Marlin_main.cpp 353 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #ifdef ENABLE_AUTO_BED_LEVELING
  48. #include "vector_3.h"
  49. #ifdef AUTO_BED_LEVELING_GRID
  50. #include "qr_solve.h"
  51. #endif
  52. #endif // ENABLE_AUTO_BED_LEVELING
  53. #ifdef MESH_BED_LEVELING
  54. #include "mesh_bed_leveling.h"
  55. #include "mesh_bed_calibration.h"
  56. #endif
  57. #include "printers.h"
  58. #include "menu.h"
  59. #include "ultralcd.h"
  60. #include "backlight.h"
  61. #include "planner.h"
  62. #include "stepper.h"
  63. #include "temperature.h"
  64. #include "motion_control.h"
  65. #include "cardreader.h"
  66. #include "ConfigurationStore.h"
  67. #include "language.h"
  68. #include "pins_arduino.h"
  69. #include "math.h"
  70. #include "util.h"
  71. #include "Timer.h"
  72. #include <avr/wdt.h>
  73. #include <avr/pgmspace.h>
  74. #include "Dcodes.h"
  75. #include "AutoDeplete.h"
  76. #ifdef SWSPI
  77. #include "swspi.h"
  78. #endif //SWSPI
  79. #include "spi.h"
  80. #ifdef SWI2C
  81. #include "swi2c.h"
  82. #endif //SWI2C
  83. #ifdef FILAMENT_SENSOR
  84. #include "fsensor.h"
  85. #endif //FILAMENT_SENSOR
  86. #ifdef TMC2130
  87. #include "tmc2130.h"
  88. #endif //TMC2130
  89. #ifdef W25X20CL
  90. #include "w25x20cl.h"
  91. #include "optiboot_w25x20cl.h"
  92. #endif //W25X20CL
  93. #ifdef BLINKM
  94. #include "BlinkM.h"
  95. #include "Wire.h"
  96. #endif
  97. #ifdef ULTRALCD
  98. #include "ultralcd.h"
  99. #endif
  100. #if NUM_SERVOS > 0
  101. #include "Servo.h"
  102. #endif
  103. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  104. #include <SPI.h>
  105. #endif
  106. #include "mmu.h"
  107. #define VERSION_STRING "1.0.2"
  108. #include "ultralcd.h"
  109. #include "sound.h"
  110. #include "cmdqueue.h"
  111. #include "io_atmega2560.h"
  112. // Macros for bit masks
  113. #define BIT(b) (1<<(b))
  114. #define TEST(n,b) (((n)&BIT(b))!=0)
  115. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  116. //Macro for print fan speed
  117. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  118. //filament types
  119. #define FILAMENT_DEFAULT 0
  120. #define FILAMENT_FLEX 1
  121. #define FILAMENT_PVA 2
  122. #define FILAMENT_UNDEFINED 255
  123. //Stepper Movement Variables
  124. //===========================================================================
  125. //=============================imported variables============================
  126. //===========================================================================
  127. //===========================================================================
  128. //=============================public variables=============================
  129. //===========================================================================
  130. #ifdef SDSUPPORT
  131. CardReader card;
  132. #endif
  133. unsigned long PingTime = _millis();
  134. unsigned long NcTime;
  135. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  136. //used for PINDA temp calibration and pause print
  137. #define DEFAULT_RETRACTION 1
  138. #define DEFAULT_RETRACTION_MM 4 //MM
  139. float default_retraction = DEFAULT_RETRACTION;
  140. float homing_feedrate[] = HOMING_FEEDRATE;
  141. // Currently only the extruder axis may be switched to a relative mode.
  142. // Other axes are always absolute or relative based on the common relative_mode flag.
  143. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  144. int feedmultiply=100; //100->1 200->2
  145. int extrudemultiply=100; //100->1 200->2
  146. int extruder_multiply[EXTRUDERS] = {100
  147. #if EXTRUDERS > 1
  148. , 100
  149. #if EXTRUDERS > 2
  150. , 100
  151. #endif
  152. #endif
  153. };
  154. int bowden_length[4] = {385, 385, 385, 385};
  155. bool is_usb_printing = false;
  156. bool homing_flag = false;
  157. bool temp_cal_active = false;
  158. unsigned long kicktime = _millis()+100000;
  159. unsigned int usb_printing_counter;
  160. int8_t lcd_change_fil_state = 0;
  161. unsigned long pause_time = 0;
  162. unsigned long start_pause_print = _millis();
  163. unsigned long t_fan_rising_edge = _millis();
  164. LongTimer safetyTimer;
  165. static LongTimer crashDetTimer;
  166. //unsigned long load_filament_time;
  167. bool mesh_bed_leveling_flag = false;
  168. bool mesh_bed_run_from_menu = false;
  169. bool prusa_sd_card_upload = false;
  170. unsigned int status_number = 0;
  171. unsigned long total_filament_used;
  172. unsigned int heating_status;
  173. unsigned int heating_status_counter;
  174. bool loading_flag = false;
  175. char snmm_filaments_used = 0;
  176. bool fan_state[2];
  177. int fan_edge_counter[2];
  178. int fan_speed[2];
  179. char dir_names[3][9];
  180. bool sortAlpha = false;
  181. float extruder_multiplier[EXTRUDERS] = {1.0
  182. #if EXTRUDERS > 1
  183. , 1.0
  184. #if EXTRUDERS > 2
  185. , 1.0
  186. #endif
  187. #endif
  188. };
  189. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  190. //shortcuts for more readable code
  191. #define _x current_position[X_AXIS]
  192. #define _y current_position[Y_AXIS]
  193. #define _z current_position[Z_AXIS]
  194. #define _e current_position[E_AXIS]
  195. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  196. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  197. bool axis_known_position[3] = {false, false, false};
  198. // Extruder offset
  199. #if EXTRUDERS > 1
  200. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  201. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  202. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  203. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  204. #endif
  205. };
  206. #endif
  207. uint8_t active_extruder = 0;
  208. int fanSpeed=0;
  209. #ifdef FWRETRACT
  210. bool retracted[EXTRUDERS]={false
  211. #if EXTRUDERS > 1
  212. , false
  213. #if EXTRUDERS > 2
  214. , false
  215. #endif
  216. #endif
  217. };
  218. bool retracted_swap[EXTRUDERS]={false
  219. #if EXTRUDERS > 1
  220. , false
  221. #if EXTRUDERS > 2
  222. , false
  223. #endif
  224. #endif
  225. };
  226. float retract_length_swap = RETRACT_LENGTH_SWAP;
  227. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  228. #endif
  229. #ifdef PS_DEFAULT_OFF
  230. bool powersupply = false;
  231. #else
  232. bool powersupply = true;
  233. #endif
  234. bool cancel_heatup = false ;
  235. int8_t busy_state = NOT_BUSY;
  236. static long prev_busy_signal_ms = -1;
  237. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  238. const char errormagic[] PROGMEM = "Error:";
  239. const char echomagic[] PROGMEM = "echo:";
  240. bool no_response = false;
  241. uint8_t important_status;
  242. uint8_t saved_filament_type;
  243. #define SAVED_TARGET_UNSET (X_MIN_POS-1)
  244. float saved_target[NUM_AXIS] = {SAVED_TARGET_UNSET, 0, 0, 0};
  245. // save/restore printing in case that mmu was not responding
  246. bool mmu_print_saved = false;
  247. // storing estimated time to end of print counted by slicer
  248. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  249. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  250. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  251. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  252. //===========================================================================
  253. //=============================Private Variables=============================
  254. //===========================================================================
  255. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  256. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  257. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  258. // For tracing an arc
  259. static float offset[3] = {0.0, 0.0, 0.0};
  260. // Current feedrate
  261. float feedrate = 1500.0;
  262. // Feedrate for the next move
  263. static float next_feedrate;
  264. // Original feedrate saved during homing moves
  265. static float saved_feedrate;
  266. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  267. //static float tt = 0;
  268. //static float bt = 0;
  269. //Inactivity shutdown variables
  270. static unsigned long previous_millis_cmd = 0;
  271. unsigned long max_inactive_time = 0;
  272. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  273. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  274. unsigned long starttime=0;
  275. unsigned long stoptime=0;
  276. unsigned long _usb_timer = 0;
  277. bool extruder_under_pressure = true;
  278. bool Stopped=false;
  279. #if NUM_SERVOS > 0
  280. Servo servos[NUM_SERVOS];
  281. #endif
  282. bool target_direction;
  283. //Insert variables if CHDK is defined
  284. #ifdef CHDK
  285. unsigned long chdkHigh = 0;
  286. boolean chdkActive = false;
  287. #endif
  288. //! @name RAM save/restore printing
  289. //! @{
  290. bool saved_printing = false; //!< Print is paused and saved in RAM
  291. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  292. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  293. static float saved_pos[4] = { 0, 0, 0, 0 };
  294. static uint16_t saved_feedrate2 = 0; //!< Default feedrate (truncated from float)
  295. static int saved_feedmultiply2 = 0;
  296. static uint8_t saved_active_extruder = 0;
  297. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  298. static bool saved_extruder_under_pressure = false;
  299. static bool saved_extruder_relative_mode = false;
  300. static int saved_fanSpeed = 0; //!< Print fan speed
  301. //! @}
  302. static int saved_feedmultiply_mm = 100;
  303. //===========================================================================
  304. //=============================Routines======================================
  305. //===========================================================================
  306. static void get_arc_coordinates();
  307. static bool setTargetedHotend(int code, uint8_t &extruder);
  308. static void print_time_remaining_init();
  309. static void wait_for_heater(long codenum, uint8_t extruder);
  310. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  311. static void temp_compensation_start();
  312. static void temp_compensation_apply();
  313. uint16_t gcode_in_progress = 0;
  314. uint16_t mcode_in_progress = 0;
  315. void serial_echopair_P(const char *s_P, float v)
  316. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  317. void serial_echopair_P(const char *s_P, double v)
  318. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  319. void serial_echopair_P(const char *s_P, unsigned long v)
  320. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  321. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  322. {
  323. #if 0
  324. char ch=pgm_read_byte(str);
  325. while(ch)
  326. {
  327. MYSERIAL.write(ch);
  328. ch=pgm_read_byte(++str);
  329. }
  330. #else
  331. // hmm, same size as the above version, the compiler did a good job optimizing the above
  332. while( uint8_t ch = pgm_read_byte(str) ){
  333. MYSERIAL.write((char)ch);
  334. ++str;
  335. }
  336. #endif
  337. }
  338. #ifdef SDSUPPORT
  339. #include "SdFatUtil.h"
  340. int freeMemory() { return SdFatUtil::FreeRam(); }
  341. #else
  342. extern "C" {
  343. extern unsigned int __bss_end;
  344. extern unsigned int __heap_start;
  345. extern void *__brkval;
  346. int freeMemory() {
  347. int free_memory;
  348. if ((int)__brkval == 0)
  349. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  350. else
  351. free_memory = ((int)&free_memory) - ((int)__brkval);
  352. return free_memory;
  353. }
  354. }
  355. #endif //!SDSUPPORT
  356. void setup_killpin()
  357. {
  358. #if defined(KILL_PIN) && KILL_PIN > -1
  359. SET_INPUT(KILL_PIN);
  360. WRITE(KILL_PIN,HIGH);
  361. #endif
  362. }
  363. // Set home pin
  364. void setup_homepin(void)
  365. {
  366. #if defined(HOME_PIN) && HOME_PIN > -1
  367. SET_INPUT(HOME_PIN);
  368. WRITE(HOME_PIN,HIGH);
  369. #endif
  370. }
  371. void setup_photpin()
  372. {
  373. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  374. SET_OUTPUT(PHOTOGRAPH_PIN);
  375. WRITE(PHOTOGRAPH_PIN, LOW);
  376. #endif
  377. }
  378. void setup_powerhold()
  379. {
  380. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  381. SET_OUTPUT(SUICIDE_PIN);
  382. WRITE(SUICIDE_PIN, HIGH);
  383. #endif
  384. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  385. SET_OUTPUT(PS_ON_PIN);
  386. #if defined(PS_DEFAULT_OFF)
  387. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  388. #else
  389. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  390. #endif
  391. #endif
  392. }
  393. void suicide()
  394. {
  395. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  396. SET_OUTPUT(SUICIDE_PIN);
  397. WRITE(SUICIDE_PIN, LOW);
  398. #endif
  399. }
  400. void servo_init()
  401. {
  402. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  403. servos[0].attach(SERVO0_PIN);
  404. #endif
  405. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  406. servos[1].attach(SERVO1_PIN);
  407. #endif
  408. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  409. servos[2].attach(SERVO2_PIN);
  410. #endif
  411. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  412. servos[3].attach(SERVO3_PIN);
  413. #endif
  414. #if (NUM_SERVOS >= 5)
  415. #error "TODO: enter initalisation code for more servos"
  416. #endif
  417. }
  418. bool fans_check_enabled = true;
  419. #ifdef TMC2130
  420. void crashdet_stop_and_save_print()
  421. {
  422. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  423. }
  424. void crashdet_restore_print_and_continue()
  425. {
  426. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  427. // babystep_apply();
  428. }
  429. void crashdet_stop_and_save_print2()
  430. {
  431. cli();
  432. planner_abort_hard(); //abort printing
  433. cmdqueue_reset(); //empty cmdqueue
  434. card.sdprinting = false;
  435. card.closefile();
  436. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  437. st_reset_timer();
  438. sei();
  439. }
  440. void crashdet_detected(uint8_t mask)
  441. {
  442. st_synchronize();
  443. static uint8_t crashDet_counter = 0;
  444. bool automatic_recovery_after_crash = true;
  445. if (crashDet_counter++ == 0) {
  446. crashDetTimer.start();
  447. }
  448. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  449. crashDetTimer.stop();
  450. crashDet_counter = 0;
  451. }
  452. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  453. automatic_recovery_after_crash = false;
  454. crashDetTimer.stop();
  455. crashDet_counter = 0;
  456. }
  457. else {
  458. crashDetTimer.start();
  459. }
  460. lcd_update_enable(true);
  461. lcd_clear();
  462. lcd_update(2);
  463. if (mask & X_AXIS_MASK)
  464. {
  465. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  466. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  467. }
  468. if (mask & Y_AXIS_MASK)
  469. {
  470. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  471. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  472. }
  473. lcd_update_enable(true);
  474. lcd_update(2);
  475. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  476. gcode_G28(true, true, false); //home X and Y
  477. st_synchronize();
  478. if (automatic_recovery_after_crash) {
  479. enquecommand_P(PSTR("CRASH_RECOVER"));
  480. }else{
  481. setTargetHotend(0, active_extruder);
  482. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  483. lcd_update_enable(true);
  484. if (yesno)
  485. {
  486. enquecommand_P(PSTR("CRASH_RECOVER"));
  487. }
  488. else
  489. {
  490. enquecommand_P(PSTR("CRASH_CANCEL"));
  491. }
  492. }
  493. }
  494. void crashdet_recover()
  495. {
  496. crashdet_restore_print_and_continue();
  497. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  498. }
  499. void crashdet_cancel()
  500. {
  501. saved_printing = false;
  502. tmc2130_sg_stop_on_crash = true;
  503. if (saved_printing_type == PRINTING_TYPE_SD) {
  504. lcd_print_stop();
  505. }else if(saved_printing_type == PRINTING_TYPE_USB){
  506. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  507. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  508. }
  509. }
  510. #endif //TMC2130
  511. void failstats_reset_print()
  512. {
  513. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  514. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  515. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  516. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  517. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  518. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  519. }
  520. #ifdef MESH_BED_LEVELING
  521. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  522. #endif
  523. // Factory reset function
  524. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  525. // Level input parameter sets depth of reset
  526. int er_progress = 0;
  527. static void factory_reset(char level)
  528. {
  529. lcd_clear();
  530. switch (level) {
  531. // Level 0: Language reset
  532. case 0:
  533. Sound_MakeCustom(100,0,false);
  534. lang_reset();
  535. break;
  536. //Level 1: Reset statistics
  537. case 1:
  538. Sound_MakeCustom(100,0,false);
  539. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  540. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  541. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  542. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  543. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  544. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  546. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  547. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  548. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  549. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  550. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  551. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  552. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  553. lcd_menu_statistics();
  554. break;
  555. // Level 2: Prepare for shipping
  556. case 2:
  557. //lcd_puts_P(PSTR("Factory RESET"));
  558. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  559. // Force language selection at the next boot up.
  560. lang_reset();
  561. // Force the "Follow calibration flow" message at the next boot up.
  562. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  563. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  564. farm_no = 0;
  565. farm_mode = false;
  566. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  567. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  568. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  569. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  571. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  572. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  573. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  574. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  575. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  576. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  577. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  578. #ifdef FILAMENT_SENSOR
  579. fsensor_enable();
  580. fsensor_autoload_set(true);
  581. #endif //FILAMENT_SENSOR
  582. Sound_MakeCustom(100,0,false);
  583. //_delay_ms(2000);
  584. break;
  585. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  586. case 3:
  587. lcd_puts_P(PSTR("Factory RESET"));
  588. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  589. Sound_MakeCustom(100,0,false);
  590. er_progress = 0;
  591. lcd_puts_at_P(3, 3, PSTR(" "));
  592. lcd_set_cursor(3, 3);
  593. lcd_print(er_progress);
  594. // Erase EEPROM
  595. for (int i = 0; i < 4096; i++) {
  596. eeprom_update_byte((uint8_t*)i, 0xFF);
  597. if (i % 41 == 0) {
  598. er_progress++;
  599. lcd_puts_at_P(3, 3, PSTR(" "));
  600. lcd_set_cursor(3, 3);
  601. lcd_print(er_progress);
  602. lcd_puts_P(PSTR("%"));
  603. }
  604. }
  605. break;
  606. case 4:
  607. bowden_menu();
  608. break;
  609. default:
  610. break;
  611. }
  612. }
  613. extern "C" {
  614. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  615. }
  616. int uart_putchar(char c, FILE *)
  617. {
  618. MYSERIAL.write(c);
  619. return 0;
  620. }
  621. void lcd_splash()
  622. {
  623. lcd_clear(); // clears display and homes screen
  624. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  625. }
  626. void factory_reset()
  627. {
  628. KEEPALIVE_STATE(PAUSED_FOR_USER);
  629. if (!READ(BTN_ENC))
  630. {
  631. _delay_ms(1000);
  632. if (!READ(BTN_ENC))
  633. {
  634. lcd_clear();
  635. lcd_puts_P(PSTR("Factory RESET"));
  636. SET_OUTPUT(BEEPER);
  637. if(eSoundMode!=e_SOUND_MODE_SILENT)
  638. WRITE(BEEPER, HIGH);
  639. while (!READ(BTN_ENC));
  640. WRITE(BEEPER, LOW);
  641. _delay_ms(2000);
  642. char level = reset_menu();
  643. factory_reset(level);
  644. switch (level) {
  645. case 0: _delay_ms(0); break;
  646. case 1: _delay_ms(0); break;
  647. case 2: _delay_ms(0); break;
  648. case 3: _delay_ms(0); break;
  649. }
  650. }
  651. }
  652. KEEPALIVE_STATE(IN_HANDLER);
  653. }
  654. void show_fw_version_warnings() {
  655. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  656. switch (FW_DEV_VERSION) {
  657. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  658. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  659. case(FW_VERSION_DEVEL):
  660. case(FW_VERSION_DEBUG):
  661. lcd_update_enable(false);
  662. lcd_clear();
  663. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  664. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  665. #else
  666. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  667. #endif
  668. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  669. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  670. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  671. lcd_wait_for_click();
  672. break;
  673. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  674. }
  675. lcd_update_enable(true);
  676. }
  677. //! @brief try to check if firmware is on right type of printer
  678. static void check_if_fw_is_on_right_printer(){
  679. #ifdef FILAMENT_SENSOR
  680. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  681. #ifdef IR_SENSOR
  682. swi2c_init();
  683. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  684. if (pat9125_detected){
  685. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  686. #endif //IR_SENSOR
  687. #ifdef PAT9125
  688. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  689. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  690. if (ir_detected){
  691. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  692. #endif //PAT9125
  693. }
  694. #endif //FILAMENT_SENSOR
  695. }
  696. uint8_t check_printer_version()
  697. {
  698. uint8_t version_changed = 0;
  699. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  700. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  701. if (printer_type != PRINTER_TYPE) {
  702. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  703. else version_changed |= 0b10;
  704. }
  705. if (motherboard != MOTHERBOARD) {
  706. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  707. else version_changed |= 0b01;
  708. }
  709. return version_changed;
  710. }
  711. #ifdef BOOTAPP
  712. #include "bootapp.h" //bootloader support
  713. #endif //BOOTAPP
  714. #if (LANG_MODE != 0) //secondary language support
  715. #ifdef W25X20CL
  716. // language update from external flash
  717. #define LANGBOOT_BLOCKSIZE 0x1000u
  718. #define LANGBOOT_RAMBUFFER 0x0800
  719. void update_sec_lang_from_external_flash()
  720. {
  721. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  722. {
  723. uint8_t lang = boot_reserved >> 4;
  724. uint8_t state = boot_reserved & 0xf;
  725. lang_table_header_t header;
  726. uint32_t src_addr;
  727. if (lang_get_header(lang, &header, &src_addr))
  728. {
  729. lcd_puts_at_P(1,3,PSTR("Language update."));
  730. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  731. _delay(100);
  732. boot_reserved = (state + 1) | (lang << 4);
  733. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  734. {
  735. cli();
  736. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  737. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  738. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  739. if (state == 0)
  740. {
  741. //TODO - check header integrity
  742. }
  743. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  744. }
  745. else
  746. {
  747. //TODO - check sec lang data integrity
  748. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  749. }
  750. }
  751. }
  752. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  753. }
  754. #ifdef DEBUG_W25X20CL
  755. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  756. {
  757. lang_table_header_t header;
  758. uint8_t count = 0;
  759. uint32_t addr = 0x00000;
  760. while (1)
  761. {
  762. printf_P(_n("LANGTABLE%d:"), count);
  763. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  764. if (header.magic != LANG_MAGIC)
  765. {
  766. printf_P(_n("NG!\n"));
  767. break;
  768. }
  769. printf_P(_n("OK\n"));
  770. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  771. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  772. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  773. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  774. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  775. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  776. addr += header.size;
  777. codes[count] = header.code;
  778. count ++;
  779. }
  780. return count;
  781. }
  782. void list_sec_lang_from_external_flash()
  783. {
  784. uint16_t codes[8];
  785. uint8_t count = lang_xflash_enum_codes(codes);
  786. printf_P(_n("XFlash lang count = %hhd\n"), count);
  787. }
  788. #endif //DEBUG_W25X20CL
  789. #endif //W25X20CL
  790. #endif //(LANG_MODE != 0)
  791. static void w25x20cl_err_msg()
  792. {
  793. lcd_clear();
  794. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  795. }
  796. // "Setup" function is called by the Arduino framework on startup.
  797. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  798. // are initialized by the main() routine provided by the Arduino framework.
  799. void setup()
  800. {
  801. mmu_init();
  802. ultralcd_init();
  803. spi_init();
  804. lcd_splash();
  805. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  806. #ifdef W25X20CL
  807. bool w25x20cl_success = w25x20cl_init();
  808. if (w25x20cl_success)
  809. {
  810. optiboot_w25x20cl_enter();
  811. #if (LANG_MODE != 0) //secondary language support
  812. update_sec_lang_from_external_flash();
  813. #endif //(LANG_MODE != 0)
  814. }
  815. else
  816. {
  817. w25x20cl_err_msg();
  818. }
  819. #else
  820. const bool w25x20cl_success = true;
  821. #endif //W25X20CL
  822. setup_killpin();
  823. setup_powerhold();
  824. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  825. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  826. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  827. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  828. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  829. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  830. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  831. if (farm_mode)
  832. {
  833. no_response = true; //we need confirmation by recieving PRUSA thx
  834. important_status = 8;
  835. prusa_statistics(8);
  836. selectedSerialPort = 1;
  837. #ifdef TMC2130
  838. //increased extruder current (PFW363)
  839. tmc2130_current_h[E_AXIS] = 36;
  840. tmc2130_current_r[E_AXIS] = 36;
  841. #endif //TMC2130
  842. #ifdef FILAMENT_SENSOR
  843. //disabled filament autoload (PFW360)
  844. fsensor_autoload_set(false);
  845. #endif //FILAMENT_SENSOR
  846. // ~ FanCheck -> on
  847. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  848. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  849. }
  850. MYSERIAL.begin(BAUDRATE);
  851. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  852. #ifndef W25X20CL
  853. SERIAL_PROTOCOLLNPGM("start");
  854. #endif //W25X20CL
  855. stdout = uartout;
  856. SERIAL_ECHO_START;
  857. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  858. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  859. #ifdef DEBUG_SEC_LANG
  860. lang_table_header_t header;
  861. uint32_t src_addr = 0x00000;
  862. if (lang_get_header(1, &header, &src_addr))
  863. {
  864. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  865. #define LT_PRINT_TEST 2
  866. // flash usage
  867. // total p.test
  868. //0 252718 t+c text code
  869. //1 253142 424 170 254
  870. //2 253040 322 164 158
  871. //3 253248 530 135 395
  872. #if (LT_PRINT_TEST==1) //not optimized printf
  873. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  874. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  875. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  876. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  877. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  878. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  879. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  880. #elif (LT_PRINT_TEST==2) //optimized printf
  881. printf_P(
  882. _n(
  883. " _src_addr = 0x%08lx\n"
  884. " _lt_magic = 0x%08lx %S\n"
  885. " _lt_size = 0x%04x (%d)\n"
  886. " _lt_count = 0x%04x (%d)\n"
  887. " _lt_chsum = 0x%04x\n"
  888. " _lt_code = 0x%04x (%c%c)\n"
  889. " _lt_resv1 = 0x%08lx\n"
  890. ),
  891. src_addr,
  892. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  893. header.size, header.size,
  894. header.count, header.count,
  895. header.checksum,
  896. header.code, header.code >> 8, header.code & 0xff,
  897. header.signature
  898. );
  899. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  900. MYSERIAL.print(" _src_addr = 0x");
  901. MYSERIAL.println(src_addr, 16);
  902. MYSERIAL.print(" _lt_magic = 0x");
  903. MYSERIAL.print(header.magic, 16);
  904. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  905. MYSERIAL.print(" _lt_size = 0x");
  906. MYSERIAL.print(header.size, 16);
  907. MYSERIAL.print(" (");
  908. MYSERIAL.print(header.size, 10);
  909. MYSERIAL.println(")");
  910. MYSERIAL.print(" _lt_count = 0x");
  911. MYSERIAL.print(header.count, 16);
  912. MYSERIAL.print(" (");
  913. MYSERIAL.print(header.count, 10);
  914. MYSERIAL.println(")");
  915. MYSERIAL.print(" _lt_chsum = 0x");
  916. MYSERIAL.println(header.checksum, 16);
  917. MYSERIAL.print(" _lt_code = 0x");
  918. MYSERIAL.print(header.code, 16);
  919. MYSERIAL.print(" (");
  920. MYSERIAL.print((char)(header.code >> 8), 0);
  921. MYSERIAL.print((char)(header.code & 0xff), 0);
  922. MYSERIAL.println(")");
  923. MYSERIAL.print(" _lt_resv1 = 0x");
  924. MYSERIAL.println(header.signature, 16);
  925. #endif //(LT_PRINT_TEST==)
  926. #undef LT_PRINT_TEST
  927. #if 0
  928. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  929. for (uint16_t i = 0; i < 1024; i++)
  930. {
  931. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  932. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  933. if ((i % 16) == 15) putchar('\n');
  934. }
  935. #endif
  936. uint16_t sum = 0;
  937. for (uint16_t i = 0; i < header.size; i++)
  938. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  939. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  940. sum -= header.checksum; //subtract checksum
  941. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  942. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  943. if (sum == header.checksum)
  944. printf_P(_n("Checksum OK\n"), sum);
  945. else
  946. printf_P(_n("Checksum NG\n"), sum);
  947. }
  948. else
  949. printf_P(_n("lang_get_header failed!\n"));
  950. #if 0
  951. for (uint16_t i = 0; i < 1024*10; i++)
  952. {
  953. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  954. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  955. if ((i % 16) == 15) putchar('\n');
  956. }
  957. #endif
  958. #if 0
  959. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  960. for (int i = 0; i < 4096; ++i) {
  961. int b = eeprom_read_byte((unsigned char*)i);
  962. if (b != 255) {
  963. SERIAL_ECHO(i);
  964. SERIAL_ECHO(":");
  965. SERIAL_ECHO(b);
  966. SERIAL_ECHOLN("");
  967. }
  968. }
  969. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  970. #endif
  971. #endif //DEBUG_SEC_LANG
  972. // Check startup - does nothing if bootloader sets MCUSR to 0
  973. byte mcu = MCUSR;
  974. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  975. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  976. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  977. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  978. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  979. if (mcu & 1) puts_P(MSG_POWERUP);
  980. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  981. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  982. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  983. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  984. MCUSR = 0;
  985. //SERIAL_ECHORPGM(MSG_MARLIN);
  986. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  987. #ifdef STRING_VERSION_CONFIG_H
  988. #ifdef STRING_CONFIG_H_AUTHOR
  989. SERIAL_ECHO_START;
  990. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  991. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  992. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  993. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  994. SERIAL_ECHOPGM("Compiled: ");
  995. SERIAL_ECHOLNPGM(__DATE__);
  996. #endif
  997. #endif
  998. SERIAL_ECHO_START;
  999. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1000. SERIAL_ECHO(freeMemory());
  1001. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1002. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1003. //lcd_update_enable(false); // why do we need this?? - andre
  1004. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1005. bool previous_settings_retrieved = false;
  1006. uint8_t hw_changed = check_printer_version();
  1007. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1008. previous_settings_retrieved = Config_RetrieveSettings();
  1009. }
  1010. else { //printer version was changed so use default settings
  1011. Config_ResetDefault();
  1012. }
  1013. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1014. tp_init(); // Initialize temperature loop
  1015. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1016. else
  1017. {
  1018. w25x20cl_err_msg();
  1019. printf_P(_n("W25X20CL not responding.\n"));
  1020. }
  1021. plan_init(); // Initialize planner;
  1022. factory_reset();
  1023. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1024. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff)
  1025. {
  1026. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1027. // where all the EEPROM entries are set to 0x0ff.
  1028. // Once a firmware boots up, it forces at least a language selection, which changes
  1029. // EEPROM_LANG to number lower than 0x0ff.
  1030. // 1) Set a high power mode.
  1031. eeprom_update_byte((uint8_t*)EEPROM_SILENT, SILENT_MODE_OFF);
  1032. #ifdef TMC2130
  1033. tmc2130_mode = TMC2130_MODE_NORMAL;
  1034. #endif //TMC2130
  1035. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1036. }
  1037. lcd_encoder_diff=0;
  1038. #ifdef TMC2130
  1039. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1040. if (silentMode == 0xff) silentMode = 0;
  1041. tmc2130_mode = TMC2130_MODE_NORMAL;
  1042. if (lcd_crash_detect_enabled() && !farm_mode)
  1043. {
  1044. lcd_crash_detect_enable();
  1045. puts_P(_N("CrashDetect ENABLED!"));
  1046. }
  1047. else
  1048. {
  1049. lcd_crash_detect_disable();
  1050. puts_P(_N("CrashDetect DISABLED"));
  1051. }
  1052. #ifdef TMC2130_LINEARITY_CORRECTION
  1053. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1054. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1055. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1056. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1057. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1058. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1059. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1060. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1061. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1062. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1063. #endif //TMC2130_LINEARITY_CORRECTION
  1064. #ifdef TMC2130_VARIABLE_RESOLUTION
  1065. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1066. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1067. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1068. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1069. #else //TMC2130_VARIABLE_RESOLUTION
  1070. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1071. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1072. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1073. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1074. #endif //TMC2130_VARIABLE_RESOLUTION
  1075. #endif //TMC2130
  1076. st_init(); // Initialize stepper, this enables interrupts!
  1077. #ifdef UVLO_SUPPORT
  1078. setup_uvlo_interrupt();
  1079. #endif //UVLO_SUPPORT
  1080. #ifdef TMC2130
  1081. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1082. update_mode_profile();
  1083. tmc2130_init();
  1084. #endif //TMC2130
  1085. #ifdef PSU_Delta
  1086. init_force_z(); // ! important for correct Z-axis initialization
  1087. #endif // PSU_Delta
  1088. setup_photpin();
  1089. servo_init();
  1090. // Reset the machine correction matrix.
  1091. // It does not make sense to load the correction matrix until the machine is homed.
  1092. world2machine_reset();
  1093. #ifdef FILAMENT_SENSOR
  1094. fsensor_init();
  1095. #endif //FILAMENT_SENSOR
  1096. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1097. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1098. #endif
  1099. setup_homepin();
  1100. #ifdef TMC2130
  1101. if (1) {
  1102. // try to run to zero phase before powering the Z motor.
  1103. // Move in negative direction
  1104. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1105. // Round the current micro-micro steps to micro steps.
  1106. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1107. // Until the phase counter is reset to zero.
  1108. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1109. _delay(2);
  1110. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1111. _delay(2);
  1112. }
  1113. }
  1114. #endif //TMC2130
  1115. #if defined(Z_AXIS_ALWAYS_ON) && !defined(PSU_Delta)
  1116. enable_z();
  1117. #endif
  1118. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1119. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1120. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1121. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1122. if (farm_mode)
  1123. {
  1124. prusa_statistics(8);
  1125. }
  1126. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1127. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1128. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1129. // but this times out if a blocking dialog is shown in setup().
  1130. card.initsd();
  1131. #ifdef DEBUG_SD_SPEED_TEST
  1132. if (card.cardOK)
  1133. {
  1134. uint8_t* buff = (uint8_t*)block_buffer;
  1135. uint32_t block = 0;
  1136. uint32_t sumr = 0;
  1137. uint32_t sumw = 0;
  1138. for (int i = 0; i < 1024; i++)
  1139. {
  1140. uint32_t u = _micros();
  1141. bool res = card.card.readBlock(i, buff);
  1142. u = _micros() - u;
  1143. if (res)
  1144. {
  1145. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1146. sumr += u;
  1147. u = _micros();
  1148. res = card.card.writeBlock(i, buff);
  1149. u = _micros() - u;
  1150. if (res)
  1151. {
  1152. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1153. sumw += u;
  1154. }
  1155. else
  1156. {
  1157. printf_P(PSTR("writeBlock %4d error\n"), i);
  1158. break;
  1159. }
  1160. }
  1161. else
  1162. {
  1163. printf_P(PSTR("readBlock %4d error\n"), i);
  1164. break;
  1165. }
  1166. }
  1167. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1168. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1169. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1170. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1171. }
  1172. else
  1173. printf_P(PSTR("Card NG!\n"));
  1174. #endif //DEBUG_SD_SPEED_TEST
  1175. eeprom_init();
  1176. #ifdef SNMM
  1177. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1178. int _z = BOWDEN_LENGTH;
  1179. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1180. }
  1181. #endif
  1182. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1183. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1184. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1185. #if (LANG_MODE != 0) //secondary language support
  1186. #ifdef DEBUG_W25X20CL
  1187. W25X20CL_SPI_ENTER();
  1188. uint8_t uid[8]; // 64bit unique id
  1189. w25x20cl_rd_uid(uid);
  1190. puts_P(_n("W25X20CL UID="));
  1191. for (uint8_t i = 0; i < 8; i ++)
  1192. printf_P(PSTR("%02hhx"), uid[i]);
  1193. putchar('\n');
  1194. list_sec_lang_from_external_flash();
  1195. #endif //DEBUG_W25X20CL
  1196. // lang_reset();
  1197. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1198. lcd_language();
  1199. #ifdef DEBUG_SEC_LANG
  1200. uint16_t sec_lang_code = lang_get_code(1);
  1201. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1202. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1203. lang_print_sec_lang(uartout);
  1204. #endif //DEBUG_SEC_LANG
  1205. #endif //(LANG_MODE != 0)
  1206. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1207. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1208. temp_cal_active = false;
  1209. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1210. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1211. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1212. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1213. int16_t z_shift = 0;
  1214. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1215. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1216. temp_cal_active = false;
  1217. }
  1218. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1219. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1220. }
  1221. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1222. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1223. }
  1224. //mbl_mode_init();
  1225. mbl_settings_init();
  1226. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1227. if (SilentModeMenu_MMU == 255) {
  1228. SilentModeMenu_MMU = 1;
  1229. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1230. }
  1231. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1232. setup_fan_interrupt();
  1233. #endif //DEBUG_DISABLE_FANCHECK
  1234. #ifdef PAT9125
  1235. fsensor_setup_interrupt();
  1236. #endif //PAT9125
  1237. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1238. #ifndef DEBUG_DISABLE_STARTMSGS
  1239. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1240. if (!farm_mode) {
  1241. check_if_fw_is_on_right_printer();
  1242. show_fw_version_warnings();
  1243. }
  1244. switch (hw_changed) {
  1245. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1246. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1247. case(0b01):
  1248. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1249. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1250. break;
  1251. case(0b10):
  1252. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1253. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1254. break;
  1255. case(0b11):
  1256. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1257. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1258. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1259. break;
  1260. default: break; //no change, show no message
  1261. }
  1262. if (!previous_settings_retrieved) {
  1263. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1264. Config_StoreSettings();
  1265. }
  1266. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1267. lcd_wizard(WizState::Run);
  1268. }
  1269. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1270. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1271. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1272. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1273. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1274. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  1275. // Show the message.
