Marlin_main.cpp 390 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #include "config.h"
  48. #ifdef ENABLE_AUTO_BED_LEVELING
  49. #include "vector_3.h"
  50. #ifdef AUTO_BED_LEVELING_GRID
  51. #include "qr_solve.h"
  52. #endif
  53. #endif // ENABLE_AUTO_BED_LEVELING
  54. #ifdef MESH_BED_LEVELING
  55. #include "mesh_bed_leveling.h"
  56. #include "mesh_bed_calibration.h"
  57. #endif
  58. #include "printers.h"
  59. #include "menu.h"
  60. #include "ultralcd.h"
  61. #include "backlight.h"
  62. #include "planner.h"
  63. #include "stepper.h"
  64. #include "temperature.h"
  65. #include "motion_control.h"
  66. #include "cardreader.h"
  67. #include "ConfigurationStore.h"
  68. #include "language.h"
  69. #include "pins_arduino.h"
  70. #include "math.h"
  71. #include "util.h"
  72. #include "Timer.h"
  73. #include <avr/wdt.h>
  74. #include <avr/pgmspace.h>
  75. #include "Dcodes.h"
  76. #include "AutoDeplete.h"
  77. #ifndef LA_NOCOMPAT
  78. #include "la10compat.h"
  79. #endif
  80. #ifdef SWSPI
  81. #include "swspi.h"
  82. #endif //SWSPI
  83. #include "spi.h"
  84. #ifdef SWI2C
  85. #include "swi2c.h"
  86. #endif //SWI2C
  87. #ifdef FILAMENT_SENSOR
  88. #include "fsensor.h"
  89. #endif //FILAMENT_SENSOR
  90. #ifdef TMC2130
  91. #include "tmc2130.h"
  92. #endif //TMC2130
  93. #ifdef W25X20CL
  94. #include "w25x20cl.h"
  95. #include "optiboot_w25x20cl.h"
  96. #endif //W25X20CL
  97. #ifdef BLINKM
  98. #include "BlinkM.h"
  99. #include "Wire.h"
  100. #endif
  101. #ifdef ULTRALCD
  102. #include "ultralcd.h"
  103. #endif
  104. #if NUM_SERVOS > 0
  105. #include "Servo.h"
  106. #endif
  107. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  108. #include <SPI.h>
  109. #endif
  110. #include "mmu.h"
  111. #define VERSION_STRING "1.0.2"
  112. #include "ultralcd.h"
  113. #include "sound.h"
  114. #include "cmdqueue.h"
  115. #include "io_atmega2560.h"
  116. // Macros for bit masks
  117. #define BIT(b) (1<<(b))
  118. #define TEST(n,b) (((n)&BIT(b))!=0)
  119. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  120. //Macro for print fan speed
  121. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  122. //filament types
  123. #define FILAMENT_DEFAULT 0
  124. #define FILAMENT_FLEX 1
  125. #define FILAMENT_PVA 2
  126. #define FILAMENT_UNDEFINED 255
  127. //Stepper Movement Variables
  128. //===========================================================================
  129. //=============================imported variables============================
  130. //===========================================================================
  131. //===========================================================================
  132. //=============================public variables=============================
  133. //===========================================================================
  134. #ifdef SDSUPPORT
  135. CardReader card;
  136. #endif
  137. unsigned long PingTime = _millis();
  138. unsigned long NcTime;
  139. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  140. //used for PINDA temp calibration and pause print
  141. #define DEFAULT_RETRACTION 1
  142. #define DEFAULT_RETRACTION_MM 4 //MM
  143. float default_retraction = DEFAULT_RETRACTION;
  144. float homing_feedrate[] = HOMING_FEEDRATE;
  145. //Although this flag and many others like this could be represented with a struct/bitfield for each axis (more readable and efficient code), the implementation
  146. //would not be standard across all platforms. That being said, the code will continue to use bitmasks for independent axis.
  147. //Moreover, according to C/C++ standard, the ordering of bits is platform/compiler dependent and the compiler is allowed to align the bits arbitrarily,
  148. //thus bit operations like shifting and masking may stop working and will be very hard to fix.
  149. uint8_t axis_relative_modes = 0;
  150. int feedmultiply=100; //100->1 200->2
  151. int extrudemultiply=100; //100->1 200->2
  152. int extruder_multiply[EXTRUDERS] = {100
  153. #if EXTRUDERS > 1
  154. , 100
  155. #if EXTRUDERS > 2
  156. , 100
  157. #endif
  158. #endif
  159. };
  160. int bowden_length[4] = {385, 385, 385, 385};
  161. bool is_usb_printing = false;
  162. bool homing_flag = false;
  163. unsigned long kicktime = _millis()+100000;
  164. unsigned int usb_printing_counter;
  165. int8_t lcd_change_fil_state = 0;
  166. unsigned long pause_time = 0;
  167. unsigned long start_pause_print = _millis();
  168. unsigned long t_fan_rising_edge = _millis();
  169. LongTimer safetyTimer;
  170. static LongTimer crashDetTimer;
  171. //unsigned long load_filament_time;
  172. bool mesh_bed_leveling_flag = false;
  173. bool mesh_bed_run_from_menu = false;
  174. bool prusa_sd_card_upload = false;
  175. unsigned int status_number = 0;
  176. unsigned long total_filament_used;
  177. unsigned int heating_status;
  178. unsigned int heating_status_counter;
  179. bool loading_flag = false;
  180. char snmm_filaments_used = 0;
  181. bool fan_state[2];
  182. int fan_edge_counter[2];
  183. int fan_speed[2];
  184. char dir_names[3][9];
  185. bool sortAlpha = false;
  186. float extruder_multiplier[EXTRUDERS] = {1.0
  187. #if EXTRUDERS > 1
  188. , 1.0
  189. #if EXTRUDERS > 2
  190. , 1.0
  191. #endif
  192. #endif
  193. };
  194. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  195. //shortcuts for more readable code
  196. #define _x current_position[X_AXIS]
  197. #define _y current_position[Y_AXIS]
  198. #define _z current_position[Z_AXIS]
  199. #define _e current_position[E_AXIS]
  200. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  201. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  202. bool axis_known_position[3] = {false, false, false};
  203. // Extruder offset
  204. #if EXTRUDERS > 1
  205. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  206. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  207. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  208. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  209. #endif
  210. };
  211. #endif
  212. uint8_t active_extruder = 0;
  213. int fanSpeed=0;
  214. #ifdef FWRETRACT
  215. bool retracted[EXTRUDERS]={false
  216. #if EXTRUDERS > 1
  217. , false
  218. #if EXTRUDERS > 2
  219. , false
  220. #endif
  221. #endif
  222. };
  223. bool retracted_swap[EXTRUDERS]={false
  224. #if EXTRUDERS > 1
  225. , false
  226. #if EXTRUDERS > 2
  227. , false
  228. #endif
  229. #endif
  230. };
  231. float retract_length_swap = RETRACT_LENGTH_SWAP;
  232. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  233. #endif
  234. #ifdef PS_DEFAULT_OFF
  235. bool powersupply = false;
  236. #else
  237. bool powersupply = true;
  238. #endif
  239. bool cancel_heatup = false ;
  240. int8_t busy_state = NOT_BUSY;
  241. static long prev_busy_signal_ms = -1;
  242. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  243. const char errormagic[] PROGMEM = "Error:";
  244. const char echomagic[] PROGMEM = "echo:";
  245. bool no_response = false;
  246. uint8_t important_status;
  247. uint8_t saved_filament_type;
  248. #define SAVED_TARGET_UNSET (X_MIN_POS-1)
  249. float saved_target[NUM_AXIS] = {SAVED_TARGET_UNSET, 0, 0, 0};
  250. // save/restore printing in case that mmu was not responding
  251. bool mmu_print_saved = false;
  252. // storing estimated time to end of print counted by slicer
  253. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  254. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  255. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  256. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  257. //===========================================================================
  258. //=============================Private Variables=============================
  259. //===========================================================================
  260. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  261. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  262. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  263. // For tracing an arc
  264. static float offset[3] = {0.0, 0.0, 0.0};
  265. // Current feedrate
  266. float feedrate = 1500.0;
  267. // Feedrate for the next move
  268. static float next_feedrate;
  269. // Original feedrate saved during homing moves
  270. static float saved_feedrate;
  271. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  272. //static float tt = 0;
  273. //static float bt = 0;
  274. //Inactivity shutdown variables
  275. static unsigned long previous_millis_cmd = 0;
  276. unsigned long max_inactive_time = 0;
  277. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  278. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  279. unsigned long starttime=0;
  280. unsigned long stoptime=0;
  281. unsigned long _usb_timer = 0;
  282. bool Stopped=false;
  283. #if NUM_SERVOS > 0
  284. Servo servos[NUM_SERVOS];
  285. #endif
  286. bool target_direction;
  287. //Insert variables if CHDK is defined
  288. #ifdef CHDK
  289. unsigned long chdkHigh = 0;
  290. boolean chdkActive = false;
  291. #endif
  292. //! @name RAM save/restore printing
  293. //! @{
  294. bool saved_printing = false; //!< Print is paused and saved in RAM
  295. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  296. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  297. static float saved_pos[4] = { 0, 0, 0, 0 };
  298. static uint16_t saved_feedrate2 = 0; //!< Default feedrate (truncated from float)
  299. static int saved_feedmultiply2 = 0;
  300. static uint8_t saved_active_extruder = 0;
  301. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  302. static bool saved_extruder_relative_mode = false;
  303. static int saved_fanSpeed = 0; //!< Print fan speed
  304. //! @}
  305. static int saved_feedmultiply_mm = 100;
  306. #ifdef AUTO_REPORT_TEMPERATURES
  307. static LongTimer auto_report_temp_timer;
  308. static uint8_t auto_report_temp_period = 0;
  309. #endif //AUTO_REPORT_TEMPERATURES
  310. //===========================================================================
  311. //=============================Routines======================================
  312. //===========================================================================
  313. static void get_arc_coordinates();
  314. static bool setTargetedHotend(int code, uint8_t &extruder);
  315. static void print_time_remaining_init();
  316. static void wait_for_heater(long codenum, uint8_t extruder);
  317. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  318. static void gcode_M115(uint8_t extruder);
  319. static void temp_compensation_start();
  320. static void temp_compensation_apply();
  321. uint16_t gcode_in_progress = 0;
  322. uint16_t mcode_in_progress = 0;
  323. void serial_echopair_P(const char *s_P, float v)
  324. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  325. void serial_echopair_P(const char *s_P, double v)
  326. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  327. void serial_echopair_P(const char *s_P, unsigned long v)
  328. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  329. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  330. {
  331. #if 0
  332. char ch=pgm_read_byte(str);
  333. while(ch)
  334. {
  335. MYSERIAL.write(ch);
  336. ch=pgm_read_byte(++str);
  337. }
  338. #else
  339. // hmm, same size as the above version, the compiler did a good job optimizing the above
  340. while( uint8_t ch = pgm_read_byte(str) ){
  341. MYSERIAL.write((char)ch);
  342. ++str;
  343. }
  344. #endif
  345. }
  346. #ifdef SDSUPPORT
  347. #include "SdFatUtil.h"
  348. int freeMemory() { return SdFatUtil::FreeRam(); }
  349. #else
  350. extern "C" {
  351. extern unsigned int __bss_end;
  352. extern unsigned int __heap_start;
  353. extern void *__brkval;
  354. int freeMemory() {
  355. int free_memory;
  356. if ((int)__brkval == 0)
  357. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  358. else
  359. free_memory = ((int)&free_memory) - ((int)__brkval);
  360. return free_memory;
  361. }
  362. }
  363. #endif //!SDSUPPORT
  364. void setup_killpin()
  365. {
  366. #if defined(KILL_PIN) && KILL_PIN > -1
  367. SET_INPUT(KILL_PIN);
  368. WRITE(KILL_PIN,HIGH);
  369. #endif
  370. }
  371. // Set home pin
  372. void setup_homepin(void)
  373. {
  374. #if defined(HOME_PIN) && HOME_PIN > -1
  375. SET_INPUT(HOME_PIN);
  376. WRITE(HOME_PIN,HIGH);
  377. #endif
  378. }
  379. void setup_photpin()
  380. {
  381. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  382. SET_OUTPUT(PHOTOGRAPH_PIN);
  383. WRITE(PHOTOGRAPH_PIN, LOW);
  384. #endif
  385. }
  386. void setup_powerhold()
  387. {
  388. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  389. SET_OUTPUT(SUICIDE_PIN);
  390. WRITE(SUICIDE_PIN, HIGH);
  391. #endif
  392. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  393. SET_OUTPUT(PS_ON_PIN);
  394. #if defined(PS_DEFAULT_OFF)
  395. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  396. #else
  397. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  398. #endif
  399. #endif
  400. }
  401. void suicide()
  402. {
  403. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  404. SET_OUTPUT(SUICIDE_PIN);
  405. WRITE(SUICIDE_PIN, LOW);
  406. #endif
  407. }
  408. void servo_init()
  409. {
  410. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  411. servos[0].attach(SERVO0_PIN);
  412. #endif
  413. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  414. servos[1].attach(SERVO1_PIN);
  415. #endif
  416. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  417. servos[2].attach(SERVO2_PIN);
  418. #endif
  419. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  420. servos[3].attach(SERVO3_PIN);
  421. #endif
  422. #if (NUM_SERVOS >= 5)
  423. #error "TODO: enter initalisation code for more servos"
  424. #endif
  425. }
  426. bool fans_check_enabled = true;
  427. #ifdef TMC2130
  428. void crashdet_stop_and_save_print()
  429. {
  430. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  431. }
  432. void crashdet_restore_print_and_continue()
  433. {
  434. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  435. // babystep_apply();
  436. }
  437. void crashdet_stop_and_save_print2()
  438. {
  439. cli();
  440. planner_abort_hard(); //abort printing
  441. cmdqueue_reset(); //empty cmdqueue
  442. card.sdprinting = false;
  443. card.closefile();
  444. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  445. st_reset_timer();
  446. sei();
  447. }
  448. void crashdet_detected(uint8_t mask)
  449. {
  450. st_synchronize();
  451. static uint8_t crashDet_counter = 0;
  452. bool automatic_recovery_after_crash = true;
  453. if (crashDet_counter++ == 0) {
  454. crashDetTimer.start();
  455. }
  456. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  457. crashDetTimer.stop();
  458. crashDet_counter = 0;
  459. }
  460. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  461. automatic_recovery_after_crash = false;
  462. crashDetTimer.stop();
  463. crashDet_counter = 0;
  464. }
  465. else {
  466. crashDetTimer.start();
  467. }
  468. lcd_update_enable(true);
  469. lcd_clear();
  470. lcd_update(2);
  471. if (mask & X_AXIS_MASK)
  472. {
  473. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  474. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  475. }
  476. if (mask & Y_AXIS_MASK)
  477. {
  478. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  479. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  480. }
  481. lcd_update_enable(true);
  482. lcd_update(2);
  483. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  484. gcode_G28(true, true, false); //home X and Y
  485. st_synchronize();
  486. if (automatic_recovery_after_crash) {
  487. enquecommand_P(PSTR("CRASH_RECOVER"));
  488. }else{
  489. setTargetHotend(0, active_extruder);
  490. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  491. lcd_update_enable(true);
  492. if (yesno)
  493. {
  494. enquecommand_P(PSTR("CRASH_RECOVER"));
  495. }
  496. else
  497. {
  498. enquecommand_P(PSTR("CRASH_CANCEL"));
  499. }
  500. }
  501. }
  502. void crashdet_recover()
  503. {
  504. crashdet_restore_print_and_continue();
  505. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  506. }
  507. void crashdet_cancel()
  508. {
  509. saved_printing = false;
  510. tmc2130_sg_stop_on_crash = true;
  511. if (saved_printing_type == PRINTING_TYPE_SD) {
  512. lcd_print_stop();
  513. }else if(saved_printing_type == PRINTING_TYPE_USB){
  514. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  515. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  516. }
  517. }
  518. #endif //TMC2130
  519. void failstats_reset_print()
  520. {
  521. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  522. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  523. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  524. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  525. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  526. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  527. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  528. fsensor_softfail = 0;
  529. #endif
  530. }
  531. #ifdef MESH_BED_LEVELING
  532. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  533. #endif
  534. // Factory reset function
  535. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  536. // Level input parameter sets depth of reset
  537. int er_progress = 0;
  538. static void factory_reset(char level)
  539. {
  540. lcd_clear();
  541. switch (level) {
  542. // Level 0: Language reset
  543. case 0:
  544. Sound_MakeCustom(100,0,false);
  545. lang_reset();
  546. break;
  547. //Level 1: Reset statistics
  548. case 1:
  549. Sound_MakeCustom(100,0,false);
  550. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  551. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  552. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  553. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  554. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  555. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  556. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  557. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  558. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  559. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  560. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  561. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  562. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  563. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  564. lcd_menu_statistics();
  565. break;
  566. // Level 2: Prepare for shipping
  567. case 2:
  568. //lcd_puts_P(PSTR("Factory RESET"));
  569. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  570. // Force language selection at the next boot up.
  571. lang_reset();
  572. // Force the "Follow calibration flow" message at the next boot up.
  573. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  574. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  575. farm_no = 0;
  576. farm_mode = false;
  577. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  578. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  579. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  580. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  581. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  582. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  583. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  584. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  585. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  586. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  587. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  588. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  589. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  590. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  591. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  592. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  593. #ifdef FILAMENT_SENSOR
  594. fsensor_enable();
  595. fsensor_autoload_set(true);
  596. #endif //FILAMENT_SENSOR
  597. Sound_MakeCustom(100,0,false);
  598. //_delay_ms(2000);
  599. break;
  600. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  601. case 3:
  602. lcd_puts_P(PSTR("Factory RESET"));
  603. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  604. Sound_MakeCustom(100,0,false);
  605. er_progress = 0;
  606. lcd_puts_at_P(3, 3, PSTR(" "));
  607. lcd_set_cursor(3, 3);
  608. lcd_print(er_progress);
  609. // Erase EEPROM
  610. for (int i = 0; i < 4096; i++) {
  611. eeprom_update_byte((uint8_t*)i, 0xFF);
  612. if (i % 41 == 0) {
  613. er_progress++;
  614. lcd_puts_at_P(3, 3, PSTR(" "));
  615. lcd_set_cursor(3, 3);
  616. lcd_print(er_progress);
  617. lcd_puts_P(PSTR("%"));
  618. }
  619. }
  620. break;
  621. case 4:
  622. bowden_menu();
  623. break;
  624. default:
  625. break;
  626. }
  627. }
  628. extern "C" {
  629. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  630. }
  631. int uart_putchar(char c, FILE *)
  632. {
  633. MYSERIAL.write(c);
  634. return 0;
  635. }
  636. void lcd_splash()
  637. {
  638. lcd_clear(); // clears display and homes screen
  639. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  640. }
  641. void factory_reset()
  642. {
  643. KEEPALIVE_STATE(PAUSED_FOR_USER);
  644. if (!READ(BTN_ENC))
  645. {
  646. _delay_ms(1000);
  647. if (!READ(BTN_ENC))
  648. {
  649. lcd_clear();
  650. lcd_puts_P(PSTR("Factory RESET"));
  651. SET_OUTPUT(BEEPER);
  652. if(eSoundMode!=e_SOUND_MODE_SILENT)
  653. WRITE(BEEPER, HIGH);
  654. while (!READ(BTN_ENC));
  655. WRITE(BEEPER, LOW);
  656. _delay_ms(2000);
  657. char level = reset_menu();
  658. factory_reset(level);
  659. switch (level) {
  660. case 0: _delay_ms(0); break;
  661. case 1: _delay_ms(0); break;
  662. case 2: _delay_ms(0); break;
  663. case 3: _delay_ms(0); break;
  664. }
  665. }
  666. }
  667. KEEPALIVE_STATE(IN_HANDLER);
  668. }
  669. void show_fw_version_warnings() {
  670. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  671. switch (FW_DEV_VERSION) {
  672. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  673. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  674. case(FW_VERSION_DEVEL):
  675. case(FW_VERSION_DEBUG):
  676. lcd_update_enable(false);
  677. lcd_clear();
  678. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  679. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  680. #else
  681. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  682. #endif
  683. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  684. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  685. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  686. lcd_wait_for_click();
  687. break;
  688. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  689. }
  690. lcd_update_enable(true);
  691. }
  692. //! @brief try to check if firmware is on right type of printer
  693. static void check_if_fw_is_on_right_printer(){
  694. #ifdef FILAMENT_SENSOR
  695. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  696. #ifdef IR_SENSOR
  697. swi2c_init();
  698. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  699. if (pat9125_detected){
  700. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}////c=20 r=3
  701. #endif //IR_SENSOR
  702. #ifdef PAT9125
  703. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  704. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  705. if (ir_detected){
  706. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}////c=20 r=3
  707. #endif //PAT9125
  708. }
  709. #endif //FILAMENT_SENSOR
  710. }
  711. uint8_t check_printer_version()
  712. {
  713. uint8_t version_changed = 0;
  714. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  715. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  716. if (printer_type != PRINTER_TYPE) {
  717. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  718. else version_changed |= 0b10;
  719. }
  720. if (motherboard != MOTHERBOARD) {
  721. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  722. else version_changed |= 0b01;
  723. }
  724. return version_changed;
  725. }
  726. #ifdef BOOTAPP
  727. #include "bootapp.h" //bootloader support
  728. #endif //BOOTAPP
  729. #if (LANG_MODE != 0) //secondary language support
  730. #ifdef W25X20CL
  731. // language update from external flash
  732. #define LANGBOOT_BLOCKSIZE 0x1000u
  733. #define LANGBOOT_RAMBUFFER 0x0800
  734. void update_sec_lang_from_external_flash()
  735. {
  736. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  737. {
  738. uint8_t lang = boot_reserved >> 4;
  739. uint8_t state = boot_reserved & 0xf;
  740. lang_table_header_t header;
  741. uint32_t src_addr;
  742. if (lang_get_header(lang, &header, &src_addr))
  743. {
  744. lcd_puts_at_P(1,3,PSTR("Language update."));
  745. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  746. _delay(100);
  747. boot_reserved = (state + 1) | (lang << 4);
  748. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  749. {
  750. cli();
  751. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  752. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  753. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  754. if (state == 0)
  755. {
  756. //TODO - check header integrity
  757. }
  758. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  759. }
  760. else
  761. {
  762. //TODO - check sec lang data integrity
  763. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  764. }
  765. }
  766. }
  767. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  768. }
  769. #ifdef DEBUG_W25X20CL
  770. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  771. {
  772. lang_table_header_t header;
  773. uint8_t count = 0;
  774. uint32_t addr = 0x00000;
  775. while (1)
  776. {
  777. printf_P(_n("LANGTABLE%d:"), count);
  778. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  779. if (header.magic != LANG_MAGIC)
  780. {
  781. printf_P(_n("NG!\n"));
  782. break;
  783. }
  784. printf_P(_n("OK\n"));
  785. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  786. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  787. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  788. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  789. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  790. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  791. addr += header.size;
  792. codes[count] = header.code;
  793. count ++;
  794. }
  795. return count;
  796. }
  797. void list_sec_lang_from_external_flash()
  798. {
  799. uint16_t codes[8];
  800. uint8_t count = lang_xflash_enum_codes(codes);
  801. printf_P(_n("XFlash lang count = %hhd\n"), count);
  802. }
  803. #endif //DEBUG_W25X20CL
  804. #endif //W25X20CL
  805. #endif //(LANG_MODE != 0)
  806. static void w25x20cl_err_msg()
  807. {
  808. lcd_clear();
  809. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  810. }
  811. // "Setup" function is called by the Arduino framework on startup.
  812. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  813. // are initialized by the main() routine provided by the Arduino framework.
  814. void setup()
  815. {
  816. mmu_init();
  817. ultralcd_init();
  818. spi_init();
  819. lcd_splash();
  820. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  821. selectedSerialPort = eeprom_read_byte((uint8_t *)EEPROM_SECOND_SERIAL_ACTIVE);
  822. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  823. eeprom_update_byte((uint8_t *)EEPROM_SECOND_SERIAL_ACTIVE, selectedSerialPort);
  824. MYSERIAL.begin(BAUDRATE);
  825. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  826. stdout = uartout;
  827. #ifdef W25X20CL
  828. bool w25x20cl_success = w25x20cl_init();
  829. uint8_t optiboot_status = 1;
  830. if (w25x20cl_success)
  831. {
  832. optiboot_status = optiboot_w25x20cl_enter();
  833. #if (LANG_MODE != 0) //secondary language support
  834. update_sec_lang_from_external_flash();
  835. #endif //(LANG_MODE != 0)
  836. }
  837. else
  838. {
  839. w25x20cl_err_msg();
  840. }
  841. #else
  842. const bool w25x20cl_success = true;
  843. #endif //W25X20CL
  844. setup_killpin();
  845. setup_powerhold();
  846. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  847. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  848. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  849. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  850. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  851. if (farm_mode)
  852. {
  853. no_response = true; //we need confirmation by recieving PRUSA thx
  854. important_status = 8;
  855. prusa_statistics(8);
  856. selectedSerialPort = 1;
  857. MYSERIAL.begin(BAUDRATE);
  858. #ifdef TMC2130
  859. //increased extruder current (PFW363)
  860. tmc2130_current_h[E_AXIS] = 36;
  861. tmc2130_current_r[E_AXIS] = 36;
  862. #endif //TMC2130
  863. #ifdef FILAMENT_SENSOR
  864. //disabled filament autoload (PFW360)
  865. fsensor_autoload_set(false);
  866. #endif //FILAMENT_SENSOR
  867. // ~ FanCheck -> on
  868. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  869. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  870. }
  871. #ifndef W25X20CL
  872. SERIAL_PROTOCOLLNPGM("start");
  873. #else
  874. if ((optiboot_status != 0) || (selectedSerialPort != 0))
  875. SERIAL_PROTOCOLLNPGM("start");
  876. #endif
  877. SERIAL_ECHO_START;
  878. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  879. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  880. #ifdef DEBUG_SEC_LANG
  881. lang_table_header_t header;
  882. uint32_t src_addr = 0x00000;
  883. if (lang_get_header(1, &header, &src_addr))
  884. {
  885. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  886. #define LT_PRINT_TEST 2
  887. // flash usage
  888. // total p.test
  889. //0 252718 t+c text code
  890. //1 253142 424 170 254
  891. //2 253040 322 164 158
  892. //3 253248 530 135 395
  893. #if (LT_PRINT_TEST==1) //not optimized printf
  894. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  895. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  896. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  897. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  898. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  899. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  900. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  901. #elif (LT_PRINT_TEST==2) //optimized printf
  902. printf_P(
  903. _n(
  904. " _src_addr = 0x%08lx\n"
  905. " _lt_magic = 0x%08lx %S\n"
  906. " _lt_size = 0x%04x (%d)\n"
  907. " _lt_count = 0x%04x (%d)\n"
  908. " _lt_chsum = 0x%04x\n"
  909. " _lt_code = 0x%04x (%c%c)\n"
  910. " _lt_resv1 = 0x%08lx\n"
  911. ),
  912. src_addr,
  913. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  914. header.size, header.size,
  915. header.count, header.count,
  916. header.checksum,
  917. header.code, header.code >> 8, header.code & 0xff,
  918. header.signature
  919. );
  920. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  921. MYSERIAL.print(" _src_addr = 0x");
  922. MYSERIAL.println(src_addr, 16);
  923. MYSERIAL.print(" _lt_magic = 0x");
  924. MYSERIAL.print(header.magic, 16);
  925. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  926. MYSERIAL.print(" _lt_size = 0x");
  927. MYSERIAL.print(header.size, 16);
  928. MYSERIAL.print(" (");
  929. MYSERIAL.print(header.size, 10);
  930. MYSERIAL.println(")");
  931. MYSERIAL.print(" _lt_count = 0x");
  932. MYSERIAL.print(header.count, 16);
  933. MYSERIAL.print(" (");
  934. MYSERIAL.print(header.count, 10);
  935. MYSERIAL.println(")");
  936. MYSERIAL.print(" _lt_chsum = 0x");
  937. MYSERIAL.println(header.checksum, 16);
  938. MYSERIAL.print(" _lt_code = 0x");
  939. MYSERIAL.print(header.code, 16);
  940. MYSERIAL.print(" (");
  941. MYSERIAL.print((char)(header.code >> 8), 0);
  942. MYSERIAL.print((char)(header.code & 0xff), 0);
  943. MYSERIAL.println(")");
  944. MYSERIAL.print(" _lt_resv1 = 0x");
  945. MYSERIAL.println(header.signature, 16);
  946. #endif //(LT_PRINT_TEST==)
  947. #undef LT_PRINT_TEST
  948. #if 0
  949. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  950. for (uint16_t i = 0; i < 1024; i++)
  951. {
  952. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  953. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  954. if ((i % 16) == 15) putchar('\n');
  955. }
  956. #endif
  957. uint16_t sum = 0;
  958. for (uint16_t i = 0; i < header.size; i++)
  959. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  960. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  961. sum -= header.checksum; //subtract checksum
  962. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  963. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  964. if (sum == header.checksum)
  965. printf_P(_n("Checksum OK\n"), sum);
  966. else
  967. printf_P(_n("Checksum NG\n"), sum);
  968. }
  969. else
  970. printf_P(_n("lang_get_header failed!\n"));
  971. #if 0
  972. for (uint16_t i = 0; i < 1024*10; i++)
  973. {
  974. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  975. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  976. if ((i % 16) == 15) putchar('\n');
  977. }
  978. #endif
  979. #if 0
  980. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  981. for (int i = 0; i < 4096; ++i) {
  982. int b = eeprom_read_byte((unsigned char*)i);
  983. if (b != 255) {
  984. SERIAL_ECHO(i);
  985. SERIAL_ECHO(":");
  986. SERIAL_ECHO(b);
  987. SERIAL_ECHOLN("");
  988. }
  989. }
  990. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  991. #endif
  992. #endif //DEBUG_SEC_LANG
  993. // Check startup - does nothing if bootloader sets MCUSR to 0
  994. byte mcu = MCUSR;
  995. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  996. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  997. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  998. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  999. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1000. if (mcu & 1) puts_P(MSG_POWERUP);
  1001. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1002. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1003. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1004. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1005. MCUSR = 0;
  1006. //SERIAL_ECHORPGM(MSG_MARLIN);
  1007. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1008. #ifdef STRING_VERSION_CONFIG_H
  1009. #ifdef STRING_CONFIG_H_AUTHOR
  1010. SERIAL_ECHO_START;
  1011. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  1012. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1013. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  1014. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1015. SERIAL_ECHOPGM("Compiled: ");
  1016. SERIAL_ECHOLNPGM(__DATE__);
  1017. #endif
  1018. #endif
  1019. SERIAL_ECHO_START;
  1020. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1021. SERIAL_ECHO(freeMemory());
  1022. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1023. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1024. //lcd_update_enable(false); // why do we need this?? - andre
  1025. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1026. bool previous_settings_retrieved = false;
  1027. uint8_t hw_changed = check_printer_version();
  1028. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1029. previous_settings_retrieved = Config_RetrieveSettings();
  1030. }
  1031. else { //printer version was changed so use default settings
  1032. Config_ResetDefault();
  1033. }
  1034. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1035. tp_init(); // Initialize temperature loop
  1036. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1037. else
  1038. {
  1039. w25x20cl_err_msg();
  1040. printf_P(_n("W25X20CL not responding.\n"));
  1041. }
  1042. #ifdef EXTRUDER_ALTFAN_DETECT
  1043. SERIAL_ECHORPGM(_n("Extruder fan type: "));
  1044. if (extruder_altfan_detect())
  1045. SERIAL_ECHOLNRPGM(PSTR("ALTFAN"));
  1046. else
  1047. SERIAL_ECHOLNRPGM(PSTR("NOCTUA"));
  1048. #endif //EXTRUDER_ALTFAN_DETECT
  1049. plan_init(); // Initialize planner;
  1050. factory_reset();
  1051. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1052. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff)
  1053. {
  1054. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1055. // where all the EEPROM entries are set to 0x0ff.
  1056. // Once a firmware boots up, it forces at least a language selection, which changes
  1057. // EEPROM_LANG to number lower than 0x0ff.
  1058. // 1) Set a high power mode.
  1059. eeprom_update_byte((uint8_t*)EEPROM_SILENT, SILENT_MODE_OFF);
  1060. #ifdef TMC2130
  1061. tmc2130_mode = TMC2130_MODE_NORMAL;
  1062. #endif //TMC2130
  1063. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1064. }
  1065. lcd_encoder_diff=0;
  1066. #ifdef TMC2130
  1067. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1068. if (silentMode == 0xff) silentMode = 0;
  1069. tmc2130_mode = TMC2130_MODE_NORMAL;
  1070. if (lcd_crash_detect_enabled() && !farm_mode)
  1071. {
  1072. lcd_crash_detect_enable();
  1073. puts_P(_N("CrashDetect ENABLED!"));
  1074. }
  1075. else
  1076. {
  1077. lcd_crash_detect_disable();
  1078. puts_P(_N("CrashDetect DISABLED"));
  1079. }
  1080. #ifdef TMC2130_LINEARITY_CORRECTION
  1081. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1082. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1083. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1084. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1085. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1086. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1087. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1088. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1089. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1090. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1091. #endif //TMC2130_LINEARITY_CORRECTION
  1092. #ifdef TMC2130_VARIABLE_RESOLUTION
  1093. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1094. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1095. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1096. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1097. #else //TMC2130_VARIABLE_RESOLUTION
  1098. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1099. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1100. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1101. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1102. #endif //TMC2130_VARIABLE_RESOLUTION
  1103. #endif //TMC2130
  1104. st_init(); // Initialize stepper, this enables interrupts!
  1105. #ifdef TMC2130
  1106. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1107. update_mode_profile();
  1108. tmc2130_init();
  1109. #endif //TMC2130
  1110. #ifdef PSU_Delta
  1111. init_force_z(); // ! important for correct Z-axis initialization
  1112. #endif // PSU_Delta
  1113. setup_photpin();
  1114. servo_init();
  1115. // Reset the machine correction matrix.
  1116. // It does not make sense to load the correction matrix until the machine is homed.
  1117. world2machine_reset();
  1118. // Initialize current_position accounting for software endstops to
  1119. // avoid unexpected initial shifts on the first move
  1120. clamp_to_software_endstops(current_position);
  1121. plan_set_position_curposXYZE();
  1122. #ifdef FILAMENT_SENSOR
  1123. fsensor_init();
  1124. #endif //FILAMENT_SENSOR
  1125. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1126. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1127. #endif
  1128. setup_homepin();
  1129. #if defined(Z_AXIS_ALWAYS_ON)
  1130. enable_z();
  1131. #endif
  1132. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1133. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1134. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1135. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1136. if (farm_mode)
  1137. {
  1138. prusa_statistics(8);
  1139. }
  1140. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1141. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1142. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1143. // but this times out if a blocking dialog is shown in setup().
  1144. card.initsd();
  1145. #ifdef DEBUG_SD_SPEED_TEST
  1146. if (card.cardOK)
  1147. {
  1148. uint8_t* buff = (uint8_t*)block_buffer;
  1149. uint32_t block = 0;
  1150. uint32_t sumr = 0;
  1151. uint32_t sumw = 0;
  1152. for (int i = 0; i < 1024; i++)
  1153. {
  1154. uint32_t u = _micros();
  1155. bool res = card.card.readBlock(i, buff);
  1156. u = _micros() - u;
  1157. if (res)
  1158. {
  1159. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1160. sumr += u;
  1161. u = _micros();
  1162. res = card.card.writeBlock(i, buff);
  1163. u = _micros() - u;
  1164. if (res)
  1165. {
  1166. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1167. sumw += u;
  1168. }
  1169. else
  1170. {
  1171. printf_P(PSTR("writeBlock %4d error\n"), i);
  1172. break;
  1173. }
  1174. }
  1175. else
  1176. {
  1177. printf_P(PSTR("readBlock %4d error\n"), i);
  1178. break;
  1179. }
  1180. }
  1181. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1182. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1183. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1184. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1185. }
  1186. else
  1187. printf_P(PSTR("Card NG!\n"));
  1188. #endif //DEBUG_SD_SPEED_TEST
  1189. eeprom_init();
  1190. #ifdef SNMM
  1191. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1192. int _z = BOWDEN_LENGTH;
  1193. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1194. }
  1195. #endif
  1196. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1197. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1198. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1199. #if (LANG_MODE != 0) //secondary language support
  1200. #ifdef DEBUG_W25X20CL
  1201. W25X20CL_SPI_ENTER();
  1202. uint8_t uid[8]; // 64bit unique id
  1203. w25x20cl_rd_uid(uid);
  1204. puts_P(_n("W25X20CL UID="));
  1205. for (uint8_t i = 0; i < 8; i ++)
  1206. printf_P(PSTR("%02hhx"), uid[i]);
  1207. putchar('\n');
  1208. list_sec_lang_from_external_flash();
  1209. #endif //DEBUG_W25X20CL
  1210. // lang_reset();
  1211. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1212. lcd_language();
  1213. #ifdef DEBUG_SEC_LANG
  1214. uint16_t sec_lang_code = lang_get_code(1);
  1215. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1216. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1217. lang_print_sec_lang(uartout);
  1218. #endif //DEBUG_SEC_LANG
  1219. #endif //(LANG_MODE != 0)
  1220. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1221. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1222. }
  1223. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1224. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1225. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1226. int16_t z_shift = 0;
  1227. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1228. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1229. }
  1230. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1231. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1232. }
  1233. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1234. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1235. }
  1236. //mbl_mode_init();
  1237. mbl_settings_init();
  1238. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1239. if (SilentModeMenu_MMU == 255) {
  1240. SilentModeMenu_MMU = 1;
  1241. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1242. }
  1243. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1244. setup_fan_interrupt();
  1245. #endif //DEBUG_DISABLE_FANCHECK
  1246. #ifdef PAT9125
  1247. fsensor_setup_interrupt();
  1248. #endif //PAT9125
  1249. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1250. #ifndef DEBUG_DISABLE_STARTMSGS
  1251. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1252. if (!farm_mode) {
  1253. check_if_fw_is_on_right_printer();
  1254. show_fw_version_warnings();
  1255. }
  1256. switch (hw_changed) {
  1257. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1258. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1259. case(0b01):
  1260. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1261. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1262. break;
  1263. case(0b10):
  1264. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1265. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1266. break;
  1267. case(0b11):
  1268. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1269. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1270. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1271. break;
  1272. default: break; //no change, show no message
  1273. }
  1274. if (!previous_settings_retrieved) {
  1275. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=5
  1276. Config_StoreSettings();
  1277. }
  1278. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1279. lcd_wizard(WizState::Run);
  1280. }
  1281. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1282. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1283. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1284. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1285. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1286. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  1287. // Show the message.
  1288. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1289. }
  1290. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1291. // Show the message.
  1292. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1293. lcd_update_enable(true);
  1294. }
  1295. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() == false) {
  1296. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1297. lcd_update_enable(true);
  1298. }
  1299. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1300. // Show the message.
  1301. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1302. }
  1303. }
  1304. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1305. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1306. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1307. update_current_firmware_version_to_eeprom();
  1308. lcd_selftest();
  1309. }
  1310. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1311. KEEPALIVE_STATE(IN_PROCESS);
  1312. #endif //DEBUG_DISABLE_STARTMSGS
  1313. lcd_update_enable(true);
  1314. lcd_clear();
  1315. lcd_update(2);
  1316. // Store the currently running firmware into an eeprom,
  1317. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1318. update_current_firmware_version_to_eeprom();
  1319. #ifdef TMC2130
  1320. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1321. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1322. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1323. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1324. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1325. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1326. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1327. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1328. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1329. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1330. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1331. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1332. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1333. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1334. #endif //TMC2130
  1335. #ifdef UVLO_SUPPORT
  1336. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1337. /*
  1338. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1339. else {
  1340. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1341. lcd_update_enable(true);
  1342. lcd_update(2);
  1343. lcd_setstatuspgm(_T(WELCOME_MSG));
  1344. }
  1345. */
  1346. manage_heater(); // Update temperatures
  1347. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1348. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1349. #endif
  1350. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1351. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1352. puts_P(_N("Automatic recovery!"));
  1353. #endif
  1354. recover_print(1);
  1355. }
  1356. else{
  1357. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1358. puts_P(_N("Normal recovery!"));
  1359. #endif
  1360. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1361. else {
  1362. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1363. lcd_update_enable(true);
  1364. lcd_update(2);
  1365. lcd_setstatuspgm(_T(WELCOME_MSG));
  1366. }
  1367. }
  1368. }
  1369. // Only arm the uvlo interrupt _after_ a recovering print has been initialized and
  1370. // the entire state machine initialized.
  1371. setup_uvlo_interrupt();
  1372. #endif //UVLO_SUPPORT
  1373. fCheckModeInit();
  1374. fSetMmuMode(mmu_enabled);
  1375. KEEPALIVE_STATE(NOT_BUSY);
  1376. #ifdef WATCHDOG
  1377. wdt_enable(WDTO_4S);
  1378. #endif //WATCHDOG
  1379. }
  1380. void trace();
  1381. #define CHUNK_SIZE 64 // bytes
  1382. #define SAFETY_MARGIN 1
  1383. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1384. int chunkHead = 0;
  1385. void serial_read_stream() {
  1386. setAllTargetHotends(0);
  1387. setTargetBed(0);
  1388. lcd_clear();
  1389. lcd_puts_P(PSTR(" Upload in progress"));
  1390. // first wait for how many bytes we will receive
  1391. uint32_t bytesToReceive;
  1392. // receive the four bytes
  1393. char bytesToReceiveBuffer[4];
  1394. for (int i=0; i<4; i++) {
  1395. int data;
  1396. while ((data = MYSERIAL.read()) == -1) {};
  1397. bytesToReceiveBuffer[i] = data;
  1398. }
  1399. // make it a uint32
  1400. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1401. // we're ready, notify the sender
  1402. MYSERIAL.write('+');
  1403. // lock in the routine
  1404. uint32_t receivedBytes = 0;
  1405. while (prusa_sd_card_upload) {
  1406. int i;
  1407. for (i=0; i<CHUNK_SIZE; i++) {
  1408. int data;
  1409. // check if we're not done
  1410. if (receivedBytes == bytesToReceive) {
  1411. break;
  1412. }
  1413. // read the next byte
  1414. while ((data = MYSERIAL.read()) == -1) {};
  1415. receivedBytes++;
  1416. // save it to the chunk
  1417. chunk[i] = data;
  1418. }
  1419. // write the chunk to SD
  1420. card.write_command_no_newline(&chunk[0]);
  1421. // notify the sender we're ready for more data
  1422. MYSERIAL.write('+');
  1423. // for safety
  1424. manage_heater();
  1425. // check if we're done
  1426. if(receivedBytes == bytesToReceive) {
  1427. trace(); // beep
  1428. card.closefile();
  1429. prusa_sd_card_upload = false;
  1430. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1431. }
  1432. }
  1433. }
  1434. /**
  1435. * Output a "busy" message at regular intervals
  1436. * while the machine is not accepting commands.
  1437. */
  1438. void host_keepalive() {
  1439. #ifndef HOST_KEEPALIVE_FEATURE
  1440. return;
  1441. #endif //HOST_KEEPALIVE_FEATURE
  1442. if (farm_mode) return;
  1443. long ms = _millis();
  1444. #ifdef AUTO_REPORT_TEMPERATURES
  1445. if (auto_report_temp_timer.running())
  1446. {
  1447. if (auto_report_temp_timer.expired(auto_report_temp_period * 1000ul))
  1448. {
  1449. gcode_M115(active_extruder);
  1450. auto_report_temp_timer.start();
  1451. }
  1452. }
  1453. #endif //AUTO_REPORT_TEMPERATURES
  1454. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1455. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1456. switch (busy_state) {
  1457. case IN_HANDLER:
  1458. case IN_PROCESS:
  1459. SERIAL_ECHO_START;
  1460. SERIAL_ECHOLNPGM("busy: processing");
  1461. break;
  1462. case PAUSED_FOR_USER:
  1463. SERIAL_ECHO_START;
  1464. SERIAL_ECHOLNPGM("busy: paused for user");
  1465. break;
  1466. case PAUSED_FOR_INPUT:
  1467. SERIAL_ECHO_START;
  1468. SERIAL_ECHOLNPGM("busy: paused for input");
  1469. break;
  1470. default:
  1471. break;
  1472. }
  1473. }
  1474. prev_busy_signal_ms = ms;
  1475. }
  1476. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1477. // Before loop(), the setup() function is called by the main() routine.
  1478. void loop()
  1479. {
  1480. KEEPALIVE_STATE(NOT_BUSY);
  1481. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1482. {
  1483. is_usb_printing = true;
  1484. usb_printing_counter--;
  1485. _usb_timer = _millis();
  1486. }
  1487. if (usb_printing_counter == 0)
  1488. {
  1489. is_usb_printing = false;
  1490. }
  1491. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1492. {
  1493. is_usb_printing = true;
  1494. }
  1495. #ifdef FANCHECK
  1496. if (fan_check_error && isPrintPaused)
  1497. {
  1498. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1499. host_keepalive(); //prevent timeouts since usb processing is disabled until print is resumed. This is for a crude way of pausing a print on all hosts.
