temperature.cpp 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "cmdqueue.h"
  25. #include "ultralcd.h"
  26. #include "menu.h"
  27. #include "conv2str.h"
  28. #include "sound.h"
  29. #include "temperature.h"
  30. #include "cardreader.h"
  31. #include "SdFatUtil.h"
  32. #include <avr/wdt.h>
  33. #include "adc.h"
  34. #include "ConfigurationStore.h"
  35. #include "messages.h"
  36. #include "Timer.h"
  37. #include "Configuration_prusa.h"
  38. #include "config.h"
  39. //===========================================================================
  40. //=============================public variables============================
  41. //===========================================================================
  42. int target_temperature[EXTRUDERS] = { 0 };
  43. int target_temperature_bed = 0;
  44. int current_temperature_raw[EXTRUDERS] = { 0 };
  45. float current_temperature[EXTRUDERS] = { 0.0 };
  46. #ifdef PINDA_THERMISTOR
  47. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  48. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  49. float current_temperature_pinda = 0.0;
  50. #endif //PINDA_THERMISTOR
  51. #ifdef AMBIENT_THERMISTOR
  52. int current_temperature_raw_ambient = 0 ;
  53. float current_temperature_ambient = 0.0;
  54. #endif //AMBIENT_THERMISTOR
  55. #ifdef VOLT_PWR_PIN
  56. int current_voltage_raw_pwr = 0;
  57. #endif
  58. #ifdef VOLT_BED_PIN
  59. int current_voltage_raw_bed = 0;
  60. #endif
  61. #ifdef IR_SENSOR_ANALOG
  62. uint16_t current_voltage_raw_IR = 0;
  63. #endif //IR_SENSOR_ANALOG
  64. int current_temperature_bed_raw = 0;
  65. float current_temperature_bed = 0.0;
  66. #ifdef PIDTEMP
  67. float _Kp, _Ki, _Kd;
  68. int pid_cycle, pid_number_of_cycles;
  69. bool pid_tuning_finished = false;
  70. #endif //PIDTEMP
  71. #ifdef FAN_SOFT_PWM
  72. unsigned char fanSpeedSoftPwm;
  73. #endif
  74. #ifdef FANCHECK
  75. volatile uint8_t fan_check_error = EFCE_OK;
  76. #endif
  77. unsigned char soft_pwm_bed;
  78. #ifdef BABYSTEPPING
  79. volatile int babystepsTodo[3]={0,0,0};
  80. #endif
  81. //===========================================================================
  82. //=============================private variables============================
  83. //===========================================================================
  84. static volatile bool temp_meas_ready = false;
  85. #ifdef PIDTEMP
  86. //static cannot be external:
  87. static float iState_sum[EXTRUDERS] = { 0 };
  88. static float dState_last[EXTRUDERS] = { 0 };
  89. static float pTerm[EXTRUDERS];
  90. static float iTerm[EXTRUDERS];
  91. static float dTerm[EXTRUDERS];
  92. //int output;
  93. static float pid_error[EXTRUDERS];
  94. static float iState_sum_min[EXTRUDERS];
  95. static float iState_sum_max[EXTRUDERS];
  96. // static float pid_input[EXTRUDERS];
  97. // static float pid_output[EXTRUDERS];
  98. static bool pid_reset[EXTRUDERS];
  99. #endif //PIDTEMP
  100. #ifdef PIDTEMPBED
  101. //static cannot be external:
  102. static float temp_iState_bed = { 0 };
  103. static float temp_dState_bed = { 0 };
  104. static float pTerm_bed;
  105. static float iTerm_bed;
  106. static float dTerm_bed;
  107. //int output;
  108. static float pid_error_bed;
  109. static float temp_iState_min_bed;
  110. static float temp_iState_max_bed;
  111. #else //PIDTEMPBED
  112. static unsigned long previous_millis_bed_heater;
  113. #endif //PIDTEMPBED
  114. static unsigned char soft_pwm[EXTRUDERS];
  115. #ifdef FAN_SOFT_PWM
  116. static unsigned char soft_pwm_fan;
  117. #endif
  118. uint8_t fanSpeedBckp = 255;
  119. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  120. unsigned long extruder_autofan_last_check = _millis();
  121. bool fan_measuring = false;
  122. uint8_t fanState = 0;
  123. #ifdef EXTRUDER_ALTFAN_DETECT
  124. struct
  125. {
  126. uint8_t isAltfan : 1;
  127. uint8_t altfanOverride : 1;
  128. } altfanStatus;
  129. #endif //EXTRUDER_ALTFAN_DETECT
  130. #endif
  131. #if EXTRUDERS > 3
  132. # error Unsupported number of extruders
  133. #elif EXTRUDERS > 2
  134. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  135. #elif EXTRUDERS > 1
  136. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  137. #else
  138. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  139. #endif
  140. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  141. // Init min and max temp with extreme values to prevent false errors during startup
  142. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  143. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  144. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  145. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  146. #ifdef BED_MINTEMP
  147. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  148. #endif
  149. #ifdef BED_MAXTEMP
  150. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  151. #endif
  152. #ifdef AMBIENT_MINTEMP
  153. static int ambient_minttemp_raw = AMBIENT_RAW_LO_TEMP;
  154. #endif
  155. #ifdef AMBIENT_MAXTEMP
  156. static int ambient_maxttemp_raw = AMBIENT_RAW_HI_TEMP;
  157. #endif
  158. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  159. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  160. static float analog2temp(int raw, uint8_t e);
  161. static float analog2tempBed(int raw);
  162. #ifdef AMBIENT_MAXTEMP
  163. static float analog2tempAmbient(int raw);
  164. #endif
  165. static void updateTemperaturesFromRawValues();
  166. enum TempRunawayStates : uint8_t
  167. {
  168. TempRunaway_INACTIVE = 0,
  169. TempRunaway_PREHEAT = 1,
  170. TempRunaway_ACTIVE = 2,
  171. };
  172. #ifndef SOFT_PWM_SCALE
  173. #define SOFT_PWM_SCALE 0
  174. #endif
  175. //===========================================================================
  176. //============================= functions ============================
  177. //===========================================================================
  178. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  179. static uint8_t temp_runaway_status[1 + EXTRUDERS];
  180. static float temp_runaway_target[1 + EXTRUDERS];
  181. static uint32_t temp_runaway_timer[1 + EXTRUDERS];
  182. static uint16_t temp_runaway_error_counter[1 + EXTRUDERS];
  183. static void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  184. static void temp_runaway_stop(bool isPreheat, bool isBed);
  185. #endif
  186. #ifdef EXTRUDER_ALTFAN_DETECT
  187. ISR(INT6_vect) {
  188. fan_edge_counter[0]++;
  189. }
  190. bool extruder_altfan_detect()
  191. {
  192. setExtruderAutoFanState(3);
  193. SET_INPUT(TACH_0);
  194. uint8_t overrideVal = eeprom_read_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE);
  195. if (overrideVal == EEPROM_EMPTY_VALUE)
  196. {
  197. overrideVal = (calibration_status() == CALIBRATION_STATUS_CALIBRATED) ? 1 : 0;
  198. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, overrideVal);
  199. }
  200. altfanStatus.altfanOverride = overrideVal;
  201. CRITICAL_SECTION_START;
  202. EICRB &= ~(1 << ISC61);
  203. EICRB |= (1 << ISC60);
  204. EIMSK |= (1 << INT6);
  205. fan_edge_counter[0] = 0;
  206. CRITICAL_SECTION_END;
  207. extruder_autofan_last_check = _millis();
  208. _delay(1000);
  209. EIMSK &= ~(1 << INT6);
  210. countFanSpeed();
  211. altfanStatus.isAltfan = fan_speed[0] > 100;
  212. setExtruderAutoFanState(1);
  213. return altfanStatus.isAltfan;
  214. }
  215. void altfanOverride_toggle()
  216. {
  217. altfanStatus.altfanOverride = !altfanStatus.altfanOverride;
  218. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, altfanStatus.altfanOverride);
  219. }
  220. bool altfanOverride_get()
  221. {
  222. return altfanStatus.altfanOverride;
  223. }
  224. #endif //EXTRUDER_ALTFAN_DETECT
  225. // return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on')
  226. bool checkAllHotends(void)
  227. {
  228. bool result=false;
  229. for(int i=0;i<EXTRUDERS;i++) result=(result||(target_temperature[i]!=0));
  230. return(result);
  231. }
  232. // WARNING: the following function has been marked noinline to avoid a GCC 4.9.2 LTO
  233. // codegen bug causing a stack overwrite issue in process_commands()
  234. void __attribute__((noinline)) PID_autotune(float temp, int extruder, int ncycles)
  235. {
  236. pid_number_of_cycles = ncycles;
  237. pid_tuning_finished = false;
  238. float input = 0.0;
  239. pid_cycle=0;
  240. bool heating = true;
  241. unsigned long temp_millis = _millis();
  242. unsigned long t1=temp_millis;
  243. unsigned long t2=temp_millis;
  244. long t_high = 0;
  245. long t_low = 0;
  246. long bias, d;
  247. float Ku, Tu;
  248. float max = 0, min = 10000;
  249. uint8_t safety_check_cycles = 0;
  250. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  251. float temp_ambient;
  252. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  253. unsigned long extruder_autofan_last_check = _millis();
  254. #endif
  255. if ((extruder >= EXTRUDERS)
  256. #if (TEMP_BED_PIN <= -1)
  257. ||(extruder < 0)
  258. #endif
  259. ){
  260. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  261. pid_tuning_finished = true;
  262. pid_cycle = 0;
  263. return;
  264. }
  265. SERIAL_ECHOLN("PID Autotune start");
  266. disable_heater(); // switch off all heaters.
