRate = feedrate;
  1135. feedrate = homing_feedrate[Z_AXIS];
  1136. current_position[Z_AXIS] = z;
  1137. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1138. st_synchronize();
  1139. feedrate = XY_TRAVEL_SPEED;
  1140. current_position[X_AXIS] = x;
  1141. current_position[Y_AXIS] = y;
  1142. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1143. st_synchronize();
  1144. feedrate = oldFeedRate;
  1145. }
  1146. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1147. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1148. }
  1149. /// Probe bed height at position (x,y), returns the measured z value
  1150. static float probe_pt(float x, float y, float z_before) {
  1151. // move to right place
  1152. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1153. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1154. run_z_probe();
  1155. float measured_z = current_position[Z_AXIS];
  1156. SERIAL_PROTOCOLRPGM(MSG_BED);
  1157. SERIAL_PROTOCOLPGM(" x: ");
  1158. SERIAL_PROTOCOL(x);
  1159. SERIAL_PROTOCOLPGM(" y: ");
  1160. SERIAL_PROTOCOL(y);
  1161. SERIAL_PROTOCOLPGM(" z: ");
  1162. SERIAL_PROTOCOL(measured_z);
  1163. SERIAL_PROTOCOLPGM("\n");
  1164. return measured_z;
  1165. }
  1166. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1167. #ifdef LIN_ADVANCE
  1168. /**
  1169. * M900: Set and/or Get advance K factor and WH/D ratio
  1170. *
  1171. * K<factor> Set advance K factor
  1172. * R<ratio> Set ratio directly (overrides WH/D)
  1173. * W<width> H<height> D<diam> Set ratio from WH/D
  1174. */
  1175. inline void gcode_M900() {
  1176. st_synchronize();
  1177. const float newK = code_seen('K') ? code_value_float() : -1;
  1178. if (newK >= 0) extruder_advance_k = newK;
  1179. float newR = code_seen('R') ? code_value_float() : -1;
  1180. if (newR < 0) {
  1181. const float newD = code_seen('D') ? code_value_float() : -1,
  1182. newW = code_seen('W') ? code_value_float() : -1,
  1183. newH = code_seen('H') ? code_value_float() : -1;
  1184. if (newD >= 0 && newW >= 0 && newH >= 0)
  1185. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1186. }
  1187. if (newR >= 0) advance_ed_ratio = newR;
  1188. SERIAL_ECHO_START;
  1189. SERIAL_ECHOPGM("Advance K=");
  1190. SERIAL_ECHOLN(extruder_advance_k);
  1191. SERIAL_ECHOPGM(" E/D=");
  1192. const float ratio = advance_ed_ratio;
  1193. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1194. }
  1195. #endif // LIN_ADVANCE
  1196. #ifdef TMC2130
  1197. bool calibrate_z_auto()
  1198. {
  1199. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1200. bool endstops_enabled = enable_endstops(true);
  1201. int axis_up_dir = -home_dir(Z_AXIS);
  1202. tmc2130_home_enter(Z_AXIS_MASK);
  1203. current_position[Z_AXIS] = 0;
  1204. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1205. set_destination_to_current();
  1206. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1207. feedrate = homing_feedrate[Z_AXIS];
  1208. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1209. tmc2130_home_restart(Z_AXIS);
  1210. st_synchronize();
  1211. // current_position[axis] = 0;
  1212. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1213. tmc2130_home_exit();
  1214. enable_endstops(false);
  1215. current_position[Z_AXIS] = 0;
  1216. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1217. set_destination_to_current();
  1218. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1219. feedrate = homing_feedrate[Z_AXIS] / 2;
  1220. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1221. st_synchronize();
  1222. enable_endstops(endstops_enabled);
  1223. current_position[Z_AXIS] = Z_MAX_POS-3.f;
  1224. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1225. return true;
  1226. }
  1227. #endif //TMC2130
  1228. void homeaxis(int axis)
  1229. {
  1230. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1231. #define HOMEAXIS_DO(LETTER) \
  1232. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1233. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1234. {
  1235. int axis_home_dir = home_dir(axis);
  1236. feedrate = homing_feedrate[axis];
  1237. #ifdef TMC2130
  1238. tmc2130_home_enter(X_AXIS_MASK << axis);
  1239. #endif
  1240. // Move right a bit, so that the print head does not touch the left end position,
  1241. // and the following left movement has a chance to achieve the required velocity
  1242. // for the stall guard to work.
  1243. current_position[axis] = 0;
  1244. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1245. // destination[axis] = 11.f;
  1246. destination[axis] = 3.f;
  1247. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1248. st_synchronize();
  1249. // Move left away from the possible collision with the collision detection disabled.
  1250. endstops_hit_on_purpose();
  1251. enable_endstops(false);
  1252. current_position[axis] = 0;
  1253. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1254. destination[axis] = - 1.;
  1255. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1256. st_synchronize();
  1257. // Now continue to move up to the left end stop with the collision detection enabled.
  1258. enable_endstops(true);
  1259. destination[axis] = - 1.1 * max_length(axis);
  1260. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1261. st_synchronize();
  1262. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1263. endstops_hit_on_purpose();
  1264. enable_endstops(false);
  1265. current_position[axis] = 0;
  1266. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1267. destination[axis] = 10.f;
  1268. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1269. st_synchronize();
  1270. endstops_hit_on_purpose();
  1271. // Now move left up to the collision, this time with a repeatable velocity.
  1272. enable_endstops(true);
  1273. destination[axis] = - 15.f;
  1274. feedrate = homing_feedrate[axis]/2;
  1275. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1276. st_synchronize();
  1277. axis_is_at_home(axis);
  1278. axis_known_position[axis] = true;
  1279. #ifdef TMC2130
  1280. tmc2130_home_exit();
  1281. #endif
  1282. // Move the X carriage away from the collision.
  1283. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1284. endstops_hit_on_purpose();
  1285. enable_endstops(false);
  1286. {
  1287. // Two full periods (4 full steps).
  1288. float gap = 0.32f * 2.f;
  1289. current_position[axis] -= gap;
  1290. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1291. current_position[axis] += gap;
  1292. }
  1293. destination[axis] = current_position[axis];
  1294. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1295. st_synchronize();
  1296. feedrate = 0.0;
  1297. }
  1298. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1299. {
  1300. int axis_home_dir = home_dir(axis);
  1301. current_position[axis] = 0;
  1302. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1303. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1304. feedrate = homing_feedrate[axis];
  1305. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1306. st_synchronize();
  1307. current_position[axis] = 0;
  1308. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1309. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1310. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1311. st_synchronize();
  1312. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1313. feedrate = homing_feedrate[axis]/2 ;
  1314. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1315. st_synchronize();
  1316. axis_is_at_home(axis);
  1317. destination[axis] = current_position[axis];
  1318. feedrate = 0.0;
  1319. endstops_hit_on_purpose();
  1320. axis_known_position[axis] = true;
  1321. }
  1322. enable_endstops(endstops_enabled);
  1323. }
  1324. /**/
  1325. void home_xy()
  1326. {
  1327. set_destination_to_current();
  1328. homeaxis(X_AXIS);
  1329. homeaxis(Y_AXIS);
  1330. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1331. endstops_hit_on_purpose();
  1332. }
  1333. void refresh_cmd_timeout(void)
  1334. {
  1335. previous_millis_cmd = millis();
  1336. }
  1337. #ifdef FWRETRACT
  1338. void retract(bool retracting, bool swapretract = false) {
  1339. if(retracting && !retracted[active_extruder]) {
  1340. destination[X_AXIS]=current_position[X_AXIS];
  1341. destination[Y_AXIS]=current_position[Y_AXIS];
  1342. destination[Z_AXIS]=current_position[Z_AXIS];
  1343. destination[E_AXIS]=current_position[E_AXIS];
  1344. if (swapretract) {
  1345. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1346. } else {
  1347. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1348. }
  1349. plan_set_e_position(current_position[E_AXIS]);
  1350. float oldFeedrate = feedrate;
  1351. feedrate=retract_feedrate*60;
  1352. retracted[active_extruder]=true;
  1353. prepare_move();
  1354. current_position[Z_AXIS]-=retract_zlift;
  1355. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1356. prepare_move();
  1357. feedrate = oldFeedrate;
  1358. } else if(!retracting && retracted[active_extruder]) {
  1359. destination[X_AXIS]=current_position[X_AXIS];
  1360. destination[Y_AXIS]=current_position[Y_AXIS];
  1361. destination[Z_AXIS]=current_position[Z_AXIS];
  1362. destination[E_AXIS]=current_position[E_AXIS];
  1363. current_position[Z_AXIS]+=retract_zlift;
  1364. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1365. //prepare_move();
  1366. if (swapretract) {
  1367. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1368. } else {
  1369. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1370. }
  1371. plan_set_e_position(current_position[E_AXIS]);
  1372. float oldFeedrate = feedrate;
  1373. feedrate=retract_recover_feedrate*60;
  1374. retracted[active_extruder]=false;
  1375. prepare_move();
  1376. feedrate = oldFeedrate;
  1377. }
  1378. } //retract
  1379. #endif //FWRETRACT
  1380. void trace() {
  1381. tone(BEEPER, 440);
  1382. delay(25);
  1383. noTone(BEEPER);
  1384. delay(20);
  1385. }
  1386. /*
  1387. void ramming() {
  1388. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1389. if (current_temperature[0] < 230) {
  1390. //PLA
  1391. max_feedrate[E_AXIS] = 50;
  1392. //current_position[E_AXIS] -= 8;
  1393. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1394. //current_position[E_AXIS] += 8;
  1395. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1396. current_position[E_AXIS] += 5.4;
  1397. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1398. current_position[E_AXIS] += 3.2;
  1399. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1400. current_position[E_AXIS] += 3;
  1401. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1402. st_synchronize();
  1403. max_feedrate[E_AXIS] = 80;
  1404. current_position[E_AXIS] -= 82;
  1405. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1406. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1407. current_position[E_AXIS] -= 20;
  1408. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1409. current_position[E_AXIS] += 5;
  1410. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1411. current_position[E_AXIS] += 5;
  1412. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1413. current_position[E_AXIS] -= 10;
  1414. st_synchronize();
  1415. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1416. current_position[E_AXIS] += 10;
  1417. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1418. current_position[E_AXIS] -= 10;
  1419. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1420. current_position[E_AXIS] += 10;
  1421. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1422. current_position[E_AXIS] -= 10;
  1423. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1424. st_synchronize();
  1425. }
  1426. else {
  1427. //ABS
  1428. max_feedrate[E_AXIS] = 50;
  1429. //current_position[E_AXIS] -= 8;
  1430. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1431. //current_position[E_AXIS] += 8;
  1432. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1433. current_position[E_AXIS] += 3.1;
  1434. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1435. current_position[E_AXIS] += 3.1;
  1436. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1437. current_position[E_AXIS] += 4;
  1438. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1439. st_synchronize();
  1440. //current_position[X_AXIS] += 23; //delay
  1441. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1442. //current_position[X_AXIS] -= 23; //delay
  1443. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1444. delay(4700);
  1445. max_feedrate[E_AXIS] = 80;
  1446. current_position[E_AXIS] -= 92;
  1447. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1448. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1449. current_position[E_AXIS] -= 5;
  1450. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1451. current_position[E_AXIS] += 5;
  1452. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1453. current_position[E_AXIS] -= 5;
  1454. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1455. st_synchronize();
  1456. current_position[E_AXIS] += 5;
  1457. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1458. current_position[E_AXIS] -= 5;
  1459. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1460. current_position[E_AXIS] += 5;
  1461. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1462. current_position[E_AXIS] -= 5;
  1463. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1464. st_synchronize();
  1465. }
  1466. }
  1467. */
  1468. void process_commands()
  1469. {
  1470. #ifdef FILAMENT_RUNOUT_SUPPORT
  1471. SET_INPUT(FR_SENS);
  1472. #endif
  1473. #ifdef CMDBUFFER_DEBUG
  1474. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1475. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1476. SERIAL_ECHOLNPGM("");
  1477. SERIAL_ECHOPGM("In cmdqueue: ");
  1478. SERIAL_ECHO(buflen);
  1479. SERIAL_ECHOLNPGM("");
  1480. #endif /* CMDBUFFER_DEBUG */
  1481. unsigned long codenum; //throw away variable
  1482. char *starpos = NULL;
  1483. #ifdef ENABLE_AUTO_BED_LEVELING
  1484. float x_tmp, y_tmp, z_tmp, real_z;
  1485. #endif
  1486. // PRUSA GCODES
  1487. #ifdef SNMM
  1488. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1489. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1490. int8_t SilentMode;
  1491. #endif
  1492. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1493. starpos = (strchr(strchr_pointer + 5, '*'));
  1494. if (starpos != NULL)
  1495. *(starpos) = '\0';
  1496. lcd_setstatus(strchr_pointer + 5);
  1497. }
  1498. else if(code_seen("PRUSA")){
  1499. if (code_seen("Ping")) { //PRUSA Ping
  1500. if (farm_mode) {
  1501. PingTime = millis();
  1502. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1503. }
  1504. }
  1505. else if (code_seen("PRN")) {
  1506. MYSERIAL.println(status_number);
  1507. }else if (code_seen("FAN")) {
  1508. MYSERIAL.print("E0:");
  1509. MYSERIAL.print(60*fan_speed[0]);
  1510. MYSERIAL.println(" RPM");
  1511. MYSERIAL.print("PRN0:");
  1512. MYSERIAL.print(60*fan_speed[1]);
  1513. MYSERIAL.println(" RPM");
  1514. }else if (code_seen("fn")) {
  1515. if (farm_mode) {
  1516. MYSERIAL.println(farm_no);
  1517. }
  1518. else {
  1519. MYSERIAL.println("Not in farm mode.");
  1520. }
  1521. }else if (code_seen("fv")) {
  1522. // get file version
  1523. #ifdef SDSUPPORT
  1524. card.openFile(strchr_pointer + 3,true);
  1525. while (true) {
  1526. uint16_t readByte = card.get();
  1527. MYSERIAL.write(readByte);
  1528. if (readByte=='\n') {
  1529. break;
  1530. }
  1531. }
  1532. card.closefile();
  1533. #endif // SDSUPPORT
  1534. } else if (code_seen("M28")) {
  1535. trace();
  1536. prusa_sd_card_upload = true;
  1537. card.openFile(strchr_pointer+4,false);
  1538. } else if (code_seen("SN")) {
  1539. if (farm_mode) {
  1540. selectedSerialPort = 0;
  1541. MSerial.write(";S");
  1542. // S/N is:CZPX0917X003XC13518
  1543. int numbersRead = 0;
  1544. while (numbersRead < 19) {
  1545. while (MSerial.available() > 0) {
  1546. uint8_t serial_char = MSerial.read();
  1547. selectedSerialPort = 1;
  1548. MSerial.write(serial_char);
  1549. numbersRead++;
  1550. selectedSerialPort = 0;
  1551. }
  1552. }
  1553. selectedSerialPort = 1;
  1554. MSerial.write('\n');
  1555. /*for (int b = 0; b < 3; b++) {
  1556. tone(BEEPER, 110);
  1557. delay(50);
  1558. noTone(BEEPER);
  1559. delay(50);
  1560. }*/
  1561. } else {
  1562. MYSERIAL.println("Not in farm mode.");
  1563. }
  1564. } else if(code_seen("Fir")){
  1565. SERIAL_PROTOCOLLN(FW_version);
  1566. } else if(code_seen("Rev")){
  1567. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1568. } else if(code_seen("Lang")) {
  1569. lcd_force_language_selection();
  1570. } else if(code_seen("Lz")) {
  1571. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1572. } else if (code_seen("SERIAL LOW")) {
  1573. MYSERIAL.println("SERIAL LOW");
  1574. MYSERIAL.begin(BAUDRATE);
  1575. return;
  1576. } else if (code_seen("SERIAL HIGH")) {
  1577. MYSERIAL.println("SERIAL HIGH");
  1578. MYSERIAL.begin(1152000);
  1579. return;
  1580. } else if(code_seen("Beat")) {
  1581. // Kick farm link timer
  1582. kicktime = millis();
  1583. } else if(code_seen("FR")) {
  1584. // Factory full reset
  1585. factory_reset(0,true);
  1586. }
  1587. //else if (code_seen('Cal')) {
  1588. // lcd_calibration();
  1589. // }
  1590. }
  1591. else if (code_seen('^')) {
  1592. // nothing, this is a version line
  1593. } else if(code_seen('G'))
  1594. {
  1595. switch((int)code_value())
  1596. {
  1597. case 0: // G0 -> G1
  1598. case 1: // G1
  1599. if(Stopped == false) {
  1600. #ifdef FILAMENT_RUNOUT_SUPPORT
  1601. if(READ(FR_SENS)){
  1602. feedmultiplyBckp=feedmultiply;
  1603. float target[4];
  1604. float lastpos[4];
  1605. target[X_AXIS]=current_position[X_AXIS];
  1606. target[Y_AXIS]=current_position[Y_AXIS];
  1607. target[Z_AXIS]=current_position[Z_AXIS];
  1608. target[E_AXIS]=current_position[E_AXIS];
  1609. lastpos[X_AXIS]=current_position[X_AXIS];
  1610. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1611. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1612. lastpos[E_AXIS]=current_position[E_AXIS];
  1613. //retract by E
  1614. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1615. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1616. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1617. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1618. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1619. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1620. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1621. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1622. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1623. //finish moves
  1624. st_synchronize();
  1625. //disable extruder steppers so filament can be removed
  1626. disable_e0();
  1627. disable_e1();
  1628. disable_e2();
  1629. delay(100);
  1630. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1631. uint8_t cnt=0;
  1632. int counterBeep = 0;
  1633. lcd_wait_interact();
  1634. while(!lcd_clicked()){
  1635. cnt++;
  1636. manage_heater();
  1637. manage_inactivity(true);
  1638. //lcd_update();
  1639. if(cnt==0)
  1640. {
  1641. #if BEEPER > 0
  1642. if (counterBeep== 500){
  1643. counterBeep = 0;
  1644. }
  1645. SET_OUTPUT(BEEPER);
  1646. if (counterBeep== 0){
  1647. WRITE(BEEPER,HIGH);
  1648. }
  1649. if (counterBeep== 20){
  1650. WRITE(BEEPER,LOW);
  1651. }
  1652. counterBeep++;
  1653. #else
  1654. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1655. lcd_buzz(1000/6,100);
  1656. #else
  1657. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1658. #endif
  1659. #endif
  1660. }
  1661. }
  1662. WRITE(BEEPER,LOW);
  1663. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1664. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1665. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1666. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1667. lcd_change_fil_state = 0;
  1668. lcd_loading_filament();
  1669. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1670. lcd_change_fil_state = 0;
  1671. lcd_alright();
  1672. switch(lcd_change_fil_state){
  1673. case 2:
  1674. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1675. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1676. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1677. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1678. lcd_loading_filament();
  1679. break;
  1680. case 3:
  1681. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1682. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1683. lcd_loading_color();
  1684. break;
  1685. default:
  1686. lcd_change_success();
  1687. break;
  1688. }
  1689. }
  1690. target[E_AXIS]+= 5;
  1691. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1692. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1693. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1694. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1695. //plan_set_e_position(current_position[E_AXIS]);
  1696. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1697. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1698. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1699. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1700. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1701. plan_set_e_position(lastpos[E_AXIS]);
  1702. feedmultiply=feedmultiplyBckp;
  1703. char cmd[9];
  1704. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1705. enquecommand(cmd);
  1706. }
  1707. #endif
  1708. get_coordinates(); // For X Y Z E F
  1709. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  1710. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  1711. }
  1712. #ifdef FWRETRACT
  1713. if(autoretract_enabled)
  1714. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1715. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1716. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1717. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1718. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1719. retract(!retracted);
  1720. return;
  1721. }
  1722. }
  1723. #endif //FWRETRACT
  1724. prepare_move();
  1725. //ClearToSend();
  1726. }
  1727. break;
  1728. case 2: // G2 - CW ARC
  1729. if(Stopped == false) {
  1730. get_arc_coordinates();
  1731. prepare_arc_move(true);
  1732. }
  1733. break;
  1734. case 3: // G3 - CCW ARC
  1735. if(Stopped == false) {
  1736. get_arc_coordinates();
  1737. prepare_arc_move(false);
  1738. }
  1739. break;
  1740. case 4: // G4 dwell
  1741. codenum = 0;
  1742. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1743. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1744. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  1745. st_synchronize();
  1746. codenum += millis(); // keep track of when we started waiting
  1747. previous_millis_cmd = millis();
  1748. while(millis() < codenum) {
  1749. manage_heater();
  1750. manage_inactivity();
  1751. lcd_update();
  1752. }
  1753. break;
  1754. #ifdef FWRETRACT
  1755. case 10: // G10 retract
  1756. #if EXTRUDERS > 1
  1757. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1758. retract(true,retracted_swap[active_extruder]);
  1759. #else
  1760. retract(true);
  1761. #endif
  1762. break;
  1763. case 11: // G11 retract_recover
  1764. #if EXTRUDERS > 1
  1765. retract(false,retracted_swap[active_extruder]);
  1766. #else
  1767. retract(false);
  1768. #endif
  1769. break;
  1770. #endif //FWRETRACT
  1771. case 28: //G28 Home all Axis one at a time
  1772. {
  1773. st_synchronize();
  1774. #if 1
  1775. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  1776. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  1777. #endif
  1778. // Flag for the display update routine and to disable the print cancelation during homing.