  1276. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1277. }
  1278. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1279. // Show the message.
  1280. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1281. lcd_update_enable(true);
  1282. }
  1283. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1284. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1285. lcd_update_enable(true);
  1286. }
  1287. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1288. // Show the message.
  1289. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1290. }
  1291. }
  1292. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1293. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1294. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1295. update_current_firmware_version_to_eeprom();
  1296. lcd_selftest();
  1297. }
  1298. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1299. KEEPALIVE_STATE(IN_PROCESS);
  1300. #endif //DEBUG_DISABLE_STARTMSGS
  1301. lcd_update_enable(true);
  1302. lcd_clear();
  1303. lcd_update(2);
  1304. // Store the currently running firmware into an eeprom,
  1305. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1306. update_current_firmware_version_to_eeprom();
  1307. #ifdef TMC2130
  1308. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1309. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1310. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1311. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1312. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1313. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1314. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1315. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1316. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1317. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1318. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1319. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1320. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1321. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1322. #endif //TMC2130
  1323. #ifdef UVLO_SUPPORT
  1324. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1325. /*
  1326. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1327. else {
  1328. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1329. lcd_update_enable(true);
  1330. lcd_update(2);
  1331. lcd_setstatuspgm(_T(WELCOME_MSG));
  1332. }
  1333. */
  1334. manage_heater(); // Update temperatures
  1335. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1336. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1337. #endif
  1338. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1339. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1340. puts_P(_N("Automatic recovery!"));
  1341. #endif
  1342. recover_print(1);
  1343. }
  1344. else{
  1345. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1346. puts_P(_N("Normal recovery!"));
  1347. #endif
  1348. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1349. else {
  1350. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1351. lcd_update_enable(true);
  1352. lcd_update(2);
  1353. lcd_setstatuspgm(_T(WELCOME_MSG));
  1354. }
  1355. }
  1356. }
  1357. #endif //UVLO_SUPPORT
  1358. fCheckModeInit();
  1359. fSetMmuMode(mmu_enabled);
  1360. KEEPALIVE_STATE(NOT_BUSY);
  1361. #ifdef WATCHDOG
  1362. wdt_enable(WDTO_4S);
  1363. #endif //WATCHDOG
  1364. }
  1365. void trace();
  1366. #define CHUNK_SIZE 64 // bytes
  1367. #define SAFETY_MARGIN 1
  1368. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1369. int chunkHead = 0;
  1370. void serial_read_stream() {
  1371. setAllTargetHotends(0);
  1372. setTargetBed(0);
  1373. lcd_clear();
  1374. lcd_puts_P(PSTR(" Upload in progress"));
  1375. // first wait for how many bytes we will receive
  1376. uint32_t bytesToReceive;
  1377. // receive the four bytes
  1378. char bytesToReceiveBuffer[4];
  1379. for (int i=0; i<4; i++) {
  1380. int data;
  1381. while ((data = MYSERIAL.read()) == -1) {};
  1382. bytesToReceiveBuffer[i] = data;
  1383. }
  1384. // make it a uint32
  1385. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1386. // we're ready, notify the sender
  1387. MYSERIAL.write('+');
  1388. // lock in the routine
  1389. uint32_t receivedBytes = 0;
  1390. while (prusa_sd_card_upload) {
  1391. int i;
  1392. for (i=0; i<CHUNK_SIZE; i++) {
  1393. int data;
  1394. // check if we're not done
  1395. if (receivedBytes == bytesToReceive) {
  1396. break;
  1397. }
  1398. // read the next byte
  1399. while ((data = MYSERIAL.read()) == -1) {};
  1400. receivedBytes++;
  1401. // save it to the chunk
  1402. chunk[i] = data;
  1403. }
  1404. // write the chunk to SD
  1405. card.write_command_no_newline(&chunk[0]);
  1406. // notify the sender we're ready for more data
  1407. MYSERIAL.write('+');
  1408. // for safety
  1409. manage_heater();
  1410. // check if we're done
  1411. if(receivedBytes == bytesToReceive) {
  1412. trace(); // beep
  1413. card.closefile();
  1414. prusa_sd_card_upload = false;
  1415. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1416. }
  1417. }
  1418. }
  1419. /**
  1420. * Output a "busy" message at regular intervals
  1421. * while the machine is not accepting commands.
  1422. */
  1423. void host_keepalive() {
  1424. #ifndef HOST_KEEPALIVE_FEATURE
  1425. return;
  1426. #endif //HOST_KEEPALIVE_FEATURE
  1427. if (farm_mode) return;
  1428. long ms = _millis();
  1429. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1430. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1431. switch (busy_state) {
  1432. case IN_HANDLER:
  1433. case IN_PROCESS:
  1434. SERIAL_ECHO_START;
  1435. SERIAL_ECHOLNPGM("busy: processing");
  1436. break;
  1437. case PAUSED_FOR_USER:
  1438. SERIAL_ECHO_START;
  1439. SERIAL_ECHOLNPGM("busy: paused for user");
  1440. break;
  1441. case PAUSED_FOR_INPUT:
  1442. SERIAL_ECHO_START;
  1443. SERIAL_ECHOLNPGM("busy: paused for input");
  1444. break;
  1445. default:
  1446. break;
  1447. }
  1448. }
  1449. prev_busy_signal_ms = ms;
  1450. }
  1451. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1452. // Before loop(), the setup() function is called by the main() routine.
  1453. void loop()
  1454. {
  1455. KEEPALIVE_STATE(NOT_BUSY);
  1456. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1457. {
  1458. is_usb_printing = true;
  1459. usb_printing_counter--;
  1460. _usb_timer = _millis();
  1461. }
  1462. if (usb_printing_counter == 0)
  1463. {
  1464. is_usb_printing = false;
  1465. }
  1466. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1467. {
  1468. is_usb_printing = true;
  1469. }
  1470. #ifdef FANCHECK
  1471. if (fan_check_error && isPrintPaused)
  1472. {
  1473. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1474. host_keepalive(); //prevent timeouts since usb processing is disabled until print is resumed. This is for a crude way of pausing a print on all hosts.
  1475. }
  1476. #endif
  1477. if (prusa_sd_card_upload)
  1478. {
  1479. //we read byte-by byte
  1480. serial_read_stream();
  1481. }
  1482. else
  1483. {
  1484. get_command();
  1485. #ifdef SDSUPPORT
  1486. card.checkautostart(false);
  1487. #endif
  1488. if(buflen)
  1489. {
  1490. cmdbuffer_front_already_processed = false;
  1491. #ifdef SDSUPPORT
  1492. if(card.saving)
  1493. {
  1494. // Saving a G-code file onto an SD-card is in progress.
  1495. // Saving starts with M28, saving until M29 is seen.
  1496. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1497. card.write_command(CMDBUFFER_CURRENT_STRING);
  1498. if(card.logging)
  1499. process_commands();
  1500. else
  1501. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1502. } else {
  1503. card.closefile();
  1504. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1505. }
  1506. } else {
  1507. process_commands();
  1508. }
  1509. #else
  1510. process_commands();
  1511. #endif //SDSUPPORT
  1512. if (! cmdbuffer_front_already_processed && buflen)
  1513. {
  1514. // ptr points to the start of the block currently being processed.
  1515. // The first character in the block is the block type.
  1516. char *ptr = cmdbuffer + bufindr;
  1517. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1518. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1519. union {
  1520. struct {
  1521. char lo;
  1522. char hi;
  1523. } lohi;
  1524. uint16_t value;
  1525. } sdlen;
  1526. sdlen.value = 0;
  1527. {
  1528. // This block locks the interrupts globally for 3.25 us,
  1529. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1530. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1531. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1532. cli();
  1533. // Reset the command to something, which will be ignored by the power panic routine,
  1534. // so this buffer length will not be counted twice.
  1535. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1536. // Extract the current buffer length.
  1537. sdlen.lohi.lo = *ptr ++;
  1538. sdlen.lohi.hi = *ptr;
  1539. // and pass it to the planner queue.
  1540. planner_add_sd_length(sdlen.value);
  1541. sei();
  1542. }
  1543. }
  1544. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1545. cli();
  1546. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1547. // and one for each command to previous block in the planner queue.
  1548. planner_add_sd_length(1);
  1549. sei();
  1550. }
  1551. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1552. // this block's SD card length will not be counted twice as its command type has been replaced
  1553. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1554. cmdqueue_pop_front();
  1555. }
  1556. host_keepalive();
  1557. }
  1558. }
  1559. //check heater every n milliseconds
  1560. manage_heater();
  1561. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1562. checkHitEndstops();
  1563. lcd_update(0);
  1564. #ifdef TMC2130
  1565. tmc2130_check_overtemp();
  1566. if (tmc2130_sg_crash)
  1567. {
  1568. uint8_t crash = tmc2130_sg_crash;
  1569. tmc2130_sg_crash = 0;
  1570. // crashdet_stop_and_save_print();
  1571. switch (crash)
  1572. {
  1573. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1574. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1575. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1576. }
  1577. }
  1578. #endif //TMC2130
  1579. mmu_loop();
  1580. }
  1581. #define DEFINE_PGM_READ_ANY(type, reader) \
  1582. static inline type pgm_read_any(const type *p) \
  1583. { return pgm_read_##reader##_near(p); }
  1584. DEFINE_PGM_READ_ANY(float, float);
  1585. DEFINE_PGM_READ_ANY(signed char, byte);
  1586. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1587. static const PROGMEM type array##_P[3] = \
  1588. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1589. static inline type array(int axis) \
  1590. { return pgm_read_any(&array##_P[axis]); } \
  1591. type array##_ext(int axis) \
  1592. { return pgm_read_any(&array##_P[axis]); }
  1593. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1594. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1595. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1596. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1597. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1598. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1599. static void axis_is_at_home(int axis) {
  1600. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1601. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1602. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1603. }
  1604. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1605. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1606. //! @return original feedmultiply
  1607. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1608. saved_feedrate = feedrate;
  1609. int l_feedmultiply = feedmultiply;
  1610. feedmultiply = 100;
  1611. previous_millis_cmd = _millis();
  1612. enable_endstops(enable_endstops_now);
  1613. return l_feedmultiply;
  1614. }
  1615. //! @param original_feedmultiply feedmultiply to restore
  1616. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1617. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1618. enable_endstops(false);
  1619. #endif
  1620. feedrate = saved_feedrate;
  1621. feedmultiply = original_feedmultiply;
  1622. previous_millis_cmd = _millis();
  1623. }
  1624. #ifdef ENABLE_AUTO_BED_LEVELING
  1625. #ifdef AUTO_BED_LEVELING_GRID
  1626. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1627. {
  1628. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1629. planeNormal.debug("planeNormal");
  1630. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1631. //bedLevel.debug("bedLevel");
  1632. //plan_bed_level_matrix.debug("bed level before");
  1633. //vector_3 uncorrected_position = plan_get_position_mm();
  1634. //uncorrected_position.debug("position before");
  1635. vector_3 corrected_position = plan_get_position();
  1636. // corrected_position.debug("position after");
  1637. current_position[X_AXIS] = corrected_position.x;
  1638. current_position[Y_AXIS] = corrected_position.y;
  1639. current_position[Z_AXIS] = corrected_position.z;
  1640. // put the bed at 0 so we don't go below it.
  1641. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1642. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1643. }
  1644. #else // not AUTO_BED_LEVELING_GRID
  1645. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1646. plan_bed_level_matrix.set_to_identity();
  1647. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1648. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1649. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1650. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1651. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1652. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1653. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1654. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1655. vector_3 corrected_position = plan_get_position();
  1656. current_position[X_AXIS] = corrected_position.x;
  1657. current_position[Y_AXIS] = corrected_position.y;
  1658. current_position[Z_AXIS] = corrected_position.z;
  1659. // put the bed at 0 so we don't go below it.
  1660. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1661. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1662. }
  1663. #endif // AUTO_BED_LEVELING_GRID
  1664. static void run_z_probe() {
  1665. plan_bed_level_matrix.set_to_identity();
  1666. feedrate = homing_feedrate[Z_AXIS];
  1667. // move down until you find the bed
  1668. float zPosition = -10;
  1669. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1670. st_synchronize();
  1671. // we have to let the planner know where we are right now as it is not where we said to go.
  1672. zPosition = st_get_position_mm(Z_AXIS);
  1673. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1674. // move up the retract distance
  1675. zPosition += home_retract_mm(Z_AXIS);
  1676. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1677. st_synchronize();
  1678. // move back down slowly to find bed
  1679. feedrate = homing_feedrate[Z_AXIS]/4;
  1680. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1681. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1682. st_synchronize();
  1683. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1684. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1685. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1686. }
  1687. static void do_blocking_move_to(float x, float y, float z) {
  1688. float oldFeedRate = feedrate;
  1689. feedrate = homing_feedrate[Z_AXIS];
  1690. current_position[Z_AXIS] = z;
  1691. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1692. st_synchronize();
  1693. feedrate = XY_TRAVEL_SPEED;
  1694. current_position[X_AXIS] = x;
  1695. current_position[Y_AXIS] = y;
  1696. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1697. st_synchronize();
  1698. feedrate = oldFeedRate;
  1699. }
  1700. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1701. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1702. }
  1703. /// Probe bed height at position (x,y), returns the measured z value
  1704. static float probe_pt(float x, float y, float z_before) {
  1705. // move to right place
  1706. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1707. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1708. run_z_probe();
  1709. float measured_z = current_position[Z_AXIS];
  1710. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1711. SERIAL_PROTOCOLPGM(" x: ");
  1712. SERIAL_PROTOCOL(x);
  1713. SERIAL_PROTOCOLPGM(" y: ");
  1714. SERIAL_PROTOCOL(y);
  1715. SERIAL_PROTOCOLPGM(" z: ");
  1716. SERIAL_PROTOCOL(measured_z);
  1717. SERIAL_PROTOCOLPGM("\n");
  1718. return measured_z;
  1719. }
  1720. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1721. #ifdef LIN_ADVANCE
  1722. /**
  1723. * M900: Set and/or Get advance K factor and WH/D ratio
  1724. *
  1725. * K<factor> Set advance K factor
  1726. * R<ratio> Set ratio directly (overrides WH/D)
  1727. * W<width> H<height> D<diam> Set ratio from WH/D
  1728. */
  1729. inline void gcode_M900() {
  1730. st_synchronize();
  1731. const float newK = code_seen('K') ? code_value_float() : -1;
  1732. if (newK >= 0) extruder_advance_k = newK;
  1733. float newR = code_seen('R') ? code_value_float() : -1;
  1734. if (newR < 0) {
  1735. const float newD = code_seen('D') ? code_value_float() : -1,
  1736. newW = code_seen('W') ? code_value_float() : -1,
  1737. newH = code_seen('H') ? code_value_float() : -1;
  1738. if (newD >= 0 && newW >= 0 && newH >= 0)
  1739. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1740. }
  1741. if (newR >= 0) advance_ed_ratio = newR;
  1742. SERIAL_ECHO_START;
  1743. SERIAL_ECHOPGM("Advance K=");
  1744. SERIAL_ECHOLN(extruder_advance_k);
  1745. SERIAL_ECHOPGM(" E/D=");
  1746. const float ratio = advance_ed_ratio;
  1747. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1748. }
  1749. #endif // LIN_ADVANCE
  1750. bool check_commands() {
  1751. bool end_command_found = false;
  1752. while (buflen)
  1753. {
  1754. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1755. if (!cmdbuffer_front_already_processed)
  1756. cmdqueue_pop_front();
  1757. cmdbuffer_front_already_processed = false;
  1758. }
  1759. return end_command_found;
  1760. }
  1761. // raise_z_above: slowly raise Z to the requested height
  1762. //
  1763. // contrarily to a simple move, this function will carefully plan a move
  1764. // when the current Z position is unknown. In such cases, stallguard is
  1765. // enabled and will prevent prolonged pushing against the Z tops
  1766. void raise_z_above(float target, bool plan)
  1767. {
  1768. if (current_position[Z_AXIS] >= target)
  1769. return;
  1770. // Z needs raising
  1771. current_position[Z_AXIS] = target;
  1772. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  1773. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1774. #else
  1775. bool z_min_endstop = false;
  1776. #endif
  1777. if (axis_known_position[Z_AXIS] || z_min_endstop)
  1778. {
  1779. // current position is known or very low, it's safe to raise Z
  1780. if(plan) plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS], active_extruder);
  1781. return;
  1782. }
  1783. // ensure Z is powered in normal mode to overcome initial load
  1784. enable_z();
  1785. st_synchronize();
  1786. // rely on crashguard to limit damage
  1787. bool z_endstop_enabled = enable_z_endstop(true);
  1788. #ifdef TMC2130
  1789. tmc2130_home_enter(Z_AXIS_MASK);
  1790. #endif //TMC2130
  1791. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  1792. st_synchronize();
  1793. #ifdef TMC2130
  1794. if (endstop_z_hit_on_purpose())
  1795. {
  1796. // not necessarily exact, but will avoid further vertical moves
  1797. current_position[Z_AXIS] = max_pos[Z_AXIS];
  1798. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS],
  1799. current_position[Z_AXIS], current_position[E_AXIS]);
  1800. }
  1801. tmc2130_home_exit();
  1802. #endif //TMC2130
  1803. enable_z_endstop(z_endstop_enabled);
  1804. }
  1805. #ifdef TMC2130
  1806. bool calibrate_z_auto()
  1807. {
  1808. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1809. lcd_clear();
  1810. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1811. bool endstops_enabled = enable_endstops(true);
  1812. int axis_up_dir = -home_dir(Z_AXIS);
  1813. tmc2130_home_enter(Z_AXIS_MASK);
  1814. current_position[Z_AXIS] = 0;
  1815. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1816. set_destination_to_current();
  1817. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1818. feedrate = homing_feedrate[Z_AXIS];
  1819. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1820. st_synchronize();
  1821. // current_position[axis] = 0;
  1822. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1823. tmc2130_home_exit();
  1824. enable_endstops(false);
  1825. current_position[Z_AXIS] = 0;
  1826. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1827. set_destination_to_current();
  1828. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1829. feedrate = homing_feedrate[Z_AXIS] / 2;
  1830. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1831. st_synchronize();
  1832. enable_endstops(endstops_enabled);
  1833. if (PRINTER_TYPE == PRINTER_MK3) {
  1834. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1835. }
  1836. else {
  1837. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1838. }
  1839. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1840. return true;
  1841. }
  1842. #endif //TMC2130
  1843. #ifdef TMC2130
  1844. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1845. #else
  1846. void homeaxis(int axis, uint8_t cnt)
  1847. #endif //TMC2130
  1848. {
  1849. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1850. #define HOMEAXIS_DO(LETTER) \
  1851. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1852. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1853. {
  1854. int axis_home_dir = home_dir(axis);
  1855. feedrate = homing_feedrate[axis];
  1856. #ifdef TMC2130
  1857. tmc2130_home_enter(X_AXIS_MASK << axis);
  1858. #endif //TMC2130
  1859. // Move away a bit, so that the print head does not touch the end position,
  1860. // and the following movement to endstop has a chance to achieve the required velocity
  1861. // for the stall guard to work.
  1862. current_position[axis] = 0;
  1863. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1864. set_destination_to_current();
  1865. // destination[axis] = 11.f;
  1866. destination[axis] = -3.f * axis_home_dir;
  1867. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1868. st_synchronize();
  1869. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1870. endstops_hit_on_purpose();
  1871. enable_endstops(false);
  1872. current_position[axis] = 0;
  1873. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1874. destination[axis] = 1. * axis_home_dir;
  1875. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1876. st_synchronize();
  1877. // Now continue to move up to the left end stop with the collision detection enabled.
  1878. enable_endstops(true);
  1879. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1880. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1881. st_synchronize();
  1882. for (uint8_t i = 0; i < cnt; i++)
  1883. {
  1884. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1885. endstops_hit_on_purpose();
  1886. enable_endstops(false);
  1887. current_position[axis] = 0;
  1888. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1889. destination[axis] = -10.f * axis_home_dir;
  1890. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1891. st_synchronize();
  1892. endstops_hit_on_purpose();
  1893. // Now move left up to the collision, this time with a repeatable velocity.
  1894. enable_endstops(true);
  1895. destination[axis] = 11.f * axis_home_dir;
  1896. #ifdef TMC2130
  1897. feedrate = homing_feedrate[axis];
  1898. #else //TMC2130
  1899. feedrate = homing_feedrate[axis] / 2;
  1900. #endif //TMC2130
  1901. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1902. st_synchronize();
  1903. #ifdef TMC2130
  1904. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1905. if (pstep) pstep[i] = mscnt >> 4;
  1906. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1907. #endif //TMC2130
  1908. }
  1909. endstops_hit_on_purpose();
  1910. enable_endstops(false);
  1911. #ifdef TMC2130
  1912. uint8_t orig = tmc2130_home_origin[axis];
  1913. uint8_t back = tmc2130_home_bsteps[axis];
  1914. if (tmc2130_home_enabled && (orig <= 63))
  1915. {
  1916. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1917. if (back > 0)
  1918. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1919. }
  1920. else
  1921. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1922. tmc2130_home_exit();
  1923. #endif //TMC2130
  1924. axis_is_at_home(axis);
  1925. axis_known_position[axis] = true;
  1926. // Move from minimum
  1927. #ifdef TMC2130
  1928. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1929. #else //TMC2130
  1930. float dist = - axis_home_dir * 0.01f * 64;
  1931. #endif //TMC2130
  1932. current_position[axis] -= dist;
  1933. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1934. current_position[axis] += dist;
  1935. destination[axis] = current_position[axis];
  1936. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1937. st_synchronize();
  1938. feedrate = 0.0;
  1939. }
  1940. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1941. {
  1942. #ifdef TMC2130
  1943. FORCE_HIGH_POWER_START;
  1944. #endif
  1945. int axis_home_dir = home_dir(axis);
  1946. current_position[axis] = 0;
  1947. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1948. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1949. feedrate = homing_feedrate[axis];
  1950. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1951. st_synchronize();
  1952. #ifdef TMC2130
  1953. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1954. FORCE_HIGH_POWER_END;
  1955. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1956. return;
  1957. }
  1958. #endif //TMC2130
  1959. current_position[axis] = 0;
  1960. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1961. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1962. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1963. st_synchronize();
  1964. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1965. feedrate = homing_feedrate[axis]/2 ;
  1966. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1967. st_synchronize();
  1968. #ifdef TMC2130
  1969. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1970. FORCE_HIGH_POWER_END;
  1971. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1972. return;
  1973. }
  1974. #endif //TMC2130
  1975. axis_is_at_home(axis);
  1976. destination[axis] = current_position[axis];
  1977. feedrate = 0.0;
  1978. endstops_hit_on_purpose();
  1979. axis_known_position[axis] = true;
  1980. #ifdef TMC2130
  1981. FORCE_HIGH_POWER_END;
  1982. #endif
  1983. }
  1984. enable_endstops(endstops_enabled);
  1985. }
  1986. /**/
  1987. void home_xy()
  1988. {
  1989. set_destination_to_current();
  1990. homeaxis(X_AXIS);
  1991. homeaxis(Y_AXIS);
  1992. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1993. endstops_hit_on_purpose();
  1994. }
  1995. void refresh_cmd_timeout(void)
  1996. {
  1997. previous_millis_cmd = _millis();
  1998. }
  1999. #ifdef FWRETRACT
  2000. void retract(bool retracting, bool swapretract = false) {
  2001. if(retracting && !retracted[active_extruder]) {
  2002. destination[X_AXIS]=current_position[X_AXIS];
  2003. destination[Y_AXIS]=current_position[Y_AXIS];
  2004. destination[Z_AXIS]=current_position[Z_AXIS];
  2005. destination[E_AXIS]=current_position[E_AXIS];
  2006. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  2007. plan_set_e_position(current_position[E_AXIS]);
  2008. float oldFeedrate = feedrate;
  2009. feedrate=cs.retract_feedrate*60;
  2010. retracted[active_extruder]=true;
  2011. prepare_move();
  2012. current_position[Z_AXIS]-=cs.retract_zlift;
  2013. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2014. prepare_move();
  2015. feedrate = oldFeedrate;
  2016. } else if(!retracting && retracted[active_extruder]) {
  2017. destination[X_AXIS]=current_position[X_AXIS];
  2018. destination[Y_AXIS]=current_position[Y_AXIS];
  2019. destination[Z_AXIS]=current_position[Z_AXIS];
  2020. destination[E_AXIS]=current_position[E_AXIS];
  2021. current_position[Z_AXIS]+=cs.retract_zlift;
  2022. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2023. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  2024. plan_set_e_position(current_position[E_AXIS]);
  2025. float oldFeedrate = feedrate;
  2026. feedrate=cs.retract_recover_feedrate*60;
  2027. retracted[active_extruder]=false;
  2028. prepare_move();
  2029. feedrate = oldFeedrate;
  2030. }
  2031. } //retract
  2032. #endif //FWRETRACT
  2033. void trace() {
  2034. Sound_MakeCustom(25,440,true);
  2035. }
  2036. /*
  2037. void ramming() {
  2038. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2039. if (current_temperature[0] < 230) {
  2040. //PLA
  2041. max_feedrate[E_AXIS] = 50;
  2042. //current_position[E_AXIS] -= 8;
  2043. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2044. //current_position[E_AXIS] += 8;
  2045. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2046. current_position[E_AXIS] += 5.4;
  2047. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  2048. current_position[E_AXIS] += 3.2;
  2049. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2050. current_position[E_AXIS] += 3;
  2051. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  2052. st_synchronize();
  2053. max_feedrate[E_AXIS] = 80;
  2054. current_position[E_AXIS] -= 82;
  2055. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2056. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2057. current_position[E_AXIS] -= 20;
  2058. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2059. current_position[E_AXIS] += 5;
  2060. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2061. current_position[E_AXIS] += 5;
  2062. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2063. current_position[E_AXIS] -= 10;
  2064. st_synchronize();
  2065. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2066. current_position[E_AXIS] += 10;
  2067. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2068. current_position[E_AXIS] -= 10;
  2069. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2070. current_position[E_AXIS] += 10;
  2071. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2072. current_position[E_AXIS] -= 10;
  2073. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2074. st_synchronize();
  2075. }
  2076. else {
  2077. //ABS
  2078. max_feedrate[E_AXIS] = 50;
  2079. //current_position[E_AXIS] -= 8;
  2080. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2081. //current_position[E_AXIS] += 8;
  2082. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2083. current_position[E_AXIS] += 3.1;
  2084. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2085. current_position[E_AXIS] += 3.1;
  2086. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2087. current_position[E_AXIS] += 4;
  2088. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2089. st_synchronize();
  2090. //current_position[X_AXIS] += 23; //delay
  2091. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2092. //current_position[X_AXIS] -= 23; //delay
  2093. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2094. _delay(4700);
  2095. max_feedrate[E_AXIS] = 80;
  2096. current_position[E_AXIS] -= 92;
  2097. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2098. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2099. current_position[E_AXIS] -= 5;
  2100. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2101. current_position[E_AXIS] += 5;
  2102. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2103. current_position[E_AXIS] -= 5;
  2104. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2105. st_synchronize();
  2106. current_position[E_AXIS] += 5;
  2107. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2108. current_position[E_AXIS] -= 5;
  2109. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2110. current_position[E_AXIS] += 5;
  2111. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2112. current_position[E_AXIS] -= 5;
  2113. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2114. st_synchronize();
  2115. }
  2116. }
  2117. */
  2118. #ifdef TMC2130
  2119. void force_high_power_mode(bool start_high_power_section) {
  2120. #ifdef PSU_Delta
  2121. if (start_high_power_section == true) enable_force_z();
  2122. #endif //PSU_Delta
  2123. uint8_t silent;
  2124. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2125. if (silent == 1) {
  2126. //we are in silent mode, set to normal mode to enable crash detection
  2127. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2128. st_synchronize();
  2129. cli();
  2130. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2131. update_mode_profile();
  2132. tmc2130_init();
  2133. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2134. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2135. st_reset_timer();
  2136. sei();
  2137. }
  2138. }
  2139. #endif //TMC2130
  2140. #ifdef TMC2130
  2141. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2142. #else
  2143. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2144. #endif //TMC2130
  2145. {
  2146. st_synchronize();
  2147. #if 0
  2148. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2149. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2150. #endif
  2151. // Flag for the display update routine and to disable the print cancelation during homing.
  2152. homing_flag = true;
  2153. // Which axes should be homed?
  2154. bool home_x = home_x_axis;
  2155. bool home_y = home_y_axis;
  2156. bool home_z = home_z_axis;
  2157. // Either all X,Y,Z codes are present, or none of them.
  2158. bool home_all_axes = home_x == home_y && home_x == home_z;
  2159. if (home_all_axes)
  2160. // No X/Y/Z code provided means to home all axes.
  2161. home_x = home_y = home_z = true;
  2162. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2163. if (home_all_axes) {
  2164. raise_z_above(MESH_HOME_Z_SEARCH);
  2165. st_synchronize();
  2166. }
  2167. #ifdef ENABLE_AUTO_BED_LEVELING
  2168. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2169. #endif //ENABLE_AUTO_BED_LEVELING
  2170. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2171. // the planner will not perform any adjustments in the XY plane.
  2172. // Wait for the motors to stop and update the current position with the absolute values.
  2173. world2machine_revert_to_uncorrected();
  2174. // For mesh bed leveling deactivate the matrix temporarily.
  2175. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2176. // in a single axis only.
  2177. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2178. #ifdef MESH_BED_LEVELING
  2179. uint8_t mbl_was_active = mbl.active;
  2180. mbl.active = 0;
  2181. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2182. #endif
  2183. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2184. // consumed during the first movements following this statement.
  2185. if (home_z)
  2186. babystep_undo();
  2187. saved_feedrate = feedrate;
  2188. int l_feedmultiply = feedmultiply;
  2189. feedmultiply = 100;
  2190. previous_millis_cmd = _millis();
  2191. enable_endstops(true);
  2192. memcpy(destination, current_position, sizeof(destination));
  2193. feedrate = 0.0;
  2194. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2195. if(home_z)
  2196. homeaxis(Z_AXIS);
  2197. #endif
  2198. #ifdef QUICK_HOME
  2199. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2200. if(home_x && home_y) //first diagonal move
  2201. {
  2202. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2203. int x_axis_home_dir = home_dir(X_AXIS);
  2204. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2205. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2206. feedrate = homing_feedrate[X_AXIS];
  2207. if(homing_feedrate[Y_AXIS]<feedrate)
  2208. feedrate = homing_feedrate[Y_AXIS];
  2209. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2210. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2211. } else {
  2212. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2213. }
  2214. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2215. st_synchronize();
  2216. axis_is_at_home(X_AXIS);
  2217. axis_is_at_home(Y_AXIS);
  2218. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2219. destination[X_AXIS] = current_position[X_AXIS];
  2220. destination[Y_AXIS] = current_position[Y_AXIS];
  2221. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2222. feedrate = 0.0;
  2223. st_synchronize();
  2224. endstops_hit_on_purpose();
  2225. current_position[X_AXIS] = destination[X_AXIS];
  2226. current_position[Y_AXIS] = destination[Y_AXIS];
  2227. current_position[Z_AXIS] = destination[Z_AXIS];
  2228. }
  2229. #endif /* QUICK_HOME */
  2230. #ifdef TMC2130
  2231. if(home_x)
  2232. {
  2233. if (!calib)
  2234. homeaxis(X_AXIS);
  2235. else
  2236. tmc2130_home_calibrate(X_AXIS);
  2237. }
  2238. if(home_y)
  2239. {
  2240. if (!calib)
  2241. homeaxis(Y_AXIS);
  2242. else
  2243. tmc2130_home_calibrate(Y_AXIS);
  2244. }
  2245. #else //TMC2130
  2246. if(home_x) homeaxis(X_AXIS);
  2247. if(home_y) homeaxis(Y_AXIS);
  2248. #endif //TMC2130
  2249. if(home_x_axis && home_x_value != 0)
  2250. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2251. if(home_y_axis && home_y_value != 0)
  2252. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2253. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2254. #ifndef Z_SAFE_HOMING
  2255. if(home_z) {
  2256. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2257. raise_z_above(Z_RAISE_BEFORE_HOMING);
  2258. st_synchronize();
  2259. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2260. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2261. raise_z_above(MESH_HOME_Z_SEARCH);
  2262. st_synchronize();
  2263. if (!axis_known_position[X_AXIS]) homeaxis(X_AXIS);
  2264. if (!axis_known_position[Y_AXIS]) homeaxis(Y_AXIS);
  2265. // 1st mesh bed leveling measurement point, corrected.
  2266. world2machine_initialize();
  2267. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2268. world2machine_reset();
  2269. if (destination[Y_AXIS] < Y_MIN_POS)
  2270. destination[Y_AXIS] = Y_MIN_POS;
  2271. feedrate = homing_feedrate[X_AXIS] / 20;
  2272. enable_endstops(false);
  2273. #ifdef DEBUG_BUILD
  2274. SERIAL_ECHOLNPGM("plan_set_position()");
  2275. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2276. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2277. #endif
  2278. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2279. #ifdef DEBUG_BUILD
  2280. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2281. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2282. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2283. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2284. #endif
  2285. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2286. st_synchronize();
  2287. current_position[X_AXIS] = destination[X_AXIS];
  2288. current_position[Y_AXIS] = destination[Y_AXIS];
  2289. enable_endstops(true);
  2290. endstops_hit_on_purpose();
  2291. homeaxis(Z_AXIS);
  2292. #else // MESH_BED_LEVELING
  2293. homeaxis(Z_AXIS);
  2294. #endif // MESH_BED_LEVELING
  2295. }
  2296. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2297. if(home_all_axes) {
  2298. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2299. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2300. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2301. feedrate = XY_TRAVEL_SPEED/60;
  2302. current_position[Z_AXIS] = 0;
  2303. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2304. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2305. st_synchronize();
  2306. current_position[X_AXIS] = destination[X_AXIS];
  2307. current_position[Y_AXIS] = destination[Y_AXIS];
  2308. homeaxis(Z_AXIS);
  2309. }
  2310. // Let's see if X and Y are homed and probe is inside bed area.
  2311. if(home_z) {
  2312. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2313. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2314. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2315. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2316. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2317. current_position[Z_AXIS] = 0;
  2318. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2319. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2320. feedrate = max_feedrate[Z_AXIS];
  2321. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2322. st_synchronize();
  2323. homeaxis(Z_AXIS);
  2324. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2325. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2326. SERIAL_ECHO_START;
  2327. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2328. } else {
  2329. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2330. SERIAL_ECHO_START;
  2331. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2332. }
  2333. }
  2334. #endif // Z_SAFE_HOMING
  2335. #endif // Z_HOME_DIR < 0
  2336. if(home_z_axis && home_z_value != 0)
  2337. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2338. #ifdef ENABLE_AUTO_BED_LEVELING
  2339. if(home_z)
  2340. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2341. #endif
  2342. // Set the planner and stepper routine positions.
  2343. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2344. // contains the machine coordinates.
  2345. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2346. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2347. enable_endstops(false);
  2348. #endif
  2349. feedrate = saved_feedrate;
  2350. feedmultiply = l_feedmultiply;
  2351. previous_millis_cmd = _millis();
  2352. endstops_hit_on_purpose();
  2353. #ifndef MESH_BED_LEVELING
  2354. //-// Oct 2019 :: this part of code is (from) now probably un-compilable
  2355. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2356. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2357. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2358. lcd_adjust_z();
  2359. #endif
  2360. // Load the machine correction matrix
  2361. world2machine_initialize();
  2362. // and correct the current_position XY axes to match the transformed coordinate system.
  2363. world2machine_update_current();
  2364. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2365. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2366. {
  2367. if (! home_z && mbl_was_active) {
  2368. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2369. mbl.active = true;
  2370. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2371. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2372. }
  2373. }
  2374. else
  2375. {
  2376. st_synchronize();
  2377. homing_flag = false;
  2378. }
  2379. #endif
  2380. if (farm_mode) { prusa_statistics(20); };
  2381. homing_flag = false;
  2382. #if 0
  2383. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2384. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2385. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2386. #endif
  2387. }
  2388. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2389. {
  2390. #ifdef TMC2130
  2391. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2392. #else
  2393. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2394. #endif //TMC2130
  2395. }
  2396. void adjust_bed_reset()
  2397. {
  2398. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2399. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2400. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2401. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2402. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2403. }
  2404. //! @brief Calibrate XYZ
  2405. //! @param onlyZ if true, calibrate only Z axis
  2406. //! @param verbosity_level
  2407. //! @retval true Succeeded
  2408. //! @retval false Failed
  2409. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2410. {
  2411. bool final_result = false;
  2412. #ifdef TMC2130
  2413. FORCE_HIGH_POWER_START;
  2414. #endif // TMC2130
  2415. FORCE_BL_ON_START;
  2416. // Only Z calibration?
