123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763 |
- #include "Marlin.h"
- #include "Configuration.h"
- #include "language_all.h"
- #include "mesh_bed_calibration.h"
- #include "mesh_bed_leveling.h"
- #include "stepper.h"
- #include "ultralcd.h"
- // #include "qr_solve.h"
- extern float home_retract_mm_ext(int axis);
- static inline void go_xyz(float x, float y, float z, float fr)
- {
- plan_buffer_line(x, y, z, current_position[E_AXIS], fr, active_extruder);
- st_synchronize();
- }
- static inline void go_xy(float x, float y, float fr)
- {
- plan_buffer_line(x, y, current_position[Z_AXIS], current_position[E_AXIS], fr, active_extruder);
- st_synchronize();
- }
- static inline void go_to_current(float fr)
- {
- plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr, active_extruder);
- st_synchronize();
- }
- static inline void update_current_position_xyz()
- {
- current_position[X_AXIS] = st_get_position_mm(X_AXIS);
- current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
- current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- }
- // At the current position, find the Z stop.
- inline void find_bed_induction_sensor_point_z()
- {
- bool endstops_enabled = enable_endstops(true);
- bool endstop_z_enabled = enable_z_endstop(false);
- // move down until you find the bed
- current_position[Z_AXIS] = -10;
- go_to_current(homing_feedrate[Z_AXIS]/60);
- // we have to let the planner know where we are right now as it is not where we said to go.
- update_current_position_xyz();
- // move up the retract distance
- current_position[Z_AXIS] += home_retract_mm_ext(Z_AXIS);
- go_to_current(homing_feedrate[Z_AXIS]/60);
-
- // move back down slowly to find bed
- current_position[Z_AXIS] -= home_retract_mm_ext(Z_AXIS) * 2;
- go_to_current(homing_feedrate[Z_AXIS]/(4*60));
- // we have to let the planner know where we are right now as it is not where we said to go.
- update_current_position_xyz();
- enable_endstops(endstops_enabled);
- enable_z_endstop(endstop_z_enabled);
- }
- // Search around the current_position[X,Y],
- // look for the induction sensor response.
- // Adjust the current_position[X,Y,Z] to the center of the target dot and its response Z coordinate.
- #define FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS (8.f)
- #define FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS (6.f)
- #define FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP (1.f)
- #define FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP (0.5f)
- inline bool find_bed_induction_sensor_point_xy()
- {
- float feedrate = homing_feedrate[X_AXIS] / 60.f;
- bool found = false;
- {
- float x0 = current_position[X_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;
- float x1 = current_position[X_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_X_RADIUS;
- float y0 = current_position[Y_AXIS] - FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;
- float y1 = current_position[Y_AXIS] + FIND_BED_INDUCTION_SENSOR_POINT_Y_RADIUS;
- uint8_t nsteps_y;
- uint8_t i;
- if (x0 < X_MIN_POS)
- x0 = X_MIN_POS;
- if (x1 > X_MAX_POS)
- x1 = X_MAX_POS;
- if (y0 < Y_MIN_POS)
- y0 = Y_MIN_POS;
- if (y1 > Y_MAX_POS)
- y1 = Y_MAX_POS;
- nsteps_y = int(ceil((y1 - y0) / FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP));
- enable_endstops(false);
- bool dir_positive = true;
- // go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);
- go_xyz(x0, y0, current_position[Z_AXIS], feedrate);
- // Continously lower the Z axis.
- endstops_hit_on_purpose();
- enable_z_endstop(true);
- while (current_position[Z_AXIS] > -10.f) {
- // Do nsteps_y zig-zag movements.
- current_position[Y_AXIS] = y0;
- for (i = 0; i < nsteps_y; current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1), ++ i) {
- // Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
- current_position[Z_AXIS] -= FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float(nsteps_y);
- go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);
- dir_positive = ! dir_positive;
- if (endstop_z_hit_on_purpose())
- goto endloop;
- }
- for (i = 0; i < nsteps_y; current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1), ++ i) {
- // Run with a slightly decreasing Z axis, zig-zag movement. Stop at the Z end-stop.
