temperature.cpp 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "Timer.h"
  33. #include "Configuration_prusa.h"
  34. //===========================================================================
  35. //=============================public variables============================
  36. //===========================================================================
  37. int target_temperature[EXTRUDERS] = { 0 };
  38. int target_temperature_bed = 0;
  39. int current_temperature_raw[EXTRUDERS] = { 0 };
  40. float current_temperature[EXTRUDERS] = { 0.0 };
  41. #ifdef PINDA_THERMISTOR
  42. int current_temperature_raw_pinda = 0 ;
  43. float current_temperature_pinda = 0.0;
  44. #endif //PINDA_THERMISTOR
  45. #ifdef AMBIENT_THERMISTOR
  46. int current_temperature_raw_ambient = 0 ;
  47. float current_temperature_ambient = 0.0;
  48. #endif //AMBIENT_THERMISTOR
  49. #ifdef VOLT_PWR_PIN
  50. int current_voltage_raw_pwr = 0;
  51. #endif
  52. #ifdef VOLT_BED_PIN
  53. int current_voltage_raw_bed = 0;
  54. #endif
  55. int current_temperature_bed_raw = 0;
  56. float current_temperature_bed = 0.0;
  57. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  58. int redundant_temperature_raw = 0;
  59. float redundant_temperature = 0.0;
  60. #endif
  61. #ifdef PIDTEMP
  62. float _Kp, _Ki, _Kd;
  63. int pid_cycle, pid_number_of_cycles;
  64. bool pid_tuning_finished = false;
  65. #ifdef PID_ADD_EXTRUSION_RATE
  66. float Kc=DEFAULT_Kc;
  67. #endif
  68. #endif //PIDTEMP
  69. #ifdef FAN_SOFT_PWM
  70. unsigned char fanSpeedSoftPwm;
  71. #endif
  72. unsigned char soft_pwm_bed;
  73. #ifdef BABYSTEPPING
  74. volatile int babystepsTodo[3]={0,0,0};
  75. #endif
  76. //===========================================================================
  77. //=============================private variables============================
  78. //===========================================================================
  79. static volatile bool temp_meas_ready = false;
  80. #ifdef PIDTEMP
  81. //static cannot be external:
  82. static float iState_sum[EXTRUDERS] = { 0 };
  83. static float dState_last[EXTRUDERS] = { 0 };
  84. static float pTerm[EXTRUDERS];
  85. static float iTerm[EXTRUDERS];
  86. static float dTerm[EXTRUDERS];
  87. //int output;
  88. static float pid_error[EXTRUDERS];
  89. static float iState_sum_min[EXTRUDERS];
  90. static float iState_sum_max[EXTRUDERS];
  91. // static float pid_input[EXTRUDERS];
  92. // static float pid_output[EXTRUDERS];
  93. static bool pid_reset[EXTRUDERS];
  94. #endif //PIDTEMP
  95. #ifdef PIDTEMPBED
  96. //static cannot be external:
  97. static float temp_iState_bed = { 0 };
  98. static float temp_dState_bed = { 0 };
  99. static float pTerm_bed;
  100. static float iTerm_bed;
  101. static float dTerm_bed;
  102. //int output;
  103. static float pid_error_bed;
  104. static float temp_iState_min_bed;
  105. static float temp_iState_max_bed;
  106. #else //PIDTEMPBED
  107. static unsigned long previous_millis_bed_heater;
  108. #endif //PIDTEMPBED
  109. static unsigned char soft_pwm[EXTRUDERS];
  110. #ifdef FAN_SOFT_PWM
  111. static unsigned char soft_pwm_fan;
  112. #endif
  113. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  114. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  115. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  116. static unsigned long extruder_autofan_last_check;
  117. #endif
  118. #if EXTRUDERS > 3
  119. # error Unsupported number of extruders
  120. #elif EXTRUDERS > 2
  121. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  122. #elif EXTRUDERS > 1
  123. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  124. #else
  125. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  126. #endif
  127. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  128. // Init min and max temp with extreme values to prevent false errors during startup
  129. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  130. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  131. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  132. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  133. #ifdef BED_MINTEMP
  134. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  135. #endif
  136. #ifdef BED_MAXTEMP
  137. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  138. #endif
  139. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  140. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  141. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  142. #else
  143. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  144. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  145. #endif
  146. static float analog2temp(int raw, uint8_t e);
  147. static float analog2tempBed(int raw);
  148. static float analog2tempAmbient(int raw);
  149. static void updateTemperaturesFromRawValues();
  150. enum TempRunawayStates
  151. {
  152. TempRunaway_INACTIVE = 0,
  153. TempRunaway_PREHEAT = 1,
  154. TempRunaway_ACTIVE = 2,
  155. };
  156. #ifdef WATCH_TEMP_PERIOD
  157. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  158. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  159. #endif //WATCH_TEMP_PERIOD
  160. #ifndef SOFT_PWM_SCALE
  161. #define SOFT_PWM_SCALE 0
  162. #endif
  163. //===========================================================================
  164. //============================= functions ============================
  165. //===========================================================================
  166. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  167. static float temp_runaway_status[4];
  168. static float temp_runaway_target[4];
  169. static float temp_runaway_timer[4];
  170. static int temp_runaway_error_counter[4];
  171. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  172. static void temp_runaway_stop(bool isPreheat, bool isBed);
  173. #endif
  174. void PID_autotune(float temp, int extruder, int ncycles)
  175. {
  176. pid_number_of_cycles = ncycles;
  177. pid_tuning_finished = false;
  178. float input = 0.0;
  179. pid_cycle=0;
  180. bool heating = true;
  181. unsigned long temp_millis = millis();
  182. unsigned long t1=temp_millis;
  183. unsigned long t2=temp_millis;
  184. long t_high = 0;
  185. long t_low = 0;
  186. long bias, d;
  187. float Ku, Tu;
  188. float max = 0, min = 10000;
  189. uint8_t safety_check_cycles = 0;
  190. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  191. float temp_ambient;
  192. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  193. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  194. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  195. unsigned long extruder_autofan_last_check = millis();
  196. #endif
  197. if ((extruder >= EXTRUDERS)
  198. #if (TEMP_BED_PIN <= -1)
  199. ||(extruder < 0)
  200. #endif
  201. ){
  202. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  203. pid_tuning_finished = true;
  204. pid_cycle = 0;
  205. return;
  206. }
  207. SERIAL_ECHOLN("PID Autotune start");
  208. disable_heater(); // switch off all heaters.
