Marlin_main.cpp 288 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "printers.h"
  35. #include "ultralcd.h"
  36. #include "Configuration_prusa.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "motion_control.h"
  41. #include "cardreader.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include "Timer.h"
  48. #include <avr/wdt.h>
  49. #include <avr/pgmspace.h>
  50. #include "Dcodes.h"
  51. #ifdef SWSPI
  52. #include "swspi.h"
  53. #endif //SWSPI
  54. #ifdef NEW_SPI
  55. #include "spi.h"
  56. #endif //NEW_SPI
  57. #ifdef SWI2C
  58. #include "swi2c.h"
  59. #endif //SWI2C
  60. #ifdef PAT9125
  61. #include "pat9125.h"
  62. #include "fsensor.h"
  63. #endif //PAT9125
  64. #ifdef TMC2130
  65. #include "tmc2130.h"
  66. #endif //TMC2130
  67. #ifdef BLINKM
  68. #include "BlinkM.h"
  69. #include "Wire.h"
  70. #endif
  71. #ifdef ULTRALCD
  72. #include "ultralcd.h"
  73. #endif
  74. #if NUM_SERVOS > 0
  75. #include "Servo.h"
  76. #endif
  77. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  78. #include <SPI.h>
  79. #endif
  80. #define VERSION_STRING "1.0.2"
  81. #include "ultralcd.h"
  82. #include "cmdqueue.h"
  83. // Macros for bit masks
  84. #define BIT(b) (1<<(b))
  85. #define TEST(n,b) (((n)&BIT(b))!=0)
  86. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  87. //Macro for print fan speed
  88. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  89. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  90. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  91. //Implemented Codes
  92. //-------------------
  93. // PRUSA CODES
  94. // P F - Returns FW versions
  95. // P R - Returns revision of printer
  96. // G0 -> G1
  97. // G1 - Coordinated Movement X Y Z E
  98. // G2 - CW ARC
  99. // G3 - CCW ARC
  100. // G4 - Dwell S<seconds> or P<milliseconds>
  101. // G10 - retract filament according to settings of M207
  102. // G11 - retract recover filament according to settings of M208
  103. // G28 - Home all Axis
  104. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  105. // G30 - Single Z Probe, probes bed at current XY location.
  106. // G31 - Dock sled (Z_PROBE_SLED only)
  107. // G32 - Undock sled (Z_PROBE_SLED only)
  108. // G80 - Automatic mesh bed leveling
  109. // G81 - Print bed profile
  110. // G90 - Use Absolute Coordinates
  111. // G91 - Use Relative Coordinates
  112. // G92 - Set current position to coordinates given
  113. // M Codes
  114. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. // M1 - Same as M0
  116. // M17 - Enable/Power all stepper motors
  117. // M18 - Disable all stepper motors; same as M84
  118. // M20 - List SD card
  119. // M21 - Init SD card
  120. // M22 - Release SD card
  121. // M23 - Select SD file (M23 filename.g)
  122. // M24 - Start/resume SD print
  123. // M25 - Pause SD print
  124. // M26 - Set SD position in bytes (M26 S12345)
  125. // M27 - Report SD print status
  126. // M28 - Start SD write (M28 filename.g)
  127. // M29 - Stop SD write
  128. // M30 - Delete file from SD (M30 filename.g)
  129. // M31 - Output time since last M109 or SD card start to serial
  130. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  131. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  132. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  133. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  134. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  135. // M80 - Turn on Power Supply
  136. // M81 - Turn off Power Supply
  137. // M82 - Set E codes absolute (default)
  138. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  139. // M84 - Disable steppers until next move,
  140. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  141. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  142. // M92 - Set axis_steps_per_unit - same syntax as G92
  143. // M104 - Set extruder target temp
  144. // M105 - Read current temp
  145. // M106 - Fan on
  146. // M107 - Fan off
  147. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  148. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  149. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  150. // M112 - Emergency stop
  151. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  152. // M114 - Output current position to serial port
  153. // M115 - Capabilities string
  154. // M117 - display message
  155. // M119 - Output Endstop status to serial port
  156. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  157. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  158. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  159. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  160. // M140 - Set bed target temp
  161. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  162. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  163. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  164. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  165. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  166. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  167. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  168. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  169. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  170. // M206 - set additional homing offset
  171. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  172. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  173. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  174. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  175. // M220 S<factor in percent>- set speed factor override percentage
  176. // M221 S<factor in percent>- set extrude factor override percentage
  177. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  178. // M240 - Trigger a camera to take a photograph
  179. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  180. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  181. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  182. // M301 - Set PID parameters P I and D
  183. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  184. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  185. // M304 - Set bed PID parameters P I and D
  186. // M400 - Finish all moves
  187. // M401 - Lower z-probe if present
  188. // M402 - Raise z-probe if present
  189. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  190. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  191. // M406 - Turn off Filament Sensor extrusion control
  192. // M407 - Displays measured filament diameter
  193. // M500 - stores parameters in EEPROM
  194. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  195. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  196. // M503 - print the current settings (from memory not from EEPROM)
  197. // M509 - force language selection on next restart
  198. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  199. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  200. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  201. // M860 - Wait for PINDA thermistor to reach target temperature.
  202. // M861 - Set / Read PINDA temperature compensation offsets
  203. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  204. // M907 - Set digital trimpot motor current using axis codes.
  205. // M908 - Control digital trimpot directly.
  206. // M350 - Set microstepping mode.
  207. // M351 - Toggle MS1 MS2 pins directly.
  208. // M928 - Start SD logging (M928 filename.g) - ended by M29
  209. // M999 - Restart after being stopped by error
  210. //Stepper Movement Variables
  211. //===========================================================================
  212. //=============================imported variables============================
  213. //===========================================================================
  214. //===========================================================================
  215. //=============================public variables=============================
  216. //===========================================================================
  217. #ifdef SDSUPPORT
  218. CardReader card;
  219. #endif
  220. unsigned long PingTime = millis();
  221. unsigned long NcTime;
  222. union Data
  223. {
  224. byte b[2];
  225. int value;
  226. };
  227. float homing_feedrate[] = HOMING_FEEDRATE;
  228. // Currently only the extruder axis may be switched to a relative mode.
  229. // Other axes are always absolute or relative based on the common relative_mode flag.
  230. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  231. int feedmultiply=100; //100->1 200->2
  232. int saved_feedmultiply;
  233. int extrudemultiply=100; //100->1 200->2
  234. int extruder_multiply[EXTRUDERS] = {100
  235. #if EXTRUDERS > 1
  236. , 100
  237. #if EXTRUDERS > 2
  238. , 100
  239. #endif
  240. #endif
  241. };
  242. int bowden_length[4] = {385, 385, 385, 385};
  243. bool is_usb_printing = false;
  244. bool homing_flag = false;
  245. bool temp_cal_active = false;
  246. unsigned long kicktime = millis()+100000;
  247. unsigned int usb_printing_counter;
  248. int lcd_change_fil_state = 0;
  249. int feedmultiplyBckp = 100;
  250. float HotendTempBckp = 0;
  251. int fanSpeedBckp = 0;
  252. float pause_lastpos[4];
  253. unsigned long pause_time = 0;
  254. unsigned long start_pause_print = millis();
  255. unsigned long t_fan_rising_edge = millis();
  256. //unsigned long load_filament_time;
  257. bool mesh_bed_leveling_flag = false;
  258. bool mesh_bed_run_from_menu = false;
  259. //unsigned char lang_selected = 0;
  260. int8_t FarmMode = 0;
  261. bool prusa_sd_card_upload = false;
  262. unsigned int status_number = 0;
  263. unsigned long total_filament_used;
  264. unsigned int heating_status;
  265. unsigned int heating_status_counter;
  266. bool custom_message;
  267. bool loading_flag = false;
  268. unsigned int custom_message_type;
  269. unsigned int custom_message_state;
  270. char snmm_filaments_used = 0;
  271. bool fan_state[2];
  272. int fan_edge_counter[2];
  273. int fan_speed[2];
  274. char dir_names[3][9];
  275. bool sortAlpha = false;
  276. bool volumetric_enabled = false;
  277. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  278. #if EXTRUDERS > 1
  279. , DEFAULT_NOMINAL_FILAMENT_DIA
  280. #if EXTRUDERS > 2
  281. , DEFAULT_NOMINAL_FILAMENT_DIA
  282. #endif
  283. #endif
  284. };
  285. float extruder_multiplier[EXTRUDERS] = {1.0
  286. #if EXTRUDERS > 1
  287. , 1.0
  288. #if EXTRUDERS > 2
  289. , 1.0
  290. #endif
  291. #endif
  292. };
  293. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  294. float add_homing[3]={0,0,0};
  295. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  296. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  297. bool axis_known_position[3] = {false, false, false};
  298. float zprobe_zoffset;
  299. // Extruder offset
  300. #if EXTRUDERS > 1
  301. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  302. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  303. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  304. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  305. #endif
  306. };
  307. #endif
  308. uint8_t active_extruder = 0;
  309. int fanSpeed=0;
  310. #ifdef FWRETRACT
  311. bool autoretract_enabled=false;
  312. bool retracted[EXTRUDERS]={false
  313. #if EXTRUDERS > 1
  314. , false
  315. #if EXTRUDERS > 2
  316. , false
  317. #endif
  318. #endif
  319. };
  320. bool retracted_swap[EXTRUDERS]={false
  321. #if EXTRUDERS > 1
  322. , false
  323. #if EXTRUDERS > 2
  324. , false
  325. #endif
  326. #endif
  327. };
  328. float retract_length = RETRACT_LENGTH;
  329. float retract_length_swap = RETRACT_LENGTH_SWAP;
  330. float retract_feedrate = RETRACT_FEEDRATE;
  331. float retract_zlift = RETRACT_ZLIFT;
  332. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  333. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  334. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  335. #endif
  336. #ifdef ULTIPANEL
  337. #ifdef PS_DEFAULT_OFF
  338. bool powersupply = false;
  339. #else
  340. bool powersupply = true;
  341. #endif
  342. #endif
  343. bool cancel_heatup = false ;
  344. #ifdef HOST_KEEPALIVE_FEATURE
  345. int busy_state = NOT_BUSY;
  346. static long prev_busy_signal_ms = -1;
  347. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  348. #else
  349. #define host_keepalive();
  350. #define KEEPALIVE_STATE(n);
  351. #endif
  352. const char errormagic[] PROGMEM = "Error:";
  353. const char echomagic[] PROGMEM = "echo:";
  354. bool no_response = false;
  355. uint8_t important_status;
  356. uint8_t saved_filament_type;
  357. //===========================================================================
  358. //=============================Private Variables=============================
  359. //===========================================================================
  360. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  361. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  362. static float delta[3] = {0.0, 0.0, 0.0};
  363. // For tracing an arc
  364. static float offset[3] = {0.0, 0.0, 0.0};
  365. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  366. // Determines Absolute or Relative Coordinates.
  367. // Also there is bool axis_relative_modes[] per axis flag.
  368. static bool relative_mode = false;
  369. #ifndef _DISABLE_M42_M226
  370. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  371. #endif //_DISABLE_M42_M226
  372. //static float tt = 0;
  373. //static float bt = 0;
  374. //Inactivity shutdown variables
  375. static unsigned long previous_millis_cmd = 0;
  376. unsigned long max_inactive_time = 0;
  377. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  378. unsigned long starttime=0;
  379. unsigned long stoptime=0;
  380. unsigned long _usb_timer = 0;
  381. static uint8_t tmp_extruder;
  382. bool extruder_under_pressure = true;
  383. bool Stopped=false;
  384. #if NUM_SERVOS > 0
  385. Servo servos[NUM_SERVOS];
  386. #endif
  387. bool CooldownNoWait = true;
  388. bool target_direction;
  389. //Insert variables if CHDK is defined
  390. #ifdef CHDK
  391. unsigned long chdkHigh = 0;
  392. boolean chdkActive = false;
  393. #endif
  394. //===========================================================================
  395. //=============================Routines======================================
  396. //===========================================================================
  397. void get_arc_coordinates();
  398. bool setTargetedHotend(int code);
  399. void serial_echopair_P(const char *s_P, float v)
  400. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  401. void serial_echopair_P(const char *s_P, double v)
  402. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  403. void serial_echopair_P(const char *s_P, unsigned long v)
  404. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  405. #ifdef SDSUPPORT
  406. #include "SdFatUtil.h"
  407. int freeMemory() { return SdFatUtil::FreeRam(); }
  408. #else
  409. extern "C" {
  410. extern unsigned int __bss_end;
  411. extern unsigned int __heap_start;
  412. extern void *__brkval;
  413. int freeMemory() {
  414. int free_memory;
  415. if ((int)__brkval == 0)
  416. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  417. else
  418. free_memory = ((int)&free_memory) - ((int)__brkval);
  419. return free_memory;
  420. }
  421. }
  422. #endif //!SDSUPPORT
  423. void setup_killpin()
  424. {
  425. #if defined(KILL_PIN) && KILL_PIN > -1
  426. SET_INPUT(KILL_PIN);
  427. WRITE(KILL_PIN,HIGH);
  428. #endif
  429. }
  430. // Set home pin
  431. void setup_homepin(void)
  432. {
  433. #if defined(HOME_PIN) && HOME_PIN > -1
  434. SET_INPUT(HOME_PIN);
  435. WRITE(HOME_PIN,HIGH);
  436. #endif
  437. }
  438. void setup_photpin()
  439. {
  440. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  441. SET_OUTPUT(PHOTOGRAPH_PIN);
  442. WRITE(PHOTOGRAPH_PIN, LOW);
  443. #endif
  444. }
  445. void setup_powerhold()
  446. {
  447. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  448. SET_OUTPUT(SUICIDE_PIN);
  449. WRITE(SUICIDE_PIN, HIGH);
  450. #endif
  451. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  452. SET_OUTPUT(PS_ON_PIN);
  453. #if defined(PS_DEFAULT_OFF)
  454. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  455. #else
  456. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  457. #endif
  458. #endif
  459. }
  460. void suicide()
  461. {
  462. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  463. SET_OUTPUT(SUICIDE_PIN);
  464. WRITE(SUICIDE_PIN, LOW);
  465. #endif
  466. }
  467. void servo_init()
  468. {
  469. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  470. servos[0].attach(SERVO0_PIN);
  471. #endif
  472. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  473. servos[1].attach(SERVO1_PIN);
  474. #endif
  475. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  476. servos[2].attach(SERVO2_PIN);
  477. #endif
  478. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  479. servos[3].attach(SERVO3_PIN);
  480. #endif
  481. #if (NUM_SERVOS >= 5)
  482. #error "TODO: enter initalisation code for more servos"
  483. #endif
  484. }
  485. static void lcd_language_menu();
  486. void stop_and_save_print_to_ram(float z_move, float e_move);
  487. void restore_print_from_ram_and_continue(float e_move);
  488. bool fans_check_enabled = true;
  489. bool filament_autoload_enabled = true;
  490. #ifdef TMC2130
  491. extern int8_t CrashDetectMenu;
  492. void crashdet_enable()
  493. {
  494. // MYSERIAL.println("crashdet_enable");
  495. tmc2130_sg_stop_on_crash = true;
  496. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  497. CrashDetectMenu = 1;
  498. }
  499. void crashdet_disable()
  500. {
  501. // MYSERIAL.println("crashdet_disable");
  502. tmc2130_sg_stop_on_crash = false;
  503. tmc2130_sg_crash = 0;
  504. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  505. CrashDetectMenu = 0;
  506. }
  507. void crashdet_stop_and_save_print()
  508. {
  509. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  510. }
  511. void crashdet_restore_print_and_continue()
  512. {
  513. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  514. // babystep_apply();
  515. }
  516. void crashdet_stop_and_save_print2()
  517. {
  518. cli();
  519. planner_abort_hard(); //abort printing
  520. cmdqueue_reset(); //empty cmdqueue
  521. card.sdprinting = false;
  522. card.closefile();
  523. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  524. st_reset_timer();
  525. sei();
  526. }
  527. void crashdet_detected(uint8_t mask)
  528. {
  529. // printf("CRASH_DETECTED");
  530. /* while (!is_buffer_empty())
  531. {
  532. process_commands();
  533. cmdqueue_pop_front();
  534. }*/
  535. st_synchronize();
  536. lcd_update_enable(true);
  537. lcd_implementation_clear();
  538. lcd_update(2);
  539. if (mask & X_AXIS_MASK)
  540. {
  541. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  542. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  543. }
  544. if (mask & Y_AXIS_MASK)
  545. {
  546. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  547. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  548. }
  549. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  550. bool yesno = true;
  551. #else
  552. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  553. #endif
  554. lcd_update_enable(true);
  555. lcd_update(2);
  556. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  557. if (yesno)
  558. {
  559. enquecommand_P(PSTR("G28 X Y"));
  560. enquecommand_P(PSTR("CRASH_RECOVER"));
  561. }
  562. else
  563. {
  564. enquecommand_P(PSTR("CRASH_CANCEL"));
  565. }
  566. }
  567. void crashdet_recover()
  568. {
  569. crashdet_restore_print_and_continue();
  570. tmc2130_sg_stop_on_crash = true;
  571. }
  572. void crashdet_cancel()
  573. {
  574. card.sdprinting = false;
  575. card.closefile();
  576. tmc2130_sg_stop_on_crash = true;
  577. }
  578. #endif //TMC2130
  579. void failstats_reset_print()
  580. {
  581. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  582. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  583. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  584. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  585. }
  586. #ifdef MESH_BED_LEVELING
  587. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  588. #endif
  589. // Factory reset function
  590. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  591. // Level input parameter sets depth of reset
  592. // Quiet parameter masks all waitings for user interact.
  593. int er_progress = 0;
  594. void factory_reset(char level, bool quiet)
  595. {
  596. lcd_implementation_clear();
  597. int cursor_pos = 0;
  598. switch (level) {
  599. // Level 0: Language reset
  600. case 0:
  601. WRITE(BEEPER, HIGH);
  602. _delay_ms(100);
  603. WRITE(BEEPER, LOW);
  604. lcd_force_language_selection();
  605. break;
  606. //Level 1: Reset statistics
  607. case 1:
  608. WRITE(BEEPER, HIGH);
  609. _delay_ms(100);
  610. WRITE(BEEPER, LOW);
  611. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  612. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  613. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  614. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  615. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  616. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  617. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  618. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  619. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  620. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  621. lcd_menu_statistics();
  622. break;
  623. // Level 2: Prepare for shipping
  624. case 2:
  625. //lcd_printPGM(PSTR("Factory RESET"));
  626. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  627. // Force language selection at the next boot up.
  628. lcd_force_language_selection();
  629. // Force the "Follow calibration flow" message at the next boot up.
  630. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  631. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  632. farm_no = 0;
  633. //*** MaR::180501_01
  634. farm_mode = false;
  635. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  636. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  637. WRITE(BEEPER, HIGH);
  638. _delay_ms(100);
  639. WRITE(BEEPER, LOW);
  640. //_delay_ms(2000);
  641. break;
  642. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  643. case 3:
  644. lcd_printPGM(PSTR("Factory RESET"));
  645. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  646. WRITE(BEEPER, HIGH);
  647. _delay_ms(100);
  648. WRITE(BEEPER, LOW);
  649. er_progress = 0;
  650. lcd_print_at_PGM(3, 3, PSTR(" "));
  651. lcd_implementation_print_at(3, 3, er_progress);
  652. // Erase EEPROM
  653. for (int i = 0; i < 4096; i++) {
  654. eeprom_write_byte((uint8_t*)i, 0xFF);
  655. if (i % 41 == 0) {
  656. er_progress++;
  657. lcd_print_at_PGM(3, 3, PSTR(" "));
  658. lcd_implementation_print_at(3, 3, er_progress);
  659. lcd_printPGM(PSTR("%"));
  660. }
  661. }
  662. break;
  663. case 4:
  664. bowden_menu();
  665. break;
  666. default:
  667. break;
  668. }
  669. }
  670. #include "LiquidCrystal_Prusa.h"
  671. extern LiquidCrystal_Prusa lcd;
  672. FILE _lcdout = {0};
  673. int lcd_putchar(char c, FILE *stream)
  674. {
  675. lcd.write(c);
  676. return 0;
  677. }
  678. FILE _uartout = {0};
  679. int uart_putchar(char c, FILE *stream)
  680. {
  681. MYSERIAL.write(c);
  682. return 0;
  683. }
  684. void lcd_splash()
  685. {
  686. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  687. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  688. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  689. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  690. }
  691. void factory_reset()
  692. {
  693. KEEPALIVE_STATE(PAUSED_FOR_USER);
  694. if (!READ(BTN_ENC))
  695. {
  696. _delay_ms(1000);
  697. if (!READ(BTN_ENC))
  698. {
  699. lcd_implementation_clear();
  700. lcd_printPGM(PSTR("Factory RESET"));
  701. SET_OUTPUT(BEEPER);
  702. WRITE(BEEPER, HIGH);
  703. while (!READ(BTN_ENC));
  704. WRITE(BEEPER, LOW);
  705. _delay_ms(2000);
  706. char level = reset_menu();
  707. factory_reset(level, false);
  708. switch (level) {
  709. case 0: _delay_ms(0); break;
  710. case 1: _delay_ms(0); break;
  711. case 2: _delay_ms(0); break;
  712. case 3: _delay_ms(0); break;
  713. }
  714. // _delay_ms(100);
  715. /*
  716. #ifdef MESH_BED_LEVELING
  717. _delay_ms(2000);
  718. if (!READ(BTN_ENC))
  719. {
  720. WRITE(BEEPER, HIGH);
  721. _delay_ms(100);
  722. WRITE(BEEPER, LOW);
  723. _delay_ms(200);
  724. WRITE(BEEPER, HIGH);
  725. _delay_ms(100);
  726. WRITE(BEEPER, LOW);
  727. int _z = 0;
  728. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  729. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  730. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  731. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  732. }
  733. else
  734. {
  735. WRITE(BEEPER, HIGH);
  736. _delay_ms(100);
  737. WRITE(BEEPER, LOW);
  738. }
  739. #endif // mesh */
  740. }
  741. }
  742. else
  743. {
  744. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  745. }
  746. KEEPALIVE_STATE(IN_HANDLER);
  747. }
  748. void show_fw_version_warnings() {
  749. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  750. switch (FW_DEV_VERSION) {
  751. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  752. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  753. case(FW_VERSION_DEVEL):
  754. case(FW_VERSION_DEBUG):
  755. lcd_update_enable(false);
  756. lcd_implementation_clear();
  757. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  758. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  759. #else
  760. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  761. #endif
  762. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  763. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  764. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  765. lcd_wait_for_click();
  766. break;
  767. default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  768. }
  769. lcd_update_enable(true);
  770. }
  771. uint8_t check_printer_version()
  772. {
  773. uint8_t version_changed = 0;
  774. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  775. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  776. if (printer_type != PRINTER_TYPE) {
  777. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  778. else version_changed |= 0b10;
  779. }
  780. if (motherboard != MOTHERBOARD) {
  781. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  782. else version_changed |= 0b01;
  783. }
  784. return version_changed;
  785. }
  786. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  787. {
  788. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  789. }
  790. // "Setup" function is called by the Arduino framework on startup.
  791. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  792. // are initialized by the main() routine provided by the Arduino framework.
  793. void setup()
  794. {
  795. lcd_init();
  796. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  797. lcd_splash();
  798. setup_killpin();
  799. setup_powerhold();
  800. //*** MaR::180501_02b
  801. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  802. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  803. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  804. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  805. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  806. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  807. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  808. if (farm_mode)
  809. {
  810. no_response = true; //we need confirmation by recieving PRUSA thx
  811. important_status = 8;
  812. prusa_statistics(8);
  813. selectedSerialPort = 1;
  814. }
  815. MYSERIAL.begin(BAUDRATE);
  816. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  817. stdout = uartout;
  818. SERIAL_PROTOCOLLNPGM("start");
  819. SERIAL_ECHO_START;
  820. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  821. #if 0
  822. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  823. for (int i = 0; i < 4096; ++i) {
  824. int b = eeprom_read_byte((unsigned char*)i);
  825. if (b != 255) {
  826. SERIAL_ECHO(i);
  827. SERIAL_ECHO(":");
  828. SERIAL_ECHO(b);
  829. SERIAL_ECHOLN("");
  830. }
  831. }
  832. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  833. #endif
  834. // Check startup - does nothing if bootloader sets MCUSR to 0
  835. byte mcu = MCUSR;
  836. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  837. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  838. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  839. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  840. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  841. if (mcu & 1) puts_P(MSG_POWERUP);
  842. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  843. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  844. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  845. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  846. MCUSR = 0;
  847. //SERIAL_ECHORPGM(MSG_MARLIN);
  848. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  849. #ifdef STRING_VERSION_CONFIG_H
  850. #ifdef STRING_CONFIG_H_AUTHOR
  851. SERIAL_ECHO_START;
  852. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  853. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  854. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  855. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  856. SERIAL_ECHOPGM("Compiled: ");
  857. SERIAL_ECHOLNPGM(__DATE__);
  858. #endif
  859. #endif
  860. SERIAL_ECHO_START;
  861. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  862. SERIAL_ECHO(freeMemory());
  863. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  864. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  865. //lcd_update_enable(false); // why do we need this?? - andre
  866. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  867. bool previous_settings_retrieved = false;
  868. uint8_t hw_changed = check_printer_version();
  869. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  870. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  871. }
  872. else { //printer version was changed so use default settings
  873. Config_ResetDefault();
  874. }
  875. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  876. tp_init(); // Initialize temperature loop
  877. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  878. plan_init(); // Initialize planner;
  879. factory_reset();
  880. #ifdef TMC2130
  881. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  882. if (silentMode == 0xff) silentMode = 0;
  883. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  884. tmc2130_mode = TMC2130_MODE_NORMAL;
  885. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  886. if (crashdet && !farm_mode)
  887. {
  888. crashdet_enable();
  889. MYSERIAL.println("CrashDetect ENABLED!");
  890. }
  891. else
  892. {
  893. crashdet_disable();
  894. MYSERIAL.println("CrashDetect DISABLED");
  895. }
  896. #ifdef TMC2130_LINEARITY_CORRECTION
  897. #ifdef EXPERIMENTAL_FEATURES
  898. tmc2130_wave_fac[X_AXIS] = eeprom_read_word((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  899. tmc2130_wave_fac[Y_AXIS] = eeprom_read_word((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  900. tmc2130_wave_fac[Z_AXIS] = eeprom_read_word((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  901. #endif //EXPERIMENTAL_FEATURES
  902. tmc2130_wave_fac[E_AXIS] = eeprom_read_word((uint16_t*)EEPROM_TMC2130_WAVE_E_FAC);
  903. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  904. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  905. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  906. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  907. #endif //TMC2130_LINEARITY_CORRECTION
  908. #ifdef TMC2130_VARIABLE_RESOLUTION
  909. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  910. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  911. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  912. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  913. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  914. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  915. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  916. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  917. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  918. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  919. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  920. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  921. #else //TMC2130_VARIABLE_RESOLUTION
  922. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  923. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  924. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  925. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  926. #endif //TMC2130_VARIABLE_RESOLUTION
  927. #endif //TMC2130
  928. #ifdef NEW_SPI
  929. spi_init();
  930. #endif //NEW_SPI
  931. st_init(); // Initialize stepper, this enables interrupts!
  932. #ifdef TMC2130
  933. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  934. tmc2130_init();
  935. #endif //TMC2130
  936. setup_photpin();
  937. servo_init();
  938. // Reset the machine correction matrix.
  939. // It does not make sense to load the correction matrix until the machine is homed.
  940. world2machine_reset();
  941. #ifdef PAT9125
  942. fsensor_init();
  943. #endif //PAT9125
  944. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  945. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  946. #endif
  947. setup_homepin();
  948. #ifdef TMC2130
  949. if (1) {
  950. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  951. // try to run to zero phase before powering the Z motor.
  952. // Move in negative direction
  953. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  954. // Round the current micro-micro steps to micro steps.
  955. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  956. // Until the phase counter is reset to zero.
  957. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  958. delay(2);
  959. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  960. delay(2);
  961. }
  962. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  963. }
  964. #endif //TMC2130
  965. #if defined(Z_AXIS_ALWAYS_ON)
  966. enable_z();
  967. #endif
  968. //*** MaR::180501_02
  969. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  970. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  971. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  972. if (farm_no == 0xFFFF) farm_no = 0;
  973. if (farm_mode)
  974. {
  975. prusa_statistics(8);
  976. }
  977. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  978. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  979. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  980. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  981. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  982. // where all the EEPROM entries are set to 0x0ff.
  983. // Once a firmware boots up, it forces at least a language selection, which changes
  984. // EEPROM_LANG to number lower than 0x0ff.
  985. // 1) Set a high power mode.
  986. #ifdef TMC2130
  987. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  988. tmc2130_mode = TMC2130_MODE_NORMAL;
  989. #endif //TMC2130
  990. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  991. }
  992. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  993. // but this times out if a blocking dialog is shown in setup().