  267. if (extruder<0)
  268. {
  269. soft_pwm_bed = (MAX_BED_POWER)/2;
  270. timer02_set_pwm0(soft_pwm_bed << 1);
  271. bias = d = (MAX_BED_POWER)/2;
  272. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  273. }
  274. else
  275. {
  276. soft_pwm[extruder] = (PID_MAX)/2;
  277. bias = d = (PID_MAX)/2;
  278. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  279. }
  280. for(;;) {
  281. #ifdef WATCHDOG
  282. wdt_reset();
  283. #endif //WATCHDOG
  284. if(temp_meas_ready == true) { // temp sample ready
  285. updateTemperaturesFromRawValues();
  286. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  287. max=max(max,input);
  288. min=min(min,input);
  289. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  290. if(_millis() - extruder_autofan_last_check > 2500) {
  291. checkExtruderAutoFans();
  292. extruder_autofan_last_check = _millis();
  293. }
  294. #endif
  295. if(heating == true && input > temp) {
  296. if(_millis() - t2 > 5000) {
  297. heating=false;
  298. if (extruder<0)
  299. {
  300. soft_pwm_bed = (bias - d) >> 1;
  301. timer02_set_pwm0(soft_pwm_bed << 1);
  302. }
  303. else
  304. soft_pwm[extruder] = (bias - d) >> 1;
  305. t1=_millis();
  306. t_high=t1 - t2;
  307. max=temp;
  308. }
  309. }
  310. if(heating == false && input < temp) {
  311. if(_millis() - t1 > 5000) {
  312. heating=true;
  313. t2=_millis();
  314. t_low=t2 - t1;
  315. if(pid_cycle > 0) {
  316. bias += (d*(t_high - t_low))/(t_low + t_high);
  317. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  318. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  319. else d = bias;
  320. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  321. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  322. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  323. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  324. if(pid_cycle > 2) {
  325. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  326. Tu = ((float)(t_low + t_high)/1000.0);
  327. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  328. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  329. _Kp = 0.6*Ku;
  330. _Ki = 2*_Kp/Tu;
  331. _Kd = _Kp*Tu/8;
  332. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  333. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  334. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  335. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  336. /*
  337. _Kp = 0.33*Ku;
  338. _Ki = _Kp/Tu;
  339. _Kd = _Kp*Tu/3;
  340. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  341. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  342. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  343. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  344. _Kp = 0.2*Ku;
  345. _Ki = 2*_Kp/Tu;
  346. _Kd = _Kp*Tu/3;
  347. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  348. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  349. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  350. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  351. */
  352. }
  353. }
  354. if (extruder<0)
  355. {
  356. soft_pwm_bed = (bias + d) >> 1;
  357. timer02_set_pwm0(soft_pwm_bed << 1);
  358. }
  359. else
  360. soft_pwm[extruder] = (bias + d) >> 1;
  361. pid_cycle++;
  362. min=temp;
  363. }
  364. }
  365. }
  366. if(input > (temp + 20)) {
  367. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  368. pid_tuning_finished = true;
  369. pid_cycle = 0;
  370. return;
  371. }
  372. if(_millis() - temp_millis > 2000) {
  373. int p;
  374. if (extruder<0){
  375. p=soft_pwm_bed;
  376. SERIAL_PROTOCOLPGM("B:");
  377. }else{
  378. p=soft_pwm[extruder];
  379. SERIAL_PROTOCOLPGM("T:");
  380. }
  381. SERIAL_PROTOCOL(input);
  382. SERIAL_PROTOCOLPGM(" @:");
  383. SERIAL_PROTOCOLLN(p);
  384. if (safety_check_cycles == 0) { //save ambient temp
  385. temp_ambient = input;
  386. //SERIAL_ECHOPGM("Ambient T: ");
  387. //MYSERIAL.println(temp_ambient);
  388. safety_check_cycles++;
  389. }
  390. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  391. safety_check_cycles++;
  392. }
  393. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  394. safety_check_cycles++;
  395. //SERIAL_ECHOPGM("Time from beginning: ");
  396. //MYSERIAL.print(safety_check_cycles_count * 2);
  397. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  398. //MYSERIAL.println(input - temp_ambient);
  399. if (fabs(input - temp_ambient) < 5.0) {
  400. temp_runaway_stop(false, (extruder<0));
  401. pid_tuning_finished = true;
  402. return;
  403. }
  404. }
  405. temp_millis = _millis();
  406. }
  407. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  408. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  409. pid_tuning_finished = true;
  410. pid_cycle = 0;
  411. return;
  412. }
  413. if(pid_cycle > ncycles) {
  414. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  415. pid_tuning_finished = true;
  416. pid_cycle = 0;
  417. return;
  418. }
  419. lcd_update(0);
  420. }
  421. }
  422. void updatePID()
  423. {
  424. #ifdef PIDTEMP
  425. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  426. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  427. }
  428. #endif
  429. #ifdef PIDTEMPBED
  430. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  431. #endif
  432. }
  433. int getHeaterPower(int heater) {
  434. if (heater<0)
  435. return soft_pwm_bed;
  436. return soft_pwm[heater];
  437. }
  438. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  439. #if defined(FAN_PIN) && FAN_PIN > -1
  440. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  441. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  442. #endif
  443. #endif
  444. void setExtruderAutoFanState(uint8_t state)
  445. {
  446. //If bit 1 is set (0x02), then the extruder fan speed won't be adjusted according to temperature. Useful for forcing
  447. //the fan to either On or Off during certain tests/errors.
  448. fanState = state;
  449. newFanSpeed = 0;
  450. if (fanState & 0x01)
  451. {
  452. #ifdef EXTRUDER_ALTFAN_DETECT
  453. if (altfanStatus.isAltfan && !altfanStatus.altfanOverride) newFanSpeed = EXTRUDER_ALTFAN_SPEED_SILENT;
  454. else newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  455. #else //EXTRUDER_ALTFAN_DETECT
  456. newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  457. #endif //EXTRUDER_ALTFAN_DETECT
  458. }
  459. timer4_set_fan0(newFanSpeed);
  460. }
  461. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  462. void countFanSpeed()
  463. {
  464. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  465. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  466. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  467. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  468. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  469. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  470. SERIAL_ECHOLNPGM(" ");*/
  471. fan_edge_counter[0] = 0;
  472. fan_edge_counter[1] = 0;
  473. }
  474. void checkFanSpeed()
  475. {
  476. uint8_t max_print_fan_errors = 0;
  477. uint8_t max_extruder_fan_errors = 0;
  478. #ifdef FAN_SOFT_PWM
  479. max_print_fan_errors = 3; //15 seconds
  480. max_extruder_fan_errors = 2; //10seconds
  481. #else //FAN_SOFT_PWM
  482. max_print_fan_errors = 15; //15 seconds
  483. max_extruder_fan_errors = 5; //5 seconds
  484. #endif //FAN_SOFT_PWM
  485. if(fans_check_enabled != false)
  486. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  487. static unsigned char fan_speed_errors[2] = { 0,0 };
  488. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  489. if ((fan_speed[0] < 20) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
  490. else fan_speed_errors[0] = 0;
  491. #endif
  492. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  493. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  494. else fan_speed_errors[1] = 0;
  495. #endif
  496. // drop the fan_check_error flag when both fans are ok
  497. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  498. // we may even send some info to the LCD from here
  499. fan_check_error = EFCE_FIXED;
  500. }
  501. if ((fan_check_error == EFCE_FIXED) && !PRINTER_ACTIVE){
  502. fan_check_error = EFCE_OK; //if the issue is fixed while the printer is doing nothing, reenable processing immediately.
  503. lcd_reset_alert_level(); //for another fan speed error
  504. }
  505. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  506. fan_speed_errors[0] = 0;
  507. fanSpeedError(0); //extruder fan
  508. }
  509. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  510. fan_speed_errors[1] = 0;
  511. fanSpeedError(1); //print fan
  512. }
  513. }
  514. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  515. //! Extracted from fanSpeedError to save some space.