  2417. if (!onlyZ)
  2418. {
  2419. setTargetBed(0);
  2420. setAllTargetHotends(0);
  2421. adjust_bed_reset(); //reset bed level correction
  2422. }
  2423. // Disable the default update procedure of the display. We will do a modal dialog.
  2424. lcd_update_enable(false);
  2425. // Let the planner use the uncorrected coordinates.
  2426. mbl.reset();
  2427. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2428. // the planner will not perform any adjustments in the XY plane.
  2429. // Wait for the motors to stop and update the current position with the absolute values.
  2430. world2machine_revert_to_uncorrected();
  2431. // Reset the baby step value applied without moving the axes.
  2432. babystep_reset();
  2433. // Mark all axes as in a need for homing.
  2434. memset(axis_known_position, 0, sizeof(axis_known_position));
  2435. // Home in the XY plane.
  2436. //set_destination_to_current();
  2437. int l_feedmultiply = setup_for_endstop_move();
  2438. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2439. home_xy();
  2440. enable_endstops(false);
  2441. current_position[X_AXIS] += 5;
  2442. current_position[Y_AXIS] += 5;
  2443. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2444. st_synchronize();
  2445. // Let the user move the Z axes up to the end stoppers.
  2446. #ifdef TMC2130
  2447. if (calibrate_z_auto())
  2448. {
  2449. #else //TMC2130
  2450. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2451. {
  2452. #endif //TMC2130
  2453. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2454. if(onlyZ){
  2455. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2456. lcd_set_cursor(0, 3);
  2457. lcd_print(1);
  2458. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2459. }else{
  2460. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2461. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2462. lcd_set_cursor(0, 2);
  2463. lcd_print(1);
  2464. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2465. }
  2466. refresh_cmd_timeout();
  2467. #ifndef STEEL_SHEET
  2468. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2469. {
  2470. lcd_wait_for_cool_down();
  2471. }
  2472. #endif //STEEL_SHEET
  2473. if(!onlyZ)
  2474. {
  2475. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2476. #ifdef STEEL_SHEET
  2477. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2478. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2479. #endif //STEEL_SHEET
  2480. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2481. KEEPALIVE_STATE(IN_HANDLER);
  2482. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2483. lcd_set_cursor(0, 2);
  2484. lcd_print(1);
  2485. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2486. }
  2487. bool endstops_enabled = enable_endstops(false);
  2488. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2489. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2490. st_synchronize();
  2491. // Move the print head close to the bed.
  2492. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2493. enable_endstops(true);
  2494. #ifdef TMC2130
  2495. tmc2130_home_enter(Z_AXIS_MASK);
  2496. #endif //TMC2130
  2497. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2498. st_synchronize();
  2499. #ifdef TMC2130
  2500. tmc2130_home_exit();
  2501. #endif //TMC2130
  2502. enable_endstops(endstops_enabled);
  2503. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  2504. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  2505. {
  2506. if (onlyZ)
  2507. {
  2508. clean_up_after_endstop_move(l_feedmultiply);
  2509. // Z only calibration.
  2510. // Load the machine correction matrix
  2511. world2machine_initialize();
  2512. // and correct the current_position to match the transformed coordinate system.
  2513. world2machine_update_current();
  2514. //FIXME
  2515. bool result = sample_mesh_and_store_reference();
  2516. if (result)
  2517. {
  2518. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2519. // Shipped, the nozzle height has been set already. The user can start printing now.
  2520. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2521. final_result = true;
  2522. // babystep_apply();
  2523. }
  2524. }
  2525. else
  2526. {
  2527. // Reset the baby step value and the baby step applied flag.
  2528. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2529. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  2530. // Complete XYZ calibration.
  2531. uint8_t point_too_far_mask = 0;
  2532. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2533. clean_up_after_endstop_move(l_feedmultiply);
  2534. // Print head up.
  2535. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2536. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2537. st_synchronize();
  2538. //#ifndef NEW_XYZCAL
  2539. if (result >= 0)
  2540. {
  2541. #ifdef HEATBED_V2
  2542. sample_z();
  2543. #else //HEATBED_V2
  2544. point_too_far_mask = 0;
  2545. // Second half: The fine adjustment.
  2546. // Let the planner use the uncorrected coordinates.
  2547. mbl.reset();
  2548. world2machine_reset();
  2549. // Home in the XY plane.
  2550. int l_feedmultiply = setup_for_endstop_move();
  2551. home_xy();
  2552. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2553. clean_up_after_endstop_move(l_feedmultiply);
  2554. // Print head up.
  2555. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2556. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2557. st_synchronize();
  2558. // if (result >= 0) babystep_apply();
  2559. #endif //HEATBED_V2
  2560. }
  2561. //#endif //NEW_XYZCAL
  2562. lcd_update_enable(true);
  2563. lcd_update(2);
  2564. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2565. if (result >= 0)
  2566. {
  2567. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2568. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2569. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2570. final_result = true;
  2571. }
  2572. }
  2573. #ifdef TMC2130
  2574. tmc2130_home_exit();
  2575. #endif
  2576. }
  2577. else
  2578. {
  2579. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2580. final_result = false;
  2581. }
  2582. }
  2583. else
  2584. {
  2585. // Timeouted.
  2586. }
  2587. lcd_update_enable(true);
  2588. #ifdef TMC2130
  2589. FORCE_HIGH_POWER_END;
  2590. #endif // TMC2130
  2591. FORCE_BL_ON_END;
  2592. return final_result;
  2593. }
  2594. void gcode_M114()
  2595. {
  2596. SERIAL_PROTOCOLPGM("X:");
  2597. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2598. SERIAL_PROTOCOLPGM(" Y:");
  2599. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2600. SERIAL_PROTOCOLPGM(" Z:");
  2601. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2602. SERIAL_PROTOCOLPGM(" E:");
  2603. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2604. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2605. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2606. SERIAL_PROTOCOLPGM(" Y:");
  2607. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2608. SERIAL_PROTOCOLPGM(" Z:");
  2609. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2610. SERIAL_PROTOCOLPGM(" E:");
  2611. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2612. SERIAL_PROTOCOLLN("");
  2613. }
  2614. //! extracted code to compute z_shift for M600 in case of filament change operation
  2615. //! requested from fsensors.
  2616. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2617. //! unlike the previous implementation, which was adding 25mm even when the head was
  2618. //! printing at e.g. 24mm height.
  2619. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2620. //! the printout.
  2621. //! This function is templated to enable fast change of computation data type.
  2622. //! @return new z_shift value
  2623. template<typename T>
  2624. static T gcode_M600_filament_change_z_shift()
  2625. {
  2626. #ifdef FILAMENTCHANGE_ZADD
  2627. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2628. // avoid floating point arithmetics when not necessary - results in shorter code
  2629. T ztmp = T( current_position[Z_AXIS] );
  2630. T z_shift = 0;
  2631. if(ztmp < T(25)){
  2632. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2633. }
  2634. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2635. #else
  2636. return T(0);
  2637. #endif
  2638. }
  2639. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2640. {
  2641. st_synchronize();
  2642. float lastpos[4];
  2643. if (farm_mode)
  2644. {
  2645. prusa_statistics(22);
  2646. }
  2647. //First backup current position and settings
  2648. int feedmultiplyBckp = feedmultiply;
  2649. float HotendTempBckp = degTargetHotend(active_extruder);
  2650. int fanSpeedBckp = fanSpeed;
  2651. lastpos[X_AXIS] = current_position[X_AXIS];
  2652. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2653. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2654. lastpos[E_AXIS] = current_position[E_AXIS];
  2655. //Retract E
  2656. current_position[E_AXIS] += e_shift;
  2657. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED, active_extruder);
  2658. st_synchronize();
  2659. //Lift Z
  2660. current_position[Z_AXIS] += z_shift;
  2661. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED, active_extruder);
  2662. st_synchronize();
  2663. //Move XY to side
  2664. current_position[X_AXIS] = x_position;
  2665. current_position[Y_AXIS] = y_position;
  2666. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2667. st_synchronize();
  2668. //Beep, manage nozzle heater and wait for user to start unload filament
  2669. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2670. lcd_change_fil_state = 0;
  2671. // Unload filament
  2672. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2673. else unload_filament(); //unload filament for single material (used also in M702)
  2674. //finish moves
  2675. st_synchronize();
  2676. if (!mmu_enabled)
  2677. {
  2678. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2679. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2680. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2681. if (lcd_change_fil_state == 0)
  2682. {
  2683. lcd_clear();
  2684. lcd_set_cursor(0, 2);
  2685. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2686. current_position[X_AXIS] -= 100;
  2687. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2688. st_synchronize();
  2689. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2690. }
  2691. }
  2692. if (mmu_enabled)
  2693. {
  2694. if (!automatic) {
  2695. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2696. mmu_M600_wait_and_beep();
  2697. if (saved_printing) {
  2698. lcd_clear();
  2699. lcd_set_cursor(0, 2);
  2700. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2701. mmu_command(MmuCmd::R0);
  2702. manage_response(false, false);
  2703. }
  2704. }
  2705. mmu_M600_load_filament(automatic, HotendTempBckp);
  2706. }
  2707. else
  2708. M600_load_filament();
  2709. if (!automatic) M600_check_state(HotendTempBckp);
  2710. lcd_update_enable(true);
  2711. //Not let's go back to print
  2712. fanSpeed = fanSpeedBckp;
  2713. //Feed a little of filament to stabilize pressure
  2714. if (!automatic)
  2715. {
  2716. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2717. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EXFEED, active_extruder);
  2718. }
  2719. //Move XY back
  2720. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2721. FILAMENTCHANGE_XYFEED, active_extruder);
  2722. st_synchronize();
  2723. //Move Z back
  2724. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2725. FILAMENTCHANGE_ZFEED, active_extruder);
  2726. st_synchronize();
  2727. //Set E position to original
  2728. plan_set_e_position(lastpos[E_AXIS]);
  2729. memcpy(current_position, lastpos, sizeof(lastpos));
  2730. memcpy(destination, current_position, sizeof(current_position));
  2731. //Recover feed rate
  2732. feedmultiply = feedmultiplyBckp;
  2733. char cmd[9];
  2734. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2735. enquecommand(cmd);
  2736. #ifdef IR_SENSOR
  2737. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2738. fsensor_check_autoload();
  2739. #endif //IR_SENSOR
  2740. lcd_setstatuspgm(_T(WELCOME_MSG));
  2741. custom_message_type = CustomMsg::Status;
  2742. }
  2743. void gcode_M701()
  2744. {
  2745. printf_P(PSTR("gcode_M701 begin\n"));
  2746. if (farm_mode)
  2747. {
  2748. prusa_statistics(22);
  2749. }
  2750. if (mmu_enabled)
  2751. {
  2752. extr_adj(tmp_extruder);//loads current extruder
  2753. mmu_extruder = tmp_extruder;
  2754. }
  2755. else
  2756. {
  2757. enable_z();
  2758. custom_message_type = CustomMsg::FilamentLoading;
  2759. #ifdef FSENSOR_QUALITY
  2760. fsensor_oq_meassure_start(40);
  2761. #endif //FSENSOR_QUALITY
  2762. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2763. current_position[E_AXIS] += 40;
  2764. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2765. st_synchronize();
  2766. raise_z_above(MIN_Z_FOR_LOAD, false);
  2767. current_position[E_AXIS] += 30;
  2768. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2769. load_filament_final_feed(); //slow sequence
  2770. st_synchronize();
  2771. Sound_MakeCustom(50,500,false);
  2772. if (!farm_mode && loading_flag) {
  2773. lcd_load_filament_color_check();
  2774. }
  2775. lcd_update_enable(true);
  2776. lcd_update(2);
  2777. lcd_setstatuspgm(_T(WELCOME_MSG));
  2778. disable_z();
  2779. loading_flag = false;
  2780. custom_message_type = CustomMsg::Status;
  2781. #ifdef FSENSOR_QUALITY
  2782. fsensor_oq_meassure_stop();
  2783. if (!fsensor_oq_result())
  2784. {
  2785. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2786. lcd_update_enable(true);
  2787. lcd_update(2);
  2788. if (disable)
  2789. fsensor_disable();
  2790. }
  2791. #endif //FSENSOR_QUALITY
  2792. }
  2793. }
  2794. /**
  2795. * @brief Get serial number from 32U2 processor
  2796. *
  2797. * Typical format of S/N is:CZPX0917X003XC13518
  2798. *
  2799. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2800. *
  2801. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2802. * reply is transmitted to serial port 1 character by character.
  2803. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2804. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2805. * in any case.
  2806. */
  2807. static void gcode_PRUSA_SN()
  2808. {
  2809. if (farm_mode) {
  2810. selectedSerialPort = 0;
  2811. putchar(';');
  2812. putchar('S');
  2813. int numbersRead = 0;
  2814. ShortTimer timeout;
  2815. timeout.start();
  2816. while (numbersRead < 19) {
  2817. while (MSerial.available() > 0) {
  2818. uint8_t serial_char = MSerial.read();
  2819. selectedSerialPort = 1;
  2820. putchar(serial_char);
  2821. numbersRead++;
  2822. selectedSerialPort = 0;
  2823. }
  2824. if (timeout.expired(100u)) break;
  2825. }
  2826. selectedSerialPort = 1;
  2827. putchar('\n');
  2828. #if 0
  2829. for (int b = 0; b < 3; b++) {
  2830. _tone(BEEPER, 110);
  2831. _delay(50);
  2832. _noTone(BEEPER);
  2833. _delay(50);
  2834. }
  2835. #endif
  2836. } else {
  2837. puts_P(_N("Not in farm mode."));
  2838. }
  2839. }
  2840. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  2841. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  2842. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  2843. //! it may even interfere with other functions of the printer! You have been warned!
  2844. //! The test idea is to measure the time necessary to charge the capacitor.
  2845. //! So the algorithm is as follows:
  2846. //! 1. Set TACH_1 pin to INPUT mode and LOW
  2847. //! 2. Wait a few ms
  2848. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  2849. //! Repeat 1.-3. several times
  2850. //! Good RAMBo's times are in the range of approx. 260-320 us
  2851. //! Bad RAMBo's times are approx. 260-1200 us
  2852. //! So basically we are interested in maximum time, the minima are mostly the same.
  2853. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  2854. static void gcode_PRUSA_BadRAMBoFanTest(){
  2855. //printf_P(PSTR("Enter fan pin test\n"));
  2856. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  2857. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  2858. unsigned long tach1max = 0;
  2859. uint8_t tach1cntr = 0;
  2860. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  2861. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  2862. SET_OUTPUT(TACH_1);
  2863. WRITE(TACH_1, LOW);
  2864. _delay(20); // the delay may be lower
  2865. unsigned long tachMeasure = _micros();
  2866. cli();
  2867. SET_INPUT(TACH_1);
  2868. // just wait brutally in an endless cycle until we reach HIGH
  2869. // if this becomes a problem it may be improved to non-endless cycle
  2870. while( READ(TACH_1) == 0 ) ;
  2871. sei();
  2872. tachMeasure = _micros() - tachMeasure;
  2873. if( tach1max < tachMeasure )
  2874. tach1max = tachMeasure;
  2875. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  2876. }
  2877. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  2878. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  2879. if( tach1max > 500 ){
  2880. // bad RAMBo
  2881. SERIAL_PROTOCOLLNPGM("BAD");
  2882. } else {
  2883. SERIAL_PROTOCOLLNPGM("OK");
  2884. }
  2885. // cleanup after the test function
  2886. SET_INPUT(TACH_1);
  2887. WRITE(TACH_1, HIGH);
  2888. #endif
  2889. }
  2890. #ifdef BACKLASH_X
  2891. extern uint8_t st_backlash_x;
  2892. #endif //BACKLASH_X
  2893. #ifdef BACKLASH_Y
  2894. extern uint8_t st_backlash_y;
  2895. #endif //BACKLASH_Y
  2896. //! \ingroup marlin_main
  2897. //! @brief Parse and process commands
  2898. //!
  2899. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2900. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2901. //!
  2902. //!
  2903. //! Implemented Codes
  2904. //! -------------------
  2905. //!
  2906. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  2907. //!
  2908. //!@n PRUSA CODES
  2909. //!@n P F - Returns FW versions
  2910. //!@n P R - Returns revision of printer
  2911. //!
  2912. //!@n G0 -> G1
  2913. //!@n G1 - Coordinated Movement X Y Z E
  2914. //!@n G2 - CW ARC
  2915. //!@n G3 - CCW ARC
  2916. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2917. //!@n G10 - retract filament according to settings of M207
  2918. //!@n G11 - retract recover filament according to settings of M208
  2919. //!@n G28 - Home all Axis
  2920. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2921. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2922. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2923. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2924. //!@n G80 - Automatic mesh bed leveling
  2925. //!@n G81 - Print bed profile
  2926. //!@n G90 - Use Absolute Coordinates
  2927. //!@n G91 - Use Relative Coordinates
  2928. //!@n G92 - Set current position to coordinates given
  2929. //!
  2930. //!@n M Codes
  2931. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2932. //!@n M1 - Same as M0
  2933. //!@n M17 - Enable/Power all stepper motors
  2934. //!@n M18 - Disable all stepper motors; same as M84
  2935. //!@n M20 - List SD card
  2936. //!@n M21 - Init SD card
  2937. //!@n M22 - Release SD card
  2938. //!@n M23 - Select SD file (M23 filename.g)
  2939. //!@n M24 - Start/resume SD print
  2940. //!@n M25 - Pause SD print
  2941. //!@n M26 - Set SD position in bytes (M26 S12345)
  2942. //!@n M27 - Report SD print status
  2943. //!@n M28 - Start SD write (M28 filename.g)
  2944. //!@n M29 - Stop SD write
  2945. //!@n M30 - Delete file from SD (M30 filename.g)
  2946. //!@n M31 - Output time since last M109 or SD card start to serial
  2947. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2948. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2949. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2950. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2951. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2952. //!@n M73 - Show percent done and print time remaining
  2953. //!@n M80 - Turn on Power Supply
  2954. //!@n M81 - Turn off Power Supply
  2955. //!@n M82 - Set E codes absolute (default)
  2956. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2957. //!@n M84 - Disable steppers until next move,
  2958. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2959. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2960. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2961. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2962. //!@n M104 - Set extruder target temp
  2963. //!@n M105 - Read current temp
  2964. //!@n M106 - Fan on
  2965. //!@n M107 - Fan off
  2966. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2967. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2968. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2969. //!@n M112 - Emergency stop
  2970. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2971. //!@n M114 - Output current position to serial port
  2972. //!@n M115 - Capabilities string
  2973. //!@n M117 - display message
  2974. //!@n M119 - Output Endstop status to serial port
  2975. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2976. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2977. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2978. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2979. //!@n M140 - Set bed target temp
  2980. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2981. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2982. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2983. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2984. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2985. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2986. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2987. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2988. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2989. //!@n M206 - set additional homing offset
  2990. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2991. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2992. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2993. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2994. //!@n M220 S<factor in percent>- set speed factor override percentage
  2995. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2996. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2997. //!@n M240 - Trigger a camera to take a photograph
  2998. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2999. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3000. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  3001. //!@n M301 - Set PID parameters P I and D
  3002. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  3003. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  3004. //!@n M304 - Set bed PID parameters P I and D
  3005. //!@n M400 - Finish all moves
  3006. //!@n M401 - Lower z-probe if present
  3007. //!@n M402 - Raise z-probe if present
  3008. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  3009. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  3010. //!@n M406 - Turn off Filament Sensor extrusion control
  3011. //!@n M407 - Displays measured filament diameter
  3012. //!@n M500 - stores parameters in EEPROM
  3013. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  3014. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  3015. //!@n M503 - print the current settings (from memory not from EEPROM)
  3016. //!@n M509 - force language selection on next restart
  3017. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  3018. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3019. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  3020. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  3021. //!@n M861 - Set / Read PINDA temperature compensation offsets
  3022. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  3023. //!@n M907 - Set digital trimpot motor current using axis codes.
  3024. //!@n M908 - Control digital trimpot directly.
  3025. //!@n M350 - Set microstepping mode.
  3026. //!@n M351 - Toggle MS1 MS2 pins directly.
  3027. //!
  3028. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  3029. //!@n M999 - Restart after being stopped by error
  3030. //! <br><br>
  3031. /** @defgroup marlin_main Marlin main */
  3032. /** \ingroup GCodes */
  3033. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)_
  3034. void process_commands()
  3035. {
  3036. #ifdef FANCHECK
  3037. if(fan_check_error){
  3038. if(fan_check_error == EFCE_DETECTED){
  3039. fan_check_error = EFCE_REPORTED;
  3040. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED);
  3041. lcd_pause_print();
  3042. } // otherwise it has already been reported, so just ignore further processing
  3043. return; //ignore usb stream. It is reenabled by selecting resume from the lcd.
  3044. }
  3045. #endif
  3046. if (!buflen) return; //empty command
  3047. #ifdef FILAMENT_RUNOUT_SUPPORT
  3048. SET_INPUT(FR_SENS);
  3049. #endif
  3050. #ifdef CMDBUFFER_DEBUG
  3051. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3052. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3053. SERIAL_ECHOLNPGM("");
  3054. SERIAL_ECHOPGM("In cmdqueue: ");
  3055. SERIAL_ECHO(buflen);
  3056. SERIAL_ECHOLNPGM("");
  3057. #endif /* CMDBUFFER_DEBUG */
  3058. unsigned long codenum; //throw away variable
  3059. char *starpos = NULL;
  3060. #ifdef ENABLE_AUTO_BED_LEVELING
  3061. float x_tmp, y_tmp, z_tmp, real_z;
  3062. #endif
  3063. // PRUSA GCODES
  3064. KEEPALIVE_STATE(IN_HANDLER);
  3065. #ifdef SNMM
  3066. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  3067. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  3068. int8_t SilentMode;
  3069. #endif
  3070. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3071. starpos = (strchr(strchr_pointer + 5, '*'));
  3072. if (starpos != NULL)
  3073. *(starpos) = '\0';
  3074. lcd_setstatus(strchr_pointer + 5);
  3075. }
  3076. #ifdef TMC2130
  3077. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3078. {
  3079. //! ### CRASH_DETECTED - TMC2130
  3080. // ---------------------------------
  3081. if(code_seen("CRASH_DETECTED"))
  3082. {
  3083. uint8_t mask = 0;
  3084. if (code_seen('X')) mask |= X_AXIS_MASK;
  3085. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3086. crashdet_detected(mask);
  3087. }
  3088. //! ### CRASH_RECOVER - TMC2130
  3089. // ----------------------------------
  3090. else if(code_seen("CRASH_RECOVER"))
  3091. crashdet_recover();
  3092. //! ### CRASH_CANCEL - TMC2130
  3093. // ----------------------------------
  3094. else if(code_seen("CRASH_CANCEL"))
  3095. crashdet_cancel();
  3096. }
  3097. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3098. {
  3099. //! ### TMC_SET_WAVE_
  3100. // --------------------
  3101. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3102. {
  3103. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3104. axis = (axis == 'E')?3:(axis - 'X');
  3105. if (axis < 4)
  3106. {
  3107. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3108. tmc2130_set_wave(axis, 247, fac);
  3109. }
  3110. }
  3111. //! ### TMC_SET_STEP_
  3112. // ------------------
  3113. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3114. {
  3115. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3116. axis = (axis == 'E')?3:(axis - 'X');
  3117. if (axis < 4)
  3118. {
  3119. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3120. uint16_t res = tmc2130_get_res(axis);
  3121. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3122. }
  3123. }
  3124. //! ### TMC_SET_CHOP_
  3125. // -------------------
  3126. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3127. {
  3128. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3129. axis = (axis == 'E')?3:(axis - 'X');
  3130. if (axis < 4)
  3131. {
  3132. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3133. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3134. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3135. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3136. char* str_end = 0;
  3137. if (CMDBUFFER_CURRENT_STRING[14])
  3138. {
  3139. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3140. if (str_end && *str_end)
  3141. {
  3142. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3143. if (str_end && *str_end)
  3144. {
  3145. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3146. if (str_end && *str_end)
  3147. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3148. }
  3149. }
  3150. }
  3151. tmc2130_chopper_config[axis].toff = chop0;
  3152. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3153. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3154. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3155. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3156. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3157. }
  3158. }
  3159. }
  3160. #ifdef BACKLASH_X
  3161. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3162. {
  3163. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3164. st_backlash_x = bl;
  3165. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3166. }
  3167. #endif //BACKLASH_X
  3168. #ifdef BACKLASH_Y
  3169. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3170. {
  3171. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3172. st_backlash_y = bl;
  3173. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3174. }
  3175. #endif //BACKLASH_Y
  3176. #endif //TMC2130
  3177. else if(code_seen("PRUSA")){
  3178. /*!
  3179. *
  3180. ### PRUSA - Internal command set
  3181. Set of internal PRUSA commands
  3182. PRUSA [ Ping | PRN | FAN | fn | thx | uvlo | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | Beat | FR ]
  3183. - `Ping`
  3184. - `PRN` - Prints revision of the printer
  3185. - `FAN` - Prints fan details
  3186. - `fn` - Prints farm no.
  3187. - `thx`
  3188. - `uvlo`
  3189. - `MMURES` - Reset MMU
  3190. - `RESET` - (Careful!)
  3191. - `fv` - ?
  3192. - `M28`
  3193. - `SN`
  3194. - `Fir` - Prints firmware version
  3195. - `Rev`- Prints filament size, elelectronics, nozzle type
  3196. - `Lang` - Reset the language
  3197. - `Lz`
  3198. - `Beat` - Kick farm link timer
  3199. - `FR` - Full factory reset
  3200. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3201. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3202. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3203. *
  3204. */
  3205. if (code_seen("Ping")) { // PRUSA Ping
  3206. if (farm_mode) {
  3207. PingTime = _millis();
  3208. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3209. }
  3210. }
  3211. else if (code_seen("PRN")) { // PRUSA PRN
  3212. printf_P(_N("%d"), status_number);
  3213. } else if( code_seen("FANPINTST") ){
  3214. gcode_PRUSA_BadRAMBoFanTest();
  3215. }else if (code_seen("FAN")) { //! PRUSA FAN
  3216. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3217. }else if (code_seen("fn")) { // PRUSA fn
  3218. if (farm_mode) {
  3219. printf_P(_N("%d"), farm_no);
  3220. }
  3221. else {
  3222. puts_P(_N("Not in farm mode."));
  3223. }
  3224. }
  3225. else if (code_seen("thx")) // PRUSA thx
  3226. {
  3227. no_response = false;
  3228. }
  3229. else if (code_seen("uvlo")) // PRUSA uvlo
  3230. {
  3231. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3232. enquecommand_P(PSTR("M24"));
  3233. }
  3234. else if (code_seen("MMURES")) // PRUSA MMURES
  3235. {
  3236. mmu_reset();
  3237. }
  3238. else if (code_seen("RESET")) { // PRUSA RESET
  3239. // careful!
  3240. if (farm_mode) {
  3241. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3242. boot_app_magic = BOOT_APP_MAGIC;
  3243. boot_app_flags = BOOT_APP_FLG_RUN;
  3244. wdt_enable(WDTO_15MS);
  3245. cli();
  3246. while(1);
  3247. #else //WATCHDOG
  3248. asm volatile("jmp 0x3E000");
  3249. #endif //WATCHDOG
  3250. }
  3251. else {
  3252. MYSERIAL.println("Not in farm mode.");
  3253. }
  3254. }else if (code_seen("fv")) { // PRUSA fv
  3255. // get file version
  3256. #ifdef SDSUPPORT
  3257. card.openFile(strchr_pointer + 3,true);
  3258. while (true) {
  3259. uint16_t readByte = card.get();
  3260. MYSERIAL.write(readByte);
  3261. if (readByte=='\n') {
  3262. break;
  3263. }
  3264. }
  3265. card.closefile();
  3266. #endif // SDSUPPORT
  3267. } else if (code_seen("M28")) { // PRUSA M28
  3268. trace();
  3269. prusa_sd_card_upload = true;
  3270. card.openFile(strchr_pointer+4,false);
  3271. } else if (code_seen("SN")) { // PRUSA SN
  3272. gcode_PRUSA_SN();
  3273. } else if(code_seen("Fir")){ // PRUSA Fir
  3274. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3275. } else if(code_seen("Rev")){ // PRUSA Rev
  3276. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3277. } else if(code_seen("Lang")) { // PRUSA Lang
  3278. lang_reset();
  3279. } else if(code_seen("Lz")) { // PRUSA Lz
  3280. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3281. } else if(code_seen("Beat")) { // PRUSA Beat
  3282. // Kick farm link timer
  3283. kicktime = _millis();
  3284. } else if(code_seen("FR")) { // PRUSA FR
  3285. // Factory full reset
  3286. factory_reset(0);
  3287. //-//
  3288. /*
  3289. } else if(code_seen("rrr")) {
  3290. MYSERIAL.println("=== checking ===");
  3291. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3292. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3293. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3294. MYSERIAL.println(farm_mode,DEC);
  3295. MYSERIAL.println(eCheckMode,DEC);
  3296. } else if(code_seen("www")) {
  3297. MYSERIAL.println("=== @ FF ===");
  3298. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3299. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3300. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3301. */
  3302. } else if (code_seen("nozzle")) { // PRUSA nozzle
  3303. uint16_t nDiameter;
  3304. if(code_seen('D'))
  3305. {
  3306. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3307. nozzle_diameter_check(nDiameter);
  3308. }
  3309. else if(code_seen("set") && farm_mode)
  3310. {
  3311. strchr_pointer++; // skip 1st char (~ 's')
  3312. strchr_pointer++; // skip 2nd char (~ 'e')
  3313. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3314. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3315. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3316. }
  3317. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3318. //-// !!! SupportMenu
  3319. /*
  3320. // musi byt PRED "PRUSA model"
  3321. } else if (code_seen("smodel")) { //! PRUSA smodel
  3322. size_t nOffset;
  3323. // ! -> "l"
  3324. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3325. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3326. if(*(strchr_pointer+1+nOffset))
  3327. printer_smodel_check(strchr_pointer);
  3328. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3329. } else if (code_seen("model")) { //! PRUSA model
  3330. uint16_t nPrinterModel;
  3331. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3332. nPrinterModel=(uint16_t)code_value_long();
  3333. if(nPrinterModel!=0)
  3334. printer_model_check(nPrinterModel);
  3335. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3336. } else if (code_seen("version")) { //! PRUSA version
  3337. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3338. while(*strchr_pointer==' ') // skip leading spaces
  3339. strchr_pointer++;
  3340. if(*strchr_pointer!=0)
  3341. fw_version_check(strchr_pointer);
  3342. else SERIAL_PROTOCOLLN(FW_VERSION);
  3343. } else if (code_seen("gcode")) { //! PRUSA gcode
  3344. uint16_t nGcodeLevel;
  3345. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3346. nGcodeLevel=(uint16_t)code_value_long();
  3347. if(nGcodeLevel!=0)
  3348. gcode_level_check(nGcodeLevel);
  3349. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3350. */
  3351. }
  3352. //else if (code_seen('Cal')) {
  3353. // lcd_calibration();
  3354. // }
  3355. }
  3356. // This prevents reading files with "^" in their names.
  3357. // Since it is unclear, if there is some usage of this construct,
  3358. // it will be deprecated in 3.9 alpha a possibly completely removed in the future:
  3359. // else if (code_seen('^')) {
  3360. // // nothing, this is a version line
  3361. // }
  3362. else if(code_seen('G'))
  3363. {
  3364. gcode_in_progress = (int)code_value();
  3365. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3366. switch (gcode_in_progress)
  3367. {
  3368. //! ### G0, G1 - Coordinated movement X Y Z E
  3369. // --------------------------------------
  3370. case 0: // G0 -> G1
  3371. case 1: // G1
  3372. if(Stopped == false) {
  3373. #ifdef FILAMENT_RUNOUT_SUPPORT
  3374. if(READ(FR_SENS)){
  3375. int feedmultiplyBckp=feedmultiply;
  3376. float target[4];
  3377. float lastpos[4];
  3378. target[X_AXIS]=current_position[X_AXIS];
  3379. target[Y_AXIS]=current_position[Y_AXIS];
  3380. target[Z_AXIS]=current_position[Z_AXIS];
  3381. target[E_AXIS]=current_position[E_AXIS];
  3382. lastpos[X_AXIS]=current_position[X_AXIS];
  3383. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3384. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3385. lastpos[E_AXIS]=current_position[E_AXIS];
  3386. //retract by E
  3387. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3388. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3389. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3390. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3391. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3392. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3393. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3394. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3395. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3396. //finish moves
  3397. st_synchronize();
  3398. //disable extruder steppers so filament can be removed
  3399. disable_e0();
  3400. disable_e1();
  3401. disable_e2();
  3402. _delay(100);
  3403. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3404. uint8_t cnt=0;
  3405. int counterBeep = 0;
  3406. lcd_wait_interact();
  3407. while(!lcd_clicked()){
  3408. cnt++;
  3409. manage_heater();
  3410. manage_inactivity(true);
  3411. //lcd_update(0);
  3412. if(cnt==0)
  3413. {
  3414. #if BEEPER > 0
  3415. if (counterBeep== 500){
  3416. counterBeep = 0;
  3417. }
  3418. SET_OUTPUT(BEEPER);
  3419. if (counterBeep== 0){
  3420. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3421. WRITE(BEEPER,HIGH);
  3422. }
  3423. if (counterBeep== 20){
  3424. WRITE(BEEPER,LOW);
  3425. }
  3426. counterBeep++;
  3427. #else
  3428. #endif
  3429. }
  3430. }
  3431. WRITE(BEEPER,LOW);
  3432. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3433. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3434. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3435. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3436. lcd_change_fil_state = 0;
  3437. lcd_loading_filament();
  3438. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3439. lcd_change_fil_state = 0;
  3440. lcd_alright();
  3441. switch(lcd_change_fil_state){
  3442. case 2:
  3443. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3444. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3445. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3446. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3447. lcd_loading_filament();
  3448. break;
  3449. case 3:
  3450. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3451. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3452. lcd_loading_color();
  3453. break;
  3454. default:
  3455. lcd_change_success();
  3456. break;
  3457. }
  3458. }
  3459. target[E_AXIS]+= 5;
  3460. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3461. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3462. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3463. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3464. //plan_set_e_position(current_position[E_AXIS]);
  3465. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3466. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3467. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3468. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3469. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3470. plan_set_e_position(lastpos[E_AXIS]);
  3471. feedmultiply=feedmultiplyBckp;
  3472. char cmd[9];
  3473. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3474. enquecommand(cmd);
  3475. }
  3476. #endif
  3477. get_coordinates(); // For X Y Z E F
  3478. // When recovering from a previous print move, restore the originally
  3479. // calculated target position on the first USB/SD command. This accounts
  3480. // properly for relative moves
  3481. if ((saved_target[0] != SAVED_TARGET_UNSET) &&
  3482. ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) ||
  3483. (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)))
  3484. {
  3485. memcpy(destination, saved_target, sizeof(destination));
  3486. saved_target[0] = SAVED_TARGET_UNSET;
  3487. }
  3488. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3489. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3490. }
  3491. #ifdef FWRETRACT
  3492. if(cs.autoretract_enabled)
  3493. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3494. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3495. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3496. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3497. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3498. retract(!retracted[active_extruder]);
  3499. return;
  3500. }
  3501. }
  3502. #endif //FWRETRACT
  3503. prepare_move();
  3504. //ClearToSend();
  3505. }
  3506. break;
  3507. //! ### G2 - CW ARC
  3508. // ------------------------------
  3509. case 2:
  3510. if(Stopped == false) {
  3511. get_arc_coordinates();
  3512. prepare_arc_move(true);
  3513. }
  3514. break;
  3515. //! ### G3 - CCW ARC
  3516. // -------------------------------
  3517. case 3:
  3518. if(Stopped == false) {
  3519. get_arc_coordinates();
  3520. prepare_arc_move(false);
  3521. }
  3522. break;
  3523. //! ### G4 - Dwell
  3524. // -------------------------------
  3525. case 4:
  3526. codenum = 0;
  3527. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3528. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3529. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3530. st_synchronize();
  3531. codenum += _millis(); // keep track of when we started waiting
  3532. previous_millis_cmd = _millis();
  3533. while(_millis() < codenum) {
  3534. manage_heater();
  3535. manage_inactivity();
  3536. lcd_update(0);
  3537. }
  3538. break;
  3539. #ifdef FWRETRACT
  3540. //! ### G10 Retract
  3541. // ------------------------------
  3542. case 10:
  3543. #if EXTRUDERS > 1
  3544. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3545. retract(true,retracted_swap[active_extruder]);
  3546. #else
  3547. retract(true);
  3548. #endif
  3549. break;
  3550. //! ### G11 - Retract recover
  3551. // -----------------------------
  3552. case 11:
  3553. #if EXTRUDERS > 1
  3554. retract(false,retracted_swap[active_extruder]);
  3555. #else
  3556. retract(false);
  3557. #endif
  3558. break;
  3559. #endif //FWRETRACT
  3560. //! ### G28 - Home all Axis one at a time
  3561. // --------------------------------------------
  3562. case 28:
  3563. {
  3564. long home_x_value = 0;
  3565. long home_y_value = 0;
  3566. long home_z_value = 0;
  3567. // Which axes should be homed?