  1779. homing_flag = true;
  1780. // Which axes should be homed?
  1781. bool home_x = code_seen(axis_codes[X_AXIS]);
  1782. bool home_y = code_seen(axis_codes[Y_AXIS]);
  1783. bool home_z = code_seen(axis_codes[Z_AXIS]);
  1784. // Either all X,Y,Z codes are present, or none of them.
  1785. bool home_all_axes = home_x == home_y && home_x == home_z;
  1786. if (home_all_axes)
  1787. // No X/Y/Z code provided means to home all axes.
  1788. home_x = home_y = home_z = true;
  1789. #ifdef ENABLE_AUTO_BED_LEVELING
  1790. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1791. #endif //ENABLE_AUTO_BED_LEVELING
  1792. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1793. // the planner will not perform any adjustments in the XY plane.
  1794. // Wait for the motors to stop and update the current position with the absolute values.
  1795. world2machine_revert_to_uncorrected();
  1796. // For mesh bed leveling deactivate the matrix temporarily.
  1797. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  1798. // in a single axis only.
  1799. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  1800. #ifdef MESH_BED_LEVELING
  1801. uint8_t mbl_was_active = mbl.active;
  1802. mbl.active = 0;
  1803. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1804. #endif
  1805. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1806. // consumed during the first movements following this statement.
  1807. if (home_z)
  1808. babystep_undo();
  1809. saved_feedrate = feedrate;
  1810. saved_feedmultiply = feedmultiply;
  1811. feedmultiply = 100;
  1812. previous_millis_cmd = millis();
  1813. enable_endstops(true);
  1814. memcpy(destination, current_position, sizeof(destination));
  1815. feedrate = 0.0;
  1816. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1817. if(home_z)
  1818. homeaxis(Z_AXIS);
  1819. #endif
  1820. #ifdef QUICK_HOME
  1821. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1822. if(home_x && home_y) //first diagonal move
  1823. {
  1824. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1825. int x_axis_home_dir = home_dir(X_AXIS);
  1826. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1827. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1828. feedrate = homing_feedrate[X_AXIS];
  1829. if(homing_feedrate[Y_AXIS]<feedrate)
  1830. feedrate = homing_feedrate[Y_AXIS];
  1831. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1832. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1833. } else {
  1834. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1835. }
  1836. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1837. st_synchronize();
  1838. axis_is_at_home(X_AXIS);
  1839. axis_is_at_home(Y_AXIS);
  1840. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1841. destination[X_AXIS] = current_position[X_AXIS];
  1842. destination[Y_AXIS] = current_position[Y_AXIS];
  1843. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1844. feedrate = 0.0;
  1845. st_synchronize();
  1846. endstops_hit_on_purpose();
  1847. current_position[X_AXIS] = destination[X_AXIS];
  1848. current_position[Y_AXIS] = destination[Y_AXIS];
  1849. current_position[Z_AXIS] = destination[Z_AXIS];
  1850. }
  1851. #endif /* QUICK_HOME */
  1852. if(home_x)
  1853. homeaxis(X_AXIS);
  1854. if(home_y)
  1855. homeaxis(Y_AXIS);
  1856. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  1857. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1858. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  1859. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1860. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1861. #ifndef Z_SAFE_HOMING
  1862. if(home_z) {
  1863. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1864. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1865. feedrate = max_feedrate[Z_AXIS];
  1866. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1867. st_synchronize();
  1868. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1869. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  1870. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1871. {
  1872. homeaxis(X_AXIS);
  1873. homeaxis(Y_AXIS);
  1874. }
  1875. // 1st mesh bed leveling measurement point, corrected.
  1876. world2machine_initialize();
  1877. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1878. world2machine_reset();
  1879. if (destination[Y_AXIS] < Y_MIN_POS)
  1880. destination[Y_AXIS] = Y_MIN_POS;
  1881. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1882. feedrate = homing_feedrate[Z_AXIS]/10;
  1883. current_position[Z_AXIS] = 0;
  1884. enable_endstops(false);
  1885. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1886. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1887. st_synchronize();
  1888. current_position[X_AXIS] = destination[X_AXIS];
  1889. current_position[Y_AXIS] = destination[Y_AXIS];
  1890. enable_endstops(true);
  1891. endstops_hit_on_purpose();
  1892. homeaxis(Z_AXIS);
  1893. #else // MESH_BED_LEVELING
  1894. homeaxis(Z_AXIS);
  1895. #endif // MESH_BED_LEVELING
  1896. }
  1897. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1898. if(home_all_axes) {
  1899. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1900. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1901. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1902. feedrate = XY_TRAVEL_SPEED/60;
  1903. current_position[Z_AXIS] = 0;
  1904. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1905. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1906. st_synchronize();
  1907. current_position[X_AXIS] = destination[X_AXIS];
  1908. current_position[Y_AXIS] = destination[Y_AXIS];
  1909. homeaxis(Z_AXIS);
  1910. }
  1911. // Let's see if X and Y are homed and probe is inside bed area.
  1912. if(home_z) {
  1913. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1914. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1915. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1916. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1917. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1918. current_position[Z_AXIS] = 0;
  1919. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1920. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1921. feedrate = max_feedrate[Z_AXIS];
  1922. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1923. st_synchronize();
  1924. homeaxis(Z_AXIS);
  1925. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1926. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1927. SERIAL_ECHO_START;
  1928. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1929. } else {
  1930. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1931. SERIAL_ECHO_START;
  1932. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1933. }
  1934. }
  1935. #endif // Z_SAFE_HOMING
  1936. #endif // Z_HOME_DIR < 0
  1937. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1938. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1939. #ifdef ENABLE_AUTO_BED_LEVELING
  1940. if(home_z)
  1941. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1942. #endif
  1943. // Set the planner and stepper routine positions.
  1944. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  1945. // contains the machine coordinates.
  1946. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1947. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1948. enable_endstops(false);
  1949. #endif
  1950. feedrate = saved_feedrate;
  1951. feedmultiply = saved_feedmultiply;
  1952. previous_millis_cmd = millis();
  1953. endstops_hit_on_purpose();
  1954. #ifndef MESH_BED_LEVELING
  1955. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  1956. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  1957. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  1958. lcd_adjust_z();
  1959. #endif
  1960. // Load the machine correction matrix
  1961. world2machine_initialize();
  1962. // and correct the current_position XY axes to match the transformed coordinate system.
  1963. world2machine_update_current();
  1964. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  1965. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  1966. {
  1967. if (! home_z && mbl_was_active) {
  1968. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  1969. mbl.active = true;
  1970. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  1971. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  1972. }
  1973. }
  1974. else
  1975. {
  1976. st_synchronize();
  1977. homing_flag = false;
  1978. // Push the commands to the front of the message queue in the reverse order!
  1979. // There shall be always enough space reserved for these commands.
  1980. // enquecommand_front_P((PSTR("G80")));
  1981. goto case_G80;
  1982. }
  1983. #endif
  1984. if (farm_mode) { prusa_statistics(20); };
  1985. homing_flag = false;
  1986. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  1987. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  1988. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  1989. break;
  1990. }
  1991. #ifdef ENABLE_AUTO_BED_LEVELING
  1992. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1993. {
  1994. #if Z_MIN_PIN == -1
  1995. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  1996. #endif
  1997. // Prevent user from running a G29 without first homing in X and Y
  1998. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1999. {
  2000. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2001. SERIAL_ECHO_START;
  2002. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2003. break; // abort G29, since we don't know where we are
  2004. }
  2005. st_synchronize();
  2006. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2007. //vector_3 corrected_position = plan_get_position_mm();
  2008. //corrected_position.debug("position before G29");
  2009. plan_bed_level_matrix.set_to_identity();
  2010. vector_3 uncorrected_position = plan_get_position();
  2011. //uncorrected_position.debug("position durring G29");
  2012. current_position[X_AXIS] = uncorrected_position.x;
  2013. current_position[Y_AXIS] = uncorrected_position.y;
  2014. current_position[Z_AXIS] = uncorrected_position.z;
  2015. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2016. setup_for_endstop_move();
  2017. feedrate = homing_feedrate[Z_AXIS];
  2018. #ifdef AUTO_BED_LEVELING_GRID
  2019. // probe at the points of a lattice grid
  2020. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2021. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2022. // solve the plane equation ax + by + d = z
  2023. // A is the matrix with rows [x y 1] for all the probed points
  2024. // B is the vector of the Z positions
  2025. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2026. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2027. // "A" matrix of the linear system of equations
  2028. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2029. // "B" vector of Z points
  2030. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2031. int probePointCounter = 0;
  2032. bool zig = true;
  2033. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2034. {
  2035. int xProbe, xInc;
  2036. if (zig)
  2037. {
  2038. xProbe = LEFT_PROBE_BED_POSITION;
  2039. //xEnd = RIGHT_PROBE_BED_POSITION;
  2040. xInc = xGridSpacing;
  2041. zig = false;
  2042. } else // zag
  2043. {
  2044. xProbe = RIGHT_PROBE_BED_POSITION;
  2045. //xEnd = LEFT_PROBE_BED_POSITION;
  2046. xInc = -xGridSpacing;
  2047. zig = true;
  2048. }
  2049. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2050. {
  2051. float z_before;
  2052. if (probePointCounter == 0)
  2053. {
  2054. // raise before probing
  2055. z_before = Z_RAISE_BEFORE_PROBING;
  2056. } else
  2057. {
  2058. // raise extruder
  2059. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2060. }
  2061. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2062. eqnBVector[probePointCounter] = measured_z;
  2063. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2064. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2065. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2066. probePointCounter++;
  2067. xProbe += xInc;
  2068. }
  2069. }
  2070. clean_up_after_endstop_move();
  2071. // solve lsq problem
  2072. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2073. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2074. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2075. SERIAL_PROTOCOLPGM(" b: ");
  2076. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2077. SERIAL_PROTOCOLPGM(" d: ");
  2078. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2079. set_bed_level_equation_lsq(plane_equation_coefficients);
  2080. free(plane_equation_coefficients);
  2081. #else // AUTO_BED_LEVELING_GRID not defined
  2082. // Probe at 3 arbitrary points
  2083. // probe 1
  2084. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2085. // probe 2
  2086. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2087. // probe 3
  2088. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2089. clean_up_after_endstop_move();
  2090. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2091. #endif // AUTO_BED_LEVELING_GRID
  2092. st_synchronize();
  2093. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2094. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2095. // When the bed is uneven, this height must be corrected.
  2096. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2097. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2098. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2099. z_tmp = current_position[Z_AXIS];
  2100. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2101. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2102. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2103. }
  2104. break;
  2105. #ifndef Z_PROBE_SLED
  2106. case 30: // G30 Single Z Probe
  2107. {
  2108. st_synchronize();
  2109. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2110. setup_for_endstop_move();
  2111. feedrate = homing_feedrate[Z_AXIS];
  2112. run_z_probe();
  2113. SERIAL_PROTOCOLPGM(MSG_BED);
  2114. SERIAL_PROTOCOLPGM(" X: ");
  2115. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2116. SERIAL_PROTOCOLPGM(" Y: ");
  2117. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2118. SERIAL_PROTOCOLPGM(" Z: ");
  2119. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2120. SERIAL_PROTOCOLPGM("\n");
  2121. clean_up_after_endstop_move();
  2122. }
  2123. break;
  2124. #else
  2125. case 31: // dock the sled
  2126. dock_sled(true);
  2127. break;
  2128. case 32: // undock the sled
  2129. dock_sled(false);
  2130. break;
  2131. #endif // Z_PROBE_SLED
  2132. #endif // ENABLE_AUTO_BED_LEVELING
  2133. #ifdef MESH_BED_LEVELING
  2134. case 30: // G30 Single Z Probe
  2135. {
  2136. st_synchronize();
  2137. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2138. setup_for_endstop_move();
  2139. feedrate = homing_feedrate[Z_AXIS];
  2140. find_bed_induction_sensor_point_z(-10.f, 3);
  2141. SERIAL_PROTOCOLRPGM(MSG_BED);
  2142. SERIAL_PROTOCOLPGM(" X: ");
  2143. MYSERIAL.print(current_position[X_AXIS], 5);
  2144. SERIAL_PROTOCOLPGM(" Y: ");
  2145. MYSERIAL.print(current_position[Y_AXIS], 5);
  2146. SERIAL_PROTOCOLPGM(" Z: ");
  2147. MYSERIAL.print(current_position[Z_AXIS], 5);
  2148. SERIAL_PROTOCOLPGM("\n");
  2149. clean_up_after_endstop_move();
  2150. }
  2151. break;
  2152. case 75:
  2153. {
  2154. for (int i = 40; i <= 110; i++) {
  2155. MYSERIAL.print(i);
  2156. MYSERIAL.print(" ");
  2157. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2158. }
  2159. }
  2160. break;
  2161. case 76: //PINDA probe temperature calibration
  2162. {
  2163. #ifdef PINDA_THERMISTOR
  2164. if (true)
  2165. {
  2166. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2167. // We don't know where we are! HOME!
  2168. // Push the commands to the front of the message queue in the reverse order!
  2169. // There shall be always enough space reserved for these commands.
  2170. repeatcommand_front(); // repeat G76 with all its parameters
  2171. enquecommand_front_P((PSTR("G28 W0")));
  2172. break;
  2173. }
  2174. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2175. float zero_z;
  2176. int z_shift = 0; //unit: steps
  2177. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2178. if (start_temp < 35) start_temp = 35;
  2179. if (start_temp < current_temperature_pinda) start_temp += 5;
  2180. SERIAL_ECHOPGM("start temperature: ");
  2181. MYSERIAL.println(start_temp);
  2182. // setTargetHotend(200, 0);
  2183. setTargetBed(50 + 10 * (start_temp - 30) / 5);
  2184. custom_message = true;
  2185. custom_message_type = 4;
  2186. custom_message_state = 1;
  2187. custom_message = MSG_TEMP_CALIBRATION;
  2188. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2189. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2190. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2191. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2192. st_synchronize();
  2193. while (current_temperature_pinda < start_temp)
  2194. {
  2195. delay_keep_alive(1000);
  2196. serialecho_temperatures();
  2197. }
  2198. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2199. current_position[Z_AXIS] = 5;
  2200. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2201. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2202. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2203. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2204. st_synchronize();
  2205. find_bed_induction_sensor_point_z(-1.f);
  2206. zero_z = current_position[Z_AXIS];
  2207. //current_position[Z_AXIS]
  2208. SERIAL_ECHOLNPGM("");
  2209. SERIAL_ECHOPGM("ZERO: ");
  2210. MYSERIAL.print(current_position[Z_AXIS]);
  2211. SERIAL_ECHOLNPGM("");
  2212. int i = -1; for (; i < 5; i++)
  2213. {
  2214. float temp = (40 + i * 5);
  2215. SERIAL_ECHOPGM("Step: ");
  2216. MYSERIAL.print(i + 2);
  2217. SERIAL_ECHOLNPGM("/6 (skipped)");
  2218. SERIAL_ECHOPGM("PINDA temperature: ");
  2219. MYSERIAL.print((40 + i*5));
  2220. SERIAL_ECHOPGM(" Z shift (mm):");
  2221. MYSERIAL.print(0);
  2222. SERIAL_ECHOLNPGM("");
  2223. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2224. if (start_temp <= temp) break;
  2225. }
  2226. for (i++; i < 5; i++)
  2227. {
  2228. float temp = (40 + i * 5);
  2229. SERIAL_ECHOPGM("Step: ");
  2230. MYSERIAL.print(i + 2);
  2231. SERIAL_ECHOLNPGM("/6");
  2232. custom_message_state = i + 2;
  2233. setTargetBed(50 + 10 * (temp - 30) / 5);
  2234. // setTargetHotend(255, 0);
  2235. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2236. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2237. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2238. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2239. st_synchronize();
  2240. while (current_temperature_pinda < temp)
  2241. {
  2242. delay_keep_alive(1000);
  2243. serialecho_temperatures();
  2244. }
  2245. current_position[Z_AXIS] = 5;
  2246. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2247. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2248. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2249. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2250. st_synchronize();
  2251. find_bed_induction_sensor_point_z(-1.f);
  2252. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2253. SERIAL_ECHOLNPGM("");
  2254. SERIAL_ECHOPGM("PINDA temperature: ");
  2255. MYSERIAL.print(current_temperature_pinda);
  2256. SERIAL_ECHOPGM(" Z shift (mm):");
  2257. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2258. SERIAL_ECHOLNPGM("");
  2259. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2260. }
  2261. custom_message_type = 0;
  2262. custom_message = false;
  2263. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2264. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2265. disable_x();
  2266. disable_y();
  2267. disable_z();
  2268. disable_e0();
  2269. disable_e1();
  2270. disable_e2();
  2271. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2272. lcd_update_enable(true);
  2273. lcd_update(2);
  2274. setTargetBed(0); //set bed target temperature back to 0
  2275. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2276. break;
  2277. }
  2278. #endif //PINDA_THERMISTOR
  2279. setTargetBed(PINDA_MIN_T);
  2280. float zero_z;
  2281. int z_shift = 0; //unit: steps
  2282. int t_c; // temperature
  2283. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2284. // We don't know where we are! HOME!
  2285. // Push the commands to the front of the message queue in the reverse order!
  2286. // There shall be always enough space reserved for these commands.
  2287. repeatcommand_front(); // repeat G76 with all its parameters
  2288. enquecommand_front_P((PSTR("G28 W0")));
  2289. break;
  2290. }
  2291. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2292. custom_message = true;
  2293. custom_message_type = 4;
  2294. custom_message_state = 1;
  2295. custom_message = MSG_TEMP_CALIBRATION;
  2296. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2297. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2298. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2299. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2300. st_synchronize();
  2301. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2302. delay_keep_alive(1000);
  2303. serialecho_temperatures();
  2304. }
  2305. //enquecommand_P(PSTR("M190 S50"));
  2306. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2307. delay_keep_alive(1000);
  2308. serialecho_temperatures();
  2309. }
  2310. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2311. current_position[Z_AXIS] = 5;
  2312. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2313. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2314. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2315. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2316. st_synchronize();
  2317. find_bed_induction_sensor_point_z(-1.f);
  2318. zero_z = current_position[Z_AXIS];
  2319. //current_position[Z_AXIS]
  2320. SERIAL_ECHOLNPGM("");
  2321. SERIAL_ECHOPGM("ZERO: ");
  2322. MYSERIAL.print(current_position[Z_AXIS]);
  2323. SERIAL_ECHOLNPGM("");
  2324. for (int i = 0; i<5; i++) {
  2325. SERIAL_ECHOPGM("Step: ");
  2326. MYSERIAL.print(i+2);
  2327. SERIAL_ECHOLNPGM("/6");
  2328. custom_message_state = i + 2;
  2329. t_c = 60 + i * 10;
  2330. setTargetBed(t_c);
  2331. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2332. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2333. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2334. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2335. st_synchronize();
  2336. while (degBed() < t_c) {
  2337. delay_keep_alive(1000);
  2338. serialecho_temperatures();
  2339. }
  2340. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2341. delay_keep_alive(1000);
  2342. serialecho_temperatures();
  2343. }
  2344. current_position[Z_AXIS] = 5;
  2345. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2346. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2347. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2348. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2349. st_synchronize();
  2350. find_bed_induction_sensor_point_z(-1.f);
  2351. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2352. SERIAL_ECHOLNPGM("");
  2353. SERIAL_ECHOPGM("Temperature: ");
  2354. MYSERIAL.print(t_c);
  2355. SERIAL_ECHOPGM(" Z shift (mm):");
  2356. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2357. SERIAL_ECHOLNPGM("");
  2358. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2359. }
  2360. custom_message_type = 0;
  2361. custom_message = false;
  2362. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2363. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2364. disable_x();
  2365. disable_y();
  2366. disable_z();
  2367. disable_e0();
  2368. disable_e1();
  2369. disable_e2();
  2370. setTargetBed(0); //set bed target temperature back to 0
  2371. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2372. lcd_update_enable(true);
  2373. lcd_update(2);
  2374. }
  2375. break;
  2376. #ifdef DIS
  2377. case 77:
  2378. {
  2379. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2380. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2381. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2382. float dimension_x = 40;
  2383. float dimension_y = 40;
  2384. int points_x = 40;
  2385. int points_y = 40;
  2386. float offset_x = 74;
  2387. float offset_y = 33;
  2388. if (code_seen('X')) dimension_x = code_value();
  2389. if (code_seen('Y')) dimension_y = code_value();
  2390. if (code_seen('XP')) points_x = code_value();
  2391. if (code_seen('YP')) points_y = code_value();
  2392. if (code_seen('XO')) offset_x = code_value();
  2393. if (code_seen('YO')) offset_y = code_value();
  2394. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2395. } break;
  2396. #endif
  2397. case 79: {
  2398. for (int i = 255; i > 0; i = i - 5) {
  2399. fanSpeed = i;
  2400. //delay_keep_alive(2000);
  2401. for (int j = 0; j < 100; j++) {
  2402. delay_keep_alive(100);
  2403. }
  2404. fan_speed[1];
  2405. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2406. }
  2407. }break;
  2408. /**
  2409. * G80: Mesh-based Z probe, probes a grid and produces a
  2410. * mesh to compensate for variable bed height
  2411. *
  2412. * The S0 report the points as below
  2413. *
  2414. * +----> X-axis
  2415. * |
  2416. * |
  2417. * v Y-axis
  2418. *
  2419. */
  2420. case 80:
  2421. #ifdef MK1BP
  2422. break;
  2423. #endif //MK1BP
  2424. case_G80:
  2425. {
  2426. mesh_bed_leveling_flag = true;
  2427. int8_t verbosity_level = 0;
  2428. static bool run = false;
  2429. if (code_seen('V')) {
  2430. // Just 'V' without a number counts as V1.