  516. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  517. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  518. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  519. SERIAL_ECHOLNRPGM(serialMsg);
  520. if (get_message_level() == 0) {
  521. Sound_MakeCustom(200,0,true);
  522. LCD_ALERTMESSAGERPGM(lcdMsg);
  523. }
  524. }
  525. void fanSpeedError(unsigned char _fan) {
  526. if (get_message_level() != 0 && isPrintPaused) return;
  527. //to ensure that target temp. is not set to zero in case that we are resuming print
  528. if (card.sdprinting || usb_timer.running()) {
  529. if (heating_status != HeatingStatus::NO_HEATING) {
  530. lcd_print_stop();
  531. }
  532. else {
  533. fan_check_error = EFCE_DETECTED; //plans error for next processed command
  534. }
  535. }
  536. else {
  537. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED); //Why pause octoprint? usb_timer.running() would be true in that case, so there is no need for this.
  538. setTargetHotend0(0);
  539. heating_status = HeatingStatus::NO_HEATING;
  540. fan_check_error = EFCE_REPORTED;
  541. }
  542. switch (_fan) {
  543. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  544. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), MSG_FANCHECK_EXTRUDER);
  545. break;
  546. case 1:
  547. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT);
  548. break;
  549. }
  550. }
  551. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  552. void checkExtruderAutoFans()
  553. {
  554. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  555. if (!(fanState & 0x02))
  556. {
  557. fanState &= ~1;
  558. fanState |= current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE;
  559. }
  560. setExtruderAutoFanState(fanState);
  561. #endif
  562. }
  563. #endif // any extruder auto fan pins set
  564. // ready for eventually parameters adjusting
  565. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  566. //void resetPID(uint8_t extruder)
  567. {
  568. }
  569. void manage_heater()
  570. {
  571. #ifdef WATCHDOG
  572. wdt_reset();
  573. #endif //WATCHDOG
  574. float pid_input;
  575. float pid_output;
  576. if(temp_meas_ready != true) //better readability
  577. return;
  578. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  579. // ADC values need to be converted before checking: converted values are later used in MINTEMP
  580. updateTemperaturesFromRawValues();
  581. check_max_temp();
  582. check_min_temp();
  583. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  584. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  585. #endif
  586. for(uint8_t e = 0; e < EXTRUDERS; e++)
  587. {
  588. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  589. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  590. #endif
  591. #ifdef PIDTEMP
  592. pid_input = current_temperature[e];
  593. #ifndef PID_OPENLOOP
  594. if(target_temperature[e] == 0) {
  595. pid_output = 0;
  596. pid_reset[e] = true;
  597. } else {
  598. pid_error[e] = target_temperature[e] - pid_input;
  599. if(pid_reset[e]) {
  600. iState_sum[e] = 0.0;
  601. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  602. pid_reset[e] = false;
  603. }
  604. #ifndef PonM
  605. pTerm[e] = cs.Kp * pid_error[e];
  606. iState_sum[e] += pid_error[e];
  607. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  608. iTerm[e] = cs.Ki * iState_sum[e];
  609. // PID_K1 defined in Configuration.h in the PID settings
  610. #define K2 (1.0-PID_K1)
  611. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  612. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  613. if (pid_output > PID_MAX) {
  614. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  615. pid_output=PID_MAX;
  616. } else if (pid_output < 0) {
  617. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  618. pid_output=0;
  619. }
  620. #else // PonM ("Proportional on Measurement" method)
  621. iState_sum[e] += cs.Ki * pid_error[e];
  622. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  623. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  624. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  625. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  626. pid_output = constrain(pid_output, 0, PID_MAX);
  627. #endif // PonM
  628. }
  629. dState_last[e] = pid_input;
  630. #else
  631. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  632. #endif //PID_OPENLOOP
  633. #ifdef PID_DEBUG
  634. SERIAL_ECHO_START;
  635. SERIAL_ECHO(" PID_DEBUG ");
  636. SERIAL_ECHO(e);
  637. SERIAL_ECHO(": Input ");
  638. SERIAL_ECHO(pid_input);
  639. SERIAL_ECHO(" Output ");
  640. SERIAL_ECHO(pid_output);
  641. SERIAL_ECHO(" pTerm ");
  642. SERIAL_ECHO(pTerm[e]);
  643. SERIAL_ECHO(" iTerm ");
  644. SERIAL_ECHO(iTerm[e]);
  645. SERIAL_ECHO(" dTerm ");
  646. SERIAL_ECHOLN(-dTerm[e]);
  647. #endif //PID_DEBUG
  648. #else /* PID off */
  649. pid_output = 0;
  650. if(current_temperature[e] < target_temperature[e]) {
  651. pid_output = PID_MAX;
  652. }
  653. #endif
  654. // Check if temperature is within the correct range
  655. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  656. {
  657. soft_pwm[e] = (int)pid_output >> 1;
  658. }
  659. else
  660. {
  661. soft_pwm[e] = 0;
  662. }
  663. } // End extruder for loop
  664. #define FAN_CHECK_PERIOD 5000 //5s
  665. #define FAN_CHECK_DURATION 100 //100ms
  666. #ifndef DEBUG_DISABLE_FANCHECK
  667. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  668. #ifdef FAN_SOFT_PWM
  669. #ifdef FANCHECK
  670. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  671. extruder_autofan_last_check = _millis();
  672. fanSpeedBckp = fanSpeedSoftPwm;
  673. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  674. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  675. fanSpeedSoftPwm = 255;
  676. }
  677. fan_measuring = true;
  678. }
  679. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  680. countFanSpeed();
  681. checkFanSpeed();
  682. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  683. fanSpeedSoftPwm = fanSpeedBckp;
  684. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  685. extruder_autofan_last_check = _millis();
  686. fan_measuring = false;
  687. }
  688. #endif //FANCHECK
  689. checkExtruderAutoFans();
  690. #else //FAN_SOFT_PWM
  691. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  692. {
  693. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  694. countFanSpeed();
  695. checkFanSpeed();
  696. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  697. checkExtruderAutoFans();
  698. extruder_autofan_last_check = _millis();
  699. }
  700. #endif //FAN_SOFT_PWM
  701. #endif
  702. #endif //DEBUG_DISABLE_FANCHECK
  703. #ifndef PIDTEMPBED
  704. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  705. return;
  706. previous_millis_bed_heater = _millis();
  707. #endif
  708. #if TEMP_SENSOR_BED != 0
  709. #ifdef PIDTEMPBED
  710. pid_input = current_temperature_bed;
  711. #ifndef PID_OPENLOOP
  712. pid_error_bed = target_temperature_bed - pid_input;
  713. pTerm_bed = cs.bedKp * pid_error_bed;
  714. temp_iState_bed += pid_error_bed;
  715. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  716. iTerm_bed = cs.bedKi * temp_iState_bed;
  717. //PID_K1 defined in Configuration.h in the PID settings
  718. #define K2 (1.0-PID_K1)
  719. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  720. temp_dState_bed = pid_input;
  721. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  722. if (pid_output > MAX_BED_POWER) {
  723. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  724. pid_output=MAX_BED_POWER;
  725. } else if (pid_output < 0){
  726. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  727. pid_output=0;
  728. }
  729. #else
  730. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  731. #endif //PID_OPENLOOP
  732. if(current_temperature_bed < BED_MAXTEMP)
  733. {
  734. soft_pwm_bed = (int)pid_output >> 1;
  735. timer02_set_pwm0(soft_pwm_bed << 1);
  736. }
  737. else {
  738. soft_pwm_bed = 0;
  739. timer02_set_pwm0(soft_pwm_bed << 1);
  740. }
  741. #elif !defined(BED_LIMIT_SWITCHING)
  742. // Check if temperature is within the correct range
  743. if(current_temperature_bed < BED_MAXTEMP)
  744. {
  745. if(current_temperature_bed >= target_temperature_bed)
  746. {
  747. soft_pwm_bed = 0;
  748. timer02_set_pwm0(soft_pwm_bed << 1);
  749. }
  750. else
  751. {
  752. soft_pwm_bed = MAX_BED_POWER>>1;
  753. timer02_set_pwm0(soft_pwm_bed << 1);
  754. }
  755. }
  756. else
  757. {
  758. soft_pwm_bed = 0;
  759. timer02_set_pwm0(soft_pwm_bed << 1);
  760. WRITE(HEATER_BED_PIN,LOW);
  761. }
  762. #else //#ifdef BED_LIMIT_SWITCHING
  763. // Check if temperature is within the correct band
  764. if(current_temperature_bed < BED_MAXTEMP)
  765. {
  766. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  767. {
  768. soft_pwm_bed = 0;
  769. timer02_set_pwm0(soft_pwm_bed << 1);
  770. }
  771. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  772. {
  773. soft_pwm_bed = MAX_BED_POWER>>1;
  774. timer02_set_pwm0(soft_pwm_bed << 1);
  775. }
  776. }
  777. else
  778. {
  779. soft_pwm_bed = 0;
  780. timer02_set_pwm0(soft_pwm_bed << 1);
  781. WRITE(HEATER_BED_PIN,LOW);
  782. }
  783. #endif
  784. if(target_temperature_bed==0)
  785. {
  786. soft_pwm_bed = 0;
  787. timer02_set_pwm0(soft_pwm_bed << 1);
  788. }
  789. #endif
  790. }
  791. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  792. // Derived from RepRap FiveD extruder::getTemperature()
  793. // For hot end temperature measurement.