- current_position[Z_AXIS] -= FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP / float(nsteps_y);
- go_xyz(dir_positive ? x1 : x0, current_position[Y_AXIS], current_position[Z_AXIS], feedrate);
- dir_positive = ! dir_positive;
- if (endstop_z_hit_on_purpose())
- goto endloop;
- }
- }
- endloop:
- // SERIAL_ECHOLN("First hit");
- // we have to let the planner know where we are right now as it is not where we said to go.
- update_current_position_xyz();
- // Search in this plane for the first hit. Zig-zag first in X, then in Y axis.
- for (int8_t iter = 0; iter < 3; ++ iter) {
- if (iter > 0) {
- // Slightly lower the Z axis to get a reliable trigger.
- current_position[Z_AXIS] -= 0.02f;
- go_xyz(current_position[X_AXIS], current_position[Y_AXIS], MESH_HOME_Z_SEARCH, homing_feedrate[Z_AXIS]/60);
- }
- // Do nsteps_y zig-zag movements.
- float a, b;
- enable_endstops(false);
- enable_z_endstop(false);
- current_position[Y_AXIS] = y0;
- go_xy(x0, current_position[Y_AXIS], feedrate);
- enable_z_endstop(true);
- found = false;
- for (i = 0, dir_positive = true; i < nsteps_y; current_position[Y_AXIS] += (y1 - y0) / float(nsteps_y - 1), ++ i, dir_positive = ! dir_positive) {
- go_xy(dir_positive ? x1 : x0, current_position[Y_AXIS], feedrate);
- if (endstop_z_hit_on_purpose()) {
- found = true;
- break;
- }
- }
- update_current_position_xyz();
- if (! found) {
- // SERIAL_ECHOLN("Search in Y - not found");
- continue;
- }
- // SERIAL_ECHOLN("Search in Y - found");
- a = current_position[Y_AXIS];
- enable_z_endstop(false);
- current_position[Y_AXIS] = y1;
- go_xy(x0, current_position[Y_AXIS], feedrate);
- enable_z_endstop(true);
- found = false;
- for (i = 0, dir_positive = true; i < nsteps_y; current_position[Y_AXIS] -= (y1 - y0) / float(nsteps_y - 1), ++ i, dir_positive = ! dir_positive) {
- go_xy(dir_positive ? x1 : x0, current_position[Y_AXIS], feedrate);
- if (endstop_z_hit_on_purpose()) {
- found = true;
- break;
- }
- }
- update_current_position_xyz();
- if (! found) {
- // SERIAL_ECHOLN("Search in Y2 - not found");
- continue;
- }
- // SERIAL_ECHOLN("Search in Y2 - found");
- b = current_position[Y_AXIS];
- current_position[Y_AXIS] = 0.5f * (a + b);
- // Search in the X direction along a cross.
- found = false;
- enable_z_endstop(false);
- go_xy(x0, current_position[Y_AXIS], feedrate);
- enable_z_endstop(true);
- go_xy(x1, current_position[Y_AXIS], feedrate);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- // SERIAL_ECHOLN("Search X span 0 - not found");
- continue;
- }
- // SERIAL_ECHOLN("Search X span 0 - found");
- a = current_position[X_AXIS];
- enable_z_endstop(false);
- go_xy(x1, current_position[Y_AXIS], feedrate);
- enable_z_endstop(true);
- go_xy(x0, current_position[Y_AXIS], feedrate);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- // SERIAL_ECHOLN("Search X span 1 - not found");
- continue;
- }
- // SERIAL_ECHOLN("Search X span 1 - found");
- b = current_position[X_AXIS];
- // Go to the center.
- enable_z_endstop(false);
- current_position[X_AXIS] = 0.5f * (a + b);
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
- found = true;
- #if 1
- // Search in the Y direction along a cross.
- found = false;
- enable_z_endstop(false);
- go_xy(current_position[X_AXIS], y0, feedrate);
- enable_z_endstop(true);
- go_xy(current_position[X_AXIS], y1, feedrate);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- // SERIAL_ECHOLN("Search Y2 span 0 - not found");
- continue;
- }
- // SERIAL_ECHOLN("Search Y2 span 0 - found");
- a = current_position[Y_AXIS];
- enable_z_endstop(false);
- go_xy(current_position[X_AXIS], y1, feedrate);
- enable_z_endstop(true);
- go_xy(current_position[X_AXIS], y0, feedrate);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose()) {
- // SERIAL_ECHOLN("Search Y2 span 1 - not found");
- continue;
- }
- // SERIAL_ECHOLN("Search Y2 span 1 - found");
- b = current_position[Y_AXIS];
- // Go to the center.