  209. if (extruder<0)
  210. {
  211. soft_pwm_bed = (MAX_BED_POWER)/2;
  212. bias = d = (MAX_BED_POWER)/2;
  213. }
  214. else
  215. {
  216. soft_pwm[extruder] = (PID_MAX)/2;
  217. bias = d = (PID_MAX)/2;
  218. }
  219. for(;;) {
  220. #ifdef WATCHDOG
  221. wdt_reset();
  222. #endif //WATCHDOG
  223. if(temp_meas_ready == true) { // temp sample ready
  224. updateTemperaturesFromRawValues();
  225. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  226. max=max(max,input);
  227. min=min(min,input);
  228. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  229. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  230. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  231. if(millis() - extruder_autofan_last_check > 2500) {
  232. checkExtruderAutoFans();
  233. extruder_autofan_last_check = millis();
  234. }
  235. #endif
  236. if(heating == true && input > temp) {
  237. if(millis() - t2 > 5000) {
  238. heating=false;
  239. if (extruder<0)
  240. soft_pwm_bed = (bias - d) >> 1;
  241. else
  242. soft_pwm[extruder] = (bias - d) >> 1;
  243. t1=millis();
  244. t_high=t1 - t2;
  245. max=temp;
  246. }
  247. }
  248. if(heating == false && input < temp) {
  249. if(millis() - t1 > 5000) {
  250. heating=true;
  251. t2=millis();
  252. t_low=t2 - t1;
  253. if(pid_cycle > 0) {
  254. bias += (d*(t_high - t_low))/(t_low + t_high);
  255. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  256. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  257. else d = bias;
  258. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  259. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  260. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  261. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  262. if(pid_cycle > 2) {
  263. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  264. Tu = ((float)(t_low + t_high)/1000.0);
  265. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  266. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  267. _Kp = 0.6*Ku;
  268. _Ki = 2*_Kp/Tu;
  269. _Kd = _Kp*Tu/8;
  270. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  271. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  272. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  273. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  274. /*
  275. _Kp = 0.33*Ku;
  276. _Ki = _Kp/Tu;
  277. _Kd = _Kp*Tu/3;
  278. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  279. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  280. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  281. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  282. _Kp = 0.2*Ku;
  283. _Ki = 2*_Kp/Tu;
  284. _Kd = _Kp*Tu/3;
  285. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  286. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  287. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  288. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  289. */
  290. }
  291. }
  292. if (extruder<0)
  293. soft_pwm_bed = (bias + d) >> 1;
  294. else
  295. soft_pwm[extruder] = (bias + d) >> 1;
  296. pid_cycle++;
  297. min=temp;
  298. }
  299. }
  300. }
  301. if(input > (temp + 20)) {
  302. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  303. pid_tuning_finished = true;
  304. pid_cycle = 0;
  305. return;
  306. }
  307. if(millis() - temp_millis > 2000) {
  308. int p;
  309. if (extruder<0){
  310. p=soft_pwm_bed;
  311. SERIAL_PROTOCOLPGM("B:");
  312. }else{
  313. p=soft_pwm[extruder];
  314. SERIAL_PROTOCOLPGM("T:");
  315. }
  316. SERIAL_PROTOCOL(input);
  317. SERIAL_PROTOCOLPGM(" @:");
  318. SERIAL_PROTOCOLLN(p);
  319. if (safety_check_cycles == 0) { //save ambient temp
  320. temp_ambient = input;
  321. //SERIAL_ECHOPGM("Ambient T: ");
  322. //MYSERIAL.println(temp_ambient);
  323. safety_check_cycles++;
  324. }
  325. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  326. safety_check_cycles++;
  327. }
  328. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  329. safety_check_cycles++;
  330. //SERIAL_ECHOPGM("Time from beginning: ");
  331. //MYSERIAL.print(safety_check_cycles_count * 2);
  332. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  333. //MYSERIAL.println(input - temp_ambient);
  334. if (abs(input - temp_ambient) < 5.0) {
  335. temp_runaway_stop(false, (extruder<0));
  336. pid_tuning_finished = true;
  337. return;
  338. }
  339. }
  340. temp_millis = millis();
  341. }
  342. if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
  343. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  344. pid_tuning_finished = true;
  345. pid_cycle = 0;
  346. return;
  347. }
  348. if(pid_cycle > ncycles) {
  349. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  350. pid_tuning_finished = true;
  351. pid_cycle = 0;
  352. return;
  353. }
  354. lcd_update(0);
  355. }
  356. }
  357. void updatePID()
  358. {
  359. #ifdef PIDTEMP
  360. for(int e = 0; e < EXTRUDERS; e++) {
  361. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  362. }
  363. #endif
  364. #ifdef PIDTEMPBED
  365. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  366. #endif
  367. }
  368. int getHeaterPower(int heater) {
  369. if (heater<0)
  370. return soft_pwm_bed;
  371. return soft_pwm[heater];
  372. }
  373. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  374. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  375. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  376. #if defined(FAN_PIN) && FAN_PIN > -1
  377. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  378. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  379. #endif
  380. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  381. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  382. #endif
  383. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  384. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  385. #endif
  386. #endif
  387. void setExtruderAutoFanState(int pin, bool state)
  388. {
  389. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  390. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  391. pinMode(pin, OUTPUT);
  392. digitalWrite(pin, newFanSpeed);
  393. analogWrite(pin, newFanSpeed);
  394. }
  395. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  396. void countFanSpeed()
  397. {
  398. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  399. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (millis() - extruder_autofan_last_check)));
  400. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (millis() - extruder_autofan_last_check)));
  401. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(millis() - extruder_autofan_last_check);
  402. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  403. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  404. SERIAL_ECHOLNPGM(" ");*/
  405. fan_edge_counter[0] = 0;
  406. fan_edge_counter[1] = 0;
  407. }
  408. extern bool fans_check_enabled;
  409. void checkFanSpeed()
  410. {
  411. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  412. static unsigned char fan_speed_errors[2] = { 0,0 };
  413. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  414. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  415. else fan_speed_errors[0] = 0;
  416. #endif
  417. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  418. if ((fan_speed[1] == 0) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  419. else fan_speed_errors[1] = 0;
  420. #endif
  421. if ((fan_speed_errors[0] > 5) && fans_check_enabled) {
  422. fan_speed_errors[0] = 0;
  423. fanSpeedError(0); //extruder fan
  424. }
  425. if ((fan_speed_errors[1] > 15) && fans_check_enabled) {
  426. fan_speed_errors[1] = 0;
  427. fanSpeedError(1); //print fan
  428. }
  429. }
  430. void fanSpeedError(unsigned char _fan) {
  431. if (get_message_level() != 0 && isPrintPaused) return;
  432. //to ensure that target temp. is not set to zero in case taht we are resuming print
  433. if (card.sdprinting) {
  434. if (heating_status != 0) {
  435. lcd_print_stop();
  436. }
  437. else {
  438. lcd_pause_print();
  439. }
  440. }
  441. else {
  442. setTargetHotend0(0);
  443. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  444. }
  445. switch (_fan) {
  446. case 0:
  447. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  448. if (get_message_level() == 0) {
  449. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  450. WRITE(BEEPER, HIGH);
  451. delayMicroseconds(200);
  452. WRITE(BEEPER, LOW);
  453. delayMicroseconds(100);
  454. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  455. }
  456. break;
  457. case 1:
  458. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  459. if (get_message_level() == 0) {
  460. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  461. WRITE(BEEPER, HIGH);
  462. delayMicroseconds(200);
  463. WRITE(BEEPER, LOW);
  464. delayMicroseconds(100);
  465. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  466. }
  467. break;
  468. }
  469. }
  470. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  471. void checkExtruderAutoFans()
  472. {
  473. uint8_t fanState = 0;
  474. // which fan pins need to be turned on?