  794. static float analog2temp(int raw, uint8_t e) {
  795. if(e >= EXTRUDERS)
  796. {
  797. SERIAL_ERROR_START;
  798. SERIAL_ERROR((int)e);
  799. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  800. kill(NULL, 6);
  801. return 0.0;
  802. }
  803. #ifdef HEATER_0_USES_MAX6675
  804. if (e == 0)
  805. {
  806. return 0.25 * raw;
  807. }
  808. #endif
  809. if(heater_ttbl_map[e] != NULL)
  810. {
  811. float celsius = 0;
  812. uint8_t i;
  813. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  814. for (i=1; i<heater_ttbllen_map[e]; i++)
  815. {
  816. if (PGM_RD_W((*tt)[i][0]) > raw)
  817. {
  818. celsius = PGM_RD_W((*tt)[i-1][1]) +
  819. (raw - PGM_RD_W((*tt)[i-1][0])) *
  820. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  821. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  822. break;
  823. }
  824. }
  825. // Overflow: Set to last value in the table
  826. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  827. return celsius;
  828. }
  829. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  830. }
  831. // Derived from RepRap FiveD extruder::getTemperature()
  832. // For bed temperature measurement.
  833. static float analog2tempBed(int raw) {
  834. #ifdef BED_USES_THERMISTOR
  835. float celsius = 0;
  836. byte i;
  837. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  838. {
  839. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  840. {
  841. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  842. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  843. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  844. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  845. break;
  846. }
  847. }
  848. // Overflow: Set to last value in the table
  849. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  850. // temperature offset adjustment
  851. #ifdef BED_OFFSET
  852. float _offset = BED_OFFSET;
  853. float _offset_center = BED_OFFSET_CENTER;
  854. float _offset_start = BED_OFFSET_START;
  855. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  856. float _second_koef = (_offset / 2) / (100 - _offset_center);
  857. if (celsius >= _offset_start && celsius <= _offset_center)
  858. {
  859. celsius = celsius + (_first_koef * (celsius - _offset_start));
  860. }
  861. else if (celsius > _offset_center && celsius <= 100)
  862. {
  863. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  864. }
  865. else if (celsius > 100)
  866. {
  867. celsius = celsius + _offset;
  868. }
  869. #endif
  870. return celsius;
  871. #elif defined BED_USES_AD595
  872. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  873. #else
  874. return 0;
  875. #endif
  876. }
  877. #ifdef AMBIENT_THERMISTOR
  878. static float analog2tempAmbient(int raw)
  879. {
  880. float celsius = 0;
  881. byte i;
  882. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  883. {
  884. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  885. {
  886. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  887. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  888. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  889. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  890. break;
  891. }
  892. }
  893. // Overflow: Set to last value in the table
  894. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  895. return celsius;
  896. }
  897. #endif //AMBIENT_THERMISTOR
  898. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  899. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  900. static void updateTemperaturesFromRawValues()
  901. {
  902. for(uint8_t e=0;e<EXTRUDERS;e++)
  903. {
  904. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  905. }
  906. #ifdef PINDA_THERMISTOR
  907. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  908. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  909. #endif
  910. #ifdef AMBIENT_THERMISTOR
  911. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  912. #endif
  913. #ifdef DEBUG_HEATER_BED_SIM
  914. current_temperature_bed = target_temperature_bed;
  915. #else //DEBUG_HEATER_BED_SIM
  916. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  917. #endif //DEBUG_HEATER_BED_SIM
  918. CRITICAL_SECTION_START;
  919. temp_meas_ready = false;
  920. CRITICAL_SECTION_END;
  921. }
  922. void tp_init()
  923. {
  924. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  925. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  926. MCUCR=(1<<JTD);
  927. MCUCR=(1<<JTD);
  928. #endif
  929. // Finish init of mult extruder arrays
  930. for(int e = 0; e < EXTRUDERS; e++) {
  931. // populate with the first value
  932. maxttemp[e] = maxttemp[0];
  933. #ifdef PIDTEMP
  934. iState_sum_min[e] = 0.0;
  935. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  936. #endif //PIDTEMP
  937. #ifdef PIDTEMPBED
  938. temp_iState_min_bed = 0.0;
  939. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  940. #endif //PIDTEMPBED
  941. }
  942. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  943. SET_OUTPUT(HEATER_0_PIN);
  944. #endif
  945. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  946. SET_OUTPUT(HEATER_1_PIN);
  947. #endif
  948. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  949. SET_OUTPUT(HEATER_2_PIN);
  950. #endif
  951. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  952. SET_OUTPUT(HEATER_BED_PIN);
  953. #endif
  954. #if defined(FAN_PIN) && (FAN_PIN > -1)
  955. SET_OUTPUT(FAN_PIN);
  956. #ifdef FAST_PWM_FAN
  957. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  958. #endif
  959. #ifdef FAN_SOFT_PWM
  960. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  961. #endif
  962. #endif
  963. #ifdef HEATER_0_USES_MAX6675
  964. #ifndef SDSUPPORT
  965. SET_OUTPUT(SCK_PIN);
  966. WRITE(SCK_PIN,0);
  967. SET_OUTPUT(MOSI_PIN);
  968. WRITE(MOSI_PIN,1);
  969. SET_INPUT(MISO_PIN);
  970. WRITE(MISO_PIN,1);
  971. #endif
  972. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  973. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  974. pinMode(SS_PIN, OUTPUT);
  975. digitalWrite(SS_PIN,0);
  976. pinMode(MAX6675_SS, OUTPUT);
  977. digitalWrite(MAX6675_SS,1);
  978. #endif
  979. adc_init();
  980. timer0_init(); //enables the heatbed timer.
  981. // timer2 already enabled earlier in the code
  982. // now enable the COMPB temperature interrupt
  983. OCR2B = 128;
  984. TIMSK2 |= (1<<OCIE2B);
  985. timer4_init(); //for tone and Extruder fan PWM
  986. // Wait for temperature measurement to settle
  987. _delay(250);
  988. #ifdef HEATER_0_MINTEMP
  989. minttemp[0] = HEATER_0_MINTEMP;
  990. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  991. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  992. minttemp_raw[0] += OVERSAMPLENR;
  993. #else
  994. minttemp_raw[0] -= OVERSAMPLENR;
  995. #endif
  996. }
  997. #endif //MINTEMP
  998. #ifdef HEATER_0_MAXTEMP
  999. maxttemp[0] = HEATER_0_MAXTEMP;
  1000. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  1001. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1002. maxttemp_raw[0] -= OVERSAMPLENR;
  1003. #else
  1004. maxttemp_raw[0] += OVERSAMPLENR;
  1005. #endif
  1006. }
  1007. #endif //MAXTEMP
  1008. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1009. minttemp[1] = HEATER_1_MINTEMP;
  1010. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1011. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1012. minttemp_raw[1] += OVERSAMPLENR;
  1013. #else
  1014. minttemp_raw[1] -= OVERSAMPLENR;
  1015. #endif
  1016. }
  1017. #endif // MINTEMP 1
  1018. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1019. maxttemp[1] = HEATER_1_MAXTEMP;
  1020. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1021. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1022. maxttemp_raw[1] -= OVERSAMPLENR;
  1023. #else
  1024. maxttemp_raw[1] += OVERSAMPLENR;
  1025. #endif
  1026. }
  1027. #endif //MAXTEMP 1
  1028. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1029. minttemp[2] = HEATER_2_MINTEMP;
  1030. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1031. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1032. minttemp_raw[2] += OVERSAMPLENR;
  1033. #else
  1034. minttemp_raw[2] -= OVERSAMPLENR;
  1035. #endif
  1036. }
  1037. #endif //MINTEMP 2
  1038. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1039. maxttemp[2] = HEATER_2_MAXTEMP;
  1040. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1041. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1042. maxttemp_raw[2] -= OVERSAMPLENR;
  1043. #else
  1044. maxttemp_raw[2] += OVERSAMPLENR;
  1045. #endif
  1046. }
  1047. #endif //MAXTEMP 2
  1048. #ifdef BED_MINTEMP
  1049. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1050. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1051. bed_minttemp_raw += OVERSAMPLENR;
  1052. #else
  1053. bed_minttemp_raw -= OVERSAMPLENR;
  1054. #endif
  1055. }
  1056. #endif //BED_MINTEMP
  1057. #ifdef BED_MAXTEMP
  1058. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1059. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1060. bed_maxttemp_raw -= OVERSAMPLENR;
  1061. #else
  1062. bed_maxttemp_raw += OVERSAMPLENR;