- enable_z_endstop(false);
- current_position[Y_AXIS] = 0.5f * (a + b);
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
- found = true;
- #endif
- break;
- }
- }
- enable_z_endstop(false);
- return found;
- }
- // Search around the current_position[X,Y,Z].
- // It is expected, that the induction sensor is switched on at the current position.
- // Look around this center point by painting a star around the point.
- inline bool improve_bed_induction_sensor_point()
- {
- static const float search_radius = 8.f;
- bool endstops_enabled = enable_endstops(false);
- bool endstop_z_enabled = enable_z_endstop(false);
- bool found = false;
- float feedrate = homing_feedrate[X_AXIS] / 60.f;
- float center_old_x = current_position[X_AXIS];
- float center_old_y = current_position[Y_AXIS];
- float center_x = 0.f;
- float center_y = 0.f;
- for (uint8_t iter = 0; iter < 4; ++ iter) {
- switch (iter) {
- case 0:
- destination[X_AXIS] = center_old_x - search_radius * 0.707;
- destination[Y_AXIS] = center_old_y - search_radius * 0.707;
- break;
- case 1:
- destination[X_AXIS] = center_old_x + search_radius * 0.707;
- destination[Y_AXIS] = center_old_y + search_radius * 0.707;
- break;
- case 2:
- destination[X_AXIS] = center_old_x + search_radius * 0.707;
- destination[Y_AXIS] = center_old_y - search_radius * 0.707;
- break;
- case 3:
- default:
- destination[X_AXIS] = center_old_x - search_radius * 0.707;
- destination[Y_AXIS] = center_old_y + search_radius * 0.707;
- break;
- }
- // Trim the vector from center_old_[x,y] to destination[x,y] by the bed dimensions.
- float vx = destination[X_AXIS] - center_old_x;
- float vy = destination[Y_AXIS] - center_old_y;
- float l = sqrt(vx*vx+vy*vy);
- float t;
- if (destination[X_AXIS] < X_MIN_POS) {
- // Exiting the bed at xmin.
- t = (center_x - X_MIN_POS) / l;
- destination[X_AXIS] = X_MIN_POS;
- destination[Y_AXIS] = center_old_y + t * vy;
- } else if (destination[X_AXIS] > X_MAX_POS) {
- // Exiting the bed at xmax.
- t = (X_MAX_POS - center_x) / l;
- destination[X_AXIS] = X_MAX_POS;
- destination[Y_AXIS] = center_old_y + t * vy;
- }
- if (destination[Y_AXIS] < Y_MIN_POS) {
- // Exiting the bed at ymin.
- t = (center_y - Y_MIN_POS) / l;
- destination[X_AXIS] = center_old_x + t * vx;
- destination[Y_AXIS] = Y_MIN_POS;
- } else if (destination[Y_AXIS] > Y_MAX_POS) {
- // Exiting the bed at xmax.
- t = (Y_MAX_POS - center_y) / l;
- destination[X_AXIS] = center_old_x + t * vx;
- destination[Y_AXIS] = Y_MAX_POS;
- }
- // Move away from the measurement point.
- enable_endstops(false);
- go_xy(destination[X_AXIS], destination[Y_AXIS], feedrate);
- // Move towards the measurement point, until the induction sensor triggers.
- enable_endstops(true);
- go_xy(center_old_x, center_old_y, feedrate);
- update_current_position_xyz();
- center_x += current_position[X_AXIS];
- center_y += current_position[Y_AXIS];
- }
- // Calculate the new center, move to the new center.
- center_x /= 4.f;
- center_y /= 4.f;
- current_position[X_AXIS] = center_x;
- current_position[Y_AXIS] = center_y;
- enable_endstops(false);
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], feedrate);
- enable_endstops(endstops_enabled);
- enable_z_endstop(endstop_z_enabled);
- return found;
- }
- // Search around the current_position[X,Y,Z].
- // It is expected, that the induction sensor is switched on at the current position.
- // Look around this center point by painting a star around the point.