  994. card.initsd();
  995. #ifdef DEBUG_SD_SPEED_TEST
  996. if (card.cardOK)
  997. {
  998. uint8_t* buff = (uint8_t*)block_buffer;
  999. uint32_t block = 0;
  1000. uint32_t sumr = 0;
  1001. uint32_t sumw = 0;
  1002. for (int i = 0; i < 1024; i++)
  1003. {
  1004. uint32_t u = micros();
  1005. bool res = card.card.readBlock(i, buff);
  1006. u = micros() - u;
  1007. if (res)
  1008. {
  1009. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1010. sumr += u;
  1011. u = micros();
  1012. res = card.card.writeBlock(i, buff);
  1013. u = micros() - u;
  1014. if (res)
  1015. {
  1016. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1017. sumw += u;
  1018. }
  1019. else
  1020. {
  1021. printf_P(PSTR("writeBlock %4d error\n"), i);
  1022. break;
  1023. }
  1024. }
  1025. else
  1026. {
  1027. printf_P(PSTR("readBlock %4d error\n"), i);
  1028. break;
  1029. }
  1030. }
  1031. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1032. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1033. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1034. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1035. }
  1036. else
  1037. printf_P(PSTR("Card NG!\n"));
  1038. #endif DEBUG_SD_SPEED_TEST
  1039. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1040. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1041. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1042. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1043. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1044. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1045. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1046. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1047. #ifdef SNMM
  1048. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1049. int _z = BOWDEN_LENGTH;
  1050. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1051. }
  1052. #endif
  1053. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1054. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1055. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1056. /// lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1057. /// if (lang_selected >= LANG_NUM){
  1058. /// lcd_mylang();
  1059. /// }
  1060. lang_select(0);
  1061. puts_P(_n("\nNew ML support"));
  1062. printf_P(_n(" lang_selected = %d\n"), lang_selected);
  1063. printf_P(_n(" &_SEC_LANG = 0x%04x\n"), &_SEC_LANG);
  1064. printf_P(_n(" sizeof(_SEC_LANG) = 0x%04x\n"), sizeof(_SEC_LANG));
  1065. uint16_t ptr_lang_table0 = ((uint16_t)(&_SEC_LANG) + 0xff) & 0xff00;
  1066. printf_P(_n(" &_lang_table0 = 0x%04x\n"), ptr_lang_table0);
  1067. puts_P(_n("\n"));
  1068. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1069. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1070. temp_cal_active = false;
  1071. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1072. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1073. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1074. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1075. int16_t z_shift = 0;
  1076. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1077. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1078. temp_cal_active = false;
  1079. }
  1080. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1081. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1082. }
  1083. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1084. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1085. }
  1086. check_babystep(); //checking if Z babystep is in allowed range
  1087. #ifdef UVLO_SUPPORT
  1088. setup_uvlo_interrupt();
  1089. #endif //UVLO_SUPPORT
  1090. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1091. setup_fan_interrupt();
  1092. #endif //DEBUG_DISABLE_FANCHECK
  1093. #ifdef PAT9125
  1094. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1095. fsensor_setup_interrupt();
  1096. #endif //DEBUG_DISABLE_FSENSORCHECK
  1097. #endif //PAT9125
  1098. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1099. #ifndef DEBUG_DISABLE_STARTMSGS
  1100. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1101. show_fw_version_warnings();
  1102. switch (hw_changed) {
  1103. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1104. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1105. case(0b01):
  1106. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1107. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1108. break;
  1109. case(0b10):
  1110. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1111. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1112. break;
  1113. case(0b11):
  1114. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1115. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1116. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1117. break;
  1118. default: break; //no change, show no message
  1119. }
  1120. if (!previous_settings_retrieved) {
  1121. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1122. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1123. }
  1124. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1125. lcd_wizard(0);
  1126. }
  1127. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1128. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1129. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1130. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1131. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1132. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1133. // Show the message.
  1134. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1135. }
  1136. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1137. // Show the message.
  1138. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1139. lcd_update_enable(true);
  1140. }
  1141. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1142. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1143. lcd_update_enable(true);
  1144. }
  1145. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1146. // Show the message.
  1147. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1148. }
  1149. }
  1150. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1151. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1152. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1153. update_current_firmware_version_to_eeprom();
  1154. lcd_selftest();
  1155. }
  1156. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1157. KEEPALIVE_STATE(IN_PROCESS);
  1158. #endif //DEBUG_DISABLE_STARTMSGS
  1159. lcd_update_enable(true);
  1160. lcd_implementation_clear();
  1161. lcd_update(2);
  1162. // Store the currently running firmware into an eeprom,
  1163. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1164. update_current_firmware_version_to_eeprom();
  1165. #ifdef TMC2130
  1166. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1167. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1168. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1169. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1170. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1171. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1172. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1173. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1174. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1175. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1176. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1177. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1178. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1179. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1180. #endif //TMC2130
  1181. #ifdef UVLO_SUPPORT
  1182. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1183. /*
  1184. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  1185. else {
  1186. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1187. lcd_update_enable(true);
  1188. lcd_update(2);
  1189. lcd_setstatuspgm(WELCOME_MSG);
  1190. }
  1191. */
  1192. manage_heater(); // Update temperatures
  1193. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1194. MYSERIAL.println("Power panic detected!");
  1195. MYSERIAL.print("Current bed temp:");
  1196. MYSERIAL.println(degBed());
  1197. MYSERIAL.print("Saved bed temp:");
  1198. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1199. #endif
  1200. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1201. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1202. MYSERIAL.println("Automatic recovery!");
  1203. #endif
  1204. recover_print(1);
  1205. }
  1206. else{
  1207. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1208. MYSERIAL.println("Normal recovery!");
  1209. #endif
  1210. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1211. else {
  1212. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1213. lcd_update_enable(true);
  1214. lcd_update(2);
  1215. lcd_setstatuspgm(WELCOME_MSG);
  1216. }
  1217. }
  1218. }
  1219. #endif //UVLO_SUPPORT
  1220. KEEPALIVE_STATE(NOT_BUSY);
  1221. #ifdef WATCHDOG
  1222. wdt_enable(WDTO_4S);
  1223. #endif //WATCHDOG
  1224. }
  1225. #ifdef PAT9125
  1226. void fsensor_init() {
  1227. int pat9125 = pat9125_init();
  1228. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1229. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1230. if (!pat9125)
  1231. {
  1232. fsensor = 0; //disable sensor
  1233. fsensor_not_responding = true;
  1234. }
  1235. else {
  1236. fsensor_not_responding = false;
  1237. }
  1238. puts_P(PSTR("FSensor "));
  1239. if (fsensor)
  1240. {
  1241. puts_P(PSTR("ENABLED\n"));
  1242. fsensor_enable();
  1243. }
  1244. else
  1245. {
  1246. puts_P(PSTR("DISABLED\n"));
  1247. fsensor_disable();
  1248. }
  1249. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1250. filament_autoload_enabled = false;
  1251. fsensor_disable();
  1252. #endif //DEBUG_DISABLE_FSENSORCHECK
  1253. }
  1254. #endif //PAT9125
  1255. void trace();
  1256. #define CHUNK_SIZE 64 // bytes
  1257. #define SAFETY_MARGIN 1
  1258. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1259. int chunkHead = 0;
  1260. int serial_read_stream() {
  1261. setTargetHotend(0, 0);
  1262. setTargetBed(0);
  1263. lcd_implementation_clear();
  1264. lcd_printPGM(PSTR(" Upload in progress"));
  1265. // first wait for how many bytes we will receive
  1266. uint32_t bytesToReceive;
  1267. // receive the four bytes
  1268. char bytesToReceiveBuffer[4];
  1269. for (int i=0; i<4; i++) {
  1270. int data;
  1271. while ((data = MYSERIAL.read()) == -1) {};
  1272. bytesToReceiveBuffer[i] = data;
  1273. }
  1274. // make it a uint32
  1275. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1276. // we're ready, notify the sender
  1277. MYSERIAL.write('+');
  1278. // lock in the routine
  1279. uint32_t receivedBytes = 0;
  1280. while (prusa_sd_card_upload) {
  1281. int i;
  1282. for (i=0; i<CHUNK_SIZE; i++) {
  1283. int data;
  1284. // check if we're not done
  1285. if (receivedBytes == bytesToReceive) {
  1286. break;
  1287. }
  1288. // read the next byte
  1289. while ((data = MYSERIAL.read()) == -1) {};
  1290. receivedBytes++;
  1291. // save it to the chunk
  1292. chunk[i] = data;
  1293. }
  1294. // write the chunk to SD
  1295. card.write_command_no_newline(&chunk[0]);
  1296. // notify the sender we're ready for more data
  1297. MYSERIAL.write('+');
  1298. // for safety
  1299. manage_heater();
  1300. // check if we're done
  1301. if(receivedBytes == bytesToReceive) {
  1302. trace(); // beep
  1303. card.closefile();
  1304. prusa_sd_card_upload = false;
  1305. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1306. return 0;
  1307. }
  1308. }
  1309. }
  1310. #ifdef HOST_KEEPALIVE_FEATURE
  1311. /**
  1312. * Output a "busy" message at regular intervals
  1313. * while the machine is not accepting commands.
  1314. */
  1315. void host_keepalive() {
  1316. if (farm_mode) return;
  1317. long ms = millis();
  1318. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1319. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1320. switch (busy_state) {
  1321. case IN_HANDLER:
  1322. case IN_PROCESS:
  1323. SERIAL_ECHO_START;
  1324. SERIAL_ECHOLNPGM("busy: processing");
  1325. break;
  1326. case PAUSED_FOR_USER:
  1327. SERIAL_ECHO_START;
  1328. SERIAL_ECHOLNPGM("busy: paused for user");
  1329. break;
  1330. case PAUSED_FOR_INPUT:
  1331. SERIAL_ECHO_START;
  1332. SERIAL_ECHOLNPGM("busy: paused for input");
  1333. break;
  1334. default:
  1335. break;
  1336. }
  1337. }
  1338. prev_busy_signal_ms = ms;
  1339. }
  1340. #endif
  1341. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1342. // Before loop(), the setup() function is called by the main() routine.
  1343. void loop()
  1344. {
  1345. KEEPALIVE_STATE(NOT_BUSY);
  1346. bool stack_integrity = true;
  1347. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1348. {
  1349. is_usb_printing = true;
  1350. usb_printing_counter--;
  1351. _usb_timer = millis();
  1352. }
  1353. if (usb_printing_counter == 0)
  1354. {
  1355. is_usb_printing = false;
  1356. }
  1357. if (prusa_sd_card_upload)
  1358. {
  1359. //we read byte-by byte
  1360. serial_read_stream();
  1361. } else
  1362. {
  1363. get_command();
  1364. #ifdef SDSUPPORT
  1365. card.checkautostart(false);
  1366. #endif
  1367. if(buflen)
  1368. {
  1369. cmdbuffer_front_already_processed = false;
  1370. #ifdef SDSUPPORT
  1371. if(card.saving)
  1372. {
  1373. // Saving a G-code file onto an SD-card is in progress.
  1374. // Saving starts with M28, saving until M29 is seen.
  1375. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1376. card.write_command(CMDBUFFER_CURRENT_STRING);
  1377. if(card.logging)
  1378. process_commands();
  1379. else
  1380. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1381. } else {
  1382. card.closefile();
  1383. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1384. }
  1385. } else {
  1386. process_commands();
  1387. }
  1388. #else
  1389. process_commands();
  1390. #endif //SDSUPPORT
  1391. if (! cmdbuffer_front_already_processed && buflen)
  1392. {
  1393. // ptr points to the start of the block currently being processed.
  1394. // The first character in the block is the block type.
  1395. char *ptr = cmdbuffer + bufindr;
  1396. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1397. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1398. union {
  1399. struct {
  1400. char lo;
  1401. char hi;
  1402. } lohi;
  1403. uint16_t value;
  1404. } sdlen;
  1405. sdlen.value = 0;
  1406. {
  1407. // This block locks the interrupts globally for 3.25 us,
  1408. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1409. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1410. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1411. cli();
  1412. // Reset the command to something, which will be ignored by the power panic routine,
  1413. // so this buffer length will not be counted twice.
  1414. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1415. // Extract the current buffer length.
  1416. sdlen.lohi.lo = *ptr ++;
  1417. sdlen.lohi.hi = *ptr;
  1418. // and pass it to the planner queue.
  1419. planner_add_sd_length(sdlen.value);
  1420. sei();
  1421. }
  1422. }
  1423. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1424. // this block's SD card length will not be counted twice as its command type has been replaced
  1425. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1426. cmdqueue_pop_front();
  1427. }
  1428. host_keepalive();
  1429. }
  1430. }
  1431. //check heater every n milliseconds
  1432. manage_heater();
  1433. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1434. checkHitEndstops();
  1435. lcd_update();
  1436. #ifdef PAT9125
  1437. fsensor_update();
  1438. #endif //PAT9125
  1439. #ifdef TMC2130
  1440. tmc2130_check_overtemp();
  1441. if (tmc2130_sg_crash)
  1442. {
  1443. uint8_t crash = tmc2130_sg_crash;
  1444. tmc2130_sg_crash = 0;
  1445. // crashdet_stop_and_save_print();
  1446. switch (crash)
  1447. {
  1448. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1449. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1450. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1451. }
  1452. }
  1453. #endif //TMC2130
  1454. }
  1455. #define DEFINE_PGM_READ_ANY(type, reader) \
  1456. static inline type pgm_read_any(const type *p) \
  1457. { return pgm_read_##reader##_near(p); }
  1458. DEFINE_PGM_READ_ANY(float, float);
  1459. DEFINE_PGM_READ_ANY(signed char, byte);
  1460. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1461. static const PROGMEM type array##_P[3] = \
  1462. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1463. static inline type array(int axis) \
  1464. { return pgm_read_any(&array##_P[axis]); } \
  1465. type array##_ext(int axis) \
  1466. { return pgm_read_any(&array##_P[axis]); }
  1467. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1468. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1469. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1470. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1471. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1472. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1473. static void axis_is_at_home(int axis) {
  1474. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1475. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1476. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1477. }
  1478. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1479. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1480. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1481. saved_feedrate = feedrate;
  1482. saved_feedmultiply = feedmultiply;
  1483. feedmultiply = 100;
  1484. previous_millis_cmd = millis();
  1485. enable_endstops(enable_endstops_now);
  1486. }
  1487. static void clean_up_after_endstop_move() {
  1488. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1489. enable_endstops(false);
  1490. #endif
  1491. feedrate = saved_feedrate;
  1492. feedmultiply = saved_feedmultiply;
  1493. previous_millis_cmd = millis();
  1494. }
  1495. #ifdef ENABLE_AUTO_BED_LEVELING
  1496. #ifdef AUTO_BED_LEVELING_GRID
  1497. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1498. {
  1499. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1500. planeNormal.debug("planeNormal");
  1501. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1502. //bedLevel.debug("bedLevel");
  1503. //plan_bed_level_matrix.debug("bed level before");
  1504. //vector_3 uncorrected_position = plan_get_position_mm();
  1505. //uncorrected_position.debug("position before");
  1506. vector_3 corrected_position = plan_get_position();
  1507. // corrected_position.debug("position after");
  1508. current_position[X_AXIS] = corrected_position.x;
  1509. current_position[Y_AXIS] = corrected_position.y;
  1510. current_position[Z_AXIS] = corrected_position.z;
  1511. // put the bed at 0 so we don't go below it.
  1512. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1513. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1514. }
  1515. #else // not AUTO_BED_LEVELING_GRID
  1516. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1517. plan_bed_level_matrix.set_to_identity();
  1518. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1519. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1520. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1521. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1522. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1523. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1524. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1525. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1526. vector_3 corrected_position = plan_get_position();
  1527. current_position[X_AXIS] = corrected_position.x;
  1528. current_position[Y_AXIS] = corrected_position.y;
  1529. current_position[Z_AXIS] = corrected_position.z;
  1530. // put the bed at 0 so we don't go below it.
  1531. current_position[Z_AXIS] = zprobe_zoffset;
  1532. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1533. }
  1534. #endif // AUTO_BED_LEVELING_GRID
  1535. static void run_z_probe() {
  1536. plan_bed_level_matrix.set_to_identity();
  1537. feedrate = homing_feedrate[Z_AXIS];
  1538. // move down until you find the bed
  1539. float zPosition = -10;
  1540. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1541. st_synchronize();
  1542. // we have to let the planner know where we are right now as it is not where we said to go.
  1543. zPosition = st_get_position_mm(Z_AXIS);
  1544. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1545. // move up the retract distance
  1546. zPosition += home_retract_mm(Z_AXIS);
  1547. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1548. st_synchronize();
  1549. // move back down slowly to find bed
  1550. feedrate = homing_feedrate[Z_AXIS]/4;
  1551. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1552. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1553. st_synchronize();
  1554. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1555. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1556. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1557. }
  1558. static void do_blocking_move_to(float x, float y, float z) {
  1559. float oldFeedRate = feedrate;
  1560. feedrate = homing_feedrate[Z_AXIS];
  1561. current_position[Z_AXIS] = z;
  1562. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1563. st_synchronize();
  1564. feedrate = XY_TRAVEL_SPEED;
  1565. current_position[X_AXIS] = x;
  1566. current_position[Y_AXIS] = y;
  1567. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1568. st_synchronize();
  1569. feedrate = oldFeedRate;
  1570. }
  1571. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1572. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1573. }
  1574. /// Probe bed height at position (x,y), returns the measured z value
  1575. static float probe_pt(float x, float y, float z_before) {
  1576. // move to right place
  1577. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1578. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1579. run_z_probe();
  1580. float measured_z = current_position[Z_AXIS];
  1581. SERIAL_PROTOCOLRPGM(MSG_BED);
  1582. SERIAL_PROTOCOLPGM(" x: ");
  1583. SERIAL_PROTOCOL(x);
  1584. SERIAL_PROTOCOLPGM(" y: ");
  1585. SERIAL_PROTOCOL(y);
  1586. SERIAL_PROTOCOLPGM(" z: ");
  1587. SERIAL_PROTOCOL(measured_z);
  1588. SERIAL_PROTOCOLPGM("\n");
  1589. return measured_z;
  1590. }
  1591. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1592. #ifdef LIN_ADVANCE
  1593. /**
  1594. * M900: Set and/or Get advance K factor and WH/D ratio
  1595. *
  1596. * K<factor> Set advance K factor
  1597. * R<ratio> Set ratio directly (overrides WH/D)
  1598. * W<width> H<height> D<diam> Set ratio from WH/D
  1599. */
  1600. inline void gcode_M900() {
  1601. st_synchronize();
  1602. const float newK = code_seen('K') ? code_value_float() : -1;
  1603. if (newK >= 0) extruder_advance_k = newK;
  1604. float newR = code_seen('R') ? code_value_float() : -1;
  1605. if (newR < 0) {
  1606. const float newD = code_seen('D') ? code_value_float() : -1,
  1607. newW = code_seen('W') ? code_value_float() : -1,
  1608. newH = code_seen('H') ? code_value_float() : -1;
  1609. if (newD >= 0 && newW >= 0 && newH >= 0)
  1610. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1611. }
  1612. if (newR >= 0) advance_ed_ratio = newR;
  1613. SERIAL_ECHO_START;
  1614. SERIAL_ECHOPGM("Advance K=");
  1615. SERIAL_ECHOLN(extruder_advance_k);
  1616. SERIAL_ECHOPGM(" E/D=");
  1617. const float ratio = advance_ed_ratio;
  1618. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1619. }
  1620. #endif // LIN_ADVANCE
  1621. bool check_commands() {
  1622. bool end_command_found = false;
  1623. while (buflen)
  1624. {
  1625. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1626. if (!cmdbuffer_front_already_processed)
  1627. cmdqueue_pop_front();
  1628. cmdbuffer_front_already_processed = false;
  1629. }
  1630. return end_command_found;
  1631. }
  1632. #ifdef TMC2130
  1633. bool calibrate_z_auto()
  1634. {
  1635. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1636. lcd_implementation_clear();
  1637. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1638. bool endstops_enabled = enable_endstops(true);
  1639. int axis_up_dir = -home_dir(Z_AXIS);
  1640. tmc2130_home_enter(Z_AXIS_MASK);
  1641. current_position[Z_AXIS] = 0;
  1642. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1643. set_destination_to_current();
  1644. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1645. feedrate = homing_feedrate[Z_AXIS];
  1646. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1647. st_synchronize();
  1648. // current_position[axis] = 0;
  1649. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1650. tmc2130_home_exit();
  1651. enable_endstops(false);
  1652. current_position[Z_AXIS] = 0;
  1653. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1654. set_destination_to_current();
  1655. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1656. feedrate = homing_feedrate[Z_AXIS] / 2;
  1657. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1658. st_synchronize();
  1659. enable_endstops(endstops_enabled);
  1660. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1661. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1662. return true;
  1663. }
  1664. #endif //TMC2130
  1665. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1666. {
  1667. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1668. #define HOMEAXIS_DO(LETTER) \
  1669. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1670. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1671. {
  1672. int axis_home_dir = home_dir(axis);
  1673. feedrate = homing_feedrate[axis];
  1674. #ifdef TMC2130
  1675. tmc2130_home_enter(X_AXIS_MASK << axis);
  1676. #endif //TMC2130
  1677. // Move right a bit, so that the print head does not touch the left end position,
  1678. // and the following left movement has a chance to achieve the required velocity
  1679. // for the stall guard to work.
  1680. current_position[axis] = 0;
  1681. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1682. set_destination_to_current();
  1683. // destination[axis] = 11.f;
  1684. destination[axis] = 3.f;
  1685. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1686. st_synchronize();
  1687. // Move left away from the possible collision with the collision detection disabled.
  1688. endstops_hit_on_purpose();
  1689. enable_endstops(false);
  1690. current_position[axis] = 0;
  1691. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1692. destination[axis] = - 1.;
  1693. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1694. st_synchronize();
  1695. // Now continue to move up to the left end stop with the collision detection enabled.
  1696. enable_endstops(true);
  1697. destination[axis] = - 1.1 * max_length(axis);
  1698. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1699. st_synchronize();
  1700. for (uint8_t i = 0; i < cnt; i++)
  1701. {
  1702. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1703. endstops_hit_on_purpose();
  1704. enable_endstops(false);
  1705. current_position[axis] = 0;
  1706. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1707. destination[axis] = 10.f;
  1708. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1709. st_synchronize();
  1710. endstops_hit_on_purpose();
  1711. // Now move left up to the collision, this time with a repeatable velocity.
  1712. enable_endstops(true);
  1713. destination[axis] = - 11.f;
  1714. #ifdef TMC2130
  1715. feedrate = homing_feedrate[axis];
  1716. #else //TMC2130
  1717. feedrate = homing_feedrate[axis] / 2;
  1718. #endif //TMC2130
  1719. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1720. st_synchronize();
  1721. #ifdef TMC2130
  1722. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1723. if (pstep) pstep[i] = mscnt >> 4;
  1724. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1725. #endif //TMC2130
  1726. }
  1727. endstops_hit_on_purpose();
  1728. enable_endstops(false);
  1729. #ifdef TMC2130
  1730. uint8_t orig = tmc2130_home_origin[axis];
  1731. uint8_t back = tmc2130_home_bsteps[axis];
  1732. if (tmc2130_home_enabled && (orig <= 63))
  1733. {
  1734. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1735. if (back > 0)
  1736. tmc2130_do_steps(axis, back, 1, 1000);
  1737. }
  1738. else
  1739. tmc2130_do_steps(axis, 8, 2, 1000);
  1740. tmc2130_home_exit();
  1741. #endif //TMC2130
  1742. axis_is_at_home(axis);
  1743. axis_known_position[axis] = true;
  1744. // Move from minimum
  1745. #ifdef TMC2130
  1746. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1747. #else //TMC2130
  1748. float dist = 0.01f * 64;
  1749. #endif //TMC2130
  1750. current_position[axis] -= dist;
  1751. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1752. current_position[axis] += dist;
  1753. destination[axis] = current_position[axis];
  1754. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1755. st_synchronize();
  1756. feedrate = 0.0;
  1757. }
  1758. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1759. {
  1760. int axis_home_dir = home_dir(axis);
  1761. current_position[axis] = 0;
  1762. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1763. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1764. feedrate = homing_feedrate[axis];
  1765. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1766. st_synchronize();
  1767. #ifdef TMC2130
  1768. if ((tmc2130_mode == TMC2130_MODE_NORMAL) && (READ(Z_TMC2130_DIAG) != 0)) return; //Z crash
  1769. #endif //TMC2130
  1770. current_position[axis] = 0;
  1771. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1772. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1773. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1774. st_synchronize();
  1775. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1776. feedrate = homing_feedrate[axis]/2 ;
  1777. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1778. st_synchronize();
  1779. #ifdef TMC2130
  1780. if ((tmc2130_mode == TMC2130_MODE_NORMAL) && (READ(Z_TMC2130_DIAG) != 0)) return; //Z crash
  1781. #endif //TMC2130
  1782. axis_is_at_home(axis);
  1783. destination[axis] = current_position[axis];
  1784. feedrate = 0.0;
  1785. endstops_hit_on_purpose();
  1786. axis_known_position[axis] = true;
  1787. }
  1788. enable_endstops(endstops_enabled);
  1789. }
  1790. /**/
  1791. void home_xy()
  1792. {
  1793. set_destination_to_current();
  1794. homeaxis(X_AXIS);
  1795. homeaxis(Y_AXIS);
  1796. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1797. endstops_hit_on_purpose();
  1798. }
  1799. void refresh_cmd_timeout(void)
  1800. {
  1801. previous_millis_cmd = millis();
  1802. }
  1803. #ifdef FWRETRACT
  1804. void retract(bool retracting, bool swapretract = false) {
  1805. if(retracting && !retracted[active_extruder]) {
  1806. destination[X_AXIS]=current_position[X_AXIS];
  1807. destination[Y_AXIS]=current_position[Y_AXIS];
  1808. destination[Z_AXIS]=current_position[Z_AXIS];
  1809. destination[E_AXIS]=current_position[E_AXIS];
  1810. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1811. plan_set_e_position(current_position[E_AXIS]);
  1812. float oldFeedrate = feedrate;
  1813. feedrate=retract_feedrate*60;
  1814. retracted[active_extruder]=true;
  1815. prepare_move();
  1816. current_position[Z_AXIS]-=retract_zlift;
  1817. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1818. prepare_move();
  1819. feedrate = oldFeedrate;
  1820. } else if(!retracting && retracted[active_extruder]) {
  1821. destination[X_AXIS]=current_position[X_AXIS];
  1822. destination[Y_AXIS]=current_position[Y_AXIS];
  1823. destination[Z_AXIS]=current_position[Z_AXIS];
  1824. destination[E_AXIS]=current_position[E_AXIS];
  1825. current_position[Z_AXIS]+=retract_zlift;
  1826. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1827. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  1828. plan_set_e_position(current_position[E_AXIS]);
  1829. float oldFeedrate = feedrate;
  1830. feedrate=retract_recover_feedrate*60;
  1831. retracted[active_extruder]=false;
  1832. prepare_move();
  1833. feedrate = oldFeedrate;
  1834. }
  1835. } //retract
  1836. #endif //FWRETRACT
  1837. void trace() {
  1838. tone(BEEPER, 440);
  1839. delay(25);
  1840. noTone(BEEPER);
  1841. delay(20);
  1842. }
  1843. /*
  1844. void ramming() {
  1845. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1846. if (current_temperature[0] < 230) {
  1847. //PLA
  1848. max_feedrate[E_AXIS] = 50;
  1849. //current_position[E_AXIS] -= 8;
  1850. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1851. //current_position[E_AXIS] += 8;
  1852. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1853. current_position[E_AXIS] += 5.4;
  1854. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1855. current_position[E_AXIS] += 3.2;
  1856. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1857. current_position[E_AXIS] += 3;
  1858. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1859. st_synchronize();
  1860. max_feedrate[E_AXIS] = 80;
  1861. current_position[E_AXIS] -= 82;
  1862. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1863. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1864. current_position[E_AXIS] -= 20;
  1865. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1866. current_position[E_AXIS] += 5;
  1867. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1868. current_position[E_AXIS] += 5;
  1869. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1870. current_position[E_AXIS] -= 10;
  1871. st_synchronize();
  1872. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1873. current_position[E_AXIS] += 10;
  1874. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1875. current_position[E_AXIS] -= 10;
  1876. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1877. current_position[E_AXIS] += 10;
  1878. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1879. current_position[E_AXIS] -= 10;
  1880. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1881. st_synchronize();
  1882. }
  1883. else {
  1884. //ABS
  1885. max_feedrate[E_AXIS] = 50;
  1886. //current_position[E_AXIS] -= 8;
  1887. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1888. //current_position[E_AXIS] += 8;
  1889. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1890. current_position[E_AXIS] += 3.1;
  1891. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1892. current_position[E_AXIS] += 3.1;
  1893. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1894. current_position[E_AXIS] += 4;
  1895. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1896. st_synchronize();
  1897. //current_position[X_AXIS] += 23; //delay
  1898. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1899. //current_position[X_AXIS] -= 23; //delay
  1900. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1901. delay(4700);
  1902. max_feedrate[E_AXIS] = 80;
  1903. current_position[E_AXIS] -= 92;
  1904. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1905. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1906. current_position[E_AXIS] -= 5;
  1907. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1908. current_position[E_AXIS] += 5;
  1909. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1910. current_position[E_AXIS] -= 5;
  1911. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1912. st_synchronize();
  1913. current_position[E_AXIS] += 5;
  1914. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1915. current_position[E_AXIS] -= 5;
  1916. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1917. current_position[E_AXIS] += 5;
  1918. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1919. current_position[E_AXIS] -= 5;
  1920. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1921. st_synchronize();
  1922. }
  1923. }
  1924. */
  1925. #ifdef TMC2130
  1926. void force_high_power_mode(bool start_high_power_section) {
  1927. uint8_t silent;
  1928. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1929. if (silent == 1) {
  1930. //we are in silent mode, set to normal mode to enable crash detection
  1931. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1932. st_synchronize();
  1933. cli();
  1934. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1935. tmc2130_init();
  1936. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1937. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1938. st_reset_timer();
  1939. sei();
  1940. }
  1941. }
  1942. #endif //TMC2130
  1943. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  1944. {
  1945. bool final_result = false;
  1946. #ifdef TMC2130
  1947. FORCE_HIGH_POWER_START;
  1948. #endif // TMC2130
  1949. // Only Z calibration?
