planner.cpp 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #include "ConfigurationStore.h"
  43. #ifdef MESH_BED_LEVELING
  44. #include "mesh_bed_leveling.h"
  45. #include "mesh_bed_calibration.h"
  46. #endif
  47. #ifdef TMC2130
  48. #include "tmc2130.h"
  49. #endif //TMC2130
  50. //===========================================================================
  51. //=============================public variables ============================
  52. //===========================================================================
  53. // Use M203 to override by software
  54. float* max_feedrate = cs.max_feedrate_normal;
  55. // Use M201 to override by software
  56. unsigned long* max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  57. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  58. #ifdef ENABLE_AUTO_BED_LEVELING
  59. // this holds the required transform to compensate for bed level
  60. matrix_3x3 plan_bed_level_matrix = {
  61. 1.0, 0.0, 0.0,
  62. 0.0, 1.0, 0.0,
  63. 0.0, 0.0, 1.0,
  64. };
  65. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  66. // The current position of the tool in absolute steps
  67. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  68. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  69. static float previous_nominal_speed; // Nominal speed of previous path line segment
  70. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  71. uint8_t maxlimit_status;
  72. #ifdef AUTOTEMP
  73. float autotemp_max=250;
  74. float autotemp_min=210;
  75. float autotemp_factor=0.1;
  76. bool autotemp_enabled=false;
  77. #endif
  78. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  79. //===========================================================================
  80. //=================semi-private variables, used in inline functions =====
  81. //===========================================================================
  82. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  83. volatile uint8_t block_buffer_head; // Index of the next block to be pushed
  84. volatile uint8_t block_buffer_tail; // Index of the block to process now
  85. #ifdef PLANNER_DIAGNOSTICS
  86. // Diagnostic function: Minimum number of planned moves since the last
  87. static uint8_t g_cntr_planner_queue_min = 0;
  88. #endif /* PLANNER_DIAGNOSTICS */
  89. //===========================================================================
  90. //=============================private variables ============================
  91. //===========================================================================
  92. #ifdef PREVENT_DANGEROUS_EXTRUDE
  93. float extrude_min_temp=EXTRUDE_MINTEMP;
  94. #endif
  95. #ifdef LIN_ADVANCE
  96. float extruder_advance_K = LA_K_DEF;
  97. float position_float[NUM_AXIS];
  98. #endif
  99. // Request the next block to start at zero E count
  100. static bool plan_reset_next_e_queue;
  101. static bool plan_reset_next_e_sched;
  102. // Returns the index of the next block in the ring buffer
  103. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  104. static inline uint8_t next_block_index(uint8_t block_index) {
  105. if (++ block_index == BLOCK_BUFFER_SIZE)
  106. block_index = 0;
  107. return block_index;
  108. }
  109. // Returns the index of the previous block in the ring buffer
  110. static inline uint8_t prev_block_index(uint8_t block_index) {
  111. if (block_index == 0)
  112. block_index = BLOCK_BUFFER_SIZE;
  113. -- block_index;
  114. return block_index;
  115. }
  116. //===========================================================================
  117. //=============================functions ============================
  118. //===========================================================================
  119. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  120. // given acceleration:
  121. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  122. {
  123. if (acceleration!=0) {
  124. return((target_rate*target_rate-initial_rate*initial_rate)/
  125. (2.0*acceleration));
  126. }
  127. else {
  128. return 0.0; // acceleration was 0, set acceleration distance to 0
  129. }
  130. }
  131. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  132. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  133. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  134. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  135. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  136. {
  137. if (acceleration!=0) {
  138. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  139. (4.0*acceleration) );
  140. }
  141. else {
  142. return 0.0; // acceleration was 0, set intersection distance to 0
  143. }
  144. }
  145. // Minimum stepper rate 120Hz.
  146. #define MINIMAL_STEP_RATE 120
  147. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  148. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  149. {
  150. // These two lines are the only floating point calculations performed in this routine.
  151. // initial_rate, final_rate in Hz.
  152. // Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
  153. // the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
  154. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  155. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  156. // Limit minimal step rate (Otherwise the timer will overflow.)
  157. if (initial_rate < MINIMAL_STEP_RATE)
  158. initial_rate = MINIMAL_STEP_RATE;
  159. if (initial_rate > block->nominal_rate)
  160. initial_rate = block->nominal_rate;
  161. if (final_rate < MINIMAL_STEP_RATE)
  162. final_rate = MINIMAL_STEP_RATE;
  163. if (final_rate > block->nominal_rate)
  164. final_rate = block->nominal_rate;
  165. uint32_t acceleration = block->acceleration_st;
  166. if (acceleration == 0)
  167. // Don't allow zero acceleration.
  168. acceleration = 1;
  169. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  170. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  171. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  172. //FIXME assert that this result fits a 64bit unsigned int.
  173. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  174. uint32_t final_rate_sqr = final_rate*final_rate;
  175. uint32_t acceleration_x2 = acceleration << 1;
  176. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  177. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  178. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  179. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  180. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  181. // Size of Plateau of Nominal Rate.
  182. uint32_t plateau_steps = 0;
  183. #ifdef LIN_ADVANCE
  184. uint16_t final_adv_steps = 0;
  185. uint16_t max_adv_steps = 0;
  186. if (block->use_advance_lead) {
  187. final_adv_steps = final_rate * block->adv_comp;
  188. }
  189. #endif
  190. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  191. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  192. // in order to reach the final_rate exactly at the end of this block.