  1063. #endif
  1064. }
  1065. #endif //BED_MAXTEMP
  1066. #ifdef AMBIENT_MINTEMP
  1067. while(analog2tempAmbient(ambient_minttemp_raw) < AMBIENT_MINTEMP) {
  1068. #if HEATER_AMBIENT_RAW_LO_TEMP < HEATER_AMBIENT_RAW_HI_TEMP
  1069. ambient_minttemp_raw += OVERSAMPLENR;
  1070. #else
  1071. ambient_minttemp_raw -= OVERSAMPLENR;
  1072. #endif
  1073. }
  1074. #endif //AMBIENT_MINTEMP
  1075. #ifdef AMBIENT_MAXTEMP
  1076. while(analog2tempAmbient(ambient_maxttemp_raw) > AMBIENT_MAXTEMP) {
  1077. #if HEATER_AMBIENT_RAW_LO_TEMP < HEATER_AMBIENT_RAW_HI_TEMP
  1078. ambient_maxttemp_raw -= OVERSAMPLENR;
  1079. #else
  1080. ambient_maxttemp_raw += OVERSAMPLENR;
  1081. #endif
  1082. }
  1083. #endif //AMBIENT_MAXTEMP
  1084. }
  1085. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1086. void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1087. {
  1088. float __delta;
  1089. float __hysteresis = 0;
  1090. uint16_t __timeout = 0;
  1091. bool temp_runaway_check_active = false;
  1092. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1093. static uint8_t __preheat_counter[2] = { 0,0};
  1094. static uint8_t __preheat_errors[2] = { 0,0};
  1095. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1096. {
  1097. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1098. if (_isbed)
  1099. {
  1100. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1101. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1102. }
  1103. #endif
  1104. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1105. if (!_isbed)
  1106. {
  1107. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1108. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1109. }
  1110. #endif
  1111. temp_runaway_timer[_heater_id] = _millis();
  1112. if (_output == 0)
  1113. {
  1114. temp_runaway_check_active = false;
  1115. temp_runaway_error_counter[_heater_id] = 0;
  1116. }
  1117. if (temp_runaway_target[_heater_id] != _target_temperature)
  1118. {
  1119. if (_target_temperature > 0)
  1120. {
  1121. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1122. temp_runaway_target[_heater_id] = _target_temperature;
  1123. __preheat_start[_heater_id] = _current_temperature;
  1124. __preheat_counter[_heater_id] = 0;
  1125. }
  1126. else
  1127. {
  1128. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1129. temp_runaway_target[_heater_id] = _target_temperature;
  1130. }
  1131. }
  1132. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1133. {
  1134. __preheat_counter[_heater_id]++;
  1135. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1136. {
  1137. /*SERIAL_ECHOPGM("Heater:");
  1138. MYSERIAL.print(_heater_id);
  1139. SERIAL_ECHOPGM(" T:");
  1140. MYSERIAL.print(_current_temperature);
  1141. SERIAL_ECHOPGM(" Tstart:");
  1142. MYSERIAL.print(__preheat_start[_heater_id]);
  1143. SERIAL_ECHOPGM(" delta:");
  1144. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1145. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1146. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1147. __delta=2.0;
  1148. if(_isbed)
  1149. {
  1150. __delta=3.0;
  1151. if(_current_temperature>90.0) __delta=2.0;
  1152. if(_current_temperature>105.0) __delta=0.6;
  1153. }
  1154. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1155. __preheat_errors[_heater_id]++;
  1156. /*SERIAL_ECHOPGM(" Preheat errors:");
  1157. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1158. }
  1159. else {
  1160. //SERIAL_ECHOLNPGM("");
  1161. __preheat_errors[_heater_id] = 0;
  1162. }
  1163. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1164. {
  1165. if (farm_mode) { prusa_statistics(0); }
  1166. temp_runaway_stop(true, _isbed);
  1167. if (farm_mode) { prusa_statistics(91); }
  1168. }
  1169. __preheat_start[_heater_id] = _current_temperature;
  1170. __preheat_counter[_heater_id] = 0;
  1171. }
  1172. }
  1173. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1174. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1175. {
  1176. /*SERIAL_ECHOPGM("Heater:");
  1177. MYSERIAL.print(_heater_id);
  1178. MYSERIAL.println(" ->tempRunaway");*/
  1179. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1180. temp_runaway_check_active = false;
  1181. temp_runaway_error_counter[_heater_id] = 0;
  1182. }
  1183. if (_output > 0)
  1184. {
  1185. temp_runaway_check_active = true;
  1186. }
  1187. if (temp_runaway_check_active)
  1188. {
  1189. // we are in range
  1190. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1191. {
  1192. temp_runaway_check_active = false;
  1193. temp_runaway_error_counter[_heater_id] = 0;
  1194. }
  1195. else
  1196. {
  1197. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1198. {
  1199. temp_runaway_error_counter[_heater_id]++;
  1200. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1201. {
  1202. if (farm_mode) { prusa_statistics(0); }
  1203. temp_runaway_stop(false, _isbed);
  1204. if (farm_mode) { prusa_statistics(90); }
  1205. }
  1206. }
  1207. }
  1208. }
  1209. }
  1210. }
  1211. void temp_runaway_stop(bool isPreheat, bool isBed)
  1212. {
  1213. disable_heater();
  1214. Sound_MakeCustom(200,0,true);
  1215. if (isPreheat)
  1216. {
  1217. lcd_setalertstatuspgm(isBed? PSTR("BED PREHEAT ERROR") : PSTR("PREHEAT ERROR"), LCD_STATUS_CRITICAL);
  1218. SERIAL_ERROR_START;
  1219. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HOTEND)");
  1220. #ifdef EXTRUDER_ALTFAN_DETECT
  1221. altfanStatus.altfanOverride = 1; //full speed
  1222. #endif //EXTRUDER_ALTFAN_DETECT
  1223. setExtruderAutoFanState(3);
  1224. SET_OUTPUT(FAN_PIN);
  1225. #ifdef FAN_SOFT_PWM
  1226. fanSpeedSoftPwm = 255;
  1227. #else //FAN_SOFT_PWM
  1228. analogWrite(FAN_PIN, 255);
  1229. #endif //FAN_SOFT_PWM
  1230. fanSpeed = 255;
  1231. }
  1232. else
  1233. {
  1234. lcd_setalertstatuspgm(isBed? PSTR("BED THERMAL RUNAWAY") : PSTR("THERMAL RUNAWAY"), LCD_STATUS_CRITICAL);
  1235. SERIAL_ERROR_START;
  1236. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1237. }
  1238. Stop();
  1239. }
  1240. #endif
  1241. void disable_heater()
  1242. {
  1243. setAllTargetHotends(0);
  1244. setTargetBed(0);
  1245. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1246. target_temperature[0]=0;
  1247. soft_pwm[0]=0;
  1248. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1249. WRITE(HEATER_0_PIN,LOW);
  1250. #endif
  1251. #endif
  1252. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1253. target_temperature[1]=0;
  1254. soft_pwm[1]=0;
  1255. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1256. WRITE(HEATER_1_PIN,LOW);
  1257. #endif
  1258. #endif
  1259. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1260. target_temperature[2]=0;
  1261. soft_pwm[2]=0;
  1262. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1263. WRITE(HEATER_2_PIN,LOW);
  1264. #endif
  1265. #endif
  1266. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1267. target_temperature_bed=0;
  1268. soft_pwm_bed=0;
  1269. timer02_set_pwm0(soft_pwm_bed << 1);
  1270. bedPWMDisabled = 0;
  1271. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1272. //WRITE(HEATER_BED_PIN,LOW);
  1273. #endif
  1274. #endif
  1275. }
  1276. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1277. //! than raw const char * of the messages themselves.
  1278. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1279. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1280. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1281. //! remember the last alert message sent to the LCD
  1282. //! to prevent flicker and improve speed
  1283. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1284. //! update the current temperature error message
  1285. //! @param type short error abbreviation (PROGMEM)
  1286. void temp_update_messagepgm(const char* PROGMEM type)
  1287. {
  1288. char msg[LCD_WIDTH];
  1289. strcpy_P(msg, PSTR("Err: "));
  1290. strcat_P(msg, type);
  1291. lcd_setalertstatus(msg, LCD_STATUS_CRITICAL);
  1292. }
  1293. //! signal a temperature error on both the lcd and serial
  1294. //! @param type short error abbreviation (PROGMEM)
  1295. //! @param e optional extruder index for hotend errors
  1296. void temp_error_messagepgm(const char* PROGMEM type, uint8_t e = EXTRUDERS)
  1297. {
  1298. temp_update_messagepgm(type);
  1299. SERIAL_ERROR_START;
  1300. if(e != EXTRUDERS) {
  1301. SERIAL_ERROR((int)e);
  1302. SERIAL_ERRORPGM(": ");
  1303. }
  1304. SERIAL_ERRORPGM("Heaters switched off. ");
  1305. SERIAL_ERRORRPGM(type);
  1306. SERIAL_ERRORLNPGM(" triggered!");
  1307. }
  1308. void max_temp_error(uint8_t e) {
  1309. disable_heater();
  1310. if(IsStopped() == false) {
  1311. temp_error_messagepgm(PSTR("MAXTEMP"), e);
  1312. }
  1313. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1314. Stop();
  1315. #endif
  1316. SET_OUTPUT(FAN_PIN);
  1317. SET_OUTPUT(BEEPER);
  1318. WRITE(FAN_PIN, 1);
  1319. WRITE(BEEPER, 1);
  1320. #ifdef EXTRUDER_ALTFAN_DETECT
  1321. altfanStatus.altfanOverride = 1; //full speed
  1322. #endif //EXTRUDER_ALTFAN_DETECT
  1323. setExtruderAutoFanState(3);
  1324. // fanSpeed will consumed by the check_axes_activity() routine.