  3568. bool home_x = code_seen(axis_codes[X_AXIS]);
  3569. home_x_value = code_value_long();
  3570. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3571. home_y_value = code_value_long();
  3572. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3573. home_z_value = code_value_long();
  3574. bool without_mbl = code_seen('W');
  3575. // calibrate?
  3576. #ifdef TMC2130
  3577. bool calib = code_seen('C');
  3578. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3579. #else
  3580. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3581. #endif //TMC2130
  3582. if ((home_x || home_y || without_mbl || home_z) == false) {
  3583. // Push the commands to the front of the message queue in the reverse order!
  3584. // There shall be always enough space reserved for these commands.
  3585. goto case_G80;
  3586. }
  3587. break;
  3588. }
  3589. #ifdef ENABLE_AUTO_BED_LEVELING
  3590. //! ### G29 - Detailed Z-Probe
  3591. // --------------------------------
  3592. case 29:
  3593. {
  3594. #if Z_MIN_PIN == -1
  3595. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3596. #endif
  3597. // Prevent user from running a G29 without first homing in X and Y
  3598. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3599. {
  3600. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3601. SERIAL_ECHO_START;
  3602. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3603. break; // abort G29, since we don't know where we are
  3604. }
  3605. st_synchronize();
  3606. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3607. //vector_3 corrected_position = plan_get_position_mm();
  3608. //corrected_position.debug("position before G29");
  3609. plan_bed_level_matrix.set_to_identity();
  3610. vector_3 uncorrected_position = plan_get_position();
  3611. //uncorrected_position.debug("position durring G29");
  3612. current_position[X_AXIS] = uncorrected_position.x;
  3613. current_position[Y_AXIS] = uncorrected_position.y;
  3614. current_position[Z_AXIS] = uncorrected_position.z;
  3615. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3616. int l_feedmultiply = setup_for_endstop_move();
  3617. feedrate = homing_feedrate[Z_AXIS];
  3618. #ifdef AUTO_BED_LEVELING_GRID
  3619. // probe at the points of a lattice grid
  3620. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3621. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3622. // solve the plane equation ax + by + d = z
  3623. // A is the matrix with rows [x y 1] for all the probed points
  3624. // B is the vector of the Z positions
  3625. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3626. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3627. // "A" matrix of the linear system of equations
  3628. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3629. // "B" vector of Z points
  3630. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3631. int probePointCounter = 0;
  3632. bool zig = true;
  3633. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3634. {
  3635. int xProbe, xInc;
  3636. if (zig)
  3637. {
  3638. xProbe = LEFT_PROBE_BED_POSITION;
  3639. //xEnd = RIGHT_PROBE_BED_POSITION;
  3640. xInc = xGridSpacing;
  3641. zig = false;
  3642. } else // zag
  3643. {
  3644. xProbe = RIGHT_PROBE_BED_POSITION;
  3645. //xEnd = LEFT_PROBE_BED_POSITION;
  3646. xInc = -xGridSpacing;
  3647. zig = true;
  3648. }
  3649. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3650. {
  3651. float z_before;
  3652. if (probePointCounter == 0)
  3653. {
  3654. // raise before probing
  3655. z_before = Z_RAISE_BEFORE_PROBING;
  3656. } else
  3657. {
  3658. // raise extruder
  3659. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3660. }
  3661. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3662. eqnBVector[probePointCounter] = measured_z;
  3663. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3664. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3665. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3666. probePointCounter++;
  3667. xProbe += xInc;
  3668. }
  3669. }
  3670. clean_up_after_endstop_move(l_feedmultiply);
  3671. // solve lsq problem
  3672. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3673. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3674. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3675. SERIAL_PROTOCOLPGM(" b: ");
  3676. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3677. SERIAL_PROTOCOLPGM(" d: ");
  3678. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3679. set_bed_level_equation_lsq(plane_equation_coefficients);
  3680. free(plane_equation_coefficients);
  3681. #else // AUTO_BED_LEVELING_GRID not defined
  3682. // Probe at 3 arbitrary points
  3683. // probe 1
  3684. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3685. // probe 2
  3686. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3687. // probe 3
  3688. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3689. clean_up_after_endstop_move(l_feedmultiply);
  3690. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3691. #endif // AUTO_BED_LEVELING_GRID
  3692. st_synchronize();
  3693. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3694. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3695. // When the bed is uneven, this height must be corrected.
  3696. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3697. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3698. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3699. z_tmp = current_position[Z_AXIS];
  3700. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3701. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3702. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3703. }
  3704. break;
  3705. #ifndef Z_PROBE_SLED
  3706. //! ### G30 - Single Z Probe
  3707. // ------------------------------------
  3708. case 30:
  3709. {
  3710. st_synchronize();
  3711. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3712. int l_feedmultiply = setup_for_endstop_move();
  3713. feedrate = homing_feedrate[Z_AXIS];
  3714. run_z_probe();
  3715. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3716. SERIAL_PROTOCOLPGM(" X: ");
  3717. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3718. SERIAL_PROTOCOLPGM(" Y: ");
  3719. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3720. SERIAL_PROTOCOLPGM(" Z: ");
  3721. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3722. SERIAL_PROTOCOLPGM("\n");
  3723. clean_up_after_endstop_move(l_feedmultiply);
  3724. }
  3725. break;
  3726. #else
  3727. //! ### G31 - Dock the sled
  3728. // ---------------------------
  3729. case 31:
  3730. dock_sled(true);
  3731. break;
  3732. //! ### G32 - Undock the sled
  3733. // ----------------------------
  3734. case 32:
  3735. dock_sled(false);
  3736. break;
  3737. #endif // Z_PROBE_SLED
  3738. #endif // ENABLE_AUTO_BED_LEVELING
  3739. #ifdef MESH_BED_LEVELING
  3740. //! ### G30 - Single Z Probe
  3741. // ----------------------------
  3742. case 30:
  3743. {
  3744. st_synchronize();
  3745. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3746. int l_feedmultiply = setup_for_endstop_move();
  3747. feedrate = homing_feedrate[Z_AXIS];
  3748. find_bed_induction_sensor_point_z(-10.f, 3);
  3749. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3750. clean_up_after_endstop_move(l_feedmultiply);
  3751. }
  3752. break;
  3753. //! ### G75 - Print temperature interpolation
  3754. // ---------------------------------------------
  3755. case 75:
  3756. {
  3757. for (int i = 40; i <= 110; i++)
  3758. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3759. }
  3760. break;
  3761. //! ### G76 - PINDA probe temperature calibration
  3762. // ------------------------------------------------
  3763. case 76:
  3764. {
  3765. #ifdef PINDA_THERMISTOR
  3766. if (true)
  3767. {
  3768. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3769. //we need to know accurate position of first calibration point
  3770. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3771. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3772. break;
  3773. }
  3774. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3775. {
  3776. // We don't know where we are! HOME!
  3777. // Push the commands to the front of the message queue in the reverse order!
  3778. // There shall be always enough space reserved for these commands.
  3779. repeatcommand_front(); // repeat G76 with all its parameters
  3780. enquecommand_front_P((PSTR("G28 W0")));
  3781. break;
  3782. }
  3783. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3784. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3785. if (result)
  3786. {
  3787. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3788. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3789. current_position[Z_AXIS] = 50;
  3790. current_position[Y_AXIS] = 180;
  3791. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3792. st_synchronize();
  3793. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3794. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3795. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3796. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3797. st_synchronize();
  3798. gcode_G28(false, false, true);
  3799. }
  3800. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3801. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3802. current_position[Z_AXIS] = 100;
  3803. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3804. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3805. lcd_temp_cal_show_result(false);
  3806. break;
  3807. }
  3808. }
  3809. lcd_update_enable(true);
  3810. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3811. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3812. float zero_z;
  3813. int z_shift = 0; //unit: steps
  3814. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3815. if (start_temp < 35) start_temp = 35;
  3816. if (start_temp < current_temperature_pinda) start_temp += 5;
  3817. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3818. // setTargetHotend(200, 0);
  3819. setTargetBed(70 + (start_temp - 30));
  3820. custom_message_type = CustomMsg::TempCal;
  3821. custom_message_state = 1;
  3822. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3823. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3824. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3825. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3826. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3827. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3828. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3829. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3830. st_synchronize();
  3831. while (current_temperature_pinda < start_temp)
  3832. {
  3833. delay_keep_alive(1000);
  3834. serialecho_temperatures();
  3835. }
  3836. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3837. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3838. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3839. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3840. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3841. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3842. st_synchronize();
  3843. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3844. if (find_z_result == false) {
  3845. lcd_temp_cal_show_result(find_z_result);
  3846. break;
  3847. }
  3848. zero_z = current_position[Z_AXIS];
  3849. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3850. int i = -1; for (; i < 5; i++)
  3851. {
  3852. float temp = (40 + i * 5);
  3853. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3854. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3855. if (start_temp <= temp) break;
  3856. }
  3857. for (i++; i < 5; i++)
  3858. {
  3859. float temp = (40 + i * 5);
  3860. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3861. custom_message_state = i + 2;
  3862. setTargetBed(50 + 10 * (temp - 30) / 5);
  3863. // setTargetHotend(255, 0);
  3864. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3865. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3866. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3867. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3868. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3869. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3870. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3871. st_synchronize();
  3872. while (current_temperature_pinda < temp)
  3873. {
  3874. delay_keep_alive(1000);
  3875. serialecho_temperatures();
  3876. }
  3877. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3878. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3879. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3880. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3881. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3882. st_synchronize();
  3883. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3884. if (find_z_result == false) {
  3885. lcd_temp_cal_show_result(find_z_result);
  3886. break;
  3887. }
  3888. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3889. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3890. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3891. }
  3892. lcd_temp_cal_show_result(true);
  3893. break;
  3894. }
  3895. #endif //PINDA_THERMISTOR
  3896. setTargetBed(PINDA_MIN_T);
  3897. float zero_z;
  3898. int z_shift = 0; //unit: steps
  3899. int t_c; // temperature
  3900. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3901. // We don't know where we are! HOME!
  3902. // Push the commands to the front of the message queue in the reverse order!
  3903. // There shall be always enough space reserved for these commands.
  3904. repeatcommand_front(); // repeat G76 with all its parameters
  3905. enquecommand_front_P((PSTR("G28 W0")));
  3906. break;
  3907. }
  3908. puts_P(_N("PINDA probe calibration start"));
  3909. custom_message_type = CustomMsg::TempCal;
  3910. custom_message_state = 1;
  3911. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3912. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3913. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3914. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3915. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3916. st_synchronize();
  3917. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3918. delay_keep_alive(1000);
  3919. serialecho_temperatures();
  3920. }
  3921. //enquecommand_P(PSTR("M190 S50"));
  3922. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3923. delay_keep_alive(1000);
  3924. serialecho_temperatures();
  3925. }
  3926. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3927. current_position[Z_AXIS] = 5;
  3928. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3929. current_position[X_AXIS] = BED_X0;
  3930. current_position[Y_AXIS] = BED_Y0;
  3931. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3932. st_synchronize();
  3933. find_bed_induction_sensor_point_z(-1.f);
  3934. zero_z = current_position[Z_AXIS];
  3935. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3936. for (int i = 0; i<5; i++) {
  3937. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3938. custom_message_state = i + 2;
  3939. t_c = 60 + i * 10;
  3940. setTargetBed(t_c);
  3941. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3942. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3943. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3944. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3945. st_synchronize();
  3946. while (degBed() < t_c) {
  3947. delay_keep_alive(1000);
  3948. serialecho_temperatures();
  3949. }
  3950. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3951. delay_keep_alive(1000);
  3952. serialecho_temperatures();
  3953. }
  3954. current_position[Z_AXIS] = 5;
  3955. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3956. current_position[X_AXIS] = BED_X0;
  3957. current_position[Y_AXIS] = BED_Y0;
  3958. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3959. st_synchronize();
  3960. find_bed_induction_sensor_point_z(-1.f);
  3961. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3962. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3963. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3964. }
  3965. custom_message_type = CustomMsg::Status;
  3966. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3967. puts_P(_N("Temperature calibration done."));
  3968. disable_x();
  3969. disable_y();
  3970. disable_z();
  3971. disable_e0();
  3972. disable_e1();
  3973. disable_e2();
  3974. setTargetBed(0); //set bed target temperature back to 0
  3975. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3976. temp_cal_active = true;
  3977. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3978. lcd_update_enable(true);
  3979. lcd_update(2);
  3980. }
  3981. break;
  3982. //! ### G80 - Mesh-based Z probe
  3983. // -----------------------------------
  3984. /*
  3985. * Probes a grid and produces a mesh to compensate for variable bed height
  3986. * The S0 report the points as below
  3987. * +----> X-axis
  3988. * |
  3989. * |
  3990. * v Y-axis
  3991. */
  3992. case 80:
  3993. #ifdef MK1BP
  3994. break;
  3995. #endif //MK1BP
  3996. case_G80:
  3997. {
  3998. mesh_bed_leveling_flag = true;
  3999. #ifndef PINDA_THERMISTOR
  4000. static bool run = false; // thermistor-less PINDA temperature compensation is running
  4001. #endif // ndef PINDA_THERMISTOR
  4002. #ifdef SUPPORT_VERBOSITY
  4003. int8_t verbosity_level = 0;
  4004. if (code_seen('V')) {
  4005. // Just 'V' without a number counts as V1.
  4006. char c = strchr_pointer[1];
  4007. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4008. }
  4009. #endif //SUPPORT_VERBOSITY
  4010. // Firstly check if we know where we are
  4011. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4012. // We don't know where we are! HOME!
  4013. // Push the commands to the front of the message queue in the reverse order!
  4014. // There shall be always enough space reserved for these commands.
  4015. if (lcd_commands_type != LcdCommands::StopPrint) {
  4016. repeatcommand_front(); // repeat G80 with all its parameters
  4017. enquecommand_front_P((PSTR("G28 W0")));
  4018. }
  4019. else {
  4020. mesh_bed_leveling_flag = false;
  4021. }
  4022. break;
  4023. }
  4024. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  4025. if (code_seen('N')) {
  4026. nMeasPoints = code_value_uint8();
  4027. if (nMeasPoints != 7) {
  4028. nMeasPoints = 3;
  4029. }
  4030. }
  4031. else {
  4032. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  4033. }
  4034. uint8_t nProbeRetry = 3;
  4035. if (code_seen('R')) {
  4036. nProbeRetry = code_value_uint8();
  4037. if (nProbeRetry > 10) {
  4038. nProbeRetry = 10;
  4039. }
  4040. }
  4041. else {
  4042. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  4043. }
  4044. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  4045. #ifndef PINDA_THERMISTOR
  4046. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50)
  4047. {
  4048. if (lcd_commands_type != LcdCommands::StopPrint) {
  4049. temp_compensation_start();
  4050. run = true;
  4051. repeatcommand_front(); // repeat G80 with all its parameters
  4052. enquecommand_front_P((PSTR("G28 W0")));
  4053. }
  4054. else {
  4055. mesh_bed_leveling_flag = false;
  4056. }
  4057. break;
  4058. }
  4059. run = false;
  4060. #endif //PINDA_THERMISTOR
  4061. if (lcd_commands_type == LcdCommands::StopPrint) {
  4062. mesh_bed_leveling_flag = false;
  4063. break;
  4064. }
  4065. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  4066. CustomMsg custom_message_type_old = custom_message_type;
  4067. unsigned int custom_message_state_old = custom_message_state;
  4068. custom_message_type = CustomMsg::MeshBedLeveling;
  4069. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  4070. lcd_update(1);
  4071. mbl.reset(); //reset mesh bed leveling
  4072. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  4073. // consumed during the first movements following this statement.
  4074. babystep_undo();
  4075. // Cycle through all points and probe them
  4076. // First move up. During this first movement, the babystepping will be reverted.
  4077. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4078. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  4079. // The move to the first calibration point.
  4080. current_position[X_AXIS] = BED_X0;
  4081. current_position[Y_AXIS] = BED_Y0;
  4082. #ifdef SUPPORT_VERBOSITY
  4083. if (verbosity_level >= 1)
  4084. {
  4085. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4086. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  4087. }
  4088. #else //SUPPORT_VERBOSITY
  4089. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4090. #endif //SUPPORT_VERBOSITY
  4091. plan_buffer_line_curposXYZE(homing_feedrate[X_AXIS] / 30, active_extruder);
  4092. // Wait until the move is finished.
  4093. st_synchronize();
  4094. uint8_t mesh_point = 0; //index number of calibration point
  4095. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  4096. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  4097. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  4098. #ifdef SUPPORT_VERBOSITY
  4099. if (verbosity_level >= 1) {
  4100. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  4101. }
  4102. #endif // SUPPORT_VERBOSITY
  4103. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  4104. const char *kill_message = NULL;
  4105. while (mesh_point != nMeasPoints * nMeasPoints) {
  4106. // Get coords of a measuring point.
  4107. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  4108. uint8_t iy = mesh_point / nMeasPoints;
  4109. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  4110. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  4111. custom_message_state--;
  4112. mesh_point++;
  4113. continue; //skip
  4114. }*/
  4115. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  4116. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  4117. {
  4118. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  4119. }
  4120. float z0 = 0.f;
  4121. if (has_z && (mesh_point > 0)) {
  4122. uint16_t z_offset_u = 0;
  4123. if (nMeasPoints == 7) {
  4124. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  4125. }
  4126. else {
  4127. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  4128. }
  4129. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  4130. #ifdef SUPPORT_VERBOSITY
  4131. if (verbosity_level >= 1) {
  4132. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  4133. }
  4134. #endif // SUPPORT_VERBOSITY
  4135. }
  4136. // Move Z up to MESH_HOME_Z_SEARCH.
  4137. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4138. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  4139. float init_z_bckp = current_position[Z_AXIS];
  4140. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4141. st_synchronize();
  4142. // Move to XY position of the sensor point.
  4143. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  4144. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  4145. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4146. #ifdef SUPPORT_VERBOSITY
  4147. if (verbosity_level >= 1) {
  4148. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4149. SERIAL_PROTOCOL(mesh_point);
  4150. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  4151. }
  4152. #else //SUPPORT_VERBOSITY
  4153. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4154. #endif // SUPPORT_VERBOSITY
  4155. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4156. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  4157. st_synchronize();
  4158. // Go down until endstop is hit
  4159. const float Z_CALIBRATION_THRESHOLD = 1.f;
  4160. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4161. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4162. break;
  4163. }
  4164. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4165. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4166. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4167. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4168. st_synchronize();
  4169. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4170. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4171. break;
  4172. }
  4173. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4174. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  4175. break;
  4176. }
  4177. }
  4178. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4179. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4180. break;
  4181. }
  4182. #ifdef SUPPORT_VERBOSITY
  4183. if (verbosity_level >= 10) {
  4184. SERIAL_ECHOPGM("X: ");
  4185. MYSERIAL.print(current_position[X_AXIS], 5);
  4186. SERIAL_ECHOLNPGM("");
  4187. SERIAL_ECHOPGM("Y: ");
  4188. MYSERIAL.print(current_position[Y_AXIS], 5);
  4189. SERIAL_PROTOCOLPGM("\n");
  4190. }
  4191. #endif // SUPPORT_VERBOSITY
  4192. float offset_z = 0;
  4193. #ifdef PINDA_THERMISTOR
  4194. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4195. #endif //PINDA_THERMISTOR
  4196. // #ifdef SUPPORT_VERBOSITY
  4197. /* if (verbosity_level >= 1)
  4198. {
  4199. SERIAL_ECHOPGM("mesh bed leveling: ");
  4200. MYSERIAL.print(current_position[Z_AXIS], 5);
  4201. SERIAL_ECHOPGM(" offset: ");
  4202. MYSERIAL.print(offset_z, 5);
  4203. SERIAL_ECHOLNPGM("");
  4204. }*/
  4205. // #endif // SUPPORT_VERBOSITY
  4206. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4207. custom_message_state--;
  4208. mesh_point++;
  4209. lcd_update(1);
  4210. }
  4211. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4212. #ifdef SUPPORT_VERBOSITY
  4213. if (verbosity_level >= 20) {
  4214. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4215. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4216. MYSERIAL.print(current_position[Z_AXIS], 5);
  4217. }
  4218. #endif // SUPPORT_VERBOSITY
  4219. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4220. st_synchronize();
  4221. if (mesh_point != nMeasPoints * nMeasPoints) {
  4222. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4223. bool bState;
  4224. do { // repeat until Z-leveling o.k.
  4225. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4226. #ifdef TMC2130
  4227. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4228. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4229. #else // TMC2130
  4230. lcd_wait_for_click_delay(0); // ~ no timeout
  4231. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4232. #endif // TMC2130
  4233. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4234. bState=enable_z_endstop(false);
  4235. current_position[Z_AXIS] -= 1;
  4236. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4237. st_synchronize();
  4238. enable_z_endstop(true);
  4239. #ifdef TMC2130
  4240. tmc2130_home_enter(Z_AXIS_MASK);
  4241. #endif // TMC2130
  4242. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4243. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4244. st_synchronize();
  4245. #ifdef TMC2130
  4246. tmc2130_home_exit();
  4247. #endif // TMC2130
  4248. enable_z_endstop(bState);
  4249. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4250. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4251. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4252. lcd_update_enable(true); // display / status-line recovery
  4253. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4254. repeatcommand_front(); // re-run (i.e. of "G80")
  4255. break;
  4256. }
  4257. clean_up_after_endstop_move(l_feedmultiply);
  4258. // SERIAL_ECHOLNPGM("clean up finished ");
  4259. #ifndef PINDA_THERMISTOR
  4260. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4261. #endif
  4262. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4263. // SERIAL_ECHOLNPGM("babystep applied");
  4264. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4265. #ifdef SUPPORT_VERBOSITY
  4266. if (verbosity_level >= 1) {
  4267. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4268. }
  4269. #endif // SUPPORT_VERBOSITY
  4270. for (uint8_t i = 0; i < 4; ++i) {
  4271. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4272. long correction = 0;
  4273. if (code_seen(codes[i]))
  4274. correction = code_value_long();
  4275. else if (eeprom_bed_correction_valid) {
  4276. unsigned char *addr = (i < 2) ?
  4277. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4278. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4279. correction = eeprom_read_int8(addr);
  4280. }
  4281. if (correction == 0)
  4282. continue;
  4283. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4284. SERIAL_ERROR_START;
  4285. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4286. SERIAL_ECHO(correction);
  4287. SERIAL_ECHOLNPGM(" microns");
  4288. }
  4289. else {
  4290. float offset = float(correction) * 0.001f;
  4291. switch (i) {
  4292. case 0:
  4293. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4294. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4295. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4296. }
  4297. }
  4298. break;
  4299. case 1:
  4300. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4301. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4302. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4303. }
  4304. }
  4305. break;
  4306. case 2:
  4307. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4308. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4309. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4310. }
  4311. }
  4312. break;
  4313. case 3:
  4314. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4315. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4316. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4317. }
  4318. }
  4319. break;
  4320. }
  4321. }
  4322. }
  4323. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4324. if (nMeasPoints == 3) {
  4325. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4326. }
  4327. /*
  4328. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4329. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4330. SERIAL_PROTOCOLPGM(",");
  4331. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4332. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4333. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4334. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4335. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4336. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4337. SERIAL_PROTOCOLPGM(" ");
  4338. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4339. }
  4340. SERIAL_PROTOCOLPGM("\n");
  4341. }
  4342. */
  4343. if (nMeasPoints == 7 && magnet_elimination) {
  4344. mbl_interpolation(nMeasPoints);
  4345. }
  4346. /*
  4347. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4348. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4349. SERIAL_PROTOCOLPGM(",");
  4350. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4351. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4352. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4353. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4354. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4355. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4356. SERIAL_PROTOCOLPGM(" ");
  4357. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4358. }
  4359. SERIAL_PROTOCOLPGM("\n");
  4360. }
  4361. */
  4362. // SERIAL_ECHOLNPGM("Upsample finished");
  4363. mbl.active = 1; //activate mesh bed leveling
  4364. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4365. go_home_with_z_lift();
  4366. // SERIAL_ECHOLNPGM("Go home finished");
  4367. //unretract (after PINDA preheat retraction)
  4368. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4369. current_position[E_AXIS] += default_retraction;
  4370. plan_buffer_line_curposXYZE(400, active_extruder);
  4371. }
  4372. KEEPALIVE_STATE(NOT_BUSY);
  4373. // Restore custom message state
  4374. lcd_setstatuspgm(_T(WELCOME_MSG));
  4375. custom_message_type = custom_message_type_old;
  4376. custom_message_state = custom_message_state_old;
  4377. mesh_bed_leveling_flag = false;
  4378. mesh_bed_run_from_menu = false;
  4379. lcd_update(2);
  4380. }
  4381. break;
  4382. //! ### G81 - Mesh bed leveling status
  4383. // -----------------------------------------
  4384. /*
  4385. * Prints mesh bed leveling status and bed profile if activated
  4386. */
  4387. case 81:
  4388. if (mbl.active) {
  4389. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4390. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4391. SERIAL_PROTOCOLPGM(",");
  4392. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4393. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4394. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4395. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4396. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4397. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4398. SERIAL_PROTOCOLPGM(" ");
  4399. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4400. }
  4401. SERIAL_PROTOCOLPGM("\n");
  4402. }
  4403. }
  4404. else
  4405. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4406. break;
  4407. #if 0
  4408. /*
  4409. * G82: Single Z probe at current location
  4410. *
  4411. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4412. *
  4413. */
  4414. case 82:
  4415. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4416. int l_feedmultiply = setup_for_endstop_move();
  4417. find_bed_induction_sensor_point_z();
  4418. clean_up_after_endstop_move(l_feedmultiply);
  4419. SERIAL_PROTOCOLPGM("Bed found at: ");
  4420. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4421. SERIAL_PROTOCOLPGM("\n");
  4422. break;
  4423. /*
  4424. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4425. */
  4426. case 83:
  4427. {
  4428. int babystepz = code_seen('S') ? code_value() : 0;
  4429. int BabyPosition = code_seen('P') ? code_value() : 0;
  4430. if (babystepz != 0) {
  4431. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4432. // Is the axis indexed starting with zero or one?
  4433. if (BabyPosition > 4) {
  4434. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4435. }else{
  4436. // Save it to the eeprom
  4437. babystepLoadZ = babystepz;
  4438. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4439. // adjust the Z
  4440. babystepsTodoZadd(babystepLoadZ);
  4441. }
  4442. }
  4443. }
  4444. break;
  4445. /*
  4446. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4447. */
  4448. case 84:
  4449. babystepsTodoZsubtract(babystepLoadZ);
  4450. // babystepLoadZ = 0;
  4451. break;
  4452. /*
  4453. * G85: Prusa3D specific: Pick best babystep
  4454. */
  4455. case 85:
  4456. lcd_pick_babystep();
  4457. break;
  4458. #endif
  4459. /**
  4460. * ### G86 - Disable babystep correction after home
  4461. *
  4462. * This G-code will be performed at the start of a calibration script.
  4463. * (Prusa3D specific)
  4464. */
  4465. case 86:
  4466. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4467. break;
  4468. /**
  4469. * ### G87 - Enable babystep correction after home
  4470. *
  4471. *
  4472. * This G-code will be performed at the end of a calibration script.
  4473. * (Prusa3D specific)
  4474. */
  4475. case 87:
  4476. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4477. break;
  4478. /**
  4479. * ### G88 - Reserved
  4480. *
  4481. * Currently has no effect.
  4482. */
  4483. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4484. case 88:
  4485. break;
  4486. #endif // ENABLE_MESH_BED_LEVELING
  4487. //! ### G90 - Switch off relative mode
  4488. // -------------------------------
  4489. case 90: {
  4490. for(uint8_t i = 0; i != NUM_AXIS; ++i)
  4491. axis_relative_modes[i] = false;
  4492. }
  4493. break;
  4494. //! ### G91 - Switch on relative mode
  4495. // -------------------------------
  4496. case 91: {
  4497. for(uint8_t i = 0; i != NUM_AXIS; ++i)
  4498. axis_relative_modes[i] = true;
  4499. }
  4500. break;
  4501. //! ### G92 - Set position
  4502. // -----------------------------
  4503. case 92:
  4504. if(!code_seen(axis_codes[E_AXIS]))
  4505. st_synchronize();
  4506. for(int8_t i=0; i < NUM_AXIS; i++) {
  4507. if(code_seen(axis_codes[i])) {
  4508. if(i == E_AXIS) {
  4509. current_position[i] = code_value();
  4510. plan_set_e_position(current_position[E_AXIS]);
  4511. }
  4512. else {
  4513. current_position[i] = code_value()+cs.add_homing[i];
  4514. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4515. }
  4516. }
  4517. }
  4518. break;
  4519. //! ### G98 - Activate farm mode
  4520. // -----------------------------------
  4521. case 98:
  4522. farm_mode = 1;
  4523. PingTime = _millis();
  4524. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4525. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4526. SilentModeMenu = SILENT_MODE_OFF;
  4527. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4528. fCheckModeInit(); // alternatively invoke printer reset
  4529. break;
  4530. //! ### G99 - Deactivate farm mode
  4531. // -------------------------------------
  4532. case 99:
  4533. farm_mode = 0;
  4534. lcd_printer_connected();
  4535. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4536. lcd_update(2);
  4537. fCheckModeInit(); // alternatively invoke printer reset
  4538. break;
  4539. default:
  4540. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4541. }
  4542. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4543. gcode_in_progress = 0;
  4544. } // end if(code_seen('G'))
  4545. //! ---------------------------------------------------------------------------------
  4546. else if(code_seen('M'))
  4547. {
  4548. int index;
  4549. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4550. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4551. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4552. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4553. } else
  4554. {
  4555. mcode_in_progress = (int)code_value();
  4556. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4557. switch(mcode_in_progress)
  4558. {
  4559. //! ### M0, M1 - Stop the printer
  4560. // ---------------------------------------------------------------
  4561. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4562. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4563. {
  4564. char *src = strchr_pointer + 2;
  4565. codenum = 0;
  4566. bool hasP = false, hasS = false;
  4567. if (code_seen('P')) {
  4568. codenum = code_value(); // milliseconds to wait
  4569. hasP = codenum > 0;
  4570. }
  4571. if (code_seen('S')) {
  4572. codenum = code_value() * 1000; // seconds to wait
  4573. hasS = codenum > 0;
  4574. }
  4575. starpos = strchr(src, '*');
  4576. if (starpos != NULL) *(starpos) = '\0';
  4577. while (*src == ' ') ++src;
  4578. if (!hasP && !hasS && *src != '\0') {
  4579. lcd_setstatus(src);
  4580. } else {
  4581. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4582. }
  4583. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4584. st_synchronize();
  4585. previous_millis_cmd = _millis();
  4586. if (codenum > 0){
  4587. codenum += _millis(); // keep track of when we started waiting
  4588. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4589. while(_millis() < codenum && !lcd_clicked()){
  4590. manage_heater();
  4591. manage_inactivity(true);
  4592. lcd_update(0);
  4593. }
  4594. KEEPALIVE_STATE(IN_HANDLER);
  4595. lcd_ignore_click(false);
  4596. }else{
  4597. marlin_wait_for_click();
  4598. }
  4599. if (IS_SD_PRINTING)
  4600. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4601. else
  4602. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4603. }
  4604. break;
  4605. //! ### M17 - Enable axes
  4606. // ---------------------------------
  4607. case 17:
  4608. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4609. enable_x();
  4610. enable_y();
  4611. enable_z();
  4612. enable_e0();
  4613. enable_e1();
  4614. enable_e2();
  4615. break;
  4616. #ifdef SDSUPPORT
  4617. //! ### M20 - SD Card file list
  4618. // -----------------------------------
  4619. case 20:
  4620. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4621. card.ls();
  4622. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4623. break;
  4624. //! ### M21 - Init SD card
  4625. // ------------------------------------
  4626. case 21:
  4627. card.initsd();
  4628. break;
  4629. //! ### M22 - Release SD card
  4630. // -----------------------------------
  4631. case 22:
  4632. card.release();
  4633. break;
  4634. //! ### M23 - Select file
  4635. // -----------------------------------
  4636. case 23:
  4637. starpos = (strchr(strchr_pointer + 4,'*'));
  4638. if(starpos!=NULL)
  4639. *(starpos)='\0';
  4640. card.openFile(strchr_pointer + 4,true);
  4641. break;
  4642. //! ### M24 - Start/resume SD print
  4643. // ----------------------------------
  4644. case 24:
  4645. if (isPrintPaused)
  4646. lcd_resume_print();
  4647. else
  4648. {
  4649. failstats_reset_print();
  4650. card.startFileprint();
  4651. starttime=_millis();
  4652. }
  4653. break;
  4654. //! ### M26 S\<index\> - Set SD index
  4655. //! Set position in SD card file to index in bytes.
  4656. //! This command is expected to be called after M23 and before M24.
  4657. //! Otherwise effect of this command is undefined.
  4658. // ----------------------------------
  4659. case 26:
  4660. if(card.cardOK && code_seen('S')) {
  4661. long index = code_value_long();
  4662. card.setIndex(index);
  4663. // We don't disable interrupt during update of sdpos_atomic
  4664. // as we expect, that SD card print is not active in this moment
  4665. sdpos_atomic = index;
  4666. }
  4667. break;
  4668. //! ### M27 - Get SD status
  4669. // ----------------------------------
  4670. case 27:
  4671. card.getStatus();
  4672. break;
  4673. //! ### M28 - Start SD write
  4674. // ---------------------------------
  4675. case 28:
  4676. starpos = (strchr(strchr_pointer + 4,'*'));
  4677. if(starpos != NULL){
  4678. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4679. strchr_pointer = strchr(npos,' ') + 1;
  4680. *(starpos) = '\0';
  4681. }
  4682. card.openFile(strchr_pointer+4,false);
  4683. break;
  4684. //! ### M29 - Stop SD write
  4685. // -------------------------------------
  4686. //! Currently has no effect.
  4687. case 29:
  4688. //processed in write to file routine above
  4689. //card,saving = false;
  4690. break;
  4691. //! ### M30 - Delete file <filename>
  4692. // ----------------------------------
  4693. case 30:
  4694. if (card.cardOK){
  4695. card.closefile();
  4696. starpos = (strchr(strchr_pointer + 4,'*'));
  4697. if(starpos != NULL){
  4698. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4699. strchr_pointer = strchr(npos,' ') + 1;
  4700. *(starpos) = '\0';
  4701. }
  4702. card.removeFile(strchr_pointer + 4);
  4703. }
  4704. break;
  4705. //! ### M32 - Select file and start SD print
  4706. // ------------------------------------
  4707. case 32:
  4708. {
  4709. if(card.sdprinting) {
  4710. st_synchronize();
  4711. }
  4712. starpos = (strchr(strchr_pointer + 4,'*'));
  4713. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4714. if(namestartpos==NULL)
  4715. {
  4716. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4717. }
  4718. else
  4719. namestartpos++; //to skip the '!'
  4720. if(starpos!=NULL)
  4721. *(starpos)='\0';
  4722. bool call_procedure=(code_seen('P'));
  4723. if(strchr_pointer>namestartpos)
  4724. call_procedure=false; //false alert, 'P' found within filename
  4725. if( card.cardOK )
  4726. {
  4727. card.openFile(namestartpos,true,!call_procedure);
  4728. if(code_seen('S'))
  4729. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4730. card.setIndex(code_value_long());
  4731. card.startFileprint();
  4732. if(!call_procedure)
  4733. starttime=_millis(); //procedure calls count as normal print time.
  4734. }
  4735. } break;
  4736. //! ### M982 - Start SD write
  4737. // ---------------------------------
  4738. case 928:
  4739. starpos = (strchr(strchr_pointer + 5,'*'));
  4740. if(starpos != NULL){
  4741. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4742. strchr_pointer = strchr(npos,' ') + 1;
  4743. *(starpos) = '\0';
  4744. }
  4745. card.openLogFile(strchr_pointer+5);
  4746. break;
  4747. #endif //SDSUPPORT
  4748. //! ### M31 - Report current print time
  4749. // --------------------------------------------------
  4750. case 31: //M31 take time since the start of the SD print or an M109 command
  4751. {
  4752. stoptime=_millis();
  4753. char time[30];
  4754. unsigned long t=(stoptime-starttime)/1000;
  4755. int sec,min;
  4756. min=t/60;
  4757. sec=t%60;
  4758. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4759. SERIAL_ECHO_START;
  4760. SERIAL_ECHOLN(time);
  4761. lcd_setstatus(time);
  4762. autotempShutdown();
  4763. }
  4764. break;
  4765. //! ### M42 - Set pin state
  4766. // -----------------------------
  4767. case 42:
  4768. if (code_seen('S'))
  4769. {
  4770. int pin_status = code_value();
  4771. int pin_number = LED_PIN;
  4772. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4773. pin_number = code_value();
  4774. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4775. {
  4776. if (sensitive_pins[i] == pin_number)
  4777. {
  4778. pin_number = -1;
  4779. break;
  4780. }
  4781. }
  4782. #if defined(FAN_PIN) && FAN_PIN > -1
  4783. if (pin_number == FAN_PIN)
  4784. fanSpeed = pin_status;
  4785. #endif
  4786. if (pin_number > -1)
  4787. {
  4788. pinMode(pin_number, OUTPUT);
  4789. digitalWrite(pin_number, pin_status);
  4790. analogWrite(pin_number, pin_status);
  4791. }
  4792. }
  4793. break;
  4794. //! ### M44 - Reset the bed skew and offset calibration (Prusa specific)
  4795. // --------------------------------------------------------------------
  4796. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4797. // Reset the baby step value and the baby step applied flag.