  193. if (accel_decel_steps < block->step_event_count.wide) {
  194. plateau_steps = block->step_event_count.wide - accel_decel_steps;
  195. #ifdef LIN_ADVANCE
  196. if (block->use_advance_lead)
  197. max_adv_steps = block->nominal_rate * block->adv_comp;
  198. #endif
  199. } else {
  200. uint32_t acceleration_x4 = acceleration << 2;
  201. // Avoid negative numbers
  202. if (final_rate_sqr >= initial_rate_sqr) {
  203. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  204. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  205. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  206. #if 0
  207. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  208. #else
  209. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  210. if (block->step_event_count.wide & 1)
  211. accelerate_steps += acceleration_x2;
  212. accelerate_steps /= acceleration_x4;
  213. accelerate_steps += (block->step_event_count.wide >> 1);
  214. #endif
  215. if (accelerate_steps > block->step_event_count.wide)
  216. accelerate_steps = block->step_event_count.wide;
  217. } else {
  218. #if 0
  219. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  220. #else
  221. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  222. if (block->step_event_count.wide & 1)
  223. decelerate_steps += acceleration_x2;
  224. decelerate_steps /= acceleration_x4;
  225. decelerate_steps += (block->step_event_count.wide >> 1);
  226. #endif
  227. if (decelerate_steps > block->step_event_count.wide)
  228. decelerate_steps = block->step_event_count.wide;
  229. accelerate_steps = block->step_event_count.wide - decelerate_steps;
  230. }
  231. #ifdef LIN_ADVANCE
  232. if (block->use_advance_lead) {
  233. if(!accelerate_steps || !decelerate_steps) {
  234. // accelerate_steps=0: deceleration-only ramp, max_rate is effectively unused
  235. // decelerate_steps=0: acceleration-only ramp, max_rate _is_ final_rate
  236. max_adv_steps = final_adv_steps;
  237. } else {
  238. float max_rate = sqrt(acceleration_x2 * accelerate_steps + initial_rate_sqr);
  239. max_adv_steps = max_rate * block->adv_comp;
  240. }
  241. }
  242. #endif
  243. }
  244. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  245. // This block locks the interrupts globally for 4.38 us,
  246. // which corresponds to a maximum repeat frequency of 228.57 kHz.
  247. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  248. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  249. if (! block->busy) { // Don't update variables if block is busy.
  250. block->accelerate_until = accelerate_steps;
  251. block->decelerate_after = accelerate_steps+plateau_steps;
  252. block->initial_rate = initial_rate;
  253. block->final_rate = final_rate;
  254. #ifdef LIN_ADVANCE
  255. block->final_adv_steps = final_adv_steps;
  256. block->max_adv_steps = max_adv_steps;
  257. #endif
  258. }
  259. CRITICAL_SECTION_END;
  260. }
  261. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  262. // decceleration within the allotted distance.
  263. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  264. {
  265. // assert(decceleration < 0);
  266. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  267. }
  268. // Recalculates the motion plan according to the following algorithm:
  269. //
  270. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  271. // so that:
  272. // a. The junction jerk is within the set limit
  273. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  274. // acceleration.
  275. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  276. // a. The speed increase within one block would require faster accelleration than the one, true
  277. // constant acceleration.
  278. //
  279. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  280. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  281. // the set limit. Finally it will:
  282. //
  283. // 3. Recalculate trapezoids for all blocks.
  284. //
  285. //FIXME This routine is called 15x every time a new line is added to the planner,
  286. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  287. // if the CPU is found lacking computational power.
  288. //
  289. // Following sources may be used to optimize the 8-bit AVR code:
  290. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  291. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  292. //
  293. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  294. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  295. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  296. //
  297. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  298. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  299. // https://github.com/rekka/avrmultiplication
  300. //
  301. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  302. // https://courses.cit.cornell.edu/ee476/Math/
  303. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  304. //
  305. void planner_recalculate(const float &safe_final_speed)
  306. {
  307. // Reverse pass
  308. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  309. // by consuming the blocks, therefore shortening the queue.
  310. uint8_t tail = block_buffer_tail;
  311. uint8_t block_index;
  312. block_t *prev, *current, *next;
  313. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  314. // At least three blocks are in the queue?
  315. uint8_t n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  316. if (n_blocks >= 3) {
  317. // Initialize the last tripple of blocks.
  318. block_index = prev_block_index(block_buffer_head);
  319. next = block_buffer + block_index;
  320. current = block_buffer + (block_index = prev_block_index(block_index));
  321. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  322. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  323. // 1) it may already be running at the stepper interrupt,
  324. // 2) there is no way to limit it when going in the forward direction.
  325. while (block_index != tail) {
  326. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  327. // Don't modify the entry velocity of the starting block.
  328. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  329. // for the stepper interrupt routine to use them.
  330. tail = block_index;
  331. // Update the number of blocks to process.
  332. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  333. // SERIAL_ECHOLNPGM("START");
  334. break;
  335. }
  336. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  337. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  338. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  339. if (current->entry_speed != current->max_entry_speed) {
  340. // assert(current->entry_speed < current->max_entry_speed);
  341. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  342. // segment and the maximum acceleration allowed for this segment.
  343. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  344. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  345. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  346. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  347. // together with an assembly 32bit->16bit sqrt function.
  348. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  349. current->max_entry_speed :
  350. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  351. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  352. current->flag |= BLOCK_FLAG_RECALCULATE;
  353. }
  354. next = current;
  355. current = block_buffer + (block_index = prev_block_index(block_index));
  356. }
  357. }
  358. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  359. // Forward pass and recalculate the trapezoids.
  360. if (n_blocks >= 2) {
  361. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  362. block_index = tail;
  363. prev = block_buffer + block_index;
  364. current = block_buffer + (block_index = next_block_index(block_index));
  365. do {
  366. // If the previous block is an acceleration block, but it is not long enough to complete the
  367. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  368. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  369. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  370. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  371. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  372. // Check for junction speed change
  373. if (current->entry_speed != entry_speed) {
  374. current->entry_speed = entry_speed;
  375. current->flag |= BLOCK_FLAG_RECALCULATE;
  376. }
  377. }
  378. // Recalculate if current block entry or exit junction speed has changed.
  379. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  380. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  381. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  382. // Reset current only to ensure next trapezoid is computed.