  1325. fanSpeed=255;
  1326. if (farm_mode) { prusa_statistics(93); }
  1327. }
  1328. void min_temp_error(uint8_t e) {
  1329. #ifdef DEBUG_DISABLE_MINTEMP
  1330. return;
  1331. #endif
  1332. disable_heater();
  1333. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1334. static const char err[] PROGMEM = "MINTEMP";
  1335. if(IsStopped() == false) {
  1336. temp_error_messagepgm(err, e);
  1337. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1338. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1339. // we are already stopped due to some error, only update the status message without flickering
  1340. temp_update_messagepgm(err);
  1341. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1342. }
  1343. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1344. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1345. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1346. // lcd_print_stop();
  1347. // }
  1348. Stop();
  1349. #endif
  1350. if (farm_mode) { prusa_statistics(92); }
  1351. }
  1352. void bed_max_temp_error(void) {
  1353. disable_heater();
  1354. if(IsStopped() == false) {
  1355. temp_error_messagepgm(PSTR("MAXTEMP BED"));
  1356. }
  1357. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1358. Stop();
  1359. #endif
  1360. }
  1361. void bed_min_temp_error(void) {
  1362. #ifdef DEBUG_DISABLE_MINTEMP
  1363. return;
  1364. #endif
  1365. disable_heater();
  1366. static const char err[] PROGMEM = "MINTEMP BED";
  1367. if(IsStopped() == false) {
  1368. temp_error_messagepgm(err);
  1369. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1370. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1371. // we are already stopped due to some error, only update the status message without flickering
  1372. temp_update_messagepgm(err);
  1373. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1374. }
  1375. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1376. Stop();
  1377. #endif
  1378. }
  1379. #ifdef AMBIENT_THERMISTOR
  1380. void ambient_max_temp_error(void) {
  1381. disable_heater();
  1382. if(IsStopped() == false) {
  1383. temp_error_messagepgm(PSTR("MAXTEMP AMB"));
  1384. }
  1385. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1386. Stop();
  1387. #endif
  1388. }
  1389. void ambient_min_temp_error(void) {
  1390. #ifdef DEBUG_DISABLE_MINTEMP
  1391. return;
  1392. #endif
  1393. disable_heater();
  1394. if(IsStopped() == false) {
  1395. temp_error_messagepgm(PSTR("MINTEMP AMB"));
  1396. }
  1397. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1398. Stop();
  1399. #endif
  1400. }
  1401. #endif
  1402. #ifdef HEATER_0_USES_MAX6675
  1403. #define MAX6675_HEAT_INTERVAL 250
  1404. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1405. int max6675_temp = 2000;
  1406. int read_max6675()
  1407. {
  1408. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1409. return max6675_temp;
  1410. max6675_previous_millis = _millis();
  1411. max6675_temp = 0;
  1412. #ifdef PRR
  1413. PRR &= ~(1<<PRSPI);
  1414. #elif defined PRR0
  1415. PRR0 &= ~(1<<PRSPI);
  1416. #endif
  1417. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1418. // enable TT_MAX6675
  1419. WRITE(MAX6675_SS, 0);
  1420. // ensure 100ns delay - a bit extra is fine
  1421. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1422. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1423. // read MSB
  1424. SPDR = 0;
  1425. for (;(SPSR & (1<<SPIF)) == 0;);
  1426. max6675_temp = SPDR;
  1427. max6675_temp <<= 8;
  1428. // read LSB
  1429. SPDR = 0;
  1430. for (;(SPSR & (1<<SPIF)) == 0;);
  1431. max6675_temp |= SPDR;
  1432. // disable TT_MAX6675
  1433. WRITE(MAX6675_SS, 1);
  1434. if (max6675_temp & 4)
  1435. {
  1436. // thermocouple open
  1437. max6675_temp = 2000;
  1438. }
  1439. else
  1440. {
  1441. max6675_temp = max6675_temp >> 3;
  1442. }
  1443. return max6675_temp;
  1444. }
  1445. #endif
  1446. extern "C" {
  1447. void adc_ready(void) //callback from adc when sampling finished
  1448. {
  1449. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1450. #ifdef PINDA_THERMISTOR
  1451. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1452. #endif //PINDA_THERMISTOR
  1453. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1454. #ifdef VOLT_PWR_PIN
  1455. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1456. #endif
  1457. #ifdef AMBIENT_THERMISTOR
  1458. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
  1459. #endif //AMBIENT_THERMISTOR
  1460. #ifdef VOLT_BED_PIN
  1461. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1462. #endif
  1463. #ifdef IR_SENSOR_ANALOG
  1464. current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
  1465. #endif //IR_SENSOR_ANALOG
  1466. temp_meas_ready = true;
  1467. }
  1468. } // extern "C"
  1469. FORCE_INLINE static void temperature_isr()
  1470. {
  1471. if (!temp_meas_ready) adc_cycle();
  1472. lcd_buttons_update();
  1473. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1474. static uint8_t soft_pwm_0;
  1475. #ifdef SLOW_PWM_HEATERS
  1476. static unsigned char slow_pwm_count = 0;
  1477. static unsigned char state_heater_0 = 0;
  1478. static unsigned char state_timer_heater_0 = 0;
  1479. #endif
  1480. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1481. static unsigned char soft_pwm_1;
  1482. #ifdef SLOW_PWM_HEATERS
  1483. static unsigned char state_heater_1 = 0;
  1484. static unsigned char state_timer_heater_1 = 0;
  1485. #endif
  1486. #endif
  1487. #if EXTRUDERS > 2
  1488. static unsigned char soft_pwm_2;
  1489. #ifdef SLOW_PWM_HEATERS
  1490. static unsigned char state_heater_2 = 0;
  1491. static unsigned char state_timer_heater_2 = 0;
  1492. #endif
  1493. #endif
  1494. #if HEATER_BED_PIN > -1
  1495. // @@DR static unsigned char soft_pwm_b;
  1496. #ifdef SLOW_PWM_HEATERS
  1497. static unsigned char state_heater_b = 0;
  1498. static unsigned char state_timer_heater_b = 0;
  1499. #endif
  1500. #endif
  1501. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1502. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1503. #endif
  1504. #ifndef SLOW_PWM_HEATERS
  1505. /*
  1506. * standard PWM modulation
  1507. */
  1508. if (pwm_count == 0)
  1509. {
  1510. soft_pwm_0 = soft_pwm[0];
  1511. if(soft_pwm_0 > 0)
  1512. {
  1513. WRITE(HEATER_0_PIN,1);
  1514. #ifdef HEATERS_PARALLEL
  1515. WRITE(HEATER_1_PIN,1);
  1516. #endif
  1517. } else WRITE(HEATER_0_PIN,0);
  1518. #if EXTRUDERS > 1
  1519. soft_pwm_1 = soft_pwm[1];
  1520. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1521. #endif
  1522. #if EXTRUDERS > 2
  1523. soft_pwm_2 = soft_pwm[2];
  1524. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1525. #endif
  1526. }
  1527. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1528. #if 0 // @@DR vypnuto pro hw pwm bedu
  1529. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1530. // teoreticky by se tato cast uz vubec nemusela poustet
  1531. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1532. {
  1533. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1534. # ifndef SYSTEM_TIMER_2
  1535. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1536. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1537. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1538. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1539. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1540. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1541. # endif //SYSTEM_TIMER_2
  1542. }
  1543. #endif
  1544. #endif
  1545. #ifdef FAN_SOFT_PWM
  1546. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1547. {
  1548. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1549. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1550. }
  1551. #endif
  1552. if(soft_pwm_0 < pwm_count)
  1553. {
  1554. WRITE(HEATER_0_PIN,0);
  1555. #ifdef HEATERS_PARALLEL
  1556. WRITE(HEATER_1_PIN,0);
  1557. #endif
  1558. }
  1559. #if EXTRUDERS > 1
  1560. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1561. #endif
  1562. #if EXTRUDERS > 2
  1563. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1564. #endif
  1565. #if 0 // @@DR
  1566. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1567. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1568. //WRITE(HEATER_BED_PIN,0);
  1569. }
  1570. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1571. #endif
  1572. #endif
  1573. #ifdef FAN_SOFT_PWM
