planner.cpp 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #include "ConfigurationStore.h"
  43. #ifdef MESH_BED_LEVELING
  44. #include "mesh_bed_leveling.h"
  45. #include "mesh_bed_calibration.h"
  46. #endif
  47. #ifdef TMC2130
  48. #include "tmc2130.h"
  49. #endif //TMC2130
  50. //===========================================================================
  51. //=============================public variables ============================
  52. //===========================================================================
  53. // Use M203 to override by software
  54. float* max_feedrate = cs.max_feedrate_normal;
  55. // Use M201 to override by software
  56. unsigned long* max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  57. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  58. #ifdef ENABLE_AUTO_BED_LEVELING
  59. // this holds the required transform to compensate for bed level
  60. matrix_3x3 plan_bed_level_matrix = {
  61. 1.0, 0.0, 0.0,
  62. 0.0, 1.0, 0.0,
  63. 0.0, 0.0, 1.0,
  64. };
  65. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  66. // The current position of the tool in absolute steps
  67. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  68. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  69. static float previous_nominal_speed; // Nominal speed of previous path line segment
  70. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  71. uint8_t maxlimit_status;
  72. #ifdef AUTOTEMP
  73. float autotemp_max=250;
  74. float autotemp_min=210;
  75. float autotemp_factor=0.1;
  76. bool autotemp_enabled=false;
  77. #endif
  78. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  79. //===========================================================================
  80. //=================semi-private variables, used in inline functions =====
  81. //===========================================================================
  82. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  83. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  84. volatile unsigned char block_buffer_tail; // Index of the block to process now
  85. #ifdef PLANNER_DIAGNOSTICS
  86. // Diagnostic function: Minimum number of planned moves since the last
  87. static uint8_t g_cntr_planner_queue_min = 0;
  88. #endif /* PLANNER_DIAGNOSTICS */
  89. //===========================================================================
  90. //=============================private variables ============================
  91. //===========================================================================
  92. #ifdef PREVENT_DANGEROUS_EXTRUDE
  93. float extrude_min_temp=EXTRUDE_MINTEMP;
  94. #endif
  95. #ifdef LIN_ADVANCE
  96. float extruder_advance_K = LIN_ADVANCE_K;
  97. float position_float[NUM_AXIS];
  98. #endif
  99. // Returns the index of the next block in the ring buffer
  100. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  101. static inline int8_t next_block_index(int8_t block_index) {
  102. if (++ block_index == BLOCK_BUFFER_SIZE)
  103. block_index = 0;
  104. return block_index;
  105. }
  106. // Returns the index of the previous block in the ring buffer
  107. static inline int8_t prev_block_index(int8_t block_index) {
  108. if (block_index == 0)
  109. block_index = BLOCK_BUFFER_SIZE;
  110. -- block_index;
  111. return block_index;
  112. }
  113. //===========================================================================
  114. //=============================functions ============================
  115. //===========================================================================
  116. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  117. // given acceleration:
  118. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  119. {
  120. if (acceleration!=0) {
  121. return((target_rate*target_rate-initial_rate*initial_rate)/
  122. (2.0*acceleration));
  123. }
  124. else {
  125. return 0.0; // acceleration was 0, set acceleration distance to 0
  126. }
  127. }
  128. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  129. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  130. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  131. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  132. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  133. {
  134. if (acceleration!=0) {
  135. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  136. (4.0*acceleration) );
  137. }
  138. else {
  139. return 0.0; // acceleration was 0, set intersection distance to 0
  140. }
  141. }
  142. // Minimum stepper rate 120Hz.
  143. #define MINIMAL_STEP_RATE 120
  144. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  145. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  146. {
  147. // These two lines are the only floating point calculations performed in this routine.
  148. // initial_rate, final_rate in Hz.
  149. // Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
  150. // the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
  151. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  152. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  153. // Limit minimal step rate (Otherwise the timer will overflow.)
  154. if (initial_rate < MINIMAL_STEP_RATE)
  155. initial_rate = MINIMAL_STEP_RATE;
  156. if (initial_rate > block->nominal_rate)
  157. initial_rate = block->nominal_rate;
  158. if (final_rate < MINIMAL_STEP_RATE)
  159. final_rate = MINIMAL_STEP_RATE;
  160. if (final_rate > block->nominal_rate)
  161. final_rate = block->nominal_rate;
  162. uint32_t acceleration = block->acceleration_st;
  163. if (acceleration == 0)
  164. // Don't allow zero acceleration.
  165. acceleration = 1;
  166. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  167. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  168. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  169. //FIXME assert that this result fits a 64bit unsigned int.
  170. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  171. uint32_t final_rate_sqr = final_rate*final_rate;
  172. uint32_t acceleration_x2 = acceleration << 1;
  173. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  174. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  175. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  176. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  177. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  178. // Size of Plateau of Nominal Rate.
  179. uint32_t plateau_steps = 0;
  180. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  181. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  182. // in order to reach the final_rate exactly at the end of this block.