  475. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  476. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  477. fanState |= 1;
  478. #endif
  479. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  480. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  481. {
  482. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  483. fanState |= 1;
  484. else
  485. fanState |= 2;
  486. }
  487. #endif
  488. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  489. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  490. {
  491. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  492. fanState |= 1;
  493. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  494. fanState |= 2;
  495. else
  496. fanState |= 4;
  497. }
  498. #endif
  499. // update extruder auto fan states
  500. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  501. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  502. #endif
  503. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  504. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  505. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  506. #endif
  507. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  508. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  509. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  510. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  511. #endif
  512. }
  513. #endif // any extruder auto fan pins set
  514. void resetPID(uint8_t extruder) // ready for eventually parameters adjusting
  515. {
  516. }
  517. void manage_heater()
  518. {
  519. #ifdef WATCHDOG
  520. wdt_reset();
  521. #endif //WATCHDOG
  522. float pid_input;
  523. float pid_output;
  524. if(temp_meas_ready != true) //better readability
  525. return;
  526. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  527. updateTemperaturesFromRawValues();
  528. check_max_temp();
  529. check_min_temp();
  530. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  531. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  532. #endif
  533. for(int e = 0; e < EXTRUDERS; e++)
  534. {
  535. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  536. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  537. #endif
  538. #ifdef PIDTEMP
  539. pid_input = current_temperature[e];
  540. #ifndef PID_OPENLOOP
  541. if(target_temperature[e] == 0) {
  542. pid_output = 0;
  543. pid_reset[e] = true;
  544. } else {
  545. pid_error[e] = target_temperature[e] - pid_input;
  546. if(pid_reset[e]) {
  547. iState_sum[e] = 0.0;
  548. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  549. pid_reset[e] = false;
  550. }
  551. #ifndef PonM
  552. pTerm[e] = cs.Kp * pid_error[e];
  553. iState_sum[e] += pid_error[e];
  554. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  555. iTerm[e] = cs.Ki * iState_sum[e];
  556. // K1 defined in Configuration.h in the PID settings
  557. #define K2 (1.0-K1)
  558. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  559. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  560. if (pid_output > PID_MAX) {
  561. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  562. pid_output=PID_MAX;
  563. } else if (pid_output < 0) {
  564. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  565. pid_output=0;
  566. }
  567. #else // PonM ("Proportional on Measurement" method)
  568. iState_sum[e] += cs.Ki * pid_error[e];
  569. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  570. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  571. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  572. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  573. pid_output = constrain(pid_output, 0, PID_MAX);
  574. #endif // PonM
  575. }
  576. dState_last[e] = pid_input;
  577. #else
  578. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  579. #endif //PID_OPENLOOP
  580. #ifdef PID_DEBUG
  581. SERIAL_ECHO_START;
  582. SERIAL_ECHO(" PID_DEBUG ");
  583. SERIAL_ECHO(e);
  584. SERIAL_ECHO(": Input ");
  585. SERIAL_ECHO(pid_input);
  586. SERIAL_ECHO(" Output ");
  587. SERIAL_ECHO(pid_output);
  588. SERIAL_ECHO(" pTerm ");
  589. SERIAL_ECHO(pTerm[e]);
  590. SERIAL_ECHO(" iTerm ");
  591. SERIAL_ECHO(iTerm[e]);
  592. SERIAL_ECHO(" dTerm ");
  593. SERIAL_ECHOLN(-dTerm[e]);
  594. #endif //PID_DEBUG
  595. #else /* PID off */
  596. pid_output = 0;
  597. if(current_temperature[e] < target_temperature[e]) {
  598. pid_output = PID_MAX;
  599. }
  600. #endif
  601. // Check if temperature is within the correct range
  602. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  603. {
  604. soft_pwm[e] = (int)pid_output >> 1;
  605. }
  606. else
  607. {
  608. soft_pwm[e] = 0;
  609. }
  610. #ifdef WATCH_TEMP_PERIOD
  611. if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  612. {
  613. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  614. {
  615. setTargetHotend(0, e);
  616. LCD_MESSAGEPGM("Heating failed");
  617. SERIAL_ECHO_START;
  618. SERIAL_ECHOLN("Heating failed");
  619. }else{
  620. watchmillis[e] = 0;
  621. }
  622. }
  623. #endif
  624. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  625. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  626. disable_heater();
  627. if(IsStopped() == false) {
  628. SERIAL_ERROR_START;
  629. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  630. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  631. }
  632. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  633. Stop();
  634. #endif
  635. }
  636. #endif
  637. } // End extruder for loop
  638. #ifndef DEBUG_DISABLE_FANCHECK
  639. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  640. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  641. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  642. if(millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  643. {
  644. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  645. countFanSpeed();
  646. checkFanSpeed();
  647. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  648. checkExtruderAutoFans();
  649. extruder_autofan_last_check = millis();
  650. }
  651. #endif
  652. #endif //DEBUG_DISABLE_FANCHECK
  653. #ifndef PIDTEMPBED
  654. if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  655. return;
  656. previous_millis_bed_heater = millis();
  657. #endif
  658. #if TEMP_SENSOR_BED != 0
  659. #ifdef PIDTEMPBED
  660. pid_input = current_temperature_bed;
  661. #ifndef PID_OPENLOOP
  662. pid_error_bed = target_temperature_bed - pid_input;
  663. pTerm_bed = cs.bedKp * pid_error_bed;
  664. temp_iState_bed += pid_error_bed;
  665. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  666. iTerm_bed = cs.bedKi * temp_iState_bed;
  667. //K1 defined in Configuration.h in the PID settings
  668. #define K2 (1.0-K1)
  669. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
  670. temp_dState_bed = pid_input;
  671. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  672. if (pid_output > MAX_BED_POWER) {
  673. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  674. pid_output=MAX_BED_POWER;
  675. } else if (pid_output < 0){
  676. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  677. pid_output=0;
  678. }
  679. #else
  680. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  681. #endif //PID_OPENLOOP
  682. if(current_temperature_bed < BED_MAXTEMP)
  683. {
  684. soft_pwm_bed = (int)pid_output >> 1;
  685. }
  686. else {
  687. soft_pwm_bed = 0;
  688. }
  689. #elif !defined(BED_LIMIT_SWITCHING)
  690. // Check if temperature is within the correct range
  691. if(current_temperature_bed < BED_MAXTEMP)
  692. {
  693. if(current_temperature_bed >= target_temperature_bed)
  694. {
  695. soft_pwm_bed = 0;
  696. }
  697. else
  698. {
  699. soft_pwm_bed = MAX_BED_POWER>>1;
  700. }
  701. }
  702. else
  703. {
  704. soft_pwm_bed = 0;
  705. WRITE(HEATER_BED_PIN,LOW);
  706. }
  707. #else //#ifdef BED_LIMIT_SWITCHING
  708. // Check if temperature is within the correct band
  709. if(current_temperature_bed < BED_MAXTEMP)
  710. {
  711. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  712. {
  713. soft_pwm_bed = 0;
  714. }
  715. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  716. {
  717. soft_pwm_bed = MAX_BED_POWER>>1;
  718. }
  719. }
  720. else
  721. {
  722. soft_pwm_bed = 0;
  723. WRITE(HEATER_BED_PIN,LOW);
  724. }
  725. #endif
  726. if(target_temperature_bed==0)
  727. soft_pwm_bed = 0;
  728. #endif
  729. #ifdef HOST_KEEPALIVE_FEATURE
  730. host_keepalive();
  731. #endif
  732. }
  733. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  734. // Derived from RepRap FiveD extruder::getTemperature()
  735. // For hot end temperature measurement.