  1574. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1575. #endif
  1576. pwm_count += (1 << SOFT_PWM_SCALE);
  1577. pwm_count &= 0x7f;
  1578. #else //ifndef SLOW_PWM_HEATERS
  1579. /*
  1580. * SLOW PWM HEATERS
  1581. *
  1582. * for heaters drived by relay
  1583. */
  1584. #ifndef MIN_STATE_TIME
  1585. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1586. #endif
  1587. if (slow_pwm_count == 0) {
  1588. // EXTRUDER 0
  1589. soft_pwm_0 = soft_pwm[0];
  1590. if (soft_pwm_0 > 0) {
  1591. // turn ON heather only if the minimum time is up
  1592. if (state_timer_heater_0 == 0) {
  1593. // if change state set timer
  1594. if (state_heater_0 == 0) {
  1595. state_timer_heater_0 = MIN_STATE_TIME;
  1596. }
  1597. state_heater_0 = 1;
  1598. WRITE(HEATER_0_PIN, 1);
  1599. #ifdef HEATERS_PARALLEL
  1600. WRITE(HEATER_1_PIN, 1);
  1601. #endif
  1602. }
  1603. } else {
  1604. // turn OFF heather only if the minimum time is up
  1605. if (state_timer_heater_0 == 0) {
  1606. // if change state set timer
  1607. if (state_heater_0 == 1) {
  1608. state_timer_heater_0 = MIN_STATE_TIME;
  1609. }
  1610. state_heater_0 = 0;
  1611. WRITE(HEATER_0_PIN, 0);
  1612. #ifdef HEATERS_PARALLEL
  1613. WRITE(HEATER_1_PIN, 0);
  1614. #endif
  1615. }
  1616. }
  1617. #if EXTRUDERS > 1
  1618. // EXTRUDER 1
  1619. soft_pwm_1 = soft_pwm[1];
  1620. if (soft_pwm_1 > 0) {
  1621. // turn ON heather only if the minimum time is up
  1622. if (state_timer_heater_1 == 0) {
  1623. // if change state set timer
  1624. if (state_heater_1 == 0) {
  1625. state_timer_heater_1 = MIN_STATE_TIME;
  1626. }
  1627. state_heater_1 = 1;
  1628. WRITE(HEATER_1_PIN, 1);
  1629. }
  1630. } else {
  1631. // turn OFF heather only if the minimum time is up
  1632. if (state_timer_heater_1 == 0) {
  1633. // if change state set timer
  1634. if (state_heater_1 == 1) {
  1635. state_timer_heater_1 = MIN_STATE_TIME;
  1636. }
  1637. state_heater_1 = 0;
  1638. WRITE(HEATER_1_PIN, 0);
  1639. }
  1640. }
  1641. #endif
  1642. #if EXTRUDERS > 2
  1643. // EXTRUDER 2
  1644. soft_pwm_2 = soft_pwm[2];
  1645. if (soft_pwm_2 > 0) {
  1646. // turn ON heather only if the minimum time is up
  1647. if (state_timer_heater_2 == 0) {
  1648. // if change state set timer
  1649. if (state_heater_2 == 0) {
  1650. state_timer_heater_2 = MIN_STATE_TIME;
  1651. }
  1652. state_heater_2 = 1;
  1653. WRITE(HEATER_2_PIN, 1);
  1654. }
  1655. } else {
  1656. // turn OFF heather only if the minimum time is up
  1657. if (state_timer_heater_2 == 0) {
  1658. // if change state set timer
  1659. if (state_heater_2 == 1) {
  1660. state_timer_heater_2 = MIN_STATE_TIME;
  1661. }
  1662. state_heater_2 = 0;
  1663. WRITE(HEATER_2_PIN, 0);
  1664. }
  1665. }
  1666. #endif
  1667. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1668. // BED
  1669. soft_pwm_b = soft_pwm_bed;
  1670. if (soft_pwm_b > 0) {
  1671. // turn ON heather only if the minimum time is up
  1672. if (state_timer_heater_b == 0) {
  1673. // if change state set timer
  1674. if (state_heater_b == 0) {
  1675. state_timer_heater_b = MIN_STATE_TIME;
  1676. }
  1677. state_heater_b = 1;
  1678. //WRITE(HEATER_BED_PIN, 1);
  1679. }
  1680. } else {
  1681. // turn OFF heather only if the minimum time is up
  1682. if (state_timer_heater_b == 0) {
  1683. // if change state set timer
  1684. if (state_heater_b == 1) {
  1685. state_timer_heater_b = MIN_STATE_TIME;
  1686. }
  1687. state_heater_b = 0;
  1688. WRITE(HEATER_BED_PIN, 0);
  1689. }
  1690. }
  1691. #endif
  1692. } // if (slow_pwm_count == 0)
  1693. // EXTRUDER 0
  1694. if (soft_pwm_0 < slow_pwm_count) {
  1695. // turn OFF heather only if the minimum time is up
  1696. if (state_timer_heater_0 == 0) {
  1697. // if change state set timer
  1698. if (state_heater_0 == 1) {
  1699. state_timer_heater_0 = MIN_STATE_TIME;
  1700. }
  1701. state_heater_0 = 0;
  1702. WRITE(HEATER_0_PIN, 0);
  1703. #ifdef HEATERS_PARALLEL
  1704. WRITE(HEATER_1_PIN, 0);
  1705. #endif
  1706. }
  1707. }
  1708. #if EXTRUDERS > 1
  1709. // EXTRUDER 1
  1710. if (soft_pwm_1 < slow_pwm_count) {
  1711. // turn OFF heather only if the minimum time is up
  1712. if (state_timer_heater_1 == 0) {
  1713. // if change state set timer
  1714. if (state_heater_1 == 1) {
  1715. state_timer_heater_1 = MIN_STATE_TIME;
  1716. }
  1717. state_heater_1 = 0;
  1718. WRITE(HEATER_1_PIN, 0);
  1719. }
  1720. }
  1721. #endif
  1722. #if EXTRUDERS > 2
  1723. // EXTRUDER 2
  1724. if (soft_pwm_2 < slow_pwm_count) {
  1725. // turn OFF heather only if the minimum time is up
  1726. if (state_timer_heater_2 == 0) {
  1727. // if change state set timer
  1728. if (state_heater_2 == 1) {
  1729. state_timer_heater_2 = MIN_STATE_TIME;
  1730. }
  1731. state_heater_2 = 0;
  1732. WRITE(HEATER_2_PIN, 0);
  1733. }
  1734. }
  1735. #endif
  1736. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1737. // BED
  1738. if (soft_pwm_b < slow_pwm_count) {
  1739. // turn OFF heather only if the minimum time is up
  1740. if (state_timer_heater_b == 0) {
  1741. // if change state set timer
  1742. if (state_heater_b == 1) {
  1743. state_timer_heater_b = MIN_STATE_TIME;
  1744. }
  1745. state_heater_b = 0;
  1746. WRITE(HEATER_BED_PIN, 0);
  1747. }
  1748. }
  1749. #endif
  1750. #ifdef FAN_SOFT_PWM
  1751. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1752. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1753. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1754. }
  1755. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1756. #endif
  1757. pwm_count += (1 << SOFT_PWM_SCALE);
  1758. pwm_count &= 0x7f;
  1759. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1760. if ((pwm_count % 64) == 0) {
  1761. slow_pwm_count++;
  1762. slow_pwm_count &= 0x7f;
  1763. // Extruder 0
  1764. if (state_timer_heater_0 > 0) {
  1765. state_timer_heater_0--;
  1766. }
  1767. #if EXTRUDERS > 1
  1768. // Extruder 1
  1769. if (state_timer_heater_1 > 0)
  1770. state_timer_heater_1--;
  1771. #endif
  1772. #if EXTRUDERS > 2
  1773. // Extruder 2
  1774. if (state_timer_heater_2 > 0)
  1775. state_timer_heater_2--;
  1776. #endif
  1777. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1778. // Bed
  1779. if (state_timer_heater_b > 0)
  1780. state_timer_heater_b--;
  1781. #endif
  1782. } //if ((pwm_count % 64) == 0) {
  1783. #endif //ifndef SLOW_PWM_HEATERS
  1784. #ifdef BABYSTEPPING
  1785. for(uint8_t axis=0;axis<3;axis++)
  1786. {
  1787. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1788. if(curTodo>0)
  1789. {
  1790. CRITICAL_SECTION_START;
  1791. babystep(axis,/*fwd*/true);
  1792. babystepsTodo[axis]--; //less to do next time
  1793. CRITICAL_SECTION_END;
  1794. }
  1795. else
  1796. if(curTodo<0)
  1797. {
  1798. CRITICAL_SECTION_START;
  1799. babystep(axis,/*fwd*/false);
  1800. babystepsTodo[axis]++; //less to do next time
  1801. CRITICAL_SECTION_END;
  1802. }
  1803. }
  1804. #endif //BABYSTEPPING
  1805. // Check if a stack overflow happened
  1806. if (!SdFatUtil::test_stack_integrity()) stack_error();
  1807. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1808. check_fans();
  1809. #endif //(defined(TACH_0))
  1810. }
  1811. // Timer2 (originaly timer0) is shared with millies
  1812. #ifdef SYSTEM_TIMER_2
  1813. ISR(TIMER2_COMPB_vect)
  1814. #else //SYSTEM_TIMER_2
  1815. ISR(TIMER0_COMPB_vect)
  1816. #endif //SYSTEM_TIMER_2
  1817. {
  1818. static bool _lock = false;
  1819. if (!_lock)
  1820. {
  1821. _lock = true;
  1822. sei();
  1823. temperature_isr();
  1824. cli();
  1825. _lock = false;
  1826. }
  1827. }
  1828. void check_max_temp()
  1829. {
  1830. //heater
  1831. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1832. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1833. #else
  1834. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1835. #endif
  1836. max_temp_error(0);
  1837. }
  1838. //bed
  1839. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1840. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1841. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1842. #else
  1843. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1844. #endif
  1845. bed_max_temp_error();
  1846. }
  1847. #endif
  1848. //ambient
  1849. #if defined(AMBIENT_MAXTEMP) && (TEMP_SENSOR_AMBIENT != 0)