  1500. }
  1501. #endif
  1502. if (prusa_sd_card_upload)
  1503. {
  1504. //we read byte-by byte
  1505. serial_read_stream();
  1506. }
  1507. else
  1508. {
  1509. get_command();
  1510. #ifdef SDSUPPORT
  1511. card.checkautostart(false);
  1512. #endif
  1513. if(buflen)
  1514. {
  1515. cmdbuffer_front_already_processed = false;
  1516. #ifdef SDSUPPORT
  1517. if(card.saving)
  1518. {
  1519. // Saving a G-code file onto an SD-card is in progress.
  1520. // Saving starts with M28, saving until M29 is seen.
  1521. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1522. card.write_command(CMDBUFFER_CURRENT_STRING);
  1523. if(card.logging)
  1524. process_commands();
  1525. else
  1526. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1527. } else {
  1528. card.closefile();
  1529. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1530. }
  1531. } else {
  1532. process_commands();
  1533. }
  1534. #else
  1535. process_commands();
  1536. #endif //SDSUPPORT
  1537. if (! cmdbuffer_front_already_processed && buflen)
  1538. {
  1539. // ptr points to the start of the block currently being processed.
  1540. // The first character in the block is the block type.
  1541. char *ptr = cmdbuffer + bufindr;
  1542. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1543. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1544. union {
  1545. struct {
  1546. char lo;
  1547. char hi;
  1548. } lohi;
  1549. uint16_t value;
  1550. } sdlen;
  1551. sdlen.value = 0;
  1552. {
  1553. // This block locks the interrupts globally for 3.25 us,
  1554. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1555. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1556. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1557. cli();
  1558. // Reset the command to something, which will be ignored by the power panic routine,
  1559. // so this buffer length will not be counted twice.
  1560. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1561. // Extract the current buffer length.
  1562. sdlen.lohi.lo = *ptr ++;
  1563. sdlen.lohi.hi = *ptr;
  1564. // and pass it to the planner queue.
  1565. planner_add_sd_length(sdlen.value);
  1566. sei();
  1567. }
  1568. }
  1569. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1570. cli();
  1571. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1572. // and one for each command to previous block in the planner queue.
  1573. planner_add_sd_length(1);
  1574. sei();
  1575. }
  1576. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1577. // this block's SD card length will not be counted twice as its command type has been replaced
  1578. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1579. cmdqueue_pop_front();
  1580. }
  1581. host_keepalive();
  1582. }
  1583. }
  1584. //check heater every n milliseconds
  1585. manage_heater();
  1586. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1587. checkHitEndstops();
  1588. lcd_update(0);
  1589. #ifdef TMC2130
  1590. tmc2130_check_overtemp();
  1591. if (tmc2130_sg_crash)
  1592. {
  1593. uint8_t crash = tmc2130_sg_crash;
  1594. tmc2130_sg_crash = 0;
  1595. // crashdet_stop_and_save_print();
  1596. switch (crash)
  1597. {
  1598. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1599. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1600. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1601. }
  1602. }
  1603. #endif //TMC2130
  1604. mmu_loop();
  1605. }
  1606. #define DEFINE_PGM_READ_ANY(type, reader) \
  1607. static inline type pgm_read_any(const type *p) \
  1608. { return pgm_read_##reader##_near(p); }
  1609. DEFINE_PGM_READ_ANY(float, float);
  1610. DEFINE_PGM_READ_ANY(signed char, byte);
  1611. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1612. static const PROGMEM type array##_P[3] = \
  1613. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1614. static inline type array(int axis) \
  1615. { return pgm_read_any(&array##_P[axis]); } \
  1616. type array##_ext(int axis) \
  1617. { return pgm_read_any(&array##_P[axis]); }
  1618. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1619. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1620. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1621. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1622. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1623. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1624. static void axis_is_at_home(int axis) {
  1625. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1626. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1627. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1628. }
  1629. //! @return original feedmultiply
  1630. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1631. saved_feedrate = feedrate;
  1632. int l_feedmultiply = feedmultiply;
  1633. feedmultiply = 100;
  1634. previous_millis_cmd = _millis();
  1635. enable_endstops(enable_endstops_now);
  1636. return l_feedmultiply;
  1637. }
  1638. //! @param original_feedmultiply feedmultiply to restore
  1639. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1640. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1641. enable_endstops(false);
  1642. #endif
  1643. feedrate = saved_feedrate;
  1644. feedmultiply = original_feedmultiply;
  1645. previous_millis_cmd = _millis();
  1646. }
  1647. #ifdef ENABLE_AUTO_BED_LEVELING
  1648. #ifdef AUTO_BED_LEVELING_GRID
  1649. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1650. {
  1651. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1652. planeNormal.debug("planeNormal");
  1653. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1654. //bedLevel.debug("bedLevel");
  1655. //plan_bed_level_matrix.debug("bed level before");
  1656. //vector_3 uncorrected_position = plan_get_position_mm();
  1657. //uncorrected_position.debug("position before");
  1658. vector_3 corrected_position = plan_get_position();
  1659. // corrected_position.debug("position after");
  1660. current_position[X_AXIS] = corrected_position.x;
  1661. current_position[Y_AXIS] = corrected_position.y;
  1662. current_position[Z_AXIS] = corrected_position.z;
  1663. // put the bed at 0 so we don't go below it.
  1664. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1665. plan_set_position_curposXYZE();
  1666. }
  1667. #else // not AUTO_BED_LEVELING_GRID
  1668. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1669. plan_bed_level_matrix.set_to_identity();
  1670. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1671. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1672. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1673. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1674. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1675. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1676. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1677. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1678. vector_3 corrected_position = plan_get_position();
  1679. current_position[X_AXIS] = corrected_position.x;
  1680. current_position[Y_AXIS] = corrected_position.y;
  1681. current_position[Z_AXIS] = corrected_position.z;
  1682. // put the bed at 0 so we don't go below it.
  1683. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1684. plan_set_position_curposXYZE();
  1685. }
  1686. #endif // AUTO_BED_LEVELING_GRID
  1687. static void run_z_probe() {
  1688. plan_bed_level_matrix.set_to_identity();
  1689. feedrate = homing_feedrate[Z_AXIS];
  1690. // move down until you find the bed
  1691. float zPosition = -10;
  1692. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1693. st_synchronize();
  1694. // we have to let the planner know where we are right now as it is not where we said to go.
  1695. zPosition = st_get_position_mm(Z_AXIS);
  1696. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1697. // move up the retract distance
  1698. zPosition += home_retract_mm(Z_AXIS);
  1699. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1700. st_synchronize();
  1701. // move back down slowly to find bed
  1702. feedrate = homing_feedrate[Z_AXIS]/4;
  1703. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1704. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1705. st_synchronize();
  1706. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1707. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1708. plan_set_position_curposXYZE();
  1709. }
  1710. static void do_blocking_move_to(float x, float y, float z) {
  1711. float oldFeedRate = feedrate;
  1712. feedrate = homing_feedrate[Z_AXIS];
  1713. current_position[Z_AXIS] = z;
  1714. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1715. st_synchronize();
  1716. feedrate = XY_TRAVEL_SPEED;
  1717. current_position[X_AXIS] = x;
  1718. current_position[Y_AXIS] = y;
  1719. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1720. st_synchronize();
  1721. feedrate = oldFeedRate;
  1722. }
  1723. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1724. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1725. }
  1726. /// Probe bed height at position (x,y), returns the measured z value
  1727. static float probe_pt(float x, float y, float z_before) {
  1728. // move to right place
  1729. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1730. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1731. run_z_probe();
  1732. float measured_z = current_position[Z_AXIS];
  1733. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1734. SERIAL_PROTOCOLPGM(" x: ");
  1735. SERIAL_PROTOCOL(x);
  1736. SERIAL_PROTOCOLPGM(" y: ");
  1737. SERIAL_PROTOCOL(y);
  1738. SERIAL_PROTOCOLPGM(" z: ");
  1739. SERIAL_PROTOCOL(measured_z);
  1740. SERIAL_PROTOCOLPGM("\n");
  1741. return measured_z;
  1742. }
  1743. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1744. #ifdef LIN_ADVANCE
  1745. /**
  1746. * M900: Set and/or Get advance K factor
  1747. *
  1748. * K<factor> Set advance K factor
  1749. */
  1750. inline void gcode_M900() {
  1751. float newK = code_seen('K') ? code_value_float() : -2;
  1752. #ifdef LA_NOCOMPAT
  1753. if (newK >= 0 && newK < LA_K_MAX)
  1754. extruder_advance_K = newK;
  1755. else
  1756. SERIAL_ECHOLNPGM("K out of allowed range!");
  1757. #else
  1758. if (newK == 0)
  1759. {
  1760. extruder_advance_K = 0;
  1761. la10c_reset();
  1762. }
  1763. else
  1764. {
  1765. newK = la10c_value(newK);
  1766. if (newK < 0)
  1767. SERIAL_ECHOLNPGM("K out of allowed range!");
  1768. else
  1769. extruder_advance_K = newK;
  1770. }
  1771. #endif
  1772. SERIAL_ECHO_START;
  1773. SERIAL_ECHOPGM("Advance K=");
  1774. SERIAL_ECHOLN(extruder_advance_K);
  1775. }
  1776. #endif // LIN_ADVANCE
  1777. bool check_commands() {
  1778. bool end_command_found = false;
  1779. while (buflen)
  1780. {
  1781. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1782. if (!cmdbuffer_front_already_processed)
  1783. cmdqueue_pop_front();
  1784. cmdbuffer_front_already_processed = false;
  1785. }
  1786. return end_command_found;
  1787. }
  1788. // raise_z_above: slowly raise Z to the requested height
  1789. //
  1790. // contrarily to a simple move, this function will carefully plan a move
  1791. // when the current Z position is unknown. In such cases, stallguard is
  1792. // enabled and will prevent prolonged pushing against the Z tops
  1793. void raise_z_above(float target, bool plan)
  1794. {
  1795. if (current_position[Z_AXIS] >= target)
  1796. return;
  1797. // Z needs raising
  1798. current_position[Z_AXIS] = target;
  1799. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  1800. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1801. #else
  1802. bool z_min_endstop = false;
  1803. #endif
  1804. if (axis_known_position[Z_AXIS] || z_min_endstop)
  1805. {
  1806. // current position is known or very low, it's safe to raise Z
  1807. if(plan) plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  1808. return;
  1809. }
  1810. // ensure Z is powered in normal mode to overcome initial load
  1811. enable_z();
  1812. st_synchronize();
  1813. // rely on crashguard to limit damage
  1814. bool z_endstop_enabled = enable_z_endstop(true);
  1815. #ifdef TMC2130
  1816. tmc2130_home_enter(Z_AXIS_MASK);
  1817. #endif //TMC2130
  1818. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60);
  1819. st_synchronize();
  1820. #ifdef TMC2130
  1821. if (endstop_z_hit_on_purpose())
  1822. {
  1823. // not necessarily exact, but will avoid further vertical moves
  1824. current_position[Z_AXIS] = max_pos[Z_AXIS];
  1825. plan_set_position_curposXYZE();
  1826. }
  1827. tmc2130_home_exit();
  1828. #endif //TMC2130
  1829. enable_z_endstop(z_endstop_enabled);
  1830. }
  1831. #ifdef TMC2130
  1832. bool calibrate_z_auto()
  1833. {
  1834. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1835. lcd_clear();
  1836. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1837. bool endstops_enabled = enable_endstops(true);
  1838. int axis_up_dir = -home_dir(Z_AXIS);
  1839. tmc2130_home_enter(Z_AXIS_MASK);
  1840. current_position[Z_AXIS] = 0;
  1841. plan_set_position_curposXYZE();
  1842. set_destination_to_current();
  1843. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1844. feedrate = homing_feedrate[Z_AXIS];
  1845. plan_buffer_line_destinationXYZE(feedrate / 60);
  1846. st_synchronize();
  1847. // current_position[axis] = 0;
  1848. // plan_set_position_curposXYZE();
  1849. tmc2130_home_exit();
  1850. enable_endstops(false);
  1851. current_position[Z_AXIS] = 0;
  1852. plan_set_position_curposXYZE();
  1853. set_destination_to_current();
  1854. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1855. feedrate = homing_feedrate[Z_AXIS] / 2;
  1856. plan_buffer_line_destinationXYZE(feedrate / 60);
  1857. st_synchronize();
  1858. enable_endstops(endstops_enabled);
  1859. if (PRINTER_TYPE == PRINTER_MK3) {
  1860. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1861. }
  1862. else {
  1863. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1864. }
  1865. plan_set_position_curposXYZE();
  1866. return true;
  1867. }
  1868. #endif //TMC2130
  1869. #ifdef TMC2130
  1870. static void check_Z_crash(void)
  1871. {
  1872. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1873. FORCE_HIGH_POWER_END;
  1874. current_position[Z_AXIS] = 0;
  1875. plan_set_position_curposXYZE();
  1876. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  1877. plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  1878. st_synchronize();
  1879. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1880. }
  1881. }
  1882. #endif //TMC2130
  1883. #ifdef TMC2130
  1884. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1885. #else
  1886. void homeaxis(int axis, uint8_t cnt)
  1887. #endif //TMC2130
  1888. {
  1889. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1890. #define HOMEAXIS_DO(LETTER) \
  1891. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1892. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1893. {
  1894. int axis_home_dir = home_dir(axis);
  1895. feedrate = homing_feedrate[axis];
  1896. #ifdef TMC2130
  1897. tmc2130_home_enter(X_AXIS_MASK << axis);
  1898. #endif //TMC2130
  1899. // Move away a bit, so that the print head does not touch the end position,
  1900. // and the following movement to endstop has a chance to achieve the required velocity
  1901. // for the stall guard to work.
  1902. current_position[axis] = 0;
  1903. plan_set_position_curposXYZE();
  1904. set_destination_to_current();
  1905. // destination[axis] = 11.f;
  1906. destination[axis] = -3.f * axis_home_dir;
  1907. plan_buffer_line_destinationXYZE(feedrate/60);
  1908. st_synchronize();
  1909. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1910. endstops_hit_on_purpose();
  1911. enable_endstops(false);
  1912. current_position[axis] = 0;
  1913. plan_set_position_curposXYZE();
  1914. destination[axis] = 1. * axis_home_dir;
  1915. plan_buffer_line_destinationXYZE(feedrate/60);
  1916. st_synchronize();
  1917. // Now continue to move up to the left end stop with the collision detection enabled.
  1918. enable_endstops(true);
  1919. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1920. plan_buffer_line_destinationXYZE(feedrate/60);
  1921. st_synchronize();
  1922. for (uint8_t i = 0; i < cnt; i++)
  1923. {
  1924. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1925. endstops_hit_on_purpose();
  1926. enable_endstops(false);
  1927. current_position[axis] = 0;
  1928. plan_set_position_curposXYZE();
  1929. destination[axis] = -10.f * axis_home_dir;
  1930. plan_buffer_line_destinationXYZE(feedrate/60);
  1931. st_synchronize();
  1932. endstops_hit_on_purpose();
  1933. // Now move left up to the collision, this time with a repeatable velocity.
  1934. enable_endstops(true);
  1935. destination[axis] = 11.f * axis_home_dir;
  1936. #ifdef TMC2130
  1937. feedrate = homing_feedrate[axis];
  1938. #else //TMC2130
  1939. feedrate = homing_feedrate[axis] / 2;
  1940. #endif //TMC2130
  1941. plan_buffer_line_destinationXYZE(feedrate/60);
  1942. st_synchronize();
  1943. #ifdef TMC2130
  1944. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1945. if (pstep) pstep[i] = mscnt >> 4;
  1946. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1947. #endif //TMC2130
  1948. }
  1949. endstops_hit_on_purpose();
  1950. enable_endstops(false);
  1951. #ifdef TMC2130
  1952. uint8_t orig = tmc2130_home_origin[axis];
  1953. uint8_t back = tmc2130_home_bsteps[axis];
  1954. if (tmc2130_home_enabled && (orig <= 63))
  1955. {
  1956. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1957. if (back > 0)
  1958. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1959. }
  1960. else
  1961. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1962. tmc2130_home_exit();
  1963. #endif //TMC2130
  1964. axis_is_at_home(axis);
  1965. axis_known_position[axis] = true;
  1966. // Move from minimum
  1967. #ifdef TMC2130
  1968. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1969. #else //TMC2130
  1970. float dist = - axis_home_dir * 0.01f * 64;
  1971. #endif //TMC2130
  1972. current_position[axis] -= dist;
  1973. plan_set_position_curposXYZE();
  1974. current_position[axis] += dist;
  1975. destination[axis] = current_position[axis];
  1976. plan_buffer_line_destinationXYZE(0.5f*feedrate/60);
  1977. st_synchronize();
  1978. feedrate = 0.0;
  1979. }
  1980. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1981. {
  1982. #ifdef TMC2130
  1983. FORCE_HIGH_POWER_START;
  1984. #endif
  1985. int axis_home_dir = home_dir(axis);
  1986. current_position[axis] = 0;
  1987. plan_set_position_curposXYZE();
  1988. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1989. feedrate = homing_feedrate[axis];
  1990. plan_buffer_line_destinationXYZE(feedrate/60);
  1991. st_synchronize();
  1992. #ifdef TMC2130
  1993. check_Z_crash();
  1994. #endif //TMC2130
  1995. current_position[axis] = 0;
  1996. plan_set_position_curposXYZE();
  1997. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1998. plan_buffer_line_destinationXYZE(feedrate/60);
  1999. st_synchronize();
  2000. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2001. feedrate = homing_feedrate[axis]/2 ;
  2002. plan_buffer_line_destinationXYZE(feedrate/60);
  2003. st_synchronize();
  2004. #ifdef TMC2130
  2005. check_Z_crash();
  2006. #endif //TMC2130
  2007. axis_is_at_home(axis);
  2008. destination[axis] = current_position[axis];
  2009. feedrate = 0.0;
  2010. endstops_hit_on_purpose();
  2011. axis_known_position[axis] = true;
  2012. #ifdef TMC2130
  2013. FORCE_HIGH_POWER_END;
  2014. #endif
  2015. }
  2016. enable_endstops(endstops_enabled);
  2017. }
  2018. /**/
  2019. void home_xy()
  2020. {
  2021. set_destination_to_current();
  2022. homeaxis(X_AXIS);
  2023. homeaxis(Y_AXIS);
  2024. plan_set_position_curposXYZE();
  2025. endstops_hit_on_purpose();
  2026. }
  2027. void refresh_cmd_timeout(void)
  2028. {
  2029. previous_millis_cmd = _millis();
  2030. }
  2031. #ifdef FWRETRACT
  2032. void retract(bool retracting, bool swapretract = false) {
  2033. if(retracting && !retracted[active_extruder]) {
  2034. destination[X_AXIS]=current_position[X_AXIS];
  2035. destination[Y_AXIS]=current_position[Y_AXIS];
  2036. destination[Z_AXIS]=current_position[Z_AXIS];
  2037. destination[E_AXIS]=current_position[E_AXIS];
  2038. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  2039. plan_set_e_position(current_position[E_AXIS]);
  2040. float oldFeedrate = feedrate;
  2041. feedrate=cs.retract_feedrate*60;
  2042. retracted[active_extruder]=true;
  2043. prepare_move();
  2044. current_position[Z_AXIS]-=cs.retract_zlift;
  2045. plan_set_position_curposXYZE();
  2046. prepare_move();
  2047. feedrate = oldFeedrate;
  2048. } else if(!retracting && retracted[active_extruder]) {
  2049. destination[X_AXIS]=current_position[X_AXIS];
  2050. destination[Y_AXIS]=current_position[Y_AXIS];
  2051. destination[Z_AXIS]=current_position[Z_AXIS];
  2052. destination[E_AXIS]=current_position[E_AXIS];
  2053. current_position[Z_AXIS]+=cs.retract_zlift;
  2054. plan_set_position_curposXYZE();
  2055. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  2056. plan_set_e_position(current_position[E_AXIS]);
  2057. float oldFeedrate = feedrate;
  2058. feedrate=cs.retract_recover_feedrate*60;
  2059. retracted[active_extruder]=false;
  2060. prepare_move();
  2061. feedrate = oldFeedrate;
  2062. }
  2063. } //retract
  2064. #endif //FWRETRACT
  2065. void trace() {
  2066. Sound_MakeCustom(25,440,true);
  2067. }
  2068. /*
  2069. void ramming() {
  2070. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2071. if (current_temperature[0] < 230) {
  2072. //PLA
  2073. max_feedrate[E_AXIS] = 50;
  2074. //current_position[E_AXIS] -= 8;
  2075. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2076. //current_position[E_AXIS] += 8;
  2077. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2078. current_position[E_AXIS] += 5.4;
  2079. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  2080. current_position[E_AXIS] += 3.2;
  2081. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2082. current_position[E_AXIS] += 3;
  2083. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  2084. st_synchronize();
  2085. max_feedrate[E_AXIS] = 80;
  2086. current_position[E_AXIS] -= 82;
  2087. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2088. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2089. current_position[E_AXIS] -= 20;
  2090. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2091. current_position[E_AXIS] += 5;
  2092. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2093. current_position[E_AXIS] += 5;
  2094. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2095. current_position[E_AXIS] -= 10;
  2096. st_synchronize();
  2097. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2098. current_position[E_AXIS] += 10;
  2099. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2100. current_position[E_AXIS] -= 10;
  2101. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2102. current_position[E_AXIS] += 10;
  2103. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2104. current_position[E_AXIS] -= 10;
  2105. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2106. st_synchronize();
  2107. }
  2108. else {
  2109. //ABS
  2110. max_feedrate[E_AXIS] = 50;
  2111. //current_position[E_AXIS] -= 8;
  2112. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2113. //current_position[E_AXIS] += 8;
  2114. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2115. current_position[E_AXIS] += 3.1;
  2116. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2117. current_position[E_AXIS] += 3.1;
  2118. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2119. current_position[E_AXIS] += 4;
  2120. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2121. st_synchronize();
  2122. //current_position[X_AXIS] += 23; //delay
  2123. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2124. //current_position[X_AXIS] -= 23; //delay
  2125. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2126. _delay(4700);
  2127. max_feedrate[E_AXIS] = 80;
  2128. current_position[E_AXIS] -= 92;
  2129. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2130. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2131. current_position[E_AXIS] -= 5;
  2132. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2133. current_position[E_AXIS] += 5;
  2134. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2135. current_position[E_AXIS] -= 5;
  2136. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2137. st_synchronize();
  2138. current_position[E_AXIS] += 5;
  2139. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2140. current_position[E_AXIS] -= 5;
  2141. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2142. current_position[E_AXIS] += 5;
  2143. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2144. current_position[E_AXIS] -= 5;
  2145. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2146. st_synchronize();
  2147. }
  2148. }
  2149. */
  2150. #ifdef TMC2130
  2151. void force_high_power_mode(bool start_high_power_section) {
  2152. #ifdef PSU_Delta
  2153. if (start_high_power_section == true) enable_force_z();
  2154. #endif //PSU_Delta
  2155. uint8_t silent;
  2156. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2157. if (silent == 1) {
  2158. //we are in silent mode, set to normal mode to enable crash detection
  2159. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2160. st_synchronize();
  2161. cli();
  2162. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2163. update_mode_profile();
  2164. tmc2130_init();
  2165. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2166. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2167. st_reset_timer();
  2168. sei();
  2169. }
  2170. }
  2171. #endif //TMC2130
  2172. void gcode_M115(uint8_t extruder)
  2173. {
  2174. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2175. SERIAL_PROTOCOLPGM("T:");
  2176. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  2177. SERIAL_PROTOCOLPGM(" /");
  2178. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  2179. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2180. SERIAL_PROTOCOLPGM(" B:");
  2181. SERIAL_PROTOCOL_F(degBed(),1);
  2182. SERIAL_PROTOCOLPGM(" /");
  2183. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2184. #endif //TEMP_BED_PIN
  2185. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2186. SERIAL_PROTOCOLPGM(" T");
  2187. SERIAL_PROTOCOL(cur_extruder);
  2188. SERIAL_PROTOCOL(':');
  2189. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2190. SERIAL_PROTOCOLPGM(" /");
  2191. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2192. }
  2193. #else
  2194. SERIAL_ERROR_START;
  2195. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  2196. #endif
  2197. SERIAL_PROTOCOLPGM(" @:");
  2198. #ifdef EXTRUDER_WATTS
  2199. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2200. SERIAL_PROTOCOLPGM("W");
  2201. #else
  2202. SERIAL_PROTOCOL(getHeaterPower(extruder));
  2203. #endif
  2204. SERIAL_PROTOCOLPGM(" B@:");
  2205. #ifdef BED_WATTS
  2206. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2207. SERIAL_PROTOCOLPGM("W");
  2208. #else
  2209. SERIAL_PROTOCOL(getHeaterPower(-1));
  2210. #endif
  2211. #ifdef PINDA_THERMISTOR
  2212. SERIAL_PROTOCOLPGM(" P:");
  2213. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  2214. #endif //PINDA_THERMISTOR
  2215. #ifdef AMBIENT_THERMISTOR
  2216. SERIAL_PROTOCOLPGM(" A:");
  2217. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  2218. #endif //AMBIENT_THERMISTOR
  2219. #ifdef SHOW_TEMP_ADC_VALUES
  2220. {
  2221. float raw = 0.0;
  2222. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2223. SERIAL_PROTOCOLPGM(" ADC B:");
  2224. SERIAL_PROTOCOL_F(degBed(),1);
  2225. SERIAL_PROTOCOLPGM("C->");
  2226. raw = rawBedTemp();
  2227. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  2228. SERIAL_PROTOCOLPGM(" Rb->");
  2229. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  2230. SERIAL_PROTOCOLPGM(" Rxb->");
  2231. SERIAL_PROTOCOL_F(raw, 5);
  2232. #endif
  2233. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2234. SERIAL_PROTOCOLPGM(" T");
  2235. SERIAL_PROTOCOL(cur_extruder);
  2236. SERIAL_PROTOCOLPGM(":");
  2237. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2238. SERIAL_PROTOCOLPGM("C->");
  2239. raw = rawHotendTemp(cur_extruder);
  2240. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  2241. SERIAL_PROTOCOLPGM(" Rt");
  2242. SERIAL_PROTOCOL(cur_extruder);
  2243. SERIAL_PROTOCOLPGM("->");
  2244. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  2245. SERIAL_PROTOCOLPGM(" Rx");
  2246. SERIAL_PROTOCOL(cur_extruder);
  2247. SERIAL_PROTOCOLPGM("->");
  2248. SERIAL_PROTOCOL_F(raw, 5);
  2249. }
  2250. }
  2251. #endif
  2252. SERIAL_PROTOCOLLN("");
  2253. KEEPALIVE_STATE(NOT_BUSY);
  2254. }
  2255. #ifdef TMC2130
  2256. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2257. #else
  2258. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2259. #endif //TMC2130
  2260. {
  2261. st_synchronize();
  2262. #if 0
  2263. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2264. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2265. #endif
  2266. // Flag for the display update routine and to disable the print cancelation during homing.
  2267. homing_flag = true;
  2268. // Which axes should be homed?
  2269. bool home_x = home_x_axis;
  2270. bool home_y = home_y_axis;
  2271. bool home_z = home_z_axis;
  2272. // Either all X,Y,Z codes are present, or none of them.
  2273. bool home_all_axes = home_x == home_y && home_x == home_z;
  2274. if (home_all_axes)
  2275. // No X/Y/Z code provided means to home all axes.
  2276. home_x = home_y = home_z = true;
  2277. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2278. if (home_all_axes) {
  2279. raise_z_above(MESH_HOME_Z_SEARCH);
  2280. st_synchronize();
  2281. }
  2282. #ifdef ENABLE_AUTO_BED_LEVELING
  2283. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2284. #endif //ENABLE_AUTO_BED_LEVELING
  2285. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2286. // the planner will not perform any adjustments in the XY plane.
  2287. // Wait for the motors to stop and update the current position with the absolute values.
  2288. world2machine_revert_to_uncorrected();
  2289. // For mesh bed leveling deactivate the matrix temporarily.
  2290. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2291. // in a single axis only.
  2292. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2293. #ifdef MESH_BED_LEVELING
  2294. uint8_t mbl_was_active = mbl.active;
  2295. mbl.active = 0;
  2296. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2297. #endif
  2298. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2299. // consumed during the first movements following this statement.
  2300. if (home_z)
  2301. babystep_undo();
  2302. saved_feedrate = feedrate;
  2303. int l_feedmultiply = feedmultiply;
  2304. feedmultiply = 100;
  2305. previous_millis_cmd = _millis();
  2306. enable_endstops(true);
  2307. memcpy(destination, current_position, sizeof(destination));
  2308. feedrate = 0.0;
  2309. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2310. if(home_z)
  2311. homeaxis(Z_AXIS);
  2312. #endif
  2313. #ifdef QUICK_HOME
  2314. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2315. if(home_x && home_y) //first diagonal move
  2316. {
  2317. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2318. int x_axis_home_dir = home_dir(X_AXIS);
  2319. plan_set_position_curposXYZE();
  2320. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2321. feedrate = homing_feedrate[X_AXIS];
  2322. if(homing_feedrate[Y_AXIS]<feedrate)
  2323. feedrate = homing_feedrate[Y_AXIS];
  2324. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2325. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2326. } else {
  2327. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2328. }
  2329. plan_buffer_line_destinationXYZE(feedrate/60);
  2330. st_synchronize();
  2331. axis_is_at_home(X_AXIS);
  2332. axis_is_at_home(Y_AXIS);
  2333. plan_set_position_curposXYZE();
  2334. destination[X_AXIS] = current_position[X_AXIS];
  2335. destination[Y_AXIS] = current_position[Y_AXIS];
  2336. plan_buffer_line_destinationXYZE(feedrate/60);
  2337. feedrate = 0.0;
  2338. st_synchronize();
  2339. endstops_hit_on_purpose();
  2340. current_position[X_AXIS] = destination[X_AXIS];
  2341. current_position[Y_AXIS] = destination[Y_AXIS];
  2342. current_position[Z_AXIS] = destination[Z_AXIS];
  2343. }
  2344. #endif /* QUICK_HOME */
  2345. #ifdef TMC2130
  2346. if(home_x)
  2347. {
  2348. if (!calib)
  2349. homeaxis(X_AXIS);
  2350. else
  2351. tmc2130_home_calibrate(X_AXIS);
  2352. }
  2353. if(home_y)
  2354. {
  2355. if (!calib)
  2356. homeaxis(Y_AXIS);
  2357. else
  2358. tmc2130_home_calibrate(Y_AXIS);
  2359. }
  2360. #else //TMC2130
  2361. if(home_x) homeaxis(X_AXIS);
  2362. if(home_y) homeaxis(Y_AXIS);
  2363. #endif //TMC2130
  2364. if(home_x_axis && home_x_value != 0)
  2365. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2366. if(home_y_axis && home_y_value != 0)
  2367. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2368. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2369. #ifndef Z_SAFE_HOMING
  2370. if(home_z) {
  2371. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2372. raise_z_above(Z_RAISE_BEFORE_HOMING);
  2373. st_synchronize();
  2374. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2375. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2376. raise_z_above(MESH_HOME_Z_SEARCH);
  2377. st_synchronize();
  2378. if (!axis_known_position[X_AXIS]) homeaxis(X_AXIS);
  2379. if (!axis_known_position[Y_AXIS]) homeaxis(Y_AXIS);
  2380. // 1st mesh bed leveling measurement point, corrected.
  2381. world2machine_initialize();
  2382. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2383. world2machine_reset();
  2384. if (destination[Y_AXIS] < Y_MIN_POS)
  2385. destination[Y_AXIS] = Y_MIN_POS;
  2386. feedrate = homing_feedrate[X_AXIS] / 20;
  2387. enable_endstops(false);
  2388. #ifdef DEBUG_BUILD
  2389. SERIAL_ECHOLNPGM("plan_set_position()");
  2390. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2391. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2392. #endif
  2393. plan_set_position_curposXYZE();
  2394. #ifdef DEBUG_BUILD
  2395. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2396. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2397. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2398. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2399. #endif
  2400. plan_buffer_line_destinationXYZE(feedrate);
  2401. st_synchronize();
  2402. current_position[X_AXIS] = destination[X_AXIS];
  2403. current_position[Y_AXIS] = destination[Y_AXIS];
  2404. enable_endstops(true);
  2405. endstops_hit_on_purpose();
  2406. homeaxis(Z_AXIS);
  2407. #else // MESH_BED_LEVELING
  2408. homeaxis(Z_AXIS);
  2409. #endif // MESH_BED_LEVELING
  2410. }
  2411. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2412. if(home_all_axes) {
  2413. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2414. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2415. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2416. feedrate = XY_TRAVEL_SPEED/60;
  2417. current_position[Z_AXIS] = 0;
  2418. plan_set_position_curposXYZE();
  2419. plan_buffer_line_destinationXYZE(feedrate);
  2420. st_synchronize();
  2421. current_position[X_AXIS] = destination[X_AXIS];
  2422. current_position[Y_AXIS] = destination[Y_AXIS];
  2423. homeaxis(Z_AXIS);
  2424. }
  2425. // Let's see if X and Y are homed and probe is inside bed area.
  2426. if(home_z) {
  2427. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2428. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2429. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2430. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2431. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2432. current_position[Z_AXIS] = 0;
  2433. plan_set_position_curposXYZE();
  2434. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2435. feedrate = max_feedrate[Z_AXIS];
  2436. plan_buffer_line_destinationXYZE(feedrate);
  2437. st_synchronize();
  2438. homeaxis(Z_AXIS);
  2439. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2440. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2441. SERIAL_ECHO_START;
  2442. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2443. } else {
  2444. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2445. SERIAL_ECHO_START;
  2446. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2447. }
  2448. }
  2449. #endif // Z_SAFE_HOMING
  2450. #endif // Z_HOME_DIR < 0
  2451. if(home_z_axis && home_z_value != 0)
  2452. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2453. #ifdef ENABLE_AUTO_BED_LEVELING
  2454. if(home_z)
  2455. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2456. #endif
  2457. // Set the planner and stepper routine positions.
  2458. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2459. // contains the machine coordinates.
  2460. plan_set_position_curposXYZE();
  2461. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2462. enable_endstops(false);
  2463. #endif
  2464. feedrate = saved_feedrate;
  2465. feedmultiply = l_feedmultiply;
  2466. previous_millis_cmd = _millis();
  2467. endstops_hit_on_purpose();
  2468. #ifndef MESH_BED_LEVELING
  2469. //-// Oct 2019 :: this part of code is (from) now probably un-compilable
  2470. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2471. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2472. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2473. lcd_adjust_z();
  2474. #endif
  2475. // Load the machine correction matrix
  2476. world2machine_initialize();
  2477. // and correct the current_position XY axes to match the transformed coordinate system.
  2478. world2machine_update_current();
  2479. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2480. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2481. {
  2482. if (! home_z && mbl_was_active) {
  2483. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2484. mbl.active = true;
  2485. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2486. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2487. }
  2488. }
  2489. else
  2490. {
  2491. st_synchronize();
  2492. homing_flag = false;
  2493. }
  2494. #endif
  2495. if (farm_mode) { prusa_statistics(20); };
  2496. homing_flag = false;
  2497. #if 0
  2498. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2499. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2500. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2501. #endif
  2502. }
  2503. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2504. {
  2505. #ifdef TMC2130
  2506. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2507. #else
  2508. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2509. #endif //TMC2130
  2510. }
  2511. void adjust_bed_reset()
  2512. {
  2513. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2514. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2515. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2516. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2517. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2518. }
  2519. //! @brief Calibrate XYZ
  2520. //! @param onlyZ if true, calibrate only Z axis
  2521. //! @param verbosity_level
  2522. //! @retval true Succeeded
  2523. //! @retval false Failed
  2524. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2525. {
  2526. bool final_result = false;
  2527. #ifdef TMC2130
  2528. FORCE_HIGH_POWER_START;
  2529. #endif // TMC2130
  2530. FORCE_BL_ON_START;
  2531. // Only Z calibration?
  2532. if (!onlyZ)
  2533. {
  2534. setTargetBed(0);
  2535. setAllTargetHotends(0);
  2536. adjust_bed_reset(); //reset bed level correction
  2537. }
  2538. // Disable the default update procedure of the display. We will do a modal dialog.
  2539. lcd_update_enable(false);
  2540. // Let the planner use the uncorrected coordinates.
  2541. mbl.reset();
  2542. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2543. // the planner will not perform any adjustments in the XY plane.
  2544. // Wait for the motors to stop and update the current position with the absolute values.
  2545. world2machine_revert_to_uncorrected();
  2546. // Reset the baby step value applied without moving the axes.
  2547. babystep_reset();
  2548. // Mark all axes as in a need for homing.
  2549. memset(axis_known_position, 0, sizeof(axis_known_position));
  2550. // Home in the XY plane.
  2551. //set_destination_to_current();
  2552. int l_feedmultiply = setup_for_endstop_move();
  2553. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2554. home_xy();
  2555. enable_endstops(false);
  2556. current_position[X_AXIS] += 5;
  2557. current_position[Y_AXIS] += 5;
  2558. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2559. st_synchronize();
  2560. // Let the user move the Z axes up to the end stoppers.
  2561. #ifdef TMC2130
  2562. if (calibrate_z_auto())
  2563. {
  2564. #else //TMC2130
  2565. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2566. {
  2567. #endif //TMC2130
  2568. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2569. if(onlyZ){
  2570. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2571. lcd_set_cursor(0, 3);
  2572. lcd_print(1);
  2573. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2574. }else{
  2575. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2576. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2577. lcd_set_cursor(0, 2);
  2578. lcd_print(1);
  2579. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2580. }
  2581. refresh_cmd_timeout();
  2582. #ifndef STEEL_SHEET
  2583. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2584. {
  2585. lcd_wait_for_cool_down();
  2586. }
  2587. #endif //STEEL_SHEET
  2588. if(!onlyZ)
  2589. {
  2590. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2591. #ifdef STEEL_SHEET
  2592. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2593. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2594. #endif //STEEL_SHEET
  2595. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2596. KEEPALIVE_STATE(IN_HANDLER);
  2597. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2598. lcd_set_cursor(0, 2);
  2599. lcd_print(1);
  2600. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2601. }
  2602. bool endstops_enabled = enable_endstops(false);
  2603. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2604. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2605. st_synchronize();
  2606. // Move the print head close to the bed.
  2607. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2608. enable_endstops(true);
  2609. #ifdef TMC2130
  2610. tmc2130_home_enter(Z_AXIS_MASK);
  2611. #endif //TMC2130
  2612. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2613. st_synchronize();
  2614. #ifdef TMC2130
  2615. tmc2130_home_exit();
  2616. #endif //TMC2130
  2617. enable_endstops(endstops_enabled);
  2618. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  2619. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  2620. {
  2621. if (onlyZ)
  2622. {
  2623. clean_up_after_endstop_move(l_feedmultiply);
  2624. // Z only calibration.
  2625. // Load the machine correction matrix
  2626. world2machine_initialize();
  2627. // and correct the current_position to match the transformed coordinate system.
  2628. world2machine_update_current();
  2629. //FIXME
  2630. bool result = sample_mesh_and_store_reference();
  2631. if (result)
  2632. {
  2633. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2634. // Shipped, the nozzle height has been set already. The user can start printing now.
  2635. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2636. final_result = true;
  2637. // babystep_apply();
  2638. }
  2639. }
  2640. else
  2641. {
  2642. // Reset the baby step value and the baby step applied flag.
  2643. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2644. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  2645. // Complete XYZ calibration.
  2646. uint8_t point_too_far_mask = 0;
  2647. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2648. clean_up_after_endstop_move(l_feedmultiply);
  2649. // Print head up.
  2650. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2651. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2652. st_synchronize();
  2653. //#ifndef NEW_XYZCAL
  2654. if (result >= 0)
  2655. {
  2656. #ifdef HEATBED_V2
  2657. sample_z();
  2658. #else //HEATBED_V2
  2659. point_too_far_mask = 0;
  2660. // Second half: The fine adjustment.
  2661. // Let the planner use the uncorrected coordinates.
  2662. mbl.reset();
  2663. world2machine_reset();
  2664. // Home in the XY plane.
  2665. int l_feedmultiply = setup_for_endstop_move();
  2666. home_xy();
  2667. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2668. clean_up_after_endstop_move(l_feedmultiply);
  2669. // Print head up.
  2670. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2671. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2672. st_synchronize();
  2673. // if (result >= 0) babystep_apply();
  2674. #endif //HEATBED_V2
  2675. }
  2676. //#endif //NEW_XYZCAL
  2677. lcd_update_enable(true);
  2678. lcd_update(2);
  2679. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2680. if (result >= 0)
  2681. {
  2682. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2683. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2684. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2685. final_result = true;
  2686. }
  2687. }
  2688. #ifdef TMC2130
  2689. tmc2130_home_exit();
  2690. #endif
  2691. }
  2692. else
  2693. {
  2694. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2695. final_result = false;
  2696. }
  2697. }
  2698. else
  2699. {
  2700. // Timeouted.
  2701. }
  2702. lcd_update_enable(true);
  2703. #ifdef TMC2130
  2704. FORCE_HIGH_POWER_END;
  2705. #endif // TMC2130
  2706. FORCE_BL_ON_END;
  2707. return final_result;
  2708. }
  2709. void gcode_M114()
  2710. {
  2711. SERIAL_PROTOCOLPGM("X:");
  2712. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2713. SERIAL_PROTOCOLPGM(" Y:");
  2714. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2715. SERIAL_PROTOCOLPGM(" Z:");
  2716. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2717. SERIAL_PROTOCOLPGM(" E:");
  2718. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2719. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2720. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2721. SERIAL_PROTOCOLPGM(" Y:");
  2722. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2723. SERIAL_PROTOCOLPGM(" Z:");
  2724. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2725. SERIAL_PROTOCOLPGM(" E:");
  2726. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2727. SERIAL_PROTOCOLLN("");
  2728. }
  2729. //! extracted code to compute z_shift for M600 in case of filament change operation
  2730. //! requested from fsensors.
  2731. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2732. //! unlike the previous implementation, which was adding 25mm even when the head was
  2733. //! printing at e.g. 24mm height.
  2734. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2735. //! the printout.
  2736. //! This function is templated to enable fast change of computation data type.