  4798. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4799. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  4800. // Reset the skew and offset in both RAM and EEPROM.
  4801. reset_bed_offset_and_skew();
  4802. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4803. // the planner will not perform any adjustments in the XY plane.
  4804. // Wait for the motors to stop and update the current position with the absolute values.
  4805. world2machine_revert_to_uncorrected();
  4806. break;
  4807. //! ### M45 - Bed skew and offset with manual Z up (Prusa specific)
  4808. // ------------------------------------------------------
  4809. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4810. {
  4811. int8_t verbosity_level = 0;
  4812. bool only_Z = code_seen('Z');
  4813. #ifdef SUPPORT_VERBOSITY
  4814. if (code_seen('V'))
  4815. {
  4816. // Just 'V' without a number counts as V1.
  4817. char c = strchr_pointer[1];
  4818. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4819. }
  4820. #endif //SUPPORT_VERBOSITY
  4821. gcode_M45(only_Z, verbosity_level);
  4822. }
  4823. break;
  4824. /*
  4825. case 46:
  4826. {
  4827. // M46: Prusa3D: Show the assigned IP address.
  4828. uint8_t ip[4];
  4829. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4830. if (hasIP) {
  4831. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4832. SERIAL_ECHO(int(ip[0]));
  4833. SERIAL_ECHOPGM(".");
  4834. SERIAL_ECHO(int(ip[1]));
  4835. SERIAL_ECHOPGM(".");
  4836. SERIAL_ECHO(int(ip[2]));
  4837. SERIAL_ECHOPGM(".");
  4838. SERIAL_ECHO(int(ip[3]));
  4839. SERIAL_ECHOLNPGM("");
  4840. } else {
  4841. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4842. }
  4843. break;
  4844. }
  4845. */
  4846. //! ### M47 - Show end stops dialog on the display (Prusa specific)
  4847. // ----------------------------------------------------
  4848. case 47:
  4849. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4850. lcd_diag_show_end_stops();
  4851. KEEPALIVE_STATE(IN_HANDLER);
  4852. break;
  4853. #if 0
  4854. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4855. {
  4856. // Disable the default update procedure of the display. We will do a modal dialog.
  4857. lcd_update_enable(false);
  4858. // Let the planner use the uncorrected coordinates.
  4859. mbl.reset();
  4860. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4861. // the planner will not perform any adjustments in the XY plane.
  4862. // Wait for the motors to stop and update the current position with the absolute values.
  4863. world2machine_revert_to_uncorrected();
  4864. // Move the print head close to the bed.
  4865. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4866. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4867. st_synchronize();
  4868. // Home in the XY plane.
  4869. set_destination_to_current();
  4870. int l_feedmultiply = setup_for_endstop_move();
  4871. home_xy();
  4872. int8_t verbosity_level = 0;
  4873. if (code_seen('V')) {
  4874. // Just 'V' without a number counts as V1.
  4875. char c = strchr_pointer[1];
  4876. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4877. }
  4878. bool success = scan_bed_induction_points(verbosity_level);
  4879. clean_up_after_endstop_move(l_feedmultiply);
  4880. // Print head up.
  4881. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4882. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4883. st_synchronize();
  4884. lcd_update_enable(true);
  4885. break;
  4886. }
  4887. #endif
  4888. #ifdef ENABLE_AUTO_BED_LEVELING
  4889. #ifdef Z_PROBE_REPEATABILITY_TEST
  4890. //! ### M48 - Z-Probe repeatability measurement function.
  4891. // ------------------------------------------------------
  4892. //!
  4893. //! _Usage:_
  4894. //!
  4895. //! M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4896. //!
  4897. //! This function assumes the bed has been homed. Specifically, that a G28 command
  4898. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4899. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4900. //! regenerated.
  4901. //!
  4902. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4903. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4904. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4905. //!
  4906. case 48: // M48 Z-Probe repeatability
  4907. {
  4908. #if Z_MIN_PIN == -1
  4909. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4910. #endif
  4911. double sum=0.0;
  4912. double mean=0.0;
  4913. double sigma=0.0;
  4914. double sample_set[50];
  4915. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4916. double X_current, Y_current, Z_current;
  4917. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4918. if (code_seen('V') || code_seen('v')) {
  4919. verbose_level = code_value();
  4920. if (verbose_level<0 || verbose_level>4 ) {
  4921. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4922. goto Sigma_Exit;
  4923. }
  4924. }
  4925. if (verbose_level > 0) {
  4926. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4927. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4928. }
  4929. if (code_seen('n')) {
  4930. n_samples = code_value();
  4931. if (n_samples<4 || n_samples>50 ) {
  4932. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4933. goto Sigma_Exit;
  4934. }
  4935. }
  4936. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4937. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4938. Z_current = st_get_position_mm(Z_AXIS);
  4939. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4940. ext_position = st_get_position_mm(E_AXIS);
  4941. if (code_seen('X') || code_seen('x') ) {
  4942. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4943. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4944. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4945. goto Sigma_Exit;
  4946. }
  4947. }
  4948. if (code_seen('Y') || code_seen('y') ) {
  4949. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4950. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4951. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4952. goto Sigma_Exit;
  4953. }
  4954. }
  4955. if (code_seen('L') || code_seen('l') ) {
  4956. n_legs = code_value();
  4957. if ( n_legs==1 )
  4958. n_legs = 2;
  4959. if ( n_legs<0 || n_legs>15 ) {
  4960. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4961. goto Sigma_Exit;
  4962. }
  4963. }
  4964. //
  4965. // Do all the preliminary setup work. First raise the probe.
  4966. //
  4967. st_synchronize();
  4968. plan_bed_level_matrix.set_to_identity();
  4969. plan_buffer_line( X_current, Y_current, Z_start_location,
  4970. ext_position,
  4971. homing_feedrate[Z_AXIS]/60,
  4972. active_extruder);
  4973. st_synchronize();
  4974. //
  4975. // Now get everything to the specified probe point So we can safely do a probe to
  4976. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4977. // use that as a starting point for each probe.
  4978. //
  4979. if (verbose_level > 2)
  4980. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4981. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4982. ext_position,
  4983. homing_feedrate[X_AXIS]/60,
  4984. active_extruder);
  4985. st_synchronize();
  4986. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4987. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4988. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4989. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4990. //
  4991. // OK, do the inital probe to get us close to the bed.
  4992. // Then retrace the right amount and use that in subsequent probes
  4993. //
  4994. int l_feedmultiply = setup_for_endstop_move();
  4995. run_z_probe();
  4996. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4997. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4998. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4999. ext_position,
  5000. homing_feedrate[X_AXIS]/60,
  5001. active_extruder);
  5002. st_synchronize();
  5003. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5004. for( n=0; n<n_samples; n++) {
  5005. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  5006. if ( n_legs) {
  5007. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  5008. int rotational_direction, l;
  5009. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  5010. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  5011. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  5012. //SERIAL_ECHOPAIR("starting radius: ",radius);
  5013. //SERIAL_ECHOPAIR(" theta: ",theta);
  5014. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  5015. //SERIAL_PROTOCOLLNPGM("");
  5016. for( l=0; l<n_legs-1; l++) {
  5017. if (rotational_direction==1)
  5018. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5019. else
  5020. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5021. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  5022. if ( radius<0.0 )
  5023. radius = -radius;
  5024. X_current = X_probe_location + cos(theta) * radius;
  5025. Y_current = Y_probe_location + sin(theta) * radius;
  5026. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  5027. X_current = X_MIN_POS;
  5028. if ( X_current>X_MAX_POS)
  5029. X_current = X_MAX_POS;
  5030. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  5031. Y_current = Y_MIN_POS;
  5032. if ( Y_current>Y_MAX_POS)
  5033. Y_current = Y_MAX_POS;
  5034. if (verbose_level>3 ) {
  5035. SERIAL_ECHOPAIR("x: ", X_current);
  5036. SERIAL_ECHOPAIR("y: ", Y_current);
  5037. SERIAL_PROTOCOLLNPGM("");
  5038. }
  5039. do_blocking_move_to( X_current, Y_current, Z_current );
  5040. }
  5041. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5042. }
  5043. int l_feedmultiply = setup_for_endstop_move();
  5044. run_z_probe();
  5045. sample_set[n] = current_position[Z_AXIS];
  5046. //
  5047. // Get the current mean for the data points we have so far
  5048. //
  5049. sum=0.0;
  5050. for( j=0; j<=n; j++) {
  5051. sum = sum + sample_set[j];
  5052. }
  5053. mean = sum / (double (n+1));
  5054. //
  5055. // Now, use that mean to calculate the standard deviation for the
  5056. // data points we have so far
  5057. //
  5058. sum=0.0;
  5059. for( j=0; j<=n; j++) {
  5060. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5061. }
  5062. sigma = sqrt( sum / (double (n+1)) );
  5063. if (verbose_level > 1) {
  5064. SERIAL_PROTOCOL(n+1);
  5065. SERIAL_PROTOCOL(" of ");
  5066. SERIAL_PROTOCOL(n_samples);
  5067. SERIAL_PROTOCOLPGM(" z: ");
  5068. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5069. }
  5070. if (verbose_level > 2) {
  5071. SERIAL_PROTOCOL(" mean: ");
  5072. SERIAL_PROTOCOL_F(mean,6);
  5073. SERIAL_PROTOCOL(" sigma: ");
  5074. SERIAL_PROTOCOL_F(sigma,6);
  5075. }
  5076. if (verbose_level > 0)
  5077. SERIAL_PROTOCOLPGM("\n");
  5078. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5079. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5080. st_synchronize();
  5081. }
  5082. _delay(1000);
  5083. clean_up_after_endstop_move(l_feedmultiply);
  5084. // enable_endstops(true);
  5085. if (verbose_level > 0) {
  5086. SERIAL_PROTOCOLPGM("Mean: ");
  5087. SERIAL_PROTOCOL_F(mean, 6);
  5088. SERIAL_PROTOCOLPGM("\n");
  5089. }
  5090. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5091. SERIAL_PROTOCOL_F(sigma, 6);
  5092. SERIAL_PROTOCOLPGM("\n\n");
  5093. Sigma_Exit:
  5094. break;
  5095. }
  5096. #endif // Z_PROBE_REPEATABILITY_TEST
  5097. #endif // ENABLE_AUTO_BED_LEVELING
  5098. //! ### M73 - Set/get print progress
  5099. // -------------------------------------
  5100. //! _Usage:_
  5101. //!
  5102. //! M73 P<percent> R<time_remaining> Q<percent_silent> S<time_remaining_silent>
  5103. //!
  5104. case 73: //M73 show percent done and time remaining
  5105. if(code_seen('P')) print_percent_done_normal = code_value();
  5106. if(code_seen('R')) print_time_remaining_normal = code_value();
  5107. if(code_seen('Q')) print_percent_done_silent = code_value();
  5108. if(code_seen('S')) print_time_remaining_silent = code_value();
  5109. {
  5110. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  5111. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  5112. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  5113. }
  5114. break;
  5115. //! ### M104 - Set hotend temperature
  5116. // -----------------------------------------
  5117. case 104: // M104
  5118. {
  5119. uint8_t extruder;
  5120. if(setTargetedHotend(104,extruder)){
  5121. break;
  5122. }
  5123. if (code_seen('S'))
  5124. {
  5125. setTargetHotendSafe(code_value(), extruder);
  5126. }
  5127. break;
  5128. }
  5129. //! ### M112 - Emergency stop
  5130. // -----------------------------------------
  5131. case 112:
  5132. kill(MSG_M112_KILL, 3);
  5133. break;
  5134. //! ### M140 - Set bed temperature
  5135. // -----------------------------------------
  5136. case 140:
  5137. if (code_seen('S')) setTargetBed(code_value());
  5138. break;
  5139. //! ### M105 - Report temperatures
  5140. // -----------------------------------------
  5141. case 105:
  5142. {
  5143. uint8_t extruder;
  5144. if(setTargetedHotend(105, extruder)){
  5145. break;
  5146. }
  5147. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  5148. SERIAL_PROTOCOLPGM("ok T:");
  5149. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  5150. SERIAL_PROTOCOLPGM(" /");
  5151. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  5152. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5153. SERIAL_PROTOCOLPGM(" B:");
  5154. SERIAL_PROTOCOL_F(degBed(),1);
  5155. SERIAL_PROTOCOLPGM(" /");
  5156. SERIAL_PROTOCOL_F(degTargetBed(),1);
  5157. #endif //TEMP_BED_PIN
  5158. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5159. SERIAL_PROTOCOLPGM(" T");
  5160. SERIAL_PROTOCOL(cur_extruder);
  5161. SERIAL_PROTOCOLPGM(":");
  5162. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5163. SERIAL_PROTOCOLPGM(" /");
  5164. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  5165. }
  5166. #else
  5167. SERIAL_ERROR_START;
  5168. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  5169. #endif
  5170. SERIAL_PROTOCOLPGM(" @:");
  5171. #ifdef EXTRUDER_WATTS
  5172. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  5173. SERIAL_PROTOCOLPGM("W");
  5174. #else
  5175. SERIAL_PROTOCOL(getHeaterPower(extruder));
  5176. #endif
  5177. SERIAL_PROTOCOLPGM(" B@:");
  5178. #ifdef BED_WATTS
  5179. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  5180. SERIAL_PROTOCOLPGM("W");
  5181. #else
  5182. SERIAL_PROTOCOL(getHeaterPower(-1));
  5183. #endif
  5184. #ifdef PINDA_THERMISTOR
  5185. SERIAL_PROTOCOLPGM(" P:");
  5186. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  5187. #endif //PINDA_THERMISTOR
  5188. #ifdef AMBIENT_THERMISTOR
  5189. SERIAL_PROTOCOLPGM(" A:");
  5190. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  5191. #endif //AMBIENT_THERMISTOR
  5192. #ifdef SHOW_TEMP_ADC_VALUES
  5193. {float raw = 0.0;
  5194. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5195. SERIAL_PROTOCOLPGM(" ADC B:");
  5196. SERIAL_PROTOCOL_F(degBed(),1);
  5197. SERIAL_PROTOCOLPGM("C->");
  5198. raw = rawBedTemp();
  5199. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5200. SERIAL_PROTOCOLPGM(" Rb->");
  5201. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5202. SERIAL_PROTOCOLPGM(" Rxb->");
  5203. SERIAL_PROTOCOL_F(raw, 5);
  5204. #endif
  5205. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5206. SERIAL_PROTOCOLPGM(" T");
  5207. SERIAL_PROTOCOL(cur_extruder);
  5208. SERIAL_PROTOCOLPGM(":");
  5209. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5210. SERIAL_PROTOCOLPGM("C->");
  5211. raw = rawHotendTemp(cur_extruder);
  5212. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5213. SERIAL_PROTOCOLPGM(" Rt");
  5214. SERIAL_PROTOCOL(cur_extruder);
  5215. SERIAL_PROTOCOLPGM("->");
  5216. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5217. SERIAL_PROTOCOLPGM(" Rx");
  5218. SERIAL_PROTOCOL(cur_extruder);
  5219. SERIAL_PROTOCOLPGM("->");
  5220. SERIAL_PROTOCOL_F(raw, 5);
  5221. }}
  5222. #endif
  5223. SERIAL_PROTOCOLLN("");
  5224. KEEPALIVE_STATE(NOT_BUSY);
  5225. return;
  5226. break;
  5227. }
  5228. //! ### M109 - Wait for extruder temperature
  5229. //! Parameters (not mandatory):
  5230. //! * S \<temp\> set extruder temperature
  5231. //! * R \<temp\> set extruder temperature
  5232. //!
  5233. //! Parameters S and R are treated identically.
  5234. //! Command always waits for both cool down and heat up.
  5235. //! If no parameters are supplied waits for previously
  5236. //! set extruder temperature.
  5237. // -------------------------------------------------
  5238. case 109:
  5239. {
  5240. uint8_t extruder;
  5241. if(setTargetedHotend(109, extruder)){
  5242. break;
  5243. }
  5244. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5245. heating_status = 1;
  5246. if (farm_mode) { prusa_statistics(1); };
  5247. #ifdef AUTOTEMP
  5248. autotemp_enabled=false;
  5249. #endif
  5250. if (code_seen('S')) {
  5251. setTargetHotendSafe(code_value(), extruder);
  5252. } else if (code_seen('R')) {
  5253. setTargetHotendSafe(code_value(), extruder);
  5254. }
  5255. #ifdef AUTOTEMP
  5256. if (code_seen('S')) autotemp_min=code_value();
  5257. if (code_seen('B')) autotemp_max=code_value();
  5258. if (code_seen('F'))
  5259. {
  5260. autotemp_factor=code_value();
  5261. autotemp_enabled=true;
  5262. }
  5263. #endif
  5264. codenum = _millis();
  5265. /* See if we are heating up or cooling down */
  5266. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5267. KEEPALIVE_STATE(NOT_BUSY);
  5268. cancel_heatup = false;
  5269. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5270. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5271. KEEPALIVE_STATE(IN_HANDLER);
  5272. heating_status = 2;
  5273. if (farm_mode) { prusa_statistics(2); };
  5274. //starttime=_millis();
  5275. previous_millis_cmd = _millis();
  5276. }
  5277. break;
  5278. //! ### M190 - Wait for bed temperature
  5279. //! Parameters (not mandatory):
  5280. //! * S \<temp\> set extruder temperature and wait for heating
  5281. //! * R \<temp\> set extruder temperature and wait for heating or cooling
  5282. //!
  5283. //! If no parameter is supplied, waits for heating or cooling to previously set temperature.
  5284. case 190:
  5285. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5286. {
  5287. bool CooldownNoWait = false;
  5288. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5289. heating_status = 3;
  5290. if (farm_mode) { prusa_statistics(1); };
  5291. if (code_seen('S'))
  5292. {
  5293. setTargetBed(code_value());
  5294. CooldownNoWait = true;
  5295. }
  5296. else if (code_seen('R'))
  5297. {
  5298. setTargetBed(code_value());
  5299. }
  5300. codenum = _millis();
  5301. cancel_heatup = false;
  5302. target_direction = isHeatingBed(); // true if heating, false if cooling
  5303. KEEPALIVE_STATE(NOT_BUSY);
  5304. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5305. {
  5306. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5307. {
  5308. if (!farm_mode) {
  5309. float tt = degHotend(active_extruder);
  5310. SERIAL_PROTOCOLPGM("T:");
  5311. SERIAL_PROTOCOL(tt);
  5312. SERIAL_PROTOCOLPGM(" E:");
  5313. SERIAL_PROTOCOL((int)active_extruder);
  5314. SERIAL_PROTOCOLPGM(" B:");
  5315. SERIAL_PROTOCOL_F(degBed(), 1);
  5316. SERIAL_PROTOCOLLN("");
  5317. }
  5318. codenum = _millis();
  5319. }
  5320. manage_heater();
  5321. manage_inactivity();
  5322. lcd_update(0);
  5323. }
  5324. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5325. KEEPALIVE_STATE(IN_HANDLER);
  5326. heating_status = 4;
  5327. previous_millis_cmd = _millis();
  5328. }
  5329. #endif
  5330. break;
  5331. #if defined(FAN_PIN) && FAN_PIN > -1
  5332. //! ### M106 - Set fan speed
  5333. // -------------------------------------------
  5334. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5335. if (code_seen('S')){
  5336. fanSpeed=constrain(code_value(),0,255);
  5337. }
  5338. else {
  5339. fanSpeed=255;
  5340. }
  5341. break;
  5342. //! ### M107 - Fan off
  5343. // -------------------------------
  5344. case 107:
  5345. fanSpeed = 0;
  5346. break;
  5347. #endif //FAN_PIN
  5348. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5349. //! ### M80 - Turn on the Power Supply
  5350. // -------------------------------
  5351. case 80:
  5352. SET_OUTPUT(PS_ON_PIN); //GND
  5353. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5354. // If you have a switch on suicide pin, this is useful
  5355. // if you want to start another print with suicide feature after
  5356. // a print without suicide...
  5357. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5358. SET_OUTPUT(SUICIDE_PIN);
  5359. WRITE(SUICIDE_PIN, HIGH);
  5360. #endif
  5361. powersupply = true;
  5362. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5363. lcd_update(0);
  5364. break;
  5365. //! ### M81 - Turn off Power Supply
  5366. // --------------------------------------
  5367. case 81:
  5368. disable_heater();
  5369. st_synchronize();
  5370. disable_e0();
  5371. disable_e1();
  5372. disable_e2();
  5373. finishAndDisableSteppers();
  5374. fanSpeed = 0;
  5375. _delay(1000); // Wait a little before to switch off
  5376. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5377. st_synchronize();
  5378. suicide();
  5379. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5380. SET_OUTPUT(PS_ON_PIN);
  5381. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5382. #endif
  5383. powersupply = false;
  5384. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5385. lcd_update(0);
  5386. break;
  5387. #endif
  5388. //! ### M82 - Set E axis to absolute mode
  5389. // ---------------------------------------
  5390. case 82:
  5391. axis_relative_modes[E_AXIS] = false;
  5392. break;
  5393. //! ### M83 - Set E axis to relative mode
  5394. // ---------------------------------------
  5395. case 83:
  5396. axis_relative_modes[E_AXIS] = true;
  5397. break;
  5398. //! ### M84, M18 - Disable steppers
  5399. //---------------------------------------
  5400. //! This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5401. //!
  5402. //! M84 [E<flag>] [S<seconds>] [X<flag>] [Y<flag>] [Z<flag>]
  5403. //!
  5404. case 18: //compatibility
  5405. case 84: // M84
  5406. if(code_seen('S')){
  5407. stepper_inactive_time = code_value() * 1000;
  5408. }
  5409. else
  5410. {
  5411. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5412. if(all_axis)
  5413. {
  5414. st_synchronize();
  5415. disable_e0();
  5416. disable_e1();
  5417. disable_e2();
  5418. finishAndDisableSteppers();
  5419. }
  5420. else
  5421. {
  5422. st_synchronize();
  5423. if (code_seen('X')) disable_x();
  5424. if (code_seen('Y')) disable_y();
  5425. if (code_seen('Z')) disable_z();
  5426. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5427. if (code_seen('E')) {
  5428. disable_e0();
  5429. disable_e1();
  5430. disable_e2();
  5431. }
  5432. #endif
  5433. }
  5434. }
  5435. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5436. print_time_remaining_init();
  5437. snmm_filaments_used = 0;
  5438. break;
  5439. //! ### M85 - Set max inactive time
  5440. // ---------------------------------------
  5441. case 85: // M85
  5442. if(code_seen('S')) {
  5443. max_inactive_time = code_value() * 1000;
  5444. }
  5445. break;
  5446. #ifdef SAFETYTIMER
  5447. //! ### M86 - Set safety timer expiration time
  5448. //!
  5449. //! _Usage:_
  5450. //! M86 S<seconds>
  5451. //!
  5452. //! Sets the safety timer expiration time in seconds. M86 S0 will disable safety timer.
  5453. //! When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5454. case 86:
  5455. if (code_seen('S')) {
  5456. safetytimer_inactive_time = code_value() * 1000;
  5457. safetyTimer.start();
  5458. }
  5459. break;
  5460. #endif
  5461. //! ### M92 Set Axis steps-per-unit
  5462. // ---------------------------------------
  5463. //! Same syntax as G92
  5464. case 92:
  5465. for(int8_t i=0; i < NUM_AXIS; i++)
  5466. {
  5467. if(code_seen(axis_codes[i]))
  5468. {
  5469. if(i == 3) { // E
  5470. float value = code_value();
  5471. if(value < 20.0) {
  5472. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5473. cs.max_jerk[E_AXIS] *= factor;
  5474. max_feedrate[i] *= factor;
  5475. axis_steps_per_sqr_second[i] *= factor;
  5476. }
  5477. cs.axis_steps_per_unit[i] = value;
  5478. }
  5479. else {
  5480. cs.axis_steps_per_unit[i] = code_value();
  5481. }
  5482. }
  5483. }
  5484. break;
  5485. //! ### M110 - Set Line number
  5486. // ---------------------------------------
  5487. case 110:
  5488. if (code_seen('N'))
  5489. gcode_LastN = code_value_long();
  5490. break;
  5491. //! ### M113 - Get or set host keep-alive interval
  5492. // ------------------------------------------
  5493. case 113:
  5494. if (code_seen('S')) {
  5495. host_keepalive_interval = (uint8_t)code_value_short();
  5496. // NOMORE(host_keepalive_interval, 60);
  5497. }
  5498. else {
  5499. SERIAL_ECHO_START;
  5500. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5501. SERIAL_PROTOCOLLN("");
  5502. }
  5503. break;
  5504. //! ### M115 - Firmware info
  5505. // --------------------------------------
  5506. //! Print the firmware info and capabilities
  5507. //!
  5508. //! M115 [V] [U<version>]
  5509. //!
  5510. //! Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5511. //! `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5512. //! pause the print for 30s and ask the user to upgrade the firmware.
  5513. case 115: // M115
  5514. if (code_seen('V')) {
  5515. // Report the Prusa version number.
  5516. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5517. } else if (code_seen('U')) {
  5518. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5519. // pause the print for 30s and ask the user to upgrade the firmware.
  5520. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5521. } else {
  5522. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5523. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5524. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5525. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5526. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5527. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5528. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5529. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5530. SERIAL_ECHOPGM(" UUID:");
  5531. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5532. }
  5533. break;
  5534. //! ### M114 - Get current position
  5535. // -------------------------------------
  5536. case 114:
  5537. gcode_M114();
  5538. break;
  5539. //! ### M117 - Set LCD Message
  5540. // --------------------------------------
  5541. /*
  5542. M117 moved up to get the high priority
  5543. case 117: // M117 display message
  5544. starpos = (strchr(strchr_pointer + 5,'*'));
  5545. if(starpos!=NULL)
  5546. *(starpos)='\0';
  5547. lcd_setstatus(strchr_pointer + 5);
  5548. break;*/
  5549. //! ### M120 - Ensable endstops
  5550. // ----------------------------------------
  5551. case 120:
  5552. enable_endstops(true) ;
  5553. break;
  5554. //! ### M121 - Disable endstops
  5555. // ----------------------------------------
  5556. case 121:
  5557. enable_endstops(false) ;
  5558. break;
  5559. //! ### M119 - Get endstop states
  5560. // ----------------------------------------
  5561. case 119:
  5562. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5563. SERIAL_PROTOCOLLN("");
  5564. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5565. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5566. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5567. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5568. }else{
  5569. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5570. }
  5571. SERIAL_PROTOCOLLN("");
  5572. #endif
  5573. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5574. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5575. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5576. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5577. }else{
  5578. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5579. }
  5580. SERIAL_PROTOCOLLN("");
  5581. #endif
  5582. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5583. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5584. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5585. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5586. }else{
  5587. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5588. }
  5589. SERIAL_PROTOCOLLN("");
  5590. #endif
  5591. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5592. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5593. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5594. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5595. }else{
  5596. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5597. }
  5598. SERIAL_PROTOCOLLN("");
  5599. #endif
  5600. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5601. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5602. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5603. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5604. }else{
  5605. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5606. }
  5607. SERIAL_PROTOCOLLN("");
  5608. #endif
  5609. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5610. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5611. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5612. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5613. }else{
  5614. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5615. }
  5616. SERIAL_PROTOCOLLN("");
  5617. #endif
  5618. break;
  5619. //TODO: update for all axis, use for loop
  5620. #ifdef BLINKM
  5621. //! ### M150 - Set RGB(W) Color
  5622. // -------------------------------------------
  5623. case 150:
  5624. {
  5625. byte red;
  5626. byte grn;
  5627. byte blu;
  5628. if(code_seen('R')) red = code_value();
  5629. if(code_seen('U')) grn = code_value();
  5630. if(code_seen('B')) blu = code_value();
  5631. SendColors(red,grn,blu);
  5632. }
  5633. break;
  5634. #endif //BLINKM
  5635. //! ### M200 - Set filament diameter
  5636. // ----------------------------------------
  5637. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5638. {
  5639. uint8_t extruder = active_extruder;
  5640. if(code_seen('T')) {
  5641. extruder = code_value();
  5642. if(extruder >= EXTRUDERS) {
  5643. SERIAL_ECHO_START;
  5644. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5645. break;
  5646. }
  5647. }
  5648. if(code_seen('D')) {
  5649. float diameter = (float)code_value();
  5650. if (diameter == 0.0) {
  5651. // setting any extruder filament size disables volumetric on the assumption that
  5652. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5653. // for all extruders
  5654. cs.volumetric_enabled = false;
  5655. } else {
  5656. cs.filament_size[extruder] = (float)code_value();
  5657. // make sure all extruders have some sane value for the filament size
  5658. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5659. #if EXTRUDERS > 1
  5660. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5661. #if EXTRUDERS > 2
  5662. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5663. #endif
  5664. #endif
  5665. cs.volumetric_enabled = true;
  5666. }
  5667. } else {
  5668. //reserved for setting filament diameter via UFID or filament measuring device
  5669. break;
  5670. }
  5671. calculate_extruder_multipliers();
  5672. }
  5673. break;
  5674. //! ### M201 - Set Print Max Acceleration
  5675. // -------------------------------------------
  5676. case 201:
  5677. for (int8_t i = 0; i < NUM_AXIS; i++)
  5678. {
  5679. if (code_seen(axis_codes[i]))
  5680. {
  5681. unsigned long val = code_value();
  5682. #ifdef TMC2130
  5683. unsigned long val_silent = val;
  5684. if ((i == X_AXIS) || (i == Y_AXIS))
  5685. {
  5686. if (val > NORMAL_MAX_ACCEL_XY)
  5687. val = NORMAL_MAX_ACCEL_XY;
  5688. if (val_silent > SILENT_MAX_ACCEL_XY)
  5689. val_silent = SILENT_MAX_ACCEL_XY;
  5690. }
  5691. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5692. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5693. #else //TMC2130
  5694. max_acceleration_units_per_sq_second[i] = val;
  5695. #endif //TMC2130
  5696. }
  5697. }
  5698. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5699. reset_acceleration_rates();
  5700. break;
  5701. #if 0 // Not used for Sprinter/grbl gen6
  5702. case 202: // M202
  5703. for(int8_t i=0; i < NUM_AXIS; i++) {
  5704. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5705. }
  5706. break;
  5707. #endif
  5708. //! ### M203 - Set Max Feedrate
  5709. // ---------------------------------------
  5710. case 203: // M203 max feedrate mm/sec
  5711. for (int8_t i = 0; i < NUM_AXIS; i++)
  5712. {
  5713. if (code_seen(axis_codes[i]))
  5714. {
  5715. float val = code_value();
  5716. #ifdef TMC2130
  5717. float val_silent = val;
  5718. if ((i == X_AXIS) || (i == Y_AXIS))
  5719. {
  5720. if (val > NORMAL_MAX_FEEDRATE_XY)
  5721. val = NORMAL_MAX_FEEDRATE_XY;
  5722. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5723. val_silent = SILENT_MAX_FEEDRATE_XY;
  5724. }
  5725. cs.max_feedrate_normal[i] = val;
  5726. cs.max_feedrate_silent[i] = val_silent;
  5727. #else //TMC2130
  5728. max_feedrate[i] = val;
  5729. #endif //TMC2130
  5730. }
  5731. }
  5732. break;
  5733. //! ### M204 - Acceleration settings
  5734. // ------------------------------------------
  5735. //! Supporting old format:
  5736. //!
  5737. //! M204 S[normal moves] T[filmanent only moves]
  5738. //!
  5739. //! and new format:
  5740. //!
  5741. //! M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5742. case 204:
  5743. {
  5744. if(code_seen('S')) {
  5745. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5746. // and it is also generated by Slic3r to control acceleration per extrusion type
  5747. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5748. cs.acceleration = code_value();
  5749. // Interpret the T value as retract acceleration in the old Marlin format.
  5750. if(code_seen('T'))
  5751. cs.retract_acceleration = code_value();
  5752. } else {
  5753. // New acceleration format, compatible with the upstream Marlin.
  5754. if(code_seen('P'))
  5755. cs.acceleration = code_value();
  5756. if(code_seen('R'))
  5757. cs.retract_acceleration = code_value();
  5758. if(code_seen('T')) {
  5759. // Interpret the T value as the travel acceleration in the new Marlin format.
  5760. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5761. // travel_acceleration = code_value();
  5762. }
  5763. }
  5764. }
  5765. break;
  5766. //! ### M205 - Set advanced settings
  5767. // ---------------------------------------------
  5768. //! Set some advanced settings related to movement.
  5769. //!
  5770. //! M205 [S] [T] [B] [X] [Y] [Z] [E]
  5771. /*!