  383. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  384. }
  385. prev = current;
  386. current = block_buffer + (block_index = next_block_index(block_index));
  387. } while (block_index != block_buffer_head);
  388. }
  389. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  390. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  391. current = block_buffer + prev_block_index(block_buffer_head);
  392. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  393. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  394. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  395. }
  396. void plan_init() {
  397. block_buffer_head = 0;
  398. block_buffer_tail = 0;
  399. memset(position, 0, sizeof(position)); // clear position
  400. #ifdef LIN_ADVANCE
  401. memset(position_float, 0, sizeof(position_float)); // clear position
  402. #endif
  403. previous_speed[0] = 0.0;
  404. previous_speed[1] = 0.0;
  405. previous_speed[2] = 0.0;
  406. previous_speed[3] = 0.0;
  407. previous_nominal_speed = 0.0;
  408. plan_reset_next_e_queue = false;
  409. plan_reset_next_e_sched = false;
  410. }
  411. #ifdef AUTOTEMP
  412. void getHighESpeed()
  413. {
  414. static float oldt=0;
  415. if(!autotemp_enabled){
  416. return;
  417. }
  418. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  419. return; //do nothing
  420. }
  421. float high=0.0;
  422. uint8_t block_index = block_buffer_tail;
  423. while(block_index != block_buffer_head) {
  424. if((block_buffer[block_index].steps_x.wide != 0) ||
  425. (block_buffer[block_index].steps_y.wide != 0) ||
  426. (block_buffer[block_index].steps_z.wide != 0)) {
  427. float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
  428. //se; mm/sec;
  429. if(se>high)
  430. {
  431. high=se;
  432. }
  433. }
  434. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  435. }
  436. float g=autotemp_min+high*autotemp_factor;
  437. float t=g;
  438. if(t<autotemp_min)
  439. t=autotemp_min;
  440. if(t>autotemp_max)
  441. t=autotemp_max;
  442. if(oldt>t)
  443. {
  444. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  445. }
  446. oldt=t;
  447. setTargetHotend0(t);
  448. }
  449. #endif
  450. bool e_active()
  451. {
  452. unsigned char e_active = 0;
  453. block_t *block;
  454. if(block_buffer_tail != block_buffer_head)
  455. {
  456. uint8_t block_index = block_buffer_tail;
  457. while(block_index != block_buffer_head)
  458. {
  459. block = &block_buffer[block_index];
  460. if(block->steps_e.wide != 0) e_active++;
  461. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  462. }
  463. }
  464. return (e_active > 0) ? true : false ;
  465. }
  466. void check_axes_activity()
  467. {
  468. unsigned char x_active = 0;
  469. unsigned char y_active = 0;
  470. unsigned char z_active = 0;
  471. unsigned char e_active = 0;
  472. unsigned char tail_fan_speed = fanSpeed;
  473. block_t *block;
  474. if(block_buffer_tail != block_buffer_head)
  475. {
  476. uint8_t block_index = block_buffer_tail;
  477. tail_fan_speed = block_buffer[block_index].fan_speed;
  478. while(block_index != block_buffer_head)
  479. {
  480. block = &block_buffer[block_index];
  481. if(block->steps_x.wide != 0) x_active++;
  482. if(block->steps_y.wide != 0) y_active++;
  483. if(block->steps_z.wide != 0) z_active++;
  484. if(block->steps_e.wide != 0) e_active++;
  485. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  486. }
  487. }
  488. if((DISABLE_X) && (x_active == 0)) disable_x();
  489. if((DISABLE_Y) && (y_active == 0)) disable_y();
  490. if((DISABLE_Z) && (z_active == 0)) disable_z();
  491. if((DISABLE_E) && (e_active == 0))
  492. {
  493. disable_e0();
  494. disable_e1();
  495. disable_e2();
  496. }
  497. #if defined(FAN_PIN) && FAN_PIN > -1
  498. #ifdef FAN_KICKSTART_TIME
  499. static unsigned long fan_kick_end;
  500. if (tail_fan_speed) {
  501. if (fan_kick_end == 0) {
  502. // Just starting up fan - run at full power.
  503. fan_kick_end = _millis() + FAN_KICKSTART_TIME;
  504. tail_fan_speed = 255;
  505. } else if (fan_kick_end > _millis())
  506. // Fan still spinning up.
  507. tail_fan_speed = 255;
  508. } else {
  509. fan_kick_end = 0;
  510. }
  511. #endif//FAN_KICKSTART_TIME
  512. #ifdef FAN_SOFT_PWM
  513. if (fan_measuring) { //if measurement is currently in process, fanSpeedSoftPwm must remain set to 255, but we must update fanSpeedBckp value
  514. fanSpeedBckp = tail_fan_speed;
  515. }
  516. else {
  517. fanSpeedSoftPwm = tail_fan_speed;
  518. }
  519. //printf_P(PSTR("fanspeedsoftPWM %d \n"), fanSpeedSoftPwm);
  520. #else
  521. analogWrite(FAN_PIN,tail_fan_speed);
  522. #endif//!FAN_SOFT_PWM
  523. #endif//FAN_PIN > -1
  524. #ifdef AUTOTEMP
  525. getHighESpeed();
  526. #endif
  527. }
  528. bool waiting_inside_plan_buffer_line_print_aborted = false;
  529. /*
  530. void planner_abort_soft()
  531. {
  532. // Empty the queue.
  533. while (blocks_queued()) plan_discard_current_block();
  534. // Relay to planner wait routine, that the current line shall be canceled.
  535. waiting_inside_plan_buffer_line_print_aborted = true;
  536. //current_position[i]
  537. }
  538. */
  539. #ifdef PLANNER_DIAGNOSTICS
  540. static inline void planner_update_queue_min_counter()
  541. {
  542. uint8_t new_counter = moves_planned();
  543. if (new_counter < g_cntr_planner_queue_min)
  544. g_cntr_planner_queue_min = new_counter;
  545. }
  546. #endif /* PLANNER_DIAGNOSTICS */
  547. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  548. void planner_abort_hard()
  549. {
  550. // Abort the stepper routine and flush the planner queue.