  736. static float analog2temp(int raw, uint8_t e) {
  737. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  738. if(e > EXTRUDERS)
  739. #else
  740. if(e >= EXTRUDERS)
  741. #endif
  742. {
  743. SERIAL_ERROR_START;
  744. SERIAL_ERROR((int)e);
  745. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  746. kill(PSTR(""), 6);
  747. return 0.0;
  748. }
  749. #ifdef HEATER_0_USES_MAX6675
  750. if (e == 0)
  751. {
  752. return 0.25 * raw;
  753. }
  754. #endif
  755. if(heater_ttbl_map[e] != NULL)
  756. {
  757. float celsius = 0;
  758. uint8_t i;
  759. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  760. for (i=1; i<heater_ttbllen_map[e]; i++)
  761. {
  762. if (PGM_RD_W((*tt)[i][0]) > raw)
  763. {
  764. celsius = PGM_RD_W((*tt)[i-1][1]) +
  765. (raw - PGM_RD_W((*tt)[i-1][0])) *
  766. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  767. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  768. break;
  769. }
  770. }
  771. // Overflow: Set to last value in the table
  772. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  773. return celsius;
  774. }
  775. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  776. }
  777. // Derived from RepRap FiveD extruder::getTemperature()
  778. // For bed temperature measurement.
  779. static float analog2tempBed(int raw) {
  780. #ifdef BED_USES_THERMISTOR
  781. float celsius = 0;
  782. byte i;
  783. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  784. {
  785. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  786. {
  787. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  788. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  789. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  790. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  791. break;
  792. }
  793. }
  794. // Overflow: Set to last value in the table
  795. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  796. // temperature offset adjustment
  797. #ifdef BED_OFFSET
  798. float _offset = BED_OFFSET;
  799. float _offset_center = BED_OFFSET_CENTER;
  800. float _offset_start = BED_OFFSET_START;
  801. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  802. float _second_koef = (_offset / 2) / (100 - _offset_center);
  803. if (celsius >= _offset_start && celsius <= _offset_center)
  804. {
  805. celsius = celsius + (_first_koef * (celsius - _offset_start));
  806. }
  807. else if (celsius > _offset_center && celsius <= 100)
  808. {
  809. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  810. }
  811. else if (celsius > 100)
  812. {
  813. celsius = celsius + _offset;
  814. }
  815. #endif
  816. return celsius;
  817. #elif defined BED_USES_AD595
  818. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  819. #else
  820. return 0;
  821. #endif
  822. }
  823. #ifdef AMBIENT_THERMISTOR
  824. static float analog2tempAmbient(int raw)
  825. {
  826. float celsius = 0;
  827. byte i;
  828. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  829. {
  830. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  831. {
  832. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  833. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  834. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  835. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  836. break;
  837. }
  838. }
  839. // Overflow: Set to last value in the table
  840. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  841. return celsius;
  842. }
  843. #endif //AMBIENT_THERMISTOR
  844. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  845. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  846. static void updateTemperaturesFromRawValues()
  847. {
  848. for(uint8_t e=0;e<EXTRUDERS;e++)
  849. {
  850. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  851. }
  852. #ifdef PINDA_THERMISTOR
  853. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  854. #endif
  855. #ifdef AMBIENT_THERMISTOR
  856. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  857. #endif
  858. #ifdef DEBUG_HEATER_BED_SIM
  859. current_temperature_bed = target_temperature_bed;
  860. #else //DEBUG_HEATER_BED_SIM
  861. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  862. #endif //DEBUG_HEATER_BED_SIM
  863. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  864. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  865. #endif
  866. //Reset the watchdog after we know we have a temperature measurement.
  867. #ifdef WATCHDOG
  868. wdt_reset();
  869. #endif //WATCHDOG
  870. CRITICAL_SECTION_START;
  871. temp_meas_ready = false;
  872. CRITICAL_SECTION_END;
  873. }
  874. void tp_init()
  875. {
  876. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  877. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  878. MCUCR=(1<<JTD);
  879. MCUCR=(1<<JTD);
  880. #endif
  881. // Finish init of mult extruder arrays
  882. for(int e = 0; e < EXTRUDERS; e++) {
  883. // populate with the first value
  884. maxttemp[e] = maxttemp[0];
  885. #ifdef PIDTEMP
  886. iState_sum_min[e] = 0.0;
  887. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  888. #endif //PIDTEMP
  889. #ifdef PIDTEMPBED
  890. temp_iState_min_bed = 0.0;
  891. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  892. #endif //PIDTEMPBED
  893. }
  894. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  895. SET_OUTPUT(HEATER_0_PIN);
  896. #endif
  897. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  898. SET_OUTPUT(HEATER_1_PIN);
  899. #endif
  900. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  901. SET_OUTPUT(HEATER_2_PIN);
  902. #endif
  903. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  904. SET_OUTPUT(HEATER_BED_PIN);
  905. #endif
  906. #if defined(FAN_PIN) && (FAN_PIN > -1)
  907. SET_OUTPUT(FAN_PIN);
  908. #ifdef FAST_PWM_FAN
  909. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  910. #endif
  911. #ifdef FAN_SOFT_PWM
  912. soft_pwm_fan = fanSpeedSoftPwm / 2;
  913. #endif
  914. #endif
  915. #ifdef HEATER_0_USES_MAX6675
  916. #ifndef SDSUPPORT
  917. SET_OUTPUT(SCK_PIN);
  918. WRITE(SCK_PIN,0);
  919. SET_OUTPUT(MOSI_PIN);
  920. WRITE(MOSI_PIN,1);
  921. SET_INPUT(MISO_PIN);
  922. WRITE(MISO_PIN,1);
  923. #endif
  924. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  925. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  926. pinMode(SS_PIN, OUTPUT);
  927. digitalWrite(SS_PIN,0);
  928. pinMode(MAX6675_SS, OUTPUT);
  929. digitalWrite(MAX6675_SS,1);
  930. #endif
  931. adc_init();
  932. // Use timer0 for temperature measurement
  933. // Interleave temperature interrupt with millies interrupt
  934. OCR0B = 128;
  935. TIMSK0 |= (1<<OCIE0B);
  936. // Wait for temperature measurement to settle
  937. delay(250);
  938. #ifdef HEATER_0_MINTEMP
  939. minttemp[0] = HEATER_0_MINTEMP;
  940. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  941. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  942. minttemp_raw[0] += OVERSAMPLENR;
  943. #else
  944. minttemp_raw[0] -= OVERSAMPLENR;
  945. #endif
  946. }
  947. #endif //MINTEMP
  948. #ifdef HEATER_0_MAXTEMP
  949. maxttemp[0] = HEATER_0_MAXTEMP;
  950. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  951. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  952. maxttemp_raw[0] -= OVERSAMPLENR;
  953. #else
  954. maxttemp_raw[0] += OVERSAMPLENR;
  955. #endif
  956. }
  957. #endif //MAXTEMP
  958. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  959. minttemp[1] = HEATER_1_MINTEMP;
  960. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  961. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  962. minttemp_raw[1] += OVERSAMPLENR;
  963. #else
  964. minttemp_raw[1] -= OVERSAMPLENR;
  965. #endif
  966. }
  967. #endif // MINTEMP 1
  968. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  969. maxttemp[1] = HEATER_1_MAXTEMP;
  970. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  971. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  972. maxttemp_raw[1] -= OVERSAMPLENR;
  973. #else
  974. maxttemp_raw[1] += OVERSAMPLENR;
  975. #endif
  976. }
  977. #endif //MAXTEMP 1
  978. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  979. minttemp[2] = HEATER_2_MINTEMP;