  2431. char c = strchr_pointer[1];
  2432. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2433. }
  2434. // Firstly check if we know where we are
  2435. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2436. // We don't know where we are! HOME!
  2437. // Push the commands to the front of the message queue in the reverse order!
  2438. // There shall be always enough space reserved for these commands.
  2439. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2440. repeatcommand_front(); // repeat G80 with all its parameters
  2441. enquecommand_front_P((PSTR("G28 W0")));
  2442. }
  2443. else {
  2444. mesh_bed_leveling_flag = false;
  2445. }
  2446. break;
  2447. }
  2448. bool temp_comp_start = true;
  2449. #ifdef PINDA_THERMISTOR
  2450. temp_comp_start = false;
  2451. #endif //PINDA_THERMISTOR
  2452. if (temp_comp_start)
  2453. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2454. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2455. temp_compensation_start();
  2456. run = true;
  2457. repeatcommand_front(); // repeat G80 with all its parameters
  2458. enquecommand_front_P((PSTR("G28 W0")));
  2459. }
  2460. else {
  2461. mesh_bed_leveling_flag = false;
  2462. }
  2463. break;
  2464. }
  2465. run = false;
  2466. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2467. mesh_bed_leveling_flag = false;
  2468. break;
  2469. }
  2470. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2471. bool custom_message_old = custom_message;
  2472. unsigned int custom_message_type_old = custom_message_type;
  2473. unsigned int custom_message_state_old = custom_message_state;
  2474. custom_message = true;
  2475. custom_message_type = 1;
  2476. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2477. lcd_update(1);
  2478. mbl.reset(); //reset mesh bed leveling
  2479. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2480. // consumed during the first movements following this statement.
  2481. babystep_undo();
  2482. // Cycle through all points and probe them
  2483. // First move up. During this first movement, the babystepping will be reverted.
  2484. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2485. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2486. // The move to the first calibration point.
  2487. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2488. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2489. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2490. #ifdef SUPPORT_VERBOSITY
  2491. if (verbosity_level >= 1) {
  2492. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2493. }
  2494. #endif //SUPPORT_VERBOSITY
  2495. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2496. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2497. // Wait until the move is finished.
  2498. st_synchronize();
  2499. int mesh_point = 0; //index number of calibration point
  2500. int ix = 0;
  2501. int iy = 0;
  2502. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2503. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2504. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2505. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2506. #ifdef SUPPORT_VERBOSITY
  2507. if (verbosity_level >= 1) {
  2508. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2509. }
  2510. #endif // SUPPORT_VERBOSITY
  2511. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2512. const char *kill_message = NULL;
  2513. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2514. // Get coords of a measuring point.
  2515. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2516. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2517. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2518. float z0 = 0.f;
  2519. if (has_z && mesh_point > 0) {
  2520. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2521. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2522. //#if 0
  2523. #ifdef SUPPORT_VERBOSITY
  2524. if (verbosity_level >= 1) {
  2525. SERIAL_ECHOLNPGM("");
  2526. SERIAL_ECHOPGM("Bed leveling, point: ");
  2527. MYSERIAL.print(mesh_point);
  2528. SERIAL_ECHOPGM(", calibration z: ");
  2529. MYSERIAL.print(z0, 5);
  2530. SERIAL_ECHOLNPGM("");
  2531. }
  2532. #endif // SUPPORT_VERBOSITY
  2533. //#endif
  2534. }
  2535. // Move Z up to MESH_HOME_Z_SEARCH.
  2536. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2537. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2538. st_synchronize();
  2539. // Move to XY position of the sensor point.
  2540. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2541. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2542. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2543. #ifdef SUPPORT_VERBOSITY
  2544. if (verbosity_level >= 1) {
  2545. SERIAL_PROTOCOL(mesh_point);
  2546. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2547. }
  2548. #endif // SUPPORT_VERBOSITY
  2549. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2550. st_synchronize();
  2551. // Go down until endstop is hit
  2552. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2553. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2554. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2555. break;
  2556. }
  2557. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2558. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2559. break;
  2560. }
  2561. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2562. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2563. break;
  2564. }
  2565. #ifdef SUPPORT_VERBOSITY
  2566. if (verbosity_level >= 10) {
  2567. SERIAL_ECHOPGM("X: ");
  2568. MYSERIAL.print(current_position[X_AXIS], 5);
  2569. SERIAL_ECHOLNPGM("");
  2570. SERIAL_ECHOPGM("Y: ");
  2571. MYSERIAL.print(current_position[Y_AXIS], 5);
  2572. SERIAL_PROTOCOLPGM("\n");
  2573. }
  2574. #endif // SUPPORT_VERBOSITY
  2575. float offset_z = 0;
  2576. #ifdef PINDA_THERMISTOR
  2577. offset_z = temp_compensation_pinda_thermistor_offset();
  2578. #endif //PINDA_THERMISTOR
  2579. #ifdef SUPPORT_VERBOSITY
  2580. if (verbosity_level >= 1) {
  2581. SERIAL_ECHOPGM("mesh bed leveling: ");
  2582. MYSERIAL.print(current_position[Z_AXIS], 5);
  2583. SERIAL_ECHOPGM(" offset: ");
  2584. MYSERIAL.print(offset_z, 5);
  2585. SERIAL_ECHOLNPGM("");
  2586. }
  2587. #endif // SUPPORT_VERBOSITY
  2588. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2589. custom_message_state--;
  2590. mesh_point++;
  2591. lcd_update(1);
  2592. }
  2593. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2594. #ifdef SUPPORT_VERBOSITY
  2595. if (verbosity_level >= 20) {
  2596. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2597. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2598. MYSERIAL.print(current_position[Z_AXIS], 5);
  2599. }
  2600. #endif // SUPPORT_VERBOSITY
  2601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2602. st_synchronize();
  2603. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2604. kill(kill_message);
  2605. SERIAL_ECHOLNPGM("killed");
  2606. }
  2607. clean_up_after_endstop_move();
  2608. SERIAL_ECHOLNPGM("clean up finished ");
  2609. bool apply_temp_comp = true;
  2610. #ifdef PINDA_THERMISTOR
  2611. apply_temp_comp = false;
  2612. #endif
  2613. if (apply_temp_comp)
  2614. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2615. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2616. SERIAL_ECHOLNPGM("babystep applied");
  2617. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2618. #ifdef SUPPORT_VERBOSITY
  2619. if (verbosity_level >= 1) {
  2620. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2621. }
  2622. #endif // SUPPORT_VERBOSITY
  2623. for (uint8_t i = 0; i < 4; ++i) {
  2624. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2625. long correction = 0;
  2626. if (code_seen(codes[i]))
  2627. correction = code_value_long();
  2628. else if (eeprom_bed_correction_valid) {
  2629. unsigned char *addr = (i < 2) ?
  2630. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2631. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2632. correction = eeprom_read_int8(addr);
  2633. }
  2634. if (correction == 0)
  2635. continue;
  2636. float offset = float(correction) * 0.001f;
  2637. if (fabs(offset) > 0.101f) {
  2638. SERIAL_ERROR_START;
  2639. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2640. SERIAL_ECHO(offset);
  2641. SERIAL_ECHOLNPGM(" microns");
  2642. }
  2643. else {
  2644. switch (i) {
  2645. case 0:
  2646. for (uint8_t row = 0; row < 3; ++row) {
  2647. mbl.z_values[row][1] += 0.5f * offset;
  2648. mbl.z_values[row][0] += offset;
  2649. }
  2650. break;
  2651. case 1:
  2652. for (uint8_t row = 0; row < 3; ++row) {
  2653. mbl.z_values[row][1] += 0.5f * offset;
  2654. mbl.z_values[row][2] += offset;
  2655. }
  2656. break;
  2657. case 2:
  2658. for (uint8_t col = 0; col < 3; ++col) {
  2659. mbl.z_values[1][col] += 0.5f * offset;
  2660. mbl.z_values[0][col] += offset;
  2661. }
  2662. break;
  2663. case 3:
  2664. for (uint8_t col = 0; col < 3; ++col) {
  2665. mbl.z_values[1][col] += 0.5f * offset;
  2666. mbl.z_values[2][col] += offset;
  2667. }
  2668. break;
  2669. }
  2670. }
  2671. }
  2672. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2673. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2674. SERIAL_ECHOLNPGM("Upsample finished");
  2675. mbl.active = 1; //activate mesh bed leveling
  2676. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2677. go_home_with_z_lift();
  2678. SERIAL_ECHOLNPGM("Go home finished");
  2679. //unretract (after PINDA preheat retraction)
  2680. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2681. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2682. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2683. }
  2684. // Restore custom message state
  2685. custom_message = custom_message_old;
  2686. custom_message_type = custom_message_type_old;
  2687. custom_message_state = custom_message_state_old;
  2688. mesh_bed_leveling_flag = false;
  2689. mesh_bed_run_from_menu = false;
  2690. lcd_update(2);
  2691. }
  2692. break;
  2693. /**
  2694. * G81: Print mesh bed leveling status and bed profile if activated
  2695. */
  2696. case 81:
  2697. if (mbl.active) {
  2698. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2699. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2700. SERIAL_PROTOCOLPGM(",");
  2701. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2702. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2703. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2704. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2705. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2706. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2707. SERIAL_PROTOCOLPGM(" ");
  2708. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2709. }
  2710. SERIAL_PROTOCOLPGM("\n");
  2711. }
  2712. }
  2713. else
  2714. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2715. break;
  2716. #if 0
  2717. /**
  2718. * G82: Single Z probe at current location
  2719. *
  2720. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2721. *
  2722. */
  2723. case 82:
  2724. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2725. setup_for_endstop_move();
  2726. find_bed_induction_sensor_point_z();
  2727. clean_up_after_endstop_move();
  2728. SERIAL_PROTOCOLPGM("Bed found at: ");
  2729. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2730. SERIAL_PROTOCOLPGM("\n");
  2731. break;
  2732. /**
  2733. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2734. */
  2735. case 83:
  2736. {
  2737. int babystepz = code_seen('S') ? code_value() : 0;
  2738. int BabyPosition = code_seen('P') ? code_value() : 0;
  2739. if (babystepz != 0) {
  2740. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2741. // Is the axis indexed starting with zero or one?
  2742. if (BabyPosition > 4) {
  2743. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2744. }else{
  2745. // Save it to the eeprom
  2746. babystepLoadZ = babystepz;
  2747. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2748. // adjust the Z
  2749. babystepsTodoZadd(babystepLoadZ);
  2750. }
  2751. }
  2752. }
  2753. break;
  2754. /**
  2755. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2756. */
  2757. case 84:
  2758. babystepsTodoZsubtract(babystepLoadZ);
  2759. // babystepLoadZ = 0;
  2760. break;
  2761. /**
  2762. * G85: Prusa3D specific: Pick best babystep
  2763. */
  2764. case 85:
  2765. lcd_pick_babystep();
  2766. break;
  2767. #endif
  2768. /**
  2769. * G86: Prusa3D specific: Disable babystep correction after home.
  2770. * This G-code will be performed at the start of a calibration script.
  2771. */
  2772. case 86:
  2773. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2774. break;
  2775. /**
  2776. * G87: Prusa3D specific: Enable babystep correction after home
  2777. * This G-code will be performed at the end of a calibration script.
  2778. */
  2779. case 87:
  2780. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2781. break;
  2782. /**
  2783. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2784. */
  2785. case 88:
  2786. break;
  2787. #endif // ENABLE_MESH_BED_LEVELING
  2788. case 90: // G90
  2789. relative_mode = false;
  2790. break;
  2791. case 91: // G91
  2792. relative_mode = true;
  2793. break;
  2794. case 92: // G92
  2795. if(!code_seen(axis_codes[E_AXIS]))
  2796. st_synchronize();
  2797. for(int8_t i=0; i < NUM_AXIS; i++) {
  2798. if(code_seen(axis_codes[i])) {
  2799. if(i == E_AXIS) {
  2800. current_position[i] = code_value();
  2801. plan_set_e_position(current_position[E_AXIS]);
  2802. }
  2803. else {
  2804. current_position[i] = code_value()+add_homing[i];
  2805. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2806. }
  2807. }
  2808. }
  2809. break;
  2810. case 98: //activate farm mode
  2811. farm_mode = 1;
  2812. PingTime = millis();
  2813. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2814. break;
  2815. case 99: //deactivate farm mode
  2816. farm_mode = 0;
  2817. lcd_printer_connected();
  2818. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2819. lcd_update(2);
  2820. break;
  2821. }
  2822. } // end if(code_seen('G'))
  2823. else if(code_seen('M'))
  2824. {
  2825. int index;
  2826. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2827. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2828. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2829. SERIAL_ECHOLNPGM("Invalid M code");
  2830. } else
  2831. switch((int)code_value())
  2832. {
  2833. #ifdef ULTIPANEL
  2834. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2835. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2836. {
  2837. char *src = strchr_pointer + 2;
  2838. codenum = 0;
  2839. bool hasP = false, hasS = false;
  2840. if (code_seen('P')) {
  2841. codenum = code_value(); // milliseconds to wait
  2842. hasP = codenum > 0;
  2843. }
  2844. if (code_seen('S')) {
  2845. codenum = code_value() * 1000; // seconds to wait
  2846. hasS = codenum > 0;
  2847. }
  2848. starpos = strchr(src, '*');
  2849. if (starpos != NULL) *(starpos) = '\0';
  2850. while (*src == ' ') ++src;
  2851. if (!hasP && !hasS && *src != '\0') {
  2852. lcd_setstatus(src);
  2853. } else {
  2854. LCD_MESSAGERPGM(MSG_USERWAIT);
  2855. }
  2856. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  2857. st_synchronize();
  2858. previous_millis_cmd = millis();
  2859. if (codenum > 0){
  2860. codenum += millis(); // keep track of when we started waiting
  2861. while(millis() < codenum && !lcd_clicked()){
  2862. manage_heater();
  2863. manage_inactivity(true);
  2864. lcd_update();
  2865. }
  2866. lcd_ignore_click(false);
  2867. }else{
  2868. if (!lcd_detected())
  2869. break;
  2870. while(!lcd_clicked()){
  2871. manage_heater();
  2872. manage_inactivity(true);
  2873. lcd_update();
  2874. }
  2875. }
  2876. if (IS_SD_PRINTING)
  2877. LCD_MESSAGERPGM(MSG_RESUMING);
  2878. else
  2879. LCD_MESSAGERPGM(WELCOME_MSG);
  2880. }
  2881. break;
  2882. #endif
  2883. case 17:
  2884. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2885. enable_x();
  2886. enable_y();
  2887. enable_z();
  2888. enable_e0();
  2889. enable_e1();
  2890. enable_e2();
  2891. break;
  2892. #ifdef SDSUPPORT
  2893. case 20: // M20 - list SD card
  2894. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2895. card.ls();
  2896. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2897. break;
  2898. case 21: // M21 - init SD card
  2899. card.initsd();
  2900. break;
  2901. case 22: //M22 - release SD card
  2902. card.release();
  2903. break;
  2904. case 23: //M23 - Select file
  2905. starpos = (strchr(strchr_pointer + 4,'*'));
  2906. if(starpos!=NULL)
  2907. *(starpos)='\0';
  2908. card.openFile(strchr_pointer + 4,true);
  2909. break;
  2910. case 24: //M24 - Start SD print
  2911. card.startFileprint();
  2912. starttime=millis();
  2913. break;
  2914. case 25: //M25 - Pause SD print
  2915. card.pauseSDPrint();
  2916. break;
  2917. case 26: //M26 - Set SD index
  2918. if(card.cardOK && code_seen('S')) {
  2919. card.setIndex(code_value_long());
  2920. }
  2921. break;
  2922. case 27: //M27 - Get SD status
  2923. card.getStatus();
  2924. break;
  2925. case 28: //M28 - Start SD write
  2926. starpos = (strchr(strchr_pointer + 4,'*'));
  2927. if(starpos != NULL){
  2928. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2929. strchr_pointer = strchr(npos,' ') + 1;
  2930. *(starpos) = '\0';
  2931. }
  2932. card.openFile(strchr_pointer+4,false);
  2933. break;
  2934. case 29: //M29 - Stop SD write
  2935. //processed in write to file routine above
  2936. //card,saving = false;
  2937. break;
  2938. case 30: //M30 <filename> Delete File
  2939. if (card.cardOK){
  2940. card.closefile();
  2941. starpos = (strchr(strchr_pointer + 4,'*'));
  2942. if(starpos != NULL){
  2943. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2944. strchr_pointer = strchr(npos,' ') + 1;
  2945. *(starpos) = '\0';
  2946. }
  2947. card.removeFile(strchr_pointer + 4);
  2948. }
  2949. break;
  2950. case 32: //M32 - Select file and start SD print
  2951. {
  2952. if(card.sdprinting) {
  2953. st_synchronize();
  2954. }
  2955. starpos = (strchr(strchr_pointer + 4,'*'));
  2956. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2957. if(namestartpos==NULL)
  2958. {
  2959. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2960. }
  2961. else
  2962. namestartpos++; //to skip the '!'
  2963. if(starpos!=NULL)
  2964. *(starpos)='\0';
  2965. bool call_procedure=(code_seen('P'));
  2966. if(strchr_pointer>namestartpos)
  2967. call_procedure=false; //false alert, 'P' found within filename
  2968. if( card.cardOK )
  2969. {
  2970. card.openFile(namestartpos,true,!call_procedure);
  2971. if(code_seen('S'))
  2972. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2973. card.setIndex(code_value_long());
  2974. card.startFileprint();
  2975. if(!call_procedure)
  2976. starttime=millis(); //procedure calls count as normal print time.
  2977. }
  2978. } break;
  2979. case 928: //M928 - Start SD write
  2980. starpos = (strchr(strchr_pointer + 5,'*'));
  2981. if(starpos != NULL){
  2982. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2983. strchr_pointer = strchr(npos,' ') + 1;
  2984. *(starpos) = '\0';
  2985. }
  2986. card.openLogFile(strchr_pointer+5);
  2987. break;
  2988. #endif //SDSUPPORT
  2989. case 31: //M31 take time since the start of the SD print or an M109 command
  2990. {
  2991. stoptime=millis();
  2992. char time[30];
  2993. unsigned long t=(stoptime-starttime)/1000;
  2994. int sec,min;
  2995. min=t/60;
  2996. sec=t%60;
  2997. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2998. SERIAL_ECHO_START;
  2999. SERIAL_ECHOLN(time);
  3000. lcd_setstatus(time);
  3001. autotempShutdown();
  3002. }
  3003. break;
  3004. case 42: //M42 -Change pin status via gcode
  3005. if (code_seen('S'))
  3006. {
  3007. int pin_status = code_value();
  3008. int pin_number = LED_PIN;
  3009. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3010. pin_number = code_value();
  3011. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3012. {
  3013. if (sensitive_pins[i] == pin_number)
  3014. {
  3015. pin_number = -1;
  3016. break;
  3017. }
  3018. }
  3019. #if defined(FAN_PIN) && FAN_PIN > -1
  3020. if (pin_number == FAN_PIN)
  3021. fanSpeed = pin_status;
  3022. #endif
  3023. if (pin_number > -1)
  3024. {
  3025. pinMode(pin_number, OUTPUT);
  3026. digitalWrite(pin_number, pin_status);
  3027. analogWrite(pin_number, pin_status);
  3028. }
  3029. }
  3030. break;
  3031. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3032. // Reset the baby step value and the baby step applied flag.
  3033. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3034. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3035. // Reset the skew and offset in both RAM and EEPROM.
  3036. reset_bed_offset_and_skew();
  3037. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3038. // the planner will not perform any adjustments in the XY plane.
  3039. // Wait for the motors to stop and update the current position with the absolute values.
  3040. world2machine_revert_to_uncorrected();
  3041. break;
  3042. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3043. {
  3044. // Only Z calibration?
  3045. bool onlyZ = code_seen('Z');
  3046. if (!onlyZ) {
  3047. setTargetBed(0);
  3048. setTargetHotend(0, 0);
  3049. setTargetHotend(0, 1);
  3050. setTargetHotend(0, 2);
  3051. adjust_bed_reset(); //reset bed level correction
  3052. }
  3053. // Disable the default update procedure of the display. We will do a modal dialog.
  3054. lcd_update_enable(false);
  3055. // Let the planner use the uncorrected coordinates.