  551. DISABLE_STEPPER_DRIVER_INTERRUPT();
  552. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  553. // First update the planner's current position in the physical motor steps.
  554. position[X_AXIS] = st_get_position(X_AXIS);
  555. position[Y_AXIS] = st_get_position(Y_AXIS);
  556. position[Z_AXIS] = st_get_position(Z_AXIS);
  557. position[E_AXIS] = st_get_position(E_AXIS);
  558. // Second update the current position of the front end.
  559. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  560. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  561. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  562. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  563. // Apply the mesh bed leveling correction to the Z axis.
  564. #ifdef MESH_BED_LEVELING
  565. if (mbl.active) {
  566. #if 1
  567. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  568. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  569. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  570. #else
  571. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  572. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  573. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  574. else {
  575. float t = float(step_events_completed) / float(current_block->step_event_count);
  576. float vec[3] = {
  577. current_block->steps_x / cs.axis_steps_per_unit[X_AXIS],
  578. current_block->steps_y / cs.axis_steps_per_unit[Y_AXIS],
  579. current_block->steps_z / cs.axis_steps_per_unit[Z_AXIS]
  580. };
  581. float pos1[3], pos2[3];
  582. for (int8_t i = 0; i < 3; ++ i) {
  583. if (current_block->direction_bits & (1<<i))
  584. vec[i] = - vec[i];
  585. pos1[i] = current_position[i] - vec[i] * t;
  586. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  587. }
  588. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  589. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  590. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  591. }
  592. #endif
  593. }
  594. #endif
  595. // Clear the planner queue, reset and re-enable the stepper timer.
  596. quickStop();
  597. // Apply inverse world correction matrix.
  598. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  599. memcpy(destination, current_position, sizeof(destination));
  600. #ifdef LIN_ADVANCE
  601. memcpy(position_float, current_position, sizeof(position_float));
  602. #endif
  603. // Resets planner junction speeds. Assumes start from rest.
  604. previous_nominal_speed = 0.0;
  605. previous_speed[0] = 0.0;
  606. previous_speed[1] = 0.0;
  607. previous_speed[2] = 0.0;
  608. previous_speed[3] = 0.0;
  609. plan_reset_next_e_queue = false;
  610. plan_reset_next_e_sched = false;
  611. // Relay to planner wait routine, that the current line shall be canceled.
  612. waiting_inside_plan_buffer_line_print_aborted = true;
  613. }
  614. void plan_buffer_line_curposXYZE(float feed_rate) {
  615. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder );
  616. }
  617. void plan_buffer_line_destinationXYZE(float feed_rate) {
  618. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_rate, active_extruder);
  619. }
  620. void plan_set_position_curposXYZE(){
  621. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  622. }
  623. float junction_deviation = 0.1;
  624. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  625. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  626. // calculation the caller must also provide the physical length of the line in millimeters.
  627. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, uint8_t extruder, const float* gcode_target)
  628. {
  629. // Calculate the buffer head after we push this byte
  630. uint8_t next_buffer_head = next_block_index(block_buffer_head);
  631. // If the buffer is full: good! That means we are well ahead of the robot.
  632. // Rest here until there is room in the buffer.
  633. waiting_inside_plan_buffer_line_print_aborted = false;
  634. if (block_buffer_tail == next_buffer_head) {
  635. do {
  636. manage_heater();
  637. // Vojtech: Don't disable motors inside the planner!
  638. manage_inactivity(false);
  639. lcd_update(0);
  640. } while (block_buffer_tail == next_buffer_head);
  641. if (waiting_inside_plan_buffer_line_print_aborted) {
  642. // Inside the lcd_update(0) routine the print has been aborted.
  643. // Cancel the print, do not plan the current line this routine is waiting on.
  644. #ifdef PLANNER_DIAGNOSTICS
  645. planner_update_queue_min_counter();
  646. #endif /* PLANNER_DIAGNOSTICS */
  647. return;
  648. }
  649. }
  650. #ifdef PLANNER_DIAGNOSTICS
  651. planner_update_queue_min_counter();
  652. #endif /* PLANNER_DIAGNOSTICS */
  653. // Prepare to set up new block
  654. block_t *block = &block_buffer[block_buffer_head];
  655. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  656. block->busy = false;
  657. // Set sdlen for calculating sd position
  658. block->sdlen = 0;
  659. // Save original destination of the move
  660. if (gcode_target)
  661. memcpy(block->gcode_target, gcode_target, sizeof(block_t::gcode_target));
  662. else
  663. {
  664. block->gcode_target[X_AXIS] = x;
  665. block->gcode_target[Y_AXIS] = y;
  666. block->gcode_target[Z_AXIS] = z;
  667. block->gcode_target[E_AXIS] = e;
  668. }
  669. // Save the global feedrate at scheduling time
  670. block->gcode_feedrate = feedrate;
  671. // Reset the starting E position when requested
  672. if (plan_reset_next_e_queue)
  673. {
  674. position[E_AXIS] = 0;
  675. #ifdef LIN_ADVANCE
  676. position_float[E_AXIS] = 0;
  677. #endif
  678. // the block might still be discarded later, but we need to ensure the lower-level
  679. // count_position is also reset correctly for consistent results!
  680. plan_reset_next_e_queue = false;
  681. plan_reset_next_e_sched = true;
  682. }
  683. #ifdef ENABLE_AUTO_BED_LEVELING
  684. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  685. #endif // ENABLE_AUTO_BED_LEVELING
  686. // Apply the machine correction matrix.