  1950. if (!onlyZ)
  1951. {
  1952. setTargetBed(0);
  1953. setTargetHotend(0, 0);
  1954. setTargetHotend(0, 1);
  1955. setTargetHotend(0, 2);
  1956. adjust_bed_reset(); //reset bed level correction
  1957. }
  1958. // Disable the default update procedure of the display. We will do a modal dialog.
  1959. lcd_update_enable(false);
  1960. // Let the planner use the uncorrected coordinates.
  1961. mbl.reset();
  1962. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1963. // the planner will not perform any adjustments in the XY plane.
  1964. // Wait for the motors to stop and update the current position with the absolute values.
  1965. world2machine_revert_to_uncorrected();
  1966. // Reset the baby step value applied without moving the axes.
  1967. babystep_reset();
  1968. // Mark all axes as in a need for homing.
  1969. memset(axis_known_position, 0, sizeof(axis_known_position));
  1970. // Home in the XY plane.
  1971. //set_destination_to_current();
  1972. setup_for_endstop_move();
  1973. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1974. home_xy();
  1975. enable_endstops(false);
  1976. current_position[X_AXIS] += 5;
  1977. current_position[Y_AXIS] += 5;
  1978. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1979. st_synchronize();
  1980. // Let the user move the Z axes up to the end stoppers.
  1981. #ifdef TMC2130
  1982. if (calibrate_z_auto())
  1983. {
  1984. #else //TMC2130
  1985. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1986. {
  1987. #endif //TMC2130
  1988. refresh_cmd_timeout();
  1989. #ifndef STEEL_SHEET
  1990. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1991. {
  1992. lcd_wait_for_cool_down();
  1993. }
  1994. #endif //STEEL_SHEET
  1995. if(!onlyZ)
  1996. {
  1997. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1998. #ifdef STEEL_SHEET
  1999. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  2000. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  2001. #endif //STEEL_SHEET
  2002. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  2003. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  2004. KEEPALIVE_STATE(IN_HANDLER);
  2005. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  2006. lcd_implementation_print_at(0, 2, 1);
  2007. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  2008. }
  2009. // Move the print head close to the bed.
  2010. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2011. bool endstops_enabled = enable_endstops(true);
  2012. #ifdef TMC2130
  2013. tmc2130_home_enter(Z_AXIS_MASK);
  2014. #endif //TMC2130
  2015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2016. st_synchronize();
  2017. #ifdef TMC2130
  2018. tmc2130_home_exit();
  2019. #endif //TMC2130
  2020. enable_endstops(endstops_enabled);
  2021. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2022. {
  2023. int8_t verbosity_level = 0;
  2024. if (code_seen('V'))
  2025. {
  2026. // Just 'V' without a number counts as V1.
  2027. char c = strchr_pointer[1];
  2028. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2029. }
  2030. if (onlyZ)
  2031. {
  2032. clean_up_after_endstop_move();
  2033. // Z only calibration.
  2034. // Load the machine correction matrix
  2035. world2machine_initialize();
  2036. // and correct the current_position to match the transformed coordinate system.
  2037. world2machine_update_current();
  2038. //FIXME
  2039. bool result = sample_mesh_and_store_reference();
  2040. if (result)
  2041. {
  2042. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2043. // Shipped, the nozzle height has been set already. The user can start printing now.
  2044. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2045. final_result = true;
  2046. // babystep_apply();
  2047. }
  2048. }
  2049. else
  2050. {
  2051. // Reset the baby step value and the baby step applied flag.
  2052. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2053. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2054. // Complete XYZ calibration.
  2055. uint8_t point_too_far_mask = 0;
  2056. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2057. clean_up_after_endstop_move();
  2058. // Print head up.
  2059. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2060. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2061. st_synchronize();
  2062. //#ifndef NEW_XYZCAL
  2063. if (result >= 0)
  2064. {
  2065. #ifdef HEATBED_V2
  2066. sample_z();
  2067. #else //HEATBED_V2
  2068. point_too_far_mask = 0;
  2069. // Second half: The fine adjustment.
  2070. // Let the planner use the uncorrected coordinates.
  2071. mbl.reset();
  2072. world2machine_reset();
  2073. // Home in the XY plane.
  2074. setup_for_endstop_move();
  2075. home_xy();
  2076. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2077. clean_up_after_endstop_move();
  2078. // Print head up.
  2079. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2080. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2081. st_synchronize();
  2082. // if (result >= 0) babystep_apply();
  2083. #endif //HEATBED_V2
  2084. }
  2085. //#endif //NEW_XYZCAL
  2086. lcd_update_enable(true);
  2087. lcd_update(2);
  2088. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2089. if (result >= 0)
  2090. {
  2091. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2092. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2093. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  2094. final_result = true;
  2095. }
  2096. }
  2097. #ifdef TMC2130
  2098. tmc2130_home_exit();
  2099. #endif
  2100. }
  2101. else
  2102. {
  2103. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2104. final_result = false;
  2105. }
  2106. }
  2107. else
  2108. {
  2109. // Timeouted.
  2110. }
  2111. lcd_update_enable(true);
  2112. #ifdef TMC2130
  2113. FORCE_HIGH_POWER_END;
  2114. #endif // TMC2130
  2115. return final_result;
  2116. }
  2117. void gcode_M114()
  2118. {
  2119. SERIAL_PROTOCOLPGM("X:");
  2120. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2121. SERIAL_PROTOCOLPGM(" Y:");
  2122. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2123. SERIAL_PROTOCOLPGM(" Z:");
  2124. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2125. SERIAL_PROTOCOLPGM(" E:");
  2126. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2127. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2128. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2129. SERIAL_PROTOCOLPGM(" Y:");
  2130. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2131. SERIAL_PROTOCOLPGM(" Z:");
  2132. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2133. SERIAL_PROTOCOLPGM(" E:");
  2134. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2135. SERIAL_PROTOCOLLN("");
  2136. }
  2137. void gcode_M701()
  2138. {
  2139. #ifdef SNMM
  2140. extr_adj(snmm_extruder);//loads current extruder
  2141. #else
  2142. enable_z();
  2143. custom_message = true;
  2144. custom_message_type = 2;
  2145. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  2146. current_position[E_AXIS] += 70;
  2147. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2148. current_position[E_AXIS] += 25;
  2149. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2150. st_synchronize();
  2151. tone(BEEPER, 500);
  2152. delay_keep_alive(50);
  2153. noTone(BEEPER);
  2154. if (!farm_mode && loading_flag) {
  2155. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2156. while (!clean) {
  2157. lcd_update_enable(true);
  2158. lcd_update(2);
  2159. current_position[E_AXIS] += 25;
  2160. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2161. st_synchronize();
  2162. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2163. }
  2164. }
  2165. lcd_update_enable(true);
  2166. lcd_update(2);
  2167. lcd_setstatuspgm(WELCOME_MSG);
  2168. disable_z();
  2169. loading_flag = false;
  2170. custom_message = false;
  2171. custom_message_type = 0;
  2172. #endif
  2173. }
  2174. /**
  2175. * @brief Get serial number from 32U2 processor
  2176. *
  2177. * Typical format of S/N is:CZPX0917X003XC13518
  2178. *
  2179. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2180. *
  2181. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2182. * reply is transmitted to serial port 1 character by character.
  2183. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2184. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2185. * in any case.
  2186. */
  2187. static void gcode_PRUSA_SN()
  2188. {
  2189. if (farm_mode) {
  2190. selectedSerialPort = 0;
  2191. MSerial.write(";S");
  2192. int numbersRead = 0;
  2193. Timer timeout;
  2194. timeout.start();
  2195. while (numbersRead < 19) {
  2196. while (MSerial.available() > 0) {
  2197. uint8_t serial_char = MSerial.read();
  2198. selectedSerialPort = 1;
  2199. MSerial.write(serial_char);
  2200. numbersRead++;
  2201. selectedSerialPort = 0;
  2202. }
  2203. if (timeout.expired(100)) break;
  2204. }
  2205. selectedSerialPort = 1;
  2206. MSerial.write('\n');
  2207. #if 0
  2208. for (int b = 0; b < 3; b++) {
  2209. tone(BEEPER, 110);
  2210. delay(50);
  2211. noTone(BEEPER);
  2212. delay(50);
  2213. }
  2214. #endif
  2215. } else {
  2216. MYSERIAL.println("Not in farm mode.");
  2217. }
  2218. }
  2219. void process_commands()
  2220. {
  2221. if (!buflen) return; //empty command
  2222. #ifdef FILAMENT_RUNOUT_SUPPORT
  2223. SET_INPUT(FR_SENS);
  2224. #endif
  2225. #ifdef CMDBUFFER_DEBUG
  2226. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2227. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2228. SERIAL_ECHOLNPGM("");
  2229. SERIAL_ECHOPGM("In cmdqueue: ");
  2230. SERIAL_ECHO(buflen);
  2231. SERIAL_ECHOLNPGM("");
  2232. #endif /* CMDBUFFER_DEBUG */
  2233. unsigned long codenum; //throw away variable
  2234. char *starpos = NULL;
  2235. #ifdef ENABLE_AUTO_BED_LEVELING
  2236. float x_tmp, y_tmp, z_tmp, real_z;
  2237. #endif
  2238. // PRUSA GCODES
  2239. KEEPALIVE_STATE(IN_HANDLER);
  2240. #ifdef SNMM
  2241. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2242. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2243. int8_t SilentMode;
  2244. #endif
  2245. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2246. starpos = (strchr(strchr_pointer + 5, '*'));
  2247. if (starpos != NULL)
  2248. *(starpos) = '\0';
  2249. lcd_setstatus(strchr_pointer + 5);
  2250. }
  2251. #ifdef TMC2130
  2252. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2253. {
  2254. if(code_seen("CRASH_DETECTED"))
  2255. {
  2256. uint8_t mask = 0;
  2257. if (code_seen("X")) mask |= X_AXIS_MASK;
  2258. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2259. crashdet_detected(mask);
  2260. }
  2261. else if(code_seen("CRASH_RECOVER"))
  2262. crashdet_recover();
  2263. else if(code_seen("CRASH_CANCEL"))
  2264. crashdet_cancel();
  2265. }
  2266. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2267. {
  2268. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2269. {
  2270. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2271. tmc2130_set_wave(E_AXIS, 247, fac);
  2272. }
  2273. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2274. {
  2275. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2276. uint16_t res = tmc2130_get_res(E_AXIS);
  2277. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2278. }
  2279. }
  2280. #endif //TMC2130
  2281. else if(code_seen("PRUSA")){
  2282. if (code_seen("Ping")) { //PRUSA Ping
  2283. if (farm_mode) {
  2284. PingTime = millis();
  2285. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2286. }
  2287. }
  2288. else if (code_seen("PRN")) {
  2289. MYSERIAL.println(status_number);
  2290. }else if (code_seen("FAN")) {
  2291. MYSERIAL.print("E0:");
  2292. MYSERIAL.print(60*fan_speed[0]);
  2293. MYSERIAL.println(" RPM");
  2294. MYSERIAL.print("PRN0:");
  2295. MYSERIAL.print(60*fan_speed[1]);
  2296. MYSERIAL.println(" RPM");
  2297. }else if (code_seen("fn")) {
  2298. if (farm_mode) {
  2299. MYSERIAL.println(farm_no);
  2300. }
  2301. else {
  2302. MYSERIAL.println("Not in farm mode.");
  2303. }
  2304. }
  2305. else if (code_seen("thx")) {
  2306. no_response = false;
  2307. }else if (code_seen("fv")) {
  2308. // get file version
  2309. #ifdef SDSUPPORT
  2310. card.openFile(strchr_pointer + 3,true);
  2311. while (true) {
  2312. uint16_t readByte = card.get();
  2313. MYSERIAL.write(readByte);
  2314. if (readByte=='\n') {
  2315. break;
  2316. }
  2317. }
  2318. card.closefile();
  2319. #endif // SDSUPPORT
  2320. } else if (code_seen("M28")) {
  2321. trace();
  2322. prusa_sd_card_upload = true;
  2323. card.openFile(strchr_pointer+4,false);
  2324. } else if (code_seen("SN")) {
  2325. gcode_PRUSA_SN();
  2326. } else if(code_seen("Fir")){
  2327. SERIAL_PROTOCOLLN(FW_VERSION);
  2328. } else if(code_seen("Rev")){
  2329. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2330. } else if(code_seen("Lang")) {
  2331. lcd_force_language_selection();
  2332. } else if(code_seen("Lz")) {
  2333. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2334. } else if (code_seen("SERIAL LOW")) {
  2335. MYSERIAL.println("SERIAL LOW");
  2336. MYSERIAL.begin(BAUDRATE);
  2337. return;
  2338. } else if (code_seen("SERIAL HIGH")) {
  2339. MYSERIAL.println("SERIAL HIGH");
  2340. MYSERIAL.begin(1152000);
  2341. return;
  2342. } else if(code_seen("Beat")) {
  2343. // Kick farm link timer
  2344. kicktime = millis();
  2345. } else if(code_seen("FR")) {
  2346. // Factory full reset
  2347. factory_reset(0,true);
  2348. }
  2349. //else if (code_seen('Cal')) {
  2350. // lcd_calibration();
  2351. // }
  2352. }
  2353. else if (code_seen('^')) {
  2354. // nothing, this is a version line
  2355. } else if(code_seen('G'))
  2356. {
  2357. switch((int)code_value())
  2358. {
  2359. case 0: // G0 -> G1
  2360. case 1: // G1
  2361. if(Stopped == false) {
  2362. #ifdef FILAMENT_RUNOUT_SUPPORT
  2363. if(READ(FR_SENS)){
  2364. feedmultiplyBckp=feedmultiply;
  2365. float target[4];
  2366. float lastpos[4];
  2367. target[X_AXIS]=current_position[X_AXIS];
  2368. target[Y_AXIS]=current_position[Y_AXIS];
  2369. target[Z_AXIS]=current_position[Z_AXIS];
  2370. target[E_AXIS]=current_position[E_AXIS];
  2371. lastpos[X_AXIS]=current_position[X_AXIS];
  2372. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2373. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2374. lastpos[E_AXIS]=current_position[E_AXIS];
  2375. //retract by E
  2376. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2377. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2378. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2379. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2380. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2381. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2382. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2383. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2384. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2385. //finish moves
  2386. st_synchronize();
  2387. //disable extruder steppers so filament can be removed
  2388. disable_e0();
  2389. disable_e1();
  2390. disable_e2();
  2391. delay(100);
  2392. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2393. uint8_t cnt=0;
  2394. int counterBeep = 0;
  2395. lcd_wait_interact();
  2396. while(!lcd_clicked()){
  2397. cnt++;
  2398. manage_heater();
  2399. manage_inactivity(true);
  2400. //lcd_update();
  2401. if(cnt==0)
  2402. {
  2403. #if BEEPER > 0
  2404. if (counterBeep== 500){
  2405. counterBeep = 0;
  2406. }
  2407. SET_OUTPUT(BEEPER);
  2408. if (counterBeep== 0){
  2409. WRITE(BEEPER,HIGH);
  2410. }
  2411. if (counterBeep== 20){
  2412. WRITE(BEEPER,LOW);
  2413. }
  2414. counterBeep++;
  2415. #else
  2416. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2417. lcd_buzz(1000/6,100);
  2418. #else
  2419. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2420. #endif
  2421. #endif
  2422. }
  2423. }
  2424. WRITE(BEEPER,LOW);
  2425. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2426. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2427. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2428. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2429. lcd_change_fil_state = 0;
  2430. lcd_loading_filament();
  2431. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2432. lcd_change_fil_state = 0;
  2433. lcd_alright();
  2434. switch(lcd_change_fil_state){
  2435. case 2:
  2436. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2437. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2438. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2439. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2440. lcd_loading_filament();
  2441. break;
  2442. case 3:
  2443. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2444. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2445. lcd_loading_color();
  2446. break;
  2447. default:
  2448. lcd_change_success();
  2449. break;
  2450. }
  2451. }
  2452. target[E_AXIS]+= 5;
  2453. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2454. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2455. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2456. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2457. //plan_set_e_position(current_position[E_AXIS]);
  2458. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2459. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2460. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2461. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2462. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2463. plan_set_e_position(lastpos[E_AXIS]);
  2464. feedmultiply=feedmultiplyBckp;
  2465. char cmd[9];
  2466. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2467. enquecommand(cmd);
  2468. }
  2469. #endif
  2470. get_coordinates(); // For X Y Z E F
  2471. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2472. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2473. }
  2474. #ifdef FWRETRACT
  2475. if(autoretract_enabled)
  2476. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2477. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2478. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2479. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2480. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2481. retract(!retracted);
  2482. return;
  2483. }
  2484. }
  2485. #endif //FWRETRACT
  2486. prepare_move();
  2487. //ClearToSend();
  2488. }
  2489. break;
  2490. case 2: // G2 - CW ARC
  2491. if(Stopped == false) {
  2492. get_arc_coordinates();
  2493. prepare_arc_move(true);
  2494. }
  2495. break;
  2496. case 3: // G3 - CCW ARC
  2497. if(Stopped == false) {
  2498. get_arc_coordinates();
  2499. prepare_arc_move(false);
  2500. }
  2501. break;
  2502. case 4: // G4 dwell
  2503. codenum = 0;
  2504. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2505. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2506. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  2507. st_synchronize();
  2508. codenum += millis(); // keep track of when we started waiting
  2509. previous_millis_cmd = millis();
  2510. while(millis() < codenum) {
  2511. manage_heater();
  2512. manage_inactivity();
  2513. lcd_update();
  2514. }
  2515. break;
  2516. #ifdef FWRETRACT
  2517. case 10: // G10 retract
  2518. #if EXTRUDERS > 1
  2519. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2520. retract(true,retracted_swap[active_extruder]);
  2521. #else
  2522. retract(true);
  2523. #endif
  2524. break;
  2525. case 11: // G11 retract_recover
  2526. #if EXTRUDERS > 1
  2527. retract(false,retracted_swap[active_extruder]);
  2528. #else
  2529. retract(false);
  2530. #endif
  2531. break;
  2532. #endif //FWRETRACT
  2533. case 28: //G28 Home all Axis one at a time
  2534. {
  2535. st_synchronize();
  2536. #if 0
  2537. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2538. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2539. #endif
  2540. // Flag for the display update routine and to disable the print cancelation during homing.
  2541. homing_flag = true;
  2542. // Which axes should be homed?
  2543. bool home_x = code_seen(axis_codes[X_AXIS]);
  2544. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2545. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2546. // calibrate?
  2547. bool calib = code_seen('C');
  2548. // Either all X,Y,Z codes are present, or none of them.
  2549. bool home_all_axes = home_x == home_y && home_x == home_z;
  2550. if (home_all_axes)
  2551. // No X/Y/Z code provided means to home all axes.
  2552. home_x = home_y = home_z = true;
  2553. #ifdef ENABLE_AUTO_BED_LEVELING
  2554. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2555. #endif //ENABLE_AUTO_BED_LEVELING
  2556. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2557. // the planner will not perform any adjustments in the XY plane.
  2558. // Wait for the motors to stop and update the current position with the absolute values.
  2559. world2machine_revert_to_uncorrected();
  2560. // For mesh bed leveling deactivate the matrix temporarily.
  2561. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2562. // in a single axis only.
  2563. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2564. #ifdef MESH_BED_LEVELING
  2565. uint8_t mbl_was_active = mbl.active;
  2566. mbl.active = 0;
  2567. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2568. #endif
  2569. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2570. // consumed during the first movements following this statement.
  2571. if (home_z)
  2572. babystep_undo();
  2573. saved_feedrate = feedrate;
  2574. saved_feedmultiply = feedmultiply;
  2575. feedmultiply = 100;
  2576. previous_millis_cmd = millis();
  2577. enable_endstops(true);
  2578. memcpy(destination, current_position, sizeof(destination));
  2579. feedrate = 0.0;
  2580. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2581. if(home_z)
  2582. homeaxis(Z_AXIS);
  2583. #endif
  2584. #ifdef QUICK_HOME
  2585. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2586. if(home_x && home_y) //first diagonal move
  2587. {
  2588. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2589. int x_axis_home_dir = home_dir(X_AXIS);
  2590. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2591. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2592. feedrate = homing_feedrate[X_AXIS];
  2593. if(homing_feedrate[Y_AXIS]<feedrate)
  2594. feedrate = homing_feedrate[Y_AXIS];
  2595. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2596. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2597. } else {
  2598. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2599. }
  2600. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2601. st_synchronize();
  2602. axis_is_at_home(X_AXIS);
  2603. axis_is_at_home(Y_AXIS);
  2604. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2605. destination[X_AXIS] = current_position[X_AXIS];
  2606. destination[Y_AXIS] = current_position[Y_AXIS];
  2607. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2608. feedrate = 0.0;
  2609. st_synchronize();
  2610. endstops_hit_on_purpose();
  2611. current_position[X_AXIS] = destination[X_AXIS];
  2612. current_position[Y_AXIS] = destination[Y_AXIS];
  2613. current_position[Z_AXIS] = destination[Z_AXIS];
  2614. }
  2615. #endif /* QUICK_HOME */
  2616. #ifdef TMC2130
  2617. if(home_x)
  2618. {
  2619. if (!calib)
  2620. homeaxis(X_AXIS);
  2621. else
  2622. tmc2130_home_calibrate(X_AXIS);
  2623. }
  2624. if(home_y)
  2625. {
  2626. if (!calib)
  2627. homeaxis(Y_AXIS);
  2628. else
  2629. tmc2130_home_calibrate(Y_AXIS);
  2630. }
  2631. #endif //TMC2130
  2632. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2633. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2634. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2635. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2636. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2637. #ifndef Z_SAFE_HOMING
  2638. if(home_z) {
  2639. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2640. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2641. feedrate = max_feedrate[Z_AXIS];
  2642. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2643. st_synchronize();
  2644. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2645. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2646. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2647. {
  2648. homeaxis(X_AXIS);
  2649. homeaxis(Y_AXIS);
  2650. }
  2651. // 1st mesh bed leveling measurement point, corrected.
  2652. world2machine_initialize();
  2653. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2654. world2machine_reset();
  2655. if (destination[Y_AXIS] < Y_MIN_POS)
  2656. destination[Y_AXIS] = Y_MIN_POS;
  2657. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2658. feedrate = homing_feedrate[Z_AXIS]/10;
  2659. current_position[Z_AXIS] = 0;
  2660. enable_endstops(false);
  2661. #ifdef DEBUG_BUILD
  2662. SERIAL_ECHOLNPGM("plan_set_position()");
  2663. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2664. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2665. #endif
  2666. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2667. #ifdef DEBUG_BUILD
  2668. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2669. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2670. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2671. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2672. #endif
  2673. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2674. st_synchronize();
  2675. current_position[X_AXIS] = destination[X_AXIS];
  2676. current_position[Y_AXIS] = destination[Y_AXIS];
  2677. enable_endstops(true);
  2678. endstops_hit_on_purpose();
  2679. homeaxis(Z_AXIS);
  2680. #else // MESH_BED_LEVELING
  2681. homeaxis(Z_AXIS);
  2682. #endif // MESH_BED_LEVELING
  2683. }
  2684. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2685. if(home_all_axes) {
  2686. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2687. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2688. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2689. feedrate = XY_TRAVEL_SPEED/60;
  2690. current_position[Z_AXIS] = 0;
  2691. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2692. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2693. st_synchronize();
  2694. current_position[X_AXIS] = destination[X_AXIS];
  2695. current_position[Y_AXIS] = destination[Y_AXIS];
  2696. homeaxis(Z_AXIS);
  2697. }
  2698. // Let's see if X and Y are homed and probe is inside bed area.
  2699. if(home_z) {
  2700. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2701. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2702. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2703. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2704. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2705. current_position[Z_AXIS] = 0;
  2706. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2707. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2708. feedrate = max_feedrate[Z_AXIS];
  2709. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2710. st_synchronize();
  2711. homeaxis(Z_AXIS);
  2712. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2713. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2714. SERIAL_ECHO_START;
  2715. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2716. } else {
  2717. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2718. SERIAL_ECHO_START;
  2719. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2720. }
  2721. }
  2722. #endif // Z_SAFE_HOMING
  2723. #endif // Z_HOME_DIR < 0
  2724. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2725. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2726. #ifdef ENABLE_AUTO_BED_LEVELING
  2727. if(home_z)
  2728. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2729. #endif
  2730. // Set the planner and stepper routine positions.
  2731. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2732. // contains the machine coordinates.
  2733. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2734. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2735. enable_endstops(false);
  2736. #endif
  2737. feedrate = saved_feedrate;
  2738. feedmultiply = saved_feedmultiply;
  2739. previous_millis_cmd = millis();
  2740. endstops_hit_on_purpose();
  2741. #ifndef MESH_BED_LEVELING
  2742. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2743. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2744. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2745. lcd_adjust_z();
  2746. #endif
  2747. // Load the machine correction matrix
  2748. world2machine_initialize();
  2749. // and correct the current_position XY axes to match the transformed coordinate system.
  2750. world2machine_update_current();
  2751. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2752. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2753. {
  2754. if (! home_z && mbl_was_active) {
  2755. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2756. mbl.active = true;
  2757. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2758. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2759. }
  2760. }
  2761. else
  2762. {
  2763. st_synchronize();
  2764. homing_flag = false;
  2765. // Push the commands to the front of the message queue in the reverse order!
  2766. // There shall be always enough space reserved for these commands.
  2767. // enquecommand_front_P((PSTR("G80")));
  2768. goto case_G80;
  2769. }
  2770. #endif
  2771. if (farm_mode) { prusa_statistics(20); };
  2772. homing_flag = false;
  2773. #if 0
  2774. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2775. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2776. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2777. #endif
  2778. break;
  2779. }
  2780. #ifdef ENABLE_AUTO_BED_LEVELING
  2781. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2782. {
  2783. #if Z_MIN_PIN == -1
  2784. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2785. #endif
  2786. // Prevent user from running a G29 without first homing in X and Y
  2787. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2788. {
  2789. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2790. SERIAL_ECHO_START;
  2791. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2792. break; // abort G29, since we don't know where we are
  2793. }
  2794. st_synchronize();
  2795. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2796. //vector_3 corrected_position = plan_get_position_mm();
  2797. //corrected_position.debug("position before G29");
  2798. plan_bed_level_matrix.set_to_identity();
  2799. vector_3 uncorrected_position = plan_get_position();
  2800. //uncorrected_position.debug("position durring G29");
  2801. current_position[X_AXIS] = uncorrected_position.x;
  2802. current_position[Y_AXIS] = uncorrected_position.y;
  2803. current_position[Z_AXIS] = uncorrected_position.z;
  2804. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2805. setup_for_endstop_move();
  2806. feedrate = homing_feedrate[Z_AXIS];
  2807. #ifdef AUTO_BED_LEVELING_GRID
  2808. // probe at the points of a lattice grid
  2809. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2810. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2811. // solve the plane equation ax + by + d = z
  2812. // A is the matrix with rows [x y 1] for all the probed points
  2813. // B is the vector of the Z positions
  2814. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2815. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2816. // "A" matrix of the linear system of equations
  2817. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2818. // "B" vector of Z points
  2819. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2820. int probePointCounter = 0;
  2821. bool zig = true;
  2822. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2823. {
  2824. int xProbe, xInc;
  2825. if (zig)
  2826. {
  2827. xProbe = LEFT_PROBE_BED_POSITION;
  2828. //xEnd = RIGHT_PROBE_BED_POSITION;
  2829. xInc = xGridSpacing;
  2830. zig = false;
  2831. } else // zag
  2832. {
  2833. xProbe = RIGHT_PROBE_BED_POSITION;
  2834. //xEnd = LEFT_PROBE_BED_POSITION;
  2835. xInc = -xGridSpacing;
  2836. zig = true;
  2837. }
  2838. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2839. {
  2840. float z_before;
  2841. if (probePointCounter == 0)
  2842. {
  2843. // raise before probing
  2844. z_before = Z_RAISE_BEFORE_PROBING;
  2845. } else
  2846. {
  2847. // raise extruder
  2848. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2849. }
  2850. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2851. eqnBVector[probePointCounter] = measured_z;
  2852. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2853. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2854. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2855. probePointCounter++;
  2856. xProbe += xInc;
  2857. }
  2858. }
  2859. clean_up_after_endstop_move();
  2860. // solve lsq problem
  2861. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2862. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2863. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2864. SERIAL_PROTOCOLPGM(" b: ");
  2865. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2866. SERIAL_PROTOCOLPGM(" d: ");
  2867. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2868. set_bed_level_equation_lsq(plane_equation_coefficients);
  2869. free(plane_equation_coefficients);
  2870. #else // AUTO_BED_LEVELING_GRID not defined
  2871. // Probe at 3 arbitrary points
  2872. // probe 1
  2873. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2874. // probe 2
  2875. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2876. // probe 3
  2877. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2878. clean_up_after_endstop_move();
  2879. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2880. #endif // AUTO_BED_LEVELING_GRID
  2881. st_synchronize();
  2882. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2883. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2884. // When the bed is uneven, this height must be corrected.