  3056. mbl.reset();
  3057. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3058. // the planner will not perform any adjustments in the XY plane.
  3059. // Wait for the motors to stop and update the current position with the absolute values.
  3060. world2machine_revert_to_uncorrected();
  3061. // Reset the baby step value applied without moving the axes.
  3062. babystep_reset();
  3063. // Mark all axes as in a need for homing.
  3064. memset(axis_known_position, 0, sizeof(axis_known_position));
  3065. // Home in the XY plane.
  3066. //set_destination_to_current();
  3067. setup_for_endstop_move();
  3068. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  3069. home_xy();
  3070. // Let the user move the Z axes up to the end stoppers.
  3071. #ifdef TMC2130
  3072. if (calibrate_z_auto()) {
  3073. #else //TMC2130
  3074. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3075. #endif //TMC2130
  3076. refresh_cmd_timeout();
  3077. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3078. lcd_wait_for_cool_down();
  3079. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3080. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3081. lcd_implementation_print_at(0, 2, 1);
  3082. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3083. }
  3084. // Move the print head close to the bed.
  3085. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3086. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3087. st_synchronize();
  3088. //#ifdef TMC2130
  3089. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  3090. //#endif
  3091. int8_t verbosity_level = 0;
  3092. if (code_seen('V')) {
  3093. // Just 'V' without a number counts as V1.
  3094. char c = strchr_pointer[1];
  3095. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3096. }
  3097. if (onlyZ) {
  3098. clean_up_after_endstop_move();
  3099. // Z only calibration.
  3100. // Load the machine correction matrix
  3101. world2machine_initialize();
  3102. // and correct the current_position to match the transformed coordinate system.
  3103. world2machine_update_current();
  3104. //FIXME
  3105. bool result = sample_mesh_and_store_reference();
  3106. if (result) {
  3107. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3108. // Shipped, the nozzle height has been set already. The user can start printing now.
  3109. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3110. // babystep_apply();
  3111. }
  3112. } else {
  3113. // Reset the baby step value and the baby step applied flag.
  3114. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3115. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3116. // Complete XYZ calibration.
  3117. uint8_t point_too_far_mask = 0;
  3118. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3119. clean_up_after_endstop_move();
  3120. // Print head up.
  3121. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3122. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3123. st_synchronize();
  3124. if (result >= 0) {
  3125. point_too_far_mask = 0;
  3126. // Second half: The fine adjustment.
  3127. // Let the planner use the uncorrected coordinates.
  3128. mbl.reset();
  3129. world2machine_reset();
  3130. // Home in the XY plane.
  3131. setup_for_endstop_move();
  3132. home_xy();
  3133. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3134. clean_up_after_endstop_move();
  3135. // Print head up.
  3136. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3137. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3138. st_synchronize();
  3139. // if (result >= 0) babystep_apply();
  3140. }
  3141. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3142. if (result >= 0) {
  3143. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3144. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3145. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3146. }
  3147. }
  3148. #ifdef TMC2130
  3149. tmc2130_home_exit();
  3150. #endif
  3151. } else {
  3152. // Timeouted.
  3153. }
  3154. lcd_update_enable(true);
  3155. break;
  3156. }
  3157. /*
  3158. case 46:
  3159. {
  3160. // M46: Prusa3D: Show the assigned IP address.
  3161. uint8_t ip[4];
  3162. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3163. if (hasIP) {
  3164. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3165. SERIAL_ECHO(int(ip[0]));
  3166. SERIAL_ECHOPGM(".");
  3167. SERIAL_ECHO(int(ip[1]));
  3168. SERIAL_ECHOPGM(".");
  3169. SERIAL_ECHO(int(ip[2]));
  3170. SERIAL_ECHOPGM(".");
  3171. SERIAL_ECHO(int(ip[3]));
  3172. SERIAL_ECHOLNPGM("");
  3173. } else {
  3174. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3175. }
  3176. break;
  3177. }
  3178. */
  3179. case 47:
  3180. // M47: Prusa3D: Show end stops dialog on the display.
  3181. lcd_diag_show_end_stops();
  3182. break;
  3183. #if 0
  3184. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3185. {
  3186. // Disable the default update procedure of the display. We will do a modal dialog.
  3187. lcd_update_enable(false);
  3188. // Let the planner use the uncorrected coordinates.
  3189. mbl.reset();
  3190. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3191. // the planner will not perform any adjustments in the XY plane.
  3192. // Wait for the motors to stop and update the current position with the absolute values.
  3193. world2machine_revert_to_uncorrected();
  3194. // Move the print head close to the bed.
  3195. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3196. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3197. st_synchronize();
  3198. // Home in the XY plane.
  3199. set_destination_to_current();
  3200. setup_for_endstop_move();
  3201. home_xy();
  3202. int8_t verbosity_level = 0;
  3203. if (code_seen('V')) {
  3204. // Just 'V' without a number counts as V1.
  3205. char c = strchr_pointer[1];
  3206. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3207. }
  3208. bool success = scan_bed_induction_points(verbosity_level);
  3209. clean_up_after_endstop_move();
  3210. // Print head up.
  3211. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3212. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3213. st_synchronize();
  3214. lcd_update_enable(true);
  3215. break;
  3216. }
  3217. #endif
  3218. // M48 Z-Probe repeatability measurement function.
  3219. //
  3220. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3221. //
  3222. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3223. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3224. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3225. // regenerated.
  3226. //
  3227. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3228. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3229. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3230. //
  3231. #ifdef ENABLE_AUTO_BED_LEVELING
  3232. #ifdef Z_PROBE_REPEATABILITY_TEST
  3233. case 48: // M48 Z-Probe repeatability
  3234. {
  3235. #if Z_MIN_PIN == -1
  3236. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3237. #endif
  3238. double sum=0.0;
  3239. double mean=0.0;
  3240. double sigma=0.0;
  3241. double sample_set[50];
  3242. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3243. double X_current, Y_current, Z_current;
  3244. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3245. if (code_seen('V') || code_seen('v')) {
  3246. verbose_level = code_value();
  3247. if (verbose_level<0 || verbose_level>4 ) {
  3248. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3249. goto Sigma_Exit;
  3250. }
  3251. }
  3252. if (verbose_level > 0) {
  3253. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3254. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3255. }
  3256. if (code_seen('n')) {
  3257. n_samples = code_value();
  3258. if (n_samples<4 || n_samples>50 ) {
  3259. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3260. goto Sigma_Exit;
  3261. }
  3262. }
  3263. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3264. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3265. Z_current = st_get_position_mm(Z_AXIS);
  3266. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3267. ext_position = st_get_position_mm(E_AXIS);
  3268. if (code_seen('X') || code_seen('x') ) {
  3269. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3270. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3271. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3272. goto Sigma_Exit;
  3273. }
  3274. }
  3275. if (code_seen('Y') || code_seen('y') ) {
  3276. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3277. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3278. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3279. goto Sigma_Exit;
  3280. }
  3281. }
  3282. if (code_seen('L') || code_seen('l') ) {
  3283. n_legs = code_value();
  3284. if ( n_legs==1 )
  3285. n_legs = 2;
  3286. if ( n_legs<0 || n_legs>15 ) {
  3287. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3288. goto Sigma_Exit;
  3289. }
  3290. }
  3291. //
  3292. // Do all the preliminary setup work. First raise the probe.
  3293. //
  3294. st_synchronize();
  3295. plan_bed_level_matrix.set_to_identity();
  3296. plan_buffer_line( X_current, Y_current, Z_start_location,
  3297. ext_position,
  3298. homing_feedrate[Z_AXIS]/60,
  3299. active_extruder);
  3300. st_synchronize();
  3301. //
  3302. // Now get everything to the specified probe point So we can safely do a probe to
  3303. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3304. // use that as a starting point for each probe.
  3305. //
  3306. if (verbose_level > 2)
  3307. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3308. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3309. ext_position,
  3310. homing_feedrate[X_AXIS]/60,
  3311. active_extruder);
  3312. st_synchronize();
  3313. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3314. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3315. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3316. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3317. //
  3318. // OK, do the inital probe to get us close to the bed.
  3319. // Then retrace the right amount and use that in subsequent probes
  3320. //
  3321. setup_for_endstop_move();
  3322. run_z_probe();
  3323. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3324. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3325. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3326. ext_position,
  3327. homing_feedrate[X_AXIS]/60,
  3328. active_extruder);
  3329. st_synchronize();
  3330. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3331. for( n=0; n<n_samples; n++) {
  3332. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3333. if ( n_legs) {
  3334. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3335. int rotational_direction, l;
  3336. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3337. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3338. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3339. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3340. //SERIAL_ECHOPAIR(" theta: ",theta);
  3341. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3342. //SERIAL_PROTOCOLLNPGM("");
  3343. for( l=0; l<n_legs-1; l++) {
  3344. if (rotational_direction==1)
  3345. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3346. else
  3347. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3348. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3349. if ( radius<0.0 )
  3350. radius = -radius;
  3351. X_current = X_probe_location + cos(theta) * radius;
  3352. Y_current = Y_probe_location + sin(theta) * radius;
  3353. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3354. X_current = X_MIN_POS;
  3355. if ( X_current>X_MAX_POS)
  3356. X_current = X_MAX_POS;
  3357. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3358. Y_current = Y_MIN_POS;
  3359. if ( Y_current>Y_MAX_POS)
  3360. Y_current = Y_MAX_POS;
  3361. if (verbose_level>3 ) {
  3362. SERIAL_ECHOPAIR("x: ", X_current);
  3363. SERIAL_ECHOPAIR("y: ", Y_current);
  3364. SERIAL_PROTOCOLLNPGM("");
  3365. }
  3366. do_blocking_move_to( X_current, Y_current, Z_current );
  3367. }
  3368. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3369. }
  3370. setup_for_endstop_move();
  3371. run_z_probe();
  3372. sample_set[n] = current_position[Z_AXIS];
  3373. //
  3374. // Get the current mean for the data points we have so far
  3375. //
  3376. sum=0.0;
  3377. for( j=0; j<=n; j++) {
  3378. sum = sum + sample_set[j];
  3379. }
  3380. mean = sum / (double (n+1));
  3381. //
  3382. // Now, use that mean to calculate the standard deviation for the
  3383. // data points we have so far
  3384. //
  3385. sum=0.0;
  3386. for( j=0; j<=n; j++) {
  3387. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3388. }
  3389. sigma = sqrt( sum / (double (n+1)) );
  3390. if (verbose_level > 1) {
  3391. SERIAL_PROTOCOL(n+1);
  3392. SERIAL_PROTOCOL(" of ");
  3393. SERIAL_PROTOCOL(n_samples);
  3394. SERIAL_PROTOCOLPGM(" z: ");
  3395. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3396. }
  3397. if (verbose_level > 2) {
  3398. SERIAL_PROTOCOL(" mean: ");
  3399. SERIAL_PROTOCOL_F(mean,6);
  3400. SERIAL_PROTOCOL(" sigma: ");
  3401. SERIAL_PROTOCOL_F(sigma,6);
  3402. }
  3403. if (verbose_level > 0)
  3404. SERIAL_PROTOCOLPGM("\n");
  3405. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3406. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3407. st_synchronize();
  3408. }
  3409. delay(1000);
  3410. clean_up_after_endstop_move();
  3411. // enable_endstops(true);
  3412. if (verbose_level > 0) {
  3413. SERIAL_PROTOCOLPGM("Mean: ");
  3414. SERIAL_PROTOCOL_F(mean, 6);
  3415. SERIAL_PROTOCOLPGM("\n");
  3416. }
  3417. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3418. SERIAL_PROTOCOL_F(sigma, 6);
  3419. SERIAL_PROTOCOLPGM("\n\n");
  3420. Sigma_Exit:
  3421. break;
  3422. }
  3423. #endif // Z_PROBE_REPEATABILITY_TEST
  3424. #endif // ENABLE_AUTO_BED_LEVELING
  3425. case 104: // M104
  3426. if(setTargetedHotend(104)){
  3427. break;
  3428. }
  3429. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3430. setWatch();
  3431. break;
  3432. case 112: // M112 -Emergency Stop
  3433. kill("", 3);
  3434. break;
  3435. case 140: // M140 set bed temp
  3436. if (code_seen('S')) setTargetBed(code_value());
  3437. break;
  3438. case 105 : // M105
  3439. if(setTargetedHotend(105)){
  3440. break;
  3441. }
  3442. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3443. SERIAL_PROTOCOLPGM("ok T:");
  3444. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3445. SERIAL_PROTOCOLPGM(" /");
  3446. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3447. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3448. SERIAL_PROTOCOLPGM(" B:");
  3449. SERIAL_PROTOCOL_F(degBed(),1);
  3450. SERIAL_PROTOCOLPGM(" /");
  3451. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3452. #endif //TEMP_BED_PIN
  3453. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3454. SERIAL_PROTOCOLPGM(" T");
  3455. SERIAL_PROTOCOL(cur_extruder);
  3456. SERIAL_PROTOCOLPGM(":");
  3457. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3458. SERIAL_PROTOCOLPGM(" /");
  3459. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3460. }
  3461. #else
  3462. SERIAL_ERROR_START;
  3463. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3464. #endif
  3465. SERIAL_PROTOCOLPGM(" @:");
  3466. #ifdef EXTRUDER_WATTS
  3467. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3468. SERIAL_PROTOCOLPGM("W");
  3469. #else
  3470. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3471. #endif
  3472. SERIAL_PROTOCOLPGM(" B@:");
  3473. #ifdef BED_WATTS
  3474. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3475. SERIAL_PROTOCOLPGM("W");
  3476. #else
  3477. SERIAL_PROTOCOL(getHeaterPower(-1));
  3478. #endif
  3479. #ifdef PINDA_THERMISTOR
  3480. SERIAL_PROTOCOLPGM(" P:");
  3481. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3482. #endif //PINDA_THERMISTOR
  3483. #ifdef AMBIENT_THERMISTOR
  3484. SERIAL_PROTOCOLPGM(" A:");
  3485. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3486. #endif //AMBIENT_THERMISTOR
  3487. #ifdef SHOW_TEMP_ADC_VALUES
  3488. {float raw = 0.0;
  3489. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3490. SERIAL_PROTOCOLPGM(" ADC B:");
  3491. SERIAL_PROTOCOL_F(degBed(),1);
  3492. SERIAL_PROTOCOLPGM("C->");
  3493. raw = rawBedTemp();
  3494. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3495. SERIAL_PROTOCOLPGM(" Rb->");
  3496. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3497. SERIAL_PROTOCOLPGM(" Rxb->");
  3498. SERIAL_PROTOCOL_F(raw, 5);
  3499. #endif
  3500. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3501. SERIAL_PROTOCOLPGM(" T");
  3502. SERIAL_PROTOCOL(cur_extruder);
  3503. SERIAL_PROTOCOLPGM(":");
  3504. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3505. SERIAL_PROTOCOLPGM("C->");
  3506. raw = rawHotendTemp(cur_extruder);
  3507. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3508. SERIAL_PROTOCOLPGM(" Rt");
  3509. SERIAL_PROTOCOL(cur_extruder);
  3510. SERIAL_PROTOCOLPGM("->");
  3511. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3512. SERIAL_PROTOCOLPGM(" Rx");
  3513. SERIAL_PROTOCOL(cur_extruder);
  3514. SERIAL_PROTOCOLPGM("->");
  3515. SERIAL_PROTOCOL_F(raw, 5);
  3516. }}
  3517. #endif
  3518. SERIAL_PROTOCOLLN("");
  3519. return;
  3520. break;
  3521. case 109:
  3522. {// M109 - Wait for extruder heater to reach target.
  3523. if(setTargetedHotend(109)){
  3524. break;
  3525. }
  3526. LCD_MESSAGERPGM(MSG_HEATING);
  3527. heating_status = 1;
  3528. if (farm_mode) { prusa_statistics(1); };
  3529. #ifdef AUTOTEMP
  3530. autotemp_enabled=false;
  3531. #endif
  3532. if (code_seen('S')) {
  3533. setTargetHotend(code_value(), tmp_extruder);
  3534. CooldownNoWait = true;
  3535. } else if (code_seen('R')) {
  3536. setTargetHotend(code_value(), tmp_extruder);
  3537. CooldownNoWait = false;
  3538. }
  3539. #ifdef AUTOTEMP
  3540. if (code_seen('S')) autotemp_min=code_value();
  3541. if (code_seen('B')) autotemp_max=code_value();
  3542. if (code_seen('F'))
  3543. {
  3544. autotemp_factor=code_value();
  3545. autotemp_enabled=true;
  3546. }
  3547. #endif
  3548. setWatch();
  3549. codenum = millis();
  3550. /* See if we are heating up or cooling down */
  3551. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3552. cancel_heatup = false;
  3553. wait_for_heater(codenum); //loops until target temperature is reached
  3554. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3555. heating_status = 2;
  3556. if (farm_mode) { prusa_statistics(2); };
  3557. //starttime=millis();
  3558. previous_millis_cmd = millis();
  3559. }
  3560. break;
  3561. case 190: // M190 - Wait for bed heater to reach target.
  3562. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3563. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3564. heating_status = 3;
  3565. if (farm_mode) { prusa_statistics(1); };
  3566. if (code_seen('S'))
  3567. {
  3568. setTargetBed(code_value());
  3569. CooldownNoWait = true;
  3570. }
  3571. else if (code_seen('R'))
  3572. {
  3573. setTargetBed(code_value());
  3574. CooldownNoWait = false;
  3575. }
  3576. codenum = millis();
  3577. cancel_heatup = false;
  3578. target_direction = isHeatingBed(); // true if heating, false if cooling
  3579. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3580. {
  3581. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3582. {
  3583. if (!farm_mode) {
  3584. float tt = degHotend(active_extruder);
  3585. SERIAL_PROTOCOLPGM("T:");
  3586. SERIAL_PROTOCOL(tt);
  3587. SERIAL_PROTOCOLPGM(" E:");
  3588. SERIAL_PROTOCOL((int)active_extruder);
  3589. SERIAL_PROTOCOLPGM(" B:");
  3590. SERIAL_PROTOCOL_F(degBed(), 1);
  3591. SERIAL_PROTOCOLLN("");
  3592. }
  3593. codenum = millis();
  3594. }
  3595. manage_heater();
  3596. manage_inactivity();
  3597. lcd_update();
  3598. }
  3599. LCD_MESSAGERPGM(MSG_BED_DONE);
  3600. heating_status = 4;
  3601. previous_millis_cmd = millis();
  3602. #endif
  3603. break;
  3604. #if defined(FAN_PIN) && FAN_PIN > -1
  3605. case 106: //M106 Fan On
  3606. if (code_seen('S')){
  3607. fanSpeed=constrain(code_value(),0,255);
  3608. }
  3609. else {
  3610. fanSpeed=255;
  3611. }
  3612. break;
  3613. case 107: //M107 Fan Off
  3614. fanSpeed = 0;
  3615. break;
  3616. #endif //FAN_PIN
  3617. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3618. case 80: // M80 - Turn on Power Supply
  3619. SET_OUTPUT(PS_ON_PIN); //GND
  3620. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3621. // If you have a switch on suicide pin, this is useful
  3622. // if you want to start another print with suicide feature after
  3623. // a print without suicide...
  3624. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3625. SET_OUTPUT(SUICIDE_PIN);
  3626. WRITE(SUICIDE_PIN, HIGH);
  3627. #endif
  3628. #ifdef ULTIPANEL
  3629. powersupply = true;
  3630. LCD_MESSAGERPGM(WELCOME_MSG);
  3631. lcd_update();
  3632. #endif
  3633. break;
  3634. #endif
  3635. case 81: // M81 - Turn off Power Supply
  3636. disable_heater();
  3637. st_synchronize();
  3638. disable_e0();
  3639. disable_e1();
  3640. disable_e2();
  3641. finishAndDisableSteppers();
  3642. fanSpeed = 0;
  3643. delay(1000); // Wait a little before to switch off
  3644. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3645. st_synchronize();
  3646. suicide();
  3647. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3648. SET_OUTPUT(PS_ON_PIN);
  3649. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3650. #endif
  3651. #ifdef ULTIPANEL
  3652. powersupply = false;
  3653. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3654. /*
  3655. MACHNAME = "Prusa i3"
  3656. MSGOFF = "Vypnuto"
  3657. "Prusai3"" ""vypnuto""."