  687. {
  688. #if 0
  689. SERIAL_ECHOPGM("Planner, current position - servos: ");
  690. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  691. SERIAL_ECHOPGM(", ");
  692. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  693. SERIAL_ECHOPGM(", ");
  694. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  695. SERIAL_ECHOLNPGM("");
  696. SERIAL_ECHOPGM("Planner, target position, initial: ");
  697. MYSERIAL.print(x, 5);
  698. SERIAL_ECHOPGM(", ");
  699. MYSERIAL.print(y, 5);
  700. SERIAL_ECHOLNPGM("");
  701. SERIAL_ECHOPGM("Planner, world2machine: ");
  702. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  703. SERIAL_ECHOPGM(", ");
  704. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  705. SERIAL_ECHOPGM(", ");
  706. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  707. SERIAL_ECHOPGM(", ");
  708. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  709. SERIAL_ECHOLNPGM("");
  710. SERIAL_ECHOPGM("Planner, offset: ");
  711. MYSERIAL.print(world2machine_shift[0], 5);
  712. SERIAL_ECHOPGM(", ");
  713. MYSERIAL.print(world2machine_shift[1], 5);
  714. SERIAL_ECHOLNPGM("");
  715. #endif
  716. world2machine(x, y);
  717. #if 0
  718. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  719. MYSERIAL.print(x, 5);
  720. SERIAL_ECHOPGM(", ");
  721. MYSERIAL.print(y, 5);
  722. SERIAL_ECHOLNPGM("");
  723. #endif
  724. }
  725. // The target position of the tool in absolute steps
  726. // Calculate target position in absolute steps
  727. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  728. long target[4];
  729. target[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  730. target[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  731. #ifdef MESH_BED_LEVELING
  732. if (mbl.active){
  733. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]);
  734. }else{
  735. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  736. }
  737. #else
  738. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  739. #endif // ENABLE_MESH_BED_LEVELING
  740. target[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  741. #ifdef PREVENT_DANGEROUS_EXTRUDE
  742. if(target[E_AXIS]!=position[E_AXIS])
  743. {
  744. if(degHotend(active_extruder)<extrude_min_temp)
  745. {
  746. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  747. #ifdef LIN_ADVANCE
  748. position_float[E_AXIS] = e;
  749. #endif
  750. SERIAL_ECHO_START;
  751. SERIAL_ECHOLNRPGM(_n(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP
  752. }
  753. #ifdef PREVENT_LENGTHY_EXTRUDE
  754. if(labs(target[E_AXIS]-position[E_AXIS])>cs.axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  755. {
  756. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  757. #ifdef LIN_ADVANCE
  758. position_float[E_AXIS] = e;
  759. #endif
  760. SERIAL_ECHO_START;
  761. SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP
  762. }
  763. #endif
  764. }
  765. #endif
  766. // Number of steps for each axis
  767. #ifndef COREXY
  768. // default non-h-bot planning
  769. block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
  770. block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
  771. #else
  772. // corexy planning
  773. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  774. block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  775. block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  776. #endif
  777. block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
  778. block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
  779. block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
  780. // Bail if this is a zero-length block
  781. if (block->step_event_count.wide <= dropsegments)
  782. {
  783. #ifdef PLANNER_DIAGNOSTICS
  784. planner_update_queue_min_counter();
  785. #endif /* PLANNER_DIAGNOSTICS */
  786. return;
  787. }
  788. block->fan_speed = fanSpeed;
  789. // Compute direction bits for this block
  790. block->direction_bits = 0;
  791. #ifndef COREXY
  792. if (target[X_AXIS] < position[X_AXIS])
  793. {
  794. block->direction_bits |= (1<<X_AXIS);
  795. }
  796. if (target[Y_AXIS] < position[Y_AXIS])
  797. {
  798. block->direction_bits |= (1<<Y_AXIS);
  799. }
  800. #else
  801. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  802. {
  803. block->direction_bits |= (1<<X_AXIS);
  804. }
  805. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  806. {
  807. block->direction_bits |= (1<<Y_AXIS);
  808. }
  809. #endif
  810. if (target[Z_AXIS] < position[Z_AXIS])
  811. {
  812. block->direction_bits |= (1<<Z_AXIS);
  813. }
  814. if (target[E_AXIS] < position[E_AXIS])
  815. {
  816. block->direction_bits |= (1<<E_AXIS);
  817. }
  818. block->active_extruder = extruder;
  819. //enable active axes
  820. #ifdef COREXY
  821. if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
  822. {
  823. enable_x();
  824. enable_y();
  825. }
  826. #else
  827. if(block->steps_x.wide != 0) enable_x();
  828. if(block->steps_y.wide != 0) enable_y();
  829. #endif
  830. if(block->steps_z.wide != 0) enable_z();
  831. // Enable extruder(s)
  832. if(block->steps_e.wide != 0)
  833. {
  834. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  835. {
  836. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  837. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  838. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  839. switch(extruder)
  840. {
  841. case 0:
  842. enable_e0();
  843. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  844. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  845. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  846. break;
  847. case 1:
  848. enable_e1();
  849. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  850. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  851. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  852. break;
  853. case 2:
  854. enable_e2();
  855. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  856. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  857. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  858. break;
  859. }
  860. }
  861. else //enable all
  862. {
  863. enable_e0();
  864. enable_e1();
  865. enable_e2();
  866. }
  867. }
  868. if (block->steps_e.wide == 0)
  869. {
  870. if(feed_rate<cs.mintravelfeedrate) feed_rate=cs.mintravelfeedrate;
  871. }
  872. else
  873. {
  874. if(feed_rate<cs.minimumfeedrate) feed_rate=cs.minimumfeedrate;
  875. }
  876. /* This part of the code calculates the total length of the movement.