  2737. //! @return new z_shift value
  2738. template<typename T>
  2739. static T gcode_M600_filament_change_z_shift()
  2740. {
  2741. #ifdef FILAMENTCHANGE_ZADD
  2742. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2743. // avoid floating point arithmetics when not necessary - results in shorter code
  2744. T ztmp = T( current_position[Z_AXIS] );
  2745. T z_shift = 0;
  2746. if(ztmp < T(25)){
  2747. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2748. }
  2749. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2750. #else
  2751. return T(0);
  2752. #endif
  2753. }
  2754. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2755. {
  2756. st_synchronize();
  2757. float lastpos[4];
  2758. if (farm_mode)
  2759. {
  2760. prusa_statistics(22);
  2761. }
  2762. //First backup current position and settings
  2763. int feedmultiplyBckp = feedmultiply;
  2764. float HotendTempBckp = degTargetHotend(active_extruder);
  2765. int fanSpeedBckp = fanSpeed;
  2766. lastpos[X_AXIS] = current_position[X_AXIS];
  2767. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2768. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2769. lastpos[E_AXIS] = current_position[E_AXIS];
  2770. //Retract E
  2771. current_position[E_AXIS] += e_shift;
  2772. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED);
  2773. st_synchronize();
  2774. //Lift Z
  2775. current_position[Z_AXIS] += z_shift;
  2776. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED);
  2777. st_synchronize();
  2778. //Move XY to side
  2779. current_position[X_AXIS] = x_position;
  2780. current_position[Y_AXIS] = y_position;
  2781. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED);
  2782. st_synchronize();
  2783. //Beep, manage nozzle heater and wait for user to start unload filament
  2784. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2785. lcd_change_fil_state = 0;
  2786. // Unload filament
  2787. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2788. else unload_filament(); //unload filament for single material (used also in M702)
  2789. //finish moves
  2790. st_synchronize();
  2791. if (!mmu_enabled)
  2792. {
  2793. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2794. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2795. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2796. if (lcd_change_fil_state == 0)
  2797. {
  2798. lcd_clear();
  2799. lcd_set_cursor(0, 2);
  2800. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2801. current_position[X_AXIS] -= 100;
  2802. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED);
  2803. st_synchronize();
  2804. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2805. }
  2806. }
  2807. if (mmu_enabled)
  2808. {
  2809. if (!automatic) {
  2810. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2811. mmu_M600_wait_and_beep();
  2812. if (saved_printing) {
  2813. lcd_clear();
  2814. lcd_set_cursor(0, 2);
  2815. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2816. mmu_command(MmuCmd::R0);
  2817. manage_response(false, false);
  2818. }
  2819. }
  2820. mmu_M600_load_filament(automatic, HotendTempBckp);
  2821. }
  2822. else
  2823. M600_load_filament();
  2824. if (!automatic) M600_check_state(HotendTempBckp);
  2825. lcd_update_enable(true);
  2826. //Not let's go back to print
  2827. fanSpeed = fanSpeedBckp;
  2828. //Feed a little of filament to stabilize pressure
  2829. if (!automatic)
  2830. {
  2831. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2832. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EXFEED);
  2833. }
  2834. //Move XY back
  2835. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2836. FILAMENTCHANGE_XYFEED, active_extruder);
  2837. st_synchronize();
  2838. //Move Z back
  2839. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2840. FILAMENTCHANGE_ZFEED, active_extruder);
  2841. st_synchronize();
  2842. //Set E position to original
  2843. plan_set_e_position(lastpos[E_AXIS]);
  2844. memcpy(current_position, lastpos, sizeof(lastpos));
  2845. memcpy(destination, current_position, sizeof(current_position));
  2846. //Recover feed rate
  2847. feedmultiply = feedmultiplyBckp;
  2848. char cmd[9];
  2849. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2850. enquecommand(cmd);
  2851. #ifdef IR_SENSOR
  2852. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2853. fsensor_check_autoload();
  2854. #endif //IR_SENSOR
  2855. lcd_setstatuspgm(_T(WELCOME_MSG));
  2856. custom_message_type = CustomMsg::Status;
  2857. }
  2858. void gcode_M701()
  2859. {
  2860. printf_P(PSTR("gcode_M701 begin\n"));
  2861. if (farm_mode)
  2862. {
  2863. prusa_statistics(22);
  2864. }
  2865. if (mmu_enabled)
  2866. {
  2867. extr_adj(tmp_extruder);//loads current extruder
  2868. mmu_extruder = tmp_extruder;
  2869. }
  2870. else
  2871. {
  2872. enable_z();
  2873. custom_message_type = CustomMsg::FilamentLoading;
  2874. #ifdef FSENSOR_QUALITY
  2875. fsensor_oq_meassure_start(40);
  2876. #endif //FSENSOR_QUALITY
  2877. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2878. current_position[E_AXIS] += 40;
  2879. plan_buffer_line_curposXYZE(400 / 60); //fast sequence
  2880. st_synchronize();
  2881. raise_z_above(MIN_Z_FOR_LOAD, false);
  2882. current_position[E_AXIS] += 30;
  2883. plan_buffer_line_curposXYZE(400 / 60); //fast sequence
  2884. load_filament_final_feed(); //slow sequence
  2885. st_synchronize();
  2886. Sound_MakeCustom(50,500,false);
  2887. if (!farm_mode && loading_flag) {
  2888. lcd_load_filament_color_check();
  2889. }
  2890. lcd_update_enable(true);
  2891. lcd_update(2);
  2892. lcd_setstatuspgm(_T(WELCOME_MSG));
  2893. disable_z();
  2894. loading_flag = false;
  2895. custom_message_type = CustomMsg::Status;
  2896. #ifdef FSENSOR_QUALITY
  2897. fsensor_oq_meassure_stop();
  2898. if (!fsensor_oq_result())
  2899. {
  2900. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2901. lcd_update_enable(true);
  2902. lcd_update(2);
  2903. if (disable)
  2904. fsensor_disable();
  2905. }
  2906. #endif //FSENSOR_QUALITY
  2907. }
  2908. }
  2909. /**
  2910. * @brief Get serial number from 32U2 processor
  2911. *
  2912. * Typical format of S/N is:CZPX0917X003XC13518
  2913. *
  2914. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2915. *
  2916. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2917. * reply is transmitted to serial port 1 character by character.
  2918. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2919. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2920. * in any case.
  2921. */
  2922. static void gcode_PRUSA_SN()
  2923. {
  2924. if (farm_mode) {
  2925. selectedSerialPort = 0;
  2926. putchar(';');
  2927. putchar('S');
  2928. int numbersRead = 0;
  2929. ShortTimer timeout;
  2930. timeout.start();
  2931. while (numbersRead < 19) {
  2932. while (MSerial.available() > 0) {
  2933. uint8_t serial_char = MSerial.read();
  2934. selectedSerialPort = 1;
  2935. putchar(serial_char);
  2936. numbersRead++;
  2937. selectedSerialPort = 0;
  2938. }
  2939. if (timeout.expired(100u)) break;
  2940. }
  2941. selectedSerialPort = 1;
  2942. putchar('\n');
  2943. #if 0
  2944. for (int b = 0; b < 3; b++) {
  2945. _tone(BEEPER, 110);
  2946. _delay(50);
  2947. _noTone(BEEPER);
  2948. _delay(50);
  2949. }
  2950. #endif
  2951. } else {
  2952. puts_P(_N("Not in farm mode."));
  2953. }
  2954. }
  2955. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  2956. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  2957. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  2958. //! it may even interfere with other functions of the printer! You have been warned!
  2959. //! The test idea is to measure the time necessary to charge the capacitor.
  2960. //! So the algorithm is as follows:
  2961. //! 1. Set TACH_1 pin to INPUT mode and LOW
  2962. //! 2. Wait a few ms
  2963. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  2964. //! Repeat 1.-3. several times
  2965. //! Good RAMBo's times are in the range of approx. 260-320 us
  2966. //! Bad RAMBo's times are approx. 260-1200 us
  2967. //! So basically we are interested in maximum time, the minima are mostly the same.
  2968. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  2969. static void gcode_PRUSA_BadRAMBoFanTest(){
  2970. //printf_P(PSTR("Enter fan pin test\n"));
  2971. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  2972. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  2973. unsigned long tach1max = 0;
  2974. uint8_t tach1cntr = 0;
  2975. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  2976. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  2977. SET_OUTPUT(TACH_1);
  2978. WRITE(TACH_1, LOW);
  2979. _delay(20); // the delay may be lower
  2980. unsigned long tachMeasure = _micros();
  2981. cli();
  2982. SET_INPUT(TACH_1);
  2983. // just wait brutally in an endless cycle until we reach HIGH
  2984. // if this becomes a problem it may be improved to non-endless cycle
  2985. while( READ(TACH_1) == 0 ) ;
  2986. sei();
  2987. tachMeasure = _micros() - tachMeasure;
  2988. if( tach1max < tachMeasure )
  2989. tach1max = tachMeasure;
  2990. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  2991. }
  2992. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  2993. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  2994. if( tach1max > 500 ){
  2995. // bad RAMBo
  2996. SERIAL_PROTOCOLLNPGM("BAD");
  2997. } else {
  2998. SERIAL_PROTOCOLLNPGM("OK");
  2999. }
  3000. // cleanup after the test function
  3001. SET_INPUT(TACH_1);
  3002. WRITE(TACH_1, HIGH);
  3003. #endif
  3004. }
  3005. // G92 - Set current position to coordinates given
  3006. static void gcode_G92()
  3007. {
  3008. bool codes[NUM_AXIS];
  3009. float values[NUM_AXIS];
  3010. // Check which axes need to be set
  3011. for(uint8_t i = 0; i < NUM_AXIS; ++i)
  3012. {
  3013. codes[i] = code_seen(axis_codes[i]);
  3014. if(codes[i])
  3015. values[i] = code_value();
  3016. }
  3017. if((codes[E_AXIS] && values[E_AXIS] == 0) &&
  3018. (!codes[X_AXIS] && !codes[Y_AXIS] && !codes[Z_AXIS]))
  3019. {
  3020. // As a special optimization, when _just_ clearing the E position
  3021. // we schedule a flag asynchronously along with the next block to
  3022. // reset the starting E position instead of stopping the planner
  3023. current_position[E_AXIS] = 0;
  3024. plan_reset_next_e();
  3025. }
  3026. else
  3027. {
  3028. // In any other case we're forced to synchronize
  3029. st_synchronize();
  3030. for(uint8_t i = 0; i < 3; ++i)
  3031. {
  3032. if(codes[i])
  3033. current_position[i] = values[i] + cs.add_homing[i];
  3034. }
  3035. if(codes[E_AXIS])
  3036. current_position[E_AXIS] = values[E_AXIS];
  3037. // Set all at once
  3038. plan_set_position_curposXYZE();
  3039. }
  3040. }
  3041. #ifdef BACKLASH_X
  3042. extern uint8_t st_backlash_x;
  3043. #endif //BACKLASH_X
  3044. #ifdef BACKLASH_Y
  3045. extern uint8_t st_backlash_y;
  3046. #endif //BACKLASH_Y
  3047. //! \ingroup marlin_main
  3048. //! @brief Parse and process commands
  3049. //!
  3050. //! look here for descriptions of G-codes: https://reprap.org/wiki/G-code
  3051. //!
  3052. //!
  3053. //! Implemented Codes
  3054. //! -------------------
  3055. //!
  3056. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  3057. //!
  3058. //!@n PRUSA CODES
  3059. //!@n P F - Returns FW versions
  3060. //!@n P R - Returns revision of printer
  3061. //!
  3062. //!@n G0 -> G1
  3063. //!@n G1 - Coordinated Movement X Y Z E
  3064. //!@n G2 - CW ARC
  3065. //!@n G3 - CCW ARC
  3066. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  3067. //!@n G10 - retract filament according to settings of M207
  3068. //!@n G11 - retract recover filament according to settings of M208
  3069. //!@n G28 - Home all Axes
  3070. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  3071. //!@n G30 - Single Z Probe, probes bed at current XY location.
  3072. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  3073. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  3074. //!@n G80 - Automatic mesh bed leveling
  3075. //!@n G81 - Print bed profile
  3076. //!@n G90 - Use Absolute Coordinates
  3077. //!@n G91 - Use Relative Coordinates
  3078. //!@n G92 - Set current position to coordinates given
  3079. //!
  3080. //!@n M Codes
  3081. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  3082. //!@n M1 - Same as M0
  3083. //!@n M17 - Enable/Power all stepper motors
  3084. //!@n M18 - Disable all stepper motors; same as M84
  3085. //!@n M20 - List SD card
  3086. //!@n M21 - Init SD card
  3087. //!@n M22 - Release SD card
  3088. //!@n M23 - Select SD file (M23 filename.g)
  3089. //!@n M24 - Start/resume SD print
  3090. //!@n M25 - Pause SD print
  3091. //!@n M26 - Set SD position in bytes (M26 S12345)
  3092. //!@n M27 - Report SD print status
  3093. //!@n M28 - Start SD write (M28 filename.g)
  3094. //!@n M29 - Stop SD write
  3095. //!@n M30 - Delete file from SD (M30 filename.g)
  3096. //!@n M31 - Output time since last M109 or SD card start to serial
  3097. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  3098. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  3099. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  3100. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  3101. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  3102. //!@n M73 - Show percent done and print time remaining
  3103. //!@n M80 - Turn on Power Supply
  3104. //!@n M81 - Turn off Power Supply
  3105. //!@n M82 - Set E codes absolute (default)
  3106. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  3107. //!@n M84 - Disable steppers until next move,
  3108. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  3109. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3110. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  3111. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  3112. //!@n M104 - Set extruder target temp
  3113. //!@n M105 - Read current temp
  3114. //!@n M106 - Fan on
  3115. //!@n M107 - Fan off
  3116. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  3117. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  3118. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  3119. //!@n M112 - Emergency stop
  3120. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  3121. //!@n M114 - Output current position to serial port
  3122. //!@n M115 - Capabilities string
  3123. //!@n M117 - display message
  3124. //!@n M119 - Output Endstop status to serial port
  3125. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  3126. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  3127. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3128. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3129. //!@n M140 - Set bed target temp
  3130. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  3131. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3132. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3133. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3134. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3135. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  3136. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3137. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3138. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  3139. //!@n M206 - set additional homing offset
  3140. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  3141. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  3142. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3143. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3144. //!@n M220 S<factor in percent>- set speed factor override percentage
  3145. //!@n M221 S<factor in percent>- set extrude factor override percentage
  3146. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3147. //!@n M240 - Trigger a camera to take a photograph
  3148. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  3149. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3150. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  3151. //!@n M301 - Set PID parameters P I and D
  3152. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  3153. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  3154. //!@n M304 - Set bed PID parameters P I and D
  3155. //!@n M400 - Finish all moves
  3156. //!@n M401 - Lower z-probe if present
  3157. //!@n M402 - Raise z-probe if present
  3158. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  3159. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  3160. //!@n M406 - Turn off Filament Sensor extrusion control
  3161. //!@n M407 - Displays measured filament diameter
  3162. //!@n M500 - stores parameters in EEPROM
  3163. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  3164. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  3165. //!@n M503 - print the current settings (from memory not from EEPROM)
  3166. //!@n M509 - force language selection on next restart
  3167. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  3168. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3169. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  3170. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  3171. //!@n M861 - Set / Read PINDA temperature compensation offsets
  3172. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  3173. //!@n M907 - Set digital trimpot motor current using axis codes.
  3174. //!@n M908 - Control digital trimpot directly.
  3175. //!@n M350 - Set microstepping mode.
  3176. //!@n M351 - Toggle MS1 MS2 pins directly.
  3177. //!
  3178. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  3179. //!@n M999 - Restart after being stopped by error
  3180. //! <br><br>
  3181. /** @defgroup marlin_main Marlin main */
  3182. /** \ingroup GCodes */
  3183. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)._
  3184. /**
  3185. They are shown in order of appearance in the code.
  3186. There are reasons why some G Codes aren't in numerical order.
  3187. */
  3188. void process_commands()
  3189. {
  3190. #ifdef FANCHECK
  3191. if(fan_check_error){
  3192. if(fan_check_error == EFCE_DETECTED){
  3193. fan_check_error = EFCE_REPORTED;
  3194. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED);
  3195. lcd_pause_print();
  3196. } // otherwise it has already been reported, so just ignore further processing
  3197. return; //ignore usb stream. It is reenabled by selecting resume from the lcd.
  3198. }
  3199. #endif
  3200. if (!buflen) return; //empty command
  3201. #ifdef FILAMENT_RUNOUT_SUPPORT
  3202. SET_INPUT(FR_SENS);
  3203. #endif
  3204. #ifdef CMDBUFFER_DEBUG
  3205. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3206. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3207. SERIAL_ECHOLNPGM("");
  3208. SERIAL_ECHOPGM("In cmdqueue: ");
  3209. SERIAL_ECHO(buflen);
  3210. SERIAL_ECHOLNPGM("");
  3211. #endif /* CMDBUFFER_DEBUG */
  3212. unsigned long codenum; //throw away variable
  3213. char *starpos = NULL;
  3214. #ifdef ENABLE_AUTO_BED_LEVELING
  3215. float x_tmp, y_tmp, z_tmp, real_z;
  3216. #endif
  3217. // PRUSA GCODES
  3218. KEEPALIVE_STATE(IN_HANDLER);
  3219. #ifdef SNMM
  3220. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  3221. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  3222. int8_t SilentMode;
  3223. #endif
  3224. /*!
  3225. ---------------------------------------------------------------------------------
  3226. ### M117 - Display Message <a href="https://reprap.org/wiki/G-code#M117:_Display_Message">M117: Display Message</a>
  3227. This causes the given message to be shown in the status line on an attached LCD.
  3228. It is processed early as to allow printing messages that contain G, M, N or T.
  3229. ---------------------------------------------------------------------------------
  3230. ### Special internal commands
  3231. These are used by internal functions to process certain actions in the right order. Some of these are also usable by the user.
  3232. They are processed early as the commands are complex (strings).
  3233. These are only available on the MK3(S) as these require TMC2130 drivers:
  3234. - CRASH DETECTED
  3235. - CRASH RECOVER
  3236. - CRASH_CANCEL
  3237. - TMC_SET_WAVE
  3238. - TMC_SET_STEP
  3239. - TMC_SET_CHOP
  3240. */
  3241. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3242. starpos = (strchr(strchr_pointer + 5, '*'));
  3243. if (starpos != NULL)
  3244. *(starpos) = '\0';
  3245. lcd_setstatus(strchr_pointer + 5);
  3246. }
  3247. #ifdef TMC2130
  3248. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3249. {
  3250. // ### CRASH_DETECTED - TMC2130
  3251. // ---------------------------------
  3252. if(code_seen("CRASH_DETECTED"))
  3253. {
  3254. uint8_t mask = 0;
  3255. if (code_seen('X')) mask |= X_AXIS_MASK;
  3256. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3257. crashdet_detected(mask);
  3258. }
  3259. // ### CRASH_RECOVER - TMC2130
  3260. // ----------------------------------
  3261. else if(code_seen("CRASH_RECOVER"))
  3262. crashdet_recover();
  3263. // ### CRASH_CANCEL - TMC2130
  3264. // ----------------------------------
  3265. else if(code_seen("CRASH_CANCEL"))
  3266. crashdet_cancel();
  3267. }
  3268. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3269. {
  3270. // ### TMC_SET_WAVE_
  3271. // --------------------
  3272. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3273. {
  3274. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3275. axis = (axis == 'E')?3:(axis - 'X');
  3276. if (axis < 4)
  3277. {
  3278. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3279. tmc2130_set_wave(axis, 247, fac);
  3280. }
  3281. }
  3282. // ### TMC_SET_STEP_
  3283. // ------------------
  3284. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3285. {
  3286. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3287. axis = (axis == 'E')?3:(axis - 'X');
  3288. if (axis < 4)
  3289. {
  3290. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3291. uint16_t res = tmc2130_get_res(axis);
  3292. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3293. }
  3294. }
  3295. // ### TMC_SET_CHOP_
  3296. // -------------------
  3297. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3298. {
  3299. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3300. axis = (axis == 'E')?3:(axis - 'X');
  3301. if (axis < 4)
  3302. {
  3303. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3304. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3305. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3306. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3307. char* str_end = 0;
  3308. if (CMDBUFFER_CURRENT_STRING[14])
  3309. {
  3310. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3311. if (str_end && *str_end)
  3312. {
  3313. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3314. if (str_end && *str_end)
  3315. {
  3316. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3317. if (str_end && *str_end)
  3318. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3319. }
  3320. }
  3321. }
  3322. tmc2130_chopper_config[axis].toff = chop0;
  3323. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3324. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3325. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3326. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3327. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3328. }
  3329. }
  3330. }
  3331. #ifdef BACKLASH_X
  3332. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3333. {
  3334. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3335. st_backlash_x = bl;
  3336. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3337. }
  3338. #endif //BACKLASH_X
  3339. #ifdef BACKLASH_Y
  3340. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3341. {
  3342. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3343. st_backlash_y = bl;
  3344. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3345. }
  3346. #endif //BACKLASH_Y
  3347. #endif //TMC2130
  3348. else if(code_seen("PRUSA")){
  3349. /*!
  3350. ---------------------------------------------------------------------------------
  3351. ### PRUSA - Internal command set <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode - Notes</a>
  3352. Set of internal PRUSA commands
  3353. #### Usage
  3354. PRUSA [ Ping | PRN | FAN | fn | thx | uvlo | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | Beat | FR ]
  3355. #### Parameters
  3356. - `Ping`
  3357. - `PRN` - Prints revision of the printer
  3358. - `FAN` - Prints fan details
  3359. - `fn` - Prints farm no.
  3360. - `thx`
  3361. - `uvlo`
  3362. - `MMURES` - Reset MMU
  3363. - `RESET` - (Careful!)
  3364. - `fv` - ?
  3365. - `M28`
  3366. - `SN`
  3367. - `Fir` - Prints firmware version
  3368. - `Rev`- Prints filament size, elelectronics, nozzle type
  3369. - `Lang` - Reset the language
  3370. - `Lz`
  3371. - `Beat` - Kick farm link timer
  3372. - `FR` - Full factory reset
  3373. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3374. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3375. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3376. */
  3377. if (code_seen("Ping")) { // PRUSA Ping
  3378. if (farm_mode) {
  3379. PingTime = _millis();
  3380. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3381. }
  3382. }
  3383. else if (code_seen("PRN")) { // PRUSA PRN
  3384. printf_P(_N("%d"), status_number);
  3385. } else if( code_seen("FANPINTST") ){
  3386. gcode_PRUSA_BadRAMBoFanTest();
  3387. }else if (code_seen("FAN")) { // PRUSA FAN
  3388. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3389. }else if (code_seen("fn")) { // PRUSA fn
  3390. if (farm_mode) {
  3391. printf_P(_N("%d"), farm_no);
  3392. }
  3393. else {
  3394. puts_P(_N("Not in farm mode."));
  3395. }
  3396. }
  3397. else if (code_seen("thx")) // PRUSA thx
  3398. {
  3399. no_response = false;
  3400. }
  3401. else if (code_seen("uvlo")) // PRUSA uvlo
  3402. {
  3403. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3404. enquecommand_P(PSTR("M24"));
  3405. }
  3406. else if (code_seen("MMURES")) // PRUSA MMURES
  3407. {
  3408. mmu_reset();
  3409. }
  3410. else if (code_seen("RESET")) { // PRUSA RESET
  3411. // careful!
  3412. if (farm_mode) {
  3413. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3414. boot_app_magic = BOOT_APP_MAGIC;
  3415. boot_app_flags = BOOT_APP_FLG_RUN;
  3416. wdt_enable(WDTO_15MS);
  3417. cli();
  3418. while(1);
  3419. #else //WATCHDOG
  3420. asm volatile("jmp 0x3E000");
  3421. #endif //WATCHDOG
  3422. }
  3423. else {
  3424. MYSERIAL.println("Not in farm mode.");
  3425. }
  3426. }else if (code_seen("fv")) { // PRUSA fv
  3427. // get file version
  3428. #ifdef SDSUPPORT
  3429. card.openFile(strchr_pointer + 3,true);
  3430. while (true) {
  3431. uint16_t readByte = card.get();
  3432. MYSERIAL.write(readByte);
  3433. if (readByte=='\n') {
  3434. break;
  3435. }
  3436. }
  3437. card.closefile();
  3438. #endif // SDSUPPORT
  3439. } else if (code_seen("M28")) { // PRUSA M28
  3440. trace();
  3441. prusa_sd_card_upload = true;
  3442. card.openFile(strchr_pointer+4,false);
  3443. } else if (code_seen("SN")) { // PRUSA SN
  3444. gcode_PRUSA_SN();
  3445. } else if(code_seen("Fir")){ // PRUSA Fir
  3446. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3447. } else if(code_seen("Rev")){ // PRUSA Rev
  3448. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3449. } else if(code_seen("Lang")) { // PRUSA Lang
  3450. lang_reset();
  3451. } else if(code_seen("Lz")) { // PRUSA Lz
  3452. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3453. } else if(code_seen("Beat")) { // PRUSA Beat
  3454. // Kick farm link timer
  3455. kicktime = _millis();
  3456. } else if(code_seen("FR")) { // PRUSA FR
  3457. // Factory full reset
  3458. factory_reset(0);
  3459. } else if(code_seen("MBL")) { // PRUSA MBL
  3460. // Change the MBL status without changing the logical Z position.
  3461. if(code_seen("V")) {
  3462. bool value = code_value_short();
  3463. st_synchronize();
  3464. if(value != mbl.active) {
  3465. mbl.active = value;
  3466. // Use plan_set_z_position to reset the physical values
  3467. plan_set_z_position(current_position[Z_AXIS]);
  3468. }
  3469. }
  3470. //-//
  3471. /*
  3472. } else if(code_seen("rrr")) {
  3473. MYSERIAL.println("=== checking ===");
  3474. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3475. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3476. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3477. MYSERIAL.println(farm_mode,DEC);
  3478. MYSERIAL.println(eCheckMode,DEC);
  3479. } else if(code_seen("www")) {
  3480. MYSERIAL.println("=== @ FF ===");
  3481. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3482. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3483. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3484. */
  3485. } else if (code_seen("nozzle")) { // PRUSA nozzle
  3486. uint16_t nDiameter;
  3487. if(code_seen('D'))
  3488. {
  3489. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3490. nozzle_diameter_check(nDiameter);
  3491. }
  3492. else if(code_seen("set") && farm_mode)
  3493. {
  3494. strchr_pointer++; // skip 1st char (~ 's')
  3495. strchr_pointer++; // skip 2nd char (~ 'e')
  3496. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3497. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3498. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3499. }
  3500. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3501. //-// !!! SupportMenu
  3502. /*
  3503. // musi byt PRED "PRUSA model"
  3504. } else if (code_seen("smodel")) { //! PRUSA smodel
  3505. size_t nOffset;
  3506. // ! -> "l"
  3507. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3508. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3509. if(*(strchr_pointer+1+nOffset))
  3510. printer_smodel_check(strchr_pointer);
  3511. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3512. } else if (code_seen("model")) { //! PRUSA model
  3513. uint16_t nPrinterModel;
  3514. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3515. nPrinterModel=(uint16_t)code_value_long();
  3516. if(nPrinterModel!=0)
  3517. printer_model_check(nPrinterModel);
  3518. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3519. } else if (code_seen("version")) { //! PRUSA version
  3520. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3521. while(*strchr_pointer==' ') // skip leading spaces
  3522. strchr_pointer++;
  3523. if(*strchr_pointer!=0)
  3524. fw_version_check(strchr_pointer);
  3525. else SERIAL_PROTOCOLLN(FW_VERSION);
  3526. } else if (code_seen("gcode")) { //! PRUSA gcode
  3527. uint16_t nGcodeLevel;
  3528. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3529. nGcodeLevel=(uint16_t)code_value_long();
  3530. if(nGcodeLevel!=0)
  3531. gcode_level_check(nGcodeLevel);
  3532. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3533. */
  3534. }
  3535. //else if (code_seen('Cal')) {
  3536. // lcd_calibration();
  3537. // }
  3538. }
  3539. // This prevents reading files with "^" in their names.
  3540. // Since it is unclear, if there is some usage of this construct,
  3541. // it will be deprecated in 3.9 alpha a possibly completely removed in the future:
  3542. // else if (code_seen('^')) {
  3543. // // nothing, this is a version line
  3544. // }
  3545. else if(code_seen('G'))
  3546. {
  3547. gcode_in_progress = (int)code_value();
  3548. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3549. switch (gcode_in_progress)
  3550. {
  3551. /*!
  3552. ---------------------------------------------------------------------------------
  3553. # G Codes
  3554. ### G0, G1 - Coordinated movement X Y Z E <a href="https://reprap.org/wiki/G-code#G0_.26_G1:_Move">G0 & G1: Move</a>
  3555. In Prusa Firmware G0 and G1 are the same.
  3556. #### Usage
  3557. G0 [ X | Y | Z | E | F | S ]
  3558. G1 [ X | Y | Z | E | F | S ]
  3559. #### Parameters
  3560. - `X` - The position to move to on the X axis
  3561. - `Y` - The position to move to on the Y axis
  3562. - `Z` - The position to move to on the Z axis
  3563. - `E` - The amount to extrude between the starting point and ending point
  3564. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  3565. */
  3566. case 0: // G0 -> G1
  3567. case 1: // G1
  3568. if(Stopped == false) {
  3569. #ifdef FILAMENT_RUNOUT_SUPPORT
  3570. if(READ(FR_SENS)){
  3571. int feedmultiplyBckp=feedmultiply;
  3572. float target[4];
  3573. float lastpos[4];
  3574. target[X_AXIS]=current_position[X_AXIS];
  3575. target[Y_AXIS]=current_position[Y_AXIS];
  3576. target[Z_AXIS]=current_position[Z_AXIS];
  3577. target[E_AXIS]=current_position[E_AXIS];
  3578. lastpos[X_AXIS]=current_position[X_AXIS];
  3579. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3580. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3581. lastpos[E_AXIS]=current_position[E_AXIS];
  3582. //retract by E
  3583. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3584. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3585. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3586. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3587. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3588. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3589. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3590. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3591. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3592. //finish moves
  3593. st_synchronize();
  3594. //disable extruder steppers so filament can be removed
  3595. disable_e0();
  3596. disable_e1();
  3597. disable_e2();
  3598. _delay(100);
  3599. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3600. uint8_t cnt=0;
  3601. int counterBeep = 0;
  3602. lcd_wait_interact();
  3603. while(!lcd_clicked()){
  3604. cnt++;
  3605. manage_heater();
  3606. manage_inactivity(true);
  3607. //lcd_update(0);
  3608. if(cnt==0)
  3609. {
  3610. #if BEEPER > 0
  3611. if (counterBeep== 500){
  3612. counterBeep = 0;
  3613. }
  3614. SET_OUTPUT(BEEPER);
  3615. if (counterBeep== 0){
  3616. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3617. WRITE(BEEPER,HIGH);
  3618. }
  3619. if (counterBeep== 20){
  3620. WRITE(BEEPER,LOW);
  3621. }
  3622. counterBeep++;
  3623. #else
  3624. #endif
  3625. }
  3626. }
  3627. WRITE(BEEPER,LOW);
  3628. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3629. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3630. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3631. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3632. lcd_change_fil_state = 0;
  3633. lcd_loading_filament();
  3634. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3635. lcd_change_fil_state = 0;
  3636. lcd_alright();
  3637. switch(lcd_change_fil_state){
  3638. case 2:
  3639. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3640. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3641. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3642. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3643. lcd_loading_filament();
  3644. break;
  3645. case 3:
  3646. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3647. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3648. lcd_loading_color();
  3649. break;
  3650. default:
  3651. lcd_change_success();
  3652. break;
  3653. }
  3654. }
  3655. target[E_AXIS]+= 5;
  3656. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3657. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3658. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3659. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3660. //plan_set_e_position(current_position[E_AXIS]);
  3661. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3662. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3663. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3664. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3665. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3666. plan_set_e_position(lastpos[E_AXIS]);
  3667. feedmultiply=feedmultiplyBckp;
  3668. char cmd[9];
  3669. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3670. enquecommand(cmd);
  3671. }
  3672. #endif
  3673. get_coordinates(); // For X Y Z E F
  3674. // When recovering from a previous print move, restore the originally
  3675. // calculated target position on the first USB/SD command. This accounts
  3676. // properly for relative moves
  3677. if ((saved_target[0] != SAVED_TARGET_UNSET) &&
  3678. ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) ||
  3679. (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)))
  3680. {
  3681. memcpy(destination, saved_target, sizeof(destination));
  3682. saved_target[0] = SAVED_TARGET_UNSET;
  3683. }
  3684. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3685. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3686. }
  3687. #ifdef FWRETRACT
  3688. if(cs.autoretract_enabled)
  3689. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3690. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3691. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3692. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3693. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3694. retract(!retracted[active_extruder]);
  3695. return;
  3696. }
  3697. }
  3698. #endif //FWRETRACT
  3699. prepare_move();
  3700. //ClearToSend();
  3701. }
  3702. break;
  3703. /*!
  3704. ### G2, G3 - Controlled Arc Move <a href="https://reprap.org/wiki/G-code#G2_.26_G3:_Controlled_Arc_Move">G2 & G3: Controlled Arc Move</a>
  3705. These commands don't propperly work with MBL enabled. The compensation only happens at the end of the move, so avoid long arcs.
  3706. #### Usage
  3707. G2 [ X | Y | I | E | F ] (Clockwise Arc)
  3708. G3 [ X | Y | I | E | F ] (Counter-Clockwise Arc)
  3709. #### Parameters
  3710. - `X` - The position to move to on the X axis
  3711. - `Y` - The position to move to on the Y axis
  3712. - `I` - The point in X space from the current X position to maintain a constant distance from
  3713. - `J` - The point in Y space from the current Y position to maintain a constant distance from
  3714. - `E` - The amount to extrude between the starting point and ending point
  3715. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  3716. */
  3717. case 2:
  3718. if(Stopped == false) {
  3719. get_arc_coordinates();
  3720. prepare_arc_move(true);
  3721. }
  3722. break;
  3723. // -------------------------------
  3724. case 3:
  3725. if(Stopped == false) {
  3726. get_arc_coordinates();
  3727. prepare_arc_move(false);
  3728. }
  3729. break;
  3730. /*!
  3731. ### G4 - Dwell <a href="https://reprap.org/wiki/G-code#G4:_Dwell">G4: Dwell</a>
  3732. Pause the machine for a period of time.
  3733. #### Usage
  3734. G4 [ P | S ]
  3735. #### Parameters
  3736. - `P` - Time to wait, in milliseconds
  3737. - `S` - Time to wait, in seconds
  3738. */
  3739. case 4:
  3740. codenum = 0;
  3741. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3742. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3743. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3744. st_synchronize();
  3745. codenum += _millis(); // keep track of when we started waiting
  3746. previous_millis_cmd = _millis();
  3747. while(_millis() < codenum) {
  3748. manage_heater();
  3749. manage_inactivity();
  3750. lcd_update(0);
  3751. }
  3752. break;
  3753. #ifdef FWRETRACT
  3754. /*!
  3755. ### G10 - Retract <a href="https://reprap.org/wiki/G-code#G10:_Retract">G10: Retract</a>
  3756. Retracts filament according to settings of `M207`
  3757. */
  3758. case 10:
  3759. #if EXTRUDERS > 1
  3760. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3761. retract(true,retracted_swap[active_extruder]);
  3762. #else
  3763. retract(true);
  3764. #endif
  3765. break;
  3766. /*!
  3767. ### G11 - Retract recover <a href="https://reprap.org/wiki/G-code#G11:_Unretract">G11: Unretract</a>
  3768. Unretracts/recovers filament according to settings of `M208`
  3769. */
  3770. case 11:
  3771. #if EXTRUDERS > 1
  3772. retract(false,retracted_swap[active_extruder]);
  3773. #else
  3774. retract(false);
  3775. #endif
  3776. break;
  3777. #endif //FWRETRACT
  3778. /*!
  3779. ### G28 - Home all Axes one at a time <a href="https://reprap.org/wiki/G-code#G28:_Move_to_Origin_.28Home.29">G28: Move to Origin (Home)</a>
  3780. Using `G28` without any parameters will perfom homing of all axes AND mesh bed leveling, while `G28 W` will just home all axes (no mesh bed leveling).
  3781. #### Usage
  3782. G28 [ X | Y | Z | W | C ]
  3783. #### Parameters
  3784. - `X` - Flag to go back to the X axis origin
  3785. - `Y` - Flag to go back to the Y axis origin
  3786. - `Z` - Flag to go back to the Z axis origin
  3787. - `W` - Suppress mesh bed leveling if `X`, `Y` or `Z` are not provided
  3788. - `C` - Calibrate X and Y origin (home) - Only on MK3/s
  3789. */
  3790. case 28:
  3791. {
  3792. long home_x_value = 0;
  3793. long home_y_value = 0;
  3794. long home_z_value = 0;
  3795. // Which axes should be homed?
  3796. bool home_x = code_seen(axis_codes[X_AXIS]);
  3797. home_x_value = code_value_long();
  3798. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3799. home_y_value = code_value_long();
  3800. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3801. home_z_value = code_value_long();
  3802. bool without_mbl = code_seen('W');
  3803. // calibrate?
  3804. #ifdef TMC2130
  3805. bool calib = code_seen('C');
  3806. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3807. #else
  3808. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3809. #endif //TMC2130
  3810. if ((home_x || home_y || without_mbl || home_z) == false) {
  3811. // Push the commands to the front of the message queue in the reverse order!
  3812. // There shall be always enough space reserved for these commands.
  3813. goto case_G80;
  3814. }
  3815. break;
  3816. }
  3817. #ifdef ENABLE_AUTO_BED_LEVELING
  3818. /*!
  3819. ### G29 - Detailed Z-Probe <a href="https://reprap.org/wiki/G-code#G29:_Detailed_Z-Probe">G29: Detailed Z-Probe</a>
  3820. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3821. See `G81`
  3822. */
  3823. case 29:
  3824. {
  3825. #if Z_MIN_PIN == -1
  3826. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3827. #endif
  3828. // Prevent user from running a G29 without first homing in X and Y
  3829. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3830. {
  3831. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3832. SERIAL_ECHO_START;
  3833. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3834. break; // abort G29, since we don't know where we are
  3835. }
  3836. st_synchronize();
  3837. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3838. //vector_3 corrected_position = plan_get_position_mm();
  3839. //corrected_position.debug("position before G29");
  3840. plan_bed_level_matrix.set_to_identity();
  3841. vector_3 uncorrected_position = plan_get_position();
  3842. //uncorrected_position.debug("position durring G29");
  3843. current_position[X_AXIS] = uncorrected_position.x;
  3844. current_position[Y_AXIS] = uncorrected_position.y;
  3845. current_position[Z_AXIS] = uncorrected_position.z;
  3846. plan_set_position_curposXYZE();
  3847. int l_feedmultiply = setup_for_endstop_move();
  3848. feedrate = homing_feedrate[Z_AXIS];
  3849. #ifdef AUTO_BED_LEVELING_GRID
  3850. // probe at the points of a lattice grid
  3851. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3852. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3853. // solve the plane equation ax + by + d = z
  3854. // A is the matrix with rows [x y 1] for all the probed points
  3855. // B is the vector of the Z positions
  3856. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3857. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3858. // "A" matrix of the linear system of equations
  3859. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3860. // "B" vector of Z points
  3861. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3862. int probePointCounter = 0;
  3863. bool zig = true;
  3864. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3865. {
  3866. int xProbe, xInc;
  3867. if (zig)
  3868. {
  3869. xProbe = LEFT_PROBE_BED_POSITION;
  3870. //xEnd = RIGHT_PROBE_BED_POSITION;
  3871. xInc = xGridSpacing;
  3872. zig = false;
  3873. } else // zag
  3874. {
  3875. xProbe = RIGHT_PROBE_BED_POSITION;
  3876. //xEnd = LEFT_PROBE_BED_POSITION;
  3877. xInc = -xGridSpacing;
  3878. zig = true;
  3879. }
  3880. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3881. {
  3882. float z_before;
  3883. if (probePointCounter == 0)
  3884. {
  3885. // raise before probing
  3886. z_before = Z_RAISE_BEFORE_PROBING;
  3887. } else
  3888. {
  3889. // raise extruder
  3890. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3891. }
  3892. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3893. eqnBVector[probePointCounter] = measured_z;
  3894. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3895. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3896. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3897. probePointCounter++;
  3898. xProbe += xInc;
  3899. }
  3900. }
  3901. clean_up_after_endstop_move(l_feedmultiply);
  3902. // solve lsq problem
  3903. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3904. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3905. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3906. SERIAL_PROTOCOLPGM(" b: ");
  3907. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3908. SERIAL_PROTOCOLPGM(" d: ");
  3909. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3910. set_bed_level_equation_lsq(plane_equation_coefficients);
  3911. free(plane_equation_coefficients);
  3912. #else // AUTO_BED_LEVELING_GRID not defined
  3913. // Probe at 3 arbitrary points
  3914. // probe 1
  3915. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3916. // probe 2
  3917. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3918. // probe 3
  3919. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3920. clean_up_after_endstop_move(l_feedmultiply);
  3921. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3922. #endif // AUTO_BED_LEVELING_GRID
  3923. st_synchronize();
  3924. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3925. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3926. // When the bed is uneven, this height must be corrected.
  3927. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3928. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3929. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3930. z_tmp = current_position[Z_AXIS];
  3931. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3932. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3933. plan_set_position_curposXYZE();
  3934. }
  3935. break;
  3936. #ifndef Z_PROBE_SLED
  3937. /*!
  3938. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  3939. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3940. */
  3941. case 30:
  3942. {
  3943. st_synchronize();
  3944. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3945. int l_feedmultiply = setup_for_endstop_move();
  3946. feedrate = homing_feedrate[Z_AXIS];
  3947. run_z_probe();
  3948. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3949. SERIAL_PROTOCOLPGM(" X: ");
  3950. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3951. SERIAL_PROTOCOLPGM(" Y: ");
  3952. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3953. SERIAL_PROTOCOLPGM(" Z: ");
  3954. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3955. SERIAL_PROTOCOLPGM("\n");
  3956. clean_up_after_endstop_move(l_feedmultiply);
  3957. }
  3958. break;
  3959. #else
  3960. /*!
  3961. ### G31 - Dock the sled <a href="https://reprap.org/wiki/G-code#G31:_Dock_Z_Probe_sled">G31: Dock Z Probe sled</a>
  3962. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3963. */
  3964. case 31:
  3965. dock_sled(true);
  3966. break;
  3967. /*!
  3968. ### G32 - Undock the sled <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  3969. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3970. */
  3971. case 32:
  3972. dock_sled(false);
  3973. break;
  3974. #endif // Z_PROBE_SLED
  3975. #endif // ENABLE_AUTO_BED_LEVELING
  3976. #ifdef MESH_BED_LEVELING
  3977. /*!
  3978. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  3979. Sensor must be over the bed.
  3980. The maximum travel distance before an error is triggered is 10mm.
  3981. */
  3982. case 30:
  3983. {
  3984. st_synchronize();
  3985. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3986. int l_feedmultiply = setup_for_endstop_move();
  3987. feedrate = homing_feedrate[Z_AXIS];
  3988. find_bed_induction_sensor_point_z(-10.f, 3);
  3989. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3990. clean_up_after_endstop_move(l_feedmultiply);
  3991. }
  3992. break;
  3993. /*!
  3994. ### G75 - Print temperature interpolation <a href="https://reprap.org/wiki/G-code#G75:_Print_temperature_interpolation">G75: Print temperature interpolation</a>
  3995. Show/print PINDA temperature interpolating.
  3996. */
  3997. case 75:
  3998. {
  3999. for (int i = 40; i <= 110; i++)
  4000. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  4001. }
  4002. break;
  4003. /*!
  4004. ### G76 - PINDA probe temperature calibration <a href="https://reprap.org/wiki/G-code#G76:_PINDA_probe_temperature_calibration">G76: PINDA probe temperature calibration</a>
  4005. This G-code is used to calibrate the temperature drift of the PINDA (inductive Sensor).
  4006. The PINDAv2 sensor has a built-in thermistor which has the advantage that the calibration can be done once for all materials.
  4007. The Original i3 Prusa MK2/s uses PINDAv1 and this calibration improves the temperature drift, but not as good as the PINDAv2.
  4008. superPINDA sensor has internal temperature compensation and no thermistor output. There is no point of doing temperature calibration in such case.
  4009. If PINDA_THERMISTOR and DETECT_SUPERPINDA is defined during compilation, calibration is skipped with serial message "No PINDA thermistor".
  4010. This can be caused also if PINDA thermistor connection is broken or PINDA temperature is lower than PINDA_MINTEMP.
  4011. #### Example
  4012. ```
  4013. G76
  4014. echo PINDA probe calibration start
  4015. echo start temperature: 35.0°
  4016. echo ...
  4017. echo PINDA temperature -- Z shift (mm): 0.---
  4018. ```
  4019. */
  4020. case 76:
  4021. {
  4022. #ifdef PINDA_THERMISTOR
  4023. if (!has_temperature_compensation())
  4024. {
  4025. SERIAL_ECHOLNPGM("No PINDA thermistor");
  4026. break;
  4027. }
  4028. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  4029. //we need to know accurate position of first calibration point
  4030. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  4031. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  4032. break;
  4033. }
  4034. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  4035. {
  4036. // We don't know where we are! HOME!
  4037. // Push the commands to the front of the message queue in the reverse order!
  4038. // There shall be always enough space reserved for these commands.
  4039. repeatcommand_front(); // repeat G76 with all its parameters
  4040. enquecommand_front_P((PSTR("G28 W0")));
  4041. break;
  4042. }
  4043. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  4044. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  4045. if (result)
  4046. {
  4047. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4048. plan_buffer_line_curposXYZE(3000 / 60);
  4049. current_position[Z_AXIS] = 50;
  4050. current_position[Y_AXIS] = 180;
  4051. plan_buffer_line_curposXYZE(3000 / 60);
  4052. st_synchronize();
  4053. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  4054. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4055. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4056. plan_buffer_line_curposXYZE(3000 / 60);
  4057. st_synchronize();
  4058. gcode_G28(false, false, true);
  4059. }
  4060. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  4061. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  4062. current_position[Z_AXIS] = 100;
  4063. plan_buffer_line_curposXYZE(3000 / 60);
  4064. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  4065. lcd_temp_cal_show_result(false);
  4066. break;
  4067. }
  4068. }
  4069. lcd_update_enable(true);
  4070. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  4071. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  4072. float zero_z;
  4073. int z_shift = 0; //unit: steps
  4074. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  4075. if (start_temp < 35) start_temp = 35;
  4076. if (start_temp < current_temperature_pinda) start_temp += 5;
  4077. printf_P(_N("start temperature: %.1f\n"), start_temp);
  4078. // setTargetHotend(200, 0);
  4079. setTargetBed(70 + (start_temp - 30));
  4080. custom_message_type = CustomMsg::TempCal;
  4081. custom_message_state = 1;
  4082. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  4083. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4084. plan_buffer_line_curposXYZE(3000 / 60);
  4085. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4086. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4087. plan_buffer_line_curposXYZE(3000 / 60);
  4088. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4089. plan_buffer_line_curposXYZE(3000 / 60);
  4090. st_synchronize();
  4091. while (current_temperature_pinda < start_temp)
  4092. {
  4093. delay_keep_alive(1000);
  4094. serialecho_temperatures();
  4095. }
  4096. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4097. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4098. plan_buffer_line_curposXYZE(3000 / 60);
  4099. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4100. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4101. plan_buffer_line_curposXYZE(3000 / 60);
  4102. st_synchronize();
  4103. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  4104. if (find_z_result == false) {
  4105. lcd_temp_cal_show_result(find_z_result);
  4106. break;
  4107. }
  4108. zero_z = current_position[Z_AXIS];
  4109. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4110. int i = -1; for (; i < 5; i++)
  4111. {
  4112. float temp = (40 + i * 5);
  4113. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  4114. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  4115. if (start_temp <= temp) break;
  4116. }
  4117. for (i++; i < 5; i++)
  4118. {
  4119. float temp = (40 + i * 5);
  4120. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4121. custom_message_state = i + 2;
  4122. setTargetBed(50 + 10 * (temp - 30) / 5);
  4123. // setTargetHotend(255, 0);
  4124. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4125. plan_buffer_line_curposXYZE(3000 / 60);
  4126. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4127. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4128. plan_buffer_line_curposXYZE(3000 / 60);
  4129. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4130. plan_buffer_line_curposXYZE(3000 / 60);
  4131. st_synchronize();
  4132. while (current_temperature_pinda < temp)
  4133. {
  4134. delay_keep_alive(1000);
  4135. serialecho_temperatures();
  4136. }
  4137. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4138. plan_buffer_line_curposXYZE(3000 / 60);
  4139. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4140. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4141. plan_buffer_line_curposXYZE(3000 / 60);
  4142. st_synchronize();
  4143. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  4144. if (find_z_result == false) {
  4145. lcd_temp_cal_show_result(find_z_result);
  4146. break;
  4147. }
  4148. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4149. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  4150. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  4151. }
  4152. lcd_temp_cal_show_result(true);
  4153. #else //PINDA_THERMISTOR
  4154. setTargetBed(PINDA_MIN_T);
  4155. float zero_z;
  4156. int z_shift = 0; //unit: steps
  4157. int t_c; // temperature
  4158. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4159. // We don't know where we are! HOME!