- #define IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS (8.f)
- inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y)
- {
- float center_old_x = current_position[X_AXIS];
- float center_old_y = current_position[Y_AXIS];
- float a, b;
- enable_endstops(false);
- {
- float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
- float x1 = center_old_x + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
- if (x0 < X_MIN_POS)
- x0 = X_MIN_POS;
- if (x1 > X_MAX_POS)
- x1 = X_MAX_POS;
- // Search in the X direction along a cross.
- enable_z_endstop(false);
- go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose())
- return false;
- a = current_position[X_AXIS];
- enable_z_endstop(false);
- go_xy(x1, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(x0, current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose())
- return false;
- b = current_position[X_AXIS];
- // Go to the center.
- enable_z_endstop(false);
- current_position[X_AXIS] = 0.5f * (a + b);
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- }
- {
- float y0 = center_old_y - IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
- float y1 = center_old_y + IMPROVE_BED_INDUCTION_SENSOR_SEARCH_RADIUS;
- if (y0 < Y_MIN_POS)
- y0 = Y_MIN_POS;
- if (y1 > Y_MAX_POS)
- y1 = Y_MAX_POS;
- // Search in the Y direction along a cross.
- enable_z_endstop(false);
- go_xy(current_position[X_AXIS], y0, homing_feedrate[X_AXIS] / 60.f);
- if (lift_z_on_min_y) {
- // The first row of points are very close to the end stop.
- // Lift the sensor to disengage the trigger. This is necessary because of the sensor hysteresis.
- go_xyz(current_position[X_AXIS], y0, current_position[Z_AXIS]+5.f, homing_feedrate[Z_AXIS] / 60.f);
- // and go back.
- go_xyz(current_position[X_AXIS], y0, current_position[Z_AXIS], homing_feedrate[Z_AXIS] / 60.f);
- }
- if (lift_z_on_min_y && (READ(Z_MIN_PIN) ^ Z_MIN_ENDSTOP_INVERTING) == 1) {
- // Already triggering before we started the move.
- // Shift the trigger point slightly outwards.
- a = current_position[Y_AXIS] - 1.5f;
- } else {
- enable_z_endstop(true);
- go_xy(current_position[X_AXIS], y1, homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose())
- return false;
- a = current_position[Y_AXIS];
- }
- enable_z_endstop(false);
- go_xy(current_position[X_AXIS], y1, homing_feedrate[X_AXIS] / 60.f);
- enable_z_endstop(true);
- go_xy(current_position[X_AXIS], y0, homing_feedrate[X_AXIS] / 60.f);
- update_current_position_xyz();
- if (! endstop_z_hit_on_purpose())
- return false;
- b = current_position[Y_AXIS];
- // Go to the center.
- enable_z_endstop(false);
- current_position[Y_AXIS] = 0.5f * (a + b);
- go_xy(current_position[X_AXIS], current_position[Y_AXIS], homing_feedrate[X_AXIS] / 60.f);
- }
- return true;
- }
- #define MESH_BED_CALIBRATION_SHOW_LCD
- bool find_bed_offset_and_skew()
- {
- // Reusing the z_values memory for the measurement cache.
- // 7x7=49 floats, good for 16 (x,y,z) vectors.
- float *pts = &mbl.z_values[0][0];
- float *vec_x = pts + 3 * 4;
- float *vec_y = vec_x + 3;
- float *cntr = vec_y + 3;
- memset(pts, 0, sizeof(float) * 7 * 7);
- #ifdef MESH_BED_CALIBRATION_SHOW_LCD
- lcd_implementation_clear();
- lcd_print_at_PGM(0, 0, MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
- #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
- // Collect the rear 2x3 points.
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
- for (int k = 0; k < 4; ++ k) {
- #ifdef MESH_BED_CALIBRATION_SHOW_LCD
- lcd_print_at_PGM(0, 1, MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
- lcd_implementation_print_at(0, 2, k+1);
- lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE3);
- #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
- int i, j;
- switch (k) {
- case 0: i = 1; j = 0; break;
- case 1: i = 2; j = 1; break;
- case 2: i = 1; j = 2; break;
- case 3: i = 0; j = 1; break;
- }
- float *pt = pts + k * 3;
- // Go up to z_initial.