  877. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  878. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  879. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  880. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  881. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  882. */
  883. #ifndef COREXY
  884. float delta_mm[4];
  885. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  886. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  887. #else
  888. float delta_mm[6];
  889. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  890. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  891. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[X_AXIS];
  892. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[Y_AXIS];
  893. #endif
  894. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/cs.axis_steps_per_unit[Z_AXIS];
  895. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/cs.axis_steps_per_unit[E_AXIS];
  896. if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
  897. {
  898. block->millimeters = fabs(delta_mm[E_AXIS]);
  899. }
  900. else
  901. {
  902. #ifndef COREXY
  903. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  904. #else
  905. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  906. #endif
  907. }
  908. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  909. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  910. float inverse_second = feed_rate * inverse_millimeters;
  911. int moves_queued = moves_planned();
  912. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  913. #ifdef SLOWDOWN
  914. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  915. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  916. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  917. // segment time in micro seconds
  918. unsigned long segment_time = lround(1000000.0/inverse_second);
  919. if (segment_time < cs.minsegmenttime)
  920. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  921. inverse_second=1000000.0/(segment_time+lround(2*(cs.minsegmenttime-segment_time)/moves_queued));
  922. }
  923. #endif // SLOWDOWN
  924. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  925. block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
  926. // Calculate and limit speed in mm/sec for each axis
  927. float current_speed[4];
  928. float speed_factor = 1.0; //factor <=1 do decrease speed
  929. // maxlimit_status &= ~0xf;
  930. for(int i=0; i < 4; i++)
  931. {
  932. current_speed[i] = delta_mm[i] * inverse_second;
  933. if(fabs(current_speed[i]) > max_feedrate[i])
  934. {
  935. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  936. maxlimit_status |= (1 << i);
  937. }
  938. }
  939. // Correct the speed
  940. if( speed_factor < 1.0)
  941. {
  942. for(unsigned char i=0; i < 4; i++)
  943. {
  944. current_speed[i] *= speed_factor;
  945. }
  946. block->nominal_speed *= speed_factor;
  947. block->nominal_rate *= speed_factor;
  948. }
  949. #ifdef LIN_ADVANCE
  950. float e_D_ratio = 0;
  951. #endif
  952. // Compute and limit the acceleration rate for the trapezoid generator.
  953. // block->step_event_count ... event count of the fastest axis
  954. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  955. float steps_per_mm = block->step_event_count.wide/block->millimeters;
  956. if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
  957. {
  958. block->acceleration_st = ceil(cs.retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  959. #ifdef LIN_ADVANCE
  960. block->use_advance_lead = false;
  961. #endif
  962. }
  963. else
  964. {
  965. float acceleration = (block->steps_e.wide == 0? cs.travel_acceleration: cs.acceleration);
  966. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  967. #ifdef LIN_ADVANCE
  968. /**
  969. * Use LIN_ADVANCE within this block if all these are true:
  970. *
  971. * extruder_advance_K : There is an advance factor set.
  972. * delta_mm[E_AXIS] >= 0 : Extruding or traveling, but _not_ retracting.
  973. * |delta_mm[Z_AXIS]| < 0.5 : Z is only moved for leveling (_not_ for priming)
  974. */
  975. block->use_advance_lead = extruder_advance_K > 0
  976. && delta_mm[E_AXIS] >= 0
  977. && fabs(delta_mm[Z_AXIS]) < 0.5;
  978. if (block->use_advance_lead) {
  979. #ifdef LA_FLOWADJ
  980. // M221/FLOW should change uniformly the extrusion thickness
  981. float delta_e = (e - position_float[E_AXIS]) / extruder_multiplier[extruder];
  982. #else
  983. // M221/FLOW only adjusts for an incorrect source diameter
  984. float delta_e = (e - position_float[E_AXIS]);
  985. #endif
  986. float delta_D = sqrt(sq(x - position_float[X_AXIS])
  987. + sq(y - position_float[Y_AXIS])
  988. + sq(z - position_float[Z_AXIS]));
  989. // all extrusion moves with LA require a compression which is proportional to the
  990. // extrusion_length to distance ratio (e/D)
  991. e_D_ratio = delta_e / delta_D;
  992. // Check for unusual high e_D ratio to detect if a retract move was combined with the last
  993. // print move due to min. steps per segment. Never execute this with advance! This assumes
  994. // no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print
  995. // 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
  996. if (e_D_ratio > 3.0)
  997. block->use_advance_lead = false;
  998. else if (e_D_ratio > 0) {
  999. const float max_accel_per_s2 = cs.max_jerk[E_AXIS] / (extruder_advance_K * e_D_ratio);
  1000. if (cs.acceleration > max_accel_per_s2) {
  1001. block->acceleration_st = ceil(max_accel_per_s2 * steps_per_mm);
  1002. #ifdef LA_DEBUG
  1003. SERIAL_ECHOLNPGM("LA: Block acceleration limited due to max E-jerk");
  1004. #endif
  1005. }
  1006. }
  1007. }
  1008. #endif
  1009. // Limit acceleration per axis
  1010. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  1011. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  1012. { block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; maxlimit_status |= (X_AXIS_MASK << 4); }
  1013. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  1014. { block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; maxlimit_status |= (Y_AXIS_MASK << 4); }
  1015. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  1016. { block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; maxlimit_status |= (Z_AXIS_MASK << 4); }
  1017. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
  1018. { block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; maxlimit_status |= (E_AXIS_MASK << 4); }
  1019. }
  1020. // Acceleration of the segment, in mm/sec^2
  1021. block->acceleration = block->acceleration_st / steps_per_mm;
  1022. #if 0
  1023. // Oversample diagonal movements by a power of 2 up to 8x
  1024. // to achieve more accurate diagonal movements.
  1025. uint8_t bresenham_oversample = 1;
  1026. for (uint8_t i = 0; i < 3; ++ i) {
  1027. if (block->nominal_rate >= 5000) // 5kHz
  1028. break;
  1029. block->nominal_rate << 1;
  1030. bresenham_oversample << 1;
  1031. block->step_event_count << 1;
  1032. }
  1033. if (bresenham_oversample > 1)
  1034. // Lower the acceleration steps/sec^2 to account for the oversampling.
  1035. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  1036. #endif
  1037. block->acceleration_rate = ((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  1038. // Start with a safe speed.