  980. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  981. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  982. minttemp_raw[2] += OVERSAMPLENR;
  983. #else
  984. minttemp_raw[2] -= OVERSAMPLENR;
  985. #endif
  986. }
  987. #endif //MINTEMP 2
  988. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  989. maxttemp[2] = HEATER_2_MAXTEMP;
  990. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  991. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  992. maxttemp_raw[2] -= OVERSAMPLENR;
  993. #else
  994. maxttemp_raw[2] += OVERSAMPLENR;
  995. #endif
  996. }
  997. #endif //MAXTEMP 2
  998. #ifdef BED_MINTEMP
  999. /* No bed MINTEMP error implemented?!? */
  1000. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1001. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1002. bed_minttemp_raw += OVERSAMPLENR;
  1003. #else
  1004. bed_minttemp_raw -= OVERSAMPLENR;
  1005. #endif
  1006. }
  1007. #endif //BED_MINTEMP
  1008. #ifdef BED_MAXTEMP
  1009. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1010. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1011. bed_maxttemp_raw -= OVERSAMPLENR;
  1012. #else
  1013. bed_maxttemp_raw += OVERSAMPLENR;
  1014. #endif
  1015. }
  1016. #endif //BED_MAXTEMP
  1017. }
  1018. void setWatch()
  1019. {
  1020. #ifdef WATCH_TEMP_PERIOD
  1021. for (int e = 0; e < EXTRUDERS; e++)
  1022. {
  1023. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1024. {
  1025. watch_start_temp[e] = degHotend(e);
  1026. watchmillis[e] = millis();
  1027. }
  1028. }
  1029. #endif
  1030. }
  1031. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1032. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1033. {
  1034. float __hysteresis = 0;
  1035. int __timeout = 0;
  1036. bool temp_runaway_check_active = false;
  1037. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1038. static int __preheat_counter[2] = { 0,0};
  1039. static int __preheat_errors[2] = { 0,0};
  1040. if (millis() - temp_runaway_timer[_heater_id] > 2000)
  1041. {
  1042. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1043. if (_isbed)
  1044. {
  1045. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1046. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1047. }
  1048. #endif
  1049. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1050. if (!_isbed)
  1051. {
  1052. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1053. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1054. }
  1055. #endif
  1056. temp_runaway_timer[_heater_id] = millis();
  1057. if (_output == 0)
  1058. {
  1059. temp_runaway_check_active = false;
  1060. temp_runaway_error_counter[_heater_id] = 0;
  1061. }
  1062. if (temp_runaway_target[_heater_id] != _target_temperature)
  1063. {
  1064. if (_target_temperature > 0)
  1065. {
  1066. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1067. temp_runaway_target[_heater_id] = _target_temperature;
  1068. __preheat_start[_heater_id] = _current_temperature;
  1069. __preheat_counter[_heater_id] = 0;
  1070. }
  1071. else
  1072. {
  1073. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1074. temp_runaway_target[_heater_id] = _target_temperature;
  1075. }
  1076. }
  1077. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1078. {
  1079. __preheat_counter[_heater_id]++;
  1080. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1081. {
  1082. /*SERIAL_ECHOPGM("Heater:");
  1083. MYSERIAL.print(_heater_id);
  1084. SERIAL_ECHOPGM(" T:");
  1085. MYSERIAL.print(_current_temperature);
  1086. SERIAL_ECHOPGM(" Tstart:");
  1087. MYSERIAL.print(__preheat_start[_heater_id]);*/
  1088. if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1089. __preheat_errors[_heater_id]++;
  1090. /*SERIAL_ECHOPGM(" Preheat errors:");
  1091. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1092. }
  1093. else {
  1094. //SERIAL_ECHOLNPGM("");
  1095. __preheat_errors[_heater_id] = 0;
  1096. }
  1097. if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
  1098. {
  1099. if (farm_mode) { prusa_statistics(0); }
  1100. temp_runaway_stop(true, _isbed);
  1101. if (farm_mode) { prusa_statistics(91); }
  1102. }
  1103. __preheat_start[_heater_id] = _current_temperature;
  1104. __preheat_counter[_heater_id] = 0;
  1105. }
  1106. }
  1107. if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1108. {
  1109. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1110. temp_runaway_check_active = false;
  1111. }
  1112. if (_output > 0)
  1113. {
  1114. temp_runaway_check_active = true;
  1115. }
  1116. if (temp_runaway_check_active)
  1117. {
  1118. // we are in range
  1119. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1120. {
  1121. temp_runaway_check_active = false;
  1122. temp_runaway_error_counter[_heater_id] = 0;
  1123. }
  1124. else
  1125. {
  1126. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1127. {
  1128. temp_runaway_error_counter[_heater_id]++;
  1129. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1130. {
  1131. if (farm_mode) { prusa_statistics(0); }
  1132. temp_runaway_stop(false, _isbed);
  1133. if (farm_mode) { prusa_statistics(90); }
  1134. }
  1135. }
  1136. }
  1137. }
  1138. }
  1139. }
  1140. void temp_runaway_stop(bool isPreheat, bool isBed)
  1141. {
  1142. cancel_heatup = true;
  1143. quickStop();
  1144. if (card.sdprinting)
  1145. {
  1146. card.sdprinting = false;
  1147. card.closefile();
  1148. }
  1149. // Clean the input command queue
  1150. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1151. cmdqueue_reset();
  1152. disable_heater();
  1153. disable_x();
  1154. disable_y();
  1155. disable_e0();
  1156. disable_e1();
  1157. disable_e2();
  1158. manage_heater();
  1159. lcd_update(0);
  1160. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1161. WRITE(BEEPER, HIGH);
  1162. delayMicroseconds(500);
  1163. WRITE(BEEPER, LOW);
  1164. delayMicroseconds(100);
  1165. if (isPreheat)
  1166. {
  1167. Stop();
  1168. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1169. SERIAL_ERROR_START;
  1170. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1171. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1172. SET_OUTPUT(FAN_PIN);
  1173. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1174. analogWrite(FAN_PIN, 255);
  1175. fanSpeed = 255;
  1176. delayMicroseconds(2000);
  1177. }
  1178. else
  1179. {
  1180. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1181. SERIAL_ERROR_START;
  1182. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1183. }
  1184. }
  1185. #endif
  1186. void disable_heater()
  1187. {
  1188. setAllTargetHotends(0);
  1189. setTargetBed(0);
  1190. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1191. target_temperature[0]=0;
  1192. soft_pwm[0]=0;
  1193. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1194. WRITE(HEATER_0_PIN,LOW);
  1195. #endif
  1196. #endif
  1197. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1198. target_temperature[1]=0;
  1199. soft_pwm[1]=0;
  1200. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1201. WRITE(HEATER_1_PIN,LOW);
  1202. #endif
  1203. #endif
  1204. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1205. target_temperature[2]=0;
  1206. soft_pwm[2]=0;
  1207. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1208. WRITE(HEATER_2_PIN,LOW);
  1209. #endif
  1210. #endif
  1211. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1212. target_temperature_bed=0;
  1213. soft_pwm_bed=0;
  1214. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1215. WRITE(HEATER_BED_PIN,LOW);
  1216. #endif
  1217. #endif
  1218. }
  1219. void max_temp_error(uint8_t e) {
  1220. disable_heater();
  1221. if(IsStopped() == false) {
  1222. SERIAL_ERROR_START;
  1223. SERIAL_ERRORLN((int)e);
  1224. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1225. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1226. }
  1227. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1228. Stop();
  1229. #endif
  1230. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1231. SET_OUTPUT(FAN_PIN);
  1232. SET_OUTPUT(BEEPER);
  1233. WRITE(FAN_PIN, 1);
  1234. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1235. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1236. WRITE(BEEPER, 1);
  1237. // fanSpeed will consumed by the check_axes_activity() routine.