- go_to_current(homing_feedrate[Z_AXIS] / 60.f);
- // Go to the measurement point position.
- mbl.get_meas_xy(i, j, current_position[X_AXIS], current_position[Y_AXIS], true); // use default, uncorrected coordinates
- go_to_current(homing_feedrate[X_AXIS] / 60.f);
- if (! find_bed_induction_sensor_point_xy())
- return false;
- find_bed_induction_sensor_point_z();
- pt[0] = current_position[X_AXIS];
- pt[1] = current_position[Y_AXIS];
- pt[2] = current_position[Z_AXIS];
- // Start searching for the other points at 3mm above the last point.
- current_position[Z_AXIS] += 3.f;
- cntr[0] += pt[0];
- cntr[1] += pt[1];
- cntr[2] += pt[2];
- }
- // Average the X and Y vectors. They may not be perpendicular, if the printer is built incorrectly.
- {
- float len;
- // Average the center point.
- cntr[0] *= 1.f/4.f;
- cntr[1] *= 1.f/4.f;
- cntr[2] *= 1.f/4.f;
- // Average the X vector.
- vec_x[0] = (pts[3 * 1 + 0] - pts[3 * 3 + 0]) / 2.f;
- vec_x[1] = (pts[3 * 1 + 1] - pts[3 * 3 + 1]) / 2.f;
- len = sqrt(vec_x[0]*vec_x[0] + vec_x[1]*vec_x[1]);
- if (0) {
- // if (len < MEAS_NUM_X_DIST) {
- // Scale the vector up to MEAS_NUM_X_DIST lenght.
- float factor = MEAS_NUM_X_DIST / len;
- vec_x[0] *= factor;
- vec_x[0] *= factor;
- } else {
- // The vector is longer than MEAS_NUM_X_DIST. The X/Y axes are skewed.
- // Verify the maximum skew?
- }
- // Average the Y vector.
- vec_y[0] = (pts[3 * 2 + 0] - pts[3 * 0 + 0]) / 2.f;
- vec_y[1] = (pts[3 * 2 + 1] - pts[3 * 0 + 1]) / 2.f;
- len = sqrt(vec_y[0]*vec_y[0] + vec_y[1]*vec_y[1]);
- if (0) {
- // if (len < MEAS_NUM_Y_DIST) {
- // Scale the vector up to MEAS_NUM_X_DIST lenght.
- float factor = MEAS_NUM_Y_DIST / len;
- vec_y[1] *= factor;
- vec_y[1] *= factor;
- } else {
- // The vector is longer than MEAS_NUM_X_DIST. The X/Y axes are skewed.
- // Verify the maximum skew?
- }
- // Fearlessly store the calibration values into the eeprom.
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0), cntr [0]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4), cntr [1]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0), vec_x[0]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4), vec_x[1]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0), vec_y[0]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4), vec_y[1]);
- #if 0
- SERIAL_ECHOLN("Calibration done.");
- SERIAL_ECHO("Center: ");
- SERIAL_ECHO(cntr[0]);
- SERIAL_ECHO(",");
- SERIAL_ECHO(cntr[1]);
- SERIAL_ECHO(", x: ");
- SERIAL_ECHO(vec_x[0]);
- SERIAL_ECHO(",");
- SERIAL_ECHO(vec_x[1]);
- SERIAL_ECHO(", y: ");
- SERIAL_ECHO(vec_y[0]);
- SERIAL_ECHO(",");
- SERIAL_ECHO(vec_y[1]);
- SERIAL_ECHOLN("");
- #endif
- }
- return true;
- }
- bool improve_bed_offset_and_skew(int8_t method)
- {
- // Reusing the z_values memory for the measurement cache.
- // 7x7=49 floats, good for 16 (x,y,z) vectors.
- float *pts = &mbl.z_values[0][0];
- float *vec_x = pts + 2 * 9;
- float *vec_y = vec_x + 2;
- float *cntr = vec_y + 2;
- memset(pts, 0, sizeof(float) * 7 * 7);
- bool endstops_enabled = enable_endstops(false);
- bool endstop_z_enabled = enable_z_endstop(false);
- #ifdef MESH_BED_CALIBRATION_SHOW_LCD
- lcd_implementation_clear();
- lcd_print_at_PGM(0, 0, MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE1);
- #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
- // Collect a matrix of 9x9 points.