  1039. // Safe speed is the speed, from which the machine may halt to stop immediately.
  1040. float safe_speed = block->nominal_speed;
  1041. bool limited = false;
  1042. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1043. float jerk = fabs(current_speed[axis]);
  1044. if (jerk > cs.max_jerk[axis]) {
  1045. // The actual jerk is lower, if it has been limited by the XY jerk.
  1046. if (limited) {
  1047. // Spare one division by a following gymnastics:
  1048. // Instead of jerk *= safe_speed / block->nominal_speed,
  1049. // multiply max_jerk[axis] by the divisor.
  1050. jerk *= safe_speed;
  1051. float mjerk = cs.max_jerk[axis] * block->nominal_speed;
  1052. if (jerk > mjerk) {
  1053. safe_speed *= mjerk / jerk;
  1054. limited = true;
  1055. }
  1056. } else {
  1057. safe_speed = cs.max_jerk[axis];
  1058. limited = true;
  1059. }
  1060. }
  1061. }
  1062. // Reset the block flag.
  1063. block->flag = 0;
  1064. if (plan_reset_next_e_sched)
  1065. {
  1066. // finally propagate a pending reset
  1067. block->flag |= BLOCK_FLAG_E_RESET;
  1068. plan_reset_next_e_sched = false;
  1069. }
  1070. // Initial limit on the segment entry velocity.
  1071. float vmax_junction;
  1072. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  1073. // Is it because we don't want to tinker with the first buffer line, which
  1074. // is likely to be executed by the stepper interrupt routine soon?
  1075. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  1076. // Estimate a maximum velocity allowed at a joint of two successive segments.
  1077. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  1078. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  1079. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  1080. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  1081. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  1082. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  1083. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  1084. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  1085. float v_factor = 1.f;
  1086. limited = false;
  1087. // Now limit the jerk in all axes.
  1088. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1089. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  1090. float v_exit = previous_speed[axis];
  1091. float v_entry = current_speed [axis];
  1092. if (prev_speed_larger)
  1093. v_exit *= smaller_speed_factor;
  1094. if (limited) {
  1095. v_exit *= v_factor;
  1096. v_entry *= v_factor;
  1097. }
  1098. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  1099. float jerk =
  1100. (v_exit > v_entry) ?
  1101. ((v_entry > 0.f || v_exit < 0.f) ?
  1102. // coasting
  1103. (v_exit - v_entry) :
  1104. // axis reversal
  1105. max(v_exit, - v_entry)) :
  1106. // v_exit <= v_entry
  1107. ((v_entry < 0.f || v_exit > 0.f) ?
  1108. // coasting
  1109. (v_entry - v_exit) :
  1110. // axis reversal
  1111. max(- v_exit, v_entry));
  1112. if (jerk > cs.max_jerk[axis]) {
  1113. v_factor *= cs.max_jerk[axis] / jerk;
  1114. limited = true;
  1115. }
  1116. }
  1117. if (limited)
  1118. vmax_junction *= v_factor;
  1119. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1120. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1121. float vmax_junction_threshold = vmax_junction * 0.99f;
  1122. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1123. // Not coasting. The machine will stop and start the movements anyway,
  1124. // better to start the segment from start.
  1125. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1126. vmax_junction = safe_speed;
  1127. }
  1128. } else {
  1129. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1130. vmax_junction = safe_speed;
  1131. }
  1132. // Max entry speed of this block equals the max exit speed of the previous block.
  1133. block->max_entry_speed = vmax_junction;
  1134. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1135. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1136. block->entry_speed = min(vmax_junction, v_allowable);
  1137. // Initialize planner efficiency flags
  1138. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1139. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1140. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1141. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1142. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1143. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1144. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1145. // Always calculate trapezoid for new block
  1146. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1147. // Update previous path unit_vector and nominal speed
  1148. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1149. previous_nominal_speed = block->nominal_speed;
  1150. previous_safe_speed = safe_speed;
  1151. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1152. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1153. #ifdef LIN_ADVANCE
  1154. if (block->use_advance_lead) {
  1155. // calculate the compression ratio for the segment (the required advance steps are computed
  1156. // during trapezoid planning)
  1157. float adv_comp = extruder_advance_K * e_D_ratio * cs.axis_steps_per_unit[E_AXIS]; // (step/(mm/s))
  1158. block->adv_comp = adv_comp / block->speed_factor; // step/(step/min)
  1159. float advance_speed;
  1160. if (e_D_ratio > 0)
  1161. advance_speed = (extruder_advance_K * e_D_ratio * block->acceleration * cs.axis_steps_per_unit[E_AXIS]);
  1162. else
  1163. advance_speed = cs.max_jerk[E_AXIS] * cs.axis_steps_per_unit[E_AXIS];
  1164. // to save more space we avoid another copy of calc_timer and go through slow division, but we
  1165. // still need to replicate the *exact* same step grouping policy (see below)
  1166. if (advance_speed > MAX_STEP_FREQUENCY) advance_speed = MAX_STEP_FREQUENCY;
  1167. float advance_rate = (F_CPU / 8.0) / advance_speed;
  1168. if (advance_speed > 20000) {
  1169. block->advance_rate = advance_rate * 4;
  1170. block->advance_step_loops = 4;
  1171. }
  1172. else if (advance_speed > 10000) {
  1173. block->advance_rate = advance_rate * 2;
  1174. block->advance_step_loops = 2;
  1175. }
  1176. else
  1177. {
  1178. // never overflow the internal accumulator with very low rates
  1179. if (advance_rate < UINT16_MAX)
  1180. block->advance_rate = advance_rate;
  1181. else
  1182. block->advance_rate = UINT16_MAX;
  1183. block->advance_step_loops = 1;
  1184. }
  1185. #ifdef LA_DEBUG
  1186. if (block->advance_step_loops > 2)
  1187. // @wavexx: we should really check for the difference between step_loops and
  1188. // advance_step_loops instead. A difference of more than 1 will lead
  1189. // to uneven speed and *should* be adjusted here by furthermore
  1190. // reducing the speed.