  2885. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2886. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2887. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2888. z_tmp = current_position[Z_AXIS];
  2889. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2890. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2891. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2892. }
  2893. break;
  2894. #ifndef Z_PROBE_SLED
  2895. case 30: // G30 Single Z Probe
  2896. {
  2897. st_synchronize();
  2898. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2899. setup_for_endstop_move();
  2900. feedrate = homing_feedrate[Z_AXIS];
  2901. run_z_probe();
  2902. SERIAL_PROTOCOLPGM(MSG_BED);
  2903. SERIAL_PROTOCOLPGM(" X: ");
  2904. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2905. SERIAL_PROTOCOLPGM(" Y: ");
  2906. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2907. SERIAL_PROTOCOLPGM(" Z: ");
  2908. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2909. SERIAL_PROTOCOLPGM("\n");
  2910. clean_up_after_endstop_move();
  2911. }
  2912. break;
  2913. #else
  2914. case 31: // dock the sled
  2915. dock_sled(true);
  2916. break;
  2917. case 32: // undock the sled
  2918. dock_sled(false);
  2919. break;
  2920. #endif // Z_PROBE_SLED
  2921. #endif // ENABLE_AUTO_BED_LEVELING
  2922. #ifdef MESH_BED_LEVELING
  2923. case 30: // G30 Single Z Probe
  2924. {
  2925. st_synchronize();
  2926. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2927. setup_for_endstop_move();
  2928. feedrate = homing_feedrate[Z_AXIS];
  2929. find_bed_induction_sensor_point_z(-10.f, 3);
  2930. SERIAL_PROTOCOLRPGM(MSG_BED);
  2931. SERIAL_PROTOCOLPGM(" X: ");
  2932. MYSERIAL.print(current_position[X_AXIS], 5);
  2933. SERIAL_PROTOCOLPGM(" Y: ");
  2934. MYSERIAL.print(current_position[Y_AXIS], 5);
  2935. SERIAL_PROTOCOLPGM(" Z: ");
  2936. MYSERIAL.print(current_position[Z_AXIS], 5);
  2937. SERIAL_PROTOCOLPGM("\n");
  2938. clean_up_after_endstop_move();
  2939. }
  2940. break;
  2941. case 75:
  2942. {
  2943. for (int i = 40; i <= 110; i++) {
  2944. MYSERIAL.print(i);
  2945. MYSERIAL.print(" ");
  2946. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2947. }
  2948. }
  2949. break;
  2950. case 76: //PINDA probe temperature calibration
  2951. {
  2952. #ifdef PINDA_THERMISTOR
  2953. if (true)
  2954. {
  2955. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  2956. {
  2957. // We don't know where we are! HOME!
  2958. // Push the commands to the front of the message queue in the reverse order!
  2959. // There shall be always enough space reserved for these commands.
  2960. repeatcommand_front(); // repeat G76 with all its parameters
  2961. enquecommand_front_P((PSTR("G28 W0")));
  2962. break;
  2963. }
  2964. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  2965. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  2966. if (result)
  2967. {
  2968. current_position[Z_AXIS] = 50;
  2969. current_position[Y_AXIS] += 180;
  2970. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2971. st_synchronize();
  2972. lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  2973. current_position[Y_AXIS] -= 180;
  2974. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2975. st_synchronize();
  2976. feedrate = homing_feedrate[Z_AXIS] / 10;
  2977. enable_endstops(true);
  2978. endstops_hit_on_purpose();
  2979. homeaxis(Z_AXIS);
  2980. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2981. enable_endstops(false);
  2982. }
  2983. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  2984. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  2985. current_position[Z_AXIS] = 100;
  2986. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2987. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  2988. lcd_temp_cal_show_result(false);
  2989. break;
  2990. }
  2991. }
  2992. lcd_update_enable(true);
  2993. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2994. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2995. float zero_z;
  2996. int z_shift = 0; //unit: steps
  2997. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2998. if (start_temp < 35) start_temp = 35;
  2999. if (start_temp < current_temperature_pinda) start_temp += 5;
  3000. SERIAL_ECHOPGM("start temperature: ");
  3001. MYSERIAL.println(start_temp);
  3002. // setTargetHotend(200, 0);
  3003. setTargetBed(70 + (start_temp - 30));
  3004. custom_message = true;
  3005. custom_message_type = 4;
  3006. custom_message_state = 1;
  3007. custom_message = MSG_TEMP_CALIBRATION;
  3008. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3009. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3010. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3011. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3012. st_synchronize();
  3013. while (current_temperature_pinda < start_temp)
  3014. {
  3015. delay_keep_alive(1000);
  3016. serialecho_temperatures();
  3017. }
  3018. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3019. current_position[Z_AXIS] = 5;
  3020. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3021. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3022. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3023. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3024. st_synchronize();
  3025. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3026. if (find_z_result == false) {
  3027. lcd_temp_cal_show_result(find_z_result);
  3028. break;
  3029. }
  3030. zero_z = current_position[Z_AXIS];
  3031. //current_position[Z_AXIS]
  3032. SERIAL_ECHOLNPGM("");
  3033. SERIAL_ECHOPGM("ZERO: ");
  3034. MYSERIAL.print(current_position[Z_AXIS]);
  3035. SERIAL_ECHOLNPGM("");
  3036. int i = -1; for (; i < 5; i++)
  3037. {
  3038. float temp = (40 + i * 5);
  3039. SERIAL_ECHOPGM("Step: ");
  3040. MYSERIAL.print(i + 2);
  3041. SERIAL_ECHOLNPGM("/6 (skipped)");
  3042. SERIAL_ECHOPGM("PINDA temperature: ");
  3043. MYSERIAL.print((40 + i*5));
  3044. SERIAL_ECHOPGM(" Z shift (mm):");
  3045. MYSERIAL.print(0);
  3046. SERIAL_ECHOLNPGM("");
  3047. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3048. if (start_temp <= temp) break;
  3049. }
  3050. for (i++; i < 5; i++)
  3051. {
  3052. float temp = (40 + i * 5);
  3053. SERIAL_ECHOPGM("Step: ");
  3054. MYSERIAL.print(i + 2);
  3055. SERIAL_ECHOLNPGM("/6");
  3056. custom_message_state = i + 2;
  3057. setTargetBed(50 + 10 * (temp - 30) / 5);
  3058. // setTargetHotend(255, 0);
  3059. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3060. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3061. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3062. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3063. st_synchronize();
  3064. while (current_temperature_pinda < temp)
  3065. {
  3066. delay_keep_alive(1000);
  3067. serialecho_temperatures();
  3068. }
  3069. current_position[Z_AXIS] = 5;
  3070. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3071. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3072. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3073. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3074. st_synchronize();
  3075. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3076. if (find_z_result == false) {
  3077. lcd_temp_cal_show_result(find_z_result);
  3078. break;
  3079. }
  3080. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3081. SERIAL_ECHOLNPGM("");
  3082. SERIAL_ECHOPGM("PINDA temperature: ");
  3083. MYSERIAL.print(current_temperature_pinda);
  3084. SERIAL_ECHOPGM(" Z shift (mm):");
  3085. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3086. SERIAL_ECHOLNPGM("");
  3087. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3088. }
  3089. lcd_temp_cal_show_result(true);
  3090. break;
  3091. }
  3092. #endif //PINDA_THERMISTOR
  3093. setTargetBed(PINDA_MIN_T);
  3094. float zero_z;
  3095. int z_shift = 0; //unit: steps
  3096. int t_c; // temperature
  3097. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3098. // We don't know where we are! HOME!
  3099. // Push the commands to the front of the message queue in the reverse order!
  3100. // There shall be always enough space reserved for these commands.
  3101. repeatcommand_front(); // repeat G76 with all its parameters
  3102. enquecommand_front_P((PSTR("G28 W0")));
  3103. break;
  3104. }
  3105. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3106. custom_message = true;
  3107. custom_message_type = 4;
  3108. custom_message_state = 1;
  3109. custom_message = MSG_TEMP_CALIBRATION;
  3110. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3111. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3112. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3113. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3114. st_synchronize();
  3115. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3116. delay_keep_alive(1000);
  3117. serialecho_temperatures();
  3118. }
  3119. //enquecommand_P(PSTR("M190 S50"));
  3120. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3121. delay_keep_alive(1000);
  3122. serialecho_temperatures();
  3123. }
  3124. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3125. current_position[Z_AXIS] = 5;
  3126. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3127. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3128. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3130. st_synchronize();
  3131. find_bed_induction_sensor_point_z(-1.f);
  3132. zero_z = current_position[Z_AXIS];
  3133. //current_position[Z_AXIS]
  3134. SERIAL_ECHOLNPGM("");
  3135. SERIAL_ECHOPGM("ZERO: ");
  3136. MYSERIAL.print(current_position[Z_AXIS]);
  3137. SERIAL_ECHOLNPGM("");
  3138. for (int i = 0; i<5; i++) {
  3139. SERIAL_ECHOPGM("Step: ");
  3140. MYSERIAL.print(i+2);
  3141. SERIAL_ECHOLNPGM("/6");
  3142. custom_message_state = i + 2;
  3143. t_c = 60 + i * 10;
  3144. setTargetBed(t_c);
  3145. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3146. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3147. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3148. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3149. st_synchronize();
  3150. while (degBed() < t_c) {
  3151. delay_keep_alive(1000);
  3152. serialecho_temperatures();
  3153. }
  3154. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3155. delay_keep_alive(1000);
  3156. serialecho_temperatures();
  3157. }
  3158. current_position[Z_AXIS] = 5;
  3159. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3160. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3161. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3162. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3163. st_synchronize();
  3164. find_bed_induction_sensor_point_z(-1.f);
  3165. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3166. SERIAL_ECHOLNPGM("");
  3167. SERIAL_ECHOPGM("Temperature: ");
  3168. MYSERIAL.print(t_c);
  3169. SERIAL_ECHOPGM(" Z shift (mm):");
  3170. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3171. SERIAL_ECHOLNPGM("");
  3172. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3173. }
  3174. custom_message_type = 0;
  3175. custom_message = false;
  3176. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3177. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3178. disable_x();
  3179. disable_y();
  3180. disable_z();
  3181. disable_e0();
  3182. disable_e1();
  3183. disable_e2();
  3184. setTargetBed(0); //set bed target temperature back to 0
  3185. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  3186. temp_cal_active = true;
  3187. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3188. lcd_update_enable(true);
  3189. lcd_update(2);
  3190. }
  3191. break;
  3192. #ifdef DIS
  3193. case 77:
  3194. {
  3195. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3196. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3197. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3198. float dimension_x = 40;
  3199. float dimension_y = 40;
  3200. int points_x = 40;
  3201. int points_y = 40;
  3202. float offset_x = 74;
  3203. float offset_y = 33;
  3204. if (code_seen('X')) dimension_x = code_value();
  3205. if (code_seen('Y')) dimension_y = code_value();
  3206. if (code_seen('XP')) points_x = code_value();
  3207. if (code_seen('YP')) points_y = code_value();
  3208. if (code_seen('XO')) offset_x = code_value();
  3209. if (code_seen('YO')) offset_y = code_value();
  3210. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3211. } break;
  3212. #endif
  3213. case 79: {
  3214. for (int i = 255; i > 0; i = i - 5) {
  3215. fanSpeed = i;
  3216. //delay_keep_alive(2000);
  3217. for (int j = 0; j < 100; j++) {
  3218. delay_keep_alive(100);
  3219. }
  3220. fan_speed[1];
  3221. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3222. }
  3223. }break;
  3224. /**
  3225. * G80: Mesh-based Z probe, probes a grid and produces a
  3226. * mesh to compensate for variable bed height
  3227. *
  3228. * The S0 report the points as below
  3229. *
  3230. * +----> X-axis
  3231. * |
  3232. * |
  3233. * v Y-axis
  3234. *
  3235. */
  3236. case 80:
  3237. #ifdef MK1BP
  3238. break;
  3239. #endif //MK1BP
  3240. case_G80:
  3241. {
  3242. #ifdef TMC2130
  3243. //previously enqueued "G28 W0" failed (crash Z)
  3244. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && !axis_known_position[Z_AXIS] && (READ(Z_TMC2130_DIAG) != 0))
  3245. {
  3246. kill(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3247. break;
  3248. }
  3249. #endif //TMC2130
  3250. mesh_bed_leveling_flag = true;
  3251. int8_t verbosity_level = 0;
  3252. static bool run = false;
  3253. if (code_seen('V')) {
  3254. // Just 'V' without a number counts as V1.
  3255. char c = strchr_pointer[1];
  3256. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3257. }
  3258. // Firstly check if we know where we are
  3259. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3260. // We don't know where we are! HOME!
  3261. // Push the commands to the front of the message queue in the reverse order!
  3262. // There shall be always enough space reserved for these commands.
  3263. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3264. repeatcommand_front(); // repeat G80 with all its parameters
  3265. enquecommand_front_P((PSTR("G28 W0")));
  3266. }
  3267. else {
  3268. mesh_bed_leveling_flag = false;
  3269. }
  3270. break;
  3271. }
  3272. bool temp_comp_start = true;
  3273. #ifdef PINDA_THERMISTOR
  3274. temp_comp_start = false;
  3275. #endif //PINDA_THERMISTOR
  3276. if (temp_comp_start)
  3277. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3278. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3279. temp_compensation_start();
  3280. run = true;
  3281. repeatcommand_front(); // repeat G80 with all its parameters
  3282. enquecommand_front_P((PSTR("G28 W0")));
  3283. }
  3284. else {
  3285. mesh_bed_leveling_flag = false;
  3286. }
  3287. break;
  3288. }
  3289. run = false;
  3290. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3291. mesh_bed_leveling_flag = false;
  3292. break;
  3293. }
  3294. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3295. bool custom_message_old = custom_message;
  3296. unsigned int custom_message_type_old = custom_message_type;
  3297. unsigned int custom_message_state_old = custom_message_state;
  3298. custom_message = true;
  3299. custom_message_type = 1;
  3300. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3301. lcd_update(1);
  3302. mbl.reset(); //reset mesh bed leveling
  3303. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3304. // consumed during the first movements following this statement.
  3305. babystep_undo();
  3306. // Cycle through all points and probe them
  3307. // First move up. During this first movement, the babystepping will be reverted.
  3308. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3309. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3310. // The move to the first calibration point.
  3311. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3312. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3313. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3314. #ifdef SUPPORT_VERBOSITY
  3315. if (verbosity_level >= 1) {
  3316. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3317. }
  3318. #endif //SUPPORT_VERBOSITY
  3319. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3320. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3321. // Wait until the move is finished.
  3322. st_synchronize();
  3323. int mesh_point = 0; //index number of calibration point
  3324. int ix = 0;
  3325. int iy = 0;
  3326. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3327. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3328. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3329. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3330. #ifdef SUPPORT_VERBOSITY
  3331. if (verbosity_level >= 1) {
  3332. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3333. }
  3334. #endif // SUPPORT_VERBOSITY
  3335. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3336. const char *kill_message = NULL;
  3337. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3338. // Get coords of a measuring point.
  3339. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3340. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3341. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3342. float z0 = 0.f;
  3343. if (has_z && mesh_point > 0) {
  3344. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3345. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3346. //#if 0
  3347. #ifdef SUPPORT_VERBOSITY
  3348. if (verbosity_level >= 1) {
  3349. SERIAL_ECHOLNPGM("");
  3350. SERIAL_ECHOPGM("Bed leveling, point: ");
  3351. MYSERIAL.print(mesh_point);
  3352. SERIAL_ECHOPGM(", calibration z: ");
  3353. MYSERIAL.print(z0, 5);
  3354. SERIAL_ECHOLNPGM("");
  3355. }
  3356. #endif // SUPPORT_VERBOSITY
  3357. //#endif
  3358. }
  3359. // Move Z up to MESH_HOME_Z_SEARCH.
  3360. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3361. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3362. st_synchronize();
  3363. // Move to XY position of the sensor point.
  3364. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3365. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3366. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3367. #ifdef SUPPORT_VERBOSITY
  3368. if (verbosity_level >= 1) {
  3369. SERIAL_PROTOCOL(mesh_point);
  3370. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3371. }
  3372. #endif // SUPPORT_VERBOSITY
  3373. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3374. st_synchronize();
  3375. // Go down until endstop is hit
  3376. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3377. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3378. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  3379. break;
  3380. }
  3381. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3382. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3383. break;
  3384. }
  3385. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3386. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3387. break;
  3388. }
  3389. #ifdef SUPPORT_VERBOSITY
  3390. if (verbosity_level >= 10) {
  3391. SERIAL_ECHOPGM("X: ");
  3392. MYSERIAL.print(current_position[X_AXIS], 5);
  3393. SERIAL_ECHOLNPGM("");
  3394. SERIAL_ECHOPGM("Y: ");
  3395. MYSERIAL.print(current_position[Y_AXIS], 5);
  3396. SERIAL_PROTOCOLPGM("\n");
  3397. }
  3398. #endif // SUPPORT_VERBOSITY
  3399. float offset_z = 0;
  3400. #ifdef PINDA_THERMISTOR
  3401. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3402. #endif //PINDA_THERMISTOR
  3403. // #ifdef SUPPORT_VERBOSITY
  3404. /* if (verbosity_level >= 1)
  3405. {
  3406. SERIAL_ECHOPGM("mesh bed leveling: ");
  3407. MYSERIAL.print(current_position[Z_AXIS], 5);
  3408. SERIAL_ECHOPGM(" offset: ");
  3409. MYSERIAL.print(offset_z, 5);
  3410. SERIAL_ECHOLNPGM("");
  3411. }*/
  3412. // #endif // SUPPORT_VERBOSITY
  3413. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3414. custom_message_state--;
  3415. mesh_point++;
  3416. lcd_update(1);
  3417. }
  3418. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3419. #ifdef SUPPORT_VERBOSITY
  3420. if (verbosity_level >= 20) {
  3421. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3422. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3423. MYSERIAL.print(current_position[Z_AXIS], 5);
  3424. }
  3425. #endif // SUPPORT_VERBOSITY
  3426. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3427. st_synchronize();
  3428. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3429. kill(kill_message);
  3430. SERIAL_ECHOLNPGM("killed");
  3431. }
  3432. clean_up_after_endstop_move();
  3433. // SERIAL_ECHOLNPGM("clean up finished ");
  3434. bool apply_temp_comp = true;
  3435. #ifdef PINDA_THERMISTOR
  3436. apply_temp_comp = false;
  3437. #endif
  3438. if (apply_temp_comp)
  3439. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3440. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3441. // SERIAL_ECHOLNPGM("babystep applied");
  3442. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3443. #ifdef SUPPORT_VERBOSITY
  3444. if (verbosity_level >= 1) {
  3445. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3446. }
  3447. #endif // SUPPORT_VERBOSITY
  3448. for (uint8_t i = 0; i < 4; ++i) {
  3449. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3450. long correction = 0;
  3451. if (code_seen(codes[i]))
  3452. correction = code_value_long();
  3453. else if (eeprom_bed_correction_valid) {
  3454. unsigned char *addr = (i < 2) ?
  3455. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3456. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3457. correction = eeprom_read_int8(addr);
  3458. }
  3459. if (correction == 0)
  3460. continue;
  3461. float offset = float(correction) * 0.001f;
  3462. if (fabs(offset) > 0.101f) {
  3463. SERIAL_ERROR_START;
  3464. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3465. SERIAL_ECHO(offset);
  3466. SERIAL_ECHOLNPGM(" microns");
  3467. }
  3468. else {
  3469. switch (i) {
  3470. case 0:
  3471. for (uint8_t row = 0; row < 3; ++row) {
  3472. mbl.z_values[row][1] += 0.5f * offset;
  3473. mbl.z_values[row][0] += offset;
  3474. }
  3475. break;
  3476. case 1:
  3477. for (uint8_t row = 0; row < 3; ++row) {
  3478. mbl.z_values[row][1] += 0.5f * offset;
  3479. mbl.z_values[row][2] += offset;
  3480. }
  3481. break;
  3482. case 2:
  3483. for (uint8_t col = 0; col < 3; ++col) {
  3484. mbl.z_values[1][col] += 0.5f * offset;
  3485. mbl.z_values[0][col] += offset;
  3486. }
  3487. break;
  3488. case 3:
  3489. for (uint8_t col = 0; col < 3; ++col) {
  3490. mbl.z_values[1][col] += 0.5f * offset;
  3491. mbl.z_values[2][col] += offset;
  3492. }
  3493. break;
  3494. }
  3495. }
  3496. }
  3497. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3498. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3499. // SERIAL_ECHOLNPGM("Upsample finished");
  3500. mbl.active = 1; //activate mesh bed leveling
  3501. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3502. go_home_with_z_lift();
  3503. // SERIAL_ECHOLNPGM("Go home finished");
  3504. //unretract (after PINDA preheat retraction)
  3505. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3506. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3507. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3508. }
  3509. KEEPALIVE_STATE(NOT_BUSY);
  3510. // Restore custom message state
  3511. custom_message = custom_message_old;
  3512. custom_message_type = custom_message_type_old;
  3513. custom_message_state = custom_message_state_old;
  3514. mesh_bed_leveling_flag = false;
  3515. mesh_bed_run_from_menu = false;
  3516. lcd_update(2);
  3517. }
  3518. break;
  3519. /**
  3520. * G81: Print mesh bed leveling status and bed profile if activated
  3521. */
  3522. case 81:
  3523. if (mbl.active) {
  3524. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3525. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3526. SERIAL_PROTOCOLPGM(",");
  3527. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3528. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3529. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3530. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3531. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3532. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3533. SERIAL_PROTOCOLPGM(" ");
  3534. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3535. }
  3536. SERIAL_PROTOCOLPGM("\n");
  3537. }
  3538. }
  3539. else
  3540. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3541. break;
  3542. #if 0
  3543. /**
  3544. * G82: Single Z probe at current location
  3545. *
  3546. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3547. *
  3548. */
  3549. case 82:
  3550. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3551. setup_for_endstop_move();
  3552. find_bed_induction_sensor_point_z();
  3553. clean_up_after_endstop_move();
  3554. SERIAL_PROTOCOLPGM("Bed found at: ");
  3555. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3556. SERIAL_PROTOCOLPGM("\n");
  3557. break;
  3558. /**
  3559. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3560. */
  3561. case 83:
  3562. {
  3563. int babystepz = code_seen('S') ? code_value() : 0;
  3564. int BabyPosition = code_seen('P') ? code_value() : 0;
  3565. if (babystepz != 0) {
  3566. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3567. // Is the axis indexed starting with zero or one?
  3568. if (BabyPosition > 4) {
  3569. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3570. }else{
  3571. // Save it to the eeprom
  3572. babystepLoadZ = babystepz;
  3573. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3574. // adjust the Z
  3575. babystepsTodoZadd(babystepLoadZ);
  3576. }
  3577. }
  3578. }
  3579. break;
  3580. /**
  3581. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3582. */
  3583. case 84:
  3584. babystepsTodoZsubtract(babystepLoadZ);
  3585. // babystepLoadZ = 0;
  3586. break;
  3587. /**
  3588. * G85: Prusa3D specific: Pick best babystep
  3589. */
  3590. case 85:
  3591. lcd_pick_babystep();
  3592. break;
  3593. #endif
  3594. /**
  3595. * G86: Prusa3D specific: Disable babystep correction after home.
  3596. * This G-code will be performed at the start of a calibration script.
  3597. */
  3598. case 86:
  3599. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3600. break;
  3601. /**
  3602. * G87: Prusa3D specific: Enable babystep correction after home
  3603. * This G-code will be performed at the end of a calibration script.
  3604. */
  3605. case 87:
  3606. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3607. break;
  3608. /**
  3609. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3610. */
  3611. case 88:
  3612. break;
  3613. #endif // ENABLE_MESH_BED_LEVELING
  3614. case 90: // G90
  3615. relative_mode = false;
  3616. break;
  3617. case 91: // G91
  3618. relative_mode = true;
  3619. break;
  3620. case 92: // G92
  3621. if(!code_seen(axis_codes[E_AXIS]))
  3622. st_synchronize();
  3623. for(int8_t i=0; i < NUM_AXIS; i++) {
  3624. if(code_seen(axis_codes[i])) {
  3625. if(i == E_AXIS) {
  3626. current_position[i] = code_value();
  3627. plan_set_e_position(current_position[E_AXIS]);
  3628. }
  3629. else {
  3630. current_position[i] = code_value()+add_homing[i];
  3631. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3632. }
  3633. }
  3634. }
  3635. break;
  3636. case 98: // G98 (activate farm mode)
  3637. farm_mode = 1;
  3638. PingTime = millis();
  3639. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3640. SilentModeMenu = SILENT_MODE_OFF;
  3641. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3642. break;
  3643. case 99: // G99 (deactivate farm mode)
  3644. farm_mode = 0;
  3645. lcd_printer_connected();
  3646. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3647. lcd_update(2);
  3648. break;
  3649. default:
  3650. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3651. }
  3652. } // end if(code_seen('G'))
  3653. else if(code_seen('M'))
  3654. {
  3655. int index;
  3656. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3657. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3658. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3659. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3660. } else
  3661. switch((int)code_value())
  3662. {
  3663. #ifdef ULTIPANEL
  3664. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3665. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3666. {
  3667. char *src = strchr_pointer + 2;
  3668. codenum = 0;
  3669. bool hasP = false, hasS = false;
  3670. if (code_seen('P')) {
  3671. codenum = code_value(); // milliseconds to wait
  3672. hasP = codenum > 0;
  3673. }
  3674. if (code_seen('S')) {
  3675. codenum = code_value() * 1000; // seconds to wait
  3676. hasS = codenum > 0;
  3677. }
  3678. starpos = strchr(src, '*');
  3679. if (starpos != NULL) *(starpos) = '\0';
  3680. while (*src == ' ') ++src;
  3681. if (!hasP && !hasS && *src != '\0') {
  3682. lcd_setstatus(src);
  3683. } else {
  3684. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  3685. }
  3686. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3687. st_synchronize();
  3688. previous_millis_cmd = millis();
  3689. if (codenum > 0){
  3690. codenum += millis(); // keep track of when we started waiting
  3691. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3692. while(millis() < codenum && !lcd_clicked()){
  3693. manage_heater();
  3694. manage_inactivity(true);
  3695. lcd_update();
  3696. }
  3697. KEEPALIVE_STATE(IN_HANDLER);
  3698. lcd_ignore_click(false);
  3699. }else{
  3700. if (!lcd_detected())
  3701. break;
  3702. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3703. while(!lcd_clicked()){
  3704. manage_heater();
  3705. manage_inactivity(true);
  3706. lcd_update();
  3707. }
  3708. KEEPALIVE_STATE(IN_HANDLER);
  3709. }
  3710. if (IS_SD_PRINTING)
  3711. LCD_MESSAGERPGM(_i("Resuming print"));////MSG_RESUMING c=0 r=0
  3712. else
  3713. LCD_MESSAGERPGM(WELCOME_MSG);
  3714. }
  3715. break;
  3716. #endif
  3717. case 17:
  3718. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  3719. enable_x();
  3720. enable_y();
  3721. enable_z();
  3722. enable_e0();
  3723. enable_e1();
  3724. enable_e2();
  3725. break;
  3726. #ifdef SDSUPPORT
  3727. case 20: // M20 - list SD card
  3728. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  3729. card.ls();
  3730. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  3731. break;
  3732. case 21: // M21 - init SD card
  3733. card.initsd();
  3734. break;
  3735. case 22: //M22 - release SD card
  3736. card.release();
  3737. break;
  3738. case 23: //M23 - Select file
  3739. starpos = (strchr(strchr_pointer + 4,'*'));
  3740. if(starpos!=NULL)
  3741. *(starpos)='\0';
  3742. card.openFile(strchr_pointer + 4,true);
  3743. break;
  3744. case 24: //M24 - Start SD print
  3745. if (!card.paused)
  3746. failstats_reset_print();
  3747. card.startFileprint();
  3748. starttime=millis();
  3749. break;
  3750. case 25: //M25 - Pause SD print
  3751. card.pauseSDPrint();
  3752. break;
  3753. case 26: //M26 - Set SD index
  3754. if(card.cardOK && code_seen('S')) {
  3755. card.setIndex(code_value_long());
  3756. }
  3757. break;
  3758. case 27: //M27 - Get SD status
  3759. card.getStatus();
  3760. break;
  3761. case 28: //M28 - Start SD write
  3762. starpos = (strchr(strchr_pointer + 4,'*'));
  3763. if(starpos != NULL){
  3764. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3765. strchr_pointer = strchr(npos,' ') + 1;
  3766. *(starpos) = '\0';
  3767. }
  3768. card.openFile(strchr_pointer+4,false);
  3769. break;
  3770. case 29: //M29 - Stop SD write
  3771. //processed in write to file routine above
  3772. //card,saving = false;
  3773. break;
  3774. case 30: //M30 <filename> Delete File
  3775. if (card.cardOK){
  3776. card.closefile();
  3777. starpos = (strchr(strchr_pointer + 4,'*'));
  3778. if(starpos != NULL){
  3779. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3780. strchr_pointer = strchr(npos,' ') + 1;
  3781. *(starpos) = '\0';
  3782. }
  3783. card.removeFile(strchr_pointer + 4);
  3784. }
  3785. break;
  3786. case 32: //M32 - Select file and start SD print
  3787. {
  3788. if(card.sdprinting) {
  3789. st_synchronize();
  3790. }
  3791. starpos = (strchr(strchr_pointer + 4,'*'));
  3792. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3793. if(namestartpos==NULL)
  3794. {
  3795. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3796. }
  3797. else
  3798. namestartpos++; //to skip the '!'