  3658. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3659. */
  3660. lcd_update();
  3661. #endif
  3662. break;
  3663. case 82:
  3664. axis_relative_modes[3] = false;
  3665. break;
  3666. case 83:
  3667. axis_relative_modes[3] = true;
  3668. break;
  3669. case 18: //compatibility
  3670. case 84: // M84
  3671. if(code_seen('S')){
  3672. stepper_inactive_time = code_value() * 1000;
  3673. }
  3674. else
  3675. {
  3676. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3677. if(all_axis)
  3678. {
  3679. st_synchronize();
  3680. disable_e0();
  3681. disable_e1();
  3682. disable_e2();
  3683. finishAndDisableSteppers();
  3684. }
  3685. else
  3686. {
  3687. st_synchronize();
  3688. if (code_seen('X')) disable_x();
  3689. if (code_seen('Y')) disable_y();
  3690. if (code_seen('Z')) disable_z();
  3691. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3692. if (code_seen('E')) {
  3693. disable_e0();
  3694. disable_e1();
  3695. disable_e2();
  3696. }
  3697. #endif
  3698. }
  3699. }
  3700. snmm_filaments_used = 0;
  3701. break;
  3702. case 85: // M85
  3703. if(code_seen('S')) {
  3704. max_inactive_time = code_value() * 1000;
  3705. }
  3706. break;
  3707. case 92: // M92
  3708. for(int8_t i=0; i < NUM_AXIS; i++)
  3709. {
  3710. if(code_seen(axis_codes[i]))
  3711. {
  3712. if(i == 3) { // E
  3713. float value = code_value();
  3714. if(value < 20.0) {
  3715. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3716. max_jerk[E_AXIS] *= factor;
  3717. max_feedrate[i] *= factor;
  3718. axis_steps_per_sqr_second[i] *= factor;
  3719. }
  3720. axis_steps_per_unit[i] = value;
  3721. }
  3722. else {
  3723. axis_steps_per_unit[i] = code_value();
  3724. }
  3725. }
  3726. }
  3727. break;
  3728. case 115: // M115
  3729. if (code_seen('V')) {
  3730. // Report the Prusa version number.
  3731. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3732. } else if (code_seen('U')) {
  3733. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3734. // pause the print and ask the user to upgrade the firmware.
  3735. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3736. } else {
  3737. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3738. }
  3739. break;
  3740. /* case 117: // M117 display message
  3741. starpos = (strchr(strchr_pointer + 5,'*'));
  3742. if(starpos!=NULL)
  3743. *(starpos)='\0';
  3744. lcd_setstatus(strchr_pointer + 5);
  3745. break;*/
  3746. case 114: // M114
  3747. SERIAL_PROTOCOLPGM("X:");
  3748. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3749. SERIAL_PROTOCOLPGM(" Y:");
  3750. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3751. SERIAL_PROTOCOLPGM(" Z:");
  3752. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3753. SERIAL_PROTOCOLPGM(" E:");
  3754. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3755. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3756. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3757. SERIAL_PROTOCOLPGM(" Y:");
  3758. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3759. SERIAL_PROTOCOLPGM(" Z:");
  3760. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3761. SERIAL_PROTOCOLPGM(" E:");
  3762. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  3763. SERIAL_PROTOCOLLN("");
  3764. break;
  3765. case 120: // M120
  3766. enable_endstops(false) ;
  3767. break;
  3768. case 121: // M121
  3769. enable_endstops(true) ;
  3770. break;
  3771. case 119: // M119
  3772. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3773. SERIAL_PROTOCOLLN("");
  3774. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3775. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3776. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3777. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3778. }else{
  3779. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3780. }
  3781. SERIAL_PROTOCOLLN("");
  3782. #endif
  3783. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3784. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3785. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3786. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3787. }else{
  3788. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3789. }
  3790. SERIAL_PROTOCOLLN("");
  3791. #endif
  3792. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3793. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3794. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3795. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3796. }else{
  3797. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3798. }
  3799. SERIAL_PROTOCOLLN("");
  3800. #endif
  3801. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3802. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3803. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3804. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3805. }else{
  3806. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3807. }
  3808. SERIAL_PROTOCOLLN("");
  3809. #endif
  3810. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3811. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3812. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3813. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3814. }else{
  3815. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3816. }
  3817. SERIAL_PROTOCOLLN("");
  3818. #endif
  3819. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3820. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3821. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3822. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3823. }else{
  3824. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3825. }
  3826. SERIAL_PROTOCOLLN("");
  3827. #endif
  3828. break;
  3829. //TODO: update for all axis, use for loop
  3830. #ifdef BLINKM
  3831. case 150: // M150
  3832. {
  3833. byte red;
  3834. byte grn;
  3835. byte blu;
  3836. if(code_seen('R')) red = code_value();
  3837. if(code_seen('U')) grn = code_value();
  3838. if(code_seen('B')) blu = code_value();
  3839. SendColors(red,grn,blu);
  3840. }
  3841. break;
  3842. #endif //BLINKM
  3843. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3844. {
  3845. tmp_extruder = active_extruder;
  3846. if(code_seen('T')) {
  3847. tmp_extruder = code_value();
  3848. if(tmp_extruder >= EXTRUDERS) {
  3849. SERIAL_ECHO_START;
  3850. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3851. break;
  3852. }
  3853. }
  3854. float area = .0;
  3855. if(code_seen('D')) {
  3856. float diameter = (float)code_value();
  3857. if (diameter == 0.0) {
  3858. // setting any extruder filament size disables volumetric on the assumption that
  3859. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3860. // for all extruders
  3861. volumetric_enabled = false;
  3862. } else {
  3863. filament_size[tmp_extruder] = (float)code_value();
  3864. // make sure all extruders have some sane value for the filament size
  3865. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3866. #if EXTRUDERS > 1
  3867. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3868. #if EXTRUDERS > 2
  3869. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3870. #endif
  3871. #endif
  3872. volumetric_enabled = true;
  3873. }
  3874. } else {
  3875. //reserved for setting filament diameter via UFID or filament measuring device
  3876. break;
  3877. }
  3878. calculate_volumetric_multipliers();
  3879. }
  3880. break;
  3881. case 201: // M201
  3882. for(int8_t i=0; i < NUM_AXIS; i++)
  3883. {
  3884. if(code_seen(axis_codes[i]))
  3885. {
  3886. max_acceleration_units_per_sq_second[i] = code_value();
  3887. }
  3888. }
  3889. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3890. reset_acceleration_rates();
  3891. break;
  3892. #if 0 // Not used for Sprinter/grbl gen6
  3893. case 202: // M202
  3894. for(int8_t i=0; i < NUM_AXIS; i++) {
  3895. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3896. }
  3897. break;
  3898. #endif
  3899. case 203: // M203 max feedrate mm/sec
  3900. for(int8_t i=0; i < NUM_AXIS; i++) {
  3901. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3902. }
  3903. break;
  3904. case 204: // M204 acclereration S normal moves T filmanent only moves
  3905. {
  3906. if(code_seen('S')) acceleration = code_value() ;
  3907. if(code_seen('T')) retract_acceleration = code_value() ;
  3908. }
  3909. break;
  3910. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3911. {
  3912. if(code_seen('S')) minimumfeedrate = code_value();
  3913. if(code_seen('T')) mintravelfeedrate = code_value();
  3914. if(code_seen('B')) minsegmenttime = code_value() ;
  3915. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  3916. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  3917. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  3918. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  3919. }
  3920. break;
  3921. case 206: // M206 additional homing offset
  3922. for(int8_t i=0; i < 3; i++)
  3923. {
  3924. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3925. }
  3926. break;
  3927. #ifdef FWRETRACT
  3928. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3929. {
  3930. if(code_seen('S'))
  3931. {
  3932. retract_length = code_value() ;
  3933. }
  3934. if(code_seen('F'))
  3935. {
  3936. retract_feedrate = code_value()/60 ;
  3937. }
  3938. if(code_seen('Z'))
  3939. {
  3940. retract_zlift = code_value() ;
  3941. }
  3942. }break;
  3943. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3944. {
  3945. if(code_seen('S'))
  3946. {
  3947. retract_recover_length = code_value() ;
  3948. }
  3949. if(code_seen('F'))
  3950. {
  3951. retract_recover_feedrate = code_value()/60 ;
  3952. }
  3953. }break;
  3954. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3955. {
  3956. if(code_seen('S'))
  3957. {
  3958. int t= code_value() ;
  3959. switch(t)
  3960. {
  3961. case 0:
  3962. {
  3963. autoretract_enabled=false;
  3964. retracted[0]=false;
  3965. #if EXTRUDERS > 1
  3966. retracted[1]=false;
  3967. #endif
  3968. #if EXTRUDERS > 2
  3969. retracted[2]=false;
  3970. #endif
  3971. }break;
  3972. case 1:
  3973. {
  3974. autoretract_enabled=true;
  3975. retracted[0]=false;
  3976. #if EXTRUDERS > 1
  3977. retracted[1]=false;
  3978. #endif
  3979. #if EXTRUDERS > 2
  3980. retracted[2]=false;
  3981. #endif
  3982. }break;
  3983. default:
  3984. SERIAL_ECHO_START;
  3985. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3986. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3987. SERIAL_ECHOLNPGM("\"(1)");
  3988. }
  3989. }
  3990. }break;
  3991. #endif // FWRETRACT
  3992. #if EXTRUDERS > 1
  3993. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3994. {
  3995. if(setTargetedHotend(218)){
  3996. break;
  3997. }
  3998. if(code_seen('X'))
  3999. {
  4000. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4001. }
  4002. if(code_seen('Y'))
  4003. {
  4004. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4005. }
  4006. SERIAL_ECHO_START;
  4007. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4008. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4009. {
  4010. SERIAL_ECHO(" ");
  4011. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4012. SERIAL_ECHO(",");
  4013. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4014. }
  4015. SERIAL_ECHOLN("");
  4016. }break;
  4017. #endif
  4018. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4019. {
  4020. if(code_seen('S'))
  4021. {
  4022. feedmultiply = code_value() ;
  4023. }
  4024. }
  4025. break;
  4026. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4027. {
  4028. if(code_seen('S'))
  4029. {
  4030. int tmp_code = code_value();
  4031. if (code_seen('T'))
  4032. {
  4033. if(setTargetedHotend(221)){
  4034. break;
  4035. }
  4036. extruder_multiply[tmp_extruder] = tmp_code;
  4037. }
  4038. else
  4039. {
  4040. extrudemultiply = tmp_code ;
  4041. }
  4042. }
  4043. }
  4044. break;
  4045. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4046. {
  4047. if(code_seen('P')){
  4048. int pin_number = code_value(); // pin number
  4049. int pin_state = -1; // required pin state - default is inverted
  4050. if(code_seen('S')) pin_state = code_value(); // required pin state
  4051. if(pin_state >= -1 && pin_state <= 1){
  4052. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4053. {
  4054. if (sensitive_pins[i] == pin_number)
  4055. {
  4056. pin_number = -1;
  4057. break;
  4058. }
  4059. }
  4060. if (pin_number > -1)
  4061. {
  4062. int target = LOW;
  4063. st_synchronize();
  4064. pinMode(pin_number, INPUT);
  4065. switch(pin_state){
  4066. case 1:
  4067. target = HIGH;
  4068. break;
  4069. case 0:
  4070. target = LOW;
  4071. break;
  4072. case -1:
  4073. target = !digitalRead(pin_number);
  4074. break;
  4075. }
  4076. while(digitalRead(pin_number) != target){
  4077. manage_heater();
  4078. manage_inactivity();
  4079. lcd_update();
  4080. }
  4081. }
  4082. }
  4083. }
  4084. }
  4085. break;
  4086. #if NUM_SERVOS > 0
  4087. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4088. {
  4089. int servo_index = -1;
  4090. int servo_position = 0;
  4091. if (code_seen('P'))
  4092. servo_index = code_value();
  4093. if (code_seen('S')) {
  4094. servo_position = code_value();
  4095. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4096. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4097. servos[servo_index].attach(0);
  4098. #endif
  4099. servos[servo_index].write(servo_position);
  4100. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4101. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4102. servos[servo_index].detach();
  4103. #endif
  4104. }
  4105. else {
  4106. SERIAL_ECHO_START;
  4107. SERIAL_ECHO("Servo ");
  4108. SERIAL_ECHO(servo_index);
  4109. SERIAL_ECHOLN(" out of range");
  4110. }
  4111. }
  4112. else if (servo_index >= 0) {
  4113. SERIAL_PROTOCOL(MSG_OK);
  4114. SERIAL_PROTOCOL(" Servo ");
  4115. SERIAL_PROTOCOL(servo_index);
  4116. SERIAL_PROTOCOL(": ");
  4117. SERIAL_PROTOCOL(servos[servo_index].read());
  4118. SERIAL_PROTOCOLLN("");
  4119. }
  4120. }
  4121. break;
  4122. #endif // NUM_SERVOS > 0
  4123. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4124. case 300: // M300
  4125. {
  4126. int beepS = code_seen('S') ? code_value() : 110;
  4127. int beepP = code_seen('P') ? code_value() : 1000;
  4128. if (beepS > 0)
  4129. {
  4130. #if BEEPER > 0
  4131. tone(BEEPER, beepS);
  4132. delay(beepP);
  4133. noTone(BEEPER);
  4134. #elif defined(ULTRALCD)
  4135. lcd_buzz(beepS, beepP);
  4136. #elif defined(LCD_USE_I2C_BUZZER)
  4137. lcd_buzz(beepP, beepS);
  4138. #endif
  4139. }
  4140. else
  4141. {
  4142. delay(beepP);
  4143. }
  4144. }
  4145. break;
  4146. #endif // M300
  4147. #ifdef PIDTEMP
  4148. case 301: // M301
  4149. {
  4150. if(code_seen('P')) Kp = code_value();
  4151. if(code_seen('I')) Ki = scalePID_i(code_value());
  4152. if(code_seen('D')) Kd = scalePID_d(code_value());
  4153. #ifdef PID_ADD_EXTRUSION_RATE
  4154. if(code_seen('C')) Kc = code_value();
  4155. #endif
  4156. updatePID();
  4157. SERIAL_PROTOCOLRPGM(MSG_OK);
  4158. SERIAL_PROTOCOL(" p:");
  4159. SERIAL_PROTOCOL(Kp);
  4160. SERIAL_PROTOCOL(" i:");
  4161. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4162. SERIAL_PROTOCOL(" d:");
  4163. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4164. #ifdef PID_ADD_EXTRUSION_RATE
  4165. SERIAL_PROTOCOL(" c:");
  4166. //Kc does not have scaling applied above, or in resetting defaults
  4167. SERIAL_PROTOCOL(Kc);
  4168. #endif
  4169. SERIAL_PROTOCOLLN("");
  4170. }
  4171. break;
  4172. #endif //PIDTEMP
  4173. #ifdef PIDTEMPBED
  4174. case 304: // M304
  4175. {
  4176. if(code_seen('P')) bedKp = code_value();
  4177. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4178. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4179. updatePID();
  4180. SERIAL_PROTOCOLRPGM(MSG_OK);
  4181. SERIAL_PROTOCOL(" p:");
  4182. SERIAL_PROTOCOL(bedKp);
  4183. SERIAL_PROTOCOL(" i:");
  4184. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4185. SERIAL_PROTOCOL(" d:");
  4186. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4187. SERIAL_PROTOCOLLN("");
  4188. }
  4189. break;
  4190. #endif //PIDTEMP
  4191. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4192. {
  4193. #ifdef CHDK
  4194. SET_OUTPUT(CHDK);
  4195. WRITE(CHDK, HIGH);
  4196. chdkHigh = millis();
  4197. chdkActive = true;
  4198. #else
  4199. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4200. const uint8_t NUM_PULSES=16;
  4201. const float PULSE_LENGTH=0.01524;
  4202. for(int i=0; i < NUM_PULSES; i++) {
  4203. WRITE(PHOTOGRAPH_PIN, HIGH);
  4204. _delay_ms(PULSE_LENGTH);
  4205. WRITE(PHOTOGRAPH_PIN, LOW);
  4206. _delay_ms(PULSE_LENGTH);
  4207. }
  4208. delay(7.33);
  4209. for(int i=0; i < NUM_PULSES; i++) {
  4210. WRITE(PHOTOGRAPH_PIN, HIGH);
  4211. _delay_ms(PULSE_LENGTH);
  4212. WRITE(PHOTOGRAPH_PIN, LOW);
  4213. _delay_ms(PULSE_LENGTH);
  4214. }
  4215. #endif
  4216. #endif //chdk end if
  4217. }
  4218. break;
  4219. #ifdef DOGLCD
  4220. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4221. {
  4222. if (code_seen('C')) {
  4223. lcd_setcontrast( ((int)code_value())&63 );
  4224. }
  4225. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4226. SERIAL_PROTOCOL(lcd_contrast);
  4227. SERIAL_PROTOCOLLN("");
  4228. }
  4229. break;
  4230. #endif
  4231. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4232. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4233. {
  4234. float temp = .0;
  4235. if (code_seen('S')) temp=code_value();
  4236. set_extrude_min_temp(temp);
  4237. }
  4238. break;
  4239. #endif
  4240. case 303: // M303 PID autotune
  4241. {
  4242. float temp = 150.0;
  4243. int e=0;
  4244. int c=5;
  4245. if (code_seen('E')) e=code_value();
  4246. if (e<0)
  4247. temp=70;
  4248. if (code_seen('S')) temp=code_value();
  4249. if (code_seen('C')) c=code_value();
  4250. PID_autotune(temp, e, c);
  4251. }
  4252. break;
  4253. case 400: // M400 finish all moves
  4254. {
  4255. st_synchronize();
  4256. }
  4257. break;
  4258. #ifdef FILAMENT_SENSOR
  4259. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4260. {
  4261. #if (FILWIDTH_PIN > -1)
  4262. if(code_seen('N')) filament_width_nominal=code_value();
  4263. else{
  4264. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4265. SERIAL_PROTOCOLLN(filament_width_nominal);
  4266. }
  4267. #endif
  4268. }
  4269. break;
  4270. case 405: //M405 Turn on filament sensor for control
  4271. {
  4272. if(code_seen('D')) meas_delay_cm=code_value();
  4273. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4274. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4275. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4276. {
  4277. int temp_ratio = widthFil_to_size_ratio();
  4278. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4279. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4280. }
  4281. delay_index1=0;
  4282. delay_index2=0;
  4283. }
  4284. filament_sensor = true ;
  4285. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4286. //SERIAL_PROTOCOL(filament_width_meas);
  4287. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4288. //SERIAL_PROTOCOL(extrudemultiply);
  4289. }
  4290. break;
  4291. case 406: //M406 Turn off filament sensor for control
  4292. {
  4293. filament_sensor = false ;
  4294. }
  4295. break;
  4296. case 407: //M407 Display measured filament diameter
  4297. {
  4298. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4299. SERIAL_PROTOCOLLN(filament_width_meas);
  4300. }
  4301. break;
  4302. #endif
  4303. case 500: // M500 Store settings in EEPROM
  4304. {
  4305. Config_StoreSettings(EEPROM_OFFSET);
  4306. }
  4307. break;
  4308. case 501: // M501 Read settings from EEPROM
  4309. {
  4310. Config_RetrieveSettings(EEPROM_OFFSET);
  4311. }
  4312. break;
  4313. case 502: // M502 Revert to default settings
  4314. {
  4315. Config_ResetDefault();
  4316. }
  4317. break;
  4318. case 503: // M503 print settings currently in memory
  4319. {
  4320. Config_PrintSettings();
  4321. }
  4322. break;
  4323. case 509: //M509 Force language selection
  4324. {
  4325. lcd_force_language_selection();
  4326. SERIAL_ECHO_START;
  4327. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4328. }
  4329. break;
  4330. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4331. case 540:
  4332. {
  4333. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4334. }
  4335. break;
  4336. #endif
  4337. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4338. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4339. {
  4340. float value;
  4341. if (code_seen('Z'))
  4342. {
  4343. value = code_value();
  4344. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4345. {
  4346. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4347. SERIAL_ECHO_START;
  4348. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4349. SERIAL_PROTOCOLLN("");
  4350. }
  4351. else
  4352. {
  4353. SERIAL_ECHO_START;
  4354. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4355. SERIAL_ECHORPGM(MSG_Z_MIN);
  4356. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4357. SERIAL_ECHORPGM(MSG_Z_MAX);
  4358. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4359. SERIAL_PROTOCOLLN("");
  4360. }
  4361. }
  4362. else
  4363. {
  4364. SERIAL_ECHO_START;
  4365. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4366. SERIAL_ECHO(-zprobe_zoffset);
  4367. SERIAL_PROTOCOLLN("");
  4368. }
  4369. break;
  4370. }
  4371. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4372. #ifdef FILAMENTCHANGEENABLE
  4373. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4374. {
  4375. MYSERIAL.println("!!!!M600!!!!");
  4376. st_synchronize();
  4377. float target[4];
  4378. float lastpos[4];
  4379. if (farm_mode)
  4380. {
  4381. prusa_statistics(22);
  4382. }
  4383. feedmultiplyBckp=feedmultiply;
  4384. int8_t TooLowZ = 0;
  4385. target[X_AXIS]=current_position[X_AXIS];
  4386. target[Y_AXIS]=current_position[Y_AXIS];
  4387. target[Z_AXIS]=current_position[Z_AXIS];
  4388. target[E_AXIS]=current_position[E_AXIS];
  4389. lastpos[X_AXIS]=current_position[X_AXIS];
  4390. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4391. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4392. lastpos[E_AXIS]=current_position[E_AXIS];
  4393. //Restract extruder
  4394. if(code_seen('E'))
  4395. {
  4396. target[E_AXIS]+= code_value();
  4397. }
  4398. else
  4399. {
  4400. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4401. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4402. #endif
  4403. }
  4404. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4405. //Lift Z
  4406. if(code_seen('Z'))
  4407. {
  4408. target[Z_AXIS]+= code_value();