  4160. // Push the commands to the front of the message queue in the reverse order!
  4161. // There shall be always enough space reserved for these commands.
  4162. repeatcommand_front(); // repeat G76 with all its parameters
  4163. enquecommand_front_P((PSTR("G28 W0")));
  4164. break;
  4165. }
  4166. puts_P(_N("PINDA probe calibration start"));
  4167. custom_message_type = CustomMsg::TempCal;
  4168. custom_message_state = 1;
  4169. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  4170. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4171. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4172. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4173. plan_buffer_line_curposXYZE(3000 / 60);
  4174. st_synchronize();
  4175. while (abs(degBed() - PINDA_MIN_T) > 1) {
  4176. delay_keep_alive(1000);
  4177. serialecho_temperatures();
  4178. }
  4179. //enquecommand_P(PSTR("M190 S50"));
  4180. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4181. delay_keep_alive(1000);
  4182. serialecho_temperatures();
  4183. }
  4184. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4185. current_position[Z_AXIS] = 5;
  4186. plan_buffer_line_curposXYZE(3000 / 60);
  4187. current_position[X_AXIS] = BED_X0;
  4188. current_position[Y_AXIS] = BED_Y0;
  4189. plan_buffer_line_curposXYZE(3000 / 60);
  4190. st_synchronize();
  4191. find_bed_induction_sensor_point_z(-1.f);
  4192. zero_z = current_position[Z_AXIS];
  4193. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4194. for (int i = 0; i<5; i++) {
  4195. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4196. custom_message_state = i + 2;
  4197. t_c = 60 + i * 10;
  4198. setTargetBed(t_c);
  4199. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4200. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4201. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4202. plan_buffer_line_curposXYZE(3000 / 60);
  4203. st_synchronize();
  4204. while (degBed() < t_c) {
  4205. delay_keep_alive(1000);
  4206. serialecho_temperatures();
  4207. }
  4208. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4209. delay_keep_alive(1000);
  4210. serialecho_temperatures();
  4211. }
  4212. current_position[Z_AXIS] = 5;
  4213. plan_buffer_line_curposXYZE(3000 / 60);
  4214. current_position[X_AXIS] = BED_X0;
  4215. current_position[Y_AXIS] = BED_Y0;
  4216. plan_buffer_line_curposXYZE(3000 / 60);
  4217. st_synchronize();
  4218. find_bed_induction_sensor_point_z(-1.f);
  4219. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4220. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  4221. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  4222. }
  4223. custom_message_type = CustomMsg::Status;
  4224. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  4225. puts_P(_N("Temperature calibration done."));
  4226. disable_x();
  4227. disable_y();
  4228. disable_z();
  4229. disable_e0();
  4230. disable_e1();
  4231. disable_e2();
  4232. setTargetBed(0); //set bed target temperature back to 0
  4233. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  4234. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  4235. lcd_update_enable(true);
  4236. lcd_update(2);
  4237. #endif //PINDA_THERMISTOR
  4238. }
  4239. break;
  4240. /*!
  4241. ### G80 - Mesh-based Z probe <a href="https://reprap.org/wiki/G-code#G80:_Mesh-based_Z_probe">G80: Mesh-based Z probe</a>
  4242. Default 3x3 grid can be changed on MK2.5/s and MK3/s to 7x7 grid.
  4243. #### Usage
  4244. G80 [ N | R | V | L | R | F | B ]
  4245. #### Parameters
  4246. - `N` - Number of mesh points on x axis. Default is 3. Valid values are 3 and 7.
  4247. - `R` - Probe retries. Default 3 max. 10
  4248. - `V` - Verbosity level 1=low, 10=mid, 20=high. It only can be used if the firmware has been compiled with SUPPORT_VERBOSITY active.
  4249. Using the following parameters enables additional "manual" bed leveling correction. Valid values are -100 microns to 100 microns.
  4250. #### Additional Parameters
  4251. - `L` - Left Bed Level correct value in um.
  4252. - `R` - Right Bed Level correct value in um.
  4253. - `F` - Front Bed Level correct value in um.
  4254. - `B` - Back Bed Level correct value in um.
  4255. */
  4256. /*
  4257. * Probes a grid and produces a mesh to compensate for variable bed height
  4258. * The S0 report the points as below
  4259. * +----> X-axis
  4260. * |
  4261. * |
  4262. * v Y-axis
  4263. */
  4264. case 80:
  4265. #ifdef MK1BP
  4266. break;
  4267. #endif //MK1BP
  4268. case_G80:
  4269. {
  4270. mesh_bed_leveling_flag = true;
  4271. #ifndef PINDA_THERMISTOR
  4272. static bool run = false; // thermistor-less PINDA temperature compensation is running
  4273. #endif // ndef PINDA_THERMISTOR
  4274. #ifdef SUPPORT_VERBOSITY
  4275. int8_t verbosity_level = 0;
  4276. if (code_seen('V')) {
  4277. // Just 'V' without a number counts as V1.
  4278. char c = strchr_pointer[1];
  4279. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4280. }
  4281. #endif //SUPPORT_VERBOSITY
  4282. // Firstly check if we know where we are
  4283. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4284. // We don't know where we are! HOME!
  4285. // Push the commands to the front of the message queue in the reverse order!
  4286. // There shall be always enough space reserved for these commands.
  4287. repeatcommand_front(); // repeat G80 with all its parameters
  4288. enquecommand_front_P((PSTR("G28 W0")));
  4289. break;
  4290. }
  4291. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  4292. if (code_seen('N')) {
  4293. nMeasPoints = code_value_uint8();
  4294. if (nMeasPoints != 7) {
  4295. nMeasPoints = 3;
  4296. }
  4297. }
  4298. else {
  4299. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  4300. }
  4301. uint8_t nProbeRetry = 3;
  4302. if (code_seen('R')) {
  4303. nProbeRetry = code_value_uint8();
  4304. if (nProbeRetry > 10) {
  4305. nProbeRetry = 10;
  4306. }
  4307. }
  4308. else {
  4309. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  4310. }
  4311. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  4312. #ifndef PINDA_THERMISTOR
  4313. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50)
  4314. {
  4315. temp_compensation_start();
  4316. run = true;
  4317. repeatcommand_front(); // repeat G80 with all its parameters
  4318. enquecommand_front_P((PSTR("G28 W0")));
  4319. break;
  4320. }
  4321. run = false;
  4322. #endif //PINDA_THERMISTOR
  4323. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  4324. CustomMsg custom_message_type_old = custom_message_type;
  4325. unsigned int custom_message_state_old = custom_message_state;
  4326. custom_message_type = CustomMsg::MeshBedLeveling;
  4327. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  4328. lcd_update(1);
  4329. mbl.reset(); //reset mesh bed leveling
  4330. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  4331. // consumed during the first movements following this statement.
  4332. babystep_undo();
  4333. // Cycle through all points and probe them
  4334. // First move up. During this first movement, the babystepping will be reverted.
  4335. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4336. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60);
  4337. // The move to the first calibration point.
  4338. current_position[X_AXIS] = BED_X0;
  4339. current_position[Y_AXIS] = BED_Y0;
  4340. #ifdef SUPPORT_VERBOSITY
  4341. if (verbosity_level >= 1)
  4342. {
  4343. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4344. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  4345. }
  4346. #else //SUPPORT_VERBOSITY
  4347. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4348. #endif //SUPPORT_VERBOSITY
  4349. plan_buffer_line_curposXYZE(homing_feedrate[X_AXIS] / 30);
  4350. // Wait until the move is finished.
  4351. st_synchronize();
  4352. uint8_t mesh_point = 0; //index number of calibration point
  4353. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  4354. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  4355. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  4356. #ifdef SUPPORT_VERBOSITY
  4357. if (verbosity_level >= 1) {
  4358. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  4359. }
  4360. #endif // SUPPORT_VERBOSITY
  4361. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  4362. while (mesh_point != nMeasPoints * nMeasPoints) {
  4363. // Get coords of a measuring point.
  4364. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  4365. uint8_t iy = mesh_point / nMeasPoints;
  4366. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  4367. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  4368. custom_message_state--;
  4369. mesh_point++;
  4370. continue; //skip
  4371. }*/
  4372. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  4373. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  4374. {
  4375. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  4376. }
  4377. float z0 = 0.f;
  4378. if (has_z && (mesh_point > 0)) {
  4379. uint16_t z_offset_u = 0;
  4380. if (nMeasPoints == 7) {
  4381. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  4382. }
  4383. else {
  4384. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  4385. }
  4386. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  4387. #ifdef SUPPORT_VERBOSITY
  4388. if (verbosity_level >= 1) {
  4389. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  4390. }
  4391. #endif // SUPPORT_VERBOSITY
  4392. }
  4393. // Move Z up to MESH_HOME_Z_SEARCH.
  4394. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4395. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  4396. float init_z_bckp = current_position[Z_AXIS];
  4397. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  4398. st_synchronize();
  4399. // Move to XY position of the sensor point.
  4400. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  4401. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  4402. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4403. #ifdef SUPPORT_VERBOSITY
  4404. if (verbosity_level >= 1) {
  4405. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4406. SERIAL_PROTOCOL(mesh_point);
  4407. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  4408. }
  4409. #else //SUPPORT_VERBOSITY
  4410. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4411. #endif // SUPPORT_VERBOSITY
  4412. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4413. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE);
  4414. st_synchronize();
  4415. // Go down until endstop is hit
  4416. const float Z_CALIBRATION_THRESHOLD = 1.f;
  4417. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4418. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4419. break;
  4420. }
  4421. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4422. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4423. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4424. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  4425. st_synchronize();
  4426. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4427. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4428. break;
  4429. }
  4430. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4431. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  4432. break;
  4433. }
  4434. }
  4435. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4436. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4437. break;
  4438. }
  4439. #ifdef SUPPORT_VERBOSITY
  4440. if (verbosity_level >= 10) {
  4441. SERIAL_ECHOPGM("X: ");
  4442. MYSERIAL.print(current_position[X_AXIS], 5);
  4443. SERIAL_ECHOLNPGM("");
  4444. SERIAL_ECHOPGM("Y: ");
  4445. MYSERIAL.print(current_position[Y_AXIS], 5);
  4446. SERIAL_PROTOCOLPGM("\n");
  4447. }
  4448. #endif // SUPPORT_VERBOSITY
  4449. float offset_z = 0;
  4450. #ifdef PINDA_THERMISTOR
  4451. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4452. #endif //PINDA_THERMISTOR
  4453. // #ifdef SUPPORT_VERBOSITY
  4454. /* if (verbosity_level >= 1)
  4455. {
  4456. SERIAL_ECHOPGM("mesh bed leveling: ");
  4457. MYSERIAL.print(current_position[Z_AXIS], 5);
  4458. SERIAL_ECHOPGM(" offset: ");
  4459. MYSERIAL.print(offset_z, 5);
  4460. SERIAL_ECHOLNPGM("");
  4461. }*/
  4462. // #endif // SUPPORT_VERBOSITY
  4463. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4464. custom_message_state--;
  4465. mesh_point++;
  4466. lcd_update(1);
  4467. }
  4468. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4469. #ifdef SUPPORT_VERBOSITY
  4470. if (verbosity_level >= 20) {
  4471. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4472. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4473. MYSERIAL.print(current_position[Z_AXIS], 5);
  4474. }
  4475. #endif // SUPPORT_VERBOSITY
  4476. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  4477. st_synchronize();
  4478. if (mesh_point != nMeasPoints * nMeasPoints) {
  4479. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4480. bool bState;
  4481. do { // repeat until Z-leveling o.k.
  4482. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4483. #ifdef TMC2130
  4484. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4485. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4486. #else // TMC2130
  4487. lcd_wait_for_click_delay(0); // ~ no timeout
  4488. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4489. #endif // TMC2130
  4490. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4491. bState=enable_z_endstop(false);
  4492. current_position[Z_AXIS] -= 1;
  4493. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  4494. st_synchronize();
  4495. enable_z_endstop(true);
  4496. #ifdef TMC2130
  4497. tmc2130_home_enter(Z_AXIS_MASK);
  4498. #endif // TMC2130
  4499. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4500. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  4501. st_synchronize();
  4502. #ifdef TMC2130
  4503. tmc2130_home_exit();
  4504. #endif // TMC2130
  4505. enable_z_endstop(bState);
  4506. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4507. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4508. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4509. lcd_update_enable(true); // display / status-line recovery
  4510. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4511. repeatcommand_front(); // re-run (i.e. of "G80")
  4512. break;
  4513. }
  4514. clean_up_after_endstop_move(l_feedmultiply);
  4515. // SERIAL_ECHOLNPGM("clean up finished ");
  4516. #ifndef PINDA_THERMISTOR
  4517. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4518. #endif
  4519. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4520. // SERIAL_ECHOLNPGM("babystep applied");
  4521. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4522. #ifdef SUPPORT_VERBOSITY
  4523. if (verbosity_level >= 1) {
  4524. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4525. }
  4526. #endif // SUPPORT_VERBOSITY
  4527. for (uint8_t i = 0; i < 4; ++i) {
  4528. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4529. long correction = 0;
  4530. if (code_seen(codes[i]))
  4531. correction = code_value_long();
  4532. else if (eeprom_bed_correction_valid) {
  4533. unsigned char *addr = (i < 2) ?
  4534. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4535. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4536. correction = eeprom_read_int8(addr);
  4537. }
  4538. if (correction == 0)
  4539. continue;
  4540. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4541. SERIAL_ERROR_START;
  4542. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4543. SERIAL_ECHO(correction);
  4544. SERIAL_ECHOLNPGM(" microns");
  4545. }
  4546. else {
  4547. float offset = float(correction) * 0.001f;
  4548. switch (i) {
  4549. case 0:
  4550. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4551. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4552. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4553. }
  4554. }
  4555. break;
  4556. case 1:
  4557. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4558. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4559. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4560. }
  4561. }
  4562. break;
  4563. case 2:
  4564. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4565. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4566. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4567. }
  4568. }
  4569. break;
  4570. case 3:
  4571. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4572. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4573. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4574. }
  4575. }
  4576. break;
  4577. }
  4578. }
  4579. }
  4580. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4581. if (nMeasPoints == 3) {
  4582. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4583. }
  4584. /*
  4585. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4586. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4587. SERIAL_PROTOCOLPGM(",");
  4588. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4589. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4590. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4591. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4592. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4593. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4594. SERIAL_PROTOCOLPGM(" ");
  4595. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4596. }
  4597. SERIAL_PROTOCOLPGM("\n");
  4598. }
  4599. */
  4600. if (nMeasPoints == 7 && magnet_elimination) {
  4601. mbl_interpolation(nMeasPoints);
  4602. }
  4603. /*
  4604. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4605. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4606. SERIAL_PROTOCOLPGM(",");
  4607. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4608. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4609. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4610. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4611. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4612. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4613. SERIAL_PROTOCOLPGM(" ");
  4614. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4615. }
  4616. SERIAL_PROTOCOLPGM("\n");
  4617. }
  4618. */
  4619. // SERIAL_ECHOLNPGM("Upsample finished");
  4620. mbl.active = 1; //activate mesh bed leveling
  4621. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4622. go_home_with_z_lift();
  4623. // SERIAL_ECHOLNPGM("Go home finished");
  4624. //unretract (after PINDA preheat retraction)
  4625. if ((degHotend(active_extruder) > EXTRUDE_MINTEMP) && eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() && (target_temperature_bed >= 50)) {
  4626. current_position[E_AXIS] += default_retraction;
  4627. plan_buffer_line_curposXYZE(400);
  4628. }
  4629. KEEPALIVE_STATE(NOT_BUSY);
  4630. // Restore custom message state
  4631. lcd_setstatuspgm(_T(WELCOME_MSG));
  4632. custom_message_type = custom_message_type_old;
  4633. custom_message_state = custom_message_state_old;
  4634. mesh_bed_leveling_flag = false;
  4635. mesh_bed_run_from_menu = false;
  4636. lcd_update(2);
  4637. }
  4638. break;
  4639. /*!
  4640. ### G81 - Mesh bed leveling status <a href="https://reprap.org/wiki/G-code#G81:_Mesh_bed_leveling_status">G81: Mesh bed leveling status</a>
  4641. Prints mesh bed leveling status and bed profile if activated.
  4642. */
  4643. case 81:
  4644. if (mbl.active) {
  4645. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4646. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4647. SERIAL_PROTOCOL(',');
  4648. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4649. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4650. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4651. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4652. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4653. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4654. SERIAL_PROTOCOLPGM(" ");
  4655. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4656. }
  4657. SERIAL_PROTOCOLLN();
  4658. }
  4659. }
  4660. else
  4661. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4662. break;
  4663. #if 0
  4664. /*!
  4665. ### G82: Single Z probe at current location - Not active <a href="https://reprap.org/wiki/G-code#G82:_Single_Z_probe_at_current_location">G82: Single Z probe at current location</a>
  4666. WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4667. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4668. */
  4669. case 82:
  4670. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4671. int l_feedmultiply = setup_for_endstop_move();
  4672. find_bed_induction_sensor_point_z();
  4673. clean_up_after_endstop_move(l_feedmultiply);
  4674. SERIAL_PROTOCOLPGM("Bed found at: ");
  4675. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4676. SERIAL_PROTOCOLPGM("\n");
  4677. break;
  4678. /*!
  4679. ### G83: Babystep in Z and store to EEPROM - Not active <a href="https://reprap.org/wiki/G-code#G83:_Babystep_in_Z_and_store_to_EEPROM">G83: Babystep in Z and store to EEPROM</a>
  4680. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4681. */
  4682. case 83:
  4683. {
  4684. int babystepz = code_seen('S') ? code_value() : 0;
  4685. int BabyPosition = code_seen('P') ? code_value() : 0;
  4686. if (babystepz != 0) {
  4687. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4688. // Is the axis indexed starting with zero or one?
  4689. if (BabyPosition > 4) {
  4690. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4691. }else{
  4692. // Save it to the eeprom
  4693. babystepLoadZ = babystepz;
  4694. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4695. // adjust the Z
  4696. babystepsTodoZadd(babystepLoadZ);
  4697. }
  4698. }
  4699. }
  4700. break;
  4701. /*!
  4702. ### G84: UNDO Babystep Z (move Z axis back) - Not active <a href="https://reprap.org/wiki/G-code#G84:_UNDO_Babystep_Z_.28move_Z_axis_back.29">G84: UNDO Babystep Z (move Z axis back)</a>
  4703. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4704. */
  4705. case 84:
  4706. babystepsTodoZsubtract(babystepLoadZ);
  4707. // babystepLoadZ = 0;
  4708. break;
  4709. /*!
  4710. ### G85: Pick best babystep - Not active <a href="https://reprap.org/wiki/G-code#G85:_Pick_best_babystep">G85: Pick best babystep</a>
  4711. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4712. */
  4713. case 85:
  4714. lcd_pick_babystep();
  4715. break;
  4716. #endif
  4717. /*!
  4718. ### G86 - Disable babystep correction after home <a href="https://reprap.org/wiki/G-code#G86:_Disable_babystep_correction_after_home">G86: Disable babystep correction after home</a>
  4719. This G-code will be performed at the start of a calibration script.
  4720. (Prusa3D specific)
  4721. */
  4722. case 86:
  4723. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4724. break;
  4725. /*!
  4726. ### G87 - Enable babystep correction after home <a href="https://reprap.org/wiki/G-code#G87:_Enable_babystep_correction_after_home">G87: Enable babystep correction after home</a>
  4727. This G-code will be performed at the end of a calibration script.
  4728. (Prusa3D specific)
  4729. */
  4730. case 87:
  4731. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4732. break;
  4733. /*!
  4734. ### G88 - Reserved <a href="https://reprap.org/wiki/G-code#G88:_Reserved">G88: Reserved</a>
  4735. Currently has no effect.
  4736. */
  4737. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4738. case 88:
  4739. break;
  4740. #endif // ENABLE_MESH_BED_LEVELING
  4741. /*!
  4742. ### G90 - Switch off relative mode <a href="https://reprap.org/wiki/G-code#G90:_Set_to_Absolute_Positioning">G90: Set to Absolute Positioning</a>
  4743. All coordinates from now on are absolute relative to the origin of the machine. E axis is left intact.
  4744. */
  4745. case 90: {
  4746. axis_relative_modes &= ~(X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK);
  4747. }
  4748. break;
  4749. /*!
  4750. ### G91 - Switch on relative mode <a href="https://reprap.org/wiki/G-code#G91:_Set_to_Relative_Positioning">G91: Set to Relative Positioning</a>
  4751. All coordinates from now on are relative to the last position. E axis is left intact.
  4752. */
  4753. case 91: {
  4754. axis_relative_modes |= X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK;
  4755. }
  4756. break;
  4757. /*!
  4758. ### G92 - Set position <a href="https://reprap.org/wiki/G-code#G92:_Set_Position">G92: Set Position</a>
  4759. It is used for setting the current position of each axis. The parameters are always absolute to the origin.
  4760. If a parameter is omitted, that axis will not be affected.
  4761. If `X`, `Y`, or `Z` axis are specified, the move afterwards might stutter because of Mesh Bed Leveling. `E` axis is not affected if the target position is 0 (`G92 E0`).
  4762. A G92 without coordinates will reset all axes to zero on some firmware. This is not the case for Prusa-Firmware!
  4763. #### Usage
  4764. G92 [ X | Y | Z | E ]
  4765. #### Parameters
  4766. - `X` - new X axis position
  4767. - `Y` - new Y axis position
  4768. - `Z` - new Z axis position
  4769. - `E` - new extruder position
  4770. */
  4771. case 92: {
  4772. gcode_G92();
  4773. }
  4774. break;
  4775. /*!
  4776. ### G98 - Activate farm mode <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode</a>
  4777. Enable Prusa-specific Farm functions and g-code.
  4778. See Internal Prusa commands.
  4779. */
  4780. case 98:
  4781. farm_mode = 1;
  4782. PingTime = _millis();
  4783. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4784. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4785. SilentModeMenu = SILENT_MODE_OFF;
  4786. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4787. fCheckModeInit(); // alternatively invoke printer reset
  4788. break;
  4789. /*! ### G99 - Deactivate farm mode <a href="https://reprap.org/wiki/G-code#G99:_Deactivate_farm_mode">G99: Deactivate farm mode</a>
  4790. Disables Prusa-specific Farm functions and g-code.
  4791. */
  4792. case 99:
  4793. farm_mode = 0;
  4794. lcd_printer_connected();
  4795. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4796. lcd_update(2);
  4797. fCheckModeInit(); // alternatively invoke printer reset
  4798. break;
  4799. default:
  4800. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4801. }
  4802. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4803. gcode_in_progress = 0;
  4804. } // end if(code_seen('G'))
  4805. /*!
  4806. ### End of G-Codes
  4807. */
  4808. /*!
  4809. ---------------------------------------------------------------------------------
  4810. # M Commands
  4811. */
  4812. else if(code_seen('M'))
  4813. {
  4814. int index;
  4815. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4816. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4817. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4818. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4819. } else
  4820. {
  4821. mcode_in_progress = (int)code_value();
  4822. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4823. switch(mcode_in_progress)
  4824. {
  4825. /*!
  4826. ### M0, M1 - Stop the printer <a href="https://reprap.org/wiki/G-code#M0:_Stop_or_Unconditional_stop">M0: Stop or Unconditional stop</a>
  4827. */
  4828. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4829. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4830. {
  4831. char *src = strchr_pointer + 2;
  4832. codenum = 0;
  4833. bool hasP = false, hasS = false;
  4834. if (code_seen('P')) {
  4835. codenum = code_value(); // milliseconds to wait
  4836. hasP = codenum > 0;
  4837. }
  4838. if (code_seen('S')) {
  4839. codenum = code_value() * 1000; // seconds to wait
  4840. hasS = codenum > 0;
  4841. }
  4842. starpos = strchr(src, '*');
  4843. if (starpos != NULL) *(starpos) = '\0';
  4844. while (*src == ' ') ++src;
  4845. if (!hasP && !hasS && *src != '\0') {
  4846. lcd_setstatus(src);
  4847. } else {
  4848. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4849. }
  4850. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4851. st_synchronize();
  4852. previous_millis_cmd = _millis();
  4853. if (codenum > 0){
  4854. codenum += _millis(); // keep track of when we started waiting
  4855. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4856. while(_millis() < codenum && !lcd_clicked()){
  4857. manage_heater();
  4858. manage_inactivity(true);
  4859. lcd_update(0);
  4860. }
  4861. KEEPALIVE_STATE(IN_HANDLER);
  4862. lcd_ignore_click(false);
  4863. }else{
  4864. marlin_wait_for_click();
  4865. }
  4866. if (IS_SD_PRINTING)
  4867. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4868. else
  4869. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4870. }
  4871. break;
  4872. /*!
  4873. ### M17 - Enable all axes <a href="https://reprap.org/wiki/G-code#M17:_Enable.2FPower_all_stepper_motors">M17: Enable/Power all stepper motors</a>
  4874. */
  4875. case 17:
  4876. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4877. enable_x();
  4878. enable_y();
  4879. enable_z();
  4880. enable_e0();
  4881. enable_e1();
  4882. enable_e2();
  4883. break;
  4884. #ifdef SDSUPPORT
  4885. /*!
  4886. ### M20 - SD Card file list <a href="https://reprap.org/wiki/G-code#M20:_List_SD_card">M20: List SD card</a>
  4887. */
  4888. case 20:
  4889. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4890. card.ls();
  4891. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4892. break;
  4893. /*!
  4894. ### M21 - Init SD card <a href="https://reprap.org/wiki/G-code#M21:_Initialize_SD_card">M21: Initialize SD card</a>
  4895. */
  4896. case 21:
  4897. card.initsd();
  4898. break;
  4899. /*!
  4900. ### M22 - Release SD card <a href="https://reprap.org/wiki/G-code#M22:_Release_SD_card">M22: Release SD card</a>
  4901. */
  4902. case 22:
  4903. card.release();
  4904. break;
  4905. /*!
  4906. ### M23 - Select file <a href="https://reprap.org/wiki/G-code#M23:_Select_SD_file">M23: Select SD file</a>
  4907. #### Usage
  4908. M23 [filename]
  4909. */
  4910. case 23:
  4911. starpos = (strchr(strchr_pointer + 4,'*'));
  4912. if(starpos!=NULL)
  4913. *(starpos)='\0';
  4914. card.openFile(strchr_pointer + 4,true);
  4915. break;
  4916. /*!
  4917. ### M24 - Start SD print <a href="https://reprap.org/wiki/G-code#M24:_Start.2Fresume_SD_print">M24: Start/resume SD print</a>
  4918. */
  4919. case 24:
  4920. if (isPrintPaused)
  4921. lcd_resume_print();
  4922. else
  4923. {
  4924. if (!card.get_sdpos())
  4925. {
  4926. // A new print has started from scratch, reset stats
  4927. failstats_reset_print();
  4928. #ifndef LA_NOCOMPAT
  4929. la10c_reset();
  4930. #endif
  4931. }
  4932. card.startFileprint();
  4933. starttime=_millis();
  4934. }
  4935. break;
  4936. /*!
  4937. ### M26 - Set SD index <a href="https://reprap.org/wiki/G-code#M26:_Set_SD_position">M26: Set SD position</a>
  4938. Set position in SD card file to index in bytes.
  4939. This command is expected to be called after M23 and before M24.
  4940. Otherwise effect of this command is undefined.
  4941. #### Usage
  4942. M26 [ S ]
  4943. #### Parameters
  4944. - `S` - Index in bytes
  4945. */
  4946. case 26:
  4947. if(card.cardOK && code_seen('S')) {
  4948. long index = code_value_long();
  4949. card.setIndex(index);
  4950. // We don't disable interrupt during update of sdpos_atomic
  4951. // as we expect, that SD card print is not active in this moment
  4952. sdpos_atomic = index;
  4953. }
  4954. break;
  4955. /*!
  4956. ### M27 - Get SD status <a href="https://reprap.org/wiki/G-code#M27:_Report_SD_print_status">M27: Report SD print status</a>
  4957. */
  4958. case 27:
  4959. card.getStatus();
  4960. break;
  4961. /*!
  4962. ### M28 - Start SD write <a href="https://reprap.org/wiki/G-code#M28:_Begin_write_to_SD_card">M28: Begin write to SD card</a>
  4963. */
  4964. case 28:
  4965. starpos = (strchr(strchr_pointer + 4,'*'));
  4966. if(starpos != NULL){
  4967. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4968. strchr_pointer = strchr(npos,' ') + 1;
  4969. *(starpos) = '\0';
  4970. }
  4971. card.openFile(strchr_pointer+4,false);
  4972. break;
  4973. /*! ### M29 - Stop SD write <a href="https://reprap.org/wiki/G-code#M29:_Stop_writing_to_SD_card">M29: Stop writing to SD card</a>
  4974. Stops writing to the SD file signaling the end of the uploaded file. It is processed very early and it's not written to the card.
  4975. */
  4976. case 29:
  4977. //processed in write to file routine above
  4978. //card,saving = false;
  4979. break;
  4980. /*!
  4981. ### M30 - Delete file <a href="https://reprap.org/wiki/G-code#M30:_Delete_a_file_on_the_SD_card">M30: Delete a file on the SD card</a>
  4982. #### Usage
  4983. M30 [filename]
  4984. */
  4985. case 30:
  4986. if (card.cardOK){
  4987. card.closefile();
  4988. starpos = (strchr(strchr_pointer + 4,'*'));
  4989. if(starpos != NULL){
  4990. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4991. strchr_pointer = strchr(npos,' ') + 1;
  4992. *(starpos) = '\0';
  4993. }
  4994. card.removeFile(strchr_pointer + 4);
  4995. }
  4996. break;
  4997. /*!
  4998. ### M32 - Select file and start SD print <a href="https://reprap.org/wiki/G-code#M32:_Select_file_and_start_SD_print">M32: Select file and start SD print</a>
  4999. @todo What are the parameters P and S for in M32?
  5000. */
  5001. case 32:
  5002. {
  5003. if(card.sdprinting) {
  5004. st_synchronize();
  5005. }
  5006. starpos = (strchr(strchr_pointer + 4,'*'));
  5007. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  5008. if(namestartpos==NULL)
  5009. {
  5010. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  5011. }
  5012. else
  5013. namestartpos++; //to skip the '!'
  5014. if(starpos!=NULL)
  5015. *(starpos)='\0';
  5016. bool call_procedure=(code_seen('P'));
  5017. if(strchr_pointer>namestartpos)
  5018. call_procedure=false; //false alert, 'P' found within filename
  5019. if( card.cardOK )
  5020. {
  5021. card.openFile(namestartpos,true,!call_procedure);
  5022. if(code_seen('S'))
  5023. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  5024. card.setIndex(code_value_long());
  5025. card.startFileprint();
  5026. if(!call_procedure)
  5027. {
  5028. if(!card.get_sdpos())
  5029. {
  5030. // A new print has started from scratch, reset stats
  5031. failstats_reset_print();
  5032. #ifndef LA_NOCOMPAT
  5033. la10c_reset();
  5034. #endif
  5035. }
  5036. starttime=_millis(); // procedure calls count as normal print time.
  5037. }
  5038. }
  5039. } break;
  5040. /*!
  5041. ### M928 - Start SD logging <a href="https://reprap.org/wiki/G-code#M928:_Start_SD_logging">M928: Start SD logging</a>
  5042. #### Usage
  5043. M928 [filename]
  5044. */
  5045. case 928:
  5046. starpos = (strchr(strchr_pointer + 5,'*'));
  5047. if(starpos != NULL){
  5048. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  5049. strchr_pointer = strchr(npos,' ') + 1;
  5050. *(starpos) = '\0';
  5051. }
  5052. card.openLogFile(strchr_pointer+5);
  5053. break;
  5054. #endif //SDSUPPORT
  5055. /*!
  5056. ### M31 - Report current print time <a href="https://reprap.org/wiki/G-code#M31:_Output_time_since_last_M109_or_SD_card_start_to_serial">M31: Output time since last M109 or SD card start to serial</a>
  5057. */
  5058. case 31: //M31 take time since the start of the SD print or an M109 command
  5059. {
  5060. stoptime=_millis();
  5061. char time[30];
  5062. unsigned long t=(stoptime-starttime)/1000;
  5063. int sec,min;
  5064. min=t/60;
  5065. sec=t%60;
  5066. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  5067. SERIAL_ECHO_START;
  5068. SERIAL_ECHOLN(time);
  5069. lcd_setstatus(time);
  5070. autotempShutdown();
  5071. }
  5072. break;
  5073. /*!
  5074. ### M42 - Set pin state <a href="https://reprap.org/wiki/G-code#M42:_Switch_I.2FO_pin">M42: Switch I/O pin</a>
  5075. #### Usage
  5076. M42 [ P | S ]
  5077. #### Parameters
  5078. - `P` - Pin number.
  5079. - `S` - Pin value. If the pin is analog, values are from 0 to 255. If the pin is digital, values are from 0 to 1.
  5080. */
  5081. case 42:
  5082. if (code_seen('S'))
  5083. {
  5084. int pin_status = code_value();
  5085. int pin_number = LED_PIN;
  5086. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  5087. pin_number = code_value();
  5088. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5089. {
  5090. if (sensitive_pins[i] == pin_number)
  5091. {
  5092. pin_number = -1;
  5093. break;
  5094. }
  5095. }
  5096. #if defined(FAN_PIN) && FAN_PIN > -1
  5097. if (pin_number == FAN_PIN)
  5098. fanSpeed = pin_status;
  5099. #endif
  5100. if (pin_number > -1)
  5101. {
  5102. pinMode(pin_number, OUTPUT);
  5103. digitalWrite(pin_number, pin_status);
  5104. analogWrite(pin_number, pin_status);
  5105. }
  5106. }
  5107. break;
  5108. /*!
  5109. ### M44 - Reset the bed skew and offset calibration <a href="https://reprap.org/wiki/G-code#M44:_Reset_the_bed_skew_and_offset_calibration">M44: Reset the bed skew and offset calibration</a>
  5110. */
  5111. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  5112. // Reset the baby step value and the baby step applied flag.
  5113. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  5114. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  5115. // Reset the skew and offset in both RAM and EEPROM.
  5116. reset_bed_offset_and_skew();
  5117. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  5118. // the planner will not perform any adjustments in the XY plane.
  5119. // Wait for the motors to stop and update the current position with the absolute values.
  5120. world2machine_revert_to_uncorrected();
  5121. break;
  5122. /*!
  5123. ### M45 - Bed skew and offset with manual Z up <a href="https://reprap.org/wiki/G-code#M45:_Bed_skew_and_offset_with_manual_Z_up">M45: Bed skew and offset with manual Z up</a>
  5124. #### Usage
  5125. M45 [ V ]
  5126. #### Parameters
  5127. - `V` - Verbosity level 1, 10 and 20 (low, mid, high). Only when SUPPORT_VERBOSITY is defined. Optional.
  5128. - `Z` - If it is provided, only Z calibration will run. Otherwise full calibration is executed.
  5129. */
  5130. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  5131. {
  5132. int8_t verbosity_level = 0;
  5133. bool only_Z = code_seen('Z');
  5134. #ifdef SUPPORT_VERBOSITY
  5135. if (code_seen('V'))
  5136. {
  5137. // Just 'V' without a number counts as V1.
  5138. char c = strchr_pointer[1];
  5139. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5140. }
  5141. #endif //SUPPORT_VERBOSITY
  5142. gcode_M45(only_Z, verbosity_level);
  5143. }
  5144. break;
  5145. /*!
  5146. ### M46 - Show the assigned IP address <a href="https://reprap.org/wiki/G-code#M46:_Show_the_assigned_IP_address">M46: Show the assigned IP address.</a>
  5147. */
  5148. /*
  5149. case 46:
  5150. {
  5151. // M46: Prusa3D: Show the assigned IP address.
  5152. uint8_t ip[4];
  5153. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  5154. if (hasIP) {
  5155. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  5156. SERIAL_ECHO(int(ip[0]));
  5157. SERIAL_ECHOPGM(".");
  5158. SERIAL_ECHO(int(ip[1]));
  5159. SERIAL_ECHOPGM(".");
  5160. SERIAL_ECHO(int(ip[2]));
  5161. SERIAL_ECHOPGM(".");
  5162. SERIAL_ECHO(int(ip[3]));
  5163. SERIAL_ECHOLNPGM("");
  5164. } else {
  5165. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  5166. }
  5167. break;
  5168. }
  5169. */
  5170. /*!
  5171. ### M47 - Show end stops dialog on the display <a href="https://reprap.org/wiki/G-code#M47:_Show_end_stops_dialog_on_the_display">M47: Show end stops dialog on the display</a>
  5172. */
  5173. case 47:
  5174. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5175. lcd_diag_show_end_stops();
  5176. KEEPALIVE_STATE(IN_HANDLER);
  5177. break;
  5178. #if 0
  5179. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  5180. {
  5181. // Disable the default update procedure of the display. We will do a modal dialog.
  5182. lcd_update_enable(false);
  5183. // Let the planner use the uncorrected coordinates.
  5184. mbl.reset();
  5185. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  5186. // the planner will not perform any adjustments in the XY plane.
  5187. // Wait for the motors to stop and update the current position with the absolute values.
  5188. world2machine_revert_to_uncorrected();
  5189. // Move the print head close to the bed.
  5190. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5191. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5192. st_synchronize();
  5193. // Home in the XY plane.
  5194. set_destination_to_current();
  5195. int l_feedmultiply = setup_for_endstop_move();
  5196. home_xy();
  5197. int8_t verbosity_level = 0;
  5198. if (code_seen('V')) {
  5199. // Just 'V' without a number counts as V1.
  5200. char c = strchr_pointer[1];
  5201. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5202. }
  5203. bool success = scan_bed_induction_points(verbosity_level);
  5204. clean_up_after_endstop_move(l_feedmultiply);
  5205. // Print head up.
  5206. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5207. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5208. st_synchronize();
  5209. lcd_update_enable(true);
  5210. break;
  5211. }
  5212. #endif
  5213. #ifdef ENABLE_AUTO_BED_LEVELING
  5214. #ifdef Z_PROBE_REPEATABILITY_TEST
  5215. /*!
  5216. ### M48 - Z-Probe repeatability measurement function <a href="https://reprap.org/wiki/G-code#M48:_Measure_Z-Probe_repeatability">M48: Measure Z-Probe repeatability</a>
  5217. This function assumes the bed has been homed. Specifically, that a G28 command as been issued prior to invoking the M48 Z-Probe repeatability measurement function. Any information generated by a prior G29 Bed leveling command will be lost and needs to be regenerated.
  5218. The number of samples will default to 10 if not specified. You can use upper or lower case letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital N for its communication protocol and will get horribly confused if you send it a capital N.
  5219. @todo Why would you check for both uppercase and lowercase? Seems wasteful.
  5220. #### Usage
  5221. M48 [ n | X | Y | V | L ]
  5222. #### Parameters
  5223. - `n` - Number of samples. Valid values 4-50
  5224. - `X` - X position for samples
  5225. - `Y` - Y position for samples
  5226. - `V` - Verbose level. Valid values 1-4
  5227. - `L` - Legs of movementprior to doing probe. Valid values 1-15
  5228. */
  5229. case 48: // M48 Z-Probe repeatability
  5230. {
  5231. #if Z_MIN_PIN == -1
  5232. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  5233. #endif
  5234. double sum=0.0;
  5235. double mean=0.0;
  5236. double sigma=0.0;
  5237. double sample_set[50];
  5238. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  5239. double X_current, Y_current, Z_current;
  5240. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  5241. if (code_seen('V') || code_seen('v')) {
  5242. verbose_level = code_value();
  5243. if (verbose_level<0 || verbose_level>4 ) {
  5244. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  5245. goto Sigma_Exit;
  5246. }
  5247. }
  5248. if (verbose_level > 0) {
  5249. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  5250. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  5251. }
  5252. if (code_seen('n')) {
  5253. n_samples = code_value();
  5254. if (n_samples<4 || n_samples>50 ) {
  5255. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  5256. goto Sigma_Exit;
  5257. }
  5258. }
  5259. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  5260. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  5261. Z_current = st_get_position_mm(Z_AXIS);
  5262. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5263. ext_position = st_get_position_mm(E_AXIS);
  5264. if (code_seen('X') || code_seen('x') ) {
  5265. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  5266. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  5267. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  5268. goto Sigma_Exit;
  5269. }
  5270. }
  5271. if (code_seen('Y') || code_seen('y') ) {
  5272. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  5273. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  5274. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  5275. goto Sigma_Exit;
  5276. }
  5277. }
  5278. if (code_seen('L') || code_seen('l') ) {
  5279. n_legs = code_value();
  5280. if ( n_legs==1 )
  5281. n_legs = 2;
  5282. if ( n_legs<0 || n_legs>15 ) {
  5283. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  5284. goto Sigma_Exit;
  5285. }
  5286. }
  5287. //
  5288. // Do all the preliminary setup work. First raise the probe.
  5289. //
  5290. st_synchronize();
  5291. plan_bed_level_matrix.set_to_identity();
  5292. plan_buffer_line( X_current, Y_current, Z_start_location,
  5293. ext_position,
  5294. homing_feedrate[Z_AXIS]/60,
  5295. active_extruder);
  5296. st_synchronize();
  5297. //
  5298. // Now get everything to the specified probe point So we can safely do a probe to
  5299. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  5300. // use that as a starting point for each probe.
  5301. //
  5302. if (verbose_level > 2)
  5303. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  5304. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5305. ext_position,
  5306. homing_feedrate[X_AXIS]/60,
  5307. active_extruder);
  5308. st_synchronize();
  5309. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  5310. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  5311. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5312. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  5313. //
  5314. // OK, do the inital probe to get us close to the bed.