  3799. if(starpos!=NULL)
  3800. *(starpos)='\0';
  3801. bool call_procedure=(code_seen('P'));
  3802. if(strchr_pointer>namestartpos)
  3803. call_procedure=false; //false alert, 'P' found within filename
  3804. if( card.cardOK )
  3805. {
  3806. card.openFile(namestartpos,true,!call_procedure);
  3807. if(code_seen('S'))
  3808. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3809. card.setIndex(code_value_long());
  3810. card.startFileprint();
  3811. if(!call_procedure)
  3812. starttime=millis(); //procedure calls count as normal print time.
  3813. }
  3814. } break;
  3815. case 928: //M928 - Start SD write
  3816. starpos = (strchr(strchr_pointer + 5,'*'));
  3817. if(starpos != NULL){
  3818. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3819. strchr_pointer = strchr(npos,' ') + 1;
  3820. *(starpos) = '\0';
  3821. }
  3822. card.openLogFile(strchr_pointer+5);
  3823. break;
  3824. #endif //SDSUPPORT
  3825. case 31: //M31 take time since the start of the SD print or an M109 command
  3826. {
  3827. stoptime=millis();
  3828. char time[30];
  3829. unsigned long t=(stoptime-starttime)/1000;
  3830. int sec,min;
  3831. min=t/60;
  3832. sec=t%60;
  3833. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3834. SERIAL_ECHO_START;
  3835. SERIAL_ECHOLN(time);
  3836. lcd_setstatus(time);
  3837. autotempShutdown();
  3838. }
  3839. break;
  3840. #ifndef _DISABLE_M42_M226
  3841. case 42: //M42 -Change pin status via gcode
  3842. if (code_seen('S'))
  3843. {
  3844. int pin_status = code_value();
  3845. int pin_number = LED_PIN;
  3846. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3847. pin_number = code_value();
  3848. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3849. {
  3850. if (sensitive_pins[i] == pin_number)
  3851. {
  3852. pin_number = -1;
  3853. break;
  3854. }
  3855. }
  3856. #if defined(FAN_PIN) && FAN_PIN > -1
  3857. if (pin_number == FAN_PIN)
  3858. fanSpeed = pin_status;
  3859. #endif
  3860. if (pin_number > -1)
  3861. {
  3862. pinMode(pin_number, OUTPUT);
  3863. digitalWrite(pin_number, pin_status);
  3864. analogWrite(pin_number, pin_status);
  3865. }
  3866. }
  3867. break;
  3868. #endif //_DISABLE_M42_M226
  3869. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3870. // Reset the baby step value and the baby step applied flag.
  3871. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3872. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3873. // Reset the skew and offset in both RAM and EEPROM.
  3874. reset_bed_offset_and_skew();
  3875. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3876. // the planner will not perform any adjustments in the XY plane.
  3877. // Wait for the motors to stop and update the current position with the absolute values.
  3878. world2machine_revert_to_uncorrected();
  3879. break;
  3880. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3881. {
  3882. int8_t verbosity_level = 0;
  3883. bool only_Z = code_seen('Z');
  3884. #ifdef SUPPORT_VERBOSITY
  3885. if (code_seen('V'))
  3886. {
  3887. // Just 'V' without a number counts as V1.
  3888. char c = strchr_pointer[1];
  3889. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3890. }
  3891. #endif //SUPPORT_VERBOSITY
  3892. gcode_M45(only_Z, verbosity_level);
  3893. }
  3894. break;
  3895. /*
  3896. case 46:
  3897. {
  3898. // M46: Prusa3D: Show the assigned IP address.
  3899. uint8_t ip[4];
  3900. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3901. if (hasIP) {
  3902. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3903. SERIAL_ECHO(int(ip[0]));
  3904. SERIAL_ECHOPGM(".");
  3905. SERIAL_ECHO(int(ip[1]));
  3906. SERIAL_ECHOPGM(".");
  3907. SERIAL_ECHO(int(ip[2]));
  3908. SERIAL_ECHOPGM(".");
  3909. SERIAL_ECHO(int(ip[3]));
  3910. SERIAL_ECHOLNPGM("");
  3911. } else {
  3912. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3913. }
  3914. break;
  3915. }
  3916. */
  3917. case 47:
  3918. // M47: Prusa3D: Show end stops dialog on the display.
  3919. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3920. lcd_diag_show_end_stops();
  3921. KEEPALIVE_STATE(IN_HANDLER);
  3922. break;
  3923. #if 0
  3924. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3925. {
  3926. // Disable the default update procedure of the display. We will do a modal dialog.
  3927. lcd_update_enable(false);
  3928. // Let the planner use the uncorrected coordinates.
  3929. mbl.reset();
  3930. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3931. // the planner will not perform any adjustments in the XY plane.
  3932. // Wait for the motors to stop and update the current position with the absolute values.
  3933. world2machine_revert_to_uncorrected();
  3934. // Move the print head close to the bed.
  3935. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3936. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3937. st_synchronize();
  3938. // Home in the XY plane.
  3939. set_destination_to_current();
  3940. setup_for_endstop_move();
  3941. home_xy();
  3942. int8_t verbosity_level = 0;
  3943. if (code_seen('V')) {
  3944. // Just 'V' without a number counts as V1.
  3945. char c = strchr_pointer[1];
  3946. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3947. }
  3948. bool success = scan_bed_induction_points(verbosity_level);
  3949. clean_up_after_endstop_move();
  3950. // Print head up.
  3951. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3952. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3953. st_synchronize();
  3954. lcd_update_enable(true);
  3955. break;
  3956. }
  3957. #endif
  3958. // M48 Z-Probe repeatability measurement function.
  3959. //
  3960. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3961. //
  3962. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3963. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3964. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3965. // regenerated.
  3966. //
  3967. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3968. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3969. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3970. //
  3971. #ifdef ENABLE_AUTO_BED_LEVELING
  3972. #ifdef Z_PROBE_REPEATABILITY_TEST
  3973. case 48: // M48 Z-Probe repeatability
  3974. {
  3975. #if Z_MIN_PIN == -1
  3976. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3977. #endif
  3978. double sum=0.0;
  3979. double mean=0.0;
  3980. double sigma=0.0;
  3981. double sample_set[50];
  3982. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3983. double X_current, Y_current, Z_current;
  3984. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3985. if (code_seen('V') || code_seen('v')) {
  3986. verbose_level = code_value();
  3987. if (verbose_level<0 || verbose_level>4 ) {
  3988. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3989. goto Sigma_Exit;
  3990. }
  3991. }
  3992. if (verbose_level > 0) {
  3993. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3994. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3995. }
  3996. if (code_seen('n')) {
  3997. n_samples = code_value();
  3998. if (n_samples<4 || n_samples>50 ) {
  3999. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4000. goto Sigma_Exit;
  4001. }
  4002. }
  4003. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4004. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4005. Z_current = st_get_position_mm(Z_AXIS);
  4006. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4007. ext_position = st_get_position_mm(E_AXIS);
  4008. if (code_seen('X') || code_seen('x') ) {
  4009. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4010. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4011. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4012. goto Sigma_Exit;
  4013. }
  4014. }
  4015. if (code_seen('Y') || code_seen('y') ) {
  4016. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4017. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4018. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4019. goto Sigma_Exit;
  4020. }
  4021. }
  4022. if (code_seen('L') || code_seen('l') ) {
  4023. n_legs = code_value();
  4024. if ( n_legs==1 )
  4025. n_legs = 2;
  4026. if ( n_legs<0 || n_legs>15 ) {
  4027. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4028. goto Sigma_Exit;
  4029. }
  4030. }
  4031. //
  4032. // Do all the preliminary setup work. First raise the probe.
  4033. //
  4034. st_synchronize();
  4035. plan_bed_level_matrix.set_to_identity();
  4036. plan_buffer_line( X_current, Y_current, Z_start_location,
  4037. ext_position,
  4038. homing_feedrate[Z_AXIS]/60,
  4039. active_extruder);
  4040. st_synchronize();
  4041. //
  4042. // Now get everything to the specified probe point So we can safely do a probe to
  4043. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4044. // use that as a starting point for each probe.
  4045. //
  4046. if (verbose_level > 2)
  4047. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4048. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4049. ext_position,
  4050. homing_feedrate[X_AXIS]/60,
  4051. active_extruder);
  4052. st_synchronize();
  4053. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4054. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4055. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4056. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4057. //
  4058. // OK, do the inital probe to get us close to the bed.
  4059. // Then retrace the right amount and use that in subsequent probes
  4060. //
  4061. setup_for_endstop_move();
  4062. run_z_probe();
  4063. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4064. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4065. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4066. ext_position,
  4067. homing_feedrate[X_AXIS]/60,
  4068. active_extruder);
  4069. st_synchronize();
  4070. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4071. for( n=0; n<n_samples; n++) {
  4072. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4073. if ( n_legs) {
  4074. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4075. int rotational_direction, l;
  4076. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4077. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4078. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4079. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4080. //SERIAL_ECHOPAIR(" theta: ",theta);
  4081. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4082. //SERIAL_PROTOCOLLNPGM("");
  4083. for( l=0; l<n_legs-1; l++) {
  4084. if (rotational_direction==1)
  4085. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4086. else
  4087. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4088. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4089. if ( radius<0.0 )
  4090. radius = -radius;
  4091. X_current = X_probe_location + cos(theta) * radius;
  4092. Y_current = Y_probe_location + sin(theta) * radius;
  4093. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4094. X_current = X_MIN_POS;
  4095. if ( X_current>X_MAX_POS)
  4096. X_current = X_MAX_POS;
  4097. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4098. Y_current = Y_MIN_POS;
  4099. if ( Y_current>Y_MAX_POS)
  4100. Y_current = Y_MAX_POS;
  4101. if (verbose_level>3 ) {
  4102. SERIAL_ECHOPAIR("x: ", X_current);
  4103. SERIAL_ECHOPAIR("y: ", Y_current);
  4104. SERIAL_PROTOCOLLNPGM("");
  4105. }
  4106. do_blocking_move_to( X_current, Y_current, Z_current );
  4107. }
  4108. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4109. }
  4110. setup_for_endstop_move();
  4111. run_z_probe();
  4112. sample_set[n] = current_position[Z_AXIS];
  4113. //
  4114. // Get the current mean for the data points we have so far
  4115. //
  4116. sum=0.0;
  4117. for( j=0; j<=n; j++) {
  4118. sum = sum + sample_set[j];
  4119. }
  4120. mean = sum / (double (n+1));
  4121. //
  4122. // Now, use that mean to calculate the standard deviation for the
  4123. // data points we have so far
  4124. //
  4125. sum=0.0;
  4126. for( j=0; j<=n; j++) {
  4127. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4128. }
  4129. sigma = sqrt( sum / (double (n+1)) );
  4130. if (verbose_level > 1) {
  4131. SERIAL_PROTOCOL(n+1);
  4132. SERIAL_PROTOCOL(" of ");
  4133. SERIAL_PROTOCOL(n_samples);
  4134. SERIAL_PROTOCOLPGM(" z: ");
  4135. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4136. }
  4137. if (verbose_level > 2) {
  4138. SERIAL_PROTOCOL(" mean: ");
  4139. SERIAL_PROTOCOL_F(mean,6);
  4140. SERIAL_PROTOCOL(" sigma: ");
  4141. SERIAL_PROTOCOL_F(sigma,6);
  4142. }
  4143. if (verbose_level > 0)
  4144. SERIAL_PROTOCOLPGM("\n");
  4145. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4146. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4147. st_synchronize();
  4148. }
  4149. delay(1000);
  4150. clean_up_after_endstop_move();
  4151. // enable_endstops(true);
  4152. if (verbose_level > 0) {
  4153. SERIAL_PROTOCOLPGM("Mean: ");
  4154. SERIAL_PROTOCOL_F(mean, 6);
  4155. SERIAL_PROTOCOLPGM("\n");
  4156. }
  4157. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4158. SERIAL_PROTOCOL_F(sigma, 6);
  4159. SERIAL_PROTOCOLPGM("\n\n");
  4160. Sigma_Exit:
  4161. break;
  4162. }
  4163. #endif // Z_PROBE_REPEATABILITY_TEST
  4164. #endif // ENABLE_AUTO_BED_LEVELING
  4165. case 104: // M104
  4166. if(setTargetedHotend(104)){
  4167. break;
  4168. }
  4169. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4170. setWatch();
  4171. break;
  4172. case 112: // M112 -Emergency Stop
  4173. kill("", 3);
  4174. break;
  4175. case 140: // M140 set bed temp
  4176. if (code_seen('S')) setTargetBed(code_value());
  4177. break;
  4178. case 105 : // M105
  4179. if(setTargetedHotend(105)){
  4180. break;
  4181. }
  4182. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4183. SERIAL_PROTOCOLPGM("ok T:");
  4184. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4185. SERIAL_PROTOCOLPGM(" /");
  4186. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4187. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4188. SERIAL_PROTOCOLPGM(" B:");
  4189. SERIAL_PROTOCOL_F(degBed(),1);
  4190. SERIAL_PROTOCOLPGM(" /");
  4191. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4192. #endif //TEMP_BED_PIN
  4193. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4194. SERIAL_PROTOCOLPGM(" T");
  4195. SERIAL_PROTOCOL(cur_extruder);
  4196. SERIAL_PROTOCOLPGM(":");
  4197. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4198. SERIAL_PROTOCOLPGM(" /");
  4199. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4200. }
  4201. #else
  4202. SERIAL_ERROR_START;
  4203. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4204. #endif
  4205. SERIAL_PROTOCOLPGM(" @:");
  4206. #ifdef EXTRUDER_WATTS
  4207. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4208. SERIAL_PROTOCOLPGM("W");
  4209. #else
  4210. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4211. #endif
  4212. SERIAL_PROTOCOLPGM(" B@:");
  4213. #ifdef BED_WATTS
  4214. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4215. SERIAL_PROTOCOLPGM("W");
  4216. #else
  4217. SERIAL_PROTOCOL(getHeaterPower(-1));
  4218. #endif
  4219. #ifdef PINDA_THERMISTOR
  4220. SERIAL_PROTOCOLPGM(" P:");
  4221. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4222. #endif //PINDA_THERMISTOR
  4223. #ifdef AMBIENT_THERMISTOR
  4224. SERIAL_PROTOCOLPGM(" A:");
  4225. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4226. #endif //AMBIENT_THERMISTOR
  4227. #ifdef SHOW_TEMP_ADC_VALUES
  4228. {float raw = 0.0;
  4229. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4230. SERIAL_PROTOCOLPGM(" ADC B:");
  4231. SERIAL_PROTOCOL_F(degBed(),1);
  4232. SERIAL_PROTOCOLPGM("C->");
  4233. raw = rawBedTemp();
  4234. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4235. SERIAL_PROTOCOLPGM(" Rb->");
  4236. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4237. SERIAL_PROTOCOLPGM(" Rxb->");
  4238. SERIAL_PROTOCOL_F(raw, 5);
  4239. #endif
  4240. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4241. SERIAL_PROTOCOLPGM(" T");
  4242. SERIAL_PROTOCOL(cur_extruder);
  4243. SERIAL_PROTOCOLPGM(":");
  4244. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4245. SERIAL_PROTOCOLPGM("C->");
  4246. raw = rawHotendTemp(cur_extruder);
  4247. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4248. SERIAL_PROTOCOLPGM(" Rt");
  4249. SERIAL_PROTOCOL(cur_extruder);
  4250. SERIAL_PROTOCOLPGM("->");
  4251. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4252. SERIAL_PROTOCOLPGM(" Rx");
  4253. SERIAL_PROTOCOL(cur_extruder);
  4254. SERIAL_PROTOCOLPGM("->");
  4255. SERIAL_PROTOCOL_F(raw, 5);
  4256. }}
  4257. #endif
  4258. SERIAL_PROTOCOLLN("");
  4259. KEEPALIVE_STATE(NOT_BUSY);
  4260. return;
  4261. break;
  4262. case 109:
  4263. {// M109 - Wait for extruder heater to reach target.
  4264. if(setTargetedHotend(109)){
  4265. break;
  4266. }
  4267. LCD_MESSAGERPGM(MSG_HEATING);
  4268. heating_status = 1;
  4269. if (farm_mode) { prusa_statistics(1); };
  4270. #ifdef AUTOTEMP
  4271. autotemp_enabled=false;
  4272. #endif
  4273. if (code_seen('S')) {
  4274. setTargetHotend(code_value(), tmp_extruder);
  4275. CooldownNoWait = true;
  4276. } else if (code_seen('R')) {
  4277. setTargetHotend(code_value(), tmp_extruder);
  4278. CooldownNoWait = false;
  4279. }
  4280. #ifdef AUTOTEMP
  4281. if (code_seen('S')) autotemp_min=code_value();
  4282. if (code_seen('B')) autotemp_max=code_value();
  4283. if (code_seen('F'))
  4284. {
  4285. autotemp_factor=code_value();
  4286. autotemp_enabled=true;
  4287. }
  4288. #endif
  4289. setWatch();
  4290. codenum = millis();
  4291. /* See if we are heating up or cooling down */
  4292. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4293. KEEPALIVE_STATE(NOT_BUSY);
  4294. cancel_heatup = false;
  4295. wait_for_heater(codenum); //loops until target temperature is reached
  4296. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  4297. KEEPALIVE_STATE(IN_HANDLER);
  4298. heating_status = 2;
  4299. if (farm_mode) { prusa_statistics(2); };
  4300. //starttime=millis();
  4301. previous_millis_cmd = millis();
  4302. }
  4303. break;
  4304. case 190: // M190 - Wait for bed heater to reach target.
  4305. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4306. LCD_MESSAGERPGM(MSG_BED_HEATING);
  4307. heating_status = 3;
  4308. if (farm_mode) { prusa_statistics(1); };
  4309. if (code_seen('S'))
  4310. {
  4311. setTargetBed(code_value());
  4312. CooldownNoWait = true;
  4313. }
  4314. else if (code_seen('R'))
  4315. {
  4316. setTargetBed(code_value());
  4317. CooldownNoWait = false;
  4318. }
  4319. codenum = millis();
  4320. cancel_heatup = false;
  4321. target_direction = isHeatingBed(); // true if heating, false if cooling
  4322. KEEPALIVE_STATE(NOT_BUSY);
  4323. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4324. {
  4325. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4326. {
  4327. if (!farm_mode) {
  4328. float tt = degHotend(active_extruder);
  4329. SERIAL_PROTOCOLPGM("T:");
  4330. SERIAL_PROTOCOL(tt);
  4331. SERIAL_PROTOCOLPGM(" E:");
  4332. SERIAL_PROTOCOL((int)active_extruder);
  4333. SERIAL_PROTOCOLPGM(" B:");
  4334. SERIAL_PROTOCOL_F(degBed(), 1);
  4335. SERIAL_PROTOCOLLN("");
  4336. }
  4337. codenum = millis();
  4338. }
  4339. manage_heater();
  4340. manage_inactivity();
  4341. lcd_update();
  4342. }
  4343. LCD_MESSAGERPGM(MSG_BED_DONE);
  4344. KEEPALIVE_STATE(IN_HANDLER);
  4345. heating_status = 4;
  4346. previous_millis_cmd = millis();
  4347. #endif
  4348. break;
  4349. #if defined(FAN_PIN) && FAN_PIN > -1
  4350. case 106: //M106 Fan On
  4351. if (code_seen('S')){
  4352. fanSpeed=constrain(code_value(),0,255);
  4353. }
  4354. else {
  4355. fanSpeed=255;
  4356. }
  4357. break;
  4358. case 107: //M107 Fan Off
  4359. fanSpeed = 0;
  4360. break;
  4361. #endif //FAN_PIN
  4362. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4363. case 80: // M80 - Turn on Power Supply
  4364. SET_OUTPUT(PS_ON_PIN); //GND
  4365. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4366. // If you have a switch on suicide pin, this is useful
  4367. // if you want to start another print with suicide feature after
  4368. // a print without suicide...
  4369. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4370. SET_OUTPUT(SUICIDE_PIN);
  4371. WRITE(SUICIDE_PIN, HIGH);
  4372. #endif
  4373. #ifdef ULTIPANEL
  4374. powersupply = true;
  4375. LCD_MESSAGERPGM(WELCOME_MSG);
  4376. lcd_update();
  4377. #endif
  4378. break;
  4379. #endif
  4380. case 81: // M81 - Turn off Power Supply
  4381. disable_heater();
  4382. st_synchronize();
  4383. disable_e0();
  4384. disable_e1();
  4385. disable_e2();
  4386. finishAndDisableSteppers();
  4387. fanSpeed = 0;
  4388. delay(1000); // Wait a little before to switch off
  4389. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4390. st_synchronize();
  4391. suicide();
  4392. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4393. SET_OUTPUT(PS_ON_PIN);
  4394. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4395. #endif
  4396. #ifdef ULTIPANEL
  4397. powersupply = false;
  4398. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4399. /*
  4400. MACHNAME = "Prusa i3"
  4401. MSGOFF = "Vypnuto"
  4402. "Prusai3"" ""vypnuto""."
  4403. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4404. */
  4405. lcd_update();
  4406. #endif
  4407. break;
  4408. case 82:
  4409. axis_relative_modes[3] = false;
  4410. break;
  4411. case 83:
  4412. axis_relative_modes[3] = true;
  4413. break;
  4414. case 18: //compatibility
  4415. case 84: // M84
  4416. if(code_seen('S')){
  4417. stepper_inactive_time = code_value() * 1000;
  4418. }
  4419. else
  4420. {
  4421. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4422. if(all_axis)
  4423. {
  4424. st_synchronize();
  4425. disable_e0();
  4426. disable_e1();
  4427. disable_e2();
  4428. finishAndDisableSteppers();
  4429. }
  4430. else
  4431. {
  4432. st_synchronize();
  4433. if (code_seen('X')) disable_x();
  4434. if (code_seen('Y')) disable_y();
  4435. if (code_seen('Z')) disable_z();
  4436. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4437. if (code_seen('E')) {
  4438. disable_e0();
  4439. disable_e1();
  4440. disable_e2();
  4441. }
  4442. #endif
  4443. }
  4444. }
  4445. snmm_filaments_used = 0;
  4446. break;
  4447. case 85: // M85
  4448. if(code_seen('S')) {
  4449. max_inactive_time = code_value() * 1000;
  4450. }
  4451. break;
  4452. case 92: // M92
  4453. for(int8_t i=0; i < NUM_AXIS; i++)
  4454. {
  4455. if(code_seen(axis_codes[i]))
  4456. {
  4457. if(i == 3) { // E
  4458. float value = code_value();
  4459. if(value < 20.0) {
  4460. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4461. max_jerk[E_AXIS] *= factor;
  4462. max_feedrate[i] *= factor;
  4463. axis_steps_per_sqr_second[i] *= factor;
  4464. }
  4465. axis_steps_per_unit[i] = value;
  4466. }
  4467. else {
  4468. axis_steps_per_unit[i] = code_value();
  4469. }
  4470. }
  4471. }
  4472. break;
  4473. case 110: // M110 - reset line pos
  4474. if (code_seen('N'))
  4475. gcode_LastN = code_value_long();
  4476. break;
  4477. #ifdef HOST_KEEPALIVE_FEATURE
  4478. case 113: // M113 - Get or set Host Keepalive interval
  4479. if (code_seen('S')) {
  4480. host_keepalive_interval = (uint8_t)code_value_short();
  4481. // NOMORE(host_keepalive_interval, 60);
  4482. }
  4483. else {
  4484. SERIAL_ECHO_START;
  4485. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4486. SERIAL_PROTOCOLLN("");
  4487. }
  4488. break;
  4489. #endif
  4490. case 115: // M115
  4491. if (code_seen('V')) {
  4492. // Report the Prusa version number.
  4493. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4494. } else if (code_seen('U')) {
  4495. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4496. // pause the print and ask the user to upgrade the firmware.