  1238. fanSpeed=255;
  1239. if (farm_mode) { prusa_statistics(93); }
  1240. }
  1241. void min_temp_error(uint8_t e) {
  1242. #ifdef DEBUG_DISABLE_MINTEMP
  1243. return;
  1244. #endif
  1245. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1246. disable_heater();
  1247. if(IsStopped() == false) {
  1248. SERIAL_ERROR_START;
  1249. SERIAL_ERRORLN((int)e);
  1250. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1251. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1252. }
  1253. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1254. Stop();
  1255. #endif
  1256. if (farm_mode) { prusa_statistics(92); }
  1257. }
  1258. void bed_max_temp_error(void) {
  1259. #if HEATER_BED_PIN > -1
  1260. WRITE(HEATER_BED_PIN, 0);
  1261. #endif
  1262. if(IsStopped() == false) {
  1263. SERIAL_ERROR_START;
  1264. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1265. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1266. }
  1267. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1268. Stop();
  1269. #endif
  1270. }
  1271. void bed_min_temp_error(void) {
  1272. #ifdef DEBUG_DISABLE_MINTEMP
  1273. return;
  1274. #endif
  1275. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1276. #if HEATER_BED_PIN > -1
  1277. WRITE(HEATER_BED_PIN, 0);
  1278. #endif
  1279. if(IsStopped() == false) {
  1280. SERIAL_ERROR_START;
  1281. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1282. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1283. }
  1284. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1285. Stop();
  1286. #endif
  1287. }
  1288. #ifdef HEATER_0_USES_MAX6675
  1289. #define MAX6675_HEAT_INTERVAL 250
  1290. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1291. int max6675_temp = 2000;
  1292. int read_max6675()
  1293. {
  1294. if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1295. return max6675_temp;
  1296. max6675_previous_millis = millis();
  1297. max6675_temp = 0;
  1298. #ifdef PRR
  1299. PRR &= ~(1<<PRSPI);
  1300. #elif defined PRR0
  1301. PRR0 &= ~(1<<PRSPI);
  1302. #endif
  1303. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1304. // enable TT_MAX6675
  1305. WRITE(MAX6675_SS, 0);
  1306. // ensure 100ns delay - a bit extra is fine
  1307. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1308. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1309. // read MSB
  1310. SPDR = 0;
  1311. for (;(SPSR & (1<<SPIF)) == 0;);
  1312. max6675_temp = SPDR;
  1313. max6675_temp <<= 8;
  1314. // read LSB
  1315. SPDR = 0;
  1316. for (;(SPSR & (1<<SPIF)) == 0;);
  1317. max6675_temp |= SPDR;
  1318. // disable TT_MAX6675
  1319. WRITE(MAX6675_SS, 1);
  1320. if (max6675_temp & 4)
  1321. {
  1322. // thermocouple open
  1323. max6675_temp = 2000;
  1324. }
  1325. else
  1326. {
  1327. max6675_temp = max6675_temp >> 3;
  1328. }
  1329. return max6675_temp;
  1330. }
  1331. #endif
  1332. extern "C" {
  1333. void adc_ready(void) //callback from adc when sampling finished
  1334. {
  1335. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1336. current_temperature_raw_pinda = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1337. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1338. #ifdef VOLT_PWR_PIN
  1339. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1340. #endif
  1341. #ifdef AMBIENT_THERMISTOR
  1342. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
  1343. #endif //AMBIENT_THERMISTOR
  1344. #ifdef VOLT_BED_PIN
  1345. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1346. #endif
  1347. temp_meas_ready = true;
  1348. }
  1349. } // extern "C"
  1350. // Timer 0 is shared with millies
  1351. ISR(TIMER0_COMPB_vect) // @ 1kHz ~ 1ms
  1352. {
  1353. static bool _lock = false;
  1354. if (_lock) return;
  1355. _lock = true;
  1356. asm("sei");
  1357. if (!temp_meas_ready) adc_cycle();
  1358. lcd_buttons_update();
  1359. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1360. static unsigned char soft_pwm_0;
  1361. #ifdef SLOW_PWM_HEATERS
  1362. static unsigned char slow_pwm_count = 0;
  1363. static unsigned char state_heater_0 = 0;
  1364. static unsigned char state_timer_heater_0 = 0;
  1365. #endif
  1366. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1367. static unsigned char soft_pwm_1;
  1368. #ifdef SLOW_PWM_HEATERS
  1369. static unsigned char state_heater_1 = 0;
  1370. static unsigned char state_timer_heater_1 = 0;
  1371. #endif
  1372. #endif
  1373. #if EXTRUDERS > 2
  1374. static unsigned char soft_pwm_2;
  1375. #ifdef SLOW_PWM_HEATERS
  1376. static unsigned char state_heater_2 = 0;
  1377. static unsigned char state_timer_heater_2 = 0;
  1378. #endif
  1379. #endif
  1380. #if HEATER_BED_PIN > -1
  1381. static unsigned char soft_pwm_b;
  1382. #ifdef SLOW_PWM_HEATERS
  1383. static unsigned char state_heater_b = 0;
  1384. static unsigned char state_timer_heater_b = 0;
  1385. #endif
  1386. #endif
  1387. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1388. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1389. #endif
  1390. #ifndef SLOW_PWM_HEATERS
  1391. /*
  1392. * standard PWM modulation
  1393. */
  1394. if (pwm_count == 0)
  1395. {
  1396. soft_pwm_0 = soft_pwm[0];
  1397. if(soft_pwm_0 > 0)
  1398. {
  1399. WRITE(HEATER_0_PIN,1);
  1400. #ifdef HEATERS_PARALLEL
  1401. WRITE(HEATER_1_PIN,1);
  1402. #endif
  1403. } else WRITE(HEATER_0_PIN,0);
  1404. #if EXTRUDERS > 1
  1405. soft_pwm_1 = soft_pwm[1];
  1406. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1407. #endif
  1408. #if EXTRUDERS > 2
  1409. soft_pwm_2 = soft_pwm[2];
  1410. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1411. #endif
  1412. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1413. soft_pwm_b = soft_pwm_bed;
  1414. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1415. #endif