  4409. }
  4410. else
  4411. {
  4412. #ifdef FILAMENTCHANGE_ZADD
  4413. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4414. if(target[Z_AXIS] < 10){
  4415. target[Z_AXIS]+= 10 ;
  4416. TooLowZ = 1;
  4417. }else{
  4418. TooLowZ = 0;
  4419. }
  4420. #endif
  4421. }
  4422. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4423. //Move XY to side
  4424. if(code_seen('X'))
  4425. {
  4426. target[X_AXIS]+= code_value();
  4427. }
  4428. else
  4429. {
  4430. #ifdef FILAMENTCHANGE_XPOS
  4431. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4432. #endif
  4433. }
  4434. if(code_seen('Y'))
  4435. {
  4436. target[Y_AXIS]= code_value();
  4437. }
  4438. else
  4439. {
  4440. #ifdef FILAMENTCHANGE_YPOS
  4441. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4442. #endif
  4443. }
  4444. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4445. st_synchronize();
  4446. custom_message = true;
  4447. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4448. // Unload filament
  4449. if(code_seen('L'))
  4450. {
  4451. target[E_AXIS]+= code_value();
  4452. }
  4453. else
  4454. {
  4455. #ifdef SNMM
  4456. #else
  4457. #ifdef FILAMENTCHANGE_FINALRETRACT
  4458. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4459. #endif
  4460. #endif // SNMM
  4461. }
  4462. #ifdef SNMM
  4463. target[E_AXIS] += 12;
  4464. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4465. target[E_AXIS] += 6;
  4466. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4467. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4468. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4469. st_synchronize();
  4470. target[E_AXIS] += (FIL_COOLING);
  4471. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4472. target[E_AXIS] += (FIL_COOLING*-1);
  4473. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4474. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4475. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4476. st_synchronize();
  4477. #else
  4478. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4479. #endif // SNMM
  4480. //finish moves
  4481. st_synchronize();
  4482. //disable extruder steppers so filament can be removed
  4483. disable_e0();
  4484. disable_e1();
  4485. disable_e2();
  4486. delay(100);
  4487. //Wait for user to insert filament
  4488. uint8_t cnt=0;
  4489. int counterBeep = 0;
  4490. lcd_wait_interact();
  4491. load_filament_time = millis();
  4492. while(!lcd_clicked()){
  4493. cnt++;
  4494. manage_heater();
  4495. manage_inactivity(true);
  4496. /*#ifdef SNMM
  4497. target[E_AXIS] += 0.002;
  4498. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4499. #endif // SNMM*/
  4500. if(cnt==0)
  4501. {
  4502. #if BEEPER > 0
  4503. if (counterBeep== 500){
  4504. counterBeep = 0;
  4505. }
  4506. SET_OUTPUT(BEEPER);
  4507. if (counterBeep== 0){
  4508. WRITE(BEEPER,HIGH);
  4509. }
  4510. if (counterBeep== 20){
  4511. WRITE(BEEPER,LOW);
  4512. }
  4513. counterBeep++;
  4514. #else
  4515. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4516. lcd_buzz(1000/6,100);
  4517. #else
  4518. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4519. #endif
  4520. #endif
  4521. }
  4522. }
  4523. #ifdef SNMM
  4524. display_loading();
  4525. do {
  4526. target[E_AXIS] += 0.002;
  4527. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4528. delay_keep_alive(2);
  4529. } while (!lcd_clicked());
  4530. /*if (millis() - load_filament_time > 2) {
  4531. load_filament_time = millis();
  4532. target[E_AXIS] += 0.001;
  4533. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4534. }*/
  4535. #endif
  4536. //Filament inserted
  4537. WRITE(BEEPER,LOW);
  4538. //Feed the filament to the end of nozzle quickly
  4539. #ifdef SNMM
  4540. st_synchronize();
  4541. target[E_AXIS] += bowden_length[snmm_extruder];
  4542. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4543. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4544. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4545. target[E_AXIS] += 40;
  4546. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4547. target[E_AXIS] += 10;
  4548. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4549. #else
  4550. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4551. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4552. #endif // SNMM
  4553. //Extrude some filament
  4554. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4555. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4556. //Wait for user to check the state
  4557. lcd_change_fil_state = 0;
  4558. lcd_loading_filament();
  4559. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4560. lcd_change_fil_state = 0;
  4561. lcd_alright();
  4562. switch(lcd_change_fil_state){
  4563. // Filament failed to load so load it again
  4564. case 2:
  4565. #ifdef SNMM
  4566. display_loading();
  4567. do {
  4568. target[E_AXIS] += 0.002;
  4569. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4570. delay_keep_alive(2);
  4571. } while (!lcd_clicked());
  4572. st_synchronize();
  4573. target[E_AXIS] += bowden_length[snmm_extruder];
  4574. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4575. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4576. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4577. target[E_AXIS] += 40;
  4578. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4579. target[E_AXIS] += 10;
  4580. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4581. #else
  4582. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4583. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4584. #endif
  4585. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4586. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4587. lcd_loading_filament();
  4588. break;
  4589. // Filament loaded properly but color is not clear
  4590. case 3:
  4591. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4592. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4593. lcd_loading_color();
  4594. break;
  4595. // Everything good
  4596. default:
  4597. lcd_change_success();
  4598. lcd_update_enable(true);
  4599. break;
  4600. }
  4601. }
  4602. //Not let's go back to print
  4603. //Feed a little of filament to stabilize pressure
  4604. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4605. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4606. //Retract
  4607. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4608. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4609. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4610. //Move XY back
  4611. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4612. //Move Z back
  4613. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4614. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4615. //Unretract
  4616. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4617. //Set E position to original
  4618. plan_set_e_position(lastpos[E_AXIS]);
  4619. //Recover feed rate
  4620. feedmultiply=feedmultiplyBckp;
  4621. char cmd[9];
  4622. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4623. enquecommand(cmd);
  4624. lcd_setstatuspgm(WELCOME_MSG);
  4625. custom_message = false;
  4626. custom_message_type = 0;
  4627. #ifdef PAT9125
  4628. if (fsensor_M600)
  4629. {
  4630. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  4631. st_synchronize();
  4632. while (!is_buffer_empty())
  4633. {
  4634. process_commands();
  4635. cmdqueue_pop_front();
  4636. }
  4637. fsensor_enable();
  4638. fsensor_restore_print_and_continue();
  4639. }
  4640. #endif //PAT9125
  4641. }
  4642. break;
  4643. #endif //FILAMENTCHANGEENABLE
  4644. case 601: {
  4645. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4646. }
  4647. break;
  4648. case 602: {
  4649. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4650. }
  4651. break;
  4652. #ifdef LIN_ADVANCE
  4653. case 900: // M900: Set LIN_ADVANCE options.
  4654. gcode_M900();
  4655. break;
  4656. #endif
  4657. case 907: // M907 Set digital trimpot motor current using axis codes.
  4658. {
  4659. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4660. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4661. if(code_seen('B')) digipot_current(4,code_value());
  4662. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4663. #endif
  4664. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4665. if(code_seen('X')) digipot_current(0, code_value());
  4666. #endif
  4667. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4668. if(code_seen('Z')) digipot_current(1, code_value());
  4669. #endif
  4670. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4671. if(code_seen('E')) digipot_current(2, code_value());
  4672. #endif
  4673. #ifdef DIGIPOT_I2C
  4674. // this one uses actual amps in floating point
  4675. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4676. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4677. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4678. #endif
  4679. }
  4680. break;
  4681. case 908: // M908 Control digital trimpot directly.
  4682. {
  4683. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4684. uint8_t channel,current;
  4685. if(code_seen('P')) channel=code_value();
  4686. if(code_seen('S')) current=code_value();
  4687. digitalPotWrite(channel, current);
  4688. #endif
  4689. }
  4690. break;
  4691. case 910: // M910 TMC2130 init
  4692. {
  4693. tmc2130_init();
  4694. }
  4695. break;
  4696. case 911: // M911 Set TMC2130 holding currents
  4697. {
  4698. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  4699. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  4700. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  4701. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  4702. }
  4703. break;
  4704. case 912: // M912 Set TMC2130 running currents
  4705. {
  4706. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  4707. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  4708. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  4709. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  4710. }
  4711. break;
  4712. case 913: // M913 Print TMC2130 currents
  4713. {
  4714. tmc2130_print_currents();
  4715. }
  4716. break;
  4717. case 914: // M914 Set normal mode
  4718. {
  4719. tmc2130_mode = TMC2130_MODE_NORMAL;
  4720. tmc2130_init();
  4721. }
  4722. break;
  4723. case 915: // M915 Set silent mode
  4724. {
  4725. tmc2130_mode = TMC2130_MODE_SILENT;
  4726. tmc2130_init();
  4727. }
  4728. break;
  4729. case 916: // M916 Set sg_thrs
  4730. {
  4731. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  4732. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  4733. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  4734. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  4735. MYSERIAL.print("tmc2130_sg_thr[X]=");
  4736. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  4737. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  4738. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  4739. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  4740. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  4741. MYSERIAL.print("tmc2130_sg_thr[E]=");
  4742. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  4743. }
  4744. break;
  4745. case 917: // M917 Set TMC2130 pwm_ampl
  4746. {
  4747. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  4748. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  4749. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  4750. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  4751. }
  4752. break;
  4753. case 918: // M918 Set TMC2130 pwm_grad
  4754. {
  4755. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  4756. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  4757. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  4758. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  4759. }
  4760. break;
  4761. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4762. {
  4763. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4764. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4765. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4766. if(code_seen('B')) microstep_mode(4,code_value());
  4767. microstep_readings();
  4768. #endif
  4769. }
  4770. break;
  4771. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4772. {
  4773. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4774. if(code_seen('S')) switch((int)code_value())
  4775. {
  4776. case 1:
  4777. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4778. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4779. break;
  4780. case 2:
  4781. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4782. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4783. break;
  4784. }
  4785. microstep_readings();
  4786. #endif
  4787. }
  4788. break;
  4789. case 701: //M701: load filament
  4790. {
  4791. enable_z();
  4792. custom_message = true;
  4793. custom_message_type = 2;
  4794. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4795. current_position[E_AXIS] += 70;
  4796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4797. current_position[E_AXIS] += 25;
  4798. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4799. st_synchronize();
  4800. if (!farm_mode && loading_flag) {
  4801. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4802. while (!clean) {
  4803. lcd_update_enable(true);
  4804. lcd_update(2);
  4805. current_position[E_AXIS] += 25;
  4806. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4807. st_synchronize();
  4808. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4809. }
  4810. }
  4811. lcd_update_enable(true);
  4812. lcd_update(2);
  4813. lcd_setstatuspgm(WELCOME_MSG);
  4814. disable_z();
  4815. loading_flag = false;
  4816. custom_message = false;
  4817. custom_message_type = 0;
  4818. }
  4819. break;
  4820. case 702:
  4821. {
  4822. #ifdef SNMM
  4823. if (code_seen('U')) {
  4824. extr_unload_used(); //unload all filaments which were used in current print
  4825. }
  4826. else if (code_seen('C')) {
  4827. extr_unload(); //unload just current filament
  4828. }
  4829. else {
  4830. extr_unload_all(); //unload all filaments
  4831. }
  4832. #else
  4833. custom_message = true;
  4834. custom_message_type = 2;
  4835. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4836. current_position[E_AXIS] -= 80;
  4837. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4838. st_synchronize();
  4839. lcd_setstatuspgm(WELCOME_MSG);
  4840. custom_message = false;
  4841. custom_message_type = 0;
  4842. #endif
  4843. }
  4844. break;
  4845. case 999: // M999: Restart after being stopped
  4846. Stopped = false;
  4847. lcd_reset_alert_level();
  4848. gcode_LastN = Stopped_gcode_LastN;
  4849. FlushSerialRequestResend();
  4850. break;
  4851. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4852. }
  4853. } // end if(code_seen('M')) (end of M codes)
  4854. else if(code_seen('T'))
  4855. {
  4856. int index;
  4857. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4858. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  4859. SERIAL_ECHOLNPGM("Invalid T code.");
  4860. }
  4861. else {
  4862. if (*(strchr_pointer + index) == '?') {
  4863. tmp_extruder = choose_extruder_menu();
  4864. }
  4865. else {
  4866. tmp_extruder = code_value();
  4867. }
  4868. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  4869. #ifdef SNMM
  4870. #ifdef LIN_ADVANCE
  4871. if (snmm_extruder != tmp_extruder)
  4872. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  4873. #endif
  4874. snmm_extruder = tmp_extruder;
  4875. st_synchronize();
  4876. delay(100);
  4877. disable_e0();
  4878. disable_e1();
  4879. disable_e2();
  4880. pinMode(E_MUX0_PIN, OUTPUT);
  4881. pinMode(E_MUX1_PIN, OUTPUT);
  4882. pinMode(E_MUX2_PIN, OUTPUT);
  4883. delay(100);
  4884. SERIAL_ECHO_START;
  4885. SERIAL_ECHO("T:");
  4886. SERIAL_ECHOLN((int)tmp_extruder);
  4887. switch (tmp_extruder) {
  4888. case 1:
  4889. WRITE(E_MUX0_PIN, HIGH);
  4890. WRITE(E_MUX1_PIN, LOW);
  4891. WRITE(E_MUX2_PIN, LOW);
  4892. break;
  4893. case 2:
  4894. WRITE(E_MUX0_PIN, LOW);
  4895. WRITE(E_MUX1_PIN, HIGH);
  4896. WRITE(E_MUX2_PIN, LOW);
  4897. break;
  4898. case 3:
  4899. WRITE(E_MUX0_PIN, HIGH);
  4900. WRITE(E_MUX1_PIN, HIGH);
  4901. WRITE(E_MUX2_PIN, LOW);
  4902. break;
  4903. default:
  4904. WRITE(E_MUX0_PIN, LOW);
  4905. WRITE(E_MUX1_PIN, LOW);
  4906. WRITE(E_MUX2_PIN, LOW);
  4907. break;
  4908. }
  4909. delay(100);
  4910. #else
  4911. if (tmp_extruder >= EXTRUDERS) {
  4912. SERIAL_ECHO_START;
  4913. SERIAL_ECHOPGM("T");
  4914. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4915. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4916. }
  4917. else {
  4918. boolean make_move = false;
  4919. if (code_seen('F')) {
  4920. make_move = true;
  4921. next_feedrate = code_value();
  4922. if (next_feedrate > 0.0) {
  4923. feedrate = next_feedrate;
  4924. }
  4925. }
  4926. #if EXTRUDERS > 1
  4927. if (tmp_extruder != active_extruder) {
  4928. // Save current position to return to after applying extruder offset
  4929. memcpy(destination, current_position, sizeof(destination));
  4930. // Offset extruder (only by XY)
  4931. int i;
  4932. for (i = 0; i < 2; i++) {
  4933. current_position[i] = current_position[i] -
  4934. extruder_offset[i][active_extruder] +
  4935. extruder_offset[i][tmp_extruder];
  4936. }
  4937. // Set the new active extruder and position
  4938. active_extruder = tmp_extruder;
  4939. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4940. // Move to the old position if 'F' was in the parameters
  4941. if (make_move && Stopped == false) {
  4942. prepare_move();
  4943. }
  4944. }
  4945. #endif
  4946. SERIAL_ECHO_START;
  4947. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  4948. SERIAL_PROTOCOLLN((int)active_extruder);
  4949. }
  4950. #endif
  4951. }
  4952. } // end if(code_seen('T')) (end of T codes)
  4953. #ifdef DEBUG_DCODES
  4954. else if (code_seen('D')) // D codes (debug)
  4955. {
  4956. switch((int)code_value())
  4957. {
  4958. case 0: // D0 - Reset
  4959. dcode_0(); break;
  4960. case 1: // D1 - Clear EEPROM
  4961. dcode_1(); break;
  4962. case 2: // D2 - Read/Write RAM
  4963. dcode_2(); break;
  4964. case 3: // D3 - Read/Write EEPROM
  4965. dcode_3(); break;
  4966. case 4: // D4 - Read/Write PIN
  4967. dcode_4(); break;
  4968. case 9125: // D9125 - PAT9125
  4969. dcode_9125(); break;
  4970. case 5:
  4971. MYSERIAL.println("D5 - Test");
  4972. if (code_seen('P'))
  4973. selectedSerialPort = (int)code_value();
  4974. MYSERIAL.print("selectedSerialPort = ");
  4975. MYSERIAL.println(selectedSerialPort, DEC);
  4976. break;
  4977. case 10: // D10 - Tell the printer that XYZ calibration went OK
  4978. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4979. break;
  4980. case 12: //D12 - Reset Filament error, Power loss and crash counter ( Do it before every print and you can get stats for the print )
  4981. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, 0x00);
  4982. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, 0x00);
  4983. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, 0x00);
  4984. case 999:
  4985. {
  4986. MYSERIAL.println("D999 - crash");
  4987. /* while (!is_buffer_empty())
  4988. {
  4989. process_commands();
  4990. cmdqueue_pop_front();
  4991. }*/
  4992. st_synchronize();
  4993. lcd_update_enable(true);
  4994. lcd_implementation_clear();
  4995. lcd_update(2);
  4996. // Increment crash counter
  4997. uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
  4998. crash_count++;
  4999. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
  5000. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  5001. bool yesno = true;
  5002. #else
  5003. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  5004. #endif
  5005. lcd_update_enable(true);
  5006. lcd_update(2);
  5007. lcd_setstatuspgm(WELCOME_MSG);
  5008. if (yesno)
  5009. {
  5010. enquecommand_P(PSTR("G28 X"));
  5011. enquecommand_P(PSTR("G28 Y"));
  5012. enquecommand_P(PSTR("D1000"));
  5013. }
  5014. else
  5015. {
  5016. enquecommand_P(PSTR("D1001"));
  5017. }
  5018. }
  5019. break;
  5020. case 1000:
  5021. crashdet_restore_print_and_continue();
  5022. tmc2130_sg_stop_on_crash = true;
  5023. break;
  5024. case 1001:
  5025. card.sdprinting = false;
  5026. card.closefile();
  5027. tmc2130_sg_stop_on_crash = true;
  5028. break;
  5029. /* case 4:
  5030. {
  5031. MYSERIAL.println("D4 - Test");
  5032. uint8_t data[16];
  5033. int cnt = parse_hex(strchr_pointer + 2, data, 16);
  5034. MYSERIAL.println(cnt, DEC);
  5035. for (int i = 0; i < cnt; i++)
  5036. {
  5037. serial_print_hex_byte(data[i]);
  5038. MYSERIAL.write(' ');
  5039. }
  5040. MYSERIAL.write('\n');
  5041. }
  5042. break;
  5043. /* case 3:
  5044. if (code_seen('L')) // lcd pwm (0-255)
  5045. {
  5046. lcdSoftPwm = (int)code_value();
  5047. }
  5048. if (code_seen('B')) // lcd blink delay (0-255)
  5049. {
  5050. lcdBlinkDelay = (int)code_value();
  5051. }
  5052. // calibrate_z_auto();
  5053. /* MYSERIAL.print("fsensor_enable()");
  5054. #ifdef PAT9125
  5055. fsensor_enable();
  5056. #endif*/
  5057. break;
  5058. // case 4:
  5059. // lcdBlinkDelay = 10;
  5060. /* MYSERIAL.print("fsensor_disable()");
  5061. #ifdef PAT9125
  5062. fsensor_disable();
  5063. #endif
  5064. break;*/
  5065. // break;
  5066. /* case 5:
  5067. {
  5068. MYSERIAL.print("tmc2130_rd_MSCNT(0)=");
  5069. int val = tmc2130_rd_MSCNT(tmc2130_cs[0]);
  5070. MYSERIAL.println(val);
  5071. homeaxis(0);
  5072. }
  5073. break;*/
  5074. case 6:
  5075. {
  5076. /* MYSERIAL.print("tmc2130_rd_MSCNT(1)=");
  5077. int val = tmc2130_rd_MSCNT(tmc2130_cs[1]);
  5078. MYSERIAL.println(val);*/
  5079. homeaxis(1);
  5080. }
  5081. break;
  5082. case 7:
  5083. {
  5084. MYSERIAL.print("pat9125_init=");
  5085. MYSERIAL.println(pat9125_init(200, 200));
  5086. }
  5087. break;
  5088. case 8:
  5089. {
  5090. MYSERIAL.print("swi2c_check=");
  5091. MYSERIAL.println(swi2c_check(0x75));
  5092. }
  5093. break;
  5094. }
  5095. }
  5096. #endif //DEBUG_DCODES
  5097. else
  5098. {
  5099. SERIAL_ECHO_START;
  5100. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5101. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5102. SERIAL_ECHOLNPGM("\"(2)");
  5103. }
  5104. ClearToSend();
  5105. }
  5106. void FlushSerialRequestResend()
  5107. {
  5108. //char cmdbuffer[bufindr][100]="Resend:";
  5109. MYSERIAL.flush();
  5110. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5111. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5112. ClearToSend();
  5113. }
  5114. // Confirm the execution of a command, if sent from a serial line.
  5115. // Execution of a command from a SD card will not be confirmed.