  4497. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4498. } else {
  4499. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4500. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4501. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4502. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4503. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4504. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4505. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4506. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4507. SERIAL_ECHOPGM(" UUID:");
  4508. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4509. }
  4510. break;
  4511. /* case 117: // M117 display message
  4512. starpos = (strchr(strchr_pointer + 5,'*'));
  4513. if(starpos!=NULL)
  4514. *(starpos)='\0';
  4515. lcd_setstatus(strchr_pointer + 5);
  4516. break;*/
  4517. case 114: // M114
  4518. gcode_M114();
  4519. break;
  4520. case 120: // M120
  4521. enable_endstops(false) ;
  4522. break;
  4523. case 121: // M121
  4524. enable_endstops(true) ;
  4525. break;
  4526. case 119: // M119
  4527. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4528. SERIAL_PROTOCOLLN("");
  4529. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4530. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4531. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4532. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4533. }else{
  4534. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4535. }
  4536. SERIAL_PROTOCOLLN("");
  4537. #endif
  4538. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4539. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4540. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4541. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4542. }else{
  4543. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4544. }
  4545. SERIAL_PROTOCOLLN("");
  4546. #endif
  4547. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4548. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4549. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4550. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4551. }else{
  4552. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4553. }
  4554. SERIAL_PROTOCOLLN("");
  4555. #endif
  4556. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4557. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4558. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4559. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4560. }else{
  4561. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4562. }
  4563. SERIAL_PROTOCOLLN("");
  4564. #endif
  4565. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4566. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4567. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4568. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4569. }else{
  4570. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4571. }
  4572. SERIAL_PROTOCOLLN("");
  4573. #endif
  4574. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4575. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4576. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4577. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4578. }else{
  4579. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4580. }
  4581. SERIAL_PROTOCOLLN("");
  4582. #endif
  4583. break;
  4584. //TODO: update for all axis, use for loop
  4585. #ifdef BLINKM
  4586. case 150: // M150
  4587. {
  4588. byte red;
  4589. byte grn;
  4590. byte blu;
  4591. if(code_seen('R')) red = code_value();
  4592. if(code_seen('U')) grn = code_value();
  4593. if(code_seen('B')) blu = code_value();
  4594. SendColors(red,grn,blu);
  4595. }
  4596. break;
  4597. #endif //BLINKM
  4598. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4599. {
  4600. tmp_extruder = active_extruder;
  4601. if(code_seen('T')) {
  4602. tmp_extruder = code_value();
  4603. if(tmp_extruder >= EXTRUDERS) {
  4604. SERIAL_ECHO_START;
  4605. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4606. break;
  4607. }
  4608. }
  4609. float area = .0;
  4610. if(code_seen('D')) {
  4611. float diameter = (float)code_value();
  4612. if (diameter == 0.0) {
  4613. // setting any extruder filament size disables volumetric on the assumption that
  4614. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4615. // for all extruders
  4616. volumetric_enabled = false;
  4617. } else {
  4618. filament_size[tmp_extruder] = (float)code_value();
  4619. // make sure all extruders have some sane value for the filament size
  4620. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4621. #if EXTRUDERS > 1
  4622. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4623. #if EXTRUDERS > 2
  4624. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4625. #endif
  4626. #endif
  4627. volumetric_enabled = true;
  4628. }
  4629. } else {
  4630. //reserved for setting filament diameter via UFID or filament measuring device
  4631. break;
  4632. }
  4633. calculate_extruder_multipliers();
  4634. }
  4635. break;
  4636. case 201: // M201
  4637. for(int8_t i=0; i < NUM_AXIS; i++)
  4638. {
  4639. if(code_seen(axis_codes[i]))
  4640. {
  4641. max_acceleration_units_per_sq_second[i] = code_value();
  4642. }
  4643. }
  4644. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4645. reset_acceleration_rates();
  4646. break;
  4647. #if 0 // Not used for Sprinter/grbl gen6
  4648. case 202: // M202
  4649. for(int8_t i=0; i < NUM_AXIS; i++) {
  4650. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4651. }
  4652. break;
  4653. #endif
  4654. case 203: // M203 max feedrate mm/sec
  4655. for(int8_t i=0; i < NUM_AXIS; i++) {
  4656. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4657. }
  4658. break;
  4659. case 204: // M204 acclereration S normal moves T filmanent only moves
  4660. {
  4661. if(code_seen('S')) acceleration = code_value() ;
  4662. if(code_seen('T')) retract_acceleration = code_value() ;
  4663. }
  4664. break;
  4665. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4666. {
  4667. if(code_seen('S')) minimumfeedrate = code_value();
  4668. if(code_seen('T')) mintravelfeedrate = code_value();
  4669. if(code_seen('B')) minsegmenttime = code_value() ;
  4670. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4671. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4672. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4673. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4674. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4675. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4676. }
  4677. break;
  4678. case 206: // M206 additional homing offset
  4679. for(int8_t i=0; i < 3; i++)
  4680. {
  4681. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4682. }
  4683. break;
  4684. #ifdef FWRETRACT
  4685. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4686. {
  4687. if(code_seen('S'))
  4688. {
  4689. retract_length = code_value() ;
  4690. }
  4691. if(code_seen('F'))
  4692. {
  4693. retract_feedrate = code_value()/60 ;
  4694. }
  4695. if(code_seen('Z'))
  4696. {
  4697. retract_zlift = code_value() ;
  4698. }
  4699. }break;
  4700. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4701. {
  4702. if(code_seen('S'))
  4703. {
  4704. retract_recover_length = code_value() ;
  4705. }
  4706. if(code_seen('F'))
  4707. {
  4708. retract_recover_feedrate = code_value()/60 ;
  4709. }
  4710. }break;
  4711. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4712. {
  4713. if(code_seen('S'))
  4714. {
  4715. int t= code_value() ;
  4716. switch(t)
  4717. {
  4718. case 0:
  4719. {
  4720. autoretract_enabled=false;
  4721. retracted[0]=false;
  4722. #if EXTRUDERS > 1
  4723. retracted[1]=false;
  4724. #endif
  4725. #if EXTRUDERS > 2
  4726. retracted[2]=false;
  4727. #endif
  4728. }break;
  4729. case 1:
  4730. {
  4731. autoretract_enabled=true;
  4732. retracted[0]=false;
  4733. #if EXTRUDERS > 1
  4734. retracted[1]=false;
  4735. #endif
  4736. #if EXTRUDERS > 2
  4737. retracted[2]=false;
  4738. #endif
  4739. }break;
  4740. default:
  4741. SERIAL_ECHO_START;
  4742. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4743. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4744. SERIAL_ECHOLNPGM("\"(1)");
  4745. }
  4746. }
  4747. }break;
  4748. #endif // FWRETRACT
  4749. #if EXTRUDERS > 1
  4750. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4751. {
  4752. if(setTargetedHotend(218)){
  4753. break;
  4754. }
  4755. if(code_seen('X'))
  4756. {
  4757. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4758. }
  4759. if(code_seen('Y'))
  4760. {
  4761. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4762. }
  4763. SERIAL_ECHO_START;
  4764. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4765. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4766. {
  4767. SERIAL_ECHO(" ");
  4768. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4769. SERIAL_ECHO(",");
  4770. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4771. }
  4772. SERIAL_ECHOLN("");
  4773. }break;
  4774. #endif
  4775. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4776. {
  4777. if(code_seen('S'))
  4778. {
  4779. feedmultiply = code_value() ;
  4780. }
  4781. }
  4782. break;
  4783. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4784. {
  4785. if(code_seen('S'))
  4786. {
  4787. int tmp_code = code_value();
  4788. if (code_seen('T'))
  4789. {
  4790. if(setTargetedHotend(221)){
  4791. break;
  4792. }
  4793. extruder_multiply[tmp_extruder] = tmp_code;
  4794. }
  4795. else
  4796. {
  4797. extrudemultiply = tmp_code ;
  4798. }
  4799. }
  4800. calculate_extruder_multipliers();
  4801. }
  4802. break;
  4803. #ifndef _DISABLE_M42_M226
  4804. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4805. {
  4806. if(code_seen('P')){
  4807. int pin_number = code_value(); // pin number
  4808. int pin_state = -1; // required pin state - default is inverted
  4809. if(code_seen('S')) pin_state = code_value(); // required pin state
  4810. if(pin_state >= -1 && pin_state <= 1){
  4811. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4812. {
  4813. if (sensitive_pins[i] == pin_number)
  4814. {
  4815. pin_number = -1;
  4816. break;
  4817. }
  4818. }
  4819. if (pin_number > -1)
  4820. {
  4821. int target = LOW;
  4822. st_synchronize();
  4823. pinMode(pin_number, INPUT);
  4824. switch(pin_state){
  4825. case 1:
  4826. target = HIGH;
  4827. break;
  4828. case 0:
  4829. target = LOW;
  4830. break;
  4831. case -1:
  4832. target = !digitalRead(pin_number);
  4833. break;
  4834. }
  4835. while(digitalRead(pin_number) != target){
  4836. manage_heater();
  4837. manage_inactivity();
  4838. lcd_update();
  4839. }
  4840. }
  4841. }
  4842. }
  4843. }
  4844. break;
  4845. #endif //_DISABLE_M42_M226
  4846. #if NUM_SERVOS > 0
  4847. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4848. {
  4849. int servo_index = -1;
  4850. int servo_position = 0;
  4851. if (code_seen('P'))
  4852. servo_index = code_value();
  4853. if (code_seen('S')) {
  4854. servo_position = code_value();
  4855. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4856. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4857. servos[servo_index].attach(0);
  4858. #endif
  4859. servos[servo_index].write(servo_position);
  4860. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4861. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4862. servos[servo_index].detach();
  4863. #endif
  4864. }
  4865. else {
  4866. SERIAL_ECHO_START;
  4867. SERIAL_ECHO("Servo ");
  4868. SERIAL_ECHO(servo_index);
  4869. SERIAL_ECHOLN(" out of range");
  4870. }
  4871. }
  4872. else if (servo_index >= 0) {
  4873. SERIAL_PROTOCOL(MSG_OK);
  4874. SERIAL_PROTOCOL(" Servo ");
  4875. SERIAL_PROTOCOL(servo_index);
  4876. SERIAL_PROTOCOL(": ");
  4877. SERIAL_PROTOCOL(servos[servo_index].read());
  4878. SERIAL_PROTOCOLLN("");
  4879. }
  4880. }
  4881. break;
  4882. #endif // NUM_SERVOS > 0
  4883. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4884. case 300: // M300
  4885. {
  4886. int beepS = code_seen('S') ? code_value() : 110;
  4887. int beepP = code_seen('P') ? code_value() : 1000;
  4888. if (beepS > 0)
  4889. {
  4890. #if BEEPER > 0
  4891. tone(BEEPER, beepS);
  4892. delay(beepP);
  4893. noTone(BEEPER);
  4894. #elif defined(ULTRALCD)
  4895. lcd_buzz(beepS, beepP);
  4896. #elif defined(LCD_USE_I2C_BUZZER)
  4897. lcd_buzz(beepP, beepS);
  4898. #endif
  4899. }
  4900. else
  4901. {
  4902. delay(beepP);
  4903. }
  4904. }
  4905. break;
  4906. #endif // M300
  4907. #ifdef PIDTEMP
  4908. case 301: // M301
  4909. {
  4910. if(code_seen('P')) Kp = code_value();
  4911. if(code_seen('I')) Ki = scalePID_i(code_value());
  4912. if(code_seen('D')) Kd = scalePID_d(code_value());
  4913. #ifdef PID_ADD_EXTRUSION_RATE
  4914. if(code_seen('C')) Kc = code_value();
  4915. #endif
  4916. updatePID();
  4917. SERIAL_PROTOCOLRPGM(MSG_OK);
  4918. SERIAL_PROTOCOL(" p:");
  4919. SERIAL_PROTOCOL(Kp);
  4920. SERIAL_PROTOCOL(" i:");
  4921. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4922. SERIAL_PROTOCOL(" d:");
  4923. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4924. #ifdef PID_ADD_EXTRUSION_RATE
  4925. SERIAL_PROTOCOL(" c:");
  4926. //Kc does not have scaling applied above, or in resetting defaults
  4927. SERIAL_PROTOCOL(Kc);
  4928. #endif
  4929. SERIAL_PROTOCOLLN("");
  4930. }
  4931. break;
  4932. #endif //PIDTEMP
  4933. #ifdef PIDTEMPBED
  4934. case 304: // M304
  4935. {
  4936. if(code_seen('P')) bedKp = code_value();
  4937. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4938. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4939. updatePID();
  4940. SERIAL_PROTOCOLRPGM(MSG_OK);
  4941. SERIAL_PROTOCOL(" p:");
  4942. SERIAL_PROTOCOL(bedKp);
  4943. SERIAL_PROTOCOL(" i:");
  4944. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4945. SERIAL_PROTOCOL(" d:");
  4946. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4947. SERIAL_PROTOCOLLN("");
  4948. }
  4949. break;
  4950. #endif //PIDTEMP
  4951. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4952. {
  4953. #ifdef CHDK
  4954. SET_OUTPUT(CHDK);
  4955. WRITE(CHDK, HIGH);
  4956. chdkHigh = millis();
  4957. chdkActive = true;
  4958. #else
  4959. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4960. const uint8_t NUM_PULSES=16;
  4961. const float PULSE_LENGTH=0.01524;
  4962. for(int i=0; i < NUM_PULSES; i++) {
  4963. WRITE(PHOTOGRAPH_PIN, HIGH);
  4964. _delay_ms(PULSE_LENGTH);
  4965. WRITE(PHOTOGRAPH_PIN, LOW);
  4966. _delay_ms(PULSE_LENGTH);
  4967. }
  4968. delay(7.33);
  4969. for(int i=0; i < NUM_PULSES; i++) {
  4970. WRITE(PHOTOGRAPH_PIN, HIGH);
  4971. _delay_ms(PULSE_LENGTH);
  4972. WRITE(PHOTOGRAPH_PIN, LOW);
  4973. _delay_ms(PULSE_LENGTH);
  4974. }
  4975. #endif
  4976. #endif //chdk end if
  4977. }
  4978. break;
  4979. #ifdef DOGLCD
  4980. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4981. {
  4982. if (code_seen('C')) {
  4983. lcd_setcontrast( ((int)code_value())&63 );
  4984. }
  4985. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4986. SERIAL_PROTOCOL(lcd_contrast);
  4987. SERIAL_PROTOCOLLN("");
  4988. }
  4989. break;
  4990. #endif
  4991. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4992. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4993. {
  4994. float temp = .0;
  4995. if (code_seen('S')) temp=code_value();
  4996. set_extrude_min_temp(temp);
  4997. }
  4998. break;
  4999. #endif
  5000. case 303: // M303 PID autotune
  5001. {
  5002. float temp = 150.0;
  5003. int e=0;
  5004. int c=5;
  5005. if (code_seen('E')) e=code_value();
  5006. if (e<0)
  5007. temp=70;
  5008. if (code_seen('S')) temp=code_value();
  5009. if (code_seen('C')) c=code_value();
  5010. PID_autotune(temp, e, c);
  5011. }
  5012. break;
  5013. case 400: // M400 finish all moves
  5014. {
  5015. st_synchronize();
  5016. }
  5017. break;
  5018. case 500: // M500 Store settings in EEPROM
  5019. {
  5020. Config_StoreSettings(EEPROM_OFFSET);
  5021. }
  5022. break;
  5023. case 501: // M501 Read settings from EEPROM
  5024. {
  5025. Config_RetrieveSettings(EEPROM_OFFSET);
  5026. }
  5027. break;
  5028. case 502: // M502 Revert to default settings
  5029. {
  5030. Config_ResetDefault();
  5031. }
  5032. break;
  5033. case 503: // M503 print settings currently in memory
  5034. {
  5035. Config_PrintSettings();
  5036. }
  5037. break;
  5038. case 509: //M509 Force language selection
  5039. {
  5040. lcd_force_language_selection();
  5041. SERIAL_ECHO_START;
  5042. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5043. }
  5044. break;
  5045. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5046. case 540:
  5047. {
  5048. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5049. }
  5050. break;
  5051. #endif
  5052. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5053. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5054. {
  5055. float value;
  5056. if (code_seen('Z'))
  5057. {
  5058. value = code_value();
  5059. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5060. {
  5061. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5062. SERIAL_ECHO_START;
  5063. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5064. SERIAL_PROTOCOLLN("");
  5065. }
  5066. else
  5067. {
  5068. SERIAL_ECHO_START;
  5069. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5070. SERIAL_ECHORPGM(MSG_Z_MIN);
  5071. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5072. SERIAL_ECHORPGM(MSG_Z_MAX);
  5073. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5074. SERIAL_PROTOCOLLN("");
  5075. }
  5076. }
  5077. else
  5078. {
  5079. SERIAL_ECHO_START;
  5080. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5081. SERIAL_ECHO(-zprobe_zoffset);
  5082. SERIAL_PROTOCOLLN("");
  5083. }
  5084. break;
  5085. }
  5086. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5087. #ifdef FILAMENTCHANGEENABLE
  5088. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5089. {
  5090. #ifdef PAT9125
  5091. bool old_fsensor_enabled = fsensor_enabled;
  5092. fsensor_enabled = false; //temporary solution for unexpected restarting
  5093. #endif //PAT9125
  5094. st_synchronize();
  5095. float target[4];
  5096. float lastpos[4];
  5097. if (farm_mode)
  5098. {
  5099. prusa_statistics(22);
  5100. }
  5101. feedmultiplyBckp=feedmultiply;
  5102. int8_t TooLowZ = 0;
  5103. float HotendTempBckp = degTargetHotend(active_extruder);
  5104. int fanSpeedBckp = fanSpeed;
  5105. target[X_AXIS]=current_position[X_AXIS];
  5106. target[Y_AXIS]=current_position[Y_AXIS];
  5107. target[Z_AXIS]=current_position[Z_AXIS];
  5108. target[E_AXIS]=current_position[E_AXIS];
  5109. lastpos[X_AXIS]=current_position[X_AXIS];
  5110. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5111. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5112. lastpos[E_AXIS]=current_position[E_AXIS];
  5113. //Restract extruder
  5114. if(code_seen('E'))
  5115. {
  5116. target[E_AXIS]+= code_value();
  5117. }
  5118. else
  5119. {
  5120. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5121. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5122. #endif
  5123. }
  5124. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5125. //Lift Z
  5126. if(code_seen('Z'))
  5127. {
  5128. target[Z_AXIS]+= code_value();
  5129. }
  5130. else
  5131. {
  5132. #ifdef FILAMENTCHANGE_ZADD
  5133. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5134. if(target[Z_AXIS] < 10){
  5135. target[Z_AXIS]+= 10 ;
  5136. TooLowZ = 1;
  5137. }else{
  5138. TooLowZ = 0;
  5139. }
  5140. #endif
  5141. }
  5142. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5143. //Move XY to side
  5144. if(code_seen('X'))
  5145. {
  5146. target[X_AXIS]+= code_value();
  5147. }
  5148. else
  5149. {
  5150. #ifdef FILAMENTCHANGE_XPOS
  5151. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5152. #endif
  5153. }
  5154. if(code_seen('Y'))
  5155. {
  5156. target[Y_AXIS]= code_value();
  5157. }
  5158. else
  5159. {
  5160. #ifdef FILAMENTCHANGE_YPOS
  5161. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5162. #endif
  5163. }
  5164. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5165. st_synchronize();
  5166. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5167. uint8_t cnt = 0;
  5168. int counterBeep = 0;
  5169. fanSpeed = 0;
  5170. unsigned long waiting_start_time = millis();
  5171. uint8_t wait_for_user_state = 0;
  5172. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  5173. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5174. //cnt++;
  5175. manage_heater();
  5176. manage_inactivity(true);
  5177. /*#ifdef SNMM
  5178. target[E_AXIS] += 0.002;
  5179. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5180. #endif // SNMM*/
  5181. //if (cnt == 0)
  5182. {
  5183. #if BEEPER > 0
  5184. if (counterBeep == 500) {
  5185. counterBeep = 0;
  5186. }
  5187. SET_OUTPUT(BEEPER);
  5188. if (counterBeep == 0) {
  5189. WRITE(BEEPER, HIGH);
  5190. }
  5191. if (counterBeep == 20) {
  5192. WRITE(BEEPER, LOW);
  5193. }
  5194. counterBeep++;
  5195. #else
  5196. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5197. lcd_buzz(1000 / 6, 100);
  5198. #else
  5199. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5200. #endif
  5201. #endif
  5202. }
  5203. switch (wait_for_user_state) {
  5204. case 0:
  5205. delay_keep_alive(4);
  5206. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5207. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5208. wait_for_user_state = 1;
  5209. setTargetHotend(0, 0);
  5210. setTargetHotend(0, 1);
  5211. setTargetHotend(0, 2);
  5212. st_synchronize();
  5213. disable_e0();
  5214. disable_e1();
  5215. disable_e2();
  5216. }
  5217. break;
  5218. case 1:
  5219. delay_keep_alive(4);
  5220. if (lcd_clicked()) {
  5221. setTargetHotend(HotendTempBckp, active_extruder);
  5222. lcd_wait_for_heater();
  5223. wait_for_user_state = 2;
  5224. }
  5225. break;
  5226. case 2:
  5227. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5228. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  5229. waiting_start_time = millis();
  5230. wait_for_user_state = 0;
  5231. }
  5232. else {
  5233. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5234. lcd.setCursor(1, 4);
  5235. lcd.print(ftostr3(degHotend(active_extruder)));
  5236. }
  5237. break;
  5238. }
  5239. }
  5240. WRITE(BEEPER, LOW);
  5241. lcd_change_fil_state = 0;
  5242. // Unload filament
  5243. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  5244. KEEPALIVE_STATE(IN_HANDLER);
  5245. custom_message = true;
  5246. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5247. if (code_seen('L'))
  5248. {
  5249. target[E_AXIS] += code_value();
  5250. }
  5251. else
  5252. {
  5253. #ifdef SNMM
  5254. #else
  5255. #ifdef FILAMENTCHANGE_FINALRETRACT
  5256. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5257. #endif
  5258. #endif // SNMM
  5259. }
  5260. #ifdef SNMM
  5261. target[E_AXIS] += 12;
  5262. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5263. target[E_AXIS] += 6;
  5264. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5265. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5266. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5267. st_synchronize();
  5268. target[E_AXIS] += (FIL_COOLING);
  5269. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5270. target[E_AXIS] += (FIL_COOLING*-1);
  5271. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5272. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5273. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5274. st_synchronize();
  5275. #else
  5276. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5277. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5278. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5279. st_synchronize();
  5280. #ifdef TMC2130
  5281. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5282. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5283. #else
  5284. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5285. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5286. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5287. #endif //TMC2130
  5288. target[E_AXIS] -= 45;
  5289. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5290. st_synchronize();
  5291. target[E_AXIS] -= 15;
  5292. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5293. st_synchronize();
  5294. target[E_AXIS] -= 20;
  5295. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5296. st_synchronize();
  5297. #ifdef TMC2130
  5298. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5299. #else
  5300. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5301. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5302. else st_current_set(2, tmp_motor_loud[2]);
  5303. #endif //TMC2130
  5304. #endif // SNMM
  5305. //finish moves
  5306. st_synchronize();
  5307. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5308. //disable extruder steppers so filament can be removed
  5309. disable_e0();
  5310. disable_e1();
  5311. disable_e2();
  5312. delay(100);
  5313. WRITE(BEEPER, HIGH);
  5314. counterBeep = 0;
  5315. while(!lcd_clicked() && (counterBeep < 50)) {
  5316. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5317. delay_keep_alive(100);
  5318. counterBeep++;
  5319. }
  5320. WRITE(BEEPER, LOW);
  5321. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5322. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5323. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5324. //lcd_return_to_status();
  5325. lcd_update_enable(true);
  5326. //Wait for user to insert filament
  5327. lcd_wait_interact();
  5328. //load_filament_time = millis();
  5329. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5330. #ifdef PAT9125
  5331. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5332. #endif //PAT9125
  5333. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5334. while(!lcd_clicked())
  5335. {
  5336. manage_heater();
  5337. manage_inactivity(true);
  5338. #ifdef PAT9125
  5339. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5340. {
  5341. tone(BEEPER, 1000);
  5342. delay_keep_alive(50);
  5343. noTone(BEEPER);
  5344. break;
  5345. }
  5346. #endif //PAT9125
  5347. /*#ifdef SNMM
  5348. target[E_AXIS] += 0.002;
  5349. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5350. #endif // SNMM*/
  5351. }
  5352. #ifdef PAT9125
  5353. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5354. #endif //PAT9125
  5355. //WRITE(BEEPER, LOW);
  5356. KEEPALIVE_STATE(IN_HANDLER);
  5357. #ifdef SNMM
  5358. display_loading();
  5359. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5360. do {
  5361. target[E_AXIS] += 0.002;
  5362. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5363. delay_keep_alive(2);
  5364. } while (!lcd_clicked());
  5365. KEEPALIVE_STATE(IN_HANDLER);
  5366. /*if (millis() - load_filament_time > 2) {
  5367. load_filament_time = millis();
  5368. target[E_AXIS] += 0.001;
  5369. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5370. }*/
  5371. //Filament inserted
  5372. //Feed the filament to the end of nozzle quickly
  5373. st_synchronize();
  5374. target[E_AXIS] += bowden_length[snmm_extruder];
  5375. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5376. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5377. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5378. target[E_AXIS] += 40;
  5379. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5380. target[E_AXIS] += 10;
  5381. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5382. #else
  5383. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5384. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5385. #endif // SNMM
  5386. //Extrude some filament
  5387. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5388. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5389. //Wait for user to check the state
  5390. lcd_change_fil_state = 0;
  5391. lcd_loading_filament();
  5392. tone(BEEPER, 500);
  5393. delay_keep_alive(50);
  5394. noTone(BEEPER);
  5395. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5396. lcd_change_fil_state = 0;
  5397. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5398. lcd_alright();
  5399. KEEPALIVE_STATE(IN_HANDLER);
  5400. switch(lcd_change_fil_state){
  5401. // Filament failed to load so load it again
  5402. case 2:
  5403. #ifdef SNMM
  5404. display_loading();
  5405. do {
  5406. target[E_AXIS] += 0.002;
  5407. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5408. delay_keep_alive(2);
  5409. } while (!lcd_clicked());
  5410. st_synchronize();
  5411. target[E_AXIS] += bowden_length[snmm_extruder];
  5412. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5413. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5414. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5415. target[E_AXIS] += 40;
  5416. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5417. target[E_AXIS] += 10;
  5418. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5419. #else
  5420. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5421. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5422. #endif
  5423. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5424. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5425. lcd_loading_filament();
  5426. break;
  5427. // Filament loaded properly but color is not clear
  5428. case 3:
  5429. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5430. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5431. lcd_loading_color();
  5432. break;
  5433. // Everything good
  5434. default:
  5435. lcd_change_success();
  5436. lcd_update_enable(true);
  5437. break;
  5438. }
  5439. }
  5440. //Not let's go back to print
  5441. fanSpeed = fanSpeedBckp;
  5442. //Feed a little of filament to stabilize pressure
  5443. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5444. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5445. //Retract
  5446. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5447. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5448. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5449. //Move XY back
  5450. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5451. //Move Z back
  5452. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5453. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5454. //Unretract
  5455. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5456. //Set E position to original
  5457. plan_set_e_position(lastpos[E_AXIS]);
  5458. //Recover feed rate
  5459. feedmultiply=feedmultiplyBckp;
  5460. char cmd[9];
  5461. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5462. enquecommand(cmd);
  5463. lcd_setstatuspgm(WELCOME_MSG);
  5464. custom_message = false;
  5465. custom_message_type = 0;
  5466. #ifdef PAT9125
  5467. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5468. if (fsensor_M600)
  5469. {
  5470. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5471. st_synchronize();
  5472. while (!is_buffer_empty())
  5473. {
  5474. process_commands();
  5475. cmdqueue_pop_front();
  5476. }
  5477. fsensor_enable();
  5478. fsensor_restore_print_and_continue();
  5479. }
  5480. #endif //PAT9125
  5481. }
  5482. break;
  5483. #endif //FILAMENTCHANGEENABLE
  5484. case 601: {
  5485. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5486. }
  5487. break;
  5488. case 602: {
  5489. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5490. }
  5491. break;
  5492. #ifdef PINDA_THERMISTOR
  5493. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5494. {
  5495. int setTargetPinda = 0;
  5496. if (code_seen('S')) {
  5497. setTargetPinda = code_value();
  5498. }
  5499. else {
  5500. break;
  5501. }
  5502. LCD_MESSAGERPGM(MSG_PLEASE_WAIT);
  5503. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5504. SERIAL_PROTOCOL(setTargetPinda);
  5505. SERIAL_PROTOCOLLN("");
  5506. codenum = millis();
  5507. cancel_heatup = false;
  5508. KEEPALIVE_STATE(NOT_BUSY);
  5509. while ((!cancel_heatup) && current_temperature_pinda < setTargetPinda) {
  5510. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5511. {
  5512. SERIAL_PROTOCOLPGM("P:");
  5513. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5514. SERIAL_PROTOCOLPGM("/");
  5515. SERIAL_PROTOCOL(setTargetPinda);
  5516. SERIAL_PROTOCOLLN("");
  5517. codenum = millis();
  5518. }
  5519. manage_heater();
  5520. manage_inactivity();
  5521. lcd_update();
  5522. }
  5523. LCD_MESSAGERPGM(MSG_OK);
  5524. break;
  5525. }
  5526. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5527. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5528. uint8_t cal_status = calibration_status_pinda();
  5529. int16_t usteps = 0;
  5530. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5531. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5532. for (uint8_t i = 0; i < 6; i++)
  5533. {
  5534. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5535. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5536. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5537. SERIAL_PROTOCOLPGM(", ");
  5538. SERIAL_PROTOCOL(35 + (i * 5));
  5539. SERIAL_PROTOCOLPGM(", ");
  5540. SERIAL_PROTOCOL(usteps);
  5541. SERIAL_PROTOCOLPGM(", ");
  5542. SERIAL_PROTOCOL(mm * 1000);
  5543. SERIAL_PROTOCOLLN("");
  5544. }
  5545. }
  5546. else if (code_seen('!')) { // ! - Set factory default values
  5547. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5548. int16_t z_shift = 8; //40C - 20um - 8usteps
  5549. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5550. z_shift = 24; //45C - 60um - 24usteps
  5551. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5552. z_shift = 48; //50C - 120um - 48usteps
  5553. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5554. z_shift = 80; //55C - 200um - 80usteps
  5555. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5556. z_shift = 120; //60C - 300um - 120usteps
  5557. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5558. SERIAL_PROTOCOLLN("factory restored");
  5559. }
  5560. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5561. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5562. int16_t z_shift = 0;
  5563. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5564. SERIAL_PROTOCOLLN("zerorized");
  5565. }
  5566. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5567. int16_t usteps = code_value();
  5568. if (code_seen('I')) {
  5569. byte index = code_value();
  5570. if ((index >= 0) && (index < 5)) {
  5571. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5572. SERIAL_PROTOCOLLN("OK");
  5573. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5574. for (uint8_t i = 0; i < 6; i++)
  5575. {
  5576. usteps = 0;
  5577. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5578. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5579. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5580. SERIAL_PROTOCOLPGM(", ");
  5581. SERIAL_PROTOCOL(35 + (i * 5));
  5582. SERIAL_PROTOCOLPGM(", ");
  5583. SERIAL_PROTOCOL(usteps);
  5584. SERIAL_PROTOCOLPGM(", ");
  5585. SERIAL_PROTOCOL(mm * 1000);
  5586. SERIAL_PROTOCOLLN("");
  5587. }
  5588. }
  5589. }
  5590. }
  5591. else {
  5592. SERIAL_PROTOCOLPGM("no valid command");
  5593. }
  5594. break;
  5595. #endif //PINDA_THERMISTOR
  5596. #ifdef LIN_ADVANCE
  5597. case 900: // M900: Set LIN_ADVANCE options.
  5598. gcode_M900();
  5599. break;
  5600. #endif
  5601. case 907: // M907 Set digital trimpot motor current using axis codes.
  5602. {
  5603. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5604. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5605. if(code_seen('B')) st_current_set(4,code_value());
  5606. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5607. #endif
  5608. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5609. if(code_seen('X')) st_current_set(0, code_value());
  5610. #endif
  5611. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5612. if(code_seen('Z')) st_current_set(1, code_value());
  5613. #endif
  5614. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5615. if(code_seen('E')) st_current_set(2, code_value());
  5616. #endif
  5617. }
  5618. break;
  5619. case 908: // M908 Control digital trimpot directly.