  5772. - `S` - Minimum feedrate for print moves (unit/s)
  5773. - `T` - Minimum feedrate for travel moves (units/s)
  5774. - `B` - Minimum segment time (us)
  5775. - `X` - Maximum X jerk (units/s), similarly for other axes
  5776. */
  5777. case 205:
  5778. {
  5779. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5780. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5781. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5782. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5783. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5784. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5785. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5786. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5787. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5788. }
  5789. break;
  5790. //! ### M206 - Set additional homing offsets
  5791. // ----------------------------------------------
  5792. case 206:
  5793. for(int8_t i=0; i < 3; i++)
  5794. {
  5795. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5796. }
  5797. break;
  5798. #ifdef FWRETRACT
  5799. //! ### M207 - Set firmware retraction
  5800. // --------------------------------------------------
  5801. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5802. {
  5803. if(code_seen('S'))
  5804. {
  5805. cs.retract_length = code_value() ;
  5806. }
  5807. if(code_seen('F'))
  5808. {
  5809. cs.retract_feedrate = code_value()/60 ;
  5810. }
  5811. if(code_seen('Z'))
  5812. {
  5813. cs.retract_zlift = code_value() ;
  5814. }
  5815. }break;
  5816. //! ### M208 - Set retract recover length
  5817. // --------------------------------------------
  5818. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5819. {
  5820. if(code_seen('S'))
  5821. {
  5822. cs.retract_recover_length = code_value() ;
  5823. }
  5824. if(code_seen('F'))
  5825. {
  5826. cs.retract_recover_feedrate = code_value()/60 ;
  5827. }
  5828. }break;
  5829. //! ### M209 - Enable/disable automatict retract
  5830. // ---------------------------------------------
  5831. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5832. {
  5833. if(code_seen('S'))
  5834. {
  5835. int t= code_value() ;
  5836. switch(t)
  5837. {
  5838. case 0:
  5839. {
  5840. cs.autoretract_enabled=false;
  5841. retracted[0]=false;
  5842. #if EXTRUDERS > 1
  5843. retracted[1]=false;
  5844. #endif
  5845. #if EXTRUDERS > 2
  5846. retracted[2]=false;
  5847. #endif
  5848. }break;
  5849. case 1:
  5850. {
  5851. cs.autoretract_enabled=true;
  5852. retracted[0]=false;
  5853. #if EXTRUDERS > 1
  5854. retracted[1]=false;
  5855. #endif
  5856. #if EXTRUDERS > 2
  5857. retracted[2]=false;
  5858. #endif
  5859. }break;
  5860. default:
  5861. SERIAL_ECHO_START;
  5862. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5863. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5864. SERIAL_ECHOLNPGM("\"(1)");
  5865. }
  5866. }
  5867. }break;
  5868. #endif // FWRETRACT
  5869. #if EXTRUDERS > 1
  5870. // ### M218 - Set hotend offset
  5871. // ----------------------------------------
  5872. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5873. {
  5874. uint8_t extruder;
  5875. if(setTargetedHotend(218, extruder)){
  5876. break;
  5877. }
  5878. if(code_seen('X'))
  5879. {
  5880. extruder_offset[X_AXIS][extruder] = code_value();
  5881. }
  5882. if(code_seen('Y'))
  5883. {
  5884. extruder_offset[Y_AXIS][extruder] = code_value();
  5885. }
  5886. SERIAL_ECHO_START;
  5887. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5888. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5889. {
  5890. SERIAL_ECHO(" ");
  5891. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5892. SERIAL_ECHO(",");
  5893. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5894. }
  5895. SERIAL_ECHOLN("");
  5896. }break;
  5897. #endif
  5898. //! ### M220 Set feedrate percentage
  5899. // -----------------------------------------------
  5900. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5901. {
  5902. if (code_seen('B')) //backup current speed factor
  5903. {
  5904. saved_feedmultiply_mm = feedmultiply;
  5905. }
  5906. if(code_seen('S'))
  5907. {
  5908. feedmultiply = code_value() ;
  5909. }
  5910. if (code_seen('R')) { //restore previous feedmultiply
  5911. feedmultiply = saved_feedmultiply_mm;
  5912. }
  5913. }
  5914. break;
  5915. //! ### M221 - Set extrude factor override percentage
  5916. // ----------------------------------------------------
  5917. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5918. {
  5919. if(code_seen('S'))
  5920. {
  5921. int tmp_code = code_value();
  5922. if (code_seen('T'))
  5923. {
  5924. uint8_t extruder;
  5925. if(setTargetedHotend(221, extruder)){
  5926. break;
  5927. }
  5928. extruder_multiply[extruder] = tmp_code;
  5929. }
  5930. else
  5931. {
  5932. extrudemultiply = tmp_code ;
  5933. }
  5934. }
  5935. calculate_extruder_multipliers();
  5936. }
  5937. break;
  5938. //! ### M226 - Wait for Pin state
  5939. // ------------------------------------------
  5940. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5941. {
  5942. if(code_seen('P')){
  5943. int pin_number = code_value(); // pin number
  5944. int pin_state = -1; // required pin state - default is inverted
  5945. if(code_seen('S')) pin_state = code_value(); // required pin state
  5946. if(pin_state >= -1 && pin_state <= 1){
  5947. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5948. {
  5949. if (sensitive_pins[i] == pin_number)
  5950. {
  5951. pin_number = -1;
  5952. break;
  5953. }
  5954. }
  5955. if (pin_number > -1)
  5956. {
  5957. int target = LOW;
  5958. st_synchronize();
  5959. pinMode(pin_number, INPUT);
  5960. switch(pin_state){
  5961. case 1:
  5962. target = HIGH;
  5963. break;
  5964. case 0:
  5965. target = LOW;
  5966. break;
  5967. case -1:
  5968. target = !digitalRead(pin_number);
  5969. break;
  5970. }
  5971. while(digitalRead(pin_number) != target){
  5972. manage_heater();
  5973. manage_inactivity();
  5974. lcd_update(0);
  5975. }
  5976. }
  5977. }
  5978. }
  5979. }
  5980. break;
  5981. #if NUM_SERVOS > 0
  5982. //! ### M280 - Set/Get servo position
  5983. // --------------------------------------------
  5984. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5985. {
  5986. int servo_index = -1;
  5987. int servo_position = 0;
  5988. if (code_seen('P'))
  5989. servo_index = code_value();
  5990. if (code_seen('S')) {
  5991. servo_position = code_value();
  5992. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5993. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5994. servos[servo_index].attach(0);
  5995. #endif
  5996. servos[servo_index].write(servo_position);
  5997. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5998. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5999. servos[servo_index].detach();
  6000. #endif
  6001. }
  6002. else {
  6003. SERIAL_ECHO_START;
  6004. SERIAL_ECHO("Servo ");
  6005. SERIAL_ECHO(servo_index);
  6006. SERIAL_ECHOLN(" out of range");
  6007. }
  6008. }
  6009. else if (servo_index >= 0) {
  6010. SERIAL_PROTOCOL(MSG_OK);
  6011. SERIAL_PROTOCOL(" Servo ");
  6012. SERIAL_PROTOCOL(servo_index);
  6013. SERIAL_PROTOCOL(": ");
  6014. SERIAL_PROTOCOL(servos[servo_index].read());
  6015. SERIAL_PROTOCOLLN("");
  6016. }
  6017. }
  6018. break;
  6019. #endif // NUM_SERVOS > 0
  6020. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  6021. //! ### M300 - Play tone
  6022. // -----------------------
  6023. case 300: // M300
  6024. {
  6025. int beepS = code_seen('S') ? code_value() : 110;
  6026. int beepP = code_seen('P') ? code_value() : 1000;
  6027. if (beepS > 0)
  6028. {
  6029. #if BEEPER > 0
  6030. Sound_MakeCustom(beepP,beepS,false);
  6031. #endif
  6032. }
  6033. else
  6034. {
  6035. _delay(beepP);
  6036. }
  6037. }
  6038. break;
  6039. #endif // M300
  6040. #ifdef PIDTEMP
  6041. //! ### M301 - Set hotend PID
  6042. // ---------------------------------------
  6043. case 301:
  6044. {
  6045. if(code_seen('P')) cs.Kp = code_value();
  6046. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  6047. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  6048. #ifdef PID_ADD_EXTRUSION_RATE
  6049. if(code_seen('C')) Kc = code_value();
  6050. #endif
  6051. updatePID();
  6052. SERIAL_PROTOCOLRPGM(MSG_OK);
  6053. SERIAL_PROTOCOL(" p:");
  6054. SERIAL_PROTOCOL(cs.Kp);
  6055. SERIAL_PROTOCOL(" i:");
  6056. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6057. SERIAL_PROTOCOL(" d:");
  6058. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6059. #ifdef PID_ADD_EXTRUSION_RATE
  6060. SERIAL_PROTOCOL(" c:");
  6061. //Kc does not have scaling applied above, or in resetting defaults
  6062. SERIAL_PROTOCOL(Kc);
  6063. #endif
  6064. SERIAL_PROTOCOLLN("");
  6065. }
  6066. break;
  6067. #endif //PIDTEMP
  6068. #ifdef PIDTEMPBED
  6069. //! ### M304 - Set bed PID
  6070. // --------------------------------------
  6071. case 304:
  6072. {
  6073. if(code_seen('P')) cs.bedKp = code_value();
  6074. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6075. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6076. updatePID();
  6077. SERIAL_PROTOCOLRPGM(MSG_OK);
  6078. SERIAL_PROTOCOL(" p:");
  6079. SERIAL_PROTOCOL(cs.bedKp);
  6080. SERIAL_PROTOCOL(" i:");
  6081. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6082. SERIAL_PROTOCOL(" d:");
  6083. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  6084. SERIAL_PROTOCOLLN("");
  6085. }
  6086. break;
  6087. #endif //PIDTEMP
  6088. //! ### M240 - Trigger camera
  6089. // --------------------------------------------
  6090. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6091. {
  6092. #ifdef CHDK
  6093. SET_OUTPUT(CHDK);
  6094. WRITE(CHDK, HIGH);
  6095. chdkHigh = _millis();
  6096. chdkActive = true;
  6097. #else
  6098. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6099. const uint8_t NUM_PULSES=16;
  6100. const float PULSE_LENGTH=0.01524;
  6101. for(int i=0; i < NUM_PULSES; i++) {
  6102. WRITE(PHOTOGRAPH_PIN, HIGH);
  6103. _delay_ms(PULSE_LENGTH);
  6104. WRITE(PHOTOGRAPH_PIN, LOW);
  6105. _delay_ms(PULSE_LENGTH);
  6106. }
  6107. _delay(7.33);
  6108. for(int i=0; i < NUM_PULSES; i++) {
  6109. WRITE(PHOTOGRAPH_PIN, HIGH);
  6110. _delay_ms(PULSE_LENGTH);
  6111. WRITE(PHOTOGRAPH_PIN, LOW);
  6112. _delay_ms(PULSE_LENGTH);
  6113. }
  6114. #endif
  6115. #endif //chdk end if
  6116. }
  6117. break;
  6118. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6119. //! ### M302 - Allow cold extrude, or set minimum extrude temperature
  6120. // -------------------------------------------------------------------
  6121. case 302:
  6122. {
  6123. float temp = .0;
  6124. if (code_seen('S')) temp=code_value();
  6125. set_extrude_min_temp(temp);
  6126. }
  6127. break;
  6128. #endif
  6129. //! ### M303 - PID autotune
  6130. // -------------------------------------
  6131. case 303:
  6132. {
  6133. float temp = 150.0;
  6134. int e=0;
  6135. int c=5;
  6136. if (code_seen('E')) e=code_value();
  6137. if (e<0)
  6138. temp=70;
  6139. if (code_seen('S')) temp=code_value();
  6140. if (code_seen('C')) c=code_value();
  6141. PID_autotune(temp, e, c);
  6142. }
  6143. break;
  6144. //! ### M400 - Wait for all moves to finish
  6145. // -----------------------------------------
  6146. case 400:
  6147. {
  6148. st_synchronize();
  6149. }
  6150. break;
  6151. //! ### M403 - Set filament type (material) for particular extruder and notify the MMU
  6152. // ----------------------------------------------
  6153. case 403:
  6154. {
  6155. // currently three different materials are needed (default, flex and PVA)
  6156. // add storing this information for different load/unload profiles etc. in the future
  6157. // firmware does not wait for "ok" from mmu
  6158. if (mmu_enabled)
  6159. {
  6160. uint8_t extruder = 255;
  6161. uint8_t filament = FILAMENT_UNDEFINED;
  6162. if(code_seen('E')) extruder = code_value();
  6163. if(code_seen('F')) filament = code_value();
  6164. mmu_set_filament_type(extruder, filament);
  6165. }
  6166. }
  6167. break;
  6168. //! ### M500 - Store settings in EEPROM
  6169. // -----------------------------------------
  6170. case 500:
  6171. {
  6172. Config_StoreSettings();
  6173. }
  6174. break;
  6175. //! ### M501 - Read settings from EEPROM
  6176. // ----------------------------------------
  6177. case 501:
  6178. {
  6179. Config_RetrieveSettings();
  6180. }
  6181. break;
  6182. //! ### M502 - Revert all settings to factory default
  6183. // -------------------------------------------------
  6184. case 502:
  6185. {
  6186. Config_ResetDefault();
  6187. }
  6188. break;
  6189. //! ### M503 - Repport all settings currently in memory
  6190. // -------------------------------------------------
  6191. case 503:
  6192. {
  6193. Config_PrintSettings();
  6194. }
  6195. break;
  6196. //! ### M509 - Force language selection
  6197. // ------------------------------------------------
  6198. case 509:
  6199. {
  6200. lang_reset();
  6201. SERIAL_ECHO_START;
  6202. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6203. }
  6204. break;
  6205. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6206. //! ### M540 - Abort print on endstop hit (enable/disable)
  6207. // -----------------------------------------------------
  6208. case 540:
  6209. {
  6210. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6211. }
  6212. break;
  6213. #endif
  6214. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6215. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6216. {
  6217. float value;
  6218. if (code_seen('Z'))
  6219. {
  6220. value = code_value();
  6221. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6222. {
  6223. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6224. SERIAL_ECHO_START;
  6225. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6226. SERIAL_PROTOCOLLN("");
  6227. }
  6228. else
  6229. {
  6230. SERIAL_ECHO_START;
  6231. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6232. SERIAL_ECHORPGM(MSG_Z_MIN);
  6233. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6234. SERIAL_ECHORPGM(MSG_Z_MAX);
  6235. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6236. SERIAL_PROTOCOLLN("");
  6237. }
  6238. }
  6239. else
  6240. {
  6241. SERIAL_ECHO_START;
  6242. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6243. SERIAL_ECHO(-cs.zprobe_zoffset);
  6244. SERIAL_PROTOCOLLN("");
  6245. }
  6246. break;
  6247. }
  6248. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6249. #ifdef FILAMENTCHANGEENABLE
  6250. //! ### M600 - Initiate Filament change procedure
  6251. // --------------------------------------
  6252. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6253. {
  6254. st_synchronize();
  6255. float x_position = current_position[X_AXIS];
  6256. float y_position = current_position[Y_AXIS];
  6257. float z_shift = 0; // is it necessary to be a float?
  6258. float e_shift_init = 0;
  6259. float e_shift_late = 0;
  6260. bool automatic = false;
  6261. //Retract extruder
  6262. if(code_seen('E'))
  6263. {
  6264. e_shift_init = code_value();
  6265. }
  6266. else
  6267. {
  6268. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6269. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6270. #endif
  6271. }
  6272. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6273. if (code_seen('L'))
  6274. {
  6275. e_shift_late = code_value();
  6276. }
  6277. else
  6278. {
  6279. #ifdef FILAMENTCHANGE_FINALRETRACT
  6280. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6281. #endif
  6282. }
  6283. //Lift Z
  6284. if(code_seen('Z'))
  6285. {
  6286. z_shift = code_value();
  6287. }
  6288. else
  6289. {
  6290. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6291. }
  6292. //Move XY to side
  6293. if(code_seen('X'))
  6294. {
  6295. x_position = code_value();
  6296. }
  6297. else
  6298. {
  6299. #ifdef FILAMENTCHANGE_XPOS
  6300. x_position = FILAMENTCHANGE_XPOS;
  6301. #endif
  6302. }
  6303. if(code_seen('Y'))
  6304. {
  6305. y_position = code_value();
  6306. }
  6307. else
  6308. {
  6309. #ifdef FILAMENTCHANGE_YPOS
  6310. y_position = FILAMENTCHANGE_YPOS ;
  6311. #endif
  6312. }
  6313. if (mmu_enabled && code_seen("AUTO"))
  6314. automatic = true;
  6315. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  6316. }
  6317. break;
  6318. #endif //FILAMENTCHANGEENABLE
  6319. //! ### M25 - Pause SD print
  6320. //! ### M601 - Pause print
  6321. //! ### M125 - Pause print (TODO: not implemented)
  6322. // -------------------------------
  6323. case 25:
  6324. case 601:
  6325. {
  6326. if (!isPrintPaused)
  6327. {
  6328. st_synchronize();
  6329. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  6330. lcd_pause_print();
  6331. }
  6332. }
  6333. break;
  6334. //! ### M602 - Resume print
  6335. // -------------------------------
  6336. case 602: {
  6337. if (isPrintPaused)
  6338. lcd_resume_print();
  6339. }
  6340. break;
  6341. //! ### M603 - Stop print
  6342. // -------------------------------
  6343. case 603: {
  6344. lcd_print_stop();
  6345. }
  6346. break;
  6347. #ifdef PINDA_THERMISTOR
  6348. //! ### M860 - Wait for extruder temperature (PINDA)
  6349. // --------------------------------------------------------------
  6350. /*!
  6351. Wait for PINDA thermistor to reach target temperature
  6352. M860 [S<target_temperature>]
  6353. */
  6354. case 860:
  6355. {
  6356. int set_target_pinda = 0;
  6357. if (code_seen('S')) {
  6358. set_target_pinda = code_value();
  6359. }
  6360. else {
  6361. break;
  6362. }
  6363. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  6364. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  6365. SERIAL_PROTOCOL(set_target_pinda);
  6366. SERIAL_PROTOCOLLN("");
  6367. codenum = _millis();
  6368. cancel_heatup = false;
  6369. bool is_pinda_cooling = false;
  6370. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  6371. is_pinda_cooling = true;
  6372. }
  6373. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  6374. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  6375. {
  6376. SERIAL_PROTOCOLPGM("P:");
  6377. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  6378. SERIAL_PROTOCOLPGM("/");
  6379. SERIAL_PROTOCOL(set_target_pinda);
  6380. SERIAL_PROTOCOLLN("");
  6381. codenum = _millis();
  6382. }
  6383. manage_heater();
  6384. manage_inactivity();
  6385. lcd_update(0);
  6386. }
  6387. LCD_MESSAGERPGM(MSG_OK);
  6388. break;
  6389. }
  6390. //! ### M861 - Set/Get PINDA temperature compensation offsets
  6391. // -----------------------------------------------------------
  6392. /*!
  6393. M861 [ ? | ! | Z | S<microsteps> [I<table_index>] ]
  6394. - `?` - Print current EEPROM offset values
  6395. - `!` - Set factory default values
  6396. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6397. - `S<microsteps>` `I<table_index>` - Set compensation ustep value S for compensation table index I
  6398. */
  6399. case 861:
  6400. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  6401. uint8_t cal_status = calibration_status_pinda();
  6402. int16_t usteps = 0;
  6403. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  6404. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6405. for (uint8_t i = 0; i < 6; i++)
  6406. {
  6407. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  6408. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6409. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6410. SERIAL_PROTOCOLPGM(", ");
  6411. SERIAL_PROTOCOL(35 + (i * 5));
  6412. SERIAL_PROTOCOLPGM(", ");
  6413. SERIAL_PROTOCOL(usteps);
  6414. SERIAL_PROTOCOLPGM(", ");
  6415. SERIAL_PROTOCOL(mm * 1000);
  6416. SERIAL_PROTOCOLLN("");
  6417. }
  6418. }
  6419. else if (code_seen('!')) { // ! - Set factory default values
  6420. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6421. int16_t z_shift = 8; //40C - 20um - 8usteps
  6422. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  6423. z_shift = 24; //45C - 60um - 24usteps
  6424. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  6425. z_shift = 48; //50C - 120um - 48usteps
  6426. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  6427. z_shift = 80; //55C - 200um - 80usteps
  6428. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  6429. z_shift = 120; //60C - 300um - 120usteps
  6430. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  6431. SERIAL_PROTOCOLLN("factory restored");
  6432. }
  6433. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6434. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6435. int16_t z_shift = 0;
  6436. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6437. SERIAL_PROTOCOLLN("zerorized");
  6438. }
  6439. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6440. int16_t usteps = code_value();
  6441. if (code_seen('I')) {
  6442. uint8_t index = code_value();
  6443. if (index < 5) {
  6444. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6445. SERIAL_PROTOCOLLN("OK");
  6446. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6447. for (uint8_t i = 0; i < 6; i++)
  6448. {
  6449. usteps = 0;
  6450. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6451. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6452. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6453. SERIAL_PROTOCOLPGM(", ");
  6454. SERIAL_PROTOCOL(35 + (i * 5));
  6455. SERIAL_PROTOCOLPGM(", ");
  6456. SERIAL_PROTOCOL(usteps);
  6457. SERIAL_PROTOCOLPGM(", ");
  6458. SERIAL_PROTOCOL(mm * 1000);
  6459. SERIAL_PROTOCOLLN("");
  6460. }
  6461. }
  6462. }
  6463. }
  6464. else {
  6465. SERIAL_PROTOCOLPGM("no valid command");
  6466. }
  6467. break;
  6468. #endif //PINDA_THERMISTOR
  6469. //! ### M862 - Print checking
  6470. // ----------------------------------------------
  6471. /*!
  6472. Checks the parameters of the printer and gcode and performs compatibility check
  6473. - M862.1 { P<nozzle_diameter> | Q }
  6474. - M862.2 { P<model_code> | Q }
  6475. - M862.3 { P"<model_name>" | Q }
  6476. - M862.4 { P<fw_version> | Q }
  6477. - M862.5 { P<gcode_level> | Q }
  6478. When run with P<> argument, the check is performed against the input value.
  6479. When run with Q argument, the current value is shown.
  6480. M862.3 accepts text identifiers of printer types too.
  6481. The syntax of M862.3 is (note the quotes around the type):
  6482. M862.3 P "MK3S"
  6483. Accepted printer type identifiers and their numeric counterparts:
  6484. - MK1 (100)
  6485. - MK2 (200)
  6486. - MK2MM (201)
  6487. - MK2S (202)
  6488. - MK2SMM (203)
  6489. - MK2.5 (250)
  6490. - MK2.5MMU2 (20250)
  6491. - MK2.5S (252)
  6492. - MK2.5SMMU2S (20252)
  6493. - MK3 (300)
  6494. - MK3MMU2 (20300)
  6495. - MK3S (302)
  6496. - MK3SMMU2S (20302)
  6497. */
  6498. case 862: // M862: print checking
  6499. float nDummy;
  6500. uint8_t nCommand;
  6501. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  6502. switch((ClPrintChecking)nCommand)
  6503. {
  6504. case ClPrintChecking::_Nozzle: // ~ .1
  6505. uint16_t nDiameter;
  6506. if(code_seen('P'))
  6507. {
  6508. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6509. nozzle_diameter_check(nDiameter);
  6510. }
  6511. /*
  6512. else if(code_seen('S')&&farm_mode)
  6513. {
  6514. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6515. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  6516. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  6517. }
  6518. */
  6519. else if(code_seen('Q'))
  6520. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  6521. break;
  6522. case ClPrintChecking::_Model: // ~ .2
  6523. if(code_seen('P'))
  6524. {
  6525. uint16_t nPrinterModel;
  6526. nPrinterModel=(uint16_t)code_value_long();
  6527. printer_model_check(nPrinterModel);
  6528. }
  6529. else if(code_seen('Q'))
  6530. SERIAL_PROTOCOLLN(nPrinterType);
  6531. break;
  6532. case ClPrintChecking::_Smodel: // ~ .3
  6533. if(code_seen('P'))
  6534. printer_smodel_check(strchr_pointer);
  6535. else if(code_seen('Q'))
  6536. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  6537. break;
  6538. case ClPrintChecking::_Version: // ~ .4
  6539. if(code_seen('P'))
  6540. fw_version_check(++strchr_pointer);
  6541. else if(code_seen('Q'))
  6542. SERIAL_PROTOCOLLN(FW_VERSION);
  6543. break;
  6544. case ClPrintChecking::_Gcode: // ~ .5
  6545. if(code_seen('P'))
  6546. {
  6547. uint16_t nGcodeLevel;
  6548. nGcodeLevel=(uint16_t)code_value_long();
  6549. gcode_level_check(nGcodeLevel);
  6550. }
  6551. else if(code_seen('Q'))
  6552. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  6553. break;
  6554. }
  6555. break;
  6556. #ifdef LIN_ADVANCE
  6557. //! ### M900 - Set Linear advance options
  6558. // ----------------------------------------------
  6559. case 900:
  6560. gcode_M900();
  6561. break;
  6562. #endif
  6563. //! ### M907 - Set digital trimpot motor current in mA using axis codes
  6564. // ---------------------------------------------------------------
  6565. case 907:
  6566. {
  6567. #ifdef TMC2130
  6568. //! See tmc2130_cur2val() for translation to 0 .. 63 range
  6569. for (int i = 0; i < NUM_AXIS; i++)
  6570. if(code_seen(axis_codes[i]))
  6571. {
  6572. long cur_mA = code_value_long();
  6573. uint8_t val = tmc2130_cur2val(cur_mA);
  6574. tmc2130_set_current_h(i, val);
  6575. tmc2130_set_current_r(i, val);
  6576. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6577. }
  6578. #else //TMC2130
  6579. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6580. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6581. if(code_seen('B')) st_current_set(4,code_value());
  6582. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6583. #endif
  6584. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6585. if(code_seen('X')) st_current_set(0, code_value());
  6586. #endif
  6587. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6588. if(code_seen('Z')) st_current_set(1, code_value());
  6589. #endif
  6590. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6591. if(code_seen('E')) st_current_set(2, code_value());
  6592. #endif
  6593. #endif //TMC2130
  6594. }
  6595. break;
  6596. //! ### M908 - Control digital trimpot directly
  6597. // ---------------------------------------------------------
  6598. case 908:
  6599. {
  6600. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6601. uint8_t channel,current;
  6602. if(code_seen('P')) channel=code_value();
  6603. if(code_seen('S')) current=code_value();
  6604. digitalPotWrite(channel, current);
  6605. #endif
  6606. }
  6607. break;
  6608. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6609. //! ### M910 - TMC2130 init
  6610. // -----------------------------------------------
  6611. case 910:
  6612. {
  6613. tmc2130_init();
  6614. }
  6615. break;
  6616. //! ### M911 - Set TMC2130 holding currents
  6617. // -------------------------------------------------
  6618. case 911:
  6619. {
  6620. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6621. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6622. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6623. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6624. }
  6625. break;
  6626. //! ### M912 - Set TMC2130 running currents
  6627. // -----------------------------------------------
  6628. case 912:
  6629. {
  6630. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6631. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6632. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6633. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6634. }
  6635. break;
  6636. //! ### M913 - Print TMC2130 currents
  6637. // -----------------------------
  6638. case 913:
  6639. {
  6640. tmc2130_print_currents();
  6641. }
  6642. break;
  6643. //! ### M914 - Set TMC2130 normal mode
  6644. // ------------------------------
  6645. case 914:
  6646. {
  6647. tmc2130_mode = TMC2130_MODE_NORMAL;
  6648. update_mode_profile();
  6649. tmc2130_init();
  6650. }
  6651. break;
  6652. //! ### M95 - Set TMC2130 silent mode
  6653. // ------------------------------
  6654. case 915:
  6655. {
  6656. tmc2130_mode = TMC2130_MODE_SILENT;
  6657. update_mode_profile();
  6658. tmc2130_init();
  6659. }
  6660. break;
  6661. //! ### M916 - Set TMC2130 Stallguard sensitivity threshold
  6662. // -------------------------------------------------------
  6663. case 916:
  6664. {
  6665. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6666. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6667. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6668. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6669. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6670. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6671. }
  6672. break;
  6673. //! ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl)
  6674. // --------------------------------------------------------------
  6675. case 917:
  6676. {
  6677. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6678. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6679. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6680. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6681. }
  6682. break;
  6683. //! ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad)
  6684. // -------------------------------------------------------------
  6685. case 918:
  6686. {
  6687. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6688. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6689. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6690. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6691. }
  6692. break;
  6693. #endif //TMC2130_SERVICE_CODES_M910_M918
  6694. //! ### M350 - Set microstepping mode
  6695. // ---------------------------------------------------
  6696. //! Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6697. case 350:
  6698. {
  6699. #ifdef TMC2130
  6700. for (int i=0; i<NUM_AXIS; i++)
  6701. {
  6702. if(code_seen(axis_codes[i]))
  6703. {
  6704. uint16_t res_new = code_value();
  6705. bool res_valid = (res_new == 8) || (res_new == 16) || (res_new == 32); // resolutions valid for all axis
  6706. res_valid |= (i != E_AXIS) && ((res_new == 1) || (res_new == 2) || (res_new == 4)); // resolutions valid for X Y Z only
  6707. res_valid |= (i == E_AXIS) && ((res_new == 64) || (res_new == 128)); // resolutions valid for E only
  6708. if (res_valid)
  6709. {
  6710. st_synchronize();
  6711. uint16_t res = tmc2130_get_res(i);
  6712. tmc2130_set_res(i, res_new);
  6713. cs.axis_ustep_resolution[i] = res_new;
  6714. if (res_new > res)
  6715. {
  6716. uint16_t fac = (res_new / res);
  6717. cs.axis_steps_per_unit[i] *= fac;
  6718. position[i] *= fac;
  6719. }
  6720. else
  6721. {
  6722. uint16_t fac = (res / res_new);
  6723. cs.axis_steps_per_unit[i] /= fac;
  6724. position[i] /= fac;
  6725. }
  6726. }
  6727. }
  6728. }
  6729. #else //TMC2130
  6730. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6731. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6732. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6733. if(code_seen('B')) microstep_mode(4,code_value());
  6734. microstep_readings();
  6735. #endif
  6736. #endif //TMC2130
  6737. }
  6738. break;
  6739. //! ### M351 - Toggle Microstep Pins
  6740. // -----------------------------------
  6741. //! Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6742. //!
  6743. //! M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  6744. case 351:
  6745. {
  6746. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6747. if(code_seen('S')) switch((int)code_value())
  6748. {
  6749. case 1:
  6750. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6751. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6752. break;
  6753. case 2:
  6754. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6755. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6756. break;
  6757. }
  6758. microstep_readings();
  6759. #endif
  6760. }
  6761. break;
  6762. //! ### M701 - Load filament
  6763. // -------------------------
  6764. case 701:
  6765. {
  6766. if (mmu_enabled && code_seen('E'))
  6767. tmp_extruder = code_value();
  6768. gcode_M701();
  6769. }
  6770. break;
  6771. //! ### M702 - Unload filament
  6772. // ------------------------
  6773. /*!
  6774. M702 [U C]
  6775. - `U` Unload all filaments used in current print
  6776. - `C` Unload just current filament
  6777. - without any parameters unload all filaments
  6778. */
  6779. case 702:
  6780. {
  6781. #ifdef SNMM
  6782. if (code_seen('U'))
  6783. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6784. else if (code_seen('C'))
  6785. extr_unload(); //! if "C" unload just current filament
  6786. else
  6787. extr_unload_all(); //! otherwise unload all filaments
  6788. #else
  6789. if (code_seen('C')) {
  6790. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6791. }
  6792. else {
  6793. if(mmu_enabled) extr_unload(); //! unload current filament
  6794. else unload_filament();
  6795. }
  6796. #endif //SNMM
  6797. }
  6798. break;
  6799. //! ### M999 - Restart after being stopped
  6800. // ------------------------------------
  6801. case 999:
  6802. Stopped = false;
  6803. lcd_reset_alert_level();
  6804. gcode_LastN = Stopped_gcode_LastN;
  6805. FlushSerialRequestResend();
  6806. break;
  6807. default:
  6808. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6809. }
  6810. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6811. mcode_in_progress = 0;
  6812. }
  6813. }
  6814. // end if(code_seen('M')) (end of M codes)
  6815. //! -----------------------------------------------------------------------------------------
  6816. //! T Codes
  6817. //!
  6818. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6819. //! select filament in case of MMU_V2
  6820. //! if extruder is "?", open menu to let the user select extruder/filament
  6821. //!
  6822. //! For MMU_V2:
  6823. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6824. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6825. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6826. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6827. else if(code_seen('T'))
  6828. {
  6829. int index;
  6830. bool load_to_nozzle = false;
  6831. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6832. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6833. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6834. SERIAL_ECHOLNPGM("Invalid T code.");
  6835. }
  6836. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6837. if (mmu_enabled)
  6838. {
  6839. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6840. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6841. {
  6842. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6843. }
  6844. else
  6845. {
  6846. st_synchronize();
  6847. mmu_command(MmuCmd::T0 + tmp_extruder);
  6848. manage_response(true, true, MMU_TCODE_MOVE);
  6849. }
  6850. }
  6851. }
  6852. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6853. if (mmu_enabled)
  6854. {
  6855. st_synchronize();
  6856. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6857. mmu_extruder = tmp_extruder; //filament change is finished
  6858. mmu_load_to_nozzle();
  6859. }
  6860. }
  6861. else {
  6862. if (*(strchr_pointer + index) == '?')
  6863. {
  6864. if(mmu_enabled)
  6865. {
  6866. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6867. load_to_nozzle = true;
  6868. } else
  6869. {
  6870. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6871. }
  6872. }
  6873. else {
  6874. tmp_extruder = code_value();
  6875. if (mmu_enabled && lcd_autoDepleteEnabled())
  6876. {
  6877. tmp_extruder = ad_getAlternative(tmp_extruder);
  6878. }
  6879. }
  6880. st_synchronize();
  6881. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6882. if (mmu_enabled)
  6883. {
  6884. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6885. {
  6886. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6887. }
  6888. else
  6889. {
  6890. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6891. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  6892. {
  6893. mmu_command(MmuCmd::K0 + tmp_extruder);
  6894. manage_response(true, true, MMU_UNLOAD_MOVE);
  6895. }
  6896. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6897. mmu_command(MmuCmd::T0 + tmp_extruder);
  6898. manage_response(true, true, MMU_TCODE_MOVE);
  6899. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6900. mmu_extruder = tmp_extruder; //filament change is finished
  6901. if (load_to_nozzle)// for single material usage with mmu
  6902. {
  6903. mmu_load_to_nozzle();
  6904. }
  6905. }
  6906. }
  6907. else
  6908. {
  6909. #ifdef SNMM
  6910. #ifdef LIN_ADVANCE
  6911. if (mmu_extruder != tmp_extruder)
  6912. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6913. #endif
  6914. mmu_extruder = tmp_extruder;
  6915. _delay(100);
  6916. disable_e0();
  6917. disable_e1();
  6918. disable_e2();
  6919. pinMode(E_MUX0_PIN, OUTPUT);
  6920. pinMode(E_MUX1_PIN, OUTPUT);
  6921. _delay(100);
  6922. SERIAL_ECHO_START;
  6923. SERIAL_ECHO("T:");
  6924. SERIAL_ECHOLN((int)tmp_extruder);
  6925. switch (tmp_extruder) {
  6926. case 1:
  6927. WRITE(E_MUX0_PIN, HIGH);
  6928. WRITE(E_MUX1_PIN, LOW);
  6929. break;
  6930. case 2:
  6931. WRITE(E_MUX0_PIN, LOW);
  6932. WRITE(E_MUX1_PIN, HIGH);
  6933. break;
  6934. case 3:
  6935. WRITE(E_MUX0_PIN, HIGH);
  6936. WRITE(E_MUX1_PIN, HIGH);
  6937. break;
  6938. default:
  6939. WRITE(E_MUX0_PIN, LOW);
  6940. WRITE(E_MUX1_PIN, LOW);
  6941. break;
  6942. }
  6943. _delay(100);
  6944. #else //SNMM
  6945. if (tmp_extruder >= EXTRUDERS) {
  6946. SERIAL_ECHO_START;
  6947. SERIAL_ECHOPGM("T");
  6948. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6949. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6950. }
  6951. else {
  6952. #if EXTRUDERS > 1
  6953. boolean make_move = false;
  6954. #endif
  6955. if (code_seen('F')) {
  6956. #if EXTRUDERS > 1
  6957. make_move = true;
  6958. #endif
  6959. next_feedrate = code_value();
  6960. if (next_feedrate > 0.0) {
  6961. feedrate = next_feedrate;
  6962. }
  6963. }
  6964. #if EXTRUDERS > 1
  6965. if (tmp_extruder != active_extruder) {
  6966. // Save current position to return to after applying extruder offset
  6967. memcpy(destination, current_position, sizeof(destination));
  6968. // Offset extruder (only by XY)
  6969. int i;
  6970. for (i = 0; i < 2; i++) {
  6971. current_position[i] = current_position[i] -
  6972. extruder_offset[i][active_extruder] +
  6973. extruder_offset[i][tmp_extruder];
  6974. }
  6975. // Set the new active extruder and position
  6976. active_extruder = tmp_extruder;
  6977. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6978. // Move to the old position if 'F' was in the parameters
  6979. if (make_move && Stopped == false) {
  6980. prepare_move();
  6981. }
  6982. }
  6983. #endif
  6984. SERIAL_ECHO_START;
  6985. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6986. SERIAL_PROTOCOLLN((int)active_extruder);
  6987. }
  6988. #endif //SNMM
  6989. }
  6990. }
  6991. } // end if(code_seen('T')) (end of T codes)
  6992. //! ----------------------------------------------------------------------------------------------
  6993. else if (code_seen('D')) // D codes (debug)
  6994. {
  6995. switch((int)code_value())
  6996. {
  6997. //! ### D-1 - Endless loop
  6998. // -------------------
  6999. case -1:
  7000. dcode__1(); break;
  7001. #ifdef DEBUG_DCODES
  7002. //! ### D0 - Reset
  7003. // --------------
  7004. case 0:
  7005. dcode_0(); break;
  7006. //! ### D1 - Clear EEPROM
  7007. // ------------------
  7008. case 1:
  7009. dcode_1(); break;
  7010. //! ### D2 - Read/Write RAM
  7011. // --------------------
  7012. case 2:
  7013. dcode_2(); break;
  7014. #endif //DEBUG_DCODES
  7015. #ifdef DEBUG_DCODE3
  7016. //! ### D3 - Read/Write EEPROM
  7017. // -----------------------
  7018. case 3:
  7019. dcode_3(); break;
  7020. #endif //DEBUG_DCODE3
  7021. #ifdef DEBUG_DCODES
  7022. //! ### D4 - Read/Write PIN
  7023. // ---------------------
  7024. case 4:
  7025. dcode_4(); break;
  7026. #endif //DEBUG_DCODES
  7027. #ifdef DEBUG_DCODE5
  7028. //! ### D5 - Read/Write FLASH
  7029. // ------------------------
  7030. case 5:
  7031. dcode_5(); break;
  7032. break;
  7033. #endif //DEBUG_DCODE5
  7034. #ifdef DEBUG_DCODES
  7035. //! ### D6 - Read/Write external FLASH
  7036. // ---------------------------------------
  7037. case 6:
  7038. dcode_6(); break;
  7039. //! ### D7 - Read/Write Bootloader
  7040. // -------------------------------
  7041. case 7:
  7042. dcode_7(); break;
  7043. //! ### D8 - Read/Write PINDA
  7044. // ---------------------------
  7045. case 8:
  7046. dcode_8(); break;
  7047. // ### D9 - Read/Write ADC
  7048. // ------------------------
  7049. case 9:
  7050. dcode_9(); break;
  7051. //! ### D10 - XYZ calibration = OK
  7052. // ------------------------------
  7053. case 10:
  7054. dcode_10(); break;
  7055. #endif //DEBUG_DCODES
  7056. #ifdef HEATBED_ANALYSIS
  7057. //! ### D80 - Bed check
  7058. // ---------------------
  7059. /*!
  7060. - `E` - dimension x
  7061. - `F` - dimention y
  7062. - `G` - points_x
  7063. - `H` - points_y
  7064. - `I` - offset_x
  7065. - `J` - offset_y
  7066. */
  7067. case 80:
  7068. {
  7069. float dimension_x = 40;
  7070. float dimension_y = 40;
  7071. int points_x = 40;
  7072. int points_y = 40;
  7073. float offset_x = 74;
  7074. float offset_y = 33;
  7075. if (code_seen('E')) dimension_x = code_value();
  7076. if (code_seen('F')) dimension_y = code_value();
  7077. if (code_seen('G')) {points_x = code_value(); }
  7078. if (code_seen('H')) {points_y = code_value(); }
  7079. if (code_seen('I')) {offset_x = code_value(); }
  7080. if (code_seen('J')) {offset_y = code_value(); }
  7081. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  7082. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  7083. printf_P(PSTR("POINTS X: %d\n"), points_x);
  7084. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  7085. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  7086. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  7087. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7088. }break;
  7089. //! ### D81 - Bed analysis
  7090. // -----------------------------
  7091. /*!