  1850. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1851. if (current_temperature_raw_ambient <= ambient_maxttemp_raw) {
  1852. #else
  1853. if (current_temperature_raw_ambient >= ambient_maxttemp_raw) {
  1854. #endif
  1855. ambient_max_temp_error();
  1856. }
  1857. #endif
  1858. }
  1859. //! number of repeating the same state with consecutive step() calls
  1860. //! used to slow down text switching
  1861. struct alert_automaton_mintemp {
  1862. const char *m2;
  1863. alert_automaton_mintemp(const char *m2):m2(m2){}
  1864. private:
  1865. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1866. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1867. States state = States::Init;
  1868. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1869. void substep(States next_state){
  1870. if( repeat == 0 ){
  1871. state = next_state; // advance to the next state
  1872. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1873. } else {
  1874. --repeat;
  1875. }
  1876. }
  1877. public:
  1878. //! brief state automaton step routine
  1879. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1880. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1881. void step(float current_temp, float mintemp){
  1882. static const char m1[] PROGMEM = "Please restart";
  1883. switch(state){
  1884. case States::Init: // initial state - check hysteresis
  1885. if( current_temp > mintemp ){
  1886. state = States::TempAboveMintemp;
  1887. }
  1888. // otherwise keep the Err MINTEMP alert message on the display,
  1889. // i.e. do not transfer to state 1
  1890. break;
  1891. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1892. lcd_setalertstatuspgm(m2);
  1893. substep(States::ShowMintemp);
  1894. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1895. break;
  1896. case States::ShowPleaseRestart: // displaying "Please restart"
  1897. lcd_updatestatuspgm(m1);
  1898. substep(States::ShowMintemp);
  1899. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1900. break;
  1901. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1902. lcd_updatestatuspgm(m2);
  1903. substep(States::ShowPleaseRestart);
  1904. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1905. break;
  1906. }
  1907. }
  1908. };
  1909. static const char m2hotend[] PROGMEM = "MINTEMP HOTEND fixed";
  1910. static const char m2bed[] PROGMEM = "MINTEMP BED fixed";
  1911. static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton_bed(m2bed);
  1912. void check_min_temp_heater0()
  1913. {
  1914. //heater
  1915. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1916. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1917. #else
  1918. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1919. #endif
  1920. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1921. min_temp_error(0);
  1922. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1923. // no recovery, just force the user to restart the printer
  1924. // which is a safer variant than just continuing printing
  1925. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1926. // we shall signalize, that MINTEMP has been fixed
  1927. // Code notice: normally the alert_automaton instance would have been placed here
  1928. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1929. // due to stupid compiler that takes 16 more bytes.
  1930. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1931. }
  1932. }
  1933. void check_min_temp_bed()
  1934. {
  1935. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1936. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1937. #else
  1938. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1939. #endif
  1940. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1941. bed_min_temp_error();
  1942. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1943. // no recovery, just force the user to restart the printer
  1944. // which is a safer variant than just continuing printing
  1945. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1946. }
  1947. }
  1948. #ifdef AMBIENT_MINTEMP
  1949. void check_min_temp_ambient()
  1950. {
  1951. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1952. if (current_temperature_raw_ambient >= ambient_minttemp_raw) {
  1953. #else
  1954. if (current_temperature_raw_ambient <= ambient_minttemp_raw) {
  1955. #endif
  1956. ambient_min_temp_error();
  1957. }
  1958. }
  1959. #endif
  1960. void check_min_temp()
  1961. {
  1962. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1963. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1964. #ifdef AMBIENT_THERMISTOR
  1965. #ifdef AMBIENT_MINTEMP
  1966. check_min_temp_ambient();
  1967. #endif
  1968. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1969. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type
  1970. #else
  1971. if(current_temperature_raw_ambient=<(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW))
  1972. #endif
  1973. { // ambient temperature is low
  1974. #endif //AMBIENT_THERMISTOR
  1975. // *** 'common' part of code for MK2.5 & MK3
  1976. // * nozzle checking
  1977. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1978. { // ~ nozzle heating is on
  1979. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1980. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1981. {
  1982. bCheckingOnHeater=true; // not necessary
  1983. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1984. }
  1985. }
  1986. else { // ~ nozzle heating is off
  1987. oTimer4minTempHeater.start();
  1988. bCheckingOnHeater=false;
  1989. }
  1990. // * bed checking
  1991. if(target_temperature_bed>BED_MINTEMP)
  1992. { // ~ bed heating is on
  1993. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1994. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1995. {
  1996. bCheckingOnBed=true; // not necessary
  1997. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1998. }
  1999. }
  2000. else { // ~ bed heating is off
  2001. oTimer4minTempBed.start();
  2002. bCheckingOnBed=false;
  2003. }
  2004. // *** end of 'common' part
  2005. #ifdef AMBIENT_THERMISTOR
  2006. }
  2007. else { // ambient temperature is standard
  2008. check_min_temp_heater0();
  2009. check_min_temp_bed();
  2010. }
  2011. #endif //AMBIENT_THERMISTOR
  2012. }
  2013. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  2014. void check_fans() {
  2015. #ifdef FAN_SOFT_PWM
  2016. if (READ(TACH_0) != fan_state[0]) {
  2017. if(fan_measuring) fan_edge_counter[0] ++;
  2018. fan_state[0] = !fan_state[0];
  2019. }
  2020. #else //FAN_SOFT_PWM
  2021. if (READ(TACH_0) != fan_state[0]) {
  2022. fan_edge_counter[0] ++;
  2023. fan_state[0] = !fan_state[0];
  2024. }
  2025. #endif
  2026. //if (READ(TACH_1) != fan_state[1]) {
  2027. // fan_edge_counter[1] ++;
  2028. // fan_state[1] = !fan_state[1];
  2029. //}
  2030. }
  2031. #endif //TACH_0
  2032. #ifdef PIDTEMP
  2033. // Apply the scale factors to the PID values
  2034. float scalePID_i(float i)
  2035. {
  2036. return i*PID_dT;
  2037. }
  2038. float unscalePID_i(float i)
  2039. {
  2040. return i/PID_dT;
  2041. }
  2042. float scalePID_d(float d)
  2043. {
  2044. return d/PID_dT;
  2045. }
  2046. float unscalePID_d(float d)
  2047. {
  2048. return d*PID_dT;
  2049. }
  2050. #endif //PIDTEMP
  2051. #ifdef PINDA_THERMISTOR
  2052. //! @brief PINDA thermistor detected
  2053. //!
  2054. //! @retval true firmware should do temperature compensation and allow calibration
  2055. //! @retval false PINDA thermistor is not detected, disable temperature compensation and calibration
  2056. //! @retval true/false when forced via LCD menu Settings->HW Setup->SuperPINDA
  2057. //!
  2058. bool has_temperature_compensation()
  2059. {
  2060. #ifdef SUPERPINDA_SUPPORT
  2061. #ifdef PINDA_TEMP_COMP
  2062. uint8_t pinda_temp_compensation = eeprom_read_byte((uint8_t*)EEPROM_PINDA_TEMP_COMPENSATION);
  2063. if (pinda_temp_compensation == EEPROM_EMPTY_VALUE) //Unkown PINDA temp compenstation, so check it.
  2064. {
  2065. #endif //PINDA_TEMP_COMP
  2066. return (current_temperature_pinda >= PINDA_MINTEMP) ? true : false;
  2067. #ifdef PINDA_TEMP_COMP
  2068. }
  2069. else if (pinda_temp_compensation == 0) return true; //Overwritten via LCD menu SuperPINDA [No]
  2070. else return false; //Overwritten via LCD menu SuperPINDA [YES]
  2071. #endif //PINDA_TEMP_COMP
  2072. #else
  2073. return true;
  2074. #endif
  2075. }
  2076. #endif //PINDA_THERMISTOR