  5620. {
  5621. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5622. uint8_t channel,current;
  5623. if(code_seen('P')) channel=code_value();
  5624. if(code_seen('S')) current=code_value();
  5625. digitalPotWrite(channel, current);
  5626. #endif
  5627. }
  5628. break;
  5629. #ifdef TMC2130
  5630. case 910: // M910 TMC2130 init
  5631. {
  5632. tmc2130_init();
  5633. }
  5634. break;
  5635. case 911: // M911 Set TMC2130 holding currents
  5636. {
  5637. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5638. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5639. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5640. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5641. }
  5642. break;
  5643. case 912: // M912 Set TMC2130 running currents
  5644. {
  5645. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5646. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5647. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5648. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5649. }
  5650. break;
  5651. case 913: // M913 Print TMC2130 currents
  5652. {
  5653. tmc2130_print_currents();
  5654. }
  5655. break;
  5656. case 914: // M914 Set normal mode
  5657. {
  5658. tmc2130_mode = TMC2130_MODE_NORMAL;
  5659. tmc2130_init();
  5660. }
  5661. break;
  5662. case 915: // M915 Set silent mode
  5663. {
  5664. tmc2130_mode = TMC2130_MODE_SILENT;
  5665. tmc2130_init();
  5666. }
  5667. break;
  5668. case 916: // M916 Set sg_thrs
  5669. {
  5670. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5671. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5672. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5673. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5674. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5675. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5676. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5677. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5678. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5679. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5680. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5681. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5682. }
  5683. break;
  5684. case 917: // M917 Set TMC2130 pwm_ampl
  5685. {
  5686. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5687. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5688. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5689. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5690. }
  5691. break;
  5692. case 918: // M918 Set TMC2130 pwm_grad
  5693. {
  5694. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5695. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5696. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5697. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5698. }
  5699. break;
  5700. #endif //TMC2130
  5701. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5702. {
  5703. #ifdef TMC2130
  5704. if(code_seen('E'))
  5705. {
  5706. uint16_t res_new = code_value();
  5707. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5708. {
  5709. st_synchronize();
  5710. uint8_t axis = E_AXIS;
  5711. uint16_t res = tmc2130_get_res(axis);
  5712. tmc2130_set_res(axis, res_new);
  5713. if (res_new > res)
  5714. {
  5715. uint16_t fac = (res_new / res);
  5716. axis_steps_per_unit[axis] *= fac;
  5717. position[E_AXIS] *= fac;
  5718. }
  5719. else
  5720. {
  5721. uint16_t fac = (res / res_new);
  5722. axis_steps_per_unit[axis] /= fac;
  5723. position[E_AXIS] /= fac;
  5724. }
  5725. }
  5726. }
  5727. #else //TMC2130
  5728. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5729. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5730. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5731. if(code_seen('B')) microstep_mode(4,code_value());
  5732. microstep_readings();
  5733. #endif
  5734. #endif //TMC2130
  5735. }
  5736. break;
  5737. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5738. {
  5739. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5740. if(code_seen('S')) switch((int)code_value())
  5741. {
  5742. case 1:
  5743. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5744. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5745. break;
  5746. case 2:
  5747. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5748. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5749. break;
  5750. }
  5751. microstep_readings();
  5752. #endif
  5753. }
  5754. break;
  5755. case 701: //M701: load filament
  5756. {
  5757. gcode_M701();
  5758. }
  5759. break;
  5760. case 702:
  5761. {
  5762. #ifdef SNMM
  5763. if (code_seen('U')) {
  5764. extr_unload_used(); //unload all filaments which were used in current print
  5765. }
  5766. else if (code_seen('C')) {
  5767. extr_unload(); //unload just current filament
  5768. }
  5769. else {
  5770. extr_unload_all(); //unload all filaments
  5771. }
  5772. #else
  5773. #ifdef PAT9125
  5774. bool old_fsensor_enabled = fsensor_enabled;
  5775. fsensor_enabled = false;
  5776. #endif //PAT9125
  5777. custom_message = true;
  5778. custom_message_type = 2;
  5779. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5780. // extr_unload2();
  5781. current_position[E_AXIS] -= 45;
  5782. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5783. st_synchronize();
  5784. current_position[E_AXIS] -= 15;
  5785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5786. st_synchronize();
  5787. current_position[E_AXIS] -= 20;
  5788. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5789. st_synchronize();
  5790. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5791. //disable extruder steppers so filament can be removed
  5792. disable_e0();
  5793. disable_e1();
  5794. disable_e2();
  5795. delay(100);
  5796. WRITE(BEEPER, HIGH);
  5797. uint8_t counterBeep = 0;
  5798. while (!lcd_clicked() && (counterBeep < 50)) {
  5799. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5800. delay_keep_alive(100);
  5801. counterBeep++;
  5802. }
  5803. WRITE(BEEPER, LOW);
  5804. st_synchronize();
  5805. while (lcd_clicked()) delay_keep_alive(100);
  5806. lcd_update_enable(true);
  5807. lcd_setstatuspgm(WELCOME_MSG);
  5808. custom_message = false;
  5809. custom_message_type = 0;
  5810. #ifdef PAT9125
  5811. fsensor_enabled = old_fsensor_enabled;
  5812. #endif //PAT9125
  5813. #endif
  5814. }
  5815. break;
  5816. case 999: // M999: Restart after being stopped
  5817. Stopped = false;
  5818. lcd_reset_alert_level();
  5819. gcode_LastN = Stopped_gcode_LastN;
  5820. FlushSerialRequestResend();
  5821. break;
  5822. default:
  5823. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5824. }
  5825. } // end if(code_seen('M')) (end of M codes)
  5826. else if(code_seen('T'))
  5827. {
  5828. int index;
  5829. st_synchronize();
  5830. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5831. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5832. SERIAL_ECHOLNPGM("Invalid T code.");
  5833. }
  5834. else {
  5835. if (*(strchr_pointer + index) == '?') {
  5836. tmp_extruder = choose_extruder_menu();
  5837. }
  5838. else {
  5839. tmp_extruder = code_value();
  5840. }
  5841. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5842. #ifdef SNMM
  5843. #ifdef LIN_ADVANCE
  5844. if (snmm_extruder != tmp_extruder)
  5845. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5846. #endif
  5847. snmm_extruder = tmp_extruder;
  5848. delay(100);
  5849. disable_e0();
  5850. disable_e1();
  5851. disable_e2();
  5852. pinMode(E_MUX0_PIN, OUTPUT);
  5853. pinMode(E_MUX1_PIN, OUTPUT);
  5854. delay(100);
  5855. SERIAL_ECHO_START;
  5856. SERIAL_ECHO("T:");
  5857. SERIAL_ECHOLN((int)tmp_extruder);
  5858. switch (tmp_extruder) {
  5859. case 1:
  5860. WRITE(E_MUX0_PIN, HIGH);
  5861. WRITE(E_MUX1_PIN, LOW);
  5862. break;
  5863. case 2:
  5864. WRITE(E_MUX0_PIN, LOW);
  5865. WRITE(E_MUX1_PIN, HIGH);
  5866. break;
  5867. case 3:
  5868. WRITE(E_MUX0_PIN, HIGH);
  5869. WRITE(E_MUX1_PIN, HIGH);
  5870. break;
  5871. default:
  5872. WRITE(E_MUX0_PIN, LOW);
  5873. WRITE(E_MUX1_PIN, LOW);
  5874. break;
  5875. }
  5876. delay(100);
  5877. #else
  5878. if (tmp_extruder >= EXTRUDERS) {
  5879. SERIAL_ECHO_START;
  5880. SERIAL_ECHOPGM("T");
  5881. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5882. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  5883. }
  5884. else {
  5885. boolean make_move = false;
  5886. if (code_seen('F')) {
  5887. make_move = true;
  5888. next_feedrate = code_value();
  5889. if (next_feedrate > 0.0) {
  5890. feedrate = next_feedrate;
  5891. }
  5892. }
  5893. #if EXTRUDERS > 1
  5894. if (tmp_extruder != active_extruder) {
  5895. // Save current position to return to after applying extruder offset
  5896. memcpy(destination, current_position, sizeof(destination));
  5897. // Offset extruder (only by XY)
  5898. int i;
  5899. for (i = 0; i < 2; i++) {
  5900. current_position[i] = current_position[i] -
  5901. extruder_offset[i][active_extruder] +
  5902. extruder_offset[i][tmp_extruder];
  5903. }
  5904. // Set the new active extruder and position
  5905. active_extruder = tmp_extruder;
  5906. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5907. // Move to the old position if 'F' was in the parameters
  5908. if (make_move && Stopped == false) {
  5909. prepare_move();
  5910. }
  5911. }
  5912. #endif
  5913. SERIAL_ECHO_START;
  5914. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  5915. SERIAL_PROTOCOLLN((int)active_extruder);
  5916. }
  5917. #endif
  5918. }
  5919. } // end if(code_seen('T')) (end of T codes)
  5920. #ifdef DEBUG_DCODES
  5921. else if (code_seen('D')) // D codes (debug)
  5922. {
  5923. switch((int)code_value())
  5924. {
  5925. case -1: // D-1 - Endless loop
  5926. dcode__1(); break;
  5927. case 0: // D0 - Reset
  5928. dcode_0(); break;
  5929. case 1: // D1 - Clear EEPROM
  5930. dcode_1(); break;
  5931. case 2: // D2 - Read/Write RAM
  5932. dcode_2(); break;
  5933. case 3: // D3 - Read/Write EEPROM
  5934. dcode_3(); break;
  5935. case 4: // D4 - Read/Write PIN
  5936. dcode_4(); break;
  5937. case 5: // D5 - Read/Write FLASH
  5938. // dcode_5(); break;
  5939. break;
  5940. case 6: // D6 - Read/Write external FLASH
  5941. dcode_6(); break;
  5942. case 7: // D7 - Read/Write Bootloader
  5943. dcode_7(); break;
  5944. case 8: // D8 - Read/Write PINDA
  5945. dcode_8(); break;
  5946. case 9: // D9 - Read/Write ADC
  5947. dcode_9(); break;
  5948. case 10: // D10 - XYZ calibration = OK
  5949. dcode_10(); break;
  5950. #ifdef TMC2130
  5951. case 2130: // D9125 - TMC2130
  5952. dcode_2130(); break;
  5953. #endif //TMC2130
  5954. #ifdef PAT9125
  5955. case 9125: // D9125 - PAT9125
  5956. dcode_9125(); break;
  5957. #endif //PAT9125
  5958. }
  5959. }
  5960. #endif //DEBUG_DCODES
  5961. else
  5962. {
  5963. SERIAL_ECHO_START;
  5964. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5965. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5966. SERIAL_ECHOLNPGM("\"(2)");
  5967. }
  5968. KEEPALIVE_STATE(NOT_BUSY);
  5969. ClearToSend();
  5970. }
  5971. void FlushSerialRequestResend()
  5972. {
  5973. //char cmdbuffer[bufindr][100]="Resend:";
  5974. MYSERIAL.flush();
  5975. SERIAL_PROTOCOLRPGM(_i("Resend: "));////MSG_RESEND c=0 r=0
  5976. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5977. previous_millis_cmd = millis();
  5978. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5979. }
  5980. // Confirm the execution of a command, if sent from a serial line.
  5981. // Execution of a command from a SD card will not be confirmed.
  5982. void ClearToSend()
  5983. {
  5984. previous_millis_cmd = millis();
  5985. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5986. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5987. }
  5988. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  5989. void update_currents() {
  5990. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5991. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5992. float tmp_motor[3];
  5993. //SERIAL_ECHOLNPGM("Currents updated: ");
  5994. if (destination[Z_AXIS] < Z_SILENT) {
  5995. //SERIAL_ECHOLNPGM("LOW");
  5996. for (uint8_t i = 0; i < 3; i++) {
  5997. st_current_set(i, current_low[i]);
  5998. /*MYSERIAL.print(int(i));
  5999. SERIAL_ECHOPGM(": ");
  6000. MYSERIAL.println(current_low[i]);*/
  6001. }
  6002. }
  6003. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6004. //SERIAL_ECHOLNPGM("HIGH");
  6005. for (uint8_t i = 0; i < 3; i++) {
  6006. st_current_set(i, current_high[i]);
  6007. /*MYSERIAL.print(int(i));
  6008. SERIAL_ECHOPGM(": ");
  6009. MYSERIAL.println(current_high[i]);*/
  6010. }
  6011. }
  6012. else {
  6013. for (uint8_t i = 0; i < 3; i++) {
  6014. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6015. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6016. st_current_set(i, tmp_motor[i]);
  6017. /*MYSERIAL.print(int(i));
  6018. SERIAL_ECHOPGM(": ");
  6019. MYSERIAL.println(tmp_motor[i]);*/
  6020. }
  6021. }
  6022. }
  6023. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6024. void get_coordinates()
  6025. {
  6026. bool seen[4]={false,false,false,false};
  6027. for(int8_t i=0; i < NUM_AXIS; i++) {
  6028. if(code_seen(axis_codes[i]))
  6029. {
  6030. bool relative = axis_relative_modes[i] || relative_mode;
  6031. destination[i] = (float)code_value();
  6032. if (i == E_AXIS) {
  6033. float emult = extruder_multiplier[active_extruder];
  6034. if (emult != 1.) {
  6035. if (! relative) {
  6036. destination[i] -= current_position[i];
  6037. relative = true;
  6038. }
  6039. destination[i] *= emult;
  6040. }
  6041. }
  6042. if (relative)
  6043. destination[i] += current_position[i];
  6044. seen[i]=true;
  6045. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6046. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6047. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6048. }
  6049. else destination[i] = current_position[i]; //Are these else lines really needed?
  6050. }
  6051. if(code_seen('F')) {
  6052. next_feedrate = code_value();
  6053. #ifdef MAX_SILENT_FEEDRATE
  6054. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6055. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6056. #endif //MAX_SILENT_FEEDRATE
  6057. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6058. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6059. {
  6060. // float e_max_speed =
  6061. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6062. }
  6063. }
  6064. }
  6065. void get_arc_coordinates()
  6066. {
  6067. #ifdef SF_ARC_FIX
  6068. bool relative_mode_backup = relative_mode;
  6069. relative_mode = true;
  6070. #endif
  6071. get_coordinates();
  6072. #ifdef SF_ARC_FIX
  6073. relative_mode=relative_mode_backup;
  6074. #endif
  6075. if(code_seen('I')) {
  6076. offset[0] = code_value();
  6077. }
  6078. else {
  6079. offset[0] = 0.0;
  6080. }
  6081. if(code_seen('J')) {
  6082. offset[1] = code_value();
  6083. }
  6084. else {
  6085. offset[1] = 0.0;
  6086. }
  6087. }
  6088. void clamp_to_software_endstops(float target[3])
  6089. {
  6090. #ifdef DEBUG_DISABLE_SWLIMITS
  6091. return;
  6092. #endif //DEBUG_DISABLE_SWLIMITS
  6093. world2machine_clamp(target[0], target[1]);
  6094. // Clamp the Z coordinate.
  6095. if (min_software_endstops) {
  6096. float negative_z_offset = 0;
  6097. #ifdef ENABLE_AUTO_BED_LEVELING
  6098. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6099. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6100. #endif
  6101. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6102. }
  6103. if (max_software_endstops) {
  6104. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6105. }
  6106. }
  6107. #ifdef MESH_BED_LEVELING
  6108. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6109. float dx = x - current_position[X_AXIS];
  6110. float dy = y - current_position[Y_AXIS];
  6111. float dz = z - current_position[Z_AXIS];
  6112. int n_segments = 0;
  6113. if (mbl.active) {
  6114. float len = abs(dx) + abs(dy);
  6115. if (len > 0)
  6116. // Split to 3cm segments or shorter.
  6117. n_segments = int(ceil(len / 30.f));
  6118. }
  6119. if (n_segments > 1) {
  6120. float de = e - current_position[E_AXIS];
  6121. for (int i = 1; i < n_segments; ++ i) {
  6122. float t = float(i) / float(n_segments);
  6123. plan_buffer_line(
  6124. current_position[X_AXIS] + t * dx,
  6125. current_position[Y_AXIS] + t * dy,
  6126. current_position[Z_AXIS] + t * dz,
  6127. current_position[E_AXIS] + t * de,
  6128. feed_rate, extruder);
  6129. }
  6130. }
  6131. // The rest of the path.
  6132. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6133. current_position[X_AXIS] = x;
  6134. current_position[Y_AXIS] = y;
  6135. current_position[Z_AXIS] = z;
  6136. current_position[E_AXIS] = e;
  6137. }
  6138. #endif // MESH_BED_LEVELING
  6139. void prepare_move()
  6140. {
  6141. clamp_to_software_endstops(destination);
  6142. previous_millis_cmd = millis();
  6143. // Do not use feedmultiply for E or Z only moves
  6144. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6145. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6146. }
  6147. else {
  6148. #ifdef MESH_BED_LEVELING
  6149. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6150. #else
  6151. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6152. #endif
  6153. }
  6154. for(int8_t i=0; i < NUM_AXIS; i++) {
  6155. current_position[i] = destination[i];
  6156. }
  6157. }
  6158. void prepare_arc_move(char isclockwise) {
  6159. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6160. // Trace the arc
  6161. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6162. // As far as the parser is concerned, the position is now == target. In reality the
  6163. // motion control system might still be processing the action and the real tool position
  6164. // in any intermediate location.
  6165. for(int8_t i=0; i < NUM_AXIS; i++) {
  6166. current_position[i] = destination[i];
  6167. }
  6168. previous_millis_cmd = millis();
  6169. }
  6170. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6171. #if defined(FAN_PIN)
  6172. #if CONTROLLERFAN_PIN == FAN_PIN
  6173. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6174. #endif
  6175. #endif
  6176. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6177. unsigned long lastMotorCheck = 0;
  6178. void controllerFan()
  6179. {
  6180. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6181. {
  6182. lastMotorCheck = millis();
  6183. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6184. #if EXTRUDERS > 2
  6185. || !READ(E2_ENABLE_PIN)
  6186. #endif
  6187. #if EXTRUDER > 1
  6188. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6189. || !READ(X2_ENABLE_PIN)
  6190. #endif
  6191. || !READ(E1_ENABLE_PIN)
  6192. #endif
  6193. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6194. {
  6195. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6196. }
  6197. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6198. {
  6199. digitalWrite(CONTROLLERFAN_PIN, 0);
  6200. analogWrite(CONTROLLERFAN_PIN, 0);
  6201. }
  6202. else
  6203. {
  6204. // allows digital or PWM fan output to be used (see M42 handling)
  6205. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6206. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6207. }
  6208. }
  6209. }
  6210. #endif
  6211. #ifdef TEMP_STAT_LEDS
  6212. static bool blue_led = false;
  6213. static bool red_led = false;
  6214. static uint32_t stat_update = 0;
  6215. void handle_status_leds(void) {
  6216. float max_temp = 0.0;
  6217. if(millis() > stat_update) {
  6218. stat_update += 500; // Update every 0.5s
  6219. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6220. max_temp = max(max_temp, degHotend(cur_extruder));
  6221. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6222. }
  6223. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6224. max_temp = max(max_temp, degTargetBed());
  6225. max_temp = max(max_temp, degBed());
  6226. #endif
  6227. if((max_temp > 55.0) && (red_led == false)) {
  6228. digitalWrite(STAT_LED_RED, 1);
  6229. digitalWrite(STAT_LED_BLUE, 0);
  6230. red_led = true;
  6231. blue_led = false;
  6232. }
  6233. if((max_temp < 54.0) && (blue_led == false)) {
  6234. digitalWrite(STAT_LED_RED, 0);
  6235. digitalWrite(STAT_LED_BLUE, 1);
  6236. red_led = false;
  6237. blue_led = true;
  6238. }
  6239. }
  6240. }
  6241. #endif
  6242. #ifdef SAFETYTIMER
  6243. /**
  6244. * @brief Turn off heating after 30 minutes of inactivity
  6245. *
  6246. * Full screen blocking notification message is shown after heater turning off.
  6247. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6248. * damage print.
  6249. */
  6250. static void handleSafetyTimer()
  6251. {
  6252. #if (EXTRUDERS > 1)
  6253. #error Implemented only for one extruder.
  6254. #endif //(EXTRUDERS > 1)
  6255. static Timer safetyTimer;
  6256. if (IS_SD_PRINTING || is_usb_printing || isPrintPaused || (custom_message_type == 4)
  6257. || (lcd_commands_type == LCD_COMMAND_V2_CAL) || (!degTargetBed() && !degTargetHotend(0)))
  6258. {
  6259. safetyTimer.stop();
  6260. }
  6261. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6262. {
  6263. safetyTimer.start();
  6264. }
  6265. else if (safetyTimer.expired(1800000ul))
  6266. {
  6267. setTargetBed(0);
  6268. setTargetHotend(0, 0);
  6269. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6270. }
  6271. }
  6272. #endif //SAFETYTIMER
  6273. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6274. {
  6275. #ifdef PAT9125
  6276. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6277. {
  6278. if (fsensor_autoload_enabled)
  6279. {
  6280. if (fsensor_check_autoload())
  6281. {
  6282. if (degHotend0() > EXTRUDE_MINTEMP)
  6283. {
  6284. fsensor_autoload_check_stop();
  6285. tone(BEEPER, 1000);
  6286. delay_keep_alive(50);
  6287. noTone(BEEPER);
  6288. loading_flag = true;
  6289. enquecommand_front_P((PSTR("M701")));
  6290. }
  6291. else
  6292. {
  6293. lcd_update_enable(false);
  6294. lcd_implementation_clear();
  6295. lcd.setCursor(0, 0);
  6296. lcd_printPGM(MSG_ERROR);
  6297. lcd.setCursor(0, 2);
  6298. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  6299. delay(2000);
  6300. lcd_implementation_clear();
  6301. lcd_update_enable(true);
  6302. }
  6303. }
  6304. }
  6305. else
  6306. fsensor_autoload_check_start();
  6307. }
  6308. else
  6309. if (fsensor_autoload_enabled)
  6310. fsensor_autoload_check_stop();
  6311. #endif //PAT9125
  6312. #ifdef SAFETYTIMER
  6313. handleSafetyTimer();
  6314. #endif //SAFETYTIMER
  6315. #if defined(KILL_PIN) && KILL_PIN > -1
  6316. static int killCount = 0; // make the inactivity button a bit less responsive
  6317. const int KILL_DELAY = 10000;
  6318. #endif
  6319. if(buflen < (BUFSIZE-1)){
  6320. get_command();
  6321. }
  6322. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6323. if(max_inactive_time)
  6324. kill("", 4);
  6325. if(stepper_inactive_time) {
  6326. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6327. {
  6328. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6329. disable_x();
  6330. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6331. disable_y();
  6332. disable_z();
  6333. disable_e0();
  6334. disable_e1();
  6335. disable_e2();
  6336. }
  6337. }
  6338. }
  6339. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6340. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6341. {
  6342. chdkActive = false;
  6343. WRITE(CHDK, LOW);
  6344. }
  6345. #endif
  6346. #if defined(KILL_PIN) && KILL_PIN > -1
  6347. // Check if the kill button was pressed and wait just in case it was an accidental
  6348. // key kill key press
  6349. // -------------------------------------------------------------------------------
  6350. if( 0 == READ(KILL_PIN) )
  6351. {
  6352. killCount++;
  6353. }
  6354. else if (killCount > 0)
  6355. {
  6356. killCount--;
  6357. }
  6358. // Exceeded threshold and we can confirm that it was not accidental
  6359. // KILL the machine
  6360. // ----------------------------------------------------------------
  6361. if ( killCount >= KILL_DELAY)
  6362. {
  6363. kill("", 5);
  6364. }
  6365. #endif
  6366. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6367. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6368. #endif
  6369. #ifdef EXTRUDER_RUNOUT_PREVENT
  6370. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6371. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6372. {
  6373. bool oldstatus=READ(E0_ENABLE_PIN);
  6374. enable_e0();
  6375. float oldepos=current_position[E_AXIS];
  6376. float oldedes=destination[E_AXIS];
  6377. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6378. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6379. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6380. current_position[E_AXIS]=oldepos;
  6381. destination[E_AXIS]=oldedes;
  6382. plan_set_e_position(oldepos);
  6383. previous_millis_cmd=millis();
  6384. st_synchronize();
  6385. WRITE(E0_ENABLE_PIN,oldstatus);
  6386. }
  6387. #endif
  6388. #ifdef TEMP_STAT_LEDS
  6389. handle_status_leds();
  6390. #endif
  6391. check_axes_activity();
  6392. }
  6393. void kill(const char *full_screen_message, unsigned char id)
  6394. {
  6395. SERIAL_ECHOPGM("KILL: ");
  6396. MYSERIAL.println(int(id));
  6397. //return;
  6398. cli(); // Stop interrupts
  6399. disable_heater();
  6400. disable_x();
  6401. // SERIAL_ECHOLNPGM("kill - disable Y");
  6402. disable_y();
  6403. disable_z();
  6404. disable_e0();
  6405. disable_e1();
  6406. disable_e2();
  6407. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6408. pinMode(PS_ON_PIN,INPUT);
  6409. #endif
  6410. SERIAL_ERROR_START;
  6411. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6412. if (full_screen_message != NULL) {
  6413. SERIAL_ERRORLNRPGM(full_screen_message);
  6414. lcd_display_message_fullscreen_P(full_screen_message);
  6415. } else {
  6416. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6417. }
  6418. // FMC small patch to update the LCD before ending
  6419. sei(); // enable interrupts
  6420. for ( int i=5; i--; lcd_update())
  6421. {
  6422. delay(200);
  6423. }
  6424. cli(); // disable interrupts
  6425. suicide();
  6426. while(1)
  6427. {
  6428. #ifdef WATCHDOG
  6429. wdt_reset();
  6430. #endif //WATCHDOG
  6431. /* Intentionally left empty */
  6432. } // Wait for reset
  6433. }
  6434. void Stop()
  6435. {
  6436. disable_heater();
  6437. if(Stopped == false) {
  6438. Stopped = true;
  6439. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6440. SERIAL_ERROR_START;
  6441. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6442. LCD_MESSAGERPGM(MSG_STOPPED);
  6443. }
  6444. }
  6445. bool IsStopped() { return Stopped; };
  6446. #ifdef FAST_PWM_FAN
  6447. void setPwmFrequency(uint8_t pin, int val)
  6448. {
  6449. val &= 0x07;
  6450. switch(digitalPinToTimer(pin))
  6451. {
  6452. #if defined(TCCR0A)
  6453. case TIMER0A:
  6454. case TIMER0B:
  6455. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6456. // TCCR0B |= val;
  6457. break;
  6458. #endif
  6459. #if defined(TCCR1A)
  6460. case TIMER1A:
  6461. case TIMER1B:
  6462. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6463. // TCCR1B |= val;
  6464. break;
  6465. #endif
  6466. #if defined(TCCR2)
  6467. case TIMER2:
  6468. case TIMER2:
  6469. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6470. TCCR2 |= val;
  6471. break;
  6472. #endif
  6473. #if defined(TCCR2A)
  6474. case TIMER2A:
  6475. case TIMER2B:
  6476. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6477. TCCR2B |= val;
  6478. break;
  6479. #endif
  6480. #if defined(TCCR3A)
  6481. case TIMER3A:
  6482. case TIMER3B:
  6483. case TIMER3C:
  6484. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6485. TCCR3B |= val;
  6486. break;
  6487. #endif
  6488. #if defined(TCCR4A)
  6489. case TIMER4A:
  6490. case TIMER4B:
  6491. case TIMER4C:
  6492. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6493. TCCR4B |= val;
  6494. break;
  6495. #endif
  6496. #if defined(TCCR5A)
  6497. case TIMER5A:
  6498. case TIMER5B:
  6499. case TIMER5C:
  6500. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6501. TCCR5B |= val;
  6502. break;
  6503. #endif
  6504. }
  6505. }
  6506. #endif //FAST_PWM_FAN
  6507. bool setTargetedHotend(int code){
  6508. tmp_extruder = active_extruder;
  6509. if(code_seen('T')) {
  6510. tmp_extruder = code_value();
  6511. if(tmp_extruder >= EXTRUDERS) {
  6512. SERIAL_ECHO_START;
  6513. switch(code){
  6514. case 104:
  6515. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6516. break;
  6517. case 105:
  6518. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6519. break;
  6520. case 109:
  6521. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6522. break;
  6523. case 218:
  6524. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6525. break;
  6526. case 221:
  6527. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6528. break;
  6529. }
  6530. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6531. return true;
  6532. }
  6533. }
  6534. return false;
  6535. }
  6536. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6537. {
  6538. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6539. {
  6540. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6541. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6542. }
  6543. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6544. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6545. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6546. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6547. total_filament_used = 0;
  6548. }
  6549. float calculate_extruder_multiplier(float diameter) {
  6550. float out = 1.f;
  6551. if (volumetric_enabled && diameter > 0.f) {
  6552. float area = M_PI * diameter * diameter * 0.25;
  6553. out = 1.f / area;
  6554. }
  6555. if (extrudemultiply != 100)
  6556. out *= float(extrudemultiply) * 0.01f;
  6557. return out;
  6558. }
  6559. void calculate_extruder_multipliers() {
  6560. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6561. #if EXTRUDERS > 1
  6562. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6563. #if EXTRUDERS > 2
  6564. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6565. #endif
  6566. #endif
  6567. }
  6568. void delay_keep_alive(unsigned int ms)
  6569. {
  6570. for (;;) {
  6571. manage_heater();
  6572. // Manage inactivity, but don't disable steppers on timeout.