  1191. SERIAL_ECHOLNPGM("LA: More than 2 steps per eISR loop executed.");
  1192. #endif
  1193. }
  1194. #endif
  1195. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1196. if (block->step_event_count.wide <= 32767)
  1197. block->flag |= BLOCK_FLAG_DDA_LOWRES;
  1198. // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
  1199. block_buffer_head = next_buffer_head;
  1200. // Update position
  1201. memcpy(position, target, sizeof(target)); // position[] = target[]
  1202. #ifdef LIN_ADVANCE
  1203. position_float[X_AXIS] = x;
  1204. position_float[Y_AXIS] = y;
  1205. position_float[Z_AXIS] = z;
  1206. position_float[E_AXIS] = e;
  1207. #endif
  1208. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1209. // the machine limits (maximum acceleration and maximum jerk).
  1210. // This runs asynchronously with the stepper interrupt controller, which may
  1211. // interfere with the process.
  1212. planner_recalculate(safe_speed);
  1213. // SERIAL_ECHOPGM("Q");
  1214. // SERIAL_ECHO(int(moves_planned()));
  1215. // SERIAL_ECHOLNPGM("");
  1216. #ifdef PLANNER_DIAGNOSTICS
  1217. planner_update_queue_min_counter();
  1218. #endif /* PLANNER_DIAGNOSTIC */
  1219. // The stepper timer interrupt will run continuously from now on.
  1220. // If there are no planner blocks to be executed by the stepper routine,
  1221. // the stepper interrupt ticks at 1kHz to wake up and pick a block
  1222. // from the planner queue if available.
  1223. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1224. }
  1225. #ifdef ENABLE_AUTO_BED_LEVELING
  1226. vector_3 plan_get_position() {
  1227. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1228. //position.debug("in plan_get position");
  1229. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1230. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1231. //inverse.debug("in plan_get inverse");
  1232. position.apply_rotation(inverse);
  1233. //position.debug("after rotation");
  1234. return position;
  1235. }
  1236. #endif // ENABLE_AUTO_BED_LEVELING
  1237. void plan_set_position(float x, float y, float z, const float &e)
  1238. {
  1239. #ifdef ENABLE_AUTO_BED_LEVELING
  1240. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1241. #endif // ENABLE_AUTO_BED_LEVELING
  1242. world2machine(x, y);
  1243. position[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  1244. position[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  1245. #ifdef MESH_BED_LEVELING
  1246. position[Z_AXIS] = mbl.active ?
  1247. lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]) :
  1248. lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1249. #else
  1250. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1251. #endif // ENABLE_MESH_BED_LEVELING
  1252. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1253. #ifdef LIN_ADVANCE
  1254. position_float[X_AXIS] = x;
  1255. position_float[Y_AXIS] = y;
  1256. position_float[Z_AXIS] = z;
  1257. position_float[E_AXIS] = e;
  1258. #endif
  1259. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1260. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1261. previous_speed[0] = 0.0;
  1262. previous_speed[1] = 0.0;
  1263. previous_speed[2] = 0.0;
  1264. previous_speed[3] = 0.0;
  1265. }
  1266. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1267. void plan_set_z_position(const float &z)
  1268. {
  1269. #ifdef LIN_ADVANCE
  1270. position_float[Z_AXIS] = z;
  1271. #endif
  1272. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1273. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1274. }
  1275. void plan_set_e_position(const float &e)
  1276. {
  1277. #ifdef LIN_ADVANCE
  1278. position_float[E_AXIS] = e;
  1279. #endif
  1280. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1281. st_set_e_position(position[E_AXIS]);
  1282. }
  1283. void plan_reset_next_e()
  1284. {
  1285. plan_reset_next_e_queue = true;
  1286. }
  1287. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1288. void set_extrude_min_temp(float temp)
  1289. {
  1290. extrude_min_temp=temp;
  1291. }
  1292. #endif
  1293. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1294. void reset_acceleration_rates()
  1295. {
  1296. for(int8_t i=0; i < NUM_AXIS; i++)
  1297. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * cs.axis_steps_per_unit[i];
  1298. }
  1299. #ifdef TMC2130
  1300. void update_mode_profile()
  1301. {
  1302. if (tmc2130_mode == TMC2130_MODE_NORMAL)
  1303. {
  1304. max_feedrate = cs.max_feedrate_normal;
  1305. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  1306. }
  1307. else if (tmc2130_mode == TMC2130_MODE_SILENT)
  1308. {
  1309. max_feedrate = cs.max_feedrate_silent;
  1310. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_silent;
  1311. }
  1312. reset_acceleration_rates();
  1313. }
  1314. #endif //TMC2130
  1315. uint8_t number_of_blocks()
  1316. {
  1317. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1318. }
  1319. #ifdef PLANNER_DIAGNOSTICS
  1320. uint8_t planner_queue_min()
  1321. {
  1322. return g_cntr_planner_queue_min;
  1323. }
  1324. void planner_queue_min_reset()
  1325. {
  1326. g_cntr_planner_queue_min = moves_planned();
  1327. }
  1328. #endif /* PLANNER_DIAGNOSTICS */
  1329. void planner_add_sd_length(uint16_t sdlen)
  1330. {
  1331. if (block_buffer_head != block_buffer_tail) {
  1332. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1333. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1334. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1335. } else {
  1336. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1337. // at a power panic, so the length of this command may be forgotten.
  1338. }
  1339. }
  1340. uint16_t planner_calc_sd_length()
  1341. {
  1342. uint8_t _block_buffer_head = block_buffer_head;
  1343. uint8_t _block_buffer_tail = block_buffer_tail;
  1344. uint16_t sdlen = 0;
  1345. while (_block_buffer_head != _block_buffer_tail)
  1346. {
  1347. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1348. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1349. }
  1350. return sdlen;
  1351. }