- for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
- int ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
- int iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
- if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
- // Print the decrasing ID of the measurement point.
- #ifdef MESH_BED_CALIBRATION_SHOW_LCD
- lcd_print_at_PGM(0, 1, MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE2);
- lcd_implementation_print_at(0, 2, mesh_point+1);
- lcd_printPGM(MSG_IMPROVE_BED_OFFSET_AND_SKEW_LINE3);
- #endif /* MESH_BED_CALIBRATION_SHOW_LCD */
- // Move up.
- current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
- enable_endstops(false);
- enable_z_endstop(false);
- go_to_current(homing_feedrate[Z_AXIS]/60);
- // Go to the measurement point.
- // Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
- mbl.get_meas_xy(ix, iy, current_position[X_AXIS], current_position[Y_AXIS], false);
- go_to_current(homing_feedrate[X_AXIS]/60);
- // Find its Z position by running the normal vertical search.
- // delay_keep_alive(3000);
- find_bed_induction_sensor_point_z();
- // delay_keep_alive(3000);
- // Improve the point position by searching its center in a current plane.
- int8_t n_errors = 3;
- for (int8_t iter = 0; iter < 4; ++ iter) {
- bool found = false;
- switch (method) {
- case 0: found = improve_bed_induction_sensor_point(); break;
- case 1: found = improve_bed_induction_sensor_point2(iy == 0); break;
- default: break;
- }
- if (! found) {
- if (n_errors -- == 0) {
- // Give up.
- goto canceled;
- } else {
- // Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
- current_position[Z_AXIS] -= 0.025f;
- enable_endstops(false);
- enable_z_endstop(false);
- go_to_current(homing_feedrate[Z_AXIS]);
- }
- }
- }
- // delay_keep_alive(3000);
- float *pt = pts + 2 * (ix + iy * 3);
- pt[0] = current_position[X_AXIS];
- pt[1] = current_position[Y_AXIS];
- cntr[0] += pt[0];
- cntr[1] += pt[1];
- }
- // Average the X and Y vectors. They may not be perpendicular, if the printer is built incorrectly.
- // Average the center point.
- cntr[0] *= 1.f/9.f;
- cntr[1] *= 1.f/9.f;
- // Average the X vector.
- vec_x[0] = (pts[2 * 2 + 0] - pts[2 * 0 + 0] + pts[2 * 5 + 0] - pts[2 * 3 + 0] + pts[2 * 8 + 0] - pts[2 * 6 + 0]) / 6.f;
- vec_x[1] = (pts[2 * 2 + 1] - pts[2 * 0 + 1] + pts[2 * 5 + 1] - pts[2 * 3 + 1] + pts[2 * 8 + 1] - pts[2 * 6 + 1]) / 6.f;
- // Average the Y vector.
- vec_y[0] = (pts[2 * 6 + 0] - pts[2 * 0 + 0] + pts[2 * 7 + 0] - pts[2 * 1 + 0] + pts[2 * 8 + 0] - pts[2 * 2 + 0]) / 6.f;
- vec_y[1] = (pts[2 * 6 + 1] - pts[2 * 0 + 1] + pts[2 * 7 + 1] - pts[2 * 1 + 1] + pts[2 * 8 + 1] - pts[2 * 2 + 1]) / 6.f;
- #if 1
- // Fearlessly store the calibration values into the eeprom.
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0), cntr [0]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4), cntr [1]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0), vec_x[0]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4), vec_x[1]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0), vec_y[0]);
- eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4), vec_y[1]);
- #endif
- #if 0
- // and let us know the result.