  7092. - `E` - dimension x
  7093. - `F` - dimention y
  7094. - `G` - points_x
  7095. - `H` - points_y
  7096. - `I` - offset_x
  7097. - `J` - offset_y
  7098. */
  7099. case 81:
  7100. {
  7101. float dimension_x = 40;
  7102. float dimension_y = 40;
  7103. int points_x = 40;
  7104. int points_y = 40;
  7105. float offset_x = 74;
  7106. float offset_y = 33;
  7107. if (code_seen('E')) dimension_x = code_value();
  7108. if (code_seen('F')) dimension_y = code_value();
  7109. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  7110. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  7111. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  7112. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  7113. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7114. } break;
  7115. #endif //HEATBED_ANALYSIS
  7116. #ifdef DEBUG_DCODES
  7117. //! ### D106 print measured fan speed for different pwm values
  7118. // --------------------------------------------------------------
  7119. case 106:
  7120. {
  7121. for (int i = 255; i > 0; i = i - 5) {
  7122. fanSpeed = i;
  7123. //delay_keep_alive(2000);
  7124. for (int j = 0; j < 100; j++) {
  7125. delay_keep_alive(100);
  7126. }
  7127. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  7128. }
  7129. }break;
  7130. #ifdef TMC2130
  7131. //! ### D2130 - TMC2130 Trinamic stepper controller
  7132. // ---------------------------
  7133. /*!
  7134. D2130<axis><command>[subcommand][value]
  7135. - <command>:
  7136. - '0' current off
  7137. - '1' current on
  7138. - '+' single step
  7139. - * value sereval steps
  7140. - '-' dtto oposite direction
  7141. - '?' read register
  7142. - * "mres"
  7143. - * "step"
  7144. - * "mscnt"
  7145. - * "mscuract"
  7146. - * "wave"
  7147. - '!' set register
  7148. - * "mres"
  7149. - * "step"
  7150. - * "wave"
  7151. - '@' home calibrate axis
  7152. Example:
  7153. D2130E?wave ... print extruder microstep linearity compensation curve
  7154. D2130E!wave0 ... disable extruder linearity compensation curve, (sine curve is used)
  7155. D2130E!wave220 ... (sin(x))^1.1 extruder microstep compensation curve used
  7156. */
  7157. case 2130:
  7158. dcode_2130(); break;
  7159. #endif //TMC2130
  7160. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  7161. //! ### D9125 - FILAMENT_SENSOR
  7162. // ---------------------------------
  7163. case 9125:
  7164. dcode_9125(); break;
  7165. #endif //FILAMENT_SENSOR
  7166. #endif //DEBUG_DCODES
  7167. }
  7168. }
  7169. else
  7170. {
  7171. SERIAL_ECHO_START;
  7172. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  7173. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  7174. SERIAL_ECHOLNPGM("\"(2)");
  7175. }
  7176. KEEPALIVE_STATE(NOT_BUSY);
  7177. ClearToSend();
  7178. }
  7179. /** @defgroup GCodes G-Code List
  7180. */
  7181. // ---------------------------------------------------
  7182. void FlushSerialRequestResend()
  7183. {
  7184. //char cmdbuffer[bufindr][100]="Resend:";
  7185. MYSERIAL.flush();
  7186. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  7187. }
  7188. // Confirm the execution of a command, if sent from a serial line.
  7189. // Execution of a command from a SD card will not be confirmed.
  7190. void ClearToSend()
  7191. {
  7192. previous_millis_cmd = _millis();
  7193. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  7194. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7195. }
  7196. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7197. void update_currents() {
  7198. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7199. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7200. float tmp_motor[3];
  7201. //SERIAL_ECHOLNPGM("Currents updated: ");
  7202. if (destination[Z_AXIS] < Z_SILENT) {
  7203. //SERIAL_ECHOLNPGM("LOW");
  7204. for (uint8_t i = 0; i < 3; i++) {
  7205. st_current_set(i, current_low[i]);
  7206. /*MYSERIAL.print(int(i));
  7207. SERIAL_ECHOPGM(": ");
  7208. MYSERIAL.println(current_low[i]);*/
  7209. }
  7210. }
  7211. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  7212. //SERIAL_ECHOLNPGM("HIGH");
  7213. for (uint8_t i = 0; i < 3; i++) {
  7214. st_current_set(i, current_high[i]);
  7215. /*MYSERIAL.print(int(i));
  7216. SERIAL_ECHOPGM(": ");
  7217. MYSERIAL.println(current_high[i]);*/
  7218. }
  7219. }
  7220. else {
  7221. for (uint8_t i = 0; i < 3; i++) {
  7222. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  7223. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  7224. st_current_set(i, tmp_motor[i]);
  7225. /*MYSERIAL.print(int(i));
  7226. SERIAL_ECHOPGM(": ");
  7227. MYSERIAL.println(tmp_motor[i]);*/
  7228. }
  7229. }
  7230. }
  7231. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7232. void get_coordinates()
  7233. {
  7234. bool seen[4]={false,false,false,false};
  7235. for(int8_t i=0; i < NUM_AXIS; i++) {
  7236. if(code_seen(axis_codes[i]))
  7237. {
  7238. bool relative = axis_relative_modes[i];
  7239. destination[i] = (float)code_value();
  7240. if (i == E_AXIS) {
  7241. float emult = extruder_multiplier[active_extruder];
  7242. if (emult != 1.) {
  7243. if (! relative) {
  7244. destination[i] -= current_position[i];
  7245. relative = true;
  7246. }
  7247. destination[i] *= emult;
  7248. }
  7249. }
  7250. if (relative)
  7251. destination[i] += current_position[i];
  7252. seen[i]=true;
  7253. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7254. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  7255. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7256. }
  7257. else destination[i] = current_position[i]; //Are these else lines really needed?
  7258. }
  7259. if(code_seen('F')) {
  7260. next_feedrate = code_value();
  7261. #ifdef MAX_SILENT_FEEDRATE
  7262. if (tmc2130_mode == TMC2130_MODE_SILENT)
  7263. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  7264. #endif //MAX_SILENT_FEEDRATE
  7265. if(next_feedrate > 0.0) feedrate = next_feedrate;
  7266. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  7267. {
  7268. // float e_max_speed =
  7269. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  7270. }
  7271. }
  7272. }
  7273. void get_arc_coordinates()
  7274. {
  7275. #ifdef SF_ARC_FIX
  7276. bool relative_mode_backup = relative_mode;
  7277. relative_mode = true;
  7278. #endif
  7279. get_coordinates();
  7280. #ifdef SF_ARC_FIX
  7281. relative_mode=relative_mode_backup;
  7282. #endif
  7283. if(code_seen('I')) {
  7284. offset[0] = code_value();
  7285. }
  7286. else {
  7287. offset[0] = 0.0;
  7288. }
  7289. if(code_seen('J')) {
  7290. offset[1] = code_value();
  7291. }
  7292. else {
  7293. offset[1] = 0.0;
  7294. }
  7295. }
  7296. void clamp_to_software_endstops(float target[3])
  7297. {
  7298. #ifdef DEBUG_DISABLE_SWLIMITS
  7299. return;
  7300. #endif //DEBUG_DISABLE_SWLIMITS
  7301. world2machine_clamp(target[0], target[1]);
  7302. // Clamp the Z coordinate.
  7303. if (min_software_endstops) {
  7304. float negative_z_offset = 0;
  7305. #ifdef ENABLE_AUTO_BED_LEVELING
  7306. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  7307. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  7308. #endif
  7309. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  7310. }
  7311. if (max_software_endstops) {
  7312. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  7313. }
  7314. }
  7315. #ifdef MESH_BED_LEVELING
  7316. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  7317. float dx = x - current_position[X_AXIS];
  7318. float dy = y - current_position[Y_AXIS];
  7319. int n_segments = 0;
  7320. if (mbl.active) {
  7321. float len = abs(dx) + abs(dy);
  7322. if (len > 0)
  7323. // Split to 3cm segments or shorter.
  7324. n_segments = int(ceil(len / 30.f));
  7325. }
  7326. if (n_segments > 1) {
  7327. // In a multi-segment move explicitly set the final target in the plan
  7328. // as the move will be recalculated in it's entirety
  7329. float gcode_target[NUM_AXIS];
  7330. gcode_target[X_AXIS] = x;
  7331. gcode_target[Y_AXIS] = y;
  7332. gcode_target[Z_AXIS] = z;
  7333. gcode_target[E_AXIS] = e;
  7334. float dz = z - current_position[Z_AXIS];
  7335. float de = e - current_position[E_AXIS];
  7336. for (int i = 1; i < n_segments; ++ i) {
  7337. float t = float(i) / float(n_segments);
  7338. plan_buffer_line(current_position[X_AXIS] + t * dx,
  7339. current_position[Y_AXIS] + t * dy,
  7340. current_position[Z_AXIS] + t * dz,
  7341. current_position[E_AXIS] + t * de,
  7342. feed_rate, extruder, gcode_target);
  7343. if (waiting_inside_plan_buffer_line_print_aborted)
  7344. return;
  7345. }
  7346. }
  7347. // The rest of the path.
  7348. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  7349. }
  7350. #endif // MESH_BED_LEVELING
  7351. void prepare_move()
  7352. {
  7353. clamp_to_software_endstops(destination);
  7354. previous_millis_cmd = _millis();
  7355. // Do not use feedmultiply for E or Z only moves
  7356. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  7357. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  7358. }
  7359. else {
  7360. #ifdef MESH_BED_LEVELING
  7361. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7362. #else
  7363. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7364. #endif
  7365. }
  7366. set_current_to_destination();
  7367. }
  7368. void prepare_arc_move(char isclockwise) {
  7369. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  7370. // Trace the arc
  7371. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  7372. // As far as the parser is concerned, the position is now == target. In reality the
  7373. // motion control system might still be processing the action and the real tool position
  7374. // in any intermediate location.
  7375. for(int8_t i=0; i < NUM_AXIS; i++) {
  7376. current_position[i] = destination[i];
  7377. }
  7378. previous_millis_cmd = _millis();
  7379. }
  7380. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7381. #if defined(FAN_PIN)
  7382. #if CONTROLLERFAN_PIN == FAN_PIN
  7383. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  7384. #endif
  7385. #endif
  7386. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  7387. unsigned long lastMotorCheck = 0;
  7388. void controllerFan()
  7389. {
  7390. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  7391. {
  7392. lastMotorCheck = _millis();
  7393. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  7394. #if EXTRUDERS > 2
  7395. || !READ(E2_ENABLE_PIN)
  7396. #endif
  7397. #if EXTRUDER > 1
  7398. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  7399. || !READ(X2_ENABLE_PIN)
  7400. #endif
  7401. || !READ(E1_ENABLE_PIN)
  7402. #endif
  7403. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  7404. {
  7405. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  7406. }
  7407. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  7408. {
  7409. digitalWrite(CONTROLLERFAN_PIN, 0);
  7410. analogWrite(CONTROLLERFAN_PIN, 0);
  7411. }
  7412. else
  7413. {
  7414. // allows digital or PWM fan output to be used (see M42 handling)
  7415. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7416. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7417. }
  7418. }
  7419. }
  7420. #endif
  7421. #ifdef TEMP_STAT_LEDS
  7422. static bool blue_led = false;
  7423. static bool red_led = false;
  7424. static uint32_t stat_update = 0;
  7425. void handle_status_leds(void) {
  7426. float max_temp = 0.0;
  7427. if(_millis() > stat_update) {
  7428. stat_update += 500; // Update every 0.5s
  7429. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  7430. max_temp = max(max_temp, degHotend(cur_extruder));
  7431. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  7432. }
  7433. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  7434. max_temp = max(max_temp, degTargetBed());
  7435. max_temp = max(max_temp, degBed());
  7436. #endif
  7437. if((max_temp > 55.0) && (red_led == false)) {
  7438. digitalWrite(STAT_LED_RED, 1);
  7439. digitalWrite(STAT_LED_BLUE, 0);
  7440. red_led = true;
  7441. blue_led = false;
  7442. }
  7443. if((max_temp < 54.0) && (blue_led == false)) {
  7444. digitalWrite(STAT_LED_RED, 0);
  7445. digitalWrite(STAT_LED_BLUE, 1);
  7446. red_led = false;
  7447. blue_led = true;
  7448. }
  7449. }
  7450. }
  7451. #endif
  7452. #ifdef SAFETYTIMER
  7453. /**
  7454. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  7455. *
  7456. * Full screen blocking notification message is shown after heater turning off.
  7457. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  7458. * damage print.
  7459. *
  7460. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  7461. */
  7462. static void handleSafetyTimer()
  7463. {
  7464. #if (EXTRUDERS > 1)
  7465. #error Implemented only for one extruder.
  7466. #endif //(EXTRUDERS > 1)
  7467. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  7468. {
  7469. safetyTimer.stop();
  7470. }
  7471. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  7472. {
  7473. safetyTimer.start();
  7474. }
  7475. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  7476. {
  7477. setTargetBed(0);
  7478. setAllTargetHotends(0);
  7479. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  7480. }
  7481. }
  7482. #endif //SAFETYTIMER
  7483. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  7484. {
  7485. bool bInhibitFlag;
  7486. #ifdef FILAMENT_SENSOR
  7487. if (mmu_enabled == false)
  7488. {
  7489. //-// if (mcode_in_progress != 600) //M600 not in progress
  7490. #ifdef PAT9125
  7491. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  7492. #endif // PAT9125
  7493. #ifdef IR_SENSOR
  7494. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  7495. #endif // IR_SENSOR
  7496. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  7497. {
  7498. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && ! eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))
  7499. {
  7500. if (fsensor_check_autoload())
  7501. {
  7502. #ifdef PAT9125
  7503. fsensor_autoload_check_stop();
  7504. #endif //PAT9125
  7505. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  7506. if(0)
  7507. {
  7508. Sound_MakeCustom(50,1000,false);
  7509. loading_flag = true;
  7510. enquecommand_front_P((PSTR("M701")));
  7511. }
  7512. else
  7513. {
  7514. /*
  7515. lcd_update_enable(false);
  7516. show_preheat_nozzle_warning();
  7517. lcd_update_enable(true);
  7518. */
  7519. eFilamentAction=FilamentAction::AutoLoad;
  7520. bFilamentFirstRun=false;
  7521. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  7522. {
  7523. bFilamentPreheatState=true;
  7524. // mFilamentItem(target_temperature[0],target_temperature_bed);
  7525. menu_submenu(mFilamentItemForce);
  7526. }
  7527. else
  7528. {
  7529. menu_submenu(lcd_generic_preheat_menu);
  7530. lcd_timeoutToStatus.start();
  7531. }
  7532. }
  7533. }
  7534. }
  7535. else
  7536. {
  7537. #ifdef PAT9125
  7538. fsensor_autoload_check_stop();
  7539. #endif //PAT9125
  7540. fsensor_update();
  7541. }
  7542. }
  7543. }
  7544. #endif //FILAMENT_SENSOR
  7545. #ifdef SAFETYTIMER
  7546. handleSafetyTimer();
  7547. #endif //SAFETYTIMER
  7548. #if defined(KILL_PIN) && KILL_PIN > -1
  7549. static int killCount = 0; // make the inactivity button a bit less responsive
  7550. const int KILL_DELAY = 10000;
  7551. #endif
  7552. if(buflen < (BUFSIZE-1)){
  7553. get_command();
  7554. }
  7555. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  7556. if(max_inactive_time)
  7557. kill(_n("Inactivity Shutdown"), 4);
  7558. if(stepper_inactive_time) {
  7559. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  7560. {
  7561. if(blocks_queued() == false && ignore_stepper_queue == false) {
  7562. disable_x();
  7563. disable_y();
  7564. disable_z();
  7565. disable_e0();
  7566. disable_e1();
  7567. disable_e2();
  7568. }
  7569. }
  7570. }
  7571. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  7572. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  7573. {
  7574. chdkActive = false;
  7575. WRITE(CHDK, LOW);
  7576. }
  7577. #endif
  7578. #if defined(KILL_PIN) && KILL_PIN > -1
  7579. // Check if the kill button was pressed and wait just in case it was an accidental
  7580. // key kill key press
  7581. // -------------------------------------------------------------------------------
  7582. if( 0 == READ(KILL_PIN) )
  7583. {
  7584. killCount++;
  7585. }
  7586. else if (killCount > 0)
  7587. {
  7588. killCount--;
  7589. }
  7590. // Exceeded threshold and we can confirm that it was not accidental
  7591. // KILL the machine
  7592. // ----------------------------------------------------------------
  7593. if ( killCount >= KILL_DELAY)
  7594. {
  7595. kill(NULL, 5);
  7596. }
  7597. #endif
  7598. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7599. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  7600. #endif
  7601. #ifdef EXTRUDER_RUNOUT_PREVENT
  7602. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  7603. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  7604. {
  7605. bool oldstatus=READ(E0_ENABLE_PIN);
  7606. enable_e0();
  7607. float oldepos=current_position[E_AXIS];
  7608. float oldedes=destination[E_AXIS];
  7609. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7610. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  7611. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  7612. current_position[E_AXIS]=oldepos;
  7613. destination[E_AXIS]=oldedes;
  7614. plan_set_e_position(oldepos);
  7615. previous_millis_cmd=_millis();
  7616. st_synchronize();
  7617. WRITE(E0_ENABLE_PIN,oldstatus);
  7618. }
  7619. #endif
  7620. #ifdef TEMP_STAT_LEDS
  7621. handle_status_leds();
  7622. #endif
  7623. check_axes_activity();
  7624. mmu_loop();
  7625. }
  7626. void kill(const char *full_screen_message, unsigned char id)
  7627. {
  7628. printf_P(_N("KILL: %d\n"), id);
  7629. //return;
  7630. cli(); // Stop interrupts
  7631. disable_heater();
  7632. disable_x();
  7633. // SERIAL_ECHOLNPGM("kill - disable Y");
  7634. disable_y();
  7635. disable_z();
  7636. disable_e0();
  7637. disable_e1();
  7638. disable_e2();
  7639. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  7640. pinMode(PS_ON_PIN,INPUT);
  7641. #endif
  7642. SERIAL_ERROR_START;
  7643. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  7644. if (full_screen_message != NULL) {
  7645. SERIAL_ERRORLNRPGM(full_screen_message);
  7646. lcd_display_message_fullscreen_P(full_screen_message);
  7647. } else {
  7648. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  7649. }
  7650. // FMC small patch to update the LCD before ending
  7651. sei(); // enable interrupts
  7652. for ( int i=5; i--; lcd_update(0))
  7653. {
  7654. _delay(200);
  7655. }
  7656. cli(); // disable interrupts
  7657. suicide();
  7658. while(1)
  7659. {
  7660. #ifdef WATCHDOG
  7661. wdt_reset();
  7662. #endif //WATCHDOG
  7663. /* Intentionally left empty */
  7664. } // Wait for reset
  7665. }
  7666. // Stop: Emergency stop used by overtemp functions which allows recovery
  7667. //
  7668. // In addition to stopping the print, this prevents subsequent G[0-3] commands to be
  7669. // processed via USB (using "Stopped") until the print is resumed via M999 or
  7670. // manually started from scratch with the LCD.
  7671. //
  7672. // Note that the current instruction is completely discarded, so resuming from Stop()
  7673. // will introduce either over/under extrusion on the current segment, and will not
  7674. // survive a power panic. Switching Stop() to use the pause machinery instead (with
  7675. // the addition of disabling the headers) could allow true recovery in the future.
  7676. void Stop()
  7677. {
  7678. disable_heater();
  7679. if(Stopped == false) {
  7680. Stopped = true;
  7681. lcd_print_stop();
  7682. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7683. SERIAL_ERROR_START;
  7684. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  7685. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  7686. }
  7687. }
  7688. bool IsStopped() { return Stopped; };
  7689. #ifdef FAST_PWM_FAN
  7690. void setPwmFrequency(uint8_t pin, int val)
  7691. {
  7692. val &= 0x07;
  7693. switch(digitalPinToTimer(pin))
  7694. {
  7695. #if defined(TCCR0A)
  7696. case TIMER0A:
  7697. case TIMER0B:
  7698. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7699. // TCCR0B |= val;
  7700. break;
  7701. #endif
  7702. #if defined(TCCR1A)
  7703. case TIMER1A:
  7704. case TIMER1B:
  7705. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7706. // TCCR1B |= val;
  7707. break;
  7708. #endif
  7709. #if defined(TCCR2)
  7710. case TIMER2:
  7711. case TIMER2:
  7712. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7713. TCCR2 |= val;
  7714. break;
  7715. #endif
  7716. #if defined(TCCR2A)
  7717. case TIMER2A:
  7718. case TIMER2B:
  7719. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7720. TCCR2B |= val;
  7721. break;
  7722. #endif
  7723. #if defined(TCCR3A)
  7724. case TIMER3A:
  7725. case TIMER3B:
  7726. case TIMER3C:
  7727. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7728. TCCR3B |= val;
  7729. break;
  7730. #endif
  7731. #if defined(TCCR4A)
  7732. case TIMER4A:
  7733. case TIMER4B:
  7734. case TIMER4C:
  7735. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7736. TCCR4B |= val;
  7737. break;
  7738. #endif
  7739. #if defined(TCCR5A)
  7740. case TIMER5A:
  7741. case TIMER5B:
  7742. case TIMER5C:
  7743. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7744. TCCR5B |= val;
  7745. break;
  7746. #endif
  7747. }
  7748. }
  7749. #endif //FAST_PWM_FAN
  7750. //! @brief Get and validate extruder number
  7751. //!
  7752. //! If it is not specified, active_extruder is returned in parameter extruder.
  7753. //! @param [in] code M code number
  7754. //! @param [out] extruder
  7755. //! @return error
  7756. //! @retval true Invalid extruder specified in T code
  7757. //! @retval false Valid extruder specified in T code, or not specifiead
  7758. bool setTargetedHotend(int code, uint8_t &extruder)
  7759. {
  7760. extruder = active_extruder;
  7761. if(code_seen('T')) {
  7762. extruder = code_value();
  7763. if(extruder >= EXTRUDERS) {
  7764. SERIAL_ECHO_START;
  7765. switch(code){
  7766. case 104:
  7767. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7768. break;
  7769. case 105:
  7770. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7771. break;
  7772. case 109:
  7773. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7774. break;
  7775. case 218:
  7776. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7777. break;
  7778. case 221:
  7779. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7780. break;
  7781. }
  7782. SERIAL_PROTOCOLLN((int)extruder);
  7783. return true;
  7784. }
  7785. }
  7786. return false;
  7787. }
  7788. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7789. {
  7790. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7791. {
  7792. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7793. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7794. }
  7795. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7796. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7797. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7798. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7799. total_filament_used = 0;
  7800. }
  7801. float calculate_extruder_multiplier(float diameter) {
  7802. float out = 1.f;
  7803. if (cs.volumetric_enabled && diameter > 0.f) {
  7804. float area = M_PI * diameter * diameter * 0.25;
  7805. out = 1.f / area;
  7806. }
  7807. if (extrudemultiply != 100)
  7808. out *= float(extrudemultiply) * 0.01f;
  7809. return out;
  7810. }
  7811. void calculate_extruder_multipliers() {
  7812. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7813. #if EXTRUDERS > 1
  7814. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7815. #if EXTRUDERS > 2
  7816. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7817. #endif
  7818. #endif
  7819. }
  7820. void delay_keep_alive(unsigned int ms)
  7821. {
  7822. for (;;) {
  7823. manage_heater();
  7824. // Manage inactivity, but don't disable steppers on timeout.
  7825. manage_inactivity(true);
  7826. lcd_update(0);
  7827. if (ms == 0)
  7828. break;
  7829. else if (ms >= 50) {
  7830. _delay(50);
  7831. ms -= 50;
  7832. } else {
  7833. _delay(ms);
  7834. ms = 0;
  7835. }
  7836. }
  7837. }
  7838. static void wait_for_heater(long codenum, uint8_t extruder) {
  7839. if (!degTargetHotend(extruder))
  7840. return;
  7841. #ifdef TEMP_RESIDENCY_TIME
  7842. long residencyStart;
  7843. residencyStart = -1;
  7844. /* continue to loop until we have reached the target temp
  7845. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7846. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7847. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7848. #else
  7849. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7850. #endif //TEMP_RESIDENCY_TIME
  7851. if ((_millis() - codenum) > 1000UL)
  7852. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7853. if (!farm_mode) {
  7854. SERIAL_PROTOCOLPGM("T:");
  7855. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7856. SERIAL_PROTOCOLPGM(" E:");
  7857. SERIAL_PROTOCOL((int)extruder);
  7858. #ifdef TEMP_RESIDENCY_TIME
  7859. SERIAL_PROTOCOLPGM(" W:");
  7860. if (residencyStart > -1)
  7861. {
  7862. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7863. SERIAL_PROTOCOLLN(codenum);
  7864. }
  7865. else
  7866. {
  7867. SERIAL_PROTOCOLLN("?");
  7868. }
  7869. }
  7870. #else
  7871. SERIAL_PROTOCOLLN("");
  7872. #endif
  7873. codenum = _millis();
  7874. }
  7875. manage_heater();
  7876. manage_inactivity(true); //do not disable steppers
  7877. lcd_update(0);
  7878. #ifdef TEMP_RESIDENCY_TIME
  7879. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7880. or when current temp falls outside the hysteresis after target temp was reached */
  7881. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7882. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7883. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7884. {
  7885. residencyStart = _millis();
  7886. }
  7887. #endif //TEMP_RESIDENCY_TIME
  7888. }
  7889. }
  7890. void check_babystep()
  7891. {
  7892. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7893. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  7894. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7895. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7896. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7897. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7898. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  7899. babystep_z);
  7900. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7901. lcd_update_enable(true);
  7902. }
  7903. }
  7904. #ifdef HEATBED_ANALYSIS
  7905. void d_setup()
  7906. {
  7907. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7908. pinMode(D_DATA, INPUT_PULLUP);
  7909. pinMode(D_REQUIRE, OUTPUT);
  7910. digitalWrite(D_REQUIRE, HIGH);
  7911. }
  7912. float d_ReadData()
  7913. {
  7914. int digit[13];
  7915. String mergeOutput;
  7916. float output;
  7917. digitalWrite(D_REQUIRE, HIGH);
  7918. for (int i = 0; i<13; i++)
  7919. {
  7920. for (int j = 0; j < 4; j++)
  7921. {
  7922. while (digitalRead(D_DATACLOCK) == LOW) {}
  7923. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7924. bitWrite(digit[i], j, digitalRead(D_DATA));
  7925. }
  7926. }
  7927. digitalWrite(D_REQUIRE, LOW);
  7928. mergeOutput = "";
  7929. output = 0;
  7930. for (int r = 5; r <= 10; r++) //Merge digits
  7931. {
  7932. mergeOutput += digit[r];
  7933. }
  7934. output = mergeOutput.toFloat();
  7935. if (digit[4] == 8) //Handle sign
  7936. {
  7937. output *= -1;
  7938. }
  7939. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7940. {
  7941. output /= 10;
  7942. }
  7943. return output;
  7944. }
  7945. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7946. int t1 = 0;
  7947. int t_delay = 0;
  7948. int digit[13];
  7949. int m;
  7950. char str[3];
  7951. //String mergeOutput;
  7952. char mergeOutput[15];
  7953. float output;
  7954. int mesh_point = 0; //index number of calibration point
  7955. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7956. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7957. float mesh_home_z_search = 4;
  7958. float measure_z_height = 0.2f;
  7959. float row[x_points_num];
  7960. int ix = 0;
  7961. int iy = 0;
  7962. const char* filename_wldsd = "mesh.txt";
  7963. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7964. char numb_wldsd[8]; // (" -A.BCD" + null)
  7965. #ifdef MICROMETER_LOGGING
  7966. d_setup();
  7967. #endif //MICROMETER_LOGGING
  7968. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7969. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7970. unsigned int custom_message_type_old = custom_message_type;
  7971. unsigned int custom_message_state_old = custom_message_state;
  7972. custom_message_type = CustomMsg::MeshBedLeveling;
  7973. custom_message_state = (x_points_num * y_points_num) + 10;
  7974. lcd_update(1);
  7975. //mbl.reset();
  7976. babystep_undo();
  7977. card.openFile(filename_wldsd, false);
  7978. /*destination[Z_AXIS] = mesh_home_z_search;
  7979. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  7980. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7981. for(int8_t i=0; i < NUM_AXIS; i++) {
  7982. current_position[i] = destination[i];
  7983. }
  7984. st_synchronize();
  7985. */
  7986. destination[Z_AXIS] = measure_z_height;
  7987. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7988. for(int8_t i=0; i < NUM_AXIS; i++) {
  7989. current_position[i] = destination[i];
  7990. }
  7991. st_synchronize();
  7992. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7993. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7994. SERIAL_PROTOCOL(x_points_num);
  7995. SERIAL_PROTOCOLPGM(",");
  7996. SERIAL_PROTOCOL(y_points_num);
  7997. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7998. SERIAL_PROTOCOL(mesh_home_z_search);
  7999. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8000. SERIAL_PROTOCOL(x_dimension);
  8001. SERIAL_PROTOCOLPGM(",");
  8002. SERIAL_PROTOCOL(y_dimension);
  8003. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8004. while (mesh_point != x_points_num * y_points_num) {
  8005. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8006. iy = mesh_point / x_points_num;
  8007. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8008. float z0 = 0.f;
  8009. /*destination[Z_AXIS] = mesh_home_z_search;
  8010. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8011. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  8012. for(int8_t i=0; i < NUM_AXIS; i++) {
  8013. current_position[i] = destination[i];
  8014. }
  8015. st_synchronize();*/
  8016. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8017. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8018. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  8019. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  8020. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  8021. set_current_to_destination();
  8022. st_synchronize();
  8023. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8024. delay_keep_alive(1000);
  8025. #ifdef MICROMETER_LOGGING
  8026. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8027. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8028. //strcat(data_wldsd, numb_wldsd);
  8029. //MYSERIAL.println(data_wldsd);
  8030. //delay(1000);
  8031. //delay(3000);
  8032. //t1 = millis();
  8033. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8034. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8035. memset(digit, 0, sizeof(digit));
  8036. //cli();
  8037. digitalWrite(D_REQUIRE, LOW);
  8038. for (int i = 0; i<13; i++)
  8039. {
  8040. //t1 = millis();
  8041. for (int j = 0; j < 4; j++)
  8042. {
  8043. while (digitalRead(D_DATACLOCK) == LOW) {}
  8044. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8045. //printf_P(PSTR("Done %d\n"), j);
  8046. bitWrite(digit[i], j, digitalRead(D_DATA));
  8047. }
  8048. //t_delay = (millis() - t1);
  8049. //SERIAL_PROTOCOLPGM(" ");
  8050. //SERIAL_PROTOCOL_F(t_delay, 5);
  8051. //SERIAL_PROTOCOLPGM(" ");
  8052. }
  8053. //sei();
  8054. digitalWrite(D_REQUIRE, HIGH);
  8055. mergeOutput[0] = '\0';
  8056. output = 0;
  8057. for (int r = 5; r <= 10; r++) //Merge digits
  8058. {
  8059. sprintf(str, "%d", digit[r]);
  8060. strcat(mergeOutput, str);
  8061. }
  8062. output = atof(mergeOutput);
  8063. if (digit[4] == 8) //Handle sign
  8064. {
  8065. output *= -1;
  8066. }
  8067. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8068. {
  8069. output *= 0.1;
  8070. }
  8071. //output = d_ReadData();
  8072. //row[ix] = current_position[Z_AXIS];
  8073. //row[ix] = d_ReadData();
  8074. row[ix] = output;
  8075. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8076. memset(data_wldsd, 0, sizeof(data_wldsd));
  8077. for (int i = 0; i < x_points_num; i++) {
  8078. SERIAL_PROTOCOLPGM(" ");
  8079. SERIAL_PROTOCOL_F(row[i], 5);
  8080. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8081. dtostrf(row[i], 7, 3, numb_wldsd);
  8082. strcat(data_wldsd, numb_wldsd);
  8083. }
  8084. card.write_command(data_wldsd);
  8085. SERIAL_PROTOCOLPGM("\n");
  8086. }
  8087. custom_message_state--;
  8088. mesh_point++;
  8089. lcd_update(1);
  8090. }
  8091. #endif //MICROMETER_LOGGING
  8092. card.closefile();
  8093. //clean_up_after_endstop_move(l_feedmultiply);
  8094. }
  8095. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8096. int t1 = 0;
  8097. int t_delay = 0;
  8098. int digit[13];
  8099. int m;
  8100. char str[3];
  8101. //String mergeOutput;
  8102. char mergeOutput[15];
  8103. float output;
  8104. int mesh_point = 0; //index number of calibration point
  8105. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8106. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8107. float mesh_home_z_search = 4;
  8108. float row[x_points_num];
  8109. int ix = 0;
  8110. int iy = 0;
  8111. const char* filename_wldsd = "wldsd.txt";
  8112. char data_wldsd[70];
  8113. char numb_wldsd[10];
  8114. d_setup();
  8115. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  8116. // We don't know where we are! HOME!
  8117. // Push the commands to the front of the message queue in the reverse order!
  8118. // There shall be always enough space reserved for these commands.