  5315. // Then retrace the right amount and use that in subsequent probes
  5316. //
  5317. int l_feedmultiply = setup_for_endstop_move();
  5318. run_z_probe();
  5319. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5320. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5321. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5322. ext_position,
  5323. homing_feedrate[X_AXIS]/60,
  5324. active_extruder);
  5325. st_synchronize();
  5326. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5327. for( n=0; n<n_samples; n++) {
  5328. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  5329. if ( n_legs) {
  5330. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  5331. int rotational_direction, l;
  5332. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  5333. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  5334. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  5335. //SERIAL_ECHOPAIR("starting radius: ",radius);
  5336. //SERIAL_ECHOPAIR(" theta: ",theta);
  5337. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  5338. //SERIAL_PROTOCOLLNPGM("");
  5339. for( l=0; l<n_legs-1; l++) {
  5340. if (rotational_direction==1)
  5341. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5342. else
  5343. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5344. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  5345. if ( radius<0.0 )
  5346. radius = -radius;
  5347. X_current = X_probe_location + cos(theta) * radius;
  5348. Y_current = Y_probe_location + sin(theta) * radius;
  5349. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  5350. X_current = X_MIN_POS;
  5351. if ( X_current>X_MAX_POS)
  5352. X_current = X_MAX_POS;
  5353. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  5354. Y_current = Y_MIN_POS;
  5355. if ( Y_current>Y_MAX_POS)
  5356. Y_current = Y_MAX_POS;
  5357. if (verbose_level>3 ) {
  5358. SERIAL_ECHOPAIR("x: ", X_current);
  5359. SERIAL_ECHOPAIR("y: ", Y_current);
  5360. SERIAL_PROTOCOLLNPGM("");
  5361. }
  5362. do_blocking_move_to( X_current, Y_current, Z_current );
  5363. }
  5364. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5365. }
  5366. int l_feedmultiply = setup_for_endstop_move();
  5367. run_z_probe();
  5368. sample_set[n] = current_position[Z_AXIS];
  5369. //
  5370. // Get the current mean for the data points we have so far
  5371. //
  5372. sum=0.0;
  5373. for( j=0; j<=n; j++) {
  5374. sum = sum + sample_set[j];
  5375. }
  5376. mean = sum / (double (n+1));
  5377. //
  5378. // Now, use that mean to calculate the standard deviation for the
  5379. // data points we have so far
  5380. //
  5381. sum=0.0;
  5382. for( j=0; j<=n; j++) {
  5383. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5384. }
  5385. sigma = sqrt( sum / (double (n+1)) );
  5386. if (verbose_level > 1) {
  5387. SERIAL_PROTOCOL(n+1);
  5388. SERIAL_PROTOCOL(" of ");
  5389. SERIAL_PROTOCOL(n_samples);
  5390. SERIAL_PROTOCOLPGM(" z: ");
  5391. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5392. }
  5393. if (verbose_level > 2) {
  5394. SERIAL_PROTOCOL(" mean: ");
  5395. SERIAL_PROTOCOL_F(mean,6);
  5396. SERIAL_PROTOCOL(" sigma: ");
  5397. SERIAL_PROTOCOL_F(sigma,6);
  5398. }
  5399. if (verbose_level > 0)
  5400. SERIAL_PROTOCOLPGM("\n");
  5401. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5402. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5403. st_synchronize();
  5404. }
  5405. _delay(1000);
  5406. clean_up_after_endstop_move(l_feedmultiply);
  5407. // enable_endstops(true);
  5408. if (verbose_level > 0) {
  5409. SERIAL_PROTOCOLPGM("Mean: ");
  5410. SERIAL_PROTOCOL_F(mean, 6);
  5411. SERIAL_PROTOCOLPGM("\n");
  5412. }
  5413. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5414. SERIAL_PROTOCOL_F(sigma, 6);
  5415. SERIAL_PROTOCOLPGM("\n\n");
  5416. Sigma_Exit:
  5417. break;
  5418. }
  5419. #endif // Z_PROBE_REPEATABILITY_TEST
  5420. #endif // ENABLE_AUTO_BED_LEVELING
  5421. /*!
  5422. ### M73 - Set/get print progress <a href="https://reprap.org/wiki/G-code#M73:_Set.2FGet_build_percentage">M73: Set/Get build percentage</a>
  5423. #### Usage
  5424. M73 [ P | R | Q | S ]
  5425. #### Parameters
  5426. - `P` - Percent in normal mode
  5427. - `R` - Time remaining in normal mode
  5428. - `Q` - Percent in silent mode
  5429. - `S` - Time in silent mode
  5430. */
  5431. case 73: //M73 show percent done and time remaining
  5432. if(code_seen('P')) print_percent_done_normal = code_value();
  5433. if(code_seen('R')) print_time_remaining_normal = code_value();
  5434. if(code_seen('Q')) print_percent_done_silent = code_value();
  5435. if(code_seen('S')) print_time_remaining_silent = code_value();
  5436. {
  5437. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  5438. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  5439. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  5440. }
  5441. break;
  5442. /*!
  5443. ### M104 - Set hotend temperature <a href="https://reprap.org/wiki/G-code#M104:_Set_Extruder_Temperature">M104: Set Extruder Temperature</a>
  5444. #### Usage
  5445. M104 [ S ]
  5446. #### Parameters
  5447. - `S` - Target temperature
  5448. */
  5449. case 104: // M104
  5450. {
  5451. uint8_t extruder;
  5452. if(setTargetedHotend(104,extruder)){
  5453. break;
  5454. }
  5455. if (code_seen('S'))
  5456. {
  5457. setTargetHotendSafe(code_value(), extruder);
  5458. }
  5459. break;
  5460. }
  5461. /*!
  5462. ### M112 - Emergency stop <a href="https://reprap.org/wiki/G-code#M112:_Full_.28Emergency.29_Stop">M112: Full (Emergency) Stop</a>
  5463. It is processed much earlier as to bypass the cmdqueue.
  5464. */
  5465. case 112:
  5466. kill(MSG_M112_KILL, 3);
  5467. break;
  5468. /*!
  5469. ### M140 - Set bed temperature <a href="https://reprap.org/wiki/G-code#M140:_Set_Bed_Temperature_.28Fast.29">M140: Set Bed Temperature (Fast)</a>
  5470. #### Usage
  5471. M140 [ S ]
  5472. #### Parameters
  5473. - `S` - Target temperature
  5474. */
  5475. case 140:
  5476. if (code_seen('S')) setTargetBed(code_value());
  5477. break;
  5478. /*!
  5479. ### M105 - Report temperatures <a href="https://reprap.org/wiki/G-code#M105:_Get_Extruder_Temperature">M105: Get Extruder Temperature</a>
  5480. Prints temperatures:
  5481. - `T:` - Hotend (actual / target)
  5482. - `B:` - Bed (actual / target)
  5483. - `Tx:` - x Tool (actual / target)
  5484. - `@:` - Hotend power
  5485. - `B@:` - Bed power
  5486. - `P:` - PINDAv2 actual (only MK2.5/s and MK3/s)
  5487. - `A:` - Ambient actual (only MK3/s)
  5488. _Example:_
  5489. ok T:20.2 /0.0 B:19.1 /0.0 T0:20.2 /0.0 @:0 B@:0 P:19.8 A:26.4
  5490. */
  5491. case 105:
  5492. {
  5493. uint8_t extruder;
  5494. if(setTargetedHotend(105, extruder)){
  5495. break;
  5496. }
  5497. SERIAL_PROTOCOLPGM("ok ");
  5498. gcode_M115(extruder);
  5499. return;
  5500. break;
  5501. }
  5502. #ifdef AUTO_REPORT_TEMPERATURES
  5503. case 155:
  5504. {
  5505. if (code_seen('S'))
  5506. {
  5507. auto_report_temp_period = code_value_uint8();
  5508. if (auto_report_temp_period != 0)
  5509. auto_report_temp_timer.start();
  5510. else
  5511. auto_report_temp_timer.stop();
  5512. }
  5513. }
  5514. break;
  5515. #endif //AUTO_REPORT_TEMPERATURES
  5516. /*!
  5517. ### M109 - Wait for extruder temperature <a href="https://reprap.org/wiki/G-code#M109:_Set_Extruder_Temperature_and_Wait">M109: Set Extruder Temperature and Wait</a>
  5518. #### Usage
  5519. M104 [ B | R | S ]
  5520. #### Parameters (not mandatory)
  5521. - `S` - Set extruder temperature
  5522. - `R` - Set extruder temperature
  5523. - `B` - Set max. extruder temperature, while `S` is min. temperature. Not active in default, only if AUTOTEMP is defined in source code.
  5524. Parameters S and R are treated identically.
  5525. Command always waits for both cool down and heat up.
  5526. If no parameters are supplied waits for previously set extruder temperature.
  5527. */
  5528. case 109:
  5529. {
  5530. uint8_t extruder;
  5531. if(setTargetedHotend(109, extruder)){
  5532. break;
  5533. }
  5534. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5535. heating_status = 1;
  5536. if (farm_mode) { prusa_statistics(1); };
  5537. #ifdef AUTOTEMP
  5538. autotemp_enabled=false;
  5539. #endif
  5540. if (code_seen('S')) {
  5541. setTargetHotendSafe(code_value(), extruder);
  5542. } else if (code_seen('R')) {
  5543. setTargetHotendSafe(code_value(), extruder);
  5544. }
  5545. #ifdef AUTOTEMP
  5546. if (code_seen('S')) autotemp_min=code_value();
  5547. if (code_seen('B')) autotemp_max=code_value();
  5548. if (code_seen('F'))
  5549. {
  5550. autotemp_factor=code_value();
  5551. autotemp_enabled=true;
  5552. }
  5553. #endif
  5554. codenum = _millis();
  5555. /* See if we are heating up or cooling down */
  5556. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5557. KEEPALIVE_STATE(NOT_BUSY);
  5558. cancel_heatup = false;
  5559. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5560. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5561. KEEPALIVE_STATE(IN_HANDLER);
  5562. heating_status = 2;
  5563. if (farm_mode) { prusa_statistics(2); };
  5564. //starttime=_millis();
  5565. previous_millis_cmd = _millis();
  5566. }
  5567. break;
  5568. /*!
  5569. ### M190 - Wait for bed temperature <a href="https://reprap.org/wiki/G-code#M190:_Wait_for_bed_temperature_to_reach_target_temp">M190: Wait for bed temperature to reach target temp</a>
  5570. #### Usage
  5571. M190 [ R | S ]
  5572. #### Parameters (not mandatory)
  5573. - `S` - Set extruder temperature and wait for heating
  5574. - `R` - Set extruder temperature and wait for heating or cooling
  5575. If no parameter is supplied, waits for heating or cooling to previously set temperature.
  5576. */
  5577. case 190:
  5578. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5579. {
  5580. bool CooldownNoWait = false;
  5581. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5582. heating_status = 3;
  5583. if (farm_mode) { prusa_statistics(1); };
  5584. if (code_seen('S'))
  5585. {
  5586. setTargetBed(code_value());
  5587. CooldownNoWait = true;
  5588. }
  5589. else if (code_seen('R'))
  5590. {
  5591. setTargetBed(code_value());
  5592. }
  5593. codenum = _millis();
  5594. cancel_heatup = false;
  5595. target_direction = isHeatingBed(); // true if heating, false if cooling
  5596. KEEPALIVE_STATE(NOT_BUSY);
  5597. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5598. {
  5599. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5600. {
  5601. if (!farm_mode) {
  5602. float tt = degHotend(active_extruder);
  5603. SERIAL_PROTOCOLPGM("T:");
  5604. SERIAL_PROTOCOL(tt);
  5605. SERIAL_PROTOCOLPGM(" E:");
  5606. SERIAL_PROTOCOL((int)active_extruder);
  5607. SERIAL_PROTOCOLPGM(" B:");
  5608. SERIAL_PROTOCOL_F(degBed(), 1);
  5609. SERIAL_PROTOCOLLN("");
  5610. }
  5611. codenum = _millis();
  5612. }
  5613. manage_heater();
  5614. manage_inactivity();
  5615. lcd_update(0);
  5616. }
  5617. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5618. KEEPALIVE_STATE(IN_HANDLER);
  5619. heating_status = 4;
  5620. previous_millis_cmd = _millis();
  5621. }
  5622. #endif
  5623. break;
  5624. #if defined(FAN_PIN) && FAN_PIN > -1
  5625. /*!
  5626. ### M106 - Set fan speed <a href="https://reprap.org/wiki/G-code#M106:_Fan_On">M106: Fan On</a>
  5627. #### Usage
  5628. M106 [ S ]
  5629. #### Parameters
  5630. - `S` - Specifies the duty cycle of the print fan. Allowed values are 0-255. If it's omitted, a value of 255 is used.
  5631. */
  5632. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5633. if (code_seen('S')){
  5634. fanSpeed=constrain(code_value(),0,255);
  5635. }
  5636. else {
  5637. fanSpeed=255;
  5638. }
  5639. break;
  5640. /*!
  5641. ### M107 - Fan off <a href="https://reprap.org/wiki/G-code#M107:_Fan_Off">M107: Fan Off</a>
  5642. */
  5643. case 107:
  5644. fanSpeed = 0;
  5645. break;
  5646. #endif //FAN_PIN
  5647. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5648. /*!
  5649. ### M80 - Turn on the Power Supply <a href="https://reprap.org/wiki/G-code#M80:_ATX_Power_On">M80: ATX Power On</a>
  5650. Only works if the firmware is compiled with PS_ON_PIN defined.
  5651. */
  5652. case 80:
  5653. SET_OUTPUT(PS_ON_PIN); //GND
  5654. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5655. // If you have a switch on suicide pin, this is useful
  5656. // if you want to start another print with suicide feature after
  5657. // a print without suicide...
  5658. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5659. SET_OUTPUT(SUICIDE_PIN);
  5660. WRITE(SUICIDE_PIN, HIGH);
  5661. #endif
  5662. powersupply = true;
  5663. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5664. lcd_update(0);
  5665. break;
  5666. /*!
  5667. ### M81 - Turn off Power Supply <a href="https://reprap.org/wiki/G-code#M81:_ATX_Power_Off">M81: ATX Power Off</a>
  5668. Only works if the firmware is compiled with PS_ON_PIN defined.
  5669. */
  5670. case 81:
  5671. disable_heater();
  5672. st_synchronize();
  5673. disable_e0();
  5674. disable_e1();
  5675. disable_e2();
  5676. finishAndDisableSteppers();
  5677. fanSpeed = 0;
  5678. _delay(1000); // Wait a little before to switch off
  5679. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5680. st_synchronize();
  5681. suicide();
  5682. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5683. SET_OUTPUT(PS_ON_PIN);
  5684. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5685. #endif
  5686. powersupply = false;
  5687. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5688. lcd_update(0);
  5689. break;
  5690. #endif
  5691. /*!
  5692. ### M82 - Set E axis to absolute mode <a href="https://reprap.org/wiki/G-code#M82:_Set_extruder_to_absolute_mode">M82: Set extruder to absolute mode</a>
  5693. Makes the extruder interpret extrusion as absolute positions.
  5694. */
  5695. case 82:
  5696. axis_relative_modes &= ~E_AXIS_MASK;
  5697. break;
  5698. /*!
  5699. ### M83 - Set E axis to relative mode <a href="https://reprap.org/wiki/G-code#M83:_Set_extruder_to_relative_mode">M83: Set extruder to relative mode</a>
  5700. Makes the extruder interpret extrusion values as relative positions.
  5701. */
  5702. case 83:
  5703. axis_relative_modes |= E_AXIS_MASK;
  5704. break;
  5705. /*!
  5706. ### M84 - Disable steppers <a href="https://reprap.org/wiki/G-code#M84:_Stop_idle_hold">M84: Stop idle hold</a>
  5707. This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5708. This command can be used without any additional parameters. In that case all steppers are disabled.
  5709. The file completeness check uses this parameter to detect an incomplete file. It has to be present at the end of a file with no parameters.
  5710. M84 [ S | X | Y | Z | E ]
  5711. - `S` - Seconds
  5712. - `X` - X axis
  5713. - `Y` - Y axis
  5714. - `Z` - Z axis
  5715. - `E` - Exruder
  5716. ### M18 - Disable steppers <a href="https://reprap.org/wiki/G-code#M18:_Disable_all_stepper_motors">M18: Disable all stepper motors</a>
  5717. Equal to M84 (compatibility)
  5718. */
  5719. case 18: //compatibility
  5720. case 84: // M84
  5721. if(code_seen('S')){
  5722. stepper_inactive_time = code_value() * 1000;
  5723. }
  5724. else
  5725. {
  5726. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5727. if(all_axis)
  5728. {
  5729. st_synchronize();
  5730. disable_e0();
  5731. disable_e1();
  5732. disable_e2();
  5733. finishAndDisableSteppers();
  5734. }
  5735. else
  5736. {
  5737. st_synchronize();
  5738. if (code_seen('X')) disable_x();
  5739. if (code_seen('Y')) disable_y();
  5740. if (code_seen('Z')) disable_z();
  5741. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5742. if (code_seen('E')) {
  5743. disable_e0();
  5744. disable_e1();
  5745. disable_e2();
  5746. }
  5747. #endif
  5748. }
  5749. }
  5750. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5751. print_time_remaining_init();
  5752. snmm_filaments_used = 0;
  5753. break;
  5754. /*!
  5755. ### M85 - Set max inactive time <a href="https://reprap.org/wiki/G-code#M85:_Set_Inactivity_Shutdown_Timer">M85: Set Inactivity Shutdown Timer</a>
  5756. #### Usage
  5757. M85 [ S ]
  5758. #### Parameters
  5759. - `S` - specifies the time in seconds. If a value of 0 is specified, the timer is disabled.
  5760. */
  5761. case 85: // M85
  5762. if(code_seen('S')) {
  5763. max_inactive_time = code_value() * 1000;
  5764. }
  5765. break;
  5766. #ifdef SAFETYTIMER
  5767. /*!
  5768. ### M86 - Set safety timer expiration time <a href="https://reprap.org/wiki/G-code#M86:_Set_Safety_Timer_expiration_time">M86: Set Safety Timer expiration time</a>
  5769. When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5770. #### Usage
  5771. M86 [ S ]
  5772. #### Parameters
  5773. - `S` - specifies the time in seconds. If a value of 0 is specified, the timer is disabled.
  5774. */
  5775. case 86:
  5776. if (code_seen('S')) {
  5777. safetytimer_inactive_time = code_value() * 1000;
  5778. safetyTimer.start();
  5779. }
  5780. break;
  5781. #endif
  5782. /*!
  5783. ### M92 Set Axis steps-per-unit <a href="https://reprap.org/wiki/G-code#M92:_Set_axis_steps_per_unit">M92: Set axis_steps_per_unit</a>
  5784. Allows programming of steps per unit (usually mm) for motor drives. These values are reset to firmware defaults on power on, unless saved to EEPROM if available (M500 in Marlin)
  5785. #### Usage
  5786. M92 [ X | Y | Z | E ]
  5787. #### Parameters
  5788. - `X` - Steps per unit for the X drive
  5789. - `Y` - Steps per unit for the Y drive
  5790. - `Z` - Steps per unit for the Z drive
  5791. - `E` - Steps per unit for the extruder drive
  5792. */
  5793. case 92:
  5794. for(int8_t i=0; i < NUM_AXIS; i++)
  5795. {
  5796. if(code_seen(axis_codes[i]))
  5797. {
  5798. if(i == E_AXIS) { // E
  5799. float value = code_value();
  5800. if(value < 20.0) {
  5801. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5802. cs.max_jerk[E_AXIS] *= factor;
  5803. max_feedrate[i] *= factor;
  5804. axis_steps_per_sqr_second[i] *= factor;
  5805. }
  5806. cs.axis_steps_per_unit[i] = value;
  5807. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  5808. fsensor_set_axis_steps_per_unit(value);
  5809. #endif
  5810. }
  5811. else {
  5812. cs.axis_steps_per_unit[i] = code_value();
  5813. }
  5814. }
  5815. }
  5816. break;
  5817. /*!
  5818. ### M110 - Set Line number <a href="https://reprap.org/wiki/G-code#M110:_Set_Current_Line_Number">M110: Set Current Line Number</a>
  5819. Sets the line number in G-code
  5820. #### Usage
  5821. M110 [ N ]
  5822. #### Parameters
  5823. - `N` - Line number
  5824. */
  5825. case 110:
  5826. if (code_seen('N'))
  5827. gcode_LastN = code_value_long();
  5828. break;
  5829. /*!
  5830. ### M113 - Get or set host keep-alive interval <a href="https://reprap.org/wiki/G-code#M113:_Host_Keepalive">M113: Host Keepalive</a>
  5831. During some lengthy processes, such as G29, Marlin may appear to the host to have “gone away.” The “host keepalive” feature will send messages to the host when Marlin is busy or waiting for user response so the host won’t try to reconnect (or disconnect).
  5832. #### Usage
  5833. M113 [ S ]
  5834. #### Parameters
  5835. - `S` - Seconds. Default is 2 seconds between "busy" messages
  5836. */
  5837. case 113:
  5838. if (code_seen('S')) {
  5839. host_keepalive_interval = (uint8_t)code_value_short();
  5840. // NOMORE(host_keepalive_interval, 60);
  5841. }
  5842. else {
  5843. SERIAL_ECHO_START;
  5844. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5845. SERIAL_PROTOCOLLN("");
  5846. }
  5847. break;
  5848. /*!
  5849. ### M115 - Firmware info <a href="https://reprap.org/wiki/G-code#M115:_Get_Firmware_Version_and_Capabilities">M115: Get Firmware Version and Capabilities</a>
  5850. Print the firmware info and capabilities
  5851. Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5852. `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware, it will pause the print for 30s and ask the user to upgrade the firmware.
  5853. _Examples:_
  5854. `M115` results:
  5855. `FIRMWARE_NAME:Prusa-Firmware 3.8.1 based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:1.0 MACHINE_TYPE:Prusa i3 MK3S EXTRUDER_COUNT:1 UUID:00000000-0000-0000-0000-000000000000`
  5856. `M115 V` results:
  5857. `3.8.1`
  5858. `M115 U3.8.2-RC1` results on LCD display for 30s or user interaction:
  5859. `New firmware version available: 3.8.2-RC1 Please upgrade.`
  5860. #### Usage
  5861. M115 [ V | U ]
  5862. #### Parameters
  5863. - V - Report current installed firmware version
  5864. - U - Firmware version provided by G-code to be compared to current one.
  5865. */
  5866. case 115: // M115
  5867. if (code_seen('V')) {
  5868. // Report the Prusa version number.
  5869. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5870. } else if (code_seen('U')) {
  5871. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5872. // pause the print for 30s and ask the user to upgrade the firmware.
  5873. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5874. } else {
  5875. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5876. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5877. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5878. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5879. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5880. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5881. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5882. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5883. SERIAL_ECHOPGM(" UUID:");
  5884. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5885. }
  5886. break;
  5887. /*!
  5888. ### M114 - Get current position <a href="https://reprap.org/wiki/G-code#M114:_Get_Current_Position">M114: Get Current Position</a>
  5889. */
  5890. case 114:
  5891. gcode_M114();
  5892. break;
  5893. /*
  5894. M117 moved up to get the high priority
  5895. case 117: // M117 display message
  5896. starpos = (strchr(strchr_pointer + 5,'*'));
  5897. if(starpos!=NULL)
  5898. *(starpos)='\0';
  5899. lcd_setstatus(strchr_pointer + 5);
  5900. break;*/
  5901. /*!
  5902. ### M120 - Enable endstops <a href="https://reprap.org/wiki/G-code#M120:_Enable_endstop_detection">M120: Enable endstop detection</a>
  5903. */
  5904. case 120:
  5905. enable_endstops(false) ;
  5906. break;
  5907. /*!
  5908. ### M121 - Disable endstops <a href="https://reprap.org/wiki/G-code#M121:_Disable_endstop_detection">M121: Disable endstop detection</a>
  5909. */
  5910. case 121:
  5911. enable_endstops(true) ;
  5912. break;
  5913. /*!
  5914. ### M119 - Get endstop states <a href="https://reprap.org/wiki/G-code#M119:_Get_Endstop_Status">M119: Get Endstop Status</a>
  5915. Returns the current state of the configured X, Y, Z endstops. Takes into account any 'inverted endstop' settings, so one can confirm that the machine is interpreting the endstops correctly.
  5916. */
  5917. case 119:
  5918. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5919. SERIAL_PROTOCOLLN("");
  5920. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5921. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5922. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5923. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5924. }else{
  5925. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5926. }
  5927. SERIAL_PROTOCOLLN("");
  5928. #endif
  5929. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5930. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5931. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5932. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5933. }else{
  5934. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5935. }
  5936. SERIAL_PROTOCOLLN("");
  5937. #endif
  5938. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5939. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5940. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5941. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5942. }else{
  5943. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5944. }
  5945. SERIAL_PROTOCOLLN("");
  5946. #endif
  5947. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5948. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5949. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5950. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5951. }else{
  5952. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5953. }
  5954. SERIAL_PROTOCOLLN("");
  5955. #endif
  5956. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5957. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5958. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5959. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5960. }else{
  5961. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5962. }
  5963. SERIAL_PROTOCOLLN("");
  5964. #endif
  5965. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5966. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5967. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5968. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5969. }else{
  5970. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5971. }
  5972. SERIAL_PROTOCOLLN("");
  5973. #endif
  5974. break;
  5975. //!@todo update for all axes, use for loop
  5976. #ifdef BLINKM
  5977. /*!
  5978. ### M150 - Set RGB(W) Color <a href="https://reprap.org/wiki/G-code#M150:_Set_LED_color">M150: Set LED color</a>
  5979. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code by defining BLINKM and its dependencies.
  5980. #### Usage
  5981. M150 [ R | U | B ]
  5982. #### Parameters
  5983. - `R` - Red color value
  5984. - `U` - Green color value. It is NOT `G`!
  5985. - `B` - Blue color value
  5986. */
  5987. case 150:
  5988. {
  5989. byte red;
  5990. byte grn;
  5991. byte blu;
  5992. if(code_seen('R')) red = code_value();
  5993. if(code_seen('U')) grn = code_value();
  5994. if(code_seen('B')) blu = code_value();
  5995. SendColors(red,grn,blu);
  5996. }
  5997. break;
  5998. #endif //BLINKM
  5999. /*!
  6000. ### M200 - Set filament diameter <a href="https://reprap.org/wiki/G-code#M200:_Set_filament_diameter">M200: Set filament diameter</a>
  6001. #### Usage
  6002. M200 [ D | T ]
  6003. #### Parameters
  6004. - `D` - Diameter in mm
  6005. - `T` - Number of extruder (MMUs)
  6006. */
  6007. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  6008. {
  6009. uint8_t extruder = active_extruder;
  6010. if(code_seen('T')) {
  6011. extruder = code_value();
  6012. if(extruder >= EXTRUDERS) {
  6013. SERIAL_ECHO_START;
  6014. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  6015. break;
  6016. }
  6017. }
  6018. if(code_seen('D')) {
  6019. float diameter = (float)code_value();
  6020. if (diameter == 0.0) {
  6021. // setting any extruder filament size disables volumetric on the assumption that
  6022. // slicers either generate in extruder values as cubic mm or as as filament feeds
  6023. // for all extruders
  6024. cs.volumetric_enabled = false;
  6025. } else {
  6026. cs.filament_size[extruder] = (float)code_value();
  6027. // make sure all extruders have some sane value for the filament size
  6028. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  6029. #if EXTRUDERS > 1
  6030. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  6031. #if EXTRUDERS > 2
  6032. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  6033. #endif
  6034. #endif
  6035. cs.volumetric_enabled = true;
  6036. }
  6037. } else {
  6038. //reserved for setting filament diameter via UFID or filament measuring device
  6039. break;
  6040. }
  6041. calculate_extruder_multipliers();
  6042. }
  6043. break;
  6044. /*!
  6045. ### M201 - Set Print Max Acceleration <a href="https://reprap.org/wiki/G-code#M201:_Set_max_printing_acceleration">M201: Set max printing acceleration</a>
  6046. For each axis individually.
  6047. */
  6048. case 201:
  6049. for (int8_t i = 0; i < NUM_AXIS; i++)
  6050. {
  6051. if (code_seen(axis_codes[i]))
  6052. {
  6053. unsigned long val = code_value();
  6054. #ifdef TMC2130
  6055. unsigned long val_silent = val;
  6056. if ((i == X_AXIS) || (i == Y_AXIS))
  6057. {
  6058. if (val > NORMAL_MAX_ACCEL_XY)
  6059. val = NORMAL_MAX_ACCEL_XY;
  6060. if (val_silent > SILENT_MAX_ACCEL_XY)
  6061. val_silent = SILENT_MAX_ACCEL_XY;
  6062. }
  6063. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  6064. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  6065. #else //TMC2130
  6066. max_acceleration_units_per_sq_second[i] = val;
  6067. #endif //TMC2130
  6068. }
  6069. }
  6070. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  6071. reset_acceleration_rates();
  6072. break;
  6073. #if 0 // Not used for Sprinter/grbl gen6
  6074. case 202: // M202
  6075. for(int8_t i=0; i < NUM_AXIS; i++) {
  6076. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  6077. }
  6078. break;
  6079. #endif
  6080. /*!
  6081. ### M203 - Set Max Feedrate <a href="https://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate">M203: Set maximum feedrate</a>
  6082. For each axis individually.
  6083. */
  6084. case 203: // M203 max feedrate mm/sec
  6085. for (int8_t i = 0; i < NUM_AXIS; i++)
  6086. {
  6087. if (code_seen(axis_codes[i]))
  6088. {
  6089. float val = code_value();
  6090. #ifdef TMC2130
  6091. float val_silent = val;
  6092. if ((i == X_AXIS) || (i == Y_AXIS))
  6093. {
  6094. if (val > NORMAL_MAX_FEEDRATE_XY)
  6095. val = NORMAL_MAX_FEEDRATE_XY;
  6096. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  6097. val_silent = SILENT_MAX_FEEDRATE_XY;
  6098. }
  6099. cs.max_feedrate_normal[i] = val;
  6100. cs.max_feedrate_silent[i] = val_silent;
  6101. #else //TMC2130
  6102. max_feedrate[i] = val;
  6103. #endif //TMC2130
  6104. }
  6105. }
  6106. break;
  6107. /*!
  6108. ### M204 - Acceleration settings <a href="https://reprap.org/wiki/G-code#M204:_Set_default_acceleration">M204: Set default acceleration</a>
  6109. #### Old format:
  6110. ##### Usage
  6111. M204 [ S | T ]
  6112. ##### Parameters
  6113. - `S` - normal moves
  6114. - `T` - filmanent only moves
  6115. #### New format:
  6116. ##### Usage
  6117. M204 [ P | R | T ]
  6118. ##### Parameters
  6119. - `P` - printing moves
  6120. - `R` - filmanent only moves
  6121. - `T` - travel moves (as of now T is ignored)
  6122. */
  6123. case 204:
  6124. {
  6125. if(code_seen('S')) {
  6126. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  6127. // and it is also generated by Slic3r to control acceleration per extrusion type
  6128. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  6129. cs.acceleration = code_value();
  6130. // Interpret the T value as retract acceleration in the old Marlin format.
  6131. if(code_seen('T'))
  6132. cs.retract_acceleration = code_value();
  6133. } else {
  6134. // New acceleration format, compatible with the upstream Marlin.
  6135. if(code_seen('P'))
  6136. cs.acceleration = code_value();
  6137. if(code_seen('R'))
  6138. cs.retract_acceleration = code_value();
  6139. if(code_seen('T')) {
  6140. // Interpret the T value as the travel acceleration in the new Marlin format.
  6141. /*!
  6142. @todo Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  6143. */
  6144. // travel_acceleration = code_value();
  6145. }
  6146. }
  6147. }
  6148. break;
  6149. /*!
  6150. ### M205 - Set advanced settings <a href="https://reprap.org/wiki/G-code#M205:_Advanced_settings">M205: Advanced settings</a>
  6151. Set some advanced settings related to movement.
  6152. #### Usage
  6153. M205 [ S | T | B | X | Y | Z | E ]
  6154. #### Parameters
  6155. - `S` - Minimum feedrate for print moves (unit/s)
  6156. - `T` - Minimum feedrate for travel moves (units/s)
  6157. - `B` - Minimum segment time (us)
  6158. - `X` - Maximum X jerk (units/s)
  6159. - `Y` - Maximum Y jerk (units/s)
  6160. - `Z` - Maximum Z jerk (units/s)
  6161. - `E` - Maximum E jerk (units/s)
  6162. */
  6163. case 205:
  6164. {
  6165. if(code_seen('S')) cs.minimumfeedrate = code_value();
  6166. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  6167. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  6168. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  6169. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  6170. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  6171. if(code_seen('E'))
  6172. {
  6173. float e = code_value();
  6174. #ifndef LA_NOCOMPAT
  6175. e = la10c_jerk(e);
  6176. #endif
  6177. cs.max_jerk[E_AXIS] = e;
  6178. }
  6179. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  6180. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  6181. }
  6182. break;
  6183. /*!
  6184. ### M206 - Set additional homing offsets <a href="https://reprap.org/wiki/G-code#M206:_Offset_axes">M206: Offset axes</a>
  6185. #### Usage
  6186. M206 [ X | Y | Z ]
  6187. #### Parameters
  6188. - `X` - X axis offset
  6189. - `Y` - Y axis offset
  6190. - `Z` - Z axis offset
  6191. */
  6192. case 206:
  6193. for(int8_t i=0; i < 3; i++)
  6194. {
  6195. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  6196. }
  6197. break;
  6198. #ifdef FWRETRACT
  6199. /*!
  6200. ### M207 - Set firmware retraction <a href="https://reprap.org/wiki/G-code#M207:_Set_retract_length">M207: Set retract length</a>
  6201. #### Usage
  6202. M207 [ S | F | Z ]
  6203. #### Parameters
  6204. - `S` - positive length to retract, in mm
  6205. - `F` - retraction feedrate, in mm/min
  6206. - `Z` - additional zlift/hop
  6207. */
  6208. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  6209. {
  6210. if(code_seen('S'))
  6211. {
  6212. cs.retract_length = code_value() ;
  6213. }
  6214. if(code_seen('F'))
  6215. {
  6216. cs.retract_feedrate = code_value()/60 ;
  6217. }
  6218. if(code_seen('Z'))
  6219. {
  6220. cs.retract_zlift = code_value() ;
  6221. }
  6222. }break;
  6223. /*!
  6224. ### M208 - Set retract recover length <a href="https://reprap.org/wiki/G-code#M208:_Set_unretract_length">M208: Set unretract length</a>
  6225. #### Usage
  6226. M208 [ S | F ]
  6227. #### Parameters
  6228. - `S` - positive length surplus to the M207 Snnn, in mm
  6229. - `F` - feedrate, in mm/sec
  6230. */
  6231. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  6232. {
  6233. if(code_seen('S'))
  6234. {
  6235. cs.retract_recover_length = code_value() ;
  6236. }
  6237. if(code_seen('F'))
  6238. {
  6239. cs.retract_recover_feedrate = code_value()/60 ;
  6240. }
  6241. }break;
  6242. /*!
  6243. ### M209 - Enable/disable automatict retract <a href="https://reprap.org/wiki/G-code#M209:_Enable_automatic_retract">M209: Enable automatic retract</a>
  6244. This boolean value S 1=true or 0=false enables automatic retract detect if the slicer did not support G10/G11: every normal extrude-only move will be classified as retract depending on the direction.
  6245. #### Usage
  6246. M209 [ S ]
  6247. #### Parameters
  6248. - `S` - 1=true or 0=false
  6249. */
  6250. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  6251. {
  6252. if(code_seen('S'))
  6253. {
  6254. int t= code_value() ;
  6255. switch(t)
  6256. {
  6257. case 0:
  6258. {
  6259. cs.autoretract_enabled=false;
  6260. retracted[0]=false;
  6261. #if EXTRUDERS > 1
  6262. retracted[1]=false;
  6263. #endif
  6264. #if EXTRUDERS > 2
  6265. retracted[2]=false;
  6266. #endif
  6267. }break;
  6268. case 1:
  6269. {
  6270. cs.autoretract_enabled=true;
  6271. retracted[0]=false;
  6272. #if EXTRUDERS > 1
  6273. retracted[1]=false;
  6274. #endif
  6275. #if EXTRUDERS > 2
  6276. retracted[2]=false;
  6277. #endif
  6278. }break;
  6279. default:
  6280. SERIAL_ECHO_START;
  6281. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6282. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6283. SERIAL_ECHOLNPGM("\"(1)");
  6284. }
  6285. }
  6286. }break;
  6287. #endif // FWRETRACT
  6288. #if EXTRUDERS > 1
  6289. /*!
  6290. ### M218 - Set hotend offset <a href="https://reprap.org/wiki/G-code#M218:_Set_Hotend_Offset">M218: Set Hotend Offset</a>
  6291. In Prusa Firmware this G-code is only active if `EXTRUDERS` is higher then 1 in the source code. On Original i3 Prusa MK2/s MK2.5/s MK3/s it is not active.
  6292. #### Usage
  6293. M218 [ X | Y ]
  6294. #### Parameters
  6295. - `X` - X offset
  6296. - `Y` - Y offset
  6297. */
  6298. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  6299. {
  6300. uint8_t extruder;
  6301. if(setTargetedHotend(218, extruder)){
  6302. break;
  6303. }
  6304. if(code_seen('X'))
  6305. {
  6306. extruder_offset[X_AXIS][extruder] = code_value();
  6307. }
  6308. if(code_seen('Y'))
  6309. {
  6310. extruder_offset[Y_AXIS][extruder] = code_value();
  6311. }
  6312. SERIAL_ECHO_START;
  6313. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  6314. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  6315. {
  6316. SERIAL_ECHO(" ");
  6317. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  6318. SERIAL_ECHO(",");
  6319. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  6320. }
  6321. SERIAL_ECHOLN("");
  6322. }break;
  6323. #endif
  6324. /*!
  6325. ### M220 Set feedrate percentage <a href="https://reprap.org/wiki/G-code#M220:_Set_speed_factor_override_percentage">M220: Set speed factor override percentage</a>
  6326. #### Usage
  6327. M220 [ B | S | R ]
  6328. #### Parameters
  6329. - `B` - Backup current speed factor
  6330. - `S` - Speed factor override percentage (0..100 or higher)
  6331. - `R` - Restore previous speed factor
  6332. */
  6333. case 220: // M220 S<factor in percent>- set speed factor override percentage
  6334. {
  6335. if (code_seen('B')) //backup current speed factor
  6336. {
  6337. saved_feedmultiply_mm = feedmultiply;
  6338. }
  6339. if(code_seen('S'))
  6340. {
  6341. feedmultiply = code_value() ;
  6342. }
  6343. if (code_seen('R')) { //restore previous feedmultiply
  6344. feedmultiply = saved_feedmultiply_mm;
  6345. }
  6346. }
  6347. break;
  6348. /*!
  6349. ### M221 - Set extrude factor override percentage <a href="https://reprap.org/wiki/G-code#M221:_Set_extrude_factor_override_percentage">M221: Set extrude factor override percentage</a>
  6350. #### Usage
  6351. M221 [ S | T ]
  6352. #### Parameters
  6353. - `S` - Extrude factor override percentage (0..100 or higher), default 100%
  6354. - `T` - Extruder drive number (Prusa Firmware only), default 0 if not set.
  6355. */
  6356. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  6357. {
  6358. if(code_seen('S'))
  6359. {
  6360. int tmp_code = code_value();
  6361. if (code_seen('T'))
  6362. {
  6363. uint8_t extruder;
  6364. if(setTargetedHotend(221, extruder)){
  6365. break;
  6366. }
  6367. extruder_multiply[extruder] = tmp_code;
  6368. }
  6369. else
  6370. {
  6371. extrudemultiply = tmp_code ;
  6372. }
  6373. }
  6374. calculate_extruder_multipliers();
  6375. }
  6376. break;
  6377. /*!
  6378. ### M226 - Wait for Pin state <a href="https://reprap.org/wiki/G-code#M226:_Wait_for_pin_state">M226: Wait for pin state</a>
  6379. Wait until the specified pin reaches the state required
  6380. #### Usage
  6381. M226 [ P | S ]
  6382. #### Parameters
  6383. - `P` - pin number
  6384. - `S` - pin state
  6385. */
  6386. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6387. {
  6388. if(code_seen('P')){
  6389. int pin_number = code_value(); // pin number
  6390. int pin_state = -1; // required pin state - default is inverted
  6391. if(code_seen('S')) pin_state = code_value(); // required pin state
  6392. if(pin_state >= -1 && pin_state <= 1){
  6393. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  6394. {
  6395. if (sensitive_pins[i] == pin_number)
  6396. {
  6397. pin_number = -1;
  6398. break;
  6399. }
  6400. }
  6401. if (pin_number > -1)
  6402. {
  6403. int target = LOW;
  6404. st_synchronize();
  6405. pinMode(pin_number, INPUT);
  6406. switch(pin_state){
  6407. case 1:
  6408. target = HIGH;
  6409. break;
  6410. case 0:
  6411. target = LOW;
  6412. break;
  6413. case -1:
  6414. target = !digitalRead(pin_number);
  6415. break;
  6416. }
  6417. while(digitalRead(pin_number) != target){
  6418. manage_heater();
  6419. manage_inactivity();
  6420. lcd_update(0);
  6421. }
  6422. }
  6423. }
  6424. }
  6425. }
  6426. break;
  6427. #if NUM_SERVOS > 0
  6428. /*!
  6429. ### M280 - Set/Get servo position <a href="https://reprap.org/wiki/G-code#M280:_Set_servo_position">M280: Set servo position</a>
  6430. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6431. #### Usage
  6432. M280 [ P | S ]
  6433. #### Parameters
  6434. - `P` - Servo index (id)
  6435. - `S` - Target position
  6436. */
  6437. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6438. {
  6439. int servo_index = -1;
  6440. int servo_position = 0;
  6441. if (code_seen('P'))
  6442. servo_index = code_value();
  6443. if (code_seen('S')) {
  6444. servo_position = code_value();
  6445. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  6446. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6447. servos[servo_index].attach(0);
  6448. #endif
  6449. servos[servo_index].write(servo_position);
  6450. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6451. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  6452. servos[servo_index].detach();
  6453. #endif
  6454. }
  6455. else {
  6456. SERIAL_ECHO_START;
  6457. SERIAL_ECHO("Servo ");
  6458. SERIAL_ECHO(servo_index);
  6459. SERIAL_ECHOLN(" out of range");
  6460. }
  6461. }
  6462. else if (servo_index >= 0) {
  6463. SERIAL_PROTOCOL(MSG_OK);
  6464. SERIAL_PROTOCOL(" Servo ");
  6465. SERIAL_PROTOCOL(servo_index);
  6466. SERIAL_PROTOCOL(": ");
  6467. SERIAL_PROTOCOL(servos[servo_index].read());
  6468. SERIAL_PROTOCOLLN("");
  6469. }
  6470. }
  6471. break;
  6472. #endif // NUM_SERVOS > 0
  6473. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  6474. /*!
  6475. ### M300 - Play tone <a href="https://reprap.org/wiki/G-code#M300:_Play_beep_sound">M300: Play beep sound</a>
  6476. In Prusa Firmware the defaults are `100Hz` and `1000ms`, so that `M300` without parameters will beep for a second.
  6477. #### Usage
  6478. M300 [ S | P ]
  6479. #### Parameters
  6480. - `S` - frequency in Hz. Not all firmware versions support this parameter
  6481. - `P` - duration in milliseconds
  6482. */
  6483. case 300: // M300
  6484. {
  6485. int beepS = code_seen('S') ? code_value() : 110;
  6486. int beepP = code_seen('P') ? code_value() : 1000;
  6487. if (beepS > 0)
  6488. {
  6489. #if BEEPER > 0
  6490. Sound_MakeCustom(beepP,beepS,false);
  6491. #endif
  6492. }
  6493. else
  6494. {
  6495. _delay(beepP);
  6496. }
  6497. }
  6498. break;
  6499. #endif // M300
  6500. #ifdef PIDTEMP
  6501. /*!
  6502. ### M301 - Set hotend PID <a href="https://reprap.org/wiki/G-code#M301:_Set_PID_parameters">M301: Set PID parameters</a>
  6503. Sets Proportional (P), Integral (I) and Derivative (D) values for hot end.
  6504. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6505. #### Usage
  6506. M301 [ P | I | D | C ]
  6507. #### Parameters
  6508. - `P` - proportional (Kp)
  6509. - `I` - integral (Ki)
  6510. - `D` - derivative (Kd)
  6511. - `C` - heating power=Kc*(e_speed0)
  6512. */
  6513. case 301:
  6514. {
  6515. if(code_seen('P')) cs.Kp = code_value();
  6516. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  6517. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  6518. #ifdef PID_ADD_EXTRUSION_RATE
  6519. if(code_seen('C')) Kc = code_value();
  6520. #endif
  6521. updatePID();
  6522. SERIAL_PROTOCOLRPGM(MSG_OK);
  6523. SERIAL_PROTOCOL(" p:");
  6524. SERIAL_PROTOCOL(cs.Kp);
  6525. SERIAL_PROTOCOL(" i:");
  6526. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6527. SERIAL_PROTOCOL(" d:");
  6528. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6529. #ifdef PID_ADD_EXTRUSION_RATE
  6530. SERIAL_PROTOCOL(" c:");
  6531. //Kc does not have scaling applied above, or in resetting defaults
  6532. SERIAL_PROTOCOL(Kc);
  6533. #endif
  6534. SERIAL_PROTOCOLLN("");
  6535. }
  6536. break;
  6537. #endif //PIDTEMP
  6538. #ifdef PIDTEMPBED
  6539. /*!
  6540. ### M304 - Set bed PID <a href="https://reprap.org/wiki/G-code#M304:_Set_PID_parameters_-_Bed">M304: Set PID parameters - Bed</a>
  6541. Sets Proportional (P), Integral (I) and Derivative (D) values for bed.
  6542. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6543. #### Usage
  6544. M304 [ P | I | D ]
  6545. #### Parameters
  6546. - `P` - proportional (Kp)
  6547. - `I` - integral (Ki)
  6548. - `D` - derivative (Kd)
  6549. */
  6550. case 304:
  6551. {
  6552. if(code_seen('P')) cs.bedKp = code_value();
  6553. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6554. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6555. updatePID();
  6556. SERIAL_PROTOCOLRPGM(MSG_OK);
  6557. SERIAL_PROTOCOL(" p:");
  6558. SERIAL_PROTOCOL(cs.bedKp);
  6559. SERIAL_PROTOCOL(" i:");
  6560. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6561. SERIAL_PROTOCOL(" d:");
  6562. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  6563. SERIAL_PROTOCOLLN("");
  6564. }
  6565. break;
  6566. #endif //PIDTEMP
  6567. /*!