  5116. void ClearToSend()
  5117. {
  5118. previous_millis_cmd = millis();
  5119. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5120. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5121. }
  5122. void get_coordinates()
  5123. {
  5124. bool seen[4]={false,false,false,false};
  5125. for(int8_t i=0; i < NUM_AXIS; i++) {
  5126. if(code_seen(axis_codes[i]))
  5127. {
  5128. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5129. seen[i]=true;
  5130. }
  5131. else destination[i] = current_position[i]; //Are these else lines really needed?
  5132. }
  5133. if(code_seen('F')) {
  5134. next_feedrate = code_value();
  5135. #ifdef MAX_SILENT_FEEDRATE
  5136. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5137. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5138. #endif //MAX_SILENT_FEEDRATE
  5139. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5140. }
  5141. }
  5142. void get_arc_coordinates()
  5143. {
  5144. #ifdef SF_ARC_FIX
  5145. bool relative_mode_backup = relative_mode;
  5146. relative_mode = true;
  5147. #endif
  5148. get_coordinates();
  5149. #ifdef SF_ARC_FIX
  5150. relative_mode=relative_mode_backup;
  5151. #endif
  5152. if(code_seen('I')) {
  5153. offset[0] = code_value();
  5154. }
  5155. else {
  5156. offset[0] = 0.0;
  5157. }
  5158. if(code_seen('J')) {
  5159. offset[1] = code_value();
  5160. }
  5161. else {
  5162. offset[1] = 0.0;
  5163. }
  5164. }
  5165. void clamp_to_software_endstops(float target[3])
  5166. {
  5167. #ifdef DEBUG_DISABLE_SWLIMITS
  5168. return;
  5169. #endif //DEBUG_DISABLE_SWLIMITS
  5170. world2machine_clamp(target[0], target[1]);
  5171. // Clamp the Z coordinate.
  5172. if (min_software_endstops) {
  5173. float negative_z_offset = 0;
  5174. #ifdef ENABLE_AUTO_BED_LEVELING
  5175. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5176. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5177. #endif
  5178. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5179. }
  5180. if (max_software_endstops) {
  5181. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5182. }
  5183. }
  5184. #ifdef MESH_BED_LEVELING
  5185. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5186. float dx = x - current_position[X_AXIS];
  5187. float dy = y - current_position[Y_AXIS];
  5188. float dz = z - current_position[Z_AXIS];
  5189. int n_segments = 0;
  5190. if (mbl.active) {
  5191. float len = abs(dx) + abs(dy);
  5192. if (len > 0)
  5193. // Split to 3cm segments or shorter.
  5194. n_segments = int(ceil(len / 30.f));
  5195. }
  5196. if (n_segments > 1) {
  5197. float de = e - current_position[E_AXIS];
  5198. for (int i = 1; i < n_segments; ++ i) {
  5199. float t = float(i) / float(n_segments);
  5200. plan_buffer_line(
  5201. current_position[X_AXIS] + t * dx,
  5202. current_position[Y_AXIS] + t * dy,
  5203. current_position[Z_AXIS] + t * dz,
  5204. current_position[E_AXIS] + t * de,
  5205. feed_rate, extruder);
  5206. }
  5207. }
  5208. // The rest of the path.
  5209. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5210. current_position[X_AXIS] = x;
  5211. current_position[Y_AXIS] = y;
  5212. current_position[Z_AXIS] = z;
  5213. current_position[E_AXIS] = e;
  5214. }
  5215. #endif // MESH_BED_LEVELING
  5216. void prepare_move()
  5217. {
  5218. clamp_to_software_endstops(destination);
  5219. previous_millis_cmd = millis();
  5220. // Do not use feedmultiply for E or Z only moves
  5221. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5222. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5223. }
  5224. else {
  5225. #ifdef MESH_BED_LEVELING
  5226. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5227. #else
  5228. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5229. #endif
  5230. }
  5231. for(int8_t i=0; i < NUM_AXIS; i++) {
  5232. current_position[i] = destination[i];
  5233. }
  5234. }
  5235. void prepare_arc_move(char isclockwise) {
  5236. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5237. // Trace the arc
  5238. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5239. // As far as the parser is concerned, the position is now == target. In reality the
  5240. // motion control system might still be processing the action and the real tool position
  5241. // in any intermediate location.
  5242. for(int8_t i=0; i < NUM_AXIS; i++) {
  5243. current_position[i] = destination[i];
  5244. }
  5245. previous_millis_cmd = millis();
  5246. }
  5247. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5248. #if defined(FAN_PIN)
  5249. #if CONTROLLERFAN_PIN == FAN_PIN
  5250. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5251. #endif
  5252. #endif
  5253. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5254. unsigned long lastMotorCheck = 0;
  5255. void controllerFan()
  5256. {
  5257. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5258. {
  5259. lastMotorCheck = millis();
  5260. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5261. #if EXTRUDERS > 2
  5262. || !READ(E2_ENABLE_PIN)
  5263. #endif
  5264. #if EXTRUDER > 1
  5265. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5266. || !READ(X2_ENABLE_PIN)
  5267. #endif
  5268. || !READ(E1_ENABLE_PIN)
  5269. #endif
  5270. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5271. {
  5272. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5273. }
  5274. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5275. {
  5276. digitalWrite(CONTROLLERFAN_PIN, 0);
  5277. analogWrite(CONTROLLERFAN_PIN, 0);
  5278. }
  5279. else
  5280. {
  5281. // allows digital or PWM fan output to be used (see M42 handling)
  5282. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5283. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5284. }
  5285. }
  5286. }
  5287. #endif
  5288. #ifdef TEMP_STAT_LEDS
  5289. static bool blue_led = false;
  5290. static bool red_led = false;
  5291. static uint32_t stat_update = 0;
  5292. void handle_status_leds(void) {
  5293. float max_temp = 0.0;
  5294. if(millis() > stat_update) {
  5295. stat_update += 500; // Update every 0.5s
  5296. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5297. max_temp = max(max_temp, degHotend(cur_extruder));
  5298. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5299. }
  5300. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5301. max_temp = max(max_temp, degTargetBed());
  5302. max_temp = max(max_temp, degBed());
  5303. #endif
  5304. if((max_temp > 55.0) && (red_led == false)) {
  5305. digitalWrite(STAT_LED_RED, 1);
  5306. digitalWrite(STAT_LED_BLUE, 0);
  5307. red_led = true;
  5308. blue_led = false;
  5309. }
  5310. if((max_temp < 54.0) && (blue_led == false)) {
  5311. digitalWrite(STAT_LED_RED, 0);
  5312. digitalWrite(STAT_LED_BLUE, 1);
  5313. red_led = false;
  5314. blue_led = true;
  5315. }
  5316. }
  5317. }
  5318. #endif
  5319. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5320. {
  5321. #if defined(KILL_PIN) && KILL_PIN > -1
  5322. static int killCount = 0; // make the inactivity button a bit less responsive
  5323. const int KILL_DELAY = 10000;
  5324. #endif
  5325. if(buflen < (BUFSIZE-1)){
  5326. get_command();
  5327. }
  5328. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5329. if(max_inactive_time)
  5330. kill("", 4);
  5331. if(stepper_inactive_time) {
  5332. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5333. {
  5334. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5335. disable_x();
  5336. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5337. disable_y();
  5338. disable_z();
  5339. disable_e0();
  5340. disable_e1();
  5341. disable_e2();
  5342. }
  5343. }
  5344. }
  5345. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5346. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5347. {
  5348. chdkActive = false;
  5349. WRITE(CHDK, LOW);
  5350. }
  5351. #endif
  5352. #if defined(KILL_PIN) && KILL_PIN > -1
  5353. // Check if the kill button was pressed and wait just in case it was an accidental
  5354. // key kill key press
  5355. // -------------------------------------------------------------------------------
  5356. if( 0 == READ(KILL_PIN) )
  5357. {
  5358. killCount++;
  5359. }
  5360. else if (killCount > 0)
  5361. {
  5362. killCount--;
  5363. }
  5364. // Exceeded threshold and we can confirm that it was not accidental
  5365. // KILL the machine
  5366. // ----------------------------------------------------------------
  5367. if ( killCount >= KILL_DELAY)
  5368. {
  5369. kill("", 5);
  5370. }
  5371. #endif
  5372. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5373. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5374. #endif
  5375. #ifdef EXTRUDER_RUNOUT_PREVENT
  5376. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5377. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5378. {
  5379. bool oldstatus=READ(E0_ENABLE_PIN);
  5380. enable_e0();
  5381. float oldepos=current_position[E_AXIS];
  5382. float oldedes=destination[E_AXIS];
  5383. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5384. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5385. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5386. current_position[E_AXIS]=oldepos;
  5387. destination[E_AXIS]=oldedes;
  5388. plan_set_e_position(oldepos);
  5389. previous_millis_cmd=millis();
  5390. st_synchronize();
  5391. WRITE(E0_ENABLE_PIN,oldstatus);
  5392. }
  5393. #endif
  5394. #ifdef TEMP_STAT_LEDS
  5395. handle_status_leds();
  5396. #endif
  5397. check_axes_activity();
  5398. }
  5399. void kill(const char *full_screen_message, unsigned char id)
  5400. {
  5401. SERIAL_ECHOPGM("KILL: ");
  5402. MYSERIAL.println(int(id));
  5403. //return;
  5404. cli(); // Stop interrupts
  5405. disable_heater();
  5406. disable_x();
  5407. // SERIAL_ECHOLNPGM("kill - disable Y");
  5408. disable_y();
  5409. disable_z();
  5410. disable_e0();
  5411. disable_e1();
  5412. disable_e2();
  5413. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5414. pinMode(PS_ON_PIN,INPUT);
  5415. #endif
  5416. SERIAL_ERROR_START;
  5417. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5418. if (full_screen_message != NULL) {
  5419. SERIAL_ERRORLNRPGM(full_screen_message);
  5420. lcd_display_message_fullscreen_P(full_screen_message);
  5421. } else {
  5422. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5423. }
  5424. // FMC small patch to update the LCD before ending
  5425. sei(); // enable interrupts
  5426. for ( int i=5; i--; lcd_update())
  5427. {
  5428. delay(200);
  5429. }
  5430. cli(); // disable interrupts
  5431. suicide();
  5432. while(1) { /* Intentionally left empty */ } // Wait for reset
  5433. }
  5434. void Stop()
  5435. {
  5436. disable_heater();
  5437. if(Stopped == false) {
  5438. Stopped = true;
  5439. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5440. SERIAL_ERROR_START;
  5441. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5442. LCD_MESSAGERPGM(MSG_STOPPED);
  5443. }
  5444. }
  5445. bool IsStopped() { return Stopped; };
  5446. #ifdef FAST_PWM_FAN
  5447. void setPwmFrequency(uint8_t pin, int val)
  5448. {
  5449. val &= 0x07;
  5450. switch(digitalPinToTimer(pin))
  5451. {
  5452. #if defined(TCCR0A)
  5453. case TIMER0A:
  5454. case TIMER0B:
  5455. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5456. // TCCR0B |= val;
  5457. break;
  5458. #endif
  5459. #if defined(TCCR1A)
  5460. case TIMER1A:
  5461. case TIMER1B:
  5462. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5463. // TCCR1B |= val;
  5464. break;
  5465. #endif
  5466. #if defined(TCCR2)
  5467. case TIMER2:
  5468. case TIMER2:
  5469. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5470. TCCR2 |= val;
  5471. break;
  5472. #endif
  5473. #if defined(TCCR2A)
  5474. case TIMER2A:
  5475. case TIMER2B:
  5476. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5477. TCCR2B |= val;
  5478. break;
  5479. #endif
  5480. #if defined(TCCR3A)
  5481. case TIMER3A:
  5482. case TIMER3B:
  5483. case TIMER3C:
  5484. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5485. TCCR3B |= val;
  5486. break;
  5487. #endif
  5488. #if defined(TCCR4A)
  5489. case TIMER4A:
  5490. case TIMER4B:
  5491. case TIMER4C:
  5492. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5493. TCCR4B |= val;
  5494. break;
  5495. #endif
  5496. #if defined(TCCR5A)
  5497. case TIMER5A:
  5498. case TIMER5B:
  5499. case TIMER5C:
  5500. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5501. TCCR5B |= val;
  5502. break;
  5503. #endif
  5504. }
  5505. }
  5506. #endif //FAST_PWM_FAN
  5507. bool setTargetedHotend(int code){
  5508. tmp_extruder = active_extruder;
  5509. if(code_seen('T')) {
  5510. tmp_extruder = code_value();
  5511. if(tmp_extruder >= EXTRUDERS) {
  5512. SERIAL_ECHO_START;
  5513. switch(code){
  5514. case 104:
  5515. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5516. break;
  5517. case 105:
  5518. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5519. break;
  5520. case 109:
  5521. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5522. break;
  5523. case 218:
  5524. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5525. break;
  5526. case 221:
  5527. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5528. break;
  5529. }
  5530. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5531. return true;
  5532. }
  5533. }
  5534. return false;
  5535. }
  5536. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5537. {
  5538. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5539. {
  5540. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5541. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5542. }
  5543. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5544. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5545. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5546. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5547. total_filament_used = 0;
  5548. }
  5549. float calculate_volumetric_multiplier(float diameter) {
  5550. float area = .0;
  5551. float radius = .0;
  5552. radius = diameter * .5;
  5553. if (! volumetric_enabled || radius == 0) {
  5554. area = 1;
  5555. }
  5556. else {
  5557. area = M_PI * pow(radius, 2);
  5558. }
  5559. return 1.0 / area;
  5560. }
  5561. void calculate_volumetric_multipliers() {
  5562. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5563. #if EXTRUDERS > 1
  5564. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5565. #if EXTRUDERS > 2
  5566. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5567. #endif
  5568. #endif
  5569. }
  5570. void delay_keep_alive(unsigned int ms)
  5571. {
  5572. for (;;) {
  5573. manage_heater();
  5574. // Manage inactivity, but don't disable steppers on timeout.
  5575. manage_inactivity(true);
  5576. lcd_update();
  5577. if (ms == 0)
  5578. break;
  5579. else if (ms >= 50) {
  5580. delay(50);
  5581. ms -= 50;
  5582. } else {
  5583. delay(ms);
  5584. ms = 0;
  5585. }
  5586. }
  5587. }
  5588. void wait_for_heater(long codenum) {
  5589. #ifdef TEMP_RESIDENCY_TIME
  5590. long residencyStart;
  5591. residencyStart = -1;
  5592. /* continue to loop until we have reached the target temp
  5593. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5594. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5595. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5596. #else
  5597. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5598. #endif //TEMP_RESIDENCY_TIME
  5599. if ((millis() - codenum) > 1000UL)
  5600. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5601. if (!farm_mode) {
  5602. SERIAL_PROTOCOLPGM("T:");
  5603. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5604. SERIAL_PROTOCOLPGM(" E:");
  5605. SERIAL_PROTOCOL((int)tmp_extruder);
  5606. #ifdef TEMP_RESIDENCY_TIME
  5607. SERIAL_PROTOCOLPGM(" W:");
  5608. if (residencyStart > -1)
  5609. {
  5610. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5611. SERIAL_PROTOCOLLN(codenum);
  5612. }
  5613. else
  5614. {
  5615. SERIAL_PROTOCOLLN("?");
  5616. }
  5617. }
  5618. #else
  5619. SERIAL_PROTOCOLLN("");
  5620. #endif
  5621. codenum = millis();
  5622. }
  5623. manage_heater();
  5624. manage_inactivity();
  5625. lcd_update();
  5626. #ifdef TEMP_RESIDENCY_TIME
  5627. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5628. or when current temp falls outside the hysteresis after target temp was reached */
  5629. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5630. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5631. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5632. {
  5633. residencyStart = millis();
  5634. }
  5635. #endif //TEMP_RESIDENCY_TIME
  5636. }
  5637. }
  5638. void check_babystep() {
  5639. int babystep_z;
  5640. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5641. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5642. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5643. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5644. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5645. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5646. lcd_update_enable(true);
  5647. }
  5648. }
  5649. #ifdef DIS
  5650. void d_setup()
  5651. {
  5652. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5653. pinMode(D_DATA, INPUT_PULLUP);
  5654. pinMode(D_REQUIRE, OUTPUT);
  5655. digitalWrite(D_REQUIRE, HIGH);
  5656. }
  5657. float d_ReadData()
  5658. {
  5659. int digit[13];
  5660. String mergeOutput;
  5661. float output;
  5662. digitalWrite(D_REQUIRE, HIGH);
  5663. for (int i = 0; i<13; i++)
  5664. {
  5665. for (int j = 0; j < 4; j++)
  5666. {
  5667. while (digitalRead(D_DATACLOCK) == LOW) {}
  5668. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5669. bitWrite(digit[i], j, digitalRead(D_DATA));
  5670. }
  5671. }
  5672. digitalWrite(D_REQUIRE, LOW);
  5673. mergeOutput = "";
  5674. output = 0;
  5675. for (int r = 5; r <= 10; r++) //Merge digits
  5676. {
  5677. mergeOutput += digit[r];
  5678. }
  5679. output = mergeOutput.toFloat();
  5680. if (digit[4] == 8) //Handle sign
  5681. {
  5682. output *= -1;
  5683. }
  5684. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5685. {
  5686. output /= 10;
  5687. }
  5688. return output;
  5689. }
  5690. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5691. int t1 = 0;
  5692. int t_delay = 0;
  5693. int digit[13];
  5694. int m;
  5695. char str[3];
  5696. //String mergeOutput;
  5697. char mergeOutput[15];
  5698. float output;
  5699. int mesh_point = 0; //index number of calibration point
  5700. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5701. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5702. float mesh_home_z_search = 4;
  5703. float row[x_points_num];
  5704. int ix = 0;
  5705. int iy = 0;
  5706. char* filename_wldsd = "wldsd.txt";
  5707. char data_wldsd[70];
  5708. char numb_wldsd[10];
  5709. d_setup();
  5710. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5711. // We don't know where we are! HOME!
  5712. // Push the commands to the front of the message queue in the reverse order!
  5713. // There shall be always enough space reserved for these commands.