  8119. repeatcommand_front(); // repeat G80 with all its parameters
  8120. enquecommand_front_P((PSTR("G28 W0")));
  8121. enquecommand_front_P((PSTR("G1 Z5")));
  8122. return;
  8123. }
  8124. unsigned int custom_message_type_old = custom_message_type;
  8125. unsigned int custom_message_state_old = custom_message_state;
  8126. custom_message_type = CustomMsg::MeshBedLeveling;
  8127. custom_message_state = (x_points_num * y_points_num) + 10;
  8128. lcd_update(1);
  8129. mbl.reset();
  8130. babystep_undo();
  8131. card.openFile(filename_wldsd, false);
  8132. current_position[Z_AXIS] = mesh_home_z_search;
  8133. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  8134. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8135. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8136. int l_feedmultiply = setup_for_endstop_move(false);
  8137. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8138. SERIAL_PROTOCOL(x_points_num);
  8139. SERIAL_PROTOCOLPGM(",");
  8140. SERIAL_PROTOCOL(y_points_num);
  8141. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8142. SERIAL_PROTOCOL(mesh_home_z_search);
  8143. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8144. SERIAL_PROTOCOL(x_dimension);
  8145. SERIAL_PROTOCOLPGM(",");
  8146. SERIAL_PROTOCOL(y_dimension);
  8147. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8148. while (mesh_point != x_points_num * y_points_num) {
  8149. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8150. iy = mesh_point / x_points_num;
  8151. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8152. float z0 = 0.f;
  8153. current_position[Z_AXIS] = mesh_home_z_search;
  8154. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8155. st_synchronize();
  8156. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8157. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8158. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  8159. st_synchronize();
  8160. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  8161. break;
  8162. card.closefile();
  8163. }
  8164. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8165. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8166. //strcat(data_wldsd, numb_wldsd);
  8167. //MYSERIAL.println(data_wldsd);
  8168. //_delay(1000);
  8169. //_delay(3000);
  8170. //t1 = _millis();
  8171. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8172. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8173. memset(digit, 0, sizeof(digit));
  8174. //cli();
  8175. digitalWrite(D_REQUIRE, LOW);
  8176. for (int i = 0; i<13; i++)
  8177. {
  8178. //t1 = _millis();
  8179. for (int j = 0; j < 4; j++)
  8180. {
  8181. while (digitalRead(D_DATACLOCK) == LOW) {}
  8182. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8183. bitWrite(digit[i], j, digitalRead(D_DATA));
  8184. }
  8185. //t_delay = (_millis() - t1);
  8186. //SERIAL_PROTOCOLPGM(" ");
  8187. //SERIAL_PROTOCOL_F(t_delay, 5);
  8188. //SERIAL_PROTOCOLPGM(" ");
  8189. }
  8190. //sei();
  8191. digitalWrite(D_REQUIRE, HIGH);
  8192. mergeOutput[0] = '\0';
  8193. output = 0;
  8194. for (int r = 5; r <= 10; r++) //Merge digits
  8195. {
  8196. sprintf(str, "%d", digit[r]);
  8197. strcat(mergeOutput, str);
  8198. }
  8199. output = atof(mergeOutput);
  8200. if (digit[4] == 8) //Handle sign
  8201. {
  8202. output *= -1;
  8203. }
  8204. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8205. {
  8206. output *= 0.1;
  8207. }
  8208. //output = d_ReadData();
  8209. //row[ix] = current_position[Z_AXIS];
  8210. memset(data_wldsd, 0, sizeof(data_wldsd));
  8211. for (int i = 0; i <3; i++) {
  8212. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8213. dtostrf(current_position[i], 8, 5, numb_wldsd);
  8214. strcat(data_wldsd, numb_wldsd);
  8215. strcat(data_wldsd, ";");
  8216. }
  8217. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8218. dtostrf(output, 8, 5, numb_wldsd);
  8219. strcat(data_wldsd, numb_wldsd);
  8220. //strcat(data_wldsd, ";");
  8221. card.write_command(data_wldsd);
  8222. //row[ix] = d_ReadData();
  8223. row[ix] = output; // current_position[Z_AXIS];
  8224. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8225. for (int i = 0; i < x_points_num; i++) {
  8226. SERIAL_PROTOCOLPGM(" ");
  8227. SERIAL_PROTOCOL_F(row[i], 5);
  8228. }
  8229. SERIAL_PROTOCOLPGM("\n");
  8230. }
  8231. custom_message_state--;
  8232. mesh_point++;
  8233. lcd_update(1);
  8234. }
  8235. card.closefile();
  8236. clean_up_after_endstop_move(l_feedmultiply);
  8237. }
  8238. #endif //HEATBED_ANALYSIS
  8239. #ifndef PINDA_THERMISTOR
  8240. static void temp_compensation_start() {
  8241. custom_message_type = CustomMsg::TempCompPreheat;
  8242. custom_message_state = PINDA_HEAT_T + 1;
  8243. lcd_update(2);
  8244. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  8245. current_position[E_AXIS] -= default_retraction;
  8246. }
  8247. plan_buffer_line_curposXYZE(400, active_extruder);
  8248. current_position[X_AXIS] = PINDA_PREHEAT_X;
  8249. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  8250. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  8251. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  8252. st_synchronize();
  8253. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  8254. for (int i = 0; i < PINDA_HEAT_T; i++) {
  8255. delay_keep_alive(1000);
  8256. custom_message_state = PINDA_HEAT_T - i;
  8257. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  8258. else lcd_update(1);
  8259. }
  8260. custom_message_type = CustomMsg::Status;
  8261. custom_message_state = 0;
  8262. }
  8263. static void temp_compensation_apply() {
  8264. int i_add;
  8265. int z_shift = 0;
  8266. float z_shift_mm;
  8267. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  8268. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  8269. i_add = (target_temperature_bed - 60) / 10;
  8270. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  8271. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  8272. }else {
  8273. //interpolation
  8274. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  8275. }
  8276. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  8277. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  8278. st_synchronize();
  8279. plan_set_z_position(current_position[Z_AXIS]);
  8280. }
  8281. else {
  8282. //we have no temp compensation data
  8283. }
  8284. }
  8285. #endif //ndef PINDA_THERMISTOR
  8286. float temp_comp_interpolation(float inp_temperature) {
  8287. //cubic spline interpolation
  8288. int n, i, j;
  8289. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  8290. int shift[10];
  8291. int temp_C[10];
  8292. n = 6; //number of measured points
  8293. shift[0] = 0;
  8294. for (i = 0; i < n; i++) {
  8295. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  8296. temp_C[i] = 50 + i * 10; //temperature in C
  8297. #ifdef PINDA_THERMISTOR
  8298. temp_C[i] = 35 + i * 5; //temperature in C
  8299. #else
  8300. temp_C[i] = 50 + i * 10; //temperature in C
  8301. #endif
  8302. x[i] = (float)temp_C[i];
  8303. f[i] = (float)shift[i];
  8304. }
  8305. if (inp_temperature < x[0]) return 0;
  8306. for (i = n - 1; i>0; i--) {
  8307. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  8308. h[i - 1] = x[i] - x[i - 1];
  8309. }
  8310. //*********** formation of h, s , f matrix **************
  8311. for (i = 1; i<n - 1; i++) {
  8312. m[i][i] = 2 * (h[i - 1] + h[i]);
  8313. if (i != 1) {
  8314. m[i][i - 1] = h[i - 1];
  8315. m[i - 1][i] = h[i - 1];
  8316. }
  8317. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  8318. }
  8319. //*********** forward elimination **************
  8320. for (i = 1; i<n - 2; i++) {
  8321. temp = (m[i + 1][i] / m[i][i]);
  8322. for (j = 1; j <= n - 1; j++)
  8323. m[i + 1][j] -= temp*m[i][j];
  8324. }
  8325. //*********** backward substitution *********
  8326. for (i = n - 2; i>0; i--) {
  8327. sum = 0;
  8328. for (j = i; j <= n - 2; j++)
  8329. sum += m[i][j] * s[j];
  8330. s[i] = (m[i][n - 1] - sum) / m[i][i];
  8331. }
  8332. for (i = 0; i<n - 1; i++)
  8333. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  8334. a = (s[i + 1] - s[i]) / (6 * h[i]);
  8335. b = s[i] / 2;
  8336. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  8337. d = f[i];
  8338. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  8339. }
  8340. return sum;
  8341. }
  8342. #ifdef PINDA_THERMISTOR
  8343. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  8344. {
  8345. if (!temp_cal_active) return 0;
  8346. if (!calibration_status_pinda()) return 0;
  8347. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  8348. }
  8349. #endif //PINDA_THERMISTOR
  8350. void long_pause() //long pause print
  8351. {
  8352. st_synchronize();
  8353. start_pause_print = _millis();
  8354. // Stop heaters
  8355. setAllTargetHotends(0);
  8356. //retract
  8357. current_position[E_AXIS] -= default_retraction;
  8358. plan_buffer_line_curposXYZE(400, active_extruder);
  8359. //lift z
  8360. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  8361. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  8362. plan_buffer_line_curposXYZE(15, active_extruder);
  8363. //Move XY to side
  8364. current_position[X_AXIS] = X_PAUSE_POS;
  8365. current_position[Y_AXIS] = Y_PAUSE_POS;
  8366. plan_buffer_line_curposXYZE(50, active_extruder);
  8367. // Turn off the print fan
  8368. fanSpeed = 0;
  8369. }
  8370. void serialecho_temperatures() {
  8371. float tt = degHotend(active_extruder);
  8372. SERIAL_PROTOCOLPGM("T:");
  8373. SERIAL_PROTOCOL(tt);
  8374. SERIAL_PROTOCOLPGM(" E:");
  8375. SERIAL_PROTOCOL((int)active_extruder);
  8376. SERIAL_PROTOCOLPGM(" B:");
  8377. SERIAL_PROTOCOL_F(degBed(), 1);
  8378. SERIAL_PROTOCOLLN("");
  8379. }
  8380. #ifdef UVLO_SUPPORT
  8381. void uvlo_()
  8382. {
  8383. unsigned long time_start = _millis();
  8384. bool sd_print = card.sdprinting;
  8385. // Conserve power as soon as possible.
  8386. #ifdef LCD_BL_PIN
  8387. backlightMode = BACKLIGHT_MODE_DIM;
  8388. backlightLevel_LOW = 0;
  8389. backlight_update();
  8390. #endif //LCD_BL_PIN
  8391. disable_x();
  8392. disable_y();
  8393. #ifdef TMC2130
  8394. tmc2130_set_current_h(Z_AXIS, 20);
  8395. tmc2130_set_current_r(Z_AXIS, 20);
  8396. tmc2130_set_current_h(E_AXIS, 20);
  8397. tmc2130_set_current_r(E_AXIS, 20);
  8398. #endif //TMC2130
  8399. // Indicate that the interrupt has been triggered.
  8400. // SERIAL_ECHOLNPGM("UVLO");
  8401. // Read out the current Z motor microstep counter. This will be later used
  8402. // for reaching the zero full step before powering off.
  8403. uint16_t z_microsteps = 0;
  8404. #ifdef TMC2130
  8405. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8406. #endif //TMC2130
  8407. // Calculate the file position, from which to resume this print.
  8408. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  8409. {
  8410. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8411. sd_position -= sdlen_planner;
  8412. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8413. sd_position -= sdlen_cmdqueue;
  8414. if (sd_position < 0) sd_position = 0;
  8415. }
  8416. // save the global state at planning time
  8417. uint16_t feedrate_bckp;
  8418. if (blocks_queued())
  8419. {
  8420. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  8421. feedrate_bckp = current_block->gcode_feedrate;
  8422. }
  8423. else
  8424. {
  8425. saved_target[0] = SAVED_TARGET_UNSET;
  8426. feedrate_bckp = feedrate;
  8427. }
  8428. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  8429. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  8430. // are in action.
  8431. planner_abort_hard();
  8432. // Store the current extruder position.
  8433. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  8434. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  8435. // Clean the input command queue.
  8436. cmdqueue_reset();
  8437. card.sdprinting = false;
  8438. // card.closefile();
  8439. // Enable stepper driver interrupt to move Z axis.
  8440. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  8441. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  8442. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  8443. sei();
  8444. plan_buffer_line(
  8445. current_position[X_AXIS],
  8446. current_position[Y_AXIS],
  8447. current_position[Z_AXIS],
  8448. current_position[E_AXIS] - default_retraction,
  8449. 95, active_extruder);
  8450. st_synchronize();
  8451. disable_e0();
  8452. plan_buffer_line(
  8453. current_position[X_AXIS],
  8454. current_position[Y_AXIS],
  8455. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8456. current_position[E_AXIS] - default_retraction,
  8457. 40, active_extruder);
  8458. st_synchronize();
  8459. disable_e0();
  8460. plan_buffer_line(
  8461. current_position[X_AXIS],
  8462. current_position[Y_AXIS],
  8463. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8464. current_position[E_AXIS] - default_retraction,
  8465. 40, active_extruder);
  8466. st_synchronize();
  8467. disable_e0();
  8468. // Move Z up to the next 0th full step.
  8469. // Write the file position.
  8470. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  8471. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8472. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8473. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8474. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8475. // Scale the z value to 1u resolution.
  8476. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  8477. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  8478. }
  8479. // Read out the current Z motor microstep counter. This will be later used
  8480. // for reaching the zero full step before powering off.
  8481. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  8482. // Store the current position.
  8483. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  8484. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  8485. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  8486. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  8487. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDRATE, feedrate_bckp);
  8488. EEPROM_save_B(EEPROM_UVLO_FEEDMULTIPLY, &feedmultiply);
  8489. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  8490. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  8491. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  8492. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  8493. #if EXTRUDERS > 1
  8494. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  8495. #if EXTRUDERS > 2
  8496. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  8497. #endif
  8498. #endif
  8499. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  8500. // Store the saved target
  8501. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4), saved_target[X_AXIS]);
  8502. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4), saved_target[Y_AXIS]);
  8503. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4), saved_target[Z_AXIS]);
  8504. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4), saved_target[E_AXIS]);
  8505. // Finaly store the "power outage" flag.
  8506. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  8507. st_synchronize();
  8508. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  8509. // Increment power failure counter
  8510. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8511. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8512. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  8513. #if 0
  8514. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  8515. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  8516. plan_buffer_line_curposXYZE(500, active_extruder);
  8517. st_synchronize();
  8518. #endif
  8519. wdt_enable(WDTO_500MS);
  8520. WRITE(BEEPER,HIGH);
  8521. while(1)
  8522. ;
  8523. }
  8524. void uvlo_tiny()
  8525. {
  8526. uint16_t z_microsteps=0;
  8527. // Conserve power as soon as possible.
  8528. disable_x();
  8529. disable_y();
  8530. disable_e0();
  8531. #ifdef TMC2130
  8532. tmc2130_set_current_h(Z_AXIS, 20);
  8533. tmc2130_set_current_r(Z_AXIS, 20);
  8534. #endif //TMC2130
  8535. // Read out the current Z motor microstep counter
  8536. #ifdef TMC2130
  8537. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8538. #endif //TMC2130
  8539. planner_abort_hard();
  8540. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  8541. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  8542. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  8543. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  8544. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  8545. }
  8546. //after multiple power panics current Z axis is unknow
  8547. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  8548. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  8549. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  8550. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  8551. }
  8552. // Finaly store the "power outage" flag.
  8553. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  8554. // Increment power failure counter
  8555. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8556. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8557. wdt_enable(WDTO_500MS);
  8558. WRITE(BEEPER,HIGH);
  8559. while(1)
  8560. ;
  8561. }
  8562. #endif //UVLO_SUPPORT
  8563. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  8564. void setup_fan_interrupt() {
  8565. //INT7
  8566. DDRE &= ~(1 << 7); //input pin
  8567. PORTE &= ~(1 << 7); //no internal pull-up
  8568. //start with sensing rising edge
  8569. EICRB &= ~(1 << 6);
  8570. EICRB |= (1 << 7);
  8571. //enable INT7 interrupt
  8572. EIMSK |= (1 << 7);
  8573. }
  8574. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  8575. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  8576. ISR(INT7_vect) {
  8577. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  8578. #ifdef FAN_SOFT_PWM
  8579. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  8580. #else //FAN_SOFT_PWM
  8581. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  8582. #endif //FAN_SOFT_PWM
  8583. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  8584. t_fan_rising_edge = millis_nc();
  8585. }
  8586. else { //interrupt was triggered by falling edge
  8587. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  8588. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  8589. }
  8590. }
  8591. EICRB ^= (1 << 6); //change edge
  8592. }
  8593. #endif
  8594. #ifdef UVLO_SUPPORT
  8595. void setup_uvlo_interrupt() {
  8596. DDRE &= ~(1 << 4); //input pin
  8597. PORTE &= ~(1 << 4); //no internal pull-up
  8598. //sensing falling edge
  8599. EICRB |= (1 << 0);
  8600. EICRB &= ~(1 << 1);
  8601. //enable INT4 interrupt
  8602. EIMSK |= (1 << 4);
  8603. }
  8604. ISR(INT4_vect) {
  8605. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  8606. SERIAL_ECHOLNPGM("INT4");
  8607. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  8608. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  8609. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  8610. }
  8611. void recover_print(uint8_t automatic) {
  8612. char cmd[30];
  8613. lcd_update_enable(true);
  8614. lcd_update(2);
  8615. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  8616. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  8617. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  8618. // Lift the print head, so one may remove the excess priming material.
  8619. if(!bTiny&&(current_position[Z_AXIS]<25))
  8620. enquecommand_P(PSTR("G1 Z25 F800"));
  8621. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  8622. enquecommand_P(PSTR("G28 X Y"));
  8623. // Set the target bed and nozzle temperatures and wait.
  8624. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  8625. enquecommand(cmd);
  8626. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  8627. enquecommand(cmd);
  8628. enquecommand_P(PSTR("M83")); //E axis relative mode
  8629. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8630. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  8631. if(automatic == 0){
  8632. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8633. }
  8634. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  8635. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8636. // Restart the print.
  8637. restore_print_from_eeprom();
  8638. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  8639. }
  8640. void recover_machine_state_after_power_panic(bool bTiny)
  8641. {
  8642. char cmd[30];
  8643. // 1) Recover the logical cordinates at the time of the power panic.
  8644. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  8645. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  8646. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  8647. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8648. mbl.active = false;
  8649. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8650. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8651. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8652. // Scale the z value to 10u resolution.
  8653. int16_t v;
  8654. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  8655. if (v != 0)
  8656. mbl.active = true;
  8657. mbl.z_values[iy][ix] = float(v) * 0.001f;
  8658. }
  8659. // Recover the logical coordinate of the Z axis at the time of the power panic.
  8660. // The current position after power panic is moved to the next closest 0th full step.
  8661. if(bTiny){
  8662. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  8663. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  8664. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8665. //after multiple power panics the print is slightly in the air so get it little bit down.
  8666. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  8667. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  8668. }
  8669. else{
  8670. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  8671. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  8672. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8673. }
  8674. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  8675. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  8676. sprintf_P(cmd, PSTR("G92 E"));
  8677. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  8678. enquecommand(cmd);
  8679. }
  8680. memcpy(destination, current_position, sizeof(destination));
  8681. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8682. print_world_coordinates();
  8683. // 3) Initialize the logical to physical coordinate system transformation.
  8684. world2machine_initialize();
  8685. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8686. // print_mesh_bed_leveling_table();
  8687. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  8688. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  8689. babystep_load();
  8690. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  8691. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  8692. // 6) Power up the motors, mark their positions as known.
  8693. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  8694. axis_known_position[X_AXIS] = true; enable_x();
  8695. axis_known_position[Y_AXIS] = true; enable_y();
  8696. axis_known_position[Z_AXIS] = true; enable_z();
  8697. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8698. print_physical_coordinates();
  8699. // 7) Recover the target temperatures.
  8700. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  8701. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  8702. // 8) Recover extruder multipilers
  8703. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  8704. #if EXTRUDERS > 1
  8705. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  8706. #if EXTRUDERS > 2
  8707. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  8708. #endif
  8709. #endif
  8710. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  8711. // 9) Recover the saved target
  8712. saved_target[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4));
  8713. saved_target[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4));
  8714. saved_target[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4));
  8715. saved_target[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4));
  8716. }
  8717. void restore_print_from_eeprom() {
  8718. int feedrate_rec;
  8719. int feedmultiply_rec;
  8720. uint8_t fan_speed_rec;
  8721. char cmd[30];
  8722. char filename[13];
  8723. uint8_t depth = 0;
  8724. char dir_name[9];
  8725. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  8726. feedrate_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDRATE);
  8727. EEPROM_read_B(EEPROM_UVLO_FEEDMULTIPLY, &feedmultiply_rec);
  8728. SERIAL_ECHOPGM("Feedrate:");
  8729. MYSERIAL.print(feedrate_rec);
  8730. SERIAL_ECHOPGM(", feedmultiply:");
  8731. MYSERIAL.println(feedmultiply_rec);
  8732. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  8733. MYSERIAL.println(int(depth));
  8734. for (int i = 0; i < depth; i++) {
  8735. for (int j = 0; j < 8; j++) {
  8736. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  8737. }
  8738. dir_name[8] = '\0';
  8739. MYSERIAL.println(dir_name);
  8740. strcpy(dir_names[i], dir_name);
  8741. card.chdir(dir_name);
  8742. }
  8743. for (int i = 0; i < 8; i++) {
  8744. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  8745. }
  8746. filename[8] = '\0';
  8747. MYSERIAL.print(filename);
  8748. strcat_P(filename, PSTR(".gco"));
  8749. sprintf_P(cmd, PSTR("M23 %s"), filename);
  8750. enquecommand(cmd);
  8751. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  8752. SERIAL_ECHOPGM("Position read from eeprom:");
  8753. MYSERIAL.println(position);
  8754. // E axis relative mode.
  8755. enquecommand_P(PSTR("M83"));
  8756. // Move to the XY print position in logical coordinates, where the print has been killed.
  8757. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  8758. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  8759. strcat_P(cmd, PSTR(" F2000"));
  8760. enquecommand(cmd);
  8761. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  8762. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  8763. // Move the Z axis down to the print, in logical coordinates.
  8764. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  8765. enquecommand(cmd);
  8766. // Unretract.
  8767. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  8768. // Set the feedrates saved at the power panic.
  8769. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  8770. enquecommand(cmd);
  8771. sprintf_P(cmd, PSTR("M220 S%d"), feedmultiply_rec);
  8772. enquecommand(cmd);
  8773. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  8774. {
  8775. enquecommand_P(PSTR("M82")); //E axis abslute mode
  8776. }
  8777. // Set the fan speed saved at the power panic.
  8778. strcpy_P(cmd, PSTR("M106 S"));
  8779. strcat(cmd, itostr3(int(fan_speed_rec)));
  8780. enquecommand(cmd);
  8781. // Set a position in the file.
  8782. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  8783. enquecommand(cmd);
  8784. enquecommand_P(PSTR("G4 S0"));
  8785. enquecommand_P(PSTR("PRUSA uvlo"));
  8786. }
  8787. #endif //UVLO_SUPPORT
  8788. //! @brief Immediately stop print moves
  8789. //!
  8790. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  8791. //! If printing from sd card, position in file is saved.
  8792. //! If printing from USB, line number is saved.
  8793. //!
  8794. //! @param z_move
  8795. //! @param e_move
  8796. void stop_and_save_print_to_ram(float z_move, float e_move)
  8797. {
  8798. if (saved_printing) return;
  8799. #if 0
  8800. unsigned char nplanner_blocks;
  8801. #endif
  8802. unsigned char nlines;
  8803. uint16_t sdlen_planner;
  8804. uint16_t sdlen_cmdqueue;
  8805. cli();
  8806. if (card.sdprinting) {
  8807. #if 0
  8808. nplanner_blocks = number_of_blocks();
  8809. #endif
  8810. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8811. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8812. saved_sdpos -= sdlen_planner;
  8813. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8814. saved_sdpos -= sdlen_cmdqueue;
  8815. saved_printing_type = PRINTING_TYPE_SD;
  8816. }
  8817. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8818. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8819. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8820. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8821. saved_sdpos -= nlines;
  8822. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8823. saved_printing_type = PRINTING_TYPE_USB;
  8824. }
  8825. else {
  8826. saved_printing_type = PRINTING_TYPE_NONE;
  8827. //not sd printing nor usb printing
  8828. }
  8829. #if 0
  8830. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8831. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8832. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8833. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8834. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8835. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8836. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8837. {
  8838. card.setIndex(saved_sdpos);
  8839. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8840. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8841. MYSERIAL.print(char(card.get()));
  8842. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8843. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8844. MYSERIAL.print(char(card.get()));
  8845. SERIAL_ECHOLNPGM("End of command buffer");
  8846. }
  8847. {
  8848. // Print the content of the planner buffer, line by line:
  8849. card.setIndex(saved_sdpos);
  8850. int8_t iline = 0;
  8851. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8852. SERIAL_ECHOPGM("Planner line (from file): ");
  8853. MYSERIAL.print(int(iline), DEC);
  8854. SERIAL_ECHOPGM(", length: ");
  8855. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8856. SERIAL_ECHOPGM(", steps: (");
  8857. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8858. SERIAL_ECHOPGM(",");
  8859. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8860. SERIAL_ECHOPGM(",");
  8861. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8862. SERIAL_ECHOPGM(",");
  8863. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8864. SERIAL_ECHOPGM("), events: ");
  8865. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8866. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8867. MYSERIAL.print(char(card.get()));
  8868. }
  8869. }
  8870. {
  8871. // Print the content of the command buffer, line by line:
  8872. int8_t iline = 0;
  8873. union {
  8874. struct {
  8875. char lo;
  8876. char hi;
  8877. } lohi;
  8878. uint16_t value;
  8879. } sdlen_single;
  8880. int _bufindr = bufindr;
  8881. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8882. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8883. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8884. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8885. }
  8886. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8887. MYSERIAL.print(int(iline), DEC);
  8888. SERIAL_ECHOPGM(", type: ");
  8889. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8890. SERIAL_ECHOPGM(", len: ");
  8891. MYSERIAL.println(sdlen_single.value, DEC);
  8892. // Print the content of the buffer line.
  8893. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8894. SERIAL_ECHOPGM("Buffer line (from file): ");
  8895. MYSERIAL.println(int(iline), DEC);
  8896. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8897. MYSERIAL.print(char(card.get()));
  8898. if (-- _buflen == 0)
  8899. break;
  8900. // First skip the current command ID and iterate up to the end of the string.
  8901. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8902. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8903. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8904. // If the end of the buffer was empty,
  8905. if (_bufindr == sizeof(cmdbuffer)) {
  8906. // skip to the start and find the nonzero command.
  8907. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8908. }
  8909. }
  8910. }
  8911. #endif
  8912. // save the global state at planning time
  8913. if (blocks_queued())
  8914. {
  8915. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  8916. saved_feedrate2 = current_block->gcode_feedrate;
  8917. }
  8918. else
  8919. {
  8920. saved_target[0] = SAVED_TARGET_UNSET;
  8921. saved_feedrate2 = feedrate;
  8922. }
  8923. planner_abort_hard(); //abort printing
  8924. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8925. saved_feedmultiply2 = feedmultiply; //save feedmultiply
  8926. saved_active_extruder = active_extruder; //save active_extruder
  8927. saved_extruder_temperature = degTargetHotend(active_extruder);
  8928. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8929. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8930. saved_fanSpeed = fanSpeed;
  8931. cmdqueue_reset(); //empty cmdqueue
  8932. card.sdprinting = false;
  8933. // card.closefile();
  8934. saved_printing = true;
  8935. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8936. st_reset_timer();
  8937. sei();
  8938. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8939. #if 1
  8940. // Rather than calling plan_buffer_line directly, push the move into the command queue so that
  8941. // the caller can continue processing. This is used during powerpanic to save the state as we
  8942. // move away from the print.
  8943. char buf[48];
  8944. // First unretract (relative extrusion)
  8945. if(!saved_extruder_relative_mode){
  8946. enquecommand(PSTR("M83"), true);
  8947. }
  8948. //retract 45mm/s
  8949. // A single sprintf may not be faster, but is definitely 20B shorter
  8950. // than a sequence of commands building the string piece by piece
  8951. // A snprintf would have been a safer call, but since it is not used
  8952. // in the whole program, its implementation would bring more bytes to the total size
  8953. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  8954. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  8955. enquecommand(buf, false);
  8956. // Then lift Z axis
  8957. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  8958. // At this point the command queue is empty.
  8959. enquecommand(buf, false);
  8960. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8961. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8962. repeatcommand_front();
  8963. #else
  8964. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8965. st_synchronize(); //wait moving
  8966. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8967. memcpy(destination, current_position, sizeof(destination));
  8968. #endif
  8969. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  8970. }
  8971. }
  8972. //! @brief Restore print from ram
  8973. //!
  8974. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  8975. //! print fan speed, waits for extruder temperature restore, then restores
  8976. //! position and continues print moves.
  8977. //!
  8978. //! Internally lcd_update() is called by wait_for_heater().
  8979. //!
  8980. //! @param e_move
  8981. void restore_print_from_ram_and_continue(float e_move)
  8982. {
  8983. if (!saved_printing) return;
  8984. #ifdef FANCHECK
  8985. // Do not allow resume printing if fans are still not ok
  8986. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  8987. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  8988. #endif
  8989. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8990. // current_position[axis] = st_get_position_mm(axis);
  8991. active_extruder = saved_active_extruder; //restore active_extruder
  8992. fanSpeed = saved_fanSpeed;
  8993. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  8994. {
  8995. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8996. heating_status = 1;
  8997. wait_for_heater(_millis(), saved_active_extruder);
  8998. heating_status = 2;
  8999. }
  9000. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  9001. float e = saved_pos[E_AXIS] - e_move;
  9002. plan_set_e_position(e);
  9003. #ifdef FANCHECK
  9004. fans_check_enabled = false;
  9005. #endif
  9006. //first move print head in XY to the saved position:
  9007. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  9008. st_synchronize();
  9009. //then move Z
  9010. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  9011. st_synchronize();
  9012. //and finaly unretract (35mm/s)
  9013. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  9014. st_synchronize();
  9015. #ifdef FANCHECK
  9016. fans_check_enabled = true;
  9017. #endif
  9018. // restore original feedrate/feedmultiply _after_ restoring the extruder position
  9019. feedrate = saved_feedrate2;
  9020. feedmultiply = saved_feedmultiply2;
  9021. memcpy(current_position, saved_pos, sizeof(saved_pos));
  9022. memcpy(destination, current_position, sizeof(destination));
  9023. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  9024. card.setIndex(saved_sdpos);
  9025. sdpos_atomic = saved_sdpos;
  9026. card.sdprinting = true;
  9027. }
  9028. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  9029. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  9030. serial_count = 0;
  9031. FlushSerialRequestResend();
  9032. }
  9033. else {
  9034. //not sd printing nor usb printing
  9035. }
  9036. SERIAL_PROTOCOLLNRPGM(MSG_OK); //dummy response because of octoprint is waiting for this
  9037. lcd_setstatuspgm(_T(WELCOME_MSG));
  9038. saved_printing_type = PRINTING_TYPE_NONE;
  9039. saved_printing = false;
  9040. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  9041. }
  9042. // Cancel the state related to a currently saved print
  9043. void cancel_saved_printing()
  9044. {
  9045. saved_target[0] = SAVED_TARGET_UNSET;
  9046. saved_printing_type = PRINTING_TYPE_NONE;
  9047. saved_printing = false;
  9048. }
  9049. void print_world_coordinates()
  9050. {
  9051. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  9052. }
  9053. void print_physical_coordinates()
  9054. {
  9055. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  9056. }
  9057. void print_mesh_bed_leveling_table()
  9058. {
  9059. SERIAL_ECHOPGM("mesh bed leveling: ");
  9060. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  9061. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  9062. MYSERIAL.print(mbl.z_values[y][x], 3);
  9063. SERIAL_ECHOPGM(" ");
  9064. }
  9065. SERIAL_ECHOLNPGM("");
  9066. }
  9067. uint16_t print_time_remaining() {
  9068. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  9069. #ifdef TMC2130
  9070. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  9071. else print_t = print_time_remaining_silent;
  9072. #else
  9073. print_t = print_time_remaining_normal;
  9074. #endif //TMC2130
  9075. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  9076. return print_t;
  9077. }
  9078. uint8_t calc_percent_done()
  9079. {
  9080. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  9081. uint8_t percent_done = 0;
  9082. #ifdef TMC2130
  9083. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  9084. percent_done = print_percent_done_normal;
  9085. }
  9086. else if (print_percent_done_silent <= 100) {
  9087. percent_done = print_percent_done_silent;
  9088. }
  9089. #else
  9090. if (print_percent_done_normal <= 100) {
  9091. percent_done = print_percent_done_normal;
  9092. }
  9093. #endif //TMC2130
  9094. else {
  9095. percent_done = card.percentDone();
  9096. }
  9097. return percent_done;
  9098. }
  9099. static void print_time_remaining_init()
  9100. {
  9101. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  9102. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  9103. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  9104. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  9105. }
  9106. void load_filament_final_feed()
  9107. {
  9108. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  9109. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  9110. }
  9111. //! @brief Wait for user to check the state
  9112. //! @par nozzle_temp nozzle temperature to load filament
  9113. void M600_check_state(float nozzle_temp)
  9114. {
  9115. lcd_change_fil_state = 0;
  9116. while (lcd_change_fil_state != 1)
  9117. {
  9118. lcd_change_fil_state = 0;
  9119. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9120. lcd_alright();
  9121. KEEPALIVE_STATE(IN_HANDLER);
  9122. switch(lcd_change_fil_state)
  9123. {
  9124. // Filament failed to load so load it again
  9125. case 2:
  9126. if (mmu_enabled)
  9127. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  9128. else
  9129. M600_load_filament_movements();
  9130. break;
  9131. // Filament loaded properly but color is not clear
  9132. case 3:
  9133. st_synchronize();
  9134. load_filament_final_feed();
  9135. lcd_loading_color();
  9136. st_synchronize();
  9137. break;
  9138. // Everything good
  9139. default:
  9140. lcd_change_success();
  9141. break;
  9142. }
  9143. }
  9144. }
  9145. //! @brief Wait for user action
  9146. //!
  9147. //! Beep, manage nozzle heater and wait for user to start unload filament
  9148. //! If times out, active extruder temperature is set to 0.
  9149. //!
  9150. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  9151. void M600_wait_for_user(float HotendTempBckp) {
  9152. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9153. int counterBeep = 0;
  9154. unsigned long waiting_start_time = _millis();
  9155. uint8_t wait_for_user_state = 0;
  9156. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9157. bool bFirst=true;
  9158. while (!(wait_for_user_state == 0 && lcd_clicked())){
  9159. manage_heater();
  9160. manage_inactivity(true);
  9161. #if BEEPER > 0
  9162. if (counterBeep == 500) {
  9163. counterBeep = 0;
  9164. }
  9165. SET_OUTPUT(BEEPER);
  9166. if (counterBeep == 0) {
  9167. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  9168. {
  9169. bFirst=false;
  9170. WRITE(BEEPER, HIGH);
  9171. }
  9172. }
  9173. if (counterBeep == 20) {
  9174. WRITE(BEEPER, LOW);
  9175. }
  9176. counterBeep++;
  9177. #endif //BEEPER > 0
  9178. switch (wait_for_user_state) {
  9179. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  9180. delay_keep_alive(4);
  9181. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  9182. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  9183. wait_for_user_state = 1;
  9184. setAllTargetHotends(0);
  9185. st_synchronize();
  9186. disable_e0();
  9187. disable_e1();
  9188. disable_e2();
  9189. }
  9190. break;
  9191. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  9192. delay_keep_alive(4);
  9193. if (lcd_clicked()) {
  9194. setTargetHotend(HotendTempBckp, active_extruder);
  9195. lcd_wait_for_heater();
  9196. wait_for_user_state = 2;
  9197. }
  9198. break;
  9199. case 2: //waiting for nozzle to reach target temperature
  9200. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  9201. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9202. waiting_start_time = _millis();
  9203. wait_for_user_state = 0;
  9204. }
  9205. else {
  9206. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  9207. lcd_set_cursor(1, 4);
  9208. lcd_print(ftostr3(degHotend(active_extruder)));
  9209. }
  9210. break;
  9211. }
  9212. }
  9213. WRITE(BEEPER, LOW);
  9214. }
  9215. void M600_load_filament_movements()
  9216. {
  9217. #ifdef SNMM
  9218. display_loading();
  9219. do
  9220. {
  9221. current_position[E_AXIS] += 0.002;
  9222. plan_buffer_line_curposXYZE(500, active_extruder);
  9223. delay_keep_alive(2);
  9224. }
  9225. while (!lcd_clicked());
  9226. st_synchronize();
  9227. current_position[E_AXIS] += bowden_length[mmu_extruder];
  9228. plan_buffer_line_curposXYZE(3000, active_extruder);
  9229. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  9230. plan_buffer_line_curposXYZE(1400, active_extruder);
  9231. current_position[E_AXIS] += 40;
  9232. plan_buffer_line_curposXYZE(400, active_extruder);
  9233. current_position[E_AXIS] += 10;
  9234. plan_buffer_line_curposXYZE(50, active_extruder);
  9235. #else
  9236. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  9237. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  9238. #endif
  9239. load_filament_final_feed();
  9240. lcd_loading_filament();
  9241. st_synchronize();
  9242. }
  9243. void M600_load_filament() {
  9244. //load filament for single material and SNMM
  9245. lcd_wait_interact();
  9246. //load_filament_time = _millis();
  9247. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9248. #ifdef PAT9125
  9249. fsensor_autoload_check_start();
  9250. #endif //PAT9125
  9251. while(!lcd_clicked())
  9252. {
  9253. manage_heater();
  9254. manage_inactivity(true);
  9255. #ifdef FILAMENT_SENSOR
  9256. if (fsensor_check_autoload())
  9257. {
  9258. Sound_MakeCustom(50,1000,false);
  9259. break;
  9260. }
  9261. #endif //FILAMENT_SENSOR
  9262. }
  9263. #ifdef PAT9125
  9264. fsensor_autoload_check_stop();
  9265. #endif //PAT9125
  9266. KEEPALIVE_STATE(IN_HANDLER);
  9267. #ifdef FSENSOR_QUALITY
  9268. fsensor_oq_meassure_start(70);
  9269. #endif //FSENSOR_QUALITY
  9270. M600_load_filament_movements();
  9271. Sound_MakeCustom(50,1000,false);
  9272. #ifdef FSENSOR_QUALITY
  9273. fsensor_oq_meassure_stop();
  9274. if (!fsensor_oq_result())
  9275. {
  9276. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  9277. lcd_update_enable(true);
  9278. lcd_update(2);
  9279. if (disable)
  9280. fsensor_disable();
  9281. }
  9282. #endif //FSENSOR_QUALITY
  9283. lcd_update_enable(false);
  9284. }
  9285. //! @brief Wait for click
  9286. //!
  9287. //! Set
  9288. void marlin_wait_for_click()
  9289. {
  9290. int8_t busy_state_backup = busy_state;
  9291. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9292. lcd_consume_click();
  9293. while(!lcd_clicked())
  9294. {
  9295. manage_heater();
  9296. manage_inactivity(true);
  9297. lcd_update(0);
  9298. }
  9299. KEEPALIVE_STATE(busy_state_backup);
  9300. }
  9301. #define FIL_LOAD_LENGTH 60
  9302. #ifdef PSU_Delta
  9303. bool bEnableForce_z;
  9304. void init_force_z()
  9305. {
  9306. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  9307. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  9308. disable_force_z();
  9309. }
  9310. void check_force_z()
  9311. {
  9312. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  9313. init_force_z(); // causes enforced switching into disable-state
  9314. }
  9315. void disable_force_z()
  9316. {
  9317. uint16_t z_microsteps=0;
  9318. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  9319. bEnableForce_z=false;
  9320. // switching to silent mode
  9321. #ifdef TMC2130
  9322. tmc2130_mode=TMC2130_MODE_SILENT;
  9323. update_mode_profile();
  9324. tmc2130_init(true);
  9325. #endif // TMC2130
  9326. axis_known_position[Z_AXIS]=false;
  9327. }
  9328. void enable_force_z()
  9329. {
  9330. if(bEnableForce_z)
  9331. return; // motor already enabled (may be ;-p )
  9332. bEnableForce_z=true;
  9333. // mode recovering
  9334. #ifdef TMC2130
  9335. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  9336. update_mode_profile();
  9337. tmc2130_init(true);
  9338. #endif // TMC2130
  9339. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  9340. }
  9341. #endif // PSU_Delta