  6568. ### M240 - Trigger camera <a href="https://reprap.org/wiki/G-code#M240:_Trigger_camera">M240: Trigger camera</a>
  6569. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6570. You need to (re)define and assign `CHDK` or `PHOTOGRAPH_PIN` the correct pin number to be able to use the feature.
  6571. */
  6572. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6573. {
  6574. #ifdef CHDK
  6575. SET_OUTPUT(CHDK);
  6576. WRITE(CHDK, HIGH);
  6577. chdkHigh = _millis();
  6578. chdkActive = true;
  6579. #else
  6580. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6581. const uint8_t NUM_PULSES=16;
  6582. const float PULSE_LENGTH=0.01524;
  6583. for(int i=0; i < NUM_PULSES; i++) {
  6584. WRITE(PHOTOGRAPH_PIN, HIGH);
  6585. _delay_ms(PULSE_LENGTH);
  6586. WRITE(PHOTOGRAPH_PIN, LOW);
  6587. _delay_ms(PULSE_LENGTH);
  6588. }
  6589. _delay(7.33);
  6590. for(int i=0; i < NUM_PULSES; i++) {
  6591. WRITE(PHOTOGRAPH_PIN, HIGH);
  6592. _delay_ms(PULSE_LENGTH);
  6593. WRITE(PHOTOGRAPH_PIN, LOW);
  6594. _delay_ms(PULSE_LENGTH);
  6595. }
  6596. #endif
  6597. #endif //chdk end if
  6598. }
  6599. break;
  6600. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6601. /*!
  6602. ### M302 - Allow cold extrude, or set minimum extrude temperature <a href="https://reprap.org/wiki/G-code#M302:_Allow_cold_extrudes">M302: Allow cold extrudes</a>
  6603. This tells the printer to allow movement of the extruder motor above a certain temperature, or if disabled, to allow extruder movement when the hotend is below a safe printing temperature.
  6604. #### Usage
  6605. M302 [ S ]
  6606. #### Parameters
  6607. - `S` - Cold extrude minimum temperature
  6608. */
  6609. case 302:
  6610. {
  6611. float temp = .0;
  6612. if (code_seen('S')) temp=code_value();
  6613. set_extrude_min_temp(temp);
  6614. }
  6615. break;
  6616. #endif
  6617. /*!
  6618. ### M303 - PID autotune <a href="https://reprap.org/wiki/G-code#M303:_Run_PID_tuning">M303: Run PID tuning</a>
  6619. PID Tuning refers to a control algorithm used in some repraps to tune heating behavior for hot ends and heated beds. This command generates Proportional (Kp), Integral (Ki), and Derivative (Kd) values for the hotend or bed. Send the appropriate code and wait for the output to update the firmware values.
  6620. #### Usage
  6621. M303 [ E | S | C ]
  6622. #### Parameters
  6623. - `E` - Extruder, default `E0`. Use `E-1` to calibrate the bed PID
  6624. - `S` - Target temperature, default `210°C` for hotend, 70 for bed
  6625. - `C` - Cycles, default `5`
  6626. */
  6627. case 303:
  6628. {
  6629. float temp = 150.0;
  6630. int e=0;
  6631. int c=5;
  6632. if (code_seen('E')) e=code_value();
  6633. if (e<0)
  6634. temp=70;
  6635. if (code_seen('S')) temp=code_value();
  6636. if (code_seen('C')) c=code_value();
  6637. PID_autotune(temp, e, c);
  6638. }
  6639. break;
  6640. /*!
  6641. ### M400 - Wait for all moves to finish <a href="https://reprap.org/wiki/G-code#M400:_Wait_for_current_moves_to_finish">M400: Wait for current moves to finish</a>
  6642. Finishes all current moves and and thus clears the buffer.
  6643. Equivalent to `G4` with no parameters.
  6644. */
  6645. case 400:
  6646. {
  6647. st_synchronize();
  6648. }
  6649. break;
  6650. /*!
  6651. ### M403 - Set filament type (material) for particular extruder and notify the MMU <a href="https://reprap.org/wiki/G-code#M403:_Set_filament_type_.28material.29_for_particular_extruder_and_notify_the_MMU.">M403 - Set filament type (material) for particular extruder and notify the MMU</a>
  6652. Currently three different materials are needed (default, flex and PVA).
  6653. And storing this information for different load/unload profiles etc. in the future firmware does not have to wait for "ok" from MMU.
  6654. #### Usage
  6655. M403 [ E | F ]
  6656. #### Parameters
  6657. - `E` - Extruder number. 0-indexed.
  6658. - `F` - Filament type
  6659. */
  6660. case 403:
  6661. {
  6662. // currently three different materials are needed (default, flex and PVA)
  6663. // add storing this information for different load/unload profiles etc. in the future
  6664. // firmware does not wait for "ok" from mmu
  6665. if (mmu_enabled)
  6666. {
  6667. uint8_t extruder = 255;
  6668. uint8_t filament = FILAMENT_UNDEFINED;
  6669. if(code_seen('E')) extruder = code_value();
  6670. if(code_seen('F')) filament = code_value();
  6671. mmu_set_filament_type(extruder, filament);
  6672. }
  6673. }
  6674. break;
  6675. /*!
  6676. ### M500 - Store settings in EEPROM <a href="https://reprap.org/wiki/G-code#M500:_Store_parameters_in_non-volatile_storage">M500: Store parameters in non-volatile storage</a>
  6677. Save current parameters to EEPROM.
  6678. */
  6679. case 500:
  6680. {
  6681. Config_StoreSettings();
  6682. }
  6683. break;
  6684. /*!
  6685. ### M501 - Read settings from EEPROM <a href="https://reprap.org/wiki/G-code#M501:_Read_parameters_from_EEPROM">M501: Read parameters from EEPROM</a>
  6686. Set the active parameters to those stored in the EEPROM. This is useful to revert parameters after experimenting with them.
  6687. */
  6688. case 501:
  6689. {
  6690. Config_RetrieveSettings();
  6691. }
  6692. break;
  6693. /*!
  6694. ### M502 - Revert all settings to factory default <a href="https://reprap.org/wiki/G-code#M502:_Restore_Default_Settings">M502: Restore Default Settings</a>
  6695. This command resets all tunable parameters to their default values, as set in the firmware's configuration files. This doesn't reset any parameters stored in the EEPROM, so it must be followed by M500 to write the default settings.
  6696. */
  6697. case 502:
  6698. {
  6699. Config_ResetDefault();
  6700. }
  6701. break;
  6702. /*!
  6703. ### M503 - Repport all settings currently in memory <a href="https://reprap.org/wiki/G-code#M503:_Report_Current_Settings">M503: Report Current Settings</a>
  6704. This command asks the firmware to reply with the current print settings as set in memory. Settings will differ from EEPROM contents if changed since the last load / save. The reply output includes the G-Code commands to produce each setting. For example, Steps-Per-Unit values are displayed as an M92 command.
  6705. */
  6706. case 503:
  6707. {
  6708. Config_PrintSettings();
  6709. }
  6710. break;
  6711. /*!
  6712. ### M509 - Force language selection <a href="https://reprap.org/wiki/G-code#M509:_Force_language_selection">M509: Force language selection</a>
  6713. Resets the language to English.
  6714. Only on Original Prusa i3 MK2.5/s and MK3/s with multiple languages.
  6715. */
  6716. case 509:
  6717. {
  6718. lang_reset();
  6719. SERIAL_ECHO_START;
  6720. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6721. }
  6722. break;
  6723. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6724. /*!
  6725. ### M540 - Abort print on endstop hit (enable/disable) <a href="https://reprap.org/wiki/G-code#M540_in_Marlin:_Enable.2FDisable_.22Stop_SD_Print_on_Endstop_Hit.22">M540 in Marlin: Enable/Disable "Stop SD Print on Endstop Hit"</a>
  6726. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. You must define `ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED`.
  6727. #### Usage
  6728. M540 [ S ]
  6729. #### Parameters
  6730. - `S` - disabled=0, enabled=1
  6731. */
  6732. case 540:
  6733. {
  6734. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6735. }
  6736. break;
  6737. #endif
  6738. /*!
  6739. ### M851 - Set Z-Probe Offset <a href="https://reprap.org/wiki/G-code#M851:_Set_Z-Probe_Offset">M851: Set Z-Probe Offset"</a>
  6740. Sets the Z-probe Z offset. This offset is used to determine the actual Z position of the nozzle when using a probe to home Z with G28. This value may also be used by G81 (Prusa) / G29 (Marlin) to apply correction to the Z position.
  6741. This value represents the distance from nozzle to the bed surface at the point where the probe is triggered. This value will be negative for typical switch probes, inductive probes, and setups where the nozzle makes a circuit with a raised metal contact. This setting will be greater than zero on machines where the nozzle itself is used as the probe, pressing down on the bed to press a switch. (This is a common setup on delta machines.)
  6742. #### Usage
  6743. M851 [ Z ]
  6744. #### Parameters
  6745. - `Z` - Z offset probe to nozzle.
  6746. */
  6747. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6748. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6749. {
  6750. float value;
  6751. if (code_seen('Z'))
  6752. {
  6753. value = code_value();
  6754. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6755. {
  6756. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6757. SERIAL_ECHO_START;
  6758. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6759. SERIAL_PROTOCOLLN("");
  6760. }
  6761. else
  6762. {
  6763. SERIAL_ECHO_START;
  6764. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6765. SERIAL_ECHORPGM(MSG_Z_MIN);
  6766. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6767. SERIAL_ECHORPGM(MSG_Z_MAX);
  6768. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6769. SERIAL_PROTOCOLLN("");
  6770. }
  6771. }
  6772. else
  6773. {
  6774. SERIAL_ECHO_START;
  6775. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6776. SERIAL_ECHO(-cs.zprobe_zoffset);
  6777. SERIAL_PROTOCOLLN("");
  6778. }
  6779. break;
  6780. }
  6781. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6782. #ifdef FILAMENTCHANGEENABLE
  6783. /*!
  6784. ### M600 - Initiate Filament change procedure <a href="https://reprap.org/wiki/G-code#M600:_Filament_change_pause">M600: Filament change pause</a>
  6785. Initiates Filament change, it is also used during Filament Runout Sensor process.
  6786. If the `M600` is triggered under 25mm it will do a Z-lift of 25mm to prevent a filament blob.
  6787. #### Usage
  6788. M600 [ X | Y | Z | E | L | AUTO ]
  6789. - `X` - X position, default 211
  6790. - `Y` - Y position, default 0
  6791. - `Z` - relative lift Z, default 2.
  6792. - `E` - initial retract, default -2
  6793. - `L` - later retract distance for removal, default -80
  6794. - `AUTO` - Automatically (only with MMU)
  6795. */
  6796. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6797. {
  6798. st_synchronize();
  6799. float x_position = current_position[X_AXIS];
  6800. float y_position = current_position[Y_AXIS];
  6801. float z_shift = 0; // is it necessary to be a float?
  6802. float e_shift_init = 0;
  6803. float e_shift_late = 0;
  6804. bool automatic = false;
  6805. //Retract extruder
  6806. if(code_seen('E'))
  6807. {
  6808. e_shift_init = code_value();
  6809. }
  6810. else
  6811. {
  6812. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6813. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6814. #endif
  6815. }
  6816. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6817. if (code_seen('L'))
  6818. {
  6819. e_shift_late = code_value();
  6820. }
  6821. else
  6822. {
  6823. #ifdef FILAMENTCHANGE_FINALRETRACT
  6824. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6825. #endif
  6826. }
  6827. //Lift Z
  6828. if(code_seen('Z'))
  6829. {
  6830. z_shift = code_value();
  6831. }
  6832. else
  6833. {
  6834. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6835. }
  6836. //Move XY to side
  6837. if(code_seen('X'))
  6838. {
  6839. x_position = code_value();
  6840. }
  6841. else
  6842. {
  6843. #ifdef FILAMENTCHANGE_XPOS
  6844. x_position = FILAMENTCHANGE_XPOS;
  6845. #endif
  6846. }
  6847. if(code_seen('Y'))
  6848. {
  6849. y_position = code_value();
  6850. }
  6851. else
  6852. {
  6853. #ifdef FILAMENTCHANGE_YPOS
  6854. y_position = FILAMENTCHANGE_YPOS ;
  6855. #endif
  6856. }
  6857. if (mmu_enabled && code_seen("AUTO"))
  6858. automatic = true;
  6859. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  6860. }
  6861. break;
  6862. #endif //FILAMENTCHANGEENABLE
  6863. /*!
  6864. ### M601 - Pause print <a href="https://reprap.org/wiki/G-code#M601:_Pause_print">M601: Pause print</a>
  6865. */
  6866. /*!
  6867. ### M125 - Pause print (TODO: not implemented)
  6868. */
  6869. /*!
  6870. ### M25 - Pause SD print <a href="https://reprap.org/wiki/G-code#M25:_Pause_SD_print">M25: Pause SD print</a>
  6871. */
  6872. case 25:
  6873. case 601:
  6874. {
  6875. if (!isPrintPaused)
  6876. {
  6877. st_synchronize();
  6878. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  6879. lcd_pause_print();
  6880. }
  6881. }
  6882. break;
  6883. /*!
  6884. ### M602 - Resume print <a href="https://reprap.org/wiki/G-code#M602:_Resume_print">M602: Resume print</a>
  6885. */
  6886. case 602: {
  6887. if (isPrintPaused)
  6888. lcd_resume_print();
  6889. }
  6890. break;
  6891. /*!
  6892. ### M603 - Stop print <a href="https://reprap.org/wiki/G-code#M603:_Stop_print">M603: Stop print</a>
  6893. */
  6894. case 603: {
  6895. lcd_print_stop();
  6896. }
  6897. break;
  6898. #ifdef PINDA_THERMISTOR
  6899. /*!
  6900. ### M860 - Wait for extruder temperature (PINDA) <a href="https://reprap.org/wiki/G-code#M860_Wait_for_Probe_Temperature">M860 Wait for Probe Temperature</a>
  6901. Wait for PINDA thermistor to reach target temperature
  6902. #### Usage
  6903. M860 [ S ]
  6904. #### Parameters
  6905. - `S` - Target temperature
  6906. */
  6907. case 860:
  6908. {
  6909. int set_target_pinda = 0;
  6910. if (code_seen('S')) {
  6911. set_target_pinda = code_value();
  6912. }
  6913. else {
  6914. break;
  6915. }
  6916. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  6917. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  6918. SERIAL_PROTOCOL(set_target_pinda);
  6919. SERIAL_PROTOCOLLN("");
  6920. codenum = _millis();
  6921. cancel_heatup = false;
  6922. bool is_pinda_cooling = false;
  6923. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  6924. is_pinda_cooling = true;
  6925. }
  6926. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  6927. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  6928. {
  6929. SERIAL_PROTOCOLPGM("P:");
  6930. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  6931. SERIAL_PROTOCOL('/');
  6932. SERIAL_PROTOCOLLN(set_target_pinda);
  6933. codenum = _millis();
  6934. }
  6935. manage_heater();
  6936. manage_inactivity();
  6937. lcd_update(0);
  6938. }
  6939. LCD_MESSAGERPGM(MSG_OK);
  6940. break;
  6941. }
  6942. /*!
  6943. ### M861 - Set/Get PINDA temperature compensation offsets <a href="https://reprap.org/wiki/G-code#M861_Set_Probe_Thermal_Compensation">M861 Set Probe Thermal Compensation</a>
  6944. Set compensation ustep value `S` for compensation table index `I`.
  6945. #### Usage
  6946. M861 [ ? | ! | Z | S | I ]
  6947. #### Parameters
  6948. - `?` - Print current EEPROM offset values
  6949. - `!` - Set factory default values
  6950. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6951. - `S` - Microsteps
  6952. - `I` - Table index
  6953. */
  6954. case 861:
  6955. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  6956. uint8_t cal_status = calibration_status_pinda();
  6957. int16_t usteps = 0;
  6958. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  6959. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6960. for (uint8_t i = 0; i < 6; i++)
  6961. {
  6962. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  6963. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6964. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6965. SERIAL_PROTOCOLPGM(", ");
  6966. SERIAL_PROTOCOL(35 + (i * 5));
  6967. SERIAL_PROTOCOLPGM(", ");
  6968. SERIAL_PROTOCOL(usteps);
  6969. SERIAL_PROTOCOLPGM(", ");
  6970. SERIAL_PROTOCOL(mm * 1000);
  6971. SERIAL_PROTOCOLLN("");
  6972. }
  6973. }
  6974. else if (code_seen('!')) { // ! - Set factory default values
  6975. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6976. int16_t z_shift = 8; //40C - 20um - 8usteps
  6977. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  6978. z_shift = 24; //45C - 60um - 24usteps
  6979. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  6980. z_shift = 48; //50C - 120um - 48usteps
  6981. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  6982. z_shift = 80; //55C - 200um - 80usteps
  6983. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  6984. z_shift = 120; //60C - 300um - 120usteps
  6985. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  6986. SERIAL_PROTOCOLLN("factory restored");
  6987. }
  6988. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6989. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6990. int16_t z_shift = 0;
  6991. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6992. SERIAL_PROTOCOLLN("zerorized");
  6993. }
  6994. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6995. int16_t usteps = code_value();
  6996. if (code_seen('I')) {
  6997. uint8_t index = code_value();
  6998. if (index < 5) {
  6999. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  7000. SERIAL_PROTOCOLLN("OK");
  7001. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  7002. for (uint8_t i = 0; i < 6; i++)
  7003. {
  7004. usteps = 0;
  7005. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  7006. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  7007. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  7008. SERIAL_PROTOCOLPGM(", ");
  7009. SERIAL_PROTOCOL(35 + (i * 5));
  7010. SERIAL_PROTOCOLPGM(", ");
  7011. SERIAL_PROTOCOL(usteps);
  7012. SERIAL_PROTOCOLPGM(", ");
  7013. SERIAL_PROTOCOL(mm * 1000);
  7014. SERIAL_PROTOCOLLN("");
  7015. }
  7016. }
  7017. }
  7018. }
  7019. else {
  7020. SERIAL_PROTOCOLPGM("no valid command");
  7021. }
  7022. break;
  7023. #endif //PINDA_THERMISTOR
  7024. /*!
  7025. ### M862 - Print checking <a href="https://reprap.org/wiki/G-code#M862:_Print_checking">M862: Print checking</a>
  7026. Checks the parameters of the printer and gcode and performs compatibility check
  7027. - M862.1 { P<nozzle_diameter> | Q } 0.25/0.40/0.60
  7028. - M862.2 { P<model_code> | Q }
  7029. - M862.3 { P"<model_name>" | Q }
  7030. - M862.4 { P<fw_version> | Q }
  7031. - M862.5 { P<gcode_level> | Q }
  7032. When run with P<> argument, the check is performed against the input value.
  7033. When run with Q argument, the current value is shown.
  7034. M862.3 accepts text identifiers of printer types too.
  7035. The syntax of M862.3 is (note the quotes around the type):
  7036. M862.3 P "MK3S"
  7037. Accepted printer type identifiers and their numeric counterparts:
  7038. - MK1 (100)
  7039. - MK2 (200)
  7040. - MK2MM (201)
  7041. - MK2S (202)
  7042. - MK2SMM (203)
  7043. - MK2.5 (250)
  7044. - MK2.5MMU2 (20250)
  7045. - MK2.5S (252)
  7046. - MK2.5SMMU2S (20252)
  7047. - MK3 (300)
  7048. - MK3MMU2 (20300)
  7049. - MK3S (302)
  7050. - MK3SMMU2S (20302)
  7051. */
  7052. case 862: // M862: print checking
  7053. float nDummy;
  7054. uint8_t nCommand;
  7055. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  7056. switch((ClPrintChecking)nCommand)
  7057. {
  7058. case ClPrintChecking::_Nozzle: // ~ .1
  7059. uint16_t nDiameter;
  7060. if(code_seen('P'))
  7061. {
  7062. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  7063. nozzle_diameter_check(nDiameter);
  7064. }
  7065. /*
  7066. else if(code_seen('S')&&farm_mode)
  7067. {
  7068. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  7069. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  7070. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  7071. }
  7072. */
  7073. else if(code_seen('Q'))
  7074. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  7075. break;
  7076. case ClPrintChecking::_Model: // ~ .2
  7077. if(code_seen('P'))
  7078. {
  7079. uint16_t nPrinterModel;
  7080. nPrinterModel=(uint16_t)code_value_long();
  7081. printer_model_check(nPrinterModel);
  7082. }
  7083. else if(code_seen('Q'))
  7084. SERIAL_PROTOCOLLN(nPrinterType);
  7085. break;
  7086. case ClPrintChecking::_Smodel: // ~ .3
  7087. if(code_seen('P'))
  7088. printer_smodel_check(strchr_pointer);
  7089. else if(code_seen('Q'))
  7090. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  7091. break;
  7092. case ClPrintChecking::_Version: // ~ .4
  7093. if(code_seen('P'))
  7094. fw_version_check(++strchr_pointer);
  7095. else if(code_seen('Q'))
  7096. SERIAL_PROTOCOLLN(FW_VERSION);
  7097. break;
  7098. case ClPrintChecking::_Gcode: // ~ .5
  7099. if(code_seen('P'))
  7100. {
  7101. uint16_t nGcodeLevel;
  7102. nGcodeLevel=(uint16_t)code_value_long();
  7103. gcode_level_check(nGcodeLevel);
  7104. }
  7105. else if(code_seen('Q'))
  7106. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  7107. break;
  7108. }
  7109. break;
  7110. #ifdef LIN_ADVANCE
  7111. /*!
  7112. ### M900 - Set Linear advance options <a href="https://reprap.org/wiki/G-code#M900_Set_Linear_Advance_Scaling_Factors">M900 Set Linear Advance Scaling Factors</a>
  7113. Sets the advance extrusion factors for Linear Advance. If any of the R, W, H, or D parameters are set to zero the ratio will be computed dynamically during printing.
  7114. #### Usage
  7115. M900 [ K | R | W | H | D]
  7116. #### Parameters
  7117. - `K` - Advance K factor
  7118. - `R` - Set ratio directly (overrides WH/D)
  7119. - `W` - Width
  7120. - `H` - Height
  7121. - `D` - Diameter Set ratio from WH/D
  7122. */
  7123. case 900:
  7124. gcode_M900();
  7125. break;
  7126. #endif
  7127. /*!
  7128. ### M907 - Set digital trimpot motor current in mA using axis codes <a href="https://reprap.org/wiki/G-code#M907:_Set_digital_trimpot_motor">M907: Set digital trimpot motor</a>
  7129. Set digital trimpot motor current using axis codes (X, Y, Z, E, B, S).
  7130. #### Usage
  7131. M907 [ X | Y | Z | E | B | S ]
  7132. #### Parameters
  7133. - `X` - X motor driver
  7134. - `Y` - Y motor driver
  7135. - `Z` - Z motor driver
  7136. - `E` - Extruder motor driver
  7137. - `B` - Second Extruder motor driver
  7138. - `S` - All motors
  7139. */
  7140. case 907:
  7141. {
  7142. #ifdef TMC2130
  7143. // See tmc2130_cur2val() for translation to 0 .. 63 range
  7144. for (int i = 0; i < NUM_AXIS; i++)
  7145. if(code_seen(axis_codes[i]))
  7146. {
  7147. long cur_mA = code_value_long();
  7148. uint8_t val = tmc2130_cur2val(cur_mA);
  7149. tmc2130_set_current_h(i, val);
  7150. tmc2130_set_current_r(i, val);
  7151. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  7152. }
  7153. #else //TMC2130
  7154. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  7155. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  7156. if(code_seen('B')) st_current_set(4,code_value());
  7157. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  7158. #endif
  7159. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  7160. if(code_seen('X')) st_current_set(0, code_value());
  7161. #endif
  7162. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  7163. if(code_seen('Z')) st_current_set(1, code_value());
  7164. #endif
  7165. #ifdef MOTOR_CURRENT_PWM_E_PIN
  7166. if(code_seen('E')) st_current_set(2, code_value());
  7167. #endif
  7168. #endif //TMC2130
  7169. }
  7170. break;
  7171. /*!
  7172. ### M908 - Control digital trimpot directly <a href="https://reprap.org/wiki/G-code#M908:_Control_digital_trimpot_directly">M908: Control digital trimpot directly</a>
  7173. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. Not usable on Prusa printers.
  7174. #### Usage
  7175. M908 [ P | S ]
  7176. #### Parameters
  7177. - `P` - channel
  7178. - `S` - current
  7179. */
  7180. case 908:
  7181. {
  7182. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  7183. uint8_t channel,current;
  7184. if(code_seen('P')) channel=code_value();
  7185. if(code_seen('S')) current=code_value();
  7186. digitalPotWrite(channel, current);
  7187. #endif
  7188. }
  7189. break;
  7190. #ifdef TMC2130_SERVICE_CODES_M910_M918
  7191. /*!
  7192. ### M910 - TMC2130 init <a href="https://reprap.org/wiki/G-code#M910:_TMC2130_init">M910: TMC2130 init</a>
  7193. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7194. */
  7195. case 910:
  7196. {
  7197. tmc2130_init();
  7198. }
  7199. break;
  7200. /*!
  7201. ### M911 - Set TMC2130 holding currents <a href="https://reprap.org/wiki/G-code#M911:_Set_TMC2130_holding_currents">M911: Set TMC2130 holding currents</a>
  7202. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7203. #### Usage
  7204. M911 [ X | Y | Z | E ]
  7205. #### Parameters
  7206. - `X` - X stepper driver holding current value
  7207. - `Y` - Y stepper driver holding current value
  7208. - `Z` - Z stepper driver holding current value
  7209. - `E` - Extruder stepper driver holding current value
  7210. */
  7211. case 911:
  7212. {
  7213. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  7214. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  7215. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  7216. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  7217. }
  7218. break;
  7219. /*!
  7220. ### M912 - Set TMC2130 running currents <a href="https://reprap.org/wiki/G-code#M912:_Set_TMC2130_running_currents">M912: Set TMC2130 running currents</a>
  7221. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7222. #### Usage
  7223. M912 [ X | Y | Z | E ]
  7224. #### Parameters
  7225. - `X` - X stepper driver running current value
  7226. - `Y` - Y stepper driver running current value
  7227. - `Z` - Z stepper driver running current value
  7228. - `E` - Extruder stepper driver running current value
  7229. */
  7230. case 912:
  7231. {
  7232. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  7233. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  7234. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  7235. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  7236. }
  7237. break;
  7238. /*!
  7239. ### M913 - Print TMC2130 currents <a href="https://reprap.org/wiki/G-code#M913:_Print_TMC2130_currents">M913: Print TMC2130 currents</a>
  7240. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7241. Shows TMC2130 currents.
  7242. */
  7243. case 913:
  7244. {
  7245. tmc2130_print_currents();
  7246. }
  7247. break;
  7248. /*!
  7249. ### M914 - Set TMC2130 normal mode <a href="https://reprap.org/wiki/G-code#M914:_Set_TMC2130_normal_mode">M914: Set TMC2130 normal mode</a>
  7250. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7251. */
  7252. case 914:
  7253. {
  7254. tmc2130_mode = TMC2130_MODE_NORMAL;
  7255. update_mode_profile();
  7256. tmc2130_init();
  7257. }
  7258. break;
  7259. /*!
  7260. ### M915 - Set TMC2130 silent mode <a href="https://reprap.org/wiki/G-code#M915:_Set_TMC2130_silent_mode">M915: Set TMC2130 silent mode</a>
  7261. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7262. */
  7263. case 915:
  7264. {
  7265. tmc2130_mode = TMC2130_MODE_SILENT;
  7266. update_mode_profile();
  7267. tmc2130_init();
  7268. }
  7269. break;
  7270. /*!
  7271. ### M916 - Set TMC2130 Stallguard sensitivity threshold <a href="https://reprap.org/wiki/G-code#M916:_Set_TMC2130_Stallguard_sensitivity_threshold">M916: Set TMC2130 Stallguard sensitivity threshold</a>
  7272. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7273. #### Usage
  7274. M916 [ X | Y | Z | E ]
  7275. #### Parameters
  7276. - `X` - X stepper driver stallguard sensitivity threshold value
  7277. - `Y` - Y stepper driver stallguard sensitivity threshold value
  7278. - `Z` - Z stepper driver stallguard sensitivity threshold value
  7279. - `E` - Extruder stepper driver stallguard sensitivity threshold value
  7280. */
  7281. case 916:
  7282. {
  7283. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  7284. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  7285. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  7286. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  7287. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  7288. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  7289. }
  7290. break;
  7291. /*!
  7292. ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl) <a href="https://reprap.org/wiki/G-code#M917:_Set_TMC2130_PWM_amplitude_offset_.28pwm_ampl.29">M917: Set TMC2130 PWM amplitude offset (pwm_ampl)</a>
  7293. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7294. #### Usage
  7295. M917 [ X | Y | Z | E ]
  7296. #### Parameters
  7297. - `X` - X stepper driver PWM amplitude offset value
  7298. - `Y` - Y stepper driver PWM amplitude offset value
  7299. - `Z` - Z stepper driver PWM amplitude offset value
  7300. - `E` - Extruder stepper driver PWM amplitude offset value
  7301. */
  7302. case 917:
  7303. {
  7304. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  7305. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  7306. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  7307. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  7308. }
  7309. break;
  7310. /*!
  7311. ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad) <a href="https://reprap.org/wiki/G-code#M918:_Set_TMC2130_PWM_amplitude_gradient_.28pwm_grad.29">M918: Set TMC2130 PWM amplitude gradient (pwm_grad)</a>
  7312. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7313. #### Usage
  7314. M918 [ X | Y | Z | E ]
  7315. #### Parameters
  7316. - `X` - X stepper driver PWM amplitude gradient value
  7317. - `Y` - Y stepper driver PWM amplitude gradient value
  7318. - `Z` - Z stepper driver PWM amplitude gradient value
  7319. - `E` - Extruder stepper driver PWM amplitude gradient value
  7320. */
  7321. case 918:
  7322. {
  7323. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  7324. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  7325. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  7326. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  7327. }
  7328. break;
  7329. #endif //TMC2130_SERVICE_CODES_M910_M918
  7330. /*!
  7331. ### M350 - Set microstepping mode <a href="https://reprap.org/wiki/G-code#M350:_Set_microstepping_mode">M350: Set microstepping mode</a>
  7332. Printers with TMC2130 drivers have `X`, `Y`, `Z` and `E` as options. The steps-per-unit value is updated accordingly. Not all resolutions are valid!
  7333. Printers without TMC2130 drivers also have `B` and `S` options. In this case, the steps-per-unit value in not changed!
  7334. #### Usage
  7335. M350 [ X | Y | Z | E | B | S ]
  7336. #### Parameters
  7337. - `X` - X new resolution
  7338. - `Y` - Y new resolution
  7339. - `Z` - Z new resolution
  7340. - `E` - E new resolution
  7341. Only valid for MK2.5(S) or printers without TMC2130 drivers
  7342. - `B` - Second extruder new resolution
  7343. - `S` - All axes new resolution
  7344. */
  7345. case 350:
  7346. {
  7347. #ifdef TMC2130
  7348. for (int i=0; i<NUM_AXIS; i++)
  7349. {
  7350. if(code_seen(axis_codes[i]))
  7351. {
  7352. uint16_t res_new = code_value();
  7353. bool res_valid = (res_new == 8) || (res_new == 16) || (res_new == 32); // resolutions valid for all axis
  7354. res_valid |= (i != E_AXIS) && ((res_new == 1) || (res_new == 2) || (res_new == 4)); // resolutions valid for X Y Z only
  7355. res_valid |= (i == E_AXIS) && ((res_new == 64) || (res_new == 128)); // resolutions valid for E only
  7356. if (res_valid)
  7357. {
  7358. st_synchronize();
  7359. uint16_t res = tmc2130_get_res(i);
  7360. tmc2130_set_res(i, res_new);
  7361. cs.axis_ustep_resolution[i] = res_new;
  7362. if (res_new > res)
  7363. {
  7364. uint16_t fac = (res_new / res);
  7365. cs.axis_steps_per_unit[i] *= fac;
  7366. position[i] *= fac;
  7367. }
  7368. else
  7369. {
  7370. uint16_t fac = (res / res_new);
  7371. cs.axis_steps_per_unit[i] /= fac;
  7372. position[i] /= fac;
  7373. }
  7374. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  7375. if (i == E_AXIS)
  7376. fsensor_set_axis_steps_per_unit(cs.axis_steps_per_unit[i]);
  7377. #endif
  7378. }
  7379. }
  7380. }
  7381. #else //TMC2130
  7382. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7383. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  7384. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  7385. if(code_seen('B')) microstep_mode(4,code_value());
  7386. microstep_readings();
  7387. #endif
  7388. #endif //TMC2130
  7389. }
  7390. break;
  7391. /*!
  7392. ### M351 - Toggle Microstep Pins <a href="https://reprap.org/wiki/G-code#M351:_Toggle_MS1_MS2_pins_directly">M351: Toggle MS1 MS2 pins directly</a>
  7393. Toggle MS1 MS2 pins directly.
  7394. #### Usage
  7395. M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  7396. #### Parameters
  7397. - `X` - Update X axis
  7398. - `Y` - Update Y axis
  7399. - `Z` - Update Z axis
  7400. - `E` - Update E axis
  7401. - `S` - which MSx pin to toggle
  7402. - `B` - new pin value
  7403. */
  7404. case 351:
  7405. {
  7406. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7407. if(code_seen('S')) switch((int)code_value())
  7408. {
  7409. case 1:
  7410. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  7411. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  7412. break;
  7413. case 2:
  7414. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  7415. if(code_seen('B')) microstep_ms(4,-1,code_value());
  7416. break;
  7417. }
  7418. microstep_readings();
  7419. #endif
  7420. }
  7421. break;
  7422. /*!
  7423. ### M701 - Load filament <a href="https://reprap.org/wiki/G-code#M701:_Load_filament">M701: Load filament</a>
  7424. */
  7425. case 701:
  7426. {
  7427. if (mmu_enabled && code_seen('E'))
  7428. tmp_extruder = code_value();
  7429. gcode_M701();
  7430. }
  7431. break;
  7432. /*!
  7433. ### M702 - Unload filament <a href="https://reprap.org/wiki/G-code#M702:_Unload_filament">G32: Undock Z Probe sled</a>
  7434. #### Usage
  7435. M702 [ U | C ]
  7436. #### Parameters
  7437. - `U` - Unload all filaments used in current print
  7438. - `C` - Unload just current filament
  7439. - without any parameters unload all filaments
  7440. */
  7441. case 702:
  7442. {
  7443. #ifdef SNMM
  7444. if (code_seen('U'))
  7445. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  7446. else if (code_seen('C'))
  7447. extr_unload(); //! if "C" unload just current filament
  7448. else
  7449. extr_unload_all(); //! otherwise unload all filaments
  7450. #else
  7451. if (code_seen('C')) {
  7452. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  7453. }
  7454. else {
  7455. if(mmu_enabled) extr_unload(); //! unload current filament
  7456. else unload_filament();
  7457. }
  7458. #endif //SNMM
  7459. }
  7460. break;
  7461. /*!
  7462. ### M999 - Restart after being stopped <a href="https://reprap.org/wiki/G-code#M999:_Restart_after_being_stopped_by_error">M999: Restart after being stopped by error</a>
  7463. @todo Usually doesn't work. Should be fixed or removed. Most of the time, if `Stopped` it set, the print fails and is unrecoverable.
  7464. */
  7465. case 999:
  7466. Stopped = false;
  7467. lcd_reset_alert_level();
  7468. gcode_LastN = Stopped_gcode_LastN;
  7469. FlushSerialRequestResend();
  7470. break;
  7471. /*!
  7472. #### End of M-Commands
  7473. */
  7474. default:
  7475. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  7476. }
  7477. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  7478. mcode_in_progress = 0;
  7479. }
  7480. }
  7481. // end if(code_seen('M')) (end of M codes)
  7482. /*!
  7483. -----------------------------------------------------------------------------------------
  7484. # T Codes
  7485. T<extruder nr.> - select extruder in case of multi extruder printer. select filament in case of MMU_V2.
  7486. #### For MMU_V2:
  7487. T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  7488. @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  7489. @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  7490. @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  7491. */
  7492. else if(code_seen('T'))
  7493. {
  7494. int index;
  7495. bool load_to_nozzle = false;
  7496. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  7497. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  7498. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  7499. SERIAL_ECHOLNPGM("Invalid T code.");
  7500. }
  7501. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  7502. if (mmu_enabled)
  7503. {
  7504. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  7505. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7506. {
  7507. printf_P(PSTR("Duplicate T-code ignored.\n"));
  7508. }
  7509. else
  7510. {
  7511. st_synchronize();
  7512. mmu_command(MmuCmd::T0 + tmp_extruder);
  7513. manage_response(true, true, MMU_TCODE_MOVE);
  7514. }
  7515. }
  7516. }
  7517. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  7518. if (mmu_enabled)
  7519. {
  7520. st_synchronize();
  7521. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  7522. mmu_extruder = tmp_extruder; //filament change is finished
  7523. mmu_load_to_nozzle();
  7524. }
  7525. }
  7526. else {
  7527. if (*(strchr_pointer + index) == '?')
  7528. {
  7529. if(mmu_enabled)
  7530. {
  7531. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  7532. load_to_nozzle = true;
  7533. } else
  7534. {
  7535. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  7536. }
  7537. }
  7538. else {
  7539. tmp_extruder = code_value();
  7540. if (mmu_enabled && lcd_autoDepleteEnabled())
  7541. {
  7542. tmp_extruder = ad_getAlternative(tmp_extruder);
  7543. }
  7544. }
  7545. st_synchronize();
  7546. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  7547. if (mmu_enabled)
  7548. {
  7549. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7550. {
  7551. printf_P(PSTR("Duplicate T-code ignored.\n"));
  7552. }
  7553. else
  7554. {
  7555. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7556. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  7557. {
  7558. mmu_command(MmuCmd::K0 + tmp_extruder);
  7559. manage_response(true, true, MMU_UNLOAD_MOVE);
  7560. }
  7561. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7562. mmu_command(MmuCmd::T0 + tmp_extruder);
  7563. manage_response(true, true, MMU_TCODE_MOVE);
  7564. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  7565. mmu_extruder = tmp_extruder; //filament change is finished
  7566. if (load_to_nozzle)// for single material usage with mmu
  7567. {
  7568. mmu_load_to_nozzle();
  7569. }
  7570. }
  7571. }
  7572. else
  7573. {
  7574. #ifdef SNMM
  7575. mmu_extruder = tmp_extruder;
  7576. _delay(100);
  7577. disable_e0();
  7578. disable_e1();
  7579. disable_e2();
  7580. pinMode(E_MUX0_PIN, OUTPUT);
  7581. pinMode(E_MUX1_PIN, OUTPUT);
  7582. _delay(100);
  7583. SERIAL_ECHO_START;
  7584. SERIAL_ECHO("T:");
  7585. SERIAL_ECHOLN((int)tmp_extruder);
  7586. switch (tmp_extruder) {
  7587. case 1:
  7588. WRITE(E_MUX0_PIN, HIGH);
  7589. WRITE(E_MUX1_PIN, LOW);
  7590. break;
  7591. case 2:
  7592. WRITE(E_MUX0_PIN, LOW);
  7593. WRITE(E_MUX1_PIN, HIGH);
  7594. break;
  7595. case 3:
  7596. WRITE(E_MUX0_PIN, HIGH);
  7597. WRITE(E_MUX1_PIN, HIGH);
  7598. break;
  7599. default:
  7600. WRITE(E_MUX0_PIN, LOW);
  7601. WRITE(E_MUX1_PIN, LOW);
  7602. break;
  7603. }
  7604. _delay(100);
  7605. #else //SNMM
  7606. if (tmp_extruder >= EXTRUDERS) {
  7607. SERIAL_ECHO_START;
  7608. SERIAL_ECHO('T');
  7609. SERIAL_PROTOCOLLN((int)tmp_extruder);
  7610. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  7611. }
  7612. else {
  7613. #if EXTRUDERS > 1
  7614. boolean make_move = false;
  7615. #endif
  7616. if (code_seen('F')) {
  7617. #if EXTRUDERS > 1
  7618. make_move = true;
  7619. #endif
  7620. next_feedrate = code_value();
  7621. if (next_feedrate > 0.0) {
  7622. feedrate = next_feedrate;
  7623. }
  7624. }
  7625. #if EXTRUDERS > 1
  7626. if (tmp_extruder != active_extruder) {
  7627. // Save current position to return to after applying extruder offset
  7628. memcpy(destination, current_position, sizeof(destination));
  7629. // Offset extruder (only by XY)
  7630. int i;
  7631. for (i = 0; i < 2; i++) {
  7632. current_position[i] = current_position[i] -
  7633. extruder_offset[i][active_extruder] +
  7634. extruder_offset[i][tmp_extruder];
  7635. }
  7636. // Set the new active extruder and position
  7637. active_extruder = tmp_extruder;
  7638. plan_set_position_curposXYZE();
  7639. // Move to the old position if 'F' was in the parameters
  7640. if (make_move && Stopped == false) {
  7641. prepare_move();
  7642. }
  7643. }
  7644. #endif
  7645. SERIAL_ECHO_START;
  7646. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  7647. SERIAL_PROTOCOLLN((int)active_extruder);
  7648. }
  7649. #endif //SNMM
  7650. }
  7651. }
  7652. } // end if(code_seen('T')) (end of T codes)
  7653. /*!
  7654. #### End of T-Codes
  7655. */
  7656. /**
  7657. *---------------------------------------------------------------------------------
  7658. *# D codes
  7659. */
  7660. else if (code_seen('D')) // D codes (debug)
  7661. {
  7662. switch((int)code_value())
  7663. {
  7664. /*!
  7665. ### D-1 - Endless Loop <a href="https://reprap.org/wiki/G-code#D-1:_Endless_Loop">D-1: Endless Loop</a>
  7666. */
  7667. case -1:
  7668. dcode__1(); break;
  7669. #ifdef DEBUG_DCODES
  7670. /*!
  7671. ### D0 - Reset <a href="https://reprap.org/wiki/G-code#D0:_Reset">D0: Reset</a>
  7672. #### Usage
  7673. D0 [ B ]
  7674. #### Parameters
  7675. - `B` - Bootloader
  7676. */
  7677. case 0:
  7678. dcode_0(); break;
  7679. /*!
  7680. *
  7681. ### D1 - Clear EEPROM and RESET <a href="https://reprap.org/wiki/G-code#D1:_Clear_EEPROM_and_RESET">D1: Clear EEPROM and RESET</a>
  7682. D1
  7683. *
  7684. */
  7685. case 1:
  7686. dcode_1(); break;
  7687. /*!
  7688. ### D2 - Read/Write RAM <a href="https://reprap.org/wiki/G-code#D2:_Read.2FWrite_RAM">D3: Read/Write RAM</a>
  7689. This command can be used without any additional parameters. It will read the entire RAM.
  7690. #### Usage
  7691. D2 [ A | C | X ]
  7692. #### Parameters
  7693. - `A` - Address (x0000-x1fff)
  7694. - `C` - Count (1-8192)
  7695. - `X` - Data
  7696. #### Notes
  7697. - The hex address needs to be lowercase without the 0 before the x
  7698. - Count is decimal
  7699. - The hex data needs to be lowercase
  7700. */
  7701. case 2:
  7702. dcode_2(); break;
  7703. #endif //DEBUG_DCODES
  7704. #if defined DEBUG_DCODE3 || defined DEBUG_DCODES
  7705. /*!
  7706. ### D3 - Read/Write EEPROM <a href="https://reprap.org/wiki/G-code#D3:_Read.2FWrite_EEPROM">D3: Read/Write EEPROM</a>
  7707. This command can be used without any additional parameters. It will read the entire eeprom.
  7708. #### Usage
  7709. D3 [ A | C | X ]
  7710. #### Parameters
  7711. - `A` - Address (x0000-x0fff)
  7712. - `C` - Count (1-4096)
  7713. - `X` - Data (hex)
  7714. #### Notes
  7715. - The hex address needs to be lowercase without the 0 before the x
  7716. - Count is decimal
  7717. - The hex data needs to be lowercase
  7718. */
  7719. case 3:
  7720. dcode_3(); break;
  7721. #endif //DEBUG_DCODE3
  7722. #ifdef DEBUG_DCODES
  7723. /*!
  7724. ### D4 - Read/Write PIN <a href="https://reprap.org/wiki/G-code#D4:_Read.2FWrite_PIN">D4: Read/Write PIN</a>
  7725. To read the digital value of a pin you need only to define the pin number.
  7726. #### Usage
  7727. D4 [ P | F | V ]
  7728. #### Parameters
  7729. - `P` - Pin (0-255)
  7730. - `F` - Function in/out (0/1)
  7731. - `V` - Value (0/1)
  7732. */
  7733. case 4:
  7734. dcode_4(); break;
  7735. #endif //DEBUG_DCODES
  7736. #if defined DEBUG_DCODE5 || defined DEBUG_DCODES
  7737. /*!