  1416. #ifdef FAN_SOFT_PWM
  1417. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1418. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1419. #endif
  1420. }
  1421. if(soft_pwm_0 < pwm_count)
  1422. {
  1423. WRITE(HEATER_0_PIN,0);
  1424. #ifdef HEATERS_PARALLEL
  1425. WRITE(HEATER_1_PIN,0);
  1426. #endif
  1427. }
  1428. #if EXTRUDERS > 1
  1429. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1430. #endif
  1431. #if EXTRUDERS > 2
  1432. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1433. #endif
  1434. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1435. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1436. #endif
  1437. #ifdef FAN_SOFT_PWM
  1438. if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1439. #endif
  1440. pwm_count += (1 << SOFT_PWM_SCALE);
  1441. pwm_count &= 0x7f;
  1442. #else //ifndef SLOW_PWM_HEATERS
  1443. /*
  1444. * SLOW PWM HEATERS
  1445. *
  1446. * for heaters drived by relay
  1447. */
  1448. #ifndef MIN_STATE_TIME
  1449. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1450. #endif
  1451. if (slow_pwm_count == 0) {
  1452. // EXTRUDER 0
  1453. soft_pwm_0 = soft_pwm[0];
  1454. if (soft_pwm_0 > 0) {
  1455. // turn ON heather only if the minimum time is up
  1456. if (state_timer_heater_0 == 0) {
  1457. // if change state set timer
  1458. if (state_heater_0 == 0) {
  1459. state_timer_heater_0 = MIN_STATE_TIME;
  1460. }
  1461. state_heater_0 = 1;
  1462. WRITE(HEATER_0_PIN, 1);
  1463. #ifdef HEATERS_PARALLEL
  1464. WRITE(HEATER_1_PIN, 1);
  1465. #endif
  1466. }
  1467. } else {
  1468. // turn OFF heather only if the minimum time is up
  1469. if (state_timer_heater_0 == 0) {
  1470. // if change state set timer
  1471. if (state_heater_0 == 1) {
  1472. state_timer_heater_0 = MIN_STATE_TIME;
  1473. }
  1474. state_heater_0 = 0;
  1475. WRITE(HEATER_0_PIN, 0);
  1476. #ifdef HEATERS_PARALLEL
  1477. WRITE(HEATER_1_PIN, 0);
  1478. #endif
  1479. }
  1480. }
  1481. #if EXTRUDERS > 1
  1482. // EXTRUDER 1
  1483. soft_pwm_1 = soft_pwm[1];
  1484. if (soft_pwm_1 > 0) {
  1485. // turn ON heather only if the minimum time is up
  1486. if (state_timer_heater_1 == 0) {
  1487. // if change state set timer
  1488. if (state_heater_1 == 0) {
  1489. state_timer_heater_1 = MIN_STATE_TIME;
  1490. }
  1491. state_heater_1 = 1;
  1492. WRITE(HEATER_1_PIN, 1);
  1493. }
  1494. } else {
  1495. // turn OFF heather only if the minimum time is up
  1496. if (state_timer_heater_1 == 0) {
  1497. // if change state set timer
  1498. if (state_heater_1 == 1) {
  1499. state_timer_heater_1 = MIN_STATE_TIME;
  1500. }
  1501. state_heater_1 = 0;
  1502. WRITE(HEATER_1_PIN, 0);
  1503. }
  1504. }
  1505. #endif
  1506. #if EXTRUDERS > 2
  1507. // EXTRUDER 2
  1508. soft_pwm_2 = soft_pwm[2];
  1509. if (soft_pwm_2 > 0) {
  1510. // turn ON heather only if the minimum time is up
  1511. if (state_timer_heater_2 == 0) {
  1512. // if change state set timer
  1513. if (state_heater_2 == 0) {
  1514. state_timer_heater_2 = MIN_STATE_TIME;
  1515. }
  1516. state_heater_2 = 1;
  1517. WRITE(HEATER_2_PIN, 1);
  1518. }
  1519. } else {
  1520. // turn OFF heather only if the minimum time is up
  1521. if (state_timer_heater_2 == 0) {
  1522. // if change state set timer
  1523. if (state_heater_2 == 1) {
  1524. state_timer_heater_2 = MIN_STATE_TIME;
  1525. }
  1526. state_heater_2 = 0;
  1527. WRITE(HEATER_2_PIN, 0);
  1528. }
  1529. }
  1530. #endif
  1531. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1532. // BED
  1533. soft_pwm_b = soft_pwm_bed;
  1534. if (soft_pwm_b > 0) {
  1535. // turn ON heather only if the minimum time is up
  1536. if (state_timer_heater_b == 0) {
  1537. // if change state set timer
  1538. if (state_heater_b == 0) {
  1539. state_timer_heater_b = MIN_STATE_TIME;
  1540. }
  1541. state_heater_b = 1;
  1542. WRITE(HEATER_BED_PIN, 1);
  1543. }
  1544. } else {
  1545. // turn OFF heather only if the minimum time is up
  1546. if (state_timer_heater_b == 0) {
  1547. // if change state set timer
  1548. if (state_heater_b == 1) {
  1549. state_timer_heater_b = MIN_STATE_TIME;
  1550. }
  1551. state_heater_b = 0;
  1552. WRITE(HEATER_BED_PIN, 0);
  1553. }
  1554. }
  1555. #endif
  1556. } // if (slow_pwm_count == 0)
  1557. // EXTRUDER 0
  1558. if (soft_pwm_0 < slow_pwm_count) {
  1559. // turn OFF heather only if the minimum time is up
  1560. if (state_timer_heater_0 == 0) {
  1561. // if change state set timer
  1562. if (state_heater_0 == 1) {
  1563. state_timer_heater_0 = MIN_STATE_TIME;
  1564. }
  1565. state_heater_0 = 0;
  1566. WRITE(HEATER_0_PIN, 0);
  1567. #ifdef HEATERS_PARALLEL
  1568. WRITE(HEATER_1_PIN, 0);
  1569. #endif
  1570. }
  1571. }
  1572. #if EXTRUDERS > 1
  1573. // EXTRUDER 1
  1574. if (soft_pwm_1 < slow_pwm_count) {
  1575. // turn OFF heather only if the minimum time is up
  1576. if (state_timer_heater_1 == 0) {
  1577. // if change state set timer
  1578. if (state_heater_1 == 1) {
  1579. state_timer_heater_1 = MIN_STATE_TIME;
  1580. }
  1581. state_heater_1 = 0;
  1582. WRITE(HEATER_1_PIN, 0);
  1583. }
  1584. }
  1585. #endif
  1586. #if EXTRUDERS > 2
  1587. // EXTRUDER 2
  1588. if (soft_pwm_2 < slow_pwm_count) {
  1589. // turn OFF heather only if the minimum time is up
  1590. if (state_timer_heater_2 == 0) {
  1591. // if change state set timer
  1592. if (state_heater_2 == 1) {
  1593. state_timer_heater_2 = MIN_STATE_TIME;
  1594. }
  1595. state_heater_2 = 0;
  1596. WRITE(HEATER_2_PIN, 0);
  1597. }
  1598. }
  1599. #endif
  1600. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1601. // BED
  1602. if (soft_pwm_b < slow_pwm_count) {
  1603. // turn OFF heather only if the minimum time is up
  1604. if (state_timer_heater_b == 0) {