- SERIAL_ECHOLN("Calibration done.");
- SERIAL_ECHO("Center: ");
- SERIAL_ECHO(cntr[0]);
- SERIAL_ECHO(",");
- SERIAL_ECHO(cntr[1]);
- SERIAL_ECHO(", x: ");
- SERIAL_ECHO(vec_x[0]);
- SERIAL_ECHO(",");
- SERIAL_ECHO(vec_x[1]);
- SERIAL_ECHO(", y: ");
- SERIAL_ECHO(vec_y[0]);
- SERIAL_ECHO(",");
- SERIAL_ECHO(vec_y[1]);
- SERIAL_ECHOLN("");
- #endif
- enable_endstops(endstops_enabled);
- enable_z_endstop(endstop_z_enabled);
- return true;
- canceled:
- enable_endstops(endstops_enabled);
- enable_z_endstop(endstop_z_enabled);
- return false;
- }
- void reset_bed_offset_and_skew()
- {
- eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_CENTER+0), 0x0FFFFFFFF);
- eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_CENTER+4), 0x0FFFFFFFF);
- eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +0), 0x0FFFFFFFF);
- eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_X +4), 0x0FFFFFFFF);
- eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +0), 0x0FFFFFFFF);
- eeprom_update_dword((uint32_t*)(EEPROM_BED_CALIBRATION_VEC_Y +4), 0x0FFFFFFFF);
- }
- #if 0
- static const float[9][2] PROGMEM bed_points = {
- };
- bool calculate_machine_skew_and_offset_LS(
- // Matrix of 9 2D points (18 floats)
- float *pts,
- // Resulting correction matrix.
- float *vec_x,
- float *vec_y,
- float *cntr,
- // Temporary values, 49-18-(2*3)=25 floats
- float *temp
- {
- {
- // Create covariance matrix for A, collect the right hand side b.
- float A[3][3] = { 0.f };
- float b[3] = { 0.f };
- float acc;
- for (uint8_t r = 0; r < 3; ++ r) {
- for (uint8_t c = 0; c < 3; ++ c) {
- acc = 0;
- for (uint8_t i = 0; i < 9; ++ i) {
- float a = (r == 2) ? 1.f : pts[2 * i + r];
- float b = (c == 2) ? 1.f : pts[2 * i + c];
- acc += a * b;
- }
- A[r][c] = acc;
- }
- acc = 0.f;
- for (uint8_t i = 0; i < 9; ++ i) {
- float a = (r == 2) ? 1.f : pts[2 * i + r];
- float b = pgm_read_float(&coeff2[i][0]);
- acc += a * b;
- }
- b[r] = acc;
- }
- // Solve the linear equation for ax, bx, cx.
- float x[3] = { 0.f };
- for (uint8_t iter = 0; iter < 100; ++ iter) {
- x[0] = (b[0] - A[1] * x[1] - A[2] * x[2]) / A[0];
- x[1] = (b[1] - A[0] * x[0] - A[2] * x[2]) / A[1];
- x[2] = (b[2] - A[0] * x[0] - A[1] * x[1]) / A[2];
- }
- // Store the result to the output variables.
- vec_x[0] = x[0];
- vec_y[0] = x[1];
- cntr[0] = x[2];
- // Recalculate b for the y values.
- for (uint8_t r = 0; r < 3; ++ r) {
- acc = 0.f;
- for (uint8_t i = 0; i < 9; ++ i) {
- float a = (r == 2) ? 1.f : pts[2 * i + r];
- float b = pgm_read_float(&coeff2[i][1]);
- acc += a * b;
- }
- b[r] = acc;
- }
- // Solve the linear equation for ay, by, cy.
- x[0] = 0.f, x[1] = 0.f; x[2] = 0.f;
- for (uint8_t iter = 0; iter < 100; ++ iter) {
- x[0] = (b[0] - A[1] * x[1] - A[2] * x[2]) / A[0];
- x[1] = (b[1] - A[0] * x[0] - A[2] * x[2]) / A[1];
- x[2] = (b[2] - A[0] * x[0] - A[1] * x[1]) / A[2];
- }
- // Store the result to the output variables.
- vec_x[1] = x[0];
- vec_y[1] = x[1];
- cntr[1] = x[2];
- }
- // Normalize the vectors. We expect, that the machine axes may be skewed a bit, but the distances are correct.
- // l shall be very close to 1 already.
- float l = sqrt(vec_x[0]*vec_x[0] + vec_x[1] * vec_x[1]);
- vec_x[0] /= l;
- vec_x[1] /= l;
- l = sqrt(vec_y[0]*vec_y[0] + vec_y[1] * vec_y[1]);
- vec_y[0] /= l;
- vec_y[1] /= l;
- // Invert the transformation matrix made of vec_x, vec_y and cntr.
- }
- #endif
|