  6573. manage_inactivity(true);
  6574. lcd_update();
  6575. if (ms == 0)
  6576. break;
  6577. else if (ms >= 50) {
  6578. delay(50);
  6579. ms -= 50;
  6580. } else {
  6581. delay(ms);
  6582. ms = 0;
  6583. }
  6584. }
  6585. }
  6586. void wait_for_heater(long codenum) {
  6587. #ifdef TEMP_RESIDENCY_TIME
  6588. long residencyStart;
  6589. residencyStart = -1;
  6590. /* continue to loop until we have reached the target temp
  6591. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6592. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6593. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6594. #else
  6595. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6596. #endif //TEMP_RESIDENCY_TIME
  6597. if ((millis() - codenum) > 1000UL)
  6598. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6599. if (!farm_mode) {
  6600. SERIAL_PROTOCOLPGM("T:");
  6601. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6602. SERIAL_PROTOCOLPGM(" E:");
  6603. SERIAL_PROTOCOL((int)tmp_extruder);
  6604. #ifdef TEMP_RESIDENCY_TIME
  6605. SERIAL_PROTOCOLPGM(" W:");
  6606. if (residencyStart > -1)
  6607. {
  6608. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6609. SERIAL_PROTOCOLLN(codenum);
  6610. }
  6611. else
  6612. {
  6613. SERIAL_PROTOCOLLN("?");
  6614. }
  6615. }
  6616. #else
  6617. SERIAL_PROTOCOLLN("");
  6618. #endif
  6619. codenum = millis();
  6620. }
  6621. manage_heater();
  6622. manage_inactivity();
  6623. lcd_update();
  6624. #ifdef TEMP_RESIDENCY_TIME
  6625. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6626. or when current temp falls outside the hysteresis after target temp was reached */
  6627. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6628. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6629. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6630. {
  6631. residencyStart = millis();
  6632. }
  6633. #endif //TEMP_RESIDENCY_TIME
  6634. }
  6635. }
  6636. void check_babystep() {
  6637. int babystep_z;
  6638. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6639. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6640. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6641. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6642. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6643. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6644. lcd_update_enable(true);
  6645. }
  6646. }
  6647. #ifdef DIS
  6648. void d_setup()
  6649. {
  6650. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6651. pinMode(D_DATA, INPUT_PULLUP);
  6652. pinMode(D_REQUIRE, OUTPUT);
  6653. digitalWrite(D_REQUIRE, HIGH);
  6654. }
  6655. float d_ReadData()
  6656. {
  6657. int digit[13];
  6658. String mergeOutput;
  6659. float output;
  6660. digitalWrite(D_REQUIRE, HIGH);
  6661. for (int i = 0; i<13; i++)
  6662. {
  6663. for (int j = 0; j < 4; j++)
  6664. {
  6665. while (digitalRead(D_DATACLOCK) == LOW) {}
  6666. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6667. bitWrite(digit[i], j, digitalRead(D_DATA));
  6668. }
  6669. }
  6670. digitalWrite(D_REQUIRE, LOW);
  6671. mergeOutput = "";
  6672. output = 0;
  6673. for (int r = 5; r <= 10; r++) //Merge digits
  6674. {
  6675. mergeOutput += digit[r];
  6676. }
  6677. output = mergeOutput.toFloat();
  6678. if (digit[4] == 8) //Handle sign
  6679. {
  6680. output *= -1;
  6681. }
  6682. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6683. {
  6684. output /= 10;
  6685. }
  6686. return output;
  6687. }
  6688. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6689. int t1 = 0;
  6690. int t_delay = 0;
  6691. int digit[13];
  6692. int m;
  6693. char str[3];
  6694. //String mergeOutput;
  6695. char mergeOutput[15];
  6696. float output;
  6697. int mesh_point = 0; //index number of calibration point
  6698. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6699. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6700. float mesh_home_z_search = 4;
  6701. float row[x_points_num];
  6702. int ix = 0;
  6703. int iy = 0;
  6704. char* filename_wldsd = "wldsd.txt";
  6705. char data_wldsd[70];
  6706. char numb_wldsd[10];
  6707. d_setup();
  6708. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6709. // We don't know where we are! HOME!
  6710. // Push the commands to the front of the message queue in the reverse order!
  6711. // There shall be always enough space reserved for these commands.
  6712. repeatcommand_front(); // repeat G80 with all its parameters
  6713. enquecommand_front_P((PSTR("G28 W0")));
  6714. enquecommand_front_P((PSTR("G1 Z5")));
  6715. return;
  6716. }
  6717. bool custom_message_old = custom_message;
  6718. unsigned int custom_message_type_old = custom_message_type;
  6719. unsigned int custom_message_state_old = custom_message_state;
  6720. custom_message = true;
  6721. custom_message_type = 1;
  6722. custom_message_state = (x_points_num * y_points_num) + 10;
  6723. lcd_update(1);
  6724. mbl.reset();
  6725. babystep_undo();
  6726. card.openFile(filename_wldsd, false);
  6727. current_position[Z_AXIS] = mesh_home_z_search;
  6728. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6729. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6730. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6731. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6732. setup_for_endstop_move(false);
  6733. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6734. SERIAL_PROTOCOL(x_points_num);
  6735. SERIAL_PROTOCOLPGM(",");
  6736. SERIAL_PROTOCOL(y_points_num);
  6737. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6738. SERIAL_PROTOCOL(mesh_home_z_search);
  6739. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6740. SERIAL_PROTOCOL(x_dimension);
  6741. SERIAL_PROTOCOLPGM(",");
  6742. SERIAL_PROTOCOL(y_dimension);
  6743. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6744. while (mesh_point != x_points_num * y_points_num) {
  6745. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6746. iy = mesh_point / x_points_num;
  6747. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6748. float z0 = 0.f;
  6749. current_position[Z_AXIS] = mesh_home_z_search;
  6750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6751. st_synchronize();
  6752. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6753. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6755. st_synchronize();
  6756. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6757. break;
  6758. card.closefile();
  6759. }
  6760. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6761. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6762. //strcat(data_wldsd, numb_wldsd);
  6763. //MYSERIAL.println(data_wldsd);
  6764. //delay(1000);
  6765. //delay(3000);
  6766. //t1 = millis();
  6767. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6768. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6769. memset(digit, 0, sizeof(digit));
  6770. //cli();
  6771. digitalWrite(D_REQUIRE, LOW);
  6772. for (int i = 0; i<13; i++)
  6773. {
  6774. //t1 = millis();
  6775. for (int j = 0; j < 4; j++)
  6776. {
  6777. while (digitalRead(D_DATACLOCK) == LOW) {}
  6778. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6779. bitWrite(digit[i], j, digitalRead(D_DATA));
  6780. }
  6781. //t_delay = (millis() - t1);
  6782. //SERIAL_PROTOCOLPGM(" ");
  6783. //SERIAL_PROTOCOL_F(t_delay, 5);
  6784. //SERIAL_PROTOCOLPGM(" ");
  6785. }
  6786. //sei();
  6787. digitalWrite(D_REQUIRE, HIGH);
  6788. mergeOutput[0] = '\0';
  6789. output = 0;
  6790. for (int r = 5; r <= 10; r++) //Merge digits
  6791. {
  6792. sprintf(str, "%d", digit[r]);
  6793. strcat(mergeOutput, str);
  6794. }
  6795. output = atof(mergeOutput);
  6796. if (digit[4] == 8) //Handle sign
  6797. {
  6798. output *= -1;
  6799. }
  6800. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6801. {
  6802. output *= 0.1;
  6803. }
  6804. //output = d_ReadData();
  6805. //row[ix] = current_position[Z_AXIS];
  6806. memset(data_wldsd, 0, sizeof(data_wldsd));
  6807. for (int i = 0; i <3; i++) {
  6808. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6809. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6810. strcat(data_wldsd, numb_wldsd);
  6811. strcat(data_wldsd, ";");
  6812. }
  6813. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6814. dtostrf(output, 8, 5, numb_wldsd);
  6815. strcat(data_wldsd, numb_wldsd);
  6816. //strcat(data_wldsd, ";");
  6817. card.write_command(data_wldsd);
  6818. //row[ix] = d_ReadData();
  6819. row[ix] = output; // current_position[Z_AXIS];
  6820. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6821. for (int i = 0; i < x_points_num; i++) {
  6822. SERIAL_PROTOCOLPGM(" ");
  6823. SERIAL_PROTOCOL_F(row[i], 5);
  6824. }
  6825. SERIAL_PROTOCOLPGM("\n");
  6826. }
  6827. custom_message_state--;
  6828. mesh_point++;
  6829. lcd_update(1);
  6830. }
  6831. card.closefile();
  6832. }
  6833. #endif
  6834. void temp_compensation_start() {
  6835. custom_message = true;
  6836. custom_message_type = 5;
  6837. custom_message_state = PINDA_HEAT_T + 1;
  6838. lcd_update(2);
  6839. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6840. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6841. }
  6842. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6843. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6844. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6845. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6846. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6847. st_synchronize();
  6848. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6849. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6850. delay_keep_alive(1000);
  6851. custom_message_state = PINDA_HEAT_T - i;
  6852. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6853. else lcd_update(1);
  6854. }
  6855. custom_message_type = 0;
  6856. custom_message_state = 0;
  6857. custom_message = false;
  6858. }
  6859. void temp_compensation_apply() {
  6860. int i_add;
  6861. int compensation_value;
  6862. int z_shift = 0;
  6863. float z_shift_mm;
  6864. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6865. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6866. i_add = (target_temperature_bed - 60) / 10;
  6867. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6868. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6869. }else {
  6870. //interpolation
  6871. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6872. }
  6873. SERIAL_PROTOCOLPGM("\n");
  6874. SERIAL_PROTOCOLPGM("Z shift applied:");
  6875. MYSERIAL.print(z_shift_mm);
  6876. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6877. st_synchronize();
  6878. plan_set_z_position(current_position[Z_AXIS]);
  6879. }
  6880. else {
  6881. //we have no temp compensation data
  6882. }
  6883. }
  6884. float temp_comp_interpolation(float inp_temperature) {
  6885. //cubic spline interpolation
  6886. int n, i, j, k;
  6887. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6888. int shift[10];
  6889. int temp_C[10];
  6890. n = 6; //number of measured points
  6891. shift[0] = 0;
  6892. for (i = 0; i < n; i++) {
  6893. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6894. temp_C[i] = 50 + i * 10; //temperature in C
  6895. #ifdef PINDA_THERMISTOR
  6896. temp_C[i] = 35 + i * 5; //temperature in C
  6897. #else
  6898. temp_C[i] = 50 + i * 10; //temperature in C
  6899. #endif
  6900. x[i] = (float)temp_C[i];
  6901. f[i] = (float)shift[i];
  6902. }
  6903. if (inp_temperature < x[0]) return 0;
  6904. for (i = n - 1; i>0; i--) {
  6905. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6906. h[i - 1] = x[i] - x[i - 1];
  6907. }
  6908. //*********** formation of h, s , f matrix **************
  6909. for (i = 1; i<n - 1; i++) {
  6910. m[i][i] = 2 * (h[i - 1] + h[i]);
  6911. if (i != 1) {
  6912. m[i][i - 1] = h[i - 1];
  6913. m[i - 1][i] = h[i - 1];
  6914. }
  6915. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6916. }
  6917. //*********** forward elimination **************
  6918. for (i = 1; i<n - 2; i++) {
  6919. temp = (m[i + 1][i] / m[i][i]);
  6920. for (j = 1; j <= n - 1; j++)
  6921. m[i + 1][j] -= temp*m[i][j];
  6922. }
  6923. //*********** backward substitution *********
  6924. for (i = n - 2; i>0; i--) {
  6925. sum = 0;
  6926. for (j = i; j <= n - 2; j++)
  6927. sum += m[i][j] * s[j];
  6928. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6929. }
  6930. for (i = 0; i<n - 1; i++)
  6931. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6932. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6933. b = s[i] / 2;
  6934. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6935. d = f[i];
  6936. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6937. }
  6938. return sum;
  6939. }
  6940. #ifdef PINDA_THERMISTOR
  6941. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6942. {
  6943. if (!temp_cal_active) return 0;
  6944. if (!calibration_status_pinda()) return 0;
  6945. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6946. }
  6947. #endif //PINDA_THERMISTOR
  6948. void long_pause() //long pause print
  6949. {
  6950. st_synchronize();
  6951. //save currently set parameters to global variables
  6952. saved_feedmultiply = feedmultiply;
  6953. HotendTempBckp = degTargetHotend(active_extruder);
  6954. fanSpeedBckp = fanSpeed;
  6955. start_pause_print = millis();
  6956. //save position
  6957. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6958. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6959. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6960. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6961. //retract
  6962. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6963. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6964. //lift z
  6965. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6966. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6967. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6968. //set nozzle target temperature to 0
  6969. setTargetHotend(0, 0);
  6970. setTargetHotend(0, 1);
  6971. setTargetHotend(0, 2);
  6972. //Move XY to side
  6973. current_position[X_AXIS] = X_PAUSE_POS;
  6974. current_position[Y_AXIS] = Y_PAUSE_POS;
  6975. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6976. // Turn off the print fan
  6977. fanSpeed = 0;
  6978. st_synchronize();
  6979. }
  6980. void serialecho_temperatures() {
  6981. float tt = degHotend(active_extruder);
  6982. SERIAL_PROTOCOLPGM("T:");
  6983. SERIAL_PROTOCOL(tt);
  6984. SERIAL_PROTOCOLPGM(" E:");
  6985. SERIAL_PROTOCOL((int)active_extruder);
  6986. SERIAL_PROTOCOLPGM(" B:");
  6987. SERIAL_PROTOCOL_F(degBed(), 1);
  6988. SERIAL_PROTOCOLLN("");
  6989. }
  6990. extern uint32_t sdpos_atomic;
  6991. #ifdef UVLO_SUPPORT
  6992. void uvlo_()
  6993. {
  6994. unsigned long time_start = millis();
  6995. bool sd_print = card.sdprinting;
  6996. // Conserve power as soon as possible.
  6997. disable_x();
  6998. disable_y();
  6999. disable_e0();
  7000. #ifdef TMC2130
  7001. tmc2130_set_current_h(Z_AXIS, 20);
  7002. tmc2130_set_current_r(Z_AXIS, 20);
  7003. tmc2130_set_current_h(E_AXIS, 20);
  7004. tmc2130_set_current_r(E_AXIS, 20);
  7005. #endif //TMC2130
  7006. // Indicate that the interrupt has been triggered.
  7007. // SERIAL_ECHOLNPGM("UVLO");
  7008. // Read out the current Z motor microstep counter. This will be later used
  7009. // for reaching the zero full step before powering off.
  7010. uint16_t z_microsteps = 0;
  7011. #ifdef TMC2130
  7012. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7013. #endif //TMC2130
  7014. // Calculate the file position, from which to resume this print.
  7015. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7016. {
  7017. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7018. sd_position -= sdlen_planner;
  7019. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7020. sd_position -= sdlen_cmdqueue;
  7021. if (sd_position < 0) sd_position = 0;
  7022. }
  7023. // Backup the feedrate in mm/min.
  7024. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7025. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7026. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7027. // are in action.
  7028. planner_abort_hard();
  7029. // Store the current extruder position.
  7030. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7031. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7032. // Clean the input command queue.
  7033. cmdqueue_reset();
  7034. card.sdprinting = false;
  7035. // card.closefile();
  7036. // Enable stepper driver interrupt to move Z axis.
  7037. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7038. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7039. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7040. sei();
  7041. plan_buffer_line(
  7042. current_position[X_AXIS],
  7043. current_position[Y_AXIS],
  7044. current_position[Z_AXIS],
  7045. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7046. 95, active_extruder);
  7047. st_synchronize();
  7048. disable_e0();
  7049. plan_buffer_line(
  7050. current_position[X_AXIS],
  7051. current_position[Y_AXIS],
  7052. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7053. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7054. 40, active_extruder);
  7055. st_synchronize();
  7056. disable_e0();
  7057. plan_buffer_line(
  7058. current_position[X_AXIS],
  7059. current_position[Y_AXIS],
  7060. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7061. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7062. 40, active_extruder);
  7063. st_synchronize();
  7064. disable_e0();
  7065. disable_z();
  7066. // Move Z up to the next 0th full step.
  7067. // Write the file position.
  7068. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7069. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7070. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7071. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7072. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7073. // Scale the z value to 1u resolution.
  7074. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7075. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7076. }
  7077. // Read out the current Z motor microstep counter. This will be later used
  7078. // for reaching the zero full step before powering off.
  7079. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7080. // Store the current position.
  7081. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7082. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7083. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7084. // Store the current feed rate, temperatures and fan speed.
  7085. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7086. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7087. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7088. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7089. // Finaly store the "power outage" flag.
  7090. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7091. st_synchronize();
  7092. SERIAL_ECHOPGM("stps");
  7093. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  7094. disable_z();
  7095. // Increment power failure counter
  7096. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7097. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7098. SERIAL_ECHOLNPGM("UVLO - end");
  7099. MYSERIAL.println(millis() - time_start);
  7100. #if 0
  7101. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7102. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7103. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7104. st_synchronize();
  7105. #endif
  7106. cli();
  7107. volatile unsigned int ppcount = 0;
  7108. SET_OUTPUT(BEEPER);
  7109. WRITE(BEEPER, HIGH);
  7110. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7111. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7112. }
  7113. WRITE(BEEPER, LOW);
  7114. while(1){
  7115. #if 1
  7116. WRITE(BEEPER, LOW);
  7117. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7118. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7119. }
  7120. #endif
  7121. };
  7122. }
  7123. #endif //UVLO_SUPPORT
  7124. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7125. void setup_fan_interrupt() {
  7126. //INT7
  7127. DDRE &= ~(1 << 7); //input pin
  7128. PORTE &= ~(1 << 7); //no internal pull-up
  7129. //start with sensing rising edge
  7130. EICRB &= ~(1 << 6);
  7131. EICRB |= (1 << 7);
  7132. //enable INT7 interrupt
  7133. EIMSK |= (1 << 7);
  7134. }
  7135. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7136. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7137. ISR(INT7_vect) {
  7138. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7139. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7140. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7141. t_fan_rising_edge = millis_nc();
  7142. }
  7143. else { //interrupt was triggered by falling edge
  7144. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7145. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7146. }
  7147. }
  7148. EICRB ^= (1 << 6); //change edge
  7149. }
  7150. #endif
  7151. #ifdef UVLO_SUPPORT
  7152. void setup_uvlo_interrupt() {
  7153. DDRE &= ~(1 << 4); //input pin
  7154. PORTE &= ~(1 << 4); //no internal pull-up
  7155. //sensing falling edge
  7156. EICRB |= (1 << 0);
  7157. EICRB &= ~(1 << 1);
  7158. //enable INT4 interrupt
  7159. EIMSK |= (1 << 4);
  7160. }
  7161. ISR(INT4_vect) {
  7162. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7163. SERIAL_ECHOLNPGM("INT4");
  7164. if (IS_SD_PRINTING) uvlo_();
  7165. }
  7166. void recover_print(uint8_t automatic) {
  7167. char cmd[30];
  7168. lcd_update_enable(true);
  7169. lcd_update(2);
  7170. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7171. recover_machine_state_after_power_panic();
  7172. // Set the target bed and nozzle temperatures.
  7173. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  7174. enquecommand(cmd);
  7175. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  7176. enquecommand(cmd);
  7177. // Lift the print head, so one may remove the excess priming material.
  7178. if (current_position[Z_AXIS] < 25)
  7179. enquecommand_P(PSTR("G1 Z25 F800"));
  7180. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7181. enquecommand_P(PSTR("G28 X Y"));
  7182. // Set the target bed and nozzle temperatures and wait.
  7183. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7184. enquecommand(cmd);
  7185. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7186. enquecommand(cmd);
  7187. enquecommand_P(PSTR("M83")); //E axis relative mode
  7188. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7189. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7190. if(automatic == 0){
  7191. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7192. }
  7193. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7194. // Mark the power panic status as inactive.
  7195. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7196. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7197. delay_keep_alive(1000);
  7198. }*/
  7199. SERIAL_ECHOPGM("After waiting for temp:");
  7200. SERIAL_ECHOPGM("Current position X_AXIS:");
  7201. MYSERIAL.println(current_position[X_AXIS]);
  7202. SERIAL_ECHOPGM("Current position Y_AXIS:");
  7203. MYSERIAL.println(current_position[Y_AXIS]);
  7204. // Restart the print.
  7205. restore_print_from_eeprom();
  7206. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  7207. MYSERIAL.print(current_position[Z_AXIS]);
  7208. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  7209. MYSERIAL.print(current_position[E_AXIS]);
  7210. }
  7211. void recover_machine_state_after_power_panic()
  7212. {
  7213. char cmd[30];
  7214. // 1) Recover the logical cordinates at the time of the power panic.
  7215. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7216. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7217. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7218. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7219. // The current position after power panic is moved to the next closest 0th full step.
  7220. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7221. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7222. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7223. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7224. sprintf_P(cmd, PSTR("G92 E"));
  7225. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7226. enquecommand(cmd);
  7227. }
  7228. memcpy(destination, current_position, sizeof(destination));
  7229. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7230. print_world_coordinates();
  7231. // 2) Initialize the logical to physical coordinate system transformation.
  7232. world2machine_initialize();
  7233. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7234. mbl.active = false;
  7235. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7236. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7237. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7238. // Scale the z value to 10u resolution.
  7239. int16_t v;
  7240. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7241. if (v != 0)
  7242. mbl.active = true;
  7243. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7244. }
  7245. if (mbl.active)
  7246. mbl.upsample_3x3();
  7247. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7248. // print_mesh_bed_leveling_table();
  7249. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7250. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7251. babystep_load();
  7252. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7253. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7254. // 6) Power up the motors, mark their positions as known.
  7255. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7256. axis_known_position[X_AXIS] = true; enable_x();
  7257. axis_known_position[Y_AXIS] = true; enable_y();
  7258. axis_known_position[Z_AXIS] = true; enable_z();
  7259. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7260. print_physical_coordinates();
  7261. // 7) Recover the target temperatures.
  7262. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7263. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7264. }
  7265. void restore_print_from_eeprom() {
  7266. float x_rec, y_rec, z_pos;
  7267. int feedrate_rec;
  7268. uint8_t fan_speed_rec;
  7269. char cmd[30];
  7270. char* c;
  7271. char filename[13];
  7272. uint8_t depth = 0;
  7273. char dir_name[9];
  7274. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7275. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7276. SERIAL_ECHOPGM("Feedrate:");
  7277. MYSERIAL.println(feedrate_rec);
  7278. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7279. MYSERIAL.println(int(depth));
  7280. for (int i = 0; i < depth; i++) {
  7281. for (int j = 0; j < 8; j++) {
  7282. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7283. }
  7284. dir_name[8] = '\0';
  7285. MYSERIAL.println(dir_name);
  7286. card.chdir(dir_name);
  7287. }
  7288. for (int i = 0; i < 8; i++) {
  7289. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7290. }
  7291. filename[8] = '\0';
  7292. MYSERIAL.print(filename);
  7293. strcat_P(filename, PSTR(".gco"));
  7294. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7295. for (c = &cmd[4]; *c; c++)
  7296. *c = tolower(*c);
  7297. enquecommand(cmd);
  7298. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7299. SERIAL_ECHOPGM("Position read from eeprom:");
  7300. MYSERIAL.println(position);
  7301. // E axis relative mode.
  7302. enquecommand_P(PSTR("M83"));
  7303. // Move to the XY print position in logical coordinates, where the print has been killed.
  7304. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7305. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7306. strcat_P(cmd, PSTR(" F2000"));
  7307. enquecommand(cmd);
  7308. // Move the Z axis down to the print, in logical coordinates.
  7309. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7310. enquecommand(cmd);
  7311. // Unretract.
  7312. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7313. // Set the feedrate saved at the power panic.
  7314. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7315. enquecommand(cmd);
  7316. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7317. {
  7318. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7319. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7320. }
  7321. // Set the fan speed saved at the power panic.
  7322. strcpy_P(cmd, PSTR("M106 S"));
  7323. strcat(cmd, itostr3(int(fan_speed_rec)));
  7324. enquecommand(cmd);
  7325. // Set a position in the file.
  7326. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7327. enquecommand(cmd);
  7328. // Start SD print.
  7329. enquecommand_P(PSTR("M24"));
  7330. }
  7331. #endif //UVLO_SUPPORT
  7332. ////////////////////////////////////////////////////////////////////////////////
  7333. // new save/restore printing
  7334. //extern uint32_t sdpos_atomic;
  7335. bool saved_printing = false;
  7336. uint32_t saved_sdpos = 0;
  7337. float saved_pos[4] = {0, 0, 0, 0};
  7338. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  7339. float saved_feedrate2 = 0;
  7340. uint8_t saved_active_extruder = 0;
  7341. bool saved_extruder_under_pressure = false;
  7342. void stop_and_save_print_to_ram(float z_move, float e_move)
  7343. {
  7344. if (saved_printing) return;
  7345. cli();
  7346. unsigned char nplanner_blocks = number_of_blocks();
  7347. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7348. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7349. saved_sdpos -= sdlen_planner;
  7350. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7351. saved_sdpos -= sdlen_cmdqueue;
  7352. #if 0
  7353. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7354. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7355. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7356. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7357. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7358. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7359. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7360. {
  7361. card.setIndex(saved_sdpos);
  7362. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7363. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7364. MYSERIAL.print(char(card.get()));
  7365. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7366. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7367. MYSERIAL.print(char(card.get()));
  7368. SERIAL_ECHOLNPGM("End of command buffer");
  7369. }
  7370. {
  7371. // Print the content of the planner buffer, line by line:
  7372. card.setIndex(saved_sdpos);
  7373. int8_t iline = 0;
  7374. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7375. SERIAL_ECHOPGM("Planner line (from file): ");
  7376. MYSERIAL.print(int(iline), DEC);
  7377. SERIAL_ECHOPGM(", length: ");
  7378. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7379. SERIAL_ECHOPGM(", steps: (");
  7380. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7381. SERIAL_ECHOPGM(",");
  7382. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7383. SERIAL_ECHOPGM(",");
  7384. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7385. SERIAL_ECHOPGM(",");
  7386. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7387. SERIAL_ECHOPGM("), events: ");
  7388. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7389. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7390. MYSERIAL.print(char(card.get()));
  7391. }
  7392. }
  7393. {
  7394. // Print the content of the command buffer, line by line:
  7395. int8_t iline = 0;
  7396. union {
  7397. struct {
  7398. char lo;
  7399. char hi;
  7400. } lohi;
  7401. uint16_t value;
  7402. } sdlen_single;
  7403. int _bufindr = bufindr;
  7404. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7405. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7406. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7407. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7408. }
  7409. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7410. MYSERIAL.print(int(iline), DEC);
  7411. SERIAL_ECHOPGM(", type: ");
  7412. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7413. SERIAL_ECHOPGM(", len: ");
  7414. MYSERIAL.println(sdlen_single.value, DEC);
  7415. // Print the content of the buffer line.
  7416. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7417. SERIAL_ECHOPGM("Buffer line (from file): ");
  7418. MYSERIAL.print(int(iline), DEC);
  7419. MYSERIAL.println(int(iline), DEC);
  7420. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7421. MYSERIAL.print(char(card.get()));
  7422. if (-- _buflen == 0)
  7423. break;
  7424. // First skip the current command ID and iterate up to the end of the string.
  7425. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7426. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7427. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7428. // If the end of the buffer was empty,
  7429. if (_bufindr == sizeof(cmdbuffer)) {
  7430. // skip to the start and find the nonzero command.
  7431. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7432. }
  7433. }
  7434. }
  7435. #endif
  7436. #if 0
  7437. saved_feedrate2 = feedrate; //save feedrate
  7438. #else
  7439. // Try to deduce the feedrate from the first block of the planner.
  7440. // Speed is in mm/min.
  7441. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7442. #endif
  7443. planner_abort_hard(); //abort printing
  7444. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7445. saved_active_extruder = active_extruder; //save active_extruder
  7446. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7447. cmdqueue_reset(); //empty cmdqueue
  7448. card.sdprinting = false;
  7449. // card.closefile();
  7450. saved_printing = true;
  7451. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7452. st_reset_timer();
  7453. sei();
  7454. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7455. #if 1
  7456. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7457. char buf[48];
  7458. strcpy_P(buf, PSTR("G1 Z"));
  7459. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7460. strcat_P(buf, PSTR(" E"));
  7461. // Relative extrusion
  7462. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7463. strcat_P(buf, PSTR(" F"));
  7464. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7465. // At this point the command queue is empty.
  7466. enquecommand(buf, false);
  7467. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7468. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7469. repeatcommand_front();
  7470. #else
  7471. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7472. st_synchronize(); //wait moving
  7473. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7474. memcpy(destination, current_position, sizeof(destination));
  7475. #endif
  7476. }
  7477. }
  7478. void restore_print_from_ram_and_continue(float e_move)
  7479. {
  7480. if (!saved_printing) return;
  7481. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7482. // current_position[axis] = st_get_position_mm(axis);
  7483. active_extruder = saved_active_extruder; //restore active_extruder
  7484. feedrate = saved_feedrate2; //restore feedrate
  7485. float e = saved_pos[E_AXIS] - e_move;
  7486. plan_set_e_position(e);
  7487. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7488. st_synchronize();
  7489. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7490. memcpy(destination, current_position, sizeof(destination));
  7491. card.setIndex(saved_sdpos);
  7492. sdpos_atomic = saved_sdpos;
  7493. card.sdprinting = true;
  7494. saved_printing = false;
  7495. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7496. }
  7497. void print_world_coordinates()
  7498. {
  7499. SERIAL_ECHOPGM("world coordinates: (");
  7500. MYSERIAL.print(current_position[X_AXIS], 3);
  7501. SERIAL_ECHOPGM(", ");
  7502. MYSERIAL.print(current_position[Y_AXIS], 3);
  7503. SERIAL_ECHOPGM(", ");
  7504. MYSERIAL.print(current_position[Z_AXIS], 3);
  7505. SERIAL_ECHOLNPGM(")");
  7506. }
  7507. void print_physical_coordinates()
  7508. {
  7509. SERIAL_ECHOPGM("physical coordinates: (");
  7510. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7511. SERIAL_ECHOPGM(", ");
  7512. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7513. SERIAL_ECHOPGM(", ");
  7514. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7515. SERIAL_ECHOLNPGM(")");
  7516. }
  7517. void print_mesh_bed_leveling_table()
  7518. {
  7519. SERIAL_ECHOPGM("mesh bed leveling: ");
  7520. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7521. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7522. MYSERIAL.print(mbl.z_values[y][x], 3);
  7523. SERIAL_ECHOPGM(" ");
  7524. }
  7525. SERIAL_ECHOLNPGM("");
  7526. }
  7527. #define FIL_LOAD_LENGTH 60