  7738. ### D5 - Read/Write FLASH <a href="https://reprap.org/wiki/G-code#D5:_Read.2FWrite_FLASH">D5: Read/Write Flash</a>
  7739. This command can be used without any additional parameters. It will read the 1kb FLASH.
  7740. #### Usage
  7741. D5 [ A | C | X | E ]
  7742. #### Parameters
  7743. - `A` - Address (x00000-x3ffff)
  7744. - `C` - Count (1-8192)
  7745. - `X` - Data (hex)
  7746. - `E` - Erase
  7747. #### Notes
  7748. - The hex address needs to be lowercase without the 0 before the x
  7749. - Count is decimal
  7750. - The hex data needs to be lowercase
  7751. */
  7752. case 5:
  7753. dcode_5(); break;
  7754. #endif //DEBUG_DCODE5
  7755. #ifdef DEBUG_DCODES
  7756. /*!
  7757. ### D6 - Read/Write external FLASH <a href="https://reprap.org/wiki/G-code#D6:_Read.2FWrite_external_FLASH">D6: Read/Write external Flash</a>
  7758. Reserved
  7759. */
  7760. case 6:
  7761. dcode_6(); break;
  7762. /*!
  7763. ### D7 - Read/Write Bootloader <a href="https://reprap.org/wiki/G-code#D7:_Read.2FWrite_Bootloader">D7: Read/Write Bootloader</a>
  7764. Reserved
  7765. */
  7766. case 7:
  7767. dcode_7(); break;
  7768. /*!
  7769. ### D8 - Read/Write PINDA <a href="https://reprap.org/wiki/G-code#D8:_Read.2FWrite_PINDA">D8: Read/Write PINDA</a>
  7770. #### Usage
  7771. D8 [ ? | ! | P | Z ]
  7772. #### Parameters
  7773. - `?` - Read PINDA temperature shift values
  7774. - `!` - Reset PINDA temperature shift values to default
  7775. - `P` - Pinda temperature [C]
  7776. - `Z` - Z Offset [mm]
  7777. */
  7778. case 8:
  7779. dcode_8(); break;
  7780. /*!
  7781. ### D9 - Read ADC <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9: Read ADC</a>
  7782. #### Usage
  7783. D9 [ I | V ]
  7784. #### Parameters
  7785. - `I` - ADC channel index
  7786. - `0` - Heater 0 temperature
  7787. - `1` - Heater 1 temperature
  7788. - `2` - Bed temperature
  7789. - `3` - PINDA temperature
  7790. - `4` - PWR voltage
  7791. - `5` - Ambient temperature
  7792. - `6` - BED voltage
  7793. - `V` Value to be written as simulated
  7794. */
  7795. case 9:
  7796. dcode_9(); break;
  7797. /*!
  7798. ### D10 - Set XYZ calibration = OK <a href="https://reprap.org/wiki/G-code#D10:_Set_XYZ_calibration_.3D_OK">D10: Set XYZ calibration = OK</a>
  7799. */
  7800. case 10:
  7801. dcode_10(); break;
  7802. /*!
  7803. ### D12 - Time <a href="https://reprap.org/wiki/G-code#D12:_Time">D12: Time</a>
  7804. Writes the current time in the log file.
  7805. */
  7806. #endif //DEBUG_DCODES
  7807. #ifdef HEATBED_ANALYSIS
  7808. /*!
  7809. ### D80 - Bed check <a href="https://reprap.org/wiki/G-code#D80:_Bed_check">D80: Bed check</a>
  7810. This command will log data to SD card file "mesh.txt".
  7811. #### Usage
  7812. D80 [ E | F | G | H | I | J ]
  7813. #### Parameters
  7814. - `E` - Dimension X (default 40)
  7815. - `F` - Dimention Y (default 40)
  7816. - `G` - Points X (default 40)
  7817. - `H` - Points Y (default 40)
  7818. - `I` - Offset X (default 74)
  7819. - `J` - Offset Y (default 34)
  7820. */
  7821. case 80:
  7822. dcode_80(); break;
  7823. /*!
  7824. ### D81 - Bed analysis <a href="https://reprap.org/wiki/G-code#D81:_Bed_analysis">D80: Bed analysis</a>
  7825. This command will log data to SD card file "wldsd.txt".
  7826. #### Usage
  7827. D81 [ E | F | G | H | I | J ]
  7828. #### Parameters
  7829. - `E` - Dimension X (default 40)
  7830. - `F` - Dimention Y (default 40)
  7831. - `G` - Points X (default 40)
  7832. - `H` - Points Y (default 40)
  7833. - `I` - Offset X (default 74)
  7834. - `J` - Offset Y (default 34)
  7835. */
  7836. case 81:
  7837. dcode_81(); break;
  7838. #endif //HEATBED_ANALYSIS
  7839. #ifdef DEBUG_DCODES
  7840. /*!
  7841. ### D106 - Print measured fan speed for different pwm values <a href="https://reprap.org/wiki/G-code#D106:_Print_measured_fan_speed_for_different_pwm_values">D106: Print measured fan speed for different pwm values</a>
  7842. */
  7843. case 106:
  7844. dcode_106(); break;
  7845. #ifdef TMC2130
  7846. /*!
  7847. ### D2130 - Trinamic stepper controller <a href="https://reprap.org/wiki/G-code#D2130:_Trinamic_stepper_controller">D2130: Trinamic stepper controller</a>
  7848. @todo Please review by owner of the code. RepRap Wiki Gcode needs to be updated after review of owner as well.
  7849. #### Usage
  7850. D2130 [ Axis | Command | Subcommand | Value ]
  7851. #### Parameters
  7852. - Axis
  7853. - `X` - X stepper driver
  7854. - `Y` - Y stepper driver
  7855. - `Z` - Z stepper driver
  7856. - `E` - Extruder stepper driver
  7857. - Commands
  7858. - `0` - Current off
  7859. - `1` - Current on
  7860. - `+` - Single step
  7861. - `-` - Single step oposite direction
  7862. - `NNN` - Value sereval steps
  7863. - `?` - Read register
  7864. - Subcommands for read register
  7865. - `mres` - Micro step resolution. More information in datasheet '5.5.2 CHOPCONF – Chopper Configuration'
  7866. - `step` - Step
  7867. - `mscnt` - Microstep counter. More information in datasheet '5.5 Motor Driver Registers'
  7868. - `mscuract` - Actual microstep current for motor. More information in datasheet '5.5 Motor Driver Registers'
  7869. - `wave` - Microstep linearity compensation curve
  7870. - `!` - Set register
  7871. - Subcommands for set register
  7872. - `mres` - Micro step resolution
  7873. - `step` - Step
  7874. - `wave` - Microstep linearity compensation curve
  7875. - Values for set register
  7876. - `0, 180 --> 250` - Off
  7877. - `0.9 --> 1.25` - Valid values (recommended is 1.1)
  7878. - `@` - Home calibrate axis
  7879. Examples:
  7880. D2130E?wave
  7881. Print extruder microstep linearity compensation curve
  7882. D2130E!wave0
  7883. Disable extruder linearity compensation curve, (sine curve is used)
  7884. D2130E!wave220
  7885. (sin(x))^1.1 extruder microstep compensation curve used
  7886. Notes:
  7887. For more information see https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2130_datasheet.pdf
  7888. *
  7889. */
  7890. case 2130:
  7891. dcode_2130(); break;
  7892. #endif //TMC2130
  7893. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  7894. /*!
  7895. ### D9125 - PAT9125 filament sensor <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9125: PAT9125 filament sensor</a>
  7896. #### Usage
  7897. D9125 [ ? | ! | R | X | Y | L ]
  7898. #### Parameters
  7899. - `?` - Print values
  7900. - `!` - Print values
  7901. - `R` - Resolution. Not active in code
  7902. - `X` - X values
  7903. - `Y` - Y values
  7904. - `L` - Activate filament sensor log
  7905. */
  7906. case 9125:
  7907. dcode_9125(); break;
  7908. #endif //FILAMENT_SENSOR
  7909. #endif //DEBUG_DCODES
  7910. }
  7911. }
  7912. else
  7913. {
  7914. SERIAL_ECHO_START;
  7915. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  7916. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  7917. SERIAL_ECHOLNPGM("\"(2)");
  7918. }
  7919. KEEPALIVE_STATE(NOT_BUSY);
  7920. ClearToSend();
  7921. }
  7922. /*!
  7923. #### End of D-Codes
  7924. */
  7925. /** @defgroup GCodes G-Code List
  7926. */
  7927. // ---------------------------------------------------
  7928. void FlushSerialRequestResend()
  7929. {
  7930. //char cmdbuffer[bufindr][100]="Resend:";
  7931. MYSERIAL.flush();
  7932. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  7933. }
  7934. // Confirm the execution of a command, if sent from a serial line.
  7935. // Execution of a command from a SD card will not be confirmed.
  7936. void ClearToSend()
  7937. {
  7938. previous_millis_cmd = _millis();
  7939. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  7940. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7941. }
  7942. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7943. void update_currents() {
  7944. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7945. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7946. float tmp_motor[3];
  7947. //SERIAL_ECHOLNPGM("Currents updated: ");
  7948. if (destination[Z_AXIS] < Z_SILENT) {
  7949. //SERIAL_ECHOLNPGM("LOW");
  7950. for (uint8_t i = 0; i < 3; i++) {
  7951. st_current_set(i, current_low[i]);
  7952. /*MYSERIAL.print(int(i));
  7953. SERIAL_ECHOPGM(": ");
  7954. MYSERIAL.println(current_low[i]);*/
  7955. }
  7956. }
  7957. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  7958. //SERIAL_ECHOLNPGM("HIGH");
  7959. for (uint8_t i = 0; i < 3; i++) {
  7960. st_current_set(i, current_high[i]);
  7961. /*MYSERIAL.print(int(i));
  7962. SERIAL_ECHOPGM(": ");
  7963. MYSERIAL.println(current_high[i]);*/
  7964. }
  7965. }
  7966. else {
  7967. for (uint8_t i = 0; i < 3; i++) {
  7968. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  7969. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  7970. st_current_set(i, tmp_motor[i]);
  7971. /*MYSERIAL.print(int(i));
  7972. SERIAL_ECHOPGM(": ");
  7973. MYSERIAL.println(tmp_motor[i]);*/
  7974. }
  7975. }
  7976. }
  7977. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7978. void get_coordinates()
  7979. {
  7980. bool seen[4]={false,false,false,false};
  7981. for(int8_t i=0; i < NUM_AXIS; i++) {
  7982. if(code_seen(axis_codes[i]))
  7983. {
  7984. bool relative = axis_relative_modes & (1 << i);
  7985. destination[i] = (float)code_value();
  7986. if (i == E_AXIS) {
  7987. float emult = extruder_multiplier[active_extruder];
  7988. if (emult != 1.) {
  7989. if (! relative) {
  7990. destination[i] -= current_position[i];
  7991. relative = true;
  7992. }
  7993. destination[i] *= emult;
  7994. }
  7995. }
  7996. if (relative)
  7997. destination[i] += current_position[i];
  7998. seen[i]=true;
  7999. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8000. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  8001. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8002. }
  8003. else destination[i] = current_position[i]; //Are these else lines really needed?
  8004. }
  8005. if(code_seen('F')) {
  8006. next_feedrate = code_value();
  8007. #ifdef MAX_SILENT_FEEDRATE
  8008. if (tmc2130_mode == TMC2130_MODE_SILENT)
  8009. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  8010. #endif //MAX_SILENT_FEEDRATE
  8011. if(next_feedrate > 0.0) feedrate = next_feedrate;
  8012. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  8013. {
  8014. // float e_max_speed =
  8015. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  8016. }
  8017. }
  8018. }
  8019. void get_arc_coordinates()
  8020. {
  8021. #ifdef SF_ARC_FIX
  8022. bool relative_mode_backup = relative_mode;
  8023. relative_mode = true;
  8024. #endif
  8025. get_coordinates();
  8026. #ifdef SF_ARC_FIX
  8027. relative_mode=relative_mode_backup;
  8028. #endif
  8029. if(code_seen('I')) {
  8030. offset[0] = code_value();
  8031. }
  8032. else {
  8033. offset[0] = 0.0;
  8034. }
  8035. if(code_seen('J')) {
  8036. offset[1] = code_value();
  8037. }
  8038. else {
  8039. offset[1] = 0.0;
  8040. }
  8041. }
  8042. void clamp_to_software_endstops(float target[3])
  8043. {
  8044. #ifdef DEBUG_DISABLE_SWLIMITS
  8045. return;
  8046. #endif //DEBUG_DISABLE_SWLIMITS
  8047. world2machine_clamp(target[0], target[1]);
  8048. // Clamp the Z coordinate.
  8049. if (min_software_endstops) {
  8050. float negative_z_offset = 0;
  8051. #ifdef ENABLE_AUTO_BED_LEVELING
  8052. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  8053. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  8054. #endif
  8055. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  8056. }
  8057. if (max_software_endstops) {
  8058. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  8059. }
  8060. }
  8061. #ifdef MESH_BED_LEVELING
  8062. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  8063. float dx = x - current_position[X_AXIS];
  8064. float dy = y - current_position[Y_AXIS];
  8065. int n_segments = 0;
  8066. if (mbl.active) {
  8067. float len = abs(dx) + abs(dy);
  8068. if (len > 0)
  8069. // Split to 3cm segments or shorter.
  8070. n_segments = int(ceil(len / 30.f));
  8071. }
  8072. if (n_segments > 1) {
  8073. // In a multi-segment move explicitly set the final target in the plan
  8074. // as the move will be recalculated in it's entirety
  8075. float gcode_target[NUM_AXIS];
  8076. gcode_target[X_AXIS] = x;
  8077. gcode_target[Y_AXIS] = y;
  8078. gcode_target[Z_AXIS] = z;
  8079. gcode_target[E_AXIS] = e;
  8080. float dz = z - current_position[Z_AXIS];
  8081. float de = e - current_position[E_AXIS];
  8082. for (int i = 1; i < n_segments; ++ i) {
  8083. float t = float(i) / float(n_segments);
  8084. plan_buffer_line(current_position[X_AXIS] + t * dx,
  8085. current_position[Y_AXIS] + t * dy,
  8086. current_position[Z_AXIS] + t * dz,
  8087. current_position[E_AXIS] + t * de,
  8088. feed_rate, extruder, gcode_target);
  8089. if (waiting_inside_plan_buffer_line_print_aborted)
  8090. return;
  8091. }
  8092. }
  8093. // The rest of the path.
  8094. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  8095. }
  8096. #endif // MESH_BED_LEVELING
  8097. void prepare_move()
  8098. {
  8099. clamp_to_software_endstops(destination);
  8100. previous_millis_cmd = _millis();
  8101. // Do not use feedmultiply for E or Z only moves
  8102. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  8103. plan_buffer_line_destinationXYZE(feedrate/60);
  8104. }
  8105. else {
  8106. #ifdef MESH_BED_LEVELING
  8107. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  8108. #else
  8109. plan_buffer_line_destinationXYZE(feedrate*feedmultiply*(1./(60.f*100.f)));
  8110. #endif
  8111. }
  8112. set_current_to_destination();
  8113. }
  8114. void prepare_arc_move(char isclockwise) {
  8115. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  8116. // Trace the arc
  8117. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  8118. // As far as the parser is concerned, the position is now == target. In reality the
  8119. // motion control system might still be processing the action and the real tool position
  8120. // in any intermediate location.
  8121. for(int8_t i=0; i < NUM_AXIS; i++) {
  8122. current_position[i] = destination[i];
  8123. }
  8124. previous_millis_cmd = _millis();
  8125. }
  8126. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8127. #if defined(FAN_PIN)
  8128. #if CONTROLLERFAN_PIN == FAN_PIN
  8129. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  8130. #endif
  8131. #endif
  8132. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  8133. unsigned long lastMotorCheck = 0;
  8134. void controllerFan()
  8135. {
  8136. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  8137. {
  8138. lastMotorCheck = _millis();
  8139. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  8140. #if EXTRUDERS > 2
  8141. || !READ(E2_ENABLE_PIN)
  8142. #endif
  8143. #if EXTRUDER > 1
  8144. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  8145. || !READ(X2_ENABLE_PIN)
  8146. #endif
  8147. || !READ(E1_ENABLE_PIN)
  8148. #endif
  8149. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  8150. {
  8151. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  8152. }
  8153. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  8154. {
  8155. digitalWrite(CONTROLLERFAN_PIN, 0);
  8156. analogWrite(CONTROLLERFAN_PIN, 0);
  8157. }
  8158. else
  8159. {
  8160. // allows digital or PWM fan output to be used (see M42 handling)
  8161. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  8162. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  8163. }
  8164. }
  8165. }
  8166. #endif
  8167. #ifdef TEMP_STAT_LEDS
  8168. static bool blue_led = false;
  8169. static bool red_led = false;
  8170. static uint32_t stat_update = 0;
  8171. void handle_status_leds(void) {
  8172. float max_temp = 0.0;
  8173. if(_millis() > stat_update) {
  8174. stat_update += 500; // Update every 0.5s
  8175. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  8176. max_temp = max(max_temp, degHotend(cur_extruder));
  8177. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  8178. }
  8179. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  8180. max_temp = max(max_temp, degTargetBed());
  8181. max_temp = max(max_temp, degBed());
  8182. #endif
  8183. if((max_temp > 55.0) && (red_led == false)) {
  8184. digitalWrite(STAT_LED_RED, 1);
  8185. digitalWrite(STAT_LED_BLUE, 0);
  8186. red_led = true;
  8187. blue_led = false;
  8188. }
  8189. if((max_temp < 54.0) && (blue_led == false)) {
  8190. digitalWrite(STAT_LED_RED, 0);
  8191. digitalWrite(STAT_LED_BLUE, 1);
  8192. red_led = false;
  8193. blue_led = true;
  8194. }
  8195. }
  8196. }
  8197. #endif
  8198. #ifdef SAFETYTIMER
  8199. /**
  8200. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  8201. *
  8202. * Full screen blocking notification message is shown after heater turning off.
  8203. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  8204. * damage print.
  8205. *
  8206. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  8207. */
  8208. static void handleSafetyTimer()
  8209. {
  8210. #if (EXTRUDERS > 1)
  8211. #error Implemented only for one extruder.
  8212. #endif //(EXTRUDERS > 1)
  8213. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  8214. {
  8215. safetyTimer.stop();
  8216. }
  8217. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  8218. {
  8219. safetyTimer.start();
  8220. }
  8221. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  8222. {
  8223. setTargetBed(0);
  8224. setAllTargetHotends(0);
  8225. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  8226. }
  8227. }
  8228. #endif //SAFETYTIMER
  8229. #ifdef IR_SENSOR_ANALOG
  8230. #define FS_CHECK_COUNT 16
  8231. /// Switching mechanism of the fsensor type.
  8232. /// Called from 2 spots which have a very similar behavior
  8233. /// 1: ClFsensorPCB::_Old -> ClFsensorPCB::_Rev04 and print _i("FS v0.4 or newer")
  8234. /// 2: ClFsensorPCB::_Rev04 -> oFsensorPCB=ClFsensorPCB::_Old and print _i("FS v0.3 or older")
  8235. void manage_inactivity_IR_ANALOG_Check(uint16_t &nFSCheckCount, ClFsensorPCB isVersion, ClFsensorPCB switchTo, const char *statusLineTxt_P) {
  8236. bool bTemp = (!CHECK_ALL_HEATERS);
  8237. bTemp = bTemp && (menu_menu == lcd_status_screen);
  8238. bTemp = bTemp && ((oFsensorPCB == isVersion) || (oFsensorPCB == ClFsensorPCB::_Undef));
  8239. bTemp = bTemp && fsensor_enabled;
  8240. if (bTemp) {
  8241. nFSCheckCount++;
  8242. if (nFSCheckCount > FS_CHECK_COUNT) {
  8243. nFSCheckCount = 0; // not necessary
  8244. oFsensorPCB = switchTo;
  8245. eeprom_update_byte((uint8_t *)EEPROM_FSENSOR_PCB, (uint8_t)oFsensorPCB);
  8246. printf_IRSensorAnalogBoardChange();
  8247. lcd_setstatuspgm(statusLineTxt_P);
  8248. }
  8249. } else {
  8250. nFSCheckCount = 0;
  8251. }
  8252. }
  8253. #endif
  8254. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  8255. {
  8256. #ifdef FILAMENT_SENSOR
  8257. bool bInhibitFlag;
  8258. #ifdef IR_SENSOR_ANALOG
  8259. static uint16_t nFSCheckCount=0;
  8260. #endif // IR_SENSOR_ANALOG
  8261. if (mmu_enabled == false)
  8262. {
  8263. //-// if (mcode_in_progress != 600) //M600 not in progress
  8264. #ifdef PAT9125
  8265. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  8266. #endif // PAT9125
  8267. #ifdef IR_SENSOR
  8268. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  8269. #ifdef IR_SENSOR_ANALOG
  8270. bInhibitFlag=bInhibitFlag||bMenuFSDetect; // Settings::HWsetup::FSdetect menu active
  8271. #endif // IR_SENSOR_ANALOG
  8272. #endif // IR_SENSOR
  8273. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  8274. {
  8275. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && ! eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))
  8276. {
  8277. #ifdef IR_SENSOR_ANALOG
  8278. static uint16_t minVolt = Voltage2Raw(6.F), maxVolt = 0;
  8279. // detect min-max, some long term sliding window for filtration may be added
  8280. // avoiding floating point operations, thus computing in raw
  8281. if( current_voltage_raw_IR > maxVolt )maxVolt = current_voltage_raw_IR;
  8282. if( current_voltage_raw_IR < minVolt )minVolt = current_voltage_raw_IR;
  8283. #if 0 // Start: IR Sensor debug info
  8284. { // debug print
  8285. static uint16_t lastVolt = ~0U;
  8286. if( current_voltage_raw_IR != lastVolt ){
  8287. printf_P(PSTR("fs volt=%4.2fV (min=%4.2f max=%4.2f)\n"), Raw2Voltage(current_voltage_raw_IR), Raw2Voltage(minVolt), Raw2Voltage(maxVolt) );
  8288. lastVolt = current_voltage_raw_IR;
  8289. }
  8290. }
  8291. #endif // End: IR Sensor debug info
  8292. //! The trouble is, I can hold the filament in the hole in such a way, that it creates the exact voltage
  8293. //! to be detected as the new fsensor
  8294. //! We can either fake it by extending the detection window to a looooong time
  8295. //! or do some other countermeasures
  8296. //! what we want to detect:
  8297. //! if minvolt gets below ~0.3V, it means there is an old fsensor
  8298. //! if maxvolt gets above 4.6V, it means we either have an old fsensor or broken cables/fsensor
  8299. //! So I'm waiting for a situation, when minVolt gets to range <0, 1.5> and maxVolt gets into range <3.0, 5>
  8300. //! If and only if minVolt is in range <0.3, 1.5> and maxVolt is in range <3.0, 4.6>, I'm considering a situation with the new fsensor
  8301. if( minVolt >= IRsensor_Ldiode_TRESHOLD && minVolt <= IRsensor_Lmax_TRESHOLD
  8302. && maxVolt >= IRsensor_Hmin_TRESHOLD && maxVolt <= IRsensor_Hopen_TRESHOLD
  8303. ){
  8304. manage_inactivity_IR_ANALOG_Check(nFSCheckCount, ClFsensorPCB::_Old, ClFsensorPCB::_Rev04, _i("FS v0.4 or newer") ); ////c=18
  8305. }
  8306. //! If and only if minVolt is in range <0.0, 0.3> and maxVolt is in range <4.6, 5.0V>, I'm considering a situation with the old fsensor
  8307. //! Note, we are not relying on one voltage here - getting just +5V can mean an old fsensor or a broken new sensor - that's why
  8308. //! we need to have both voltages detected correctly to allow switching back to the old fsensor.
  8309. else if( minVolt < IRsensor_Ldiode_TRESHOLD
  8310. && maxVolt > IRsensor_Hopen_TRESHOLD && maxVolt <= IRsensor_VMax_TRESHOLD
  8311. ){
  8312. manage_inactivity_IR_ANALOG_Check(nFSCheckCount, ClFsensorPCB::_Rev04, oFsensorPCB=ClFsensorPCB::_Old, _i("FS v0.3 or older")); ////c=18
  8313. }
  8314. #endif // IR_SENSOR_ANALOG
  8315. if (fsensor_check_autoload())
  8316. {
  8317. #ifdef PAT9125
  8318. fsensor_autoload_check_stop();
  8319. #endif //PAT9125
  8320. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  8321. if(0)
  8322. {
  8323. Sound_MakeCustom(50,1000,false);
  8324. loading_flag = true;
  8325. enquecommand_front_P((PSTR("M701")));
  8326. }
  8327. else
  8328. {
  8329. /*
  8330. lcd_update_enable(false);
  8331. show_preheat_nozzle_warning();
  8332. lcd_update_enable(true);
  8333. */
  8334. eFilamentAction=FilamentAction::AutoLoad;
  8335. bFilamentFirstRun=false;
  8336. if(target_temperature[0]>=EXTRUDE_MINTEMP){
  8337. bFilamentPreheatState=true;
  8338. // mFilamentItem(target_temperature[0],target_temperature_bed);
  8339. menu_submenu(mFilamentItemForce);
  8340. } else {
  8341. menu_submenu(lcd_generic_preheat_menu);
  8342. lcd_timeoutToStatus.start();
  8343. }
  8344. }
  8345. }
  8346. }
  8347. else
  8348. {
  8349. #ifdef PAT9125
  8350. fsensor_autoload_check_stop();
  8351. #endif //PAT9125
  8352. if (fsensor_enabled && !saved_printing)
  8353. fsensor_update();
  8354. }
  8355. }
  8356. }
  8357. #endif //FILAMENT_SENSOR
  8358. #ifdef SAFETYTIMER
  8359. handleSafetyTimer();
  8360. #endif //SAFETYTIMER
  8361. #if defined(KILL_PIN) && KILL_PIN > -1
  8362. static int killCount = 0; // make the inactivity button a bit less responsive
  8363. const int KILL_DELAY = 10000;
  8364. #endif
  8365. if(buflen < (BUFSIZE-1)){
  8366. get_command();
  8367. }
  8368. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  8369. if(max_inactive_time)
  8370. kill(_n("Inactivity Shutdown"), 4);
  8371. if(stepper_inactive_time) {
  8372. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  8373. {
  8374. if(blocks_queued() == false && ignore_stepper_queue == false) {
  8375. disable_x();
  8376. disable_y();
  8377. disable_z();
  8378. disable_e0();
  8379. disable_e1();
  8380. disable_e2();
  8381. }
  8382. }
  8383. }
  8384. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  8385. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  8386. {
  8387. chdkActive = false;
  8388. WRITE(CHDK, LOW);
  8389. }
  8390. #endif
  8391. #if defined(KILL_PIN) && KILL_PIN > -1
  8392. // Check if the kill button was pressed and wait just in case it was an accidental
  8393. // key kill key press
  8394. // -------------------------------------------------------------------------------
  8395. if( 0 == READ(KILL_PIN) )
  8396. {
  8397. killCount++;
  8398. }
  8399. else if (killCount > 0)
  8400. {
  8401. killCount--;
  8402. }
  8403. // Exceeded threshold and we can confirm that it was not accidental
  8404. // KILL the machine
  8405. // ----------------------------------------------------------------
  8406. if ( killCount >= KILL_DELAY)
  8407. {
  8408. kill(NULL, 5);
  8409. }
  8410. #endif
  8411. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8412. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  8413. #endif
  8414. #ifdef EXTRUDER_RUNOUT_PREVENT
  8415. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  8416. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  8417. {
  8418. bool oldstatus=READ(E0_ENABLE_PIN);
  8419. enable_e0();
  8420. float oldepos=current_position[E_AXIS];
  8421. float oldedes=destination[E_AXIS];
  8422. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  8423. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  8424. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  8425. current_position[E_AXIS]=oldepos;
  8426. destination[E_AXIS]=oldedes;
  8427. plan_set_e_position(oldepos);
  8428. previous_millis_cmd=_millis();
  8429. st_synchronize();
  8430. WRITE(E0_ENABLE_PIN,oldstatus);
  8431. }
  8432. #endif
  8433. #ifdef TEMP_STAT_LEDS
  8434. handle_status_leds();
  8435. #endif
  8436. check_axes_activity();
  8437. mmu_loop();
  8438. }
  8439. void kill(const char *full_screen_message, unsigned char id)
  8440. {
  8441. printf_P(_N("KILL: %d\n"), id);
  8442. //return;
  8443. cli(); // Stop interrupts
  8444. disable_heater();
  8445. disable_x();
  8446. // SERIAL_ECHOLNPGM("kill - disable Y");
  8447. disable_y();
  8448. poweroff_z();
  8449. disable_e0();
  8450. disable_e1();
  8451. disable_e2();
  8452. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  8453. pinMode(PS_ON_PIN,INPUT);
  8454. #endif
  8455. SERIAL_ERROR_START;
  8456. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  8457. if (full_screen_message != NULL) {
  8458. SERIAL_ERRORLNRPGM(full_screen_message);
  8459. lcd_display_message_fullscreen_P(full_screen_message);
  8460. } else {
  8461. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  8462. }
  8463. // FMC small patch to update the LCD before ending
  8464. sei(); // enable interrupts
  8465. for ( int i=5; i--; lcd_update(0))
  8466. {
  8467. _delay(200);
  8468. }
  8469. cli(); // disable interrupts
  8470. suicide();
  8471. while(1)
  8472. {
  8473. #ifdef WATCHDOG
  8474. wdt_reset();
  8475. #endif //WATCHDOG
  8476. /* Intentionally left empty */
  8477. } // Wait for reset
  8478. }
  8479. // Stop: Emergency stop used by overtemp functions which allows recovery
  8480. //
  8481. // In addition to stopping the print, this prevents subsequent G[0-3] commands to be
  8482. // processed via USB (using "Stopped") until the print is resumed via M999 or
  8483. // manually started from scratch with the LCD.
  8484. //
  8485. // Note that the current instruction is completely discarded, so resuming from Stop()
  8486. // will introduce either over/under extrusion on the current segment, and will not
  8487. // survive a power panic. Switching Stop() to use the pause machinery instead (with
  8488. // the addition of disabling the headers) could allow true recovery in the future.
  8489. void Stop()
  8490. {
  8491. disable_heater();
  8492. if(Stopped == false) {
  8493. Stopped = true;
  8494. lcd_print_stop();
  8495. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  8496. SERIAL_ERROR_START;
  8497. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  8498. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  8499. }
  8500. }
  8501. bool IsStopped() { return Stopped; };
  8502. void finishAndDisableSteppers()
  8503. {
  8504. st_synchronize();
  8505. disable_x();
  8506. disable_y();
  8507. disable_z();
  8508. disable_e0();
  8509. disable_e1();
  8510. disable_e2();
  8511. #ifndef LA_NOCOMPAT
  8512. // Steppers are disabled both when a print is stopped and also via M84 (which is additionally
  8513. // checked-for to indicate a complete file), so abuse this function to reset the LA detection
  8514. // state for the next print.
  8515. la10c_reset();
  8516. #endif
  8517. }
  8518. #ifdef FAST_PWM_FAN
  8519. void setPwmFrequency(uint8_t pin, int val)
  8520. {
  8521. val &= 0x07;
  8522. switch(digitalPinToTimer(pin))
  8523. {
  8524. #if defined(TCCR0A)
  8525. case TIMER0A:
  8526. case TIMER0B:
  8527. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8528. // TCCR0B |= val;
  8529. break;
  8530. #endif
  8531. #if defined(TCCR1A)
  8532. case TIMER1A:
  8533. case TIMER1B:
  8534. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8535. // TCCR1B |= val;
  8536. break;
  8537. #endif
  8538. #if defined(TCCR2)
  8539. case TIMER2:
  8540. case TIMER2:
  8541. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8542. TCCR2 |= val;
  8543. break;
  8544. #endif
  8545. #if defined(TCCR2A)
  8546. case TIMER2A:
  8547. case TIMER2B:
  8548. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8549. TCCR2B |= val;
  8550. break;
  8551. #endif
  8552. #if defined(TCCR3A)
  8553. case TIMER3A:
  8554. case TIMER3B:
  8555. case TIMER3C:
  8556. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8557. TCCR3B |= val;
  8558. break;
  8559. #endif
  8560. #if defined(TCCR4A)
  8561. case TIMER4A:
  8562. case TIMER4B:
  8563. case TIMER4C:
  8564. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8565. TCCR4B |= val;
  8566. break;
  8567. #endif
  8568. #if defined(TCCR5A)
  8569. case TIMER5A:
  8570. case TIMER5B:
  8571. case TIMER5C:
  8572. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8573. TCCR5B |= val;
  8574. break;
  8575. #endif
  8576. }
  8577. }
  8578. #endif //FAST_PWM_FAN
  8579. //! @brief Get and validate extruder number
  8580. //!
  8581. //! If it is not specified, active_extruder is returned in parameter extruder.
  8582. //! @param [in] code M code number
  8583. //! @param [out] extruder
  8584. //! @return error
  8585. //! @retval true Invalid extruder specified in T code
  8586. //! @retval false Valid extruder specified in T code, or not specifiead
  8587. bool setTargetedHotend(int code, uint8_t &extruder)
  8588. {
  8589. extruder = active_extruder;
  8590. if(code_seen('T')) {
  8591. extruder = code_value();
  8592. if(extruder >= EXTRUDERS) {
  8593. SERIAL_ECHO_START;
  8594. switch(code){
  8595. case 104:
  8596. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  8597. break;
  8598. case 105:
  8599. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  8600. break;
  8601. case 109:
  8602. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  8603. break;
  8604. case 218:
  8605. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  8606. break;
  8607. case 221:
  8608. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  8609. break;
  8610. }
  8611. SERIAL_PROTOCOLLN((int)extruder);
  8612. return true;
  8613. }
  8614. }
  8615. return false;
  8616. }
  8617. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  8618. {
  8619. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  8620. {
  8621. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  8622. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  8623. }
  8624. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  8625. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  8626. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  8627. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  8628. total_filament_used = 0;
  8629. }
  8630. float calculate_extruder_multiplier(float diameter) {
  8631. float out = 1.f;
  8632. if (cs.volumetric_enabled && diameter > 0.f) {
  8633. float area = M_PI * diameter * diameter * 0.25;
  8634. out = 1.f / area;
  8635. }
  8636. if (extrudemultiply != 100)
  8637. out *= float(extrudemultiply) * 0.01f;
  8638. return out;
  8639. }
  8640. void calculate_extruder_multipliers() {
  8641. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  8642. #if EXTRUDERS > 1
  8643. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  8644. #if EXTRUDERS > 2
  8645. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  8646. #endif
  8647. #endif
  8648. }
  8649. void delay_keep_alive(unsigned int ms)
  8650. {
  8651. for (;;) {
  8652. manage_heater();
  8653. // Manage inactivity, but don't disable steppers on timeout.
  8654. manage_inactivity(true);
  8655. lcd_update(0);
  8656. if (ms == 0)
  8657. break;
  8658. else if (ms >= 50) {
  8659. _delay(50);
  8660. ms -= 50;
  8661. } else {
  8662. _delay(ms);
  8663. ms = 0;
  8664. }
  8665. }
  8666. }
  8667. static void wait_for_heater(long codenum, uint8_t extruder) {
  8668. if (!degTargetHotend(extruder))
  8669. return;
  8670. #ifdef TEMP_RESIDENCY_TIME
  8671. long residencyStart;
  8672. residencyStart = -1;
  8673. /* continue to loop until we have reached the target temp
  8674. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  8675. cancel_heatup = false;
  8676. while ((!cancel_heatup) && ((residencyStart == -1) ||
  8677. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  8678. #else
  8679. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  8680. #endif //TEMP_RESIDENCY_TIME
  8681. if ((_millis() - codenum) > 1000UL)
  8682. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  8683. if (!farm_mode) {
  8684. SERIAL_PROTOCOLPGM("T:");
  8685. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  8686. SERIAL_PROTOCOLPGM(" E:");
  8687. SERIAL_PROTOCOL((int)extruder);
  8688. #ifdef TEMP_RESIDENCY_TIME
  8689. SERIAL_PROTOCOLPGM(" W:");
  8690. if (residencyStart > -1)
  8691. {
  8692. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  8693. SERIAL_PROTOCOLLN(codenum);
  8694. }
  8695. else
  8696. {
  8697. SERIAL_PROTOCOLLN('?');
  8698. }
  8699. }
  8700. #else
  8701. SERIAL_PROTOCOLLN("");
  8702. #endif
  8703. codenum = _millis();
  8704. }
  8705. manage_heater();
  8706. manage_inactivity(true); //do not disable steppers
  8707. lcd_update(0);
  8708. #ifdef TEMP_RESIDENCY_TIME
  8709. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  8710. or when current temp falls outside the hysteresis after target temp was reached */
  8711. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  8712. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  8713. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  8714. {
  8715. residencyStart = _millis();
  8716. }
  8717. #endif //TEMP_RESIDENCY_TIME
  8718. }
  8719. }
  8720. void check_babystep()
  8721. {
  8722. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8723. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  8724. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  8725. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  8726. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  8727. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8728. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  8729. babystep_z);
  8730. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  8731. lcd_update_enable(true);
  8732. }
  8733. }
  8734. #ifdef HEATBED_ANALYSIS
  8735. void d_setup()
  8736. {
  8737. pinMode(D_DATACLOCK, INPUT_PULLUP);
  8738. pinMode(D_DATA, INPUT_PULLUP);
  8739. pinMode(D_REQUIRE, OUTPUT);
  8740. digitalWrite(D_REQUIRE, HIGH);
  8741. }
  8742. float d_ReadData()
  8743. {
  8744. int digit[13];
  8745. String mergeOutput;
  8746. float output;
  8747. digitalWrite(D_REQUIRE, HIGH);
  8748. for (int i = 0; i<13; i++)
  8749. {
  8750. for (int j = 0; j < 4; j++)
  8751. {
  8752. while (digitalRead(D_DATACLOCK) == LOW) {}
  8753. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8754. bitWrite(digit[i], j, digitalRead(D_DATA));
  8755. }
  8756. }
  8757. digitalWrite(D_REQUIRE, LOW);
  8758. mergeOutput = "";
  8759. output = 0;
  8760. for (int r = 5; r <= 10; r++) //Merge digits
  8761. {
  8762. mergeOutput += digit[r];
  8763. }
  8764. output = mergeOutput.toFloat();
  8765. if (digit[4] == 8) //Handle sign
  8766. {
  8767. output *= -1;
  8768. }
  8769. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8770. {
  8771. output /= 10;
  8772. }
  8773. return output;
  8774. }
  8775. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8776. int t1 = 0;
  8777. int t_delay = 0;
  8778. int digit[13];
  8779. int m;
  8780. char str[3];
  8781. //String mergeOutput;
  8782. char mergeOutput[15];
  8783. float output;
  8784. int mesh_point = 0; //index number of calibration point
  8785. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8786. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8787. float mesh_home_z_search = 4;
  8788. float measure_z_height = 0.2f;
  8789. float row[x_points_num];
  8790. int ix = 0;
  8791. int iy = 0;
  8792. const char* filename_wldsd = "mesh.txt";
  8793. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  8794. char numb_wldsd[8]; // (" -A.BCD" + null)
  8795. #ifdef MICROMETER_LOGGING
  8796. d_setup();
  8797. #endif //MICROMETER_LOGGING
  8798. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8799. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8800. unsigned int custom_message_type_old = custom_message_type;
  8801. unsigned int custom_message_state_old = custom_message_state;
  8802. custom_message_type = CustomMsg::MeshBedLeveling;
  8803. custom_message_state = (x_points_num * y_points_num) + 10;
  8804. lcd_update(1);
  8805. //mbl.reset();
  8806. babystep_undo();
  8807. card.openFile(filename_wldsd, false);
  8808. /*destination[Z_AXIS] = mesh_home_z_search;
  8809. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  8810. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8811. for(int8_t i=0; i < NUM_AXIS; i++) {
  8812. current_position[i] = destination[i];
  8813. }
  8814. st_synchronize();
  8815. */
  8816. destination[Z_AXIS] = measure_z_height;
  8817. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8818. for(int8_t i=0; i < NUM_AXIS; i++) {
  8819. current_position[i] = destination[i];
  8820. }
  8821. st_synchronize();
  8822. /*int l_feedmultiply = */setup_for_endstop_move(false);
  8823. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8824. SERIAL_PROTOCOL(x_points_num);
  8825. SERIAL_PROTOCOLPGM(",");
  8826. SERIAL_PROTOCOL(y_points_num);
  8827. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8828. SERIAL_PROTOCOL(mesh_home_z_search);
  8829. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8830. SERIAL_PROTOCOL(x_dimension);
  8831. SERIAL_PROTOCOLPGM(",");
  8832. SERIAL_PROTOCOL(y_dimension);
  8833. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8834. while (mesh_point != x_points_num * y_points_num) {
  8835. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8836. iy = mesh_point / x_points_num;
  8837. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8838. float z0 = 0.f;
  8839. /*destination[Z_AXIS] = mesh_home_z_search;
  8840. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  8841. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8842. for(int8_t i=0; i < NUM_AXIS; i++) {
  8843. current_position[i] = destination[i];
  8844. }
  8845. st_synchronize();*/
  8846. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8847. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8848. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  8849. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  8850. mesh_plan_buffer_line_destinationXYZE(XY_AXIS_FEEDRATE/6);
  8851. set_current_to_destination();
  8852. st_synchronize();
  8853. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8854. delay_keep_alive(1000);
  8855. #ifdef MICROMETER_LOGGING
  8856. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8857. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8858. //strcat(data_wldsd, numb_wldsd);
  8859. //MYSERIAL.println(data_wldsd);
  8860. //delay(1000);
  8861. //delay(3000);
  8862. //t1 = millis();
  8863. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8864. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8865. memset(digit, 0, sizeof(digit));
  8866. //cli();
  8867. digitalWrite(D_REQUIRE, LOW);
  8868. for (int i = 0; i<13; i++)
  8869. {
  8870. //t1 = millis();
  8871. for (int j = 0; j < 4; j++)
  8872. {
  8873. while (digitalRead(D_DATACLOCK) == LOW) {}
  8874. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8875. //printf_P(PSTR("Done %d\n"), j);
  8876. bitWrite(digit[i], j, digitalRead(D_DATA));
  8877. }
  8878. //t_delay = (millis() - t1);
  8879. //SERIAL_PROTOCOLPGM(" ");
  8880. //SERIAL_PROTOCOL_F(t_delay, 5);
  8881. //SERIAL_PROTOCOLPGM(" ");
  8882. }
  8883. //sei();
  8884. digitalWrite(D_REQUIRE, HIGH);
  8885. mergeOutput[0] = '\0';
  8886. output = 0;
  8887. for (int r = 5; r <= 10; r++) //Merge digits
  8888. {
  8889. sprintf(str, "%d", digit[r]);
  8890. strcat(mergeOutput, str);
  8891. }
  8892. output = atof(mergeOutput);
  8893. if (digit[4] == 8) //Handle sign
  8894. {
  8895. output *= -1;
  8896. }
  8897. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8898. {
  8899. output *= 0.1;
  8900. }
  8901. //output = d_ReadData();
  8902. //row[ix] = current_position[Z_AXIS];
  8903. //row[ix] = d_ReadData();
  8904. row[ix] = output;
  8905. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8906. memset(data_wldsd, 0, sizeof(data_wldsd));
  8907. for (int i = 0; i < x_points_num; i++) {
  8908. SERIAL_PROTOCOLPGM(" ");
  8909. SERIAL_PROTOCOL_F(row[i], 5);
  8910. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8911. dtostrf(row[i], 7, 3, numb_wldsd);
  8912. strcat(data_wldsd, numb_wldsd);
  8913. }
  8914. card.write_command(data_wldsd);
  8915. SERIAL_PROTOCOLPGM("\n");
  8916. }
  8917. custom_message_state--;
  8918. mesh_point++;
  8919. lcd_update(1);
  8920. }
  8921. #endif //MICROMETER_LOGGING
  8922. card.closefile();
  8923. //clean_up_after_endstop_move(l_feedmultiply);
  8924. }
  8925. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8926. int t1 = 0;
  8927. int t_delay = 0;
  8928. int digit[13];
  8929. int m;
  8930. char str[3];
  8931. //String mergeOutput;
  8932. char mergeOutput[15];
  8933. float output;
  8934. int mesh_point = 0; //index number of calibration point
  8935. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8936. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8937. float mesh_home_z_search = 4;
  8938. float row[x_points_num];
  8939. int ix = 0;
  8940. int iy = 0;
  8941. const char* filename_wldsd = "wldsd.txt";
  8942. char data_wldsd[70];
  8943. char numb_wldsd[10];
  8944. d_setup();
  8945. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  8946. // We don't know where we are! HOME!
  8947. // Push the commands to the front of the message queue in the reverse order!
  8948. // There shall be always enough space reserved for these commands.