  5714. repeatcommand_front(); // repeat G80 with all its parameters
  5715. enquecommand_front_P((PSTR("G28 W0")));
  5716. enquecommand_front_P((PSTR("G1 Z5")));
  5717. return;
  5718. }
  5719. bool custom_message_old = custom_message;
  5720. unsigned int custom_message_type_old = custom_message_type;
  5721. unsigned int custom_message_state_old = custom_message_state;
  5722. custom_message = true;
  5723. custom_message_type = 1;
  5724. custom_message_state = (x_points_num * y_points_num) + 10;
  5725. lcd_update(1);
  5726. mbl.reset();
  5727. babystep_undo();
  5728. card.openFile(filename_wldsd, false);
  5729. current_position[Z_AXIS] = mesh_home_z_search;
  5730. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5731. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5732. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5733. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5734. setup_for_endstop_move(false);
  5735. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5736. SERIAL_PROTOCOL(x_points_num);
  5737. SERIAL_PROTOCOLPGM(",");
  5738. SERIAL_PROTOCOL(y_points_num);
  5739. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5740. SERIAL_PROTOCOL(mesh_home_z_search);
  5741. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5742. SERIAL_PROTOCOL(x_dimension);
  5743. SERIAL_PROTOCOLPGM(",");
  5744. SERIAL_PROTOCOL(y_dimension);
  5745. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5746. while (mesh_point != x_points_num * y_points_num) {
  5747. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5748. iy = mesh_point / x_points_num;
  5749. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5750. float z0 = 0.f;
  5751. current_position[Z_AXIS] = mesh_home_z_search;
  5752. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5753. st_synchronize();
  5754. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5755. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5756. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5757. st_synchronize();
  5758. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5759. break;
  5760. card.closefile();
  5761. }
  5762. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5763. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5764. //strcat(data_wldsd, numb_wldsd);
  5765. //MYSERIAL.println(data_wldsd);
  5766. //delay(1000);
  5767. //delay(3000);
  5768. //t1 = millis();
  5769. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5770. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5771. memset(digit, 0, sizeof(digit));
  5772. //cli();
  5773. digitalWrite(D_REQUIRE, LOW);
  5774. for (int i = 0; i<13; i++)
  5775. {
  5776. //t1 = millis();
  5777. for (int j = 0; j < 4; j++)
  5778. {
  5779. while (digitalRead(D_DATACLOCK) == LOW) {}
  5780. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5781. bitWrite(digit[i], j, digitalRead(D_DATA));
  5782. }
  5783. //t_delay = (millis() - t1);
  5784. //SERIAL_PROTOCOLPGM(" ");
  5785. //SERIAL_PROTOCOL_F(t_delay, 5);
  5786. //SERIAL_PROTOCOLPGM(" ");
  5787. }
  5788. //sei();
  5789. digitalWrite(D_REQUIRE, HIGH);
  5790. mergeOutput[0] = '\0';
  5791. output = 0;
  5792. for (int r = 5; r <= 10; r++) //Merge digits
  5793. {
  5794. sprintf(str, "%d", digit[r]);
  5795. strcat(mergeOutput, str);
  5796. }
  5797. output = atof(mergeOutput);
  5798. if (digit[4] == 8) //Handle sign
  5799. {
  5800. output *= -1;
  5801. }
  5802. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5803. {
  5804. output *= 0.1;
  5805. }
  5806. //output = d_ReadData();
  5807. //row[ix] = current_position[Z_AXIS];
  5808. memset(data_wldsd, 0, sizeof(data_wldsd));
  5809. for (int i = 0; i <3; i++) {
  5810. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5811. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5812. strcat(data_wldsd, numb_wldsd);
  5813. strcat(data_wldsd, ";");
  5814. }
  5815. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5816. dtostrf(output, 8, 5, numb_wldsd);
  5817. strcat(data_wldsd, numb_wldsd);
  5818. //strcat(data_wldsd, ";");
  5819. card.write_command(data_wldsd);
  5820. //row[ix] = d_ReadData();
  5821. row[ix] = output; // current_position[Z_AXIS];
  5822. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5823. for (int i = 0; i < x_points_num; i++) {
  5824. SERIAL_PROTOCOLPGM(" ");
  5825. SERIAL_PROTOCOL_F(row[i], 5);
  5826. }
  5827. SERIAL_PROTOCOLPGM("\n");
  5828. }
  5829. custom_message_state--;
  5830. mesh_point++;
  5831. lcd_update(1);
  5832. }
  5833. card.closefile();
  5834. }
  5835. #endif
  5836. void temp_compensation_start() {
  5837. custom_message = true;
  5838. custom_message_type = 5;
  5839. custom_message_state = PINDA_HEAT_T + 1;
  5840. lcd_update(2);
  5841. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5842. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5843. }
  5844. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5845. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5846. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5847. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5848. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5849. st_synchronize();
  5850. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5851. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5852. delay_keep_alive(1000);
  5853. custom_message_state = PINDA_HEAT_T - i;
  5854. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5855. else lcd_update(1);
  5856. }
  5857. custom_message_type = 0;
  5858. custom_message_state = 0;
  5859. custom_message = false;
  5860. }
  5861. void temp_compensation_apply() {
  5862. int i_add;
  5863. int compensation_value;
  5864. int z_shift = 0;
  5865. float z_shift_mm;
  5866. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5867. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5868. i_add = (target_temperature_bed - 60) / 10;
  5869. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5870. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5871. }else {
  5872. //interpolation
  5873. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5874. }
  5875. SERIAL_PROTOCOLPGM("\n");
  5876. SERIAL_PROTOCOLPGM("Z shift applied:");
  5877. MYSERIAL.print(z_shift_mm);
  5878. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5879. st_synchronize();
  5880. plan_set_z_position(current_position[Z_AXIS]);
  5881. }
  5882. else {
  5883. //we have no temp compensation data
  5884. }
  5885. }
  5886. float temp_comp_interpolation(float inp_temperature) {
  5887. //cubic spline interpolation
  5888. int n, i, j, k;
  5889. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5890. int shift[10];
  5891. int temp_C[10];
  5892. n = 6; //number of measured points
  5893. shift[0] = 0;
  5894. for (i = 0; i < n; i++) {
  5895. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5896. temp_C[i] = 50 + i * 10; //temperature in C
  5897. #ifdef PINDA_THERMISTOR
  5898. temp_C[i] = 35 + i * 5; //temperature in C
  5899. #else
  5900. temp_C[i] = 50 + i * 10; //temperature in C
  5901. #endif
  5902. x[i] = (float)temp_C[i];
  5903. f[i] = (float)shift[i];
  5904. }
  5905. if (inp_temperature < x[0]) return 0;
  5906. for (i = n - 1; i>0; i--) {
  5907. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5908. h[i - 1] = x[i] - x[i - 1];
  5909. }
  5910. //*********** formation of h, s , f matrix **************
  5911. for (i = 1; i<n - 1; i++) {
  5912. m[i][i] = 2 * (h[i - 1] + h[i]);
  5913. if (i != 1) {
  5914. m[i][i - 1] = h[i - 1];
  5915. m[i - 1][i] = h[i - 1];
  5916. }
  5917. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5918. }
  5919. //*********** forward elimination **************
  5920. for (i = 1; i<n - 2; i++) {
  5921. temp = (m[i + 1][i] / m[i][i]);
  5922. for (j = 1; j <= n - 1; j++)
  5923. m[i + 1][j] -= temp*m[i][j];
  5924. }
  5925. //*********** backward substitution *********
  5926. for (i = n - 2; i>0; i--) {
  5927. sum = 0;
  5928. for (j = i; j <= n - 2; j++)
  5929. sum += m[i][j] * s[j];
  5930. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5931. }
  5932. for (i = 0; i<n - 1; i++)
  5933. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5934. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5935. b = s[i] / 2;
  5936. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5937. d = f[i];
  5938. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5939. }
  5940. return sum;
  5941. }
  5942. #ifdef PINDA_THERMISTOR
  5943. float temp_compensation_pinda_thermistor_offset()
  5944. {
  5945. if (!temp_cal_active) return 0;
  5946. if (!calibration_status_pinda()) return 0;
  5947. return temp_comp_interpolation(current_temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  5948. }
  5949. #endif //PINDA_THERMISTOR
  5950. void long_pause() //long pause print
  5951. {
  5952. st_synchronize();
  5953. //save currently set parameters to global variables
  5954. saved_feedmultiply = feedmultiply;
  5955. HotendTempBckp = degTargetHotend(active_extruder);
  5956. fanSpeedBckp = fanSpeed;
  5957. start_pause_print = millis();
  5958. //save position
  5959. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  5960. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  5961. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  5962. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  5963. //retract
  5964. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5965. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5966. //lift z
  5967. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  5968. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  5969. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  5970. //set nozzle target temperature to 0
  5971. setTargetHotend(0, 0);
  5972. setTargetHotend(0, 1);
  5973. setTargetHotend(0, 2);
  5974. //Move XY to side
  5975. current_position[X_AXIS] = X_PAUSE_POS;
  5976. current_position[Y_AXIS] = Y_PAUSE_POS;
  5977. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5978. // Turn off the print fan
  5979. fanSpeed = 0;
  5980. st_synchronize();
  5981. }
  5982. void serialecho_temperatures() {
  5983. float tt = degHotend(active_extruder);
  5984. SERIAL_PROTOCOLPGM("T:");
  5985. SERIAL_PROTOCOL(tt);
  5986. SERIAL_PROTOCOLPGM(" E:");
  5987. SERIAL_PROTOCOL((int)active_extruder);
  5988. SERIAL_PROTOCOLPGM(" B:");
  5989. SERIAL_PROTOCOL_F(degBed(), 1);
  5990. SERIAL_PROTOCOLLN("");
  5991. }
  5992. extern uint32_t sdpos_atomic;
  5993. void uvlo_()
  5994. {
  5995. unsigned long time_start = millis();
  5996. // Conserve power as soon as possible.
  5997. disable_x();
  5998. disable_y();
  5999. // Indicate that the interrupt has been triggered.
  6000. SERIAL_ECHOLNPGM("UVLO");
  6001. // Read out the current Z motor microstep counter. This will be later used
  6002. // for reaching the zero full step before powering off.
  6003. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6004. // Calculate the file position, from which to resume this print.
  6005. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6006. {
  6007. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6008. sd_position -= sdlen_planner;
  6009. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6010. sd_position -= sdlen_cmdqueue;
  6011. if (sd_position < 0) sd_position = 0;
  6012. }
  6013. // Backup the feedrate in mm/min.
  6014. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6015. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6016. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6017. // are in action.
  6018. planner_abort_hard();
  6019. // Clean the input command queue.
  6020. cmdqueue_reset();
  6021. card.sdprinting = false;
  6022. // card.closefile();
  6023. // Enable stepper driver interrupt to move Z axis.
  6024. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6025. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6026. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6027. sei();
  6028. plan_buffer_line(
  6029. current_position[X_AXIS],
  6030. current_position[Y_AXIS],
  6031. current_position[Z_AXIS],
  6032. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6033. 400, active_extruder);
  6034. plan_buffer_line(
  6035. current_position[X_AXIS],
  6036. current_position[Y_AXIS],
  6037. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6038. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6039. 40, active_extruder);
  6040. // Move Z up to the next 0th full step.
  6041. // Write the file position.
  6042. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6043. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6044. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6045. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6046. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6047. // Scale the z value to 1u resolution.
  6048. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6049. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6050. }
  6051. // Read out the current Z motor microstep counter. This will be later used
  6052. // for reaching the zero full step before powering off.
  6053. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6054. // Store the current position.
  6055. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6056. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6057. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6058. // Store the current feed rate, temperatures and fan speed.
  6059. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6060. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6061. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6062. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6063. // Finaly store the "power outage" flag.
  6064. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6065. st_synchronize();
  6066. SERIAL_ECHOPGM("stps");
  6067. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6068. #if 0
  6069. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6070. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6071. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6072. st_synchronize();
  6073. #endif
  6074. disable_z();
  6075. // Increment power failure counter
  6076. uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
  6077. power_count++;
  6078. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
  6079. SERIAL_ECHOLNPGM("UVLO - end");
  6080. MYSERIAL.println(millis() - time_start);
  6081. cli();
  6082. while(1);
  6083. }
  6084. void setup_fan_interrupt() {
  6085. //INT7
  6086. DDRE &= ~(1 << 7); //input pin
  6087. PORTE &= ~(1 << 7); //no internal pull-up
  6088. //start with sensing rising edge
  6089. EICRB &= ~(1 << 6);
  6090. EICRB |= (1 << 7);
  6091. //enable INT7 interrupt
  6092. EIMSK |= (1 << 7);
  6093. }
  6094. ISR(INT7_vect) {
  6095. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6096. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6097. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6098. t_fan_rising_edge = millis();
  6099. }
  6100. else { //interrupt was triggered by falling edge
  6101. if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6102. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6103. }
  6104. }
  6105. EICRB ^= (1 << 6); //change edge
  6106. }
  6107. void setup_uvlo_interrupt() {
  6108. DDRE &= ~(1 << 4); //input pin
  6109. PORTE &= ~(1 << 4); //no internal pull-up
  6110. //sensing falling edge
  6111. EICRB |= (1 << 0);
  6112. EICRB &= ~(1 << 1);
  6113. //enable INT4 interrupt
  6114. EIMSK |= (1 << 4);
  6115. }
  6116. ISR(INT4_vect) {
  6117. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6118. SERIAL_ECHOLNPGM("INT4");
  6119. if (IS_SD_PRINTING) uvlo_();
  6120. }
  6121. void recover_print(uint8_t automatic) {
  6122. char cmd[30];
  6123. lcd_update_enable(true);
  6124. lcd_update(2);
  6125. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6126. recover_machine_state_after_power_panic();
  6127. // Set the target bed and nozzle temperatures.
  6128. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6129. enquecommand(cmd);
  6130. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6131. enquecommand(cmd);
  6132. // Lift the print head, so one may remove the excess priming material.
  6133. if (current_position[Z_AXIS] < 25)
  6134. enquecommand_P(PSTR("G1 Z25 F800"));
  6135. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6136. enquecommand_P(PSTR("G28 X Y"));
  6137. // Set the target bed and nozzle temperatures and wait.
  6138. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6139. enquecommand(cmd);
  6140. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6141. enquecommand(cmd);
  6142. enquecommand_P(PSTR("M83")); //E axis relative mode
  6143. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6144. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6145. if(automatic == 0){
  6146. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6147. }
  6148. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6149. // Mark the power panic status as inactive.
  6150. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6151. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6152. delay_keep_alive(1000);
  6153. }*/
  6154. SERIAL_ECHOPGM("After waiting for temp:");
  6155. SERIAL_ECHOPGM("Current position X_AXIS:");
  6156. MYSERIAL.println(current_position[X_AXIS]);
  6157. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6158. MYSERIAL.println(current_position[Y_AXIS]);
  6159. // Restart the print.
  6160. restore_print_from_eeprom();
  6161. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6162. MYSERIAL.print(current_position[Z_AXIS]);
  6163. }
  6164. void recover_machine_state_after_power_panic()
  6165. {
  6166. // 1) Recover the logical cordinates at the time of the power panic.
  6167. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6168. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6169. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6170. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6171. // The current position after power panic is moved to the next closest 0th full step.
  6172. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6173. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6174. memcpy(destination, current_position, sizeof(destination));
  6175. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6176. print_world_coordinates();
  6177. // 2) Initialize the logical to physical coordinate system transformation.
  6178. world2machine_initialize();
  6179. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6180. mbl.active = false;
  6181. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6182. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6183. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6184. // Scale the z value to 10u resolution.
  6185. int16_t v;
  6186. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6187. if (v != 0)
  6188. mbl.active = true;
  6189. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6190. }
  6191. if (mbl.active)
  6192. mbl.upsample_3x3();
  6193. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6194. print_mesh_bed_leveling_table();
  6195. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6196. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6197. babystep_load();
  6198. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6199. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6200. // 6) Power up the motors, mark their positions as known.
  6201. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6202. axis_known_position[X_AXIS] = true; enable_x();
  6203. axis_known_position[Y_AXIS] = true; enable_y();
  6204. axis_known_position[Z_AXIS] = true; enable_z();
  6205. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6206. print_physical_coordinates();
  6207. // 7) Recover the target temperatures.
  6208. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6209. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6210. }
  6211. void restore_print_from_eeprom() {
  6212. float x_rec, y_rec, z_pos;
  6213. int feedrate_rec;
  6214. uint8_t fan_speed_rec;
  6215. char cmd[30];
  6216. char* c;
  6217. char filename[13];
  6218. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6219. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6220. SERIAL_ECHOPGM("Feedrate:");
  6221. MYSERIAL.println(feedrate_rec);
  6222. for (int i = 0; i < 8; i++) {
  6223. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6224. }
  6225. filename[8] = '\0';
  6226. MYSERIAL.print(filename);
  6227. strcat_P(filename, PSTR(".gco"));
  6228. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6229. for (c = &cmd[4]; *c; c++)
  6230. *c = tolower(*c);
  6231. enquecommand(cmd);
  6232. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6233. SERIAL_ECHOPGM("Position read from eeprom:");
  6234. MYSERIAL.println(position);
  6235. // E axis relative mode.
  6236. enquecommand_P(PSTR("M83"));
  6237. // Move to the XY print position in logical coordinates, where the print has been killed.
  6238. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6239. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6240. strcat_P(cmd, PSTR(" F2000"));
  6241. enquecommand(cmd);
  6242. // Move the Z axis down to the print, in logical coordinates.
  6243. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6244. enquecommand(cmd);
  6245. // Unretract.
  6246. enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
  6247. // Set the feedrate saved at the power panic.
  6248. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6249. enquecommand(cmd);
  6250. // Set the fan speed saved at the power panic.
  6251. strcpy_P(cmd, PSTR("M106 S"));
  6252. strcat(cmd, itostr3(int(fan_speed_rec)));
  6253. enquecommand(cmd);
  6254. // Set a position in the file.
  6255. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6256. enquecommand(cmd);
  6257. // Start SD print.
  6258. enquecommand_P(PSTR("M24"));
  6259. }
  6260. ////////////////////////////////////////////////////////////////////////////////
  6261. // new save/restore printing
  6262. //extern uint32_t sdpos_atomic;
  6263. bool saved_printing = false;
  6264. uint32_t saved_sdpos = 0;
  6265. float saved_pos[4] = {0, 0, 0, 0};
  6266. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6267. float saved_feedrate2 = 0;
  6268. uint8_t saved_active_extruder = 0;
  6269. bool saved_extruder_under_pressure = false;
  6270. void stop_and_save_print_to_ram(float z_move, float e_move)
  6271. {
  6272. if (saved_printing) return;
  6273. cli();
  6274. unsigned char nplanner_blocks = number_of_blocks();
  6275. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6276. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6277. saved_sdpos -= sdlen_planner;
  6278. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6279. saved_sdpos -= sdlen_cmdqueue;
  6280. #if 0
  6281. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6282. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6283. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6284. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6285. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6286. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6287. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6288. {
  6289. card.setIndex(saved_sdpos);
  6290. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6291. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6292. MYSERIAL.print(char(card.get()));
  6293. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6294. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6295. MYSERIAL.print(char(card.get()));
  6296. SERIAL_ECHOLNPGM("End of command buffer");
  6297. }
  6298. {
  6299. // Print the content of the planner buffer, line by line:
  6300. card.setIndex(saved_sdpos);
  6301. int8_t iline = 0;
  6302. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6303. SERIAL_ECHOPGM("Planner line (from file): ");
  6304. MYSERIAL.print(int(iline), DEC);
  6305. SERIAL_ECHOPGM(", length: ");
  6306. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6307. SERIAL_ECHOPGM(", steps: (");
  6308. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6309. SERIAL_ECHOPGM(",");
  6310. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6311. SERIAL_ECHOPGM(",");
  6312. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6313. SERIAL_ECHOPGM(",");
  6314. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6315. SERIAL_ECHOPGM("), events: ");
  6316. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6317. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6318. MYSERIAL.print(char(card.get()));
  6319. }
  6320. }
  6321. {
  6322. // Print the content of the command buffer, line by line:
  6323. int8_t iline = 0;
  6324. union {
  6325. struct {
  6326. char lo;
  6327. char hi;
  6328. } lohi;
  6329. uint16_t value;
  6330. } sdlen_single;
  6331. int _bufindr = bufindr;
  6332. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6333. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6334. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6335. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6336. }
  6337. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6338. MYSERIAL.print(int(iline), DEC);
  6339. SERIAL_ECHOPGM(", type: ");
  6340. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6341. SERIAL_ECHOPGM(", len: ");
  6342. MYSERIAL.println(sdlen_single.value, DEC);
  6343. // Print the content of the buffer line.
  6344. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6345. SERIAL_ECHOPGM("Buffer line (from file): ");
  6346. MYSERIAL.print(int(iline), DEC);
  6347. MYSERIAL.println(int(iline), DEC);
  6348. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6349. MYSERIAL.print(char(card.get()));
  6350. if (-- _buflen == 0)
  6351. break;
  6352. // First skip the current command ID and iterate up to the end of the string.
  6353. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6354. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6355. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6356. // If the end of the buffer was empty,
  6357. if (_bufindr == sizeof(cmdbuffer)) {
  6358. // skip to the start and find the nonzero command.
  6359. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6360. }
  6361. }
  6362. }
  6363. #endif
  6364. #if 0
  6365. saved_feedrate2 = feedrate; //save feedrate
  6366. #else
  6367. // Try to deduce the feedrate from the first block of the planner.
  6368. // Speed is in mm/min.
  6369. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6370. #endif
  6371. planner_abort_hard(); //abort printing
  6372. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6373. saved_active_extruder = active_extruder; //save active_extruder
  6374. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6375. cmdqueue_reset(); //empty cmdqueue
  6376. card.sdprinting = false;
  6377. // card.closefile();
  6378. saved_printing = true;
  6379. sei();
  6380. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6381. #if 1
  6382. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6383. char buf[48];
  6384. strcpy_P(buf, PSTR("G1 Z"));
  6385. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6386. strcat_P(buf, PSTR(" E"));
  6387. // Relative extrusion
  6388. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6389. strcat_P(buf, PSTR(" F"));
  6390. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6391. // At this point the command queue is empty.
  6392. enquecommand(buf, false);
  6393. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6394. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6395. repeatcommand_front();
  6396. #else
  6397. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6398. st_synchronize(); //wait moving
  6399. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6400. memcpy(destination, current_position, sizeof(destination));
  6401. #endif
  6402. }
  6403. }
  6404. void restore_print_from_ram_and_continue(float e_move)
  6405. {
  6406. if (!saved_printing) return;
  6407. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6408. // current_position[axis] = st_get_position_mm(axis);
  6409. active_extruder = saved_active_extruder; //restore active_extruder
  6410. feedrate = saved_feedrate2; //restore feedrate
  6411. float e = saved_pos[E_AXIS] - e_move;
  6412. plan_set_e_position(e);
  6413. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6414. st_synchronize();
  6415. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6416. memcpy(destination, current_position, sizeof(destination));
  6417. card.setIndex(saved_sdpos);
  6418. sdpos_atomic = saved_sdpos;
  6419. card.sdprinting = true;
  6420. saved_printing = false;
  6421. }
  6422. void print_world_coordinates()
  6423. {
  6424. SERIAL_ECHOPGM("world coordinates: (");
  6425. MYSERIAL.print(current_position[X_AXIS], 3);
  6426. SERIAL_ECHOPGM(", ");
  6427. MYSERIAL.print(current_position[Y_AXIS], 3);
  6428. SERIAL_ECHOPGM(", ");
  6429. MYSERIAL.print(current_position[Z_AXIS], 3);
  6430. SERIAL_ECHOLNPGM(")");
  6431. }
  6432. void print_physical_coordinates()
  6433. {
  6434. SERIAL_ECHOPGM("physical coordinates: (");
  6435. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6436. SERIAL_ECHOPGM(", ");
  6437. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6438. SERIAL_ECHOPGM(", ");
  6439. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6440. SERIAL_ECHOLNPGM(")");
  6441. }
  6442. void print_mesh_bed_leveling_table()
  6443. {
  6444. SERIAL_ECHOPGM("mesh bed leveling: ");
  6445. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6446. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6447. MYSERIAL.print(mbl.z_values[y][x], 3);
  6448. SERIAL_ECHOPGM(" ");
  6449. }
  6450. SERIAL_ECHOLNPGM("");
  6451. }