  1605. // if change state set timer
  1606. if (state_heater_b == 1) {
  1607. state_timer_heater_b = MIN_STATE_TIME;
  1608. }
  1609. state_heater_b = 0;
  1610. WRITE(HEATER_BED_PIN, 0);
  1611. }
  1612. }
  1613. #endif
  1614. #ifdef FAN_SOFT_PWM
  1615. if (pwm_count == 0){
  1616. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1617. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1618. }
  1619. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1620. #endif
  1621. pwm_count += (1 << SOFT_PWM_SCALE);
  1622. pwm_count &= 0x7f;
  1623. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1624. if ((pwm_count % 64) == 0) {
  1625. slow_pwm_count++;
  1626. slow_pwm_count &= 0x7f;
  1627. // Extruder 0
  1628. if (state_timer_heater_0 > 0) {
  1629. state_timer_heater_0--;
  1630. }
  1631. #if EXTRUDERS > 1
  1632. // Extruder 1
  1633. if (state_timer_heater_1 > 0)
  1634. state_timer_heater_1--;
  1635. #endif
  1636. #if EXTRUDERS > 2
  1637. // Extruder 2
  1638. if (state_timer_heater_2 > 0)
  1639. state_timer_heater_2--;
  1640. #endif
  1641. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1642. // Bed
  1643. if (state_timer_heater_b > 0)
  1644. state_timer_heater_b--;
  1645. #endif
  1646. } //if ((pwm_count % 64) == 0) {
  1647. #endif //ifndef SLOW_PWM_HEATERS
  1648. #ifdef BABYSTEPPING
  1649. for(uint8_t axis=0;axis<3;axis++)
  1650. {
  1651. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1652. if(curTodo>0)
  1653. {
  1654. asm("cli");
  1655. babystep(axis,/*fwd*/true);
  1656. babystepsTodo[axis]--; //less to do next time
  1657. asm("sei");
  1658. }
  1659. else
  1660. if(curTodo<0)
  1661. {
  1662. asm("cli");
  1663. babystep(axis,/*fwd*/false);
  1664. babystepsTodo[axis]++; //less to do next time
  1665. asm("sei");
  1666. }
  1667. }
  1668. #endif //BABYSTEPPING
  1669. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1670. check_fans();
  1671. #endif //(defined(TACH_0))
  1672. _lock = false;
  1673. }
  1674. void check_max_temp()
  1675. {
  1676. //heater
  1677. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1678. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1679. #else
  1680. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1681. #endif
  1682. max_temp_error(0);
  1683. }
  1684. //bed
  1685. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1686. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1687. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1688. #else
  1689. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1690. #endif
  1691. target_temperature_bed = 0;
  1692. bed_max_temp_error();
  1693. }
  1694. #endif
  1695. }
  1696. void check_min_temp_heater0()
  1697. {
  1698. //heater
  1699. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1700. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1701. #else
  1702. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1703. #endif
  1704. min_temp_error(0);
  1705. }
  1706. }
  1707. void check_min_temp_bed()
  1708. {
  1709. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1710. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1711. #else
  1712. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1713. #endif
  1714. bed_min_temp_error();
  1715. }
  1716. }
  1717. void check_min_temp()
  1718. {
  1719. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1720. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1721. #ifdef AMBIENT_THERMISTOR
  1722. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1723. { // ambient temperature is low
  1724. #endif //AMBIENT_THERMISTOR
  1725. // *** 'common' part of code for MK2.5 & MK3
  1726. // * nozzle checking
  1727. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1728. { // ~ nozzle heating is on
  1729. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>=minttemp[active_extruder]); // for eventually delay cutting
  1730. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1731. {
  1732. bCheckingOnHeater=true; // not necessary
  1733. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1734. }
  1735. }
  1736. else { // ~ nozzle heating is off
  1737. oTimer4minTempHeater.start();
  1738. bCheckingOnHeater=false;
  1739. }
  1740. // * bed checking
  1741. if(target_temperature_bed>BED_MINTEMP)
  1742. { // ~ bed heating is on
  1743. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>=BED_MINTEMP); // for eventually delay cutting
  1744. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1745. {
  1746. bCheckingOnBed=true; // not necessary
  1747. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1748. }
  1749. }
  1750. else { // ~ bed heating is off
  1751. oTimer4minTempBed.start();
  1752. bCheckingOnBed=false;
  1753. }
  1754. // *** end of 'common' part
  1755. #ifdef AMBIENT_THERMISTOR
  1756. }
  1757. else { // ambient temperature is standard
  1758. check_min_temp_heater0();
  1759. check_min_temp_bed();
  1760. }
  1761. #endif //AMBIENT_THERMISTOR
  1762. }
  1763. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1764. void check_fans() {
  1765. if (READ(TACH_0) != fan_state[0]) {
  1766. fan_edge_counter[0] ++;
  1767. fan_state[0] = !fan_state[0];
  1768. }
  1769. //if (READ(TACH_1) != fan_state[1]) {
  1770. // fan_edge_counter[1] ++;
  1771. // fan_state[1] = !fan_state[1];
  1772. //}
  1773. }
  1774. #endif //TACH_0
  1775. #ifdef PIDTEMP
  1776. // Apply the scale factors to the PID values
  1777. float scalePID_i(float i)
  1778. {
  1779. return i*PID_dT;
  1780. }
  1781. float unscalePID_i(float i)
  1782. {
  1783. return i/PID_dT;
  1784. }
  1785. float scalePID_d(float d)
  1786. {
  1787. return d/PID_dT;
  1788. }
  1789. float unscalePID_d(float d)
  1790. {
  1791. return d*PID_dT;
  1792. }
  1793. #endif //PIDTEMP