  8949. repeatcommand_front(); // repeat G80 with all its parameters
  8950. enquecommand_front_P((PSTR("G28 W0")));
  8951. enquecommand_front_P((PSTR("G1 Z5")));
  8952. return;
  8953. }
  8954. unsigned int custom_message_type_old = custom_message_type;
  8955. unsigned int custom_message_state_old = custom_message_state;
  8956. custom_message_type = CustomMsg::MeshBedLeveling;
  8957. custom_message_state = (x_points_num * y_points_num) + 10;
  8958. lcd_update(1);
  8959. mbl.reset();
  8960. babystep_undo();
  8961. card.openFile(filename_wldsd, false);
  8962. current_position[Z_AXIS] = mesh_home_z_search;
  8963. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  8964. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8965. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8966. int l_feedmultiply = setup_for_endstop_move(false);
  8967. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8968. SERIAL_PROTOCOL(x_points_num);
  8969. SERIAL_PROTOCOLPGM(",");
  8970. SERIAL_PROTOCOL(y_points_num);
  8971. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8972. SERIAL_PROTOCOL(mesh_home_z_search);
  8973. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8974. SERIAL_PROTOCOL(x_dimension);
  8975. SERIAL_PROTOCOLPGM(",");
  8976. SERIAL_PROTOCOL(y_dimension);
  8977. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8978. while (mesh_point != x_points_num * y_points_num) {
  8979. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8980. iy = mesh_point / x_points_num;
  8981. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8982. float z0 = 0.f;
  8983. current_position[Z_AXIS] = mesh_home_z_search;
  8984. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8985. st_synchronize();
  8986. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8987. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8988. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  8989. st_synchronize();
  8990. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  8991. break;
  8992. card.closefile();
  8993. }
  8994. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8995. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8996. //strcat(data_wldsd, numb_wldsd);
  8997. //MYSERIAL.println(data_wldsd);
  8998. //_delay(1000);
  8999. //_delay(3000);
  9000. //t1 = _millis();
  9001. //while (digitalRead(D_DATACLOCK) == LOW) {}
  9002. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  9003. memset(digit, 0, sizeof(digit));
  9004. //cli();
  9005. digitalWrite(D_REQUIRE, LOW);
  9006. for (int i = 0; i<13; i++)
  9007. {
  9008. //t1 = _millis();
  9009. for (int j = 0; j < 4; j++)
  9010. {
  9011. while (digitalRead(D_DATACLOCK) == LOW) {}
  9012. while (digitalRead(D_DATACLOCK) == HIGH) {}
  9013. bitWrite(digit[i], j, digitalRead(D_DATA));
  9014. }
  9015. //t_delay = (_millis() - t1);
  9016. //SERIAL_PROTOCOLPGM(" ");
  9017. //SERIAL_PROTOCOL_F(t_delay, 5);
  9018. //SERIAL_PROTOCOLPGM(" ");
  9019. }
  9020. //sei();
  9021. digitalWrite(D_REQUIRE, HIGH);
  9022. mergeOutput[0] = '\0';
  9023. output = 0;
  9024. for (int r = 5; r <= 10; r++) //Merge digits
  9025. {
  9026. sprintf(str, "%d", digit[r]);
  9027. strcat(mergeOutput, str);
  9028. }
  9029. output = atof(mergeOutput);
  9030. if (digit[4] == 8) //Handle sign
  9031. {
  9032. output *= -1;
  9033. }
  9034. for (int i = digit[11]; i > 0; i--) //Handle floating point
  9035. {
  9036. output *= 0.1;
  9037. }
  9038. //output = d_ReadData();
  9039. //row[ix] = current_position[Z_AXIS];
  9040. memset(data_wldsd, 0, sizeof(data_wldsd));
  9041. for (int i = 0; i <3; i++) {
  9042. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9043. dtostrf(current_position[i], 8, 5, numb_wldsd);
  9044. strcat(data_wldsd, numb_wldsd);
  9045. strcat(data_wldsd, ";");
  9046. }
  9047. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9048. dtostrf(output, 8, 5, numb_wldsd);
  9049. strcat(data_wldsd, numb_wldsd);
  9050. //strcat(data_wldsd, ";");
  9051. card.write_command(data_wldsd);
  9052. //row[ix] = d_ReadData();
  9053. row[ix] = output; // current_position[Z_AXIS];
  9054. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  9055. for (int i = 0; i < x_points_num; i++) {
  9056. SERIAL_PROTOCOLPGM(" ");
  9057. SERIAL_PROTOCOL_F(row[i], 5);
  9058. }
  9059. SERIAL_PROTOCOLPGM("\n");
  9060. }
  9061. custom_message_state--;
  9062. mesh_point++;
  9063. lcd_update(1);
  9064. }
  9065. card.closefile();
  9066. clean_up_after_endstop_move(l_feedmultiply);
  9067. }
  9068. #endif //HEATBED_ANALYSIS
  9069. #ifndef PINDA_THERMISTOR
  9070. static void temp_compensation_start() {
  9071. custom_message_type = CustomMsg::TempCompPreheat;
  9072. custom_message_state = PINDA_HEAT_T + 1;
  9073. lcd_update(2);
  9074. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  9075. current_position[E_AXIS] -= default_retraction;
  9076. }
  9077. plan_buffer_line_curposXYZE(400, active_extruder);
  9078. current_position[X_AXIS] = PINDA_PREHEAT_X;
  9079. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  9080. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  9081. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  9082. st_synchronize();
  9083. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  9084. for (int i = 0; i < PINDA_HEAT_T; i++) {
  9085. delay_keep_alive(1000);
  9086. custom_message_state = PINDA_HEAT_T - i;
  9087. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  9088. else lcd_update(1);
  9089. }
  9090. custom_message_type = CustomMsg::Status;
  9091. custom_message_state = 0;
  9092. }
  9093. static void temp_compensation_apply() {
  9094. int i_add;
  9095. int z_shift = 0;
  9096. float z_shift_mm;
  9097. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  9098. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  9099. i_add = (target_temperature_bed - 60) / 10;
  9100. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  9101. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  9102. }else {
  9103. //interpolation
  9104. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  9105. }
  9106. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  9107. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  9108. st_synchronize();
  9109. plan_set_z_position(current_position[Z_AXIS]);
  9110. }
  9111. else {
  9112. //we have no temp compensation data
  9113. }
  9114. }
  9115. #endif //ndef PINDA_THERMISTOR
  9116. float temp_comp_interpolation(float inp_temperature) {
  9117. //cubic spline interpolation
  9118. int n, i, j;
  9119. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  9120. int shift[10];
  9121. int temp_C[10];
  9122. n = 6; //number of measured points
  9123. shift[0] = 0;
  9124. for (i = 0; i < n; i++) {
  9125. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  9126. temp_C[i] = 50 + i * 10; //temperature in C
  9127. #ifdef PINDA_THERMISTOR
  9128. constexpr int start_compensating_temp = 35;
  9129. temp_C[i] = start_compensating_temp + i * 5; //temperature in degrees C
  9130. #ifdef DETECT_SUPERPINDA
  9131. static_assert(start_compensating_temp >= PINDA_MINTEMP, "Temperature compensation start point is lower than PINDA_MINTEMP.");
  9132. #endif //DETECT_SUPERPINDA
  9133. #else
  9134. temp_C[i] = 50 + i * 10; //temperature in C
  9135. #endif
  9136. x[i] = (float)temp_C[i];
  9137. f[i] = (float)shift[i];
  9138. }
  9139. if (inp_temperature < x[0]) return 0;
  9140. for (i = n - 1; i>0; i--) {
  9141. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  9142. h[i - 1] = x[i] - x[i - 1];
  9143. }
  9144. //*********** formation of h, s , f matrix **************
  9145. for (i = 1; i<n - 1; i++) {
  9146. m[i][i] = 2 * (h[i - 1] + h[i]);
  9147. if (i != 1) {
  9148. m[i][i - 1] = h[i - 1];
  9149. m[i - 1][i] = h[i - 1];
  9150. }
  9151. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  9152. }
  9153. //*********** forward elimination **************
  9154. for (i = 1; i<n - 2; i++) {
  9155. temp = (m[i + 1][i] / m[i][i]);
  9156. for (j = 1; j <= n - 1; j++)
  9157. m[i + 1][j] -= temp*m[i][j];
  9158. }
  9159. //*********** backward substitution *********
  9160. for (i = n - 2; i>0; i--) {
  9161. sum = 0;
  9162. for (j = i; j <= n - 2; j++)
  9163. sum += m[i][j] * s[j];
  9164. s[i] = (m[i][n - 1] - sum) / m[i][i];
  9165. }
  9166. for (i = 0; i<n - 1; i++)
  9167. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  9168. a = (s[i + 1] - s[i]) / (6 * h[i]);
  9169. b = s[i] / 2;
  9170. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  9171. d = f[i];
  9172. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  9173. }
  9174. return sum;
  9175. }
  9176. #ifdef PINDA_THERMISTOR
  9177. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  9178. {
  9179. if (!eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE)) return 0;
  9180. if (!calibration_status_pinda()) return 0;
  9181. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  9182. }
  9183. #endif //PINDA_THERMISTOR
  9184. void long_pause() //long pause print
  9185. {
  9186. st_synchronize();
  9187. start_pause_print = _millis();
  9188. // Stop heaters
  9189. setAllTargetHotends(0);
  9190. //lift z
  9191. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  9192. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  9193. plan_buffer_line_curposXYZE(15);
  9194. //Move XY to side
  9195. current_position[X_AXIS] = X_PAUSE_POS;
  9196. current_position[Y_AXIS] = Y_PAUSE_POS;
  9197. plan_buffer_line_curposXYZE(50);
  9198. // Turn off the print fan
  9199. fanSpeed = 0;
  9200. }
  9201. void serialecho_temperatures() {
  9202. float tt = degHotend(active_extruder);
  9203. SERIAL_PROTOCOLPGM("T:");
  9204. SERIAL_PROTOCOL(tt);
  9205. SERIAL_PROTOCOLPGM(" E:");
  9206. SERIAL_PROTOCOL((int)active_extruder);
  9207. SERIAL_PROTOCOLPGM(" B:");
  9208. SERIAL_PROTOCOL_F(degBed(), 1);
  9209. SERIAL_PROTOCOLLN("");
  9210. }
  9211. #ifdef UVLO_SUPPORT
  9212. void uvlo_drain_reset()
  9213. {
  9214. // burn all that residual power
  9215. wdt_enable(WDTO_1S);
  9216. WRITE(BEEPER,HIGH);
  9217. lcd_clear();
  9218. lcd_puts_at_P(0, 1, MSG_POWERPANIC_DETECTED);
  9219. while(1);
  9220. }
  9221. void uvlo_()
  9222. {
  9223. unsigned long time_start = _millis();
  9224. bool sd_print = card.sdprinting;
  9225. // Conserve power as soon as possible.
  9226. #ifdef LCD_BL_PIN
  9227. backlightMode = BACKLIGHT_MODE_DIM;
  9228. backlightLevel_LOW = 0;
  9229. backlight_update();
  9230. #endif //LCD_BL_PIN
  9231. disable_x();
  9232. disable_y();
  9233. #ifdef TMC2130
  9234. tmc2130_set_current_h(Z_AXIS, 20);
  9235. tmc2130_set_current_r(Z_AXIS, 20);
  9236. tmc2130_set_current_h(E_AXIS, 20);
  9237. tmc2130_set_current_r(E_AXIS, 20);
  9238. #endif //TMC2130
  9239. // Stop all heaters
  9240. uint8_t saved_target_temperature_bed = target_temperature_bed;
  9241. uint16_t saved_target_temperature_ext = target_temperature[active_extruder];
  9242. setAllTargetHotends(0);
  9243. setTargetBed(0);
  9244. // Calculate the file position, from which to resume this print.
  9245. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  9246. {
  9247. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9248. sd_position -= sdlen_planner;
  9249. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9250. sd_position -= sdlen_cmdqueue;
  9251. if (sd_position < 0) sd_position = 0;
  9252. }
  9253. // save the global state at planning time
  9254. uint16_t feedrate_bckp;
  9255. if (current_block)
  9256. {
  9257. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  9258. feedrate_bckp = current_block->gcode_feedrate;
  9259. }
  9260. else
  9261. {
  9262. saved_target[0] = SAVED_TARGET_UNSET;
  9263. feedrate_bckp = feedrate;
  9264. }
  9265. // From this point on and up to the print recovery, Z should not move during X/Y travels and
  9266. // should be controlled precisely. Reset the MBL status before planner_abort_hard in order to
  9267. // get the physical Z for further manipulation.
  9268. bool mbl_was_active = mbl.active;
  9269. mbl.active = false;
  9270. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  9271. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  9272. // are in action.
  9273. planner_abort_hard();
  9274. // Store the print logical Z position, which we need to recover (a slight error here would be
  9275. // recovered on the next Gcode instruction, while a physical location error would not)
  9276. float logical_z = current_position[Z_AXIS];
  9277. if(mbl_was_active) logical_z -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  9278. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z, logical_z);
  9279. // Store the print E position before we lose track
  9280. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), current_position[E_AXIS]);
  9281. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, (axis_relative_modes & E_AXIS_MASK)?0:1);
  9282. // Clean the input command queue, inhibit serial processing using saved_printing
  9283. cmdqueue_reset();
  9284. card.sdprinting = false;
  9285. saved_printing = true;
  9286. // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
  9287. // command queues are empty, SD card printing is disabled, usb is inhibited.
  9288. sei();
  9289. // Retract
  9290. current_position[E_AXIS] -= default_retraction;
  9291. plan_buffer_line_curposXYZE(95);
  9292. st_synchronize();
  9293. disable_e0();
  9294. // Read out the current Z motor microstep counter to move the axis up towards
  9295. // a full step before powering off. NOTE: we need to ensure to schedule more
  9296. // than "dropsegments" steps in order to move (this is always the case here
  9297. // due to UVLO_Z_AXIS_SHIFT being used)
  9298. uint16_t z_res = tmc2130_get_res(Z_AXIS);
  9299. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9300. current_position[Z_AXIS] += float(1024 - z_microsteps)
  9301. / (z_res * cs.axis_steps_per_unit[Z_AXIS])
  9302. + UVLO_Z_AXIS_SHIFT;
  9303. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60);
  9304. st_synchronize();
  9305. poweroff_z();
  9306. // Write the file position.
  9307. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  9308. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9309. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9310. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9311. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9312. // Scale the z value to 1u resolution.
  9313. int16_t v = mbl_was_active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  9314. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  9315. }
  9316. // Write the _final_ Z position and motor microstep counter (unused).
  9317. eeprom_update_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z, current_position[Z_AXIS]);
  9318. z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9319. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9320. // Store the current position.
  9321. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  9322. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  9323. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  9324. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDRATE, feedrate_bckp);
  9325. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY, feedmultiply);
  9326. eeprom_update_word((uint16_t*)EEPROM_UVLO_TARGET_HOTEND, saved_target_temperature_ext);
  9327. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, saved_target_temperature_bed);
  9328. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  9329. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  9330. #if EXTRUDERS > 1
  9331. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  9332. #if EXTRUDERS > 2
  9333. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  9334. #endif
  9335. #endif
  9336. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  9337. // Store the saved target
  9338. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4), saved_target[X_AXIS]);
  9339. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4), saved_target[Y_AXIS]);
  9340. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4), saved_target[Z_AXIS]);
  9341. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4), saved_target[E_AXIS]);
  9342. #ifdef LIN_ADVANCE
  9343. eeprom_update_float((float*)(EEPROM_UVLO_LA_K), extruder_advance_K);
  9344. #endif
  9345. // Finaly store the "power outage" flag.
  9346. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  9347. // Increment power failure counter
  9348. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9349. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9350. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  9351. WRITE(BEEPER,HIGH);
  9352. // All is set: with all the juice left, try to move extruder away to detach the nozzle completely from the print
  9353. poweron_z();
  9354. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  9355. plan_buffer_line_curposXYZE(500);
  9356. st_synchronize();
  9357. wdt_enable(WDTO_1S);
  9358. while(1);
  9359. }
  9360. void uvlo_tiny()
  9361. {
  9362. unsigned long time_start = _millis();
  9363. // Conserve power as soon as possible.
  9364. disable_x();
  9365. disable_y();
  9366. disable_e0();
  9367. #ifdef TMC2130
  9368. tmc2130_set_current_h(Z_AXIS, 20);
  9369. tmc2130_set_current_r(Z_AXIS, 20);
  9370. #endif //TMC2130
  9371. // Stop all heaters
  9372. setAllTargetHotends(0);
  9373. setTargetBed(0);
  9374. // When power is interrupted on the _first_ recovery an attempt can be made to raise the
  9375. // extruder, causing the Z position to change. Similarly, when recovering, the Z position is
  9376. // lowered. In such cases we cannot just save Z, we need to re-align the steppers to a fullstep.
  9377. // Disable MBL (if not already) to work with physical coordinates.
  9378. mbl.active = false;
  9379. planner_abort_hard();
  9380. // Allow for small roundoffs to be ignored
  9381. if(abs(current_position[Z_AXIS] - eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))) >= 1.f/cs.axis_steps_per_unit[Z_AXIS])
  9382. {
  9383. // Clean the input command queue, inhibit serial processing using saved_printing
  9384. cmdqueue_reset();
  9385. card.sdprinting = false;
  9386. saved_printing = true;
  9387. // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
  9388. // command queues are empty, SD card printing is disabled, usb is inhibited.
  9389. sei();
  9390. // The axis was moved: adjust Z as done on a regular UVLO.
  9391. uint16_t z_res = tmc2130_get_res(Z_AXIS);
  9392. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9393. current_position[Z_AXIS] += float(1024 - z_microsteps)
  9394. / (z_res * cs.axis_steps_per_unit[Z_AXIS])
  9395. + UVLO_TINY_Z_AXIS_SHIFT;
  9396. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60);
  9397. st_synchronize();
  9398. poweroff_z();
  9399. // Update Z position
  9400. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  9401. // Update the _final_ Z motor microstep counter (unused).
  9402. z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9403. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9404. }
  9405. // Update the the "power outage" flag.
  9406. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  9407. // Increment power failure counter
  9408. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9409. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9410. printf_P(_N("UVLO_TINY - end %d\n"), _millis() - time_start);
  9411. uvlo_drain_reset();
  9412. }
  9413. #endif //UVLO_SUPPORT
  9414. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  9415. void setup_fan_interrupt() {
  9416. //INT7
  9417. DDRE &= ~(1 << 7); //input pin
  9418. PORTE &= ~(1 << 7); //no internal pull-up
  9419. //start with sensing rising edge
  9420. EICRB &= ~(1 << 6);
  9421. EICRB |= (1 << 7);
  9422. //enable INT7 interrupt
  9423. EIMSK |= (1 << 7);
  9424. }
  9425. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  9426. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  9427. ISR(INT7_vect) {
  9428. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  9429. #ifdef FAN_SOFT_PWM
  9430. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  9431. #else //FAN_SOFT_PWM
  9432. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  9433. #endif //FAN_SOFT_PWM
  9434. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  9435. t_fan_rising_edge = millis_nc();
  9436. }
  9437. else { //interrupt was triggered by falling edge
  9438. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  9439. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  9440. }
  9441. }
  9442. EICRB ^= (1 << 6); //change edge
  9443. }
  9444. #endif
  9445. #ifdef UVLO_SUPPORT
  9446. void setup_uvlo_interrupt() {
  9447. DDRE &= ~(1 << 4); //input pin
  9448. PORTE &= ~(1 << 4); //no internal pull-up
  9449. // sensing falling edge
  9450. EICRB |= (1 << 0);
  9451. EICRB &= ~(1 << 1);
  9452. // enable INT4 interrupt
  9453. EIMSK |= (1 << 4);
  9454. // check if power was lost before we armed the interrupt
  9455. if(!(PINE & (1 << 4)) && eeprom_read_byte((uint8_t*)EEPROM_UVLO))
  9456. {
  9457. SERIAL_ECHOLNPGM("INT4");
  9458. uvlo_drain_reset();
  9459. }
  9460. }
  9461. ISR(INT4_vect) {
  9462. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  9463. SERIAL_ECHOLNPGM("INT4");
  9464. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  9465. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  9466. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  9467. }
  9468. void recover_print(uint8_t automatic) {
  9469. char cmd[30];
  9470. lcd_update_enable(true);
  9471. lcd_update(2);
  9472. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20
  9473. // Recover position, temperatures and extrude_multipliers
  9474. bool mbl_was_active = recover_machine_state_after_power_panic();
  9475. // Lift the print head 25mm, first to avoid collisions with oozed material with the print,
  9476. // and second also so one may remove the excess priming material.
  9477. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1)
  9478. {
  9479. sprintf_P(cmd, PSTR("G1 Z%.3f F800"), current_position[Z_AXIS] + 25);
  9480. enquecommand(cmd);
  9481. }
  9482. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine
  9483. // transformation status. G28 will not touch Z when MBL is off.
  9484. enquecommand_P(PSTR("G28 X Y"));
  9485. // Set the target bed and nozzle temperatures and wait.
  9486. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  9487. enquecommand(cmd);
  9488. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  9489. enquecommand(cmd);
  9490. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  9491. enquecommand(cmd);
  9492. enquecommand_P(PSTR("M83")); //E axis relative mode
  9493. // If not automatically recoreverd (long power loss)
  9494. if(automatic == 0){
  9495. //Extrude some filament to stabilize the pressure
  9496. enquecommand_P(PSTR("G1 E5 F120"));
  9497. // Retract to be consistent with a short pause
  9498. sprintf_P(cmd, PSTR("G1 E%-0.3f F2700"), default_retraction);
  9499. enquecommand(cmd);
  9500. }
  9501. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  9502. // Restart the print.
  9503. restore_print_from_eeprom(mbl_was_active);
  9504. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  9505. }
  9506. bool recover_machine_state_after_power_panic()
  9507. {
  9508. // 1) Preset some dummy values for the XY axes
  9509. current_position[X_AXIS] = 0;
  9510. current_position[Y_AXIS] = 0;
  9511. // 2) Restore the mesh bed leveling offsets, but not the MBL status.
  9512. // This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9513. bool mbl_was_active = false;
  9514. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9515. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9516. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9517. // Scale the z value to 10u resolution.
  9518. int16_t v;
  9519. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  9520. if (v != 0)
  9521. mbl_was_active = true;
  9522. mbl.z_values[iy][ix] = float(v) * 0.001f;
  9523. }
  9524. // Recover the physical coordinate of the Z axis at the time of the power panic.
  9525. // The current position after power panic is moved to the next closest 0th full step.
  9526. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z));
  9527. // Recover last E axis position
  9528. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9529. memcpy(destination, current_position, sizeof(destination));
  9530. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9531. print_world_coordinates();
  9532. // 3) Initialize the logical to physical coordinate system transformation.
  9533. world2machine_initialize();
  9534. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9535. // print_mesh_bed_leveling_table();
  9536. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  9537. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  9538. babystep_load();
  9539. // 5) Set the physical positions from the logical positions using the world2machine transformation
  9540. // This is only done to inizialize Z/E axes with physical locations, since X/Y are unknown.
  9541. plan_set_position_curposXYZE();
  9542. // 6) Power up the Z motors, mark their positions as known.
  9543. axis_known_position[Z_AXIS] = true;
  9544. enable_z();
  9545. // 7) Recover the target temperatures.
  9546. target_temperature[active_extruder] = eeprom_read_word((uint16_t*)EEPROM_UVLO_TARGET_HOTEND);
  9547. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  9548. // 8) Recover extruder multipilers
  9549. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  9550. #if EXTRUDERS > 1
  9551. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  9552. #if EXTRUDERS > 2
  9553. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  9554. #endif
  9555. #endif
  9556. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  9557. // 9) Recover the saved target
  9558. saved_target[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4));
  9559. saved_target[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4));
  9560. saved_target[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4));
  9561. saved_target[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4));
  9562. #ifdef LIN_ADVANCE
  9563. extruder_advance_K = eeprom_read_float((float*)EEPROM_UVLO_LA_K);
  9564. #endif
  9565. return mbl_was_active;
  9566. }
  9567. void restore_print_from_eeprom(bool mbl_was_active) {
  9568. int feedrate_rec;
  9569. int feedmultiply_rec;
  9570. uint8_t fan_speed_rec;
  9571. char cmd[30];
  9572. char filename[13];
  9573. uint8_t depth = 0;
  9574. char dir_name[9];
  9575. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  9576. feedrate_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDRATE);
  9577. feedmultiply_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY);
  9578. SERIAL_ECHOPGM("Feedrate:");
  9579. MYSERIAL.print(feedrate_rec);
  9580. SERIAL_ECHOPGM(", feedmultiply:");
  9581. MYSERIAL.println(feedmultiply_rec);
  9582. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  9583. MYSERIAL.println(int(depth));
  9584. for (int i = 0; i < depth; i++) {
  9585. for (int j = 0; j < 8; j++) {
  9586. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  9587. }
  9588. dir_name[8] = '\0';
  9589. MYSERIAL.println(dir_name);
  9590. strcpy(dir_names[i], dir_name);
  9591. card.chdir(dir_name);
  9592. }
  9593. for (int i = 0; i < 8; i++) {
  9594. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  9595. }
  9596. filename[8] = '\0';
  9597. MYSERIAL.print(filename);
  9598. strcat_P(filename, PSTR(".gco"));
  9599. sprintf_P(cmd, PSTR("M23 %s"), filename);
  9600. enquecommand(cmd);
  9601. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  9602. SERIAL_ECHOPGM("Position read from eeprom:");
  9603. MYSERIAL.println(position);
  9604. // Move to the XY print position in logical coordinates, where the print has been killed, but
  9605. // without shifting Z along the way. This requires performing the move without mbl.
  9606. sprintf_P(cmd, PSTR("G1 X%f Y%f F3000"),
  9607. eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0)),
  9608. eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4)));
  9609. enquecommand(cmd);
  9610. // Enable MBL and switch to logical positioning
  9611. if (mbl_was_active)
  9612. enquecommand_P(PSTR("PRUSA MBL V1"));
  9613. // Move the Z axis down to the print, in logical coordinates.
  9614. sprintf_P(cmd, PSTR("G1 Z%f"), eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)));
  9615. enquecommand(cmd);
  9616. // Unretract.
  9617. sprintf_P(cmd, PSTR("G1 E%0.3f F2700"), default_retraction);
  9618. enquecommand(cmd);
  9619. // Recover final E axis position and mode
  9620. float pos_e = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9621. sprintf_P(cmd, PSTR("G92 E"));
  9622. dtostrf(pos_e, 6, 3, cmd + strlen(cmd));
  9623. enquecommand(cmd);
  9624. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  9625. enquecommand_P(PSTR("M82")); //E axis abslute mode
  9626. // Set the feedrates saved at the power panic.
  9627. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  9628. enquecommand(cmd);
  9629. sprintf_P(cmd, PSTR("M220 S%d"), feedmultiply_rec);
  9630. enquecommand(cmd);
  9631. // Set the fan speed saved at the power panic.
  9632. strcpy_P(cmd, PSTR("M106 S"));
  9633. strcat(cmd, itostr3(int(fan_speed_rec)));
  9634. enquecommand(cmd);
  9635. // Set a position in the file.
  9636. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  9637. enquecommand(cmd);
  9638. enquecommand_P(PSTR("G4 S0"));
  9639. enquecommand_P(PSTR("PRUSA uvlo"));
  9640. }
  9641. #endif //UVLO_SUPPORT
  9642. //! @brief Immediately stop print moves
  9643. //!
  9644. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  9645. //! If printing from sd card, position in file is saved.
  9646. //! If printing from USB, line number is saved.
  9647. //!
  9648. //! @param z_move
  9649. //! @param e_move
  9650. void stop_and_save_print_to_ram(float z_move, float e_move)
  9651. {
  9652. if (saved_printing) return;
  9653. #if 0
  9654. unsigned char nplanner_blocks;
  9655. #endif
  9656. unsigned char nlines;
  9657. uint16_t sdlen_planner;
  9658. uint16_t sdlen_cmdqueue;
  9659. cli();
  9660. if (card.sdprinting) {
  9661. #if 0
  9662. nplanner_blocks = number_of_blocks();
  9663. #endif
  9664. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  9665. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9666. saved_sdpos -= sdlen_planner;
  9667. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9668. saved_sdpos -= sdlen_cmdqueue;
  9669. saved_printing_type = PRINTING_TYPE_SD;
  9670. }
  9671. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  9672. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  9673. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  9674. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  9675. saved_sdpos -= nlines;
  9676. saved_sdpos -= buflen; //number of blocks in cmd buffer
  9677. saved_printing_type = PRINTING_TYPE_USB;
  9678. }
  9679. else {
  9680. saved_printing_type = PRINTING_TYPE_NONE;
  9681. //not sd printing nor usb printing
  9682. }
  9683. #if 0
  9684. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  9685. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  9686. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  9687. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  9688. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  9689. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  9690. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  9691. {
  9692. card.setIndex(saved_sdpos);
  9693. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  9694. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  9695. MYSERIAL.print(char(card.get()));
  9696. SERIAL_ECHOLNPGM("Content of command buffer: ");
  9697. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  9698. MYSERIAL.print(char(card.get()));
  9699. SERIAL_ECHOLNPGM("End of command buffer");
  9700. }
  9701. {
  9702. // Print the content of the planner buffer, line by line:
  9703. card.setIndex(saved_sdpos);
  9704. int8_t iline = 0;
  9705. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  9706. SERIAL_ECHOPGM("Planner line (from file): ");
  9707. MYSERIAL.print(int(iline), DEC);
  9708. SERIAL_ECHOPGM(", length: ");
  9709. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  9710. SERIAL_ECHOPGM(", steps: (");
  9711. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  9712. SERIAL_ECHOPGM(",");
  9713. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  9714. SERIAL_ECHOPGM(",");
  9715. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  9716. SERIAL_ECHOPGM(",");
  9717. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  9718. SERIAL_ECHOPGM("), events: ");
  9719. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  9720. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  9721. MYSERIAL.print(char(card.get()));
  9722. }
  9723. }
  9724. {
  9725. // Print the content of the command buffer, line by line:
  9726. int8_t iline = 0;
  9727. union {
  9728. struct {
  9729. char lo;
  9730. char hi;
  9731. } lohi;
  9732. uint16_t value;
  9733. } sdlen_single;
  9734. int _bufindr = bufindr;
  9735. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  9736. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  9737. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  9738. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  9739. }
  9740. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  9741. MYSERIAL.print(int(iline), DEC);
  9742. SERIAL_ECHOPGM(", type: ");
  9743. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  9744. SERIAL_ECHOPGM(", len: ");
  9745. MYSERIAL.println(sdlen_single.value, DEC);
  9746. // Print the content of the buffer line.
  9747. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  9748. SERIAL_ECHOPGM("Buffer line (from file): ");
  9749. MYSERIAL.println(int(iline), DEC);
  9750. for (; sdlen_single.value > 0; -- sdlen_single.value)
  9751. MYSERIAL.print(char(card.get()));
  9752. if (-- _buflen == 0)
  9753. break;
  9754. // First skip the current command ID and iterate up to the end of the string.
  9755. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  9756. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  9757. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9758. // If the end of the buffer was empty,
  9759. if (_bufindr == sizeof(cmdbuffer)) {
  9760. // skip to the start and find the nonzero command.
  9761. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9762. }
  9763. }
  9764. }
  9765. #endif
  9766. // save the global state at planning time
  9767. if (current_block)
  9768. {
  9769. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  9770. saved_feedrate2 = current_block->gcode_feedrate;
  9771. }
  9772. else
  9773. {
  9774. saved_target[0] = SAVED_TARGET_UNSET;
  9775. saved_feedrate2 = feedrate;
  9776. }
  9777. planner_abort_hard(); //abort printing
  9778. memcpy(saved_pos, current_position, sizeof(saved_pos));
  9779. saved_feedmultiply2 = feedmultiply; //save feedmultiply
  9780. saved_active_extruder = active_extruder; //save active_extruder
  9781. saved_extruder_temperature = degTargetHotend(active_extruder);
  9782. saved_extruder_relative_mode = axis_relative_modes & E_AXIS_MASK;
  9783. saved_fanSpeed = fanSpeed;
  9784. cmdqueue_reset(); //empty cmdqueue
  9785. card.sdprinting = false;
  9786. // card.closefile();
  9787. saved_printing = true;
  9788. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  9789. st_reset_timer();
  9790. sei();
  9791. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  9792. #if 1
  9793. // Rather than calling plan_buffer_line directly, push the move into the command queue so that
  9794. // the caller can continue processing. This is used during powerpanic to save the state as we
  9795. // move away from the print.
  9796. char buf[48];
  9797. if(e_move)
  9798. {
  9799. // First unretract (relative extrusion)
  9800. if(!saved_extruder_relative_mode){
  9801. enquecommand(PSTR("M83"), true);
  9802. }
  9803. //retract 45mm/s
  9804. // A single sprintf may not be faster, but is definitely 20B shorter
  9805. // than a sequence of commands building the string piece by piece
  9806. // A snprintf would have been a safer call, but since it is not used
  9807. // in the whole program, its implementation would bring more bytes to the total size
  9808. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  9809. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  9810. enquecommand(buf, false);
  9811. }
  9812. if(z_move)
  9813. {
  9814. // Then lift Z axis
  9815. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  9816. enquecommand(buf, false);
  9817. }
  9818. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  9819. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  9820. repeatcommand_front();
  9821. #else
  9822. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  9823. st_synchronize(); //wait moving
  9824. memcpy(current_position, saved_pos, sizeof(saved_pos));
  9825. memcpy(destination, current_position, sizeof(destination));
  9826. #endif
  9827. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  9828. }
  9829. }
  9830. //! @brief Restore print from ram
  9831. //!
  9832. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  9833. //! print fan speed, waits for extruder temperature restore, then restores
  9834. //! position and continues print moves.
  9835. //!
  9836. //! Internally lcd_update() is called by wait_for_heater().
  9837. //!
  9838. //! @param e_move
  9839. void restore_print_from_ram_and_continue(float e_move)
  9840. {
  9841. if (!saved_printing) return;
  9842. #ifdef FANCHECK
  9843. // Do not allow resume printing if fans are still not ok
  9844. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  9845. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  9846. #endif
  9847. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  9848. // current_position[axis] = st_get_position_mm(axis);
  9849. active_extruder = saved_active_extruder; //restore active_extruder
  9850. fanSpeed = saved_fanSpeed;
  9851. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  9852. {
  9853. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  9854. heating_status = 1;
  9855. wait_for_heater(_millis(), saved_active_extruder);
  9856. heating_status = 2;
  9857. }
  9858. axis_relative_modes ^= (-saved_extruder_relative_mode ^ axis_relative_modes) & E_AXIS_MASK;
  9859. float e = saved_pos[E_AXIS] - e_move;
  9860. plan_set_e_position(e);
  9861. #ifdef FANCHECK
  9862. fans_check_enabled = false;
  9863. #endif
  9864. //first move print head in XY to the saved position:
  9865. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  9866. //then move Z
  9867. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  9868. //and finaly unretract (35mm/s)
  9869. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  9870. st_synchronize();
  9871. #ifdef FANCHECK
  9872. fans_check_enabled = true;
  9873. #endif
  9874. // restore original feedrate/feedmultiply _after_ restoring the extruder position
  9875. feedrate = saved_feedrate2;
  9876. feedmultiply = saved_feedmultiply2;
  9877. memcpy(current_position, saved_pos, sizeof(saved_pos));
  9878. memcpy(destination, current_position, sizeof(destination));
  9879. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  9880. card.setIndex(saved_sdpos);
  9881. sdpos_atomic = saved_sdpos;
  9882. card.sdprinting = true;
  9883. }
  9884. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  9885. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  9886. serial_count = 0;
  9887. FlushSerialRequestResend();
  9888. }
  9889. else {
  9890. //not sd printing nor usb printing
  9891. }
  9892. SERIAL_PROTOCOLLNRPGM(MSG_OK); //dummy response because of octoprint is waiting for this
  9893. lcd_setstatuspgm(_T(WELCOME_MSG));
  9894. saved_printing_type = PRINTING_TYPE_NONE;
  9895. saved_printing = false;
  9896. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  9897. }
  9898. // Cancel the state related to a currently saved print
  9899. void cancel_saved_printing()
  9900. {
  9901. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  9902. saved_target[0] = SAVED_TARGET_UNSET;
  9903. saved_printing_type = PRINTING_TYPE_NONE;
  9904. saved_printing = false;
  9905. }
  9906. void print_world_coordinates()
  9907. {
  9908. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  9909. }
  9910. void print_physical_coordinates()
  9911. {
  9912. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  9913. }
  9914. void print_mesh_bed_leveling_table()
  9915. {
  9916. SERIAL_ECHOPGM("mesh bed leveling: ");
  9917. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  9918. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  9919. MYSERIAL.print(mbl.z_values[y][x], 3);
  9920. SERIAL_ECHO(' ');
  9921. }
  9922. SERIAL_ECHOLN();
  9923. }
  9924. uint16_t print_time_remaining() {
  9925. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  9926. #ifdef TMC2130
  9927. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  9928. else print_t = print_time_remaining_silent;
  9929. #else
  9930. print_t = print_time_remaining_normal;
  9931. #endif //TMC2130
  9932. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  9933. return print_t;
  9934. }
  9935. uint8_t calc_percent_done()
  9936. {
  9937. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  9938. uint8_t percent_done = 0;
  9939. #ifdef TMC2130
  9940. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  9941. percent_done = print_percent_done_normal;
  9942. }
  9943. else if (print_percent_done_silent <= 100) {
  9944. percent_done = print_percent_done_silent;
  9945. }
  9946. #else
  9947. if (print_percent_done_normal <= 100) {
  9948. percent_done = print_percent_done_normal;
  9949. }
  9950. #endif //TMC2130
  9951. else {
  9952. percent_done = card.percentDone();
  9953. }
  9954. return percent_done;
  9955. }
  9956. static void print_time_remaining_init()
  9957. {
  9958. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  9959. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  9960. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  9961. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  9962. }
  9963. void load_filament_final_feed()
  9964. {
  9965. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  9966. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL);
  9967. }
  9968. //! @brief Wait for user to check the state
  9969. //! @par nozzle_temp nozzle temperature to load filament
  9970. void M600_check_state(float nozzle_temp)
  9971. {
  9972. lcd_change_fil_state = 0;
  9973. while (lcd_change_fil_state != 1)
  9974. {
  9975. lcd_change_fil_state = 0;
  9976. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9977. lcd_alright();
  9978. KEEPALIVE_STATE(IN_HANDLER);
  9979. switch(lcd_change_fil_state)
  9980. {
  9981. // Filament failed to load so load it again
  9982. case 2:
  9983. if (mmu_enabled)
  9984. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  9985. else
  9986. M600_load_filament_movements();
  9987. break;
  9988. // Filament loaded properly but color is not clear
  9989. case 3:
  9990. st_synchronize();
  9991. load_filament_final_feed();
  9992. lcd_loading_color();
  9993. st_synchronize();
  9994. break;
  9995. // Everything good
  9996. default:
  9997. lcd_change_success();
  9998. break;
  9999. }
  10000. }
  10001. }
  10002. //! @brief Wait for user action
  10003. //!
  10004. //! Beep, manage nozzle heater and wait for user to start unload filament
  10005. //! If times out, active extruder temperature is set to 0.
  10006. //!
  10007. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  10008. void M600_wait_for_user(float HotendTempBckp) {
  10009. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10010. int counterBeep = 0;
  10011. unsigned long waiting_start_time = _millis();
  10012. uint8_t wait_for_user_state = 0;
  10013. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  10014. bool bFirst=true;
  10015. while (!(wait_for_user_state == 0 && lcd_clicked())){
  10016. manage_heater();
  10017. manage_inactivity(true);
  10018. #if BEEPER > 0
  10019. if (counterBeep == 500) {
  10020. counterBeep = 0;
  10021. }
  10022. SET_OUTPUT(BEEPER);
  10023. if (counterBeep == 0) {
  10024. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  10025. {
  10026. bFirst=false;
  10027. WRITE(BEEPER, HIGH);
  10028. }
  10029. }
  10030. if (counterBeep == 20) {
  10031. WRITE(BEEPER, LOW);
  10032. }
  10033. counterBeep++;
  10034. #endif //BEEPER > 0
  10035. switch (wait_for_user_state) {
  10036. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  10037. delay_keep_alive(4);
  10038. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  10039. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  10040. wait_for_user_state = 1;
  10041. setAllTargetHotends(0);
  10042. st_synchronize();
  10043. disable_e0();
  10044. disable_e1();
  10045. disable_e2();
  10046. }
  10047. break;
  10048. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  10049. delay_keep_alive(4);
  10050. if (lcd_clicked()) {
  10051. setTargetHotend(HotendTempBckp, active_extruder);
  10052. lcd_wait_for_heater();
  10053. wait_for_user_state = 2;
  10054. }
  10055. break;
  10056. case 2: //waiting for nozzle to reach target temperature
  10057. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  10058. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  10059. waiting_start_time = _millis();
  10060. wait_for_user_state = 0;
  10061. }
  10062. else {
  10063. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  10064. lcd_set_cursor(1, 4);
  10065. lcd_print(ftostr3(degHotend(active_extruder)));
  10066. }
  10067. break;
  10068. }
  10069. }
  10070. WRITE(BEEPER, LOW);
  10071. }
  10072. void M600_load_filament_movements()
  10073. {
  10074. #ifdef SNMM
  10075. display_loading();
  10076. do
  10077. {
  10078. current_position[E_AXIS] += 0.002;
  10079. plan_buffer_line_curposXYZE(500, active_extruder);
  10080. delay_keep_alive(2);
  10081. }
  10082. while (!lcd_clicked());
  10083. st_synchronize();
  10084. current_position[E_AXIS] += bowden_length[mmu_extruder];
  10085. plan_buffer_line_curposXYZE(3000, active_extruder);
  10086. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  10087. plan_buffer_line_curposXYZE(1400, active_extruder);
  10088. current_position[E_AXIS] += 40;
  10089. plan_buffer_line_curposXYZE(400, active_extruder);
  10090. current_position[E_AXIS] += 10;
  10091. plan_buffer_line_curposXYZE(50, active_extruder);
  10092. #else
  10093. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  10094. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST);
  10095. #endif
  10096. load_filament_final_feed();
  10097. lcd_loading_filament();
  10098. st_synchronize();
  10099. }
  10100. void M600_load_filament() {
  10101. //load filament for single material and SNMM
  10102. lcd_wait_interact();
  10103. //load_filament_time = _millis();
  10104. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10105. #ifdef PAT9125
  10106. fsensor_autoload_check_start();
  10107. #endif //PAT9125
  10108. while(!lcd_clicked())
  10109. {
  10110. manage_heater();
  10111. manage_inactivity(true);
  10112. #ifdef FILAMENT_SENSOR
  10113. if (fsensor_check_autoload())
  10114. {
  10115. Sound_MakeCustom(50,1000,false);
  10116. break;
  10117. }
  10118. #endif //FILAMENT_SENSOR
  10119. }
  10120. #ifdef PAT9125
  10121. fsensor_autoload_check_stop();
  10122. #endif //PAT9125
  10123. KEEPALIVE_STATE(IN_HANDLER);
  10124. #ifdef FSENSOR_QUALITY
  10125. fsensor_oq_meassure_start(70);
  10126. #endif //FSENSOR_QUALITY
  10127. M600_load_filament_movements();
  10128. Sound_MakeCustom(50,1000,false);
  10129. #ifdef FSENSOR_QUALITY
  10130. fsensor_oq_meassure_stop();
  10131. if (!fsensor_oq_result())
  10132. {
  10133. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  10134. lcd_update_enable(true);
  10135. lcd_update(2);
  10136. if (disable)
  10137. fsensor_disable();
  10138. }
  10139. #endif //FSENSOR_QUALITY
  10140. lcd_update_enable(false);
  10141. }
  10142. //! @brief Wait for click
  10143. //!
  10144. //! Set
  10145. void marlin_wait_for_click()
  10146. {
  10147. int8_t busy_state_backup = busy_state;
  10148. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10149. lcd_consume_click();
  10150. while(!lcd_clicked())
  10151. {
  10152. manage_heater();
  10153. manage_inactivity(true);
  10154. lcd_update(0);
  10155. }
  10156. KEEPALIVE_STATE(busy_state_backup);
  10157. }
  10158. #define FIL_LOAD_LENGTH 60
  10159. #ifdef PSU_Delta
  10160. bool bEnableForce_z;
  10161. void init_force_z()
  10162. {
  10163. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  10164. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  10165. disable_force_z();
  10166. }
  10167. void check_force_z()
  10168. {
  10169. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  10170. init_force_z(); // causes enforced switching into disable-state
  10171. }
  10172. void disable_force_z()
  10173. {
  10174. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  10175. bEnableForce_z=false;
  10176. // switching to silent mode
  10177. #ifdef TMC2130
  10178. tmc2130_mode=TMC2130_MODE_SILENT;
  10179. update_mode_profile();
  10180. tmc2130_init(true);
  10181. #endif // TMC2130
  10182. }
  10183. void enable_force_z()
  10184. {
  10185. if(bEnableForce_z)
  10186. return; // motor already enabled (may be ;-p )
  10187. bEnableForce_z=true;
  10188. // mode recovering
  10189. #ifdef TMC2130
  10190. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  10191. update_mode_profile();
  10192. tmc2130_init(true);
  10193. #endif // TMC2130
  10194. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  10195. }
  10196. #endif // PSU_Delta