  183. if (accel_decel_steps < block->step_event_count.wide) {
  184. plateau_steps = block->step_event_count.wide - accel_decel_steps;
  185. } else {
  186. uint32_t acceleration_x4 = acceleration << 2;
  187. // Avoid negative numbers
  188. if (final_rate_sqr >= initial_rate_sqr) {
  189. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  190. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  191. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  192. #if 0
  193. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  194. #else
  195. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  196. if (block->step_event_count.wide & 1)
  197. accelerate_steps += acceleration_x2;
  198. accelerate_steps /= acceleration_x4;
  199. accelerate_steps += (block->step_event_count.wide >> 1);
  200. #endif
  201. if (accelerate_steps > block->step_event_count.wide)
  202. accelerate_steps = block->step_event_count.wide;
  203. } else {
  204. #if 0
  205. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  206. #else
  207. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  208. if (block->step_event_count.wide & 1)
  209. decelerate_steps += acceleration_x2;
  210. decelerate_steps /= acceleration_x4;
  211. decelerate_steps += (block->step_event_count.wide >> 1);
  212. #endif
  213. if (decelerate_steps > block->step_event_count.wide)
  214. decelerate_steps = block->step_event_count.wide;
  215. accelerate_steps = block->step_event_count.wide - decelerate_steps;
  216. }
  217. }
  218. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  219. // This block locks the interrupts globally for 4.38 us,
  220. // which corresponds to a maximum repeat frequency of 228.57 kHz.
  221. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  222. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  223. if (! block->busy) { // Don't update variables if block is busy.
  224. block->accelerate_until = accelerate_steps;
  225. block->decelerate_after = accelerate_steps+plateau_steps;
  226. block->initial_rate = initial_rate;
  227. block->final_rate = final_rate;
  228. }
  229. CRITICAL_SECTION_END;
  230. }
  231. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  232. // decceleration within the allotted distance.
  233. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  234. {
  235. // assert(decceleration < 0);
  236. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  237. }
  238. // Recalculates the motion plan according to the following algorithm:
  239. //
  240. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  241. // so that:
  242. // a. The junction jerk is within the set limit
  243. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  244. // acceleration.
  245. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  246. // a. The speed increase within one block would require faster accelleration than the one, true
  247. // constant acceleration.
  248. //
  249. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  250. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  251. // the set limit. Finally it will:
  252. //
  253. // 3. Recalculate trapezoids for all blocks.
  254. //
  255. //FIXME This routine is called 15x every time a new line is added to the planner,
  256. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  257. // if the CPU is found lacking computational power.
  258. //
  259. // Following sources may be used to optimize the 8-bit AVR code:
  260. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  261. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  262. //
  263. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  264. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  265. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  266. //
  267. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  268. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  269. // https://github.com/rekka/avrmultiplication
  270. //
  271. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  272. // https://courses.cit.cornell.edu/ee476/Math/
  273. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  274. //
  275. void planner_recalculate(const float &safe_final_speed)
  276. {
  277. // Reverse pass
  278. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  279. // by consuming the blocks, therefore shortening the queue.
  280. unsigned char tail = block_buffer_tail;
  281. uint8_t block_index;
  282. block_t *prev, *current, *next;
  283. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  284. // At least three blocks are in the queue?
  285. unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  286. if (n_blocks >= 3) {
  287. // Initialize the last tripple of blocks.
  288. block_index = prev_block_index(block_buffer_head);
  289. next = block_buffer + block_index;
  290. current = block_buffer + (block_index = prev_block_index(block_index));
  291. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  292. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  293. // 1) it may already be running at the stepper interrupt,
  294. // 2) there is no way to limit it when going in the forward direction.
  295. while (block_index != tail) {
  296. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  297. // Don't modify the entry velocity of the starting block.
  298. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  299. // for the stepper interrupt routine to use them.
  300. tail = block_index;
  301. // Update the number of blocks to process.
  302. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  303. // SERIAL_ECHOLNPGM("START");
  304. break;
  305. }
  306. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  307. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  308. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  309. if (current->entry_speed != current->max_entry_speed) {
  310. // assert(current->entry_speed < current->max_entry_speed);
  311. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  312. // segment and the maximum acceleration allowed for this segment.
  313. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  314. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  315. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  316. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  317. // together with an assembly 32bit->16bit sqrt function.
  318. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  319. current->max_entry_speed :
  320. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  321. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  322. current->flag |= BLOCK_FLAG_RECALCULATE;
  323. }
  324. next = current;
  325. current = block_buffer + (block_index = prev_block_index(block_index));
  326. }
  327. }
  328. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  329. // Forward pass and recalculate the trapezoids.
  330. if (n_blocks >= 2) {
  331. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  332. block_index = tail;
  333. prev = block_buffer + block_index;
  334. current = block_buffer + (block_index = next_block_index(block_index));
  335. do {
  336. // If the previous block is an acceleration block, but it is not long enough to complete the
  337. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  338. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  339. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  340. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  341. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  342. // Check for junction speed change
  343. if (current->entry_speed != entry_speed) {
  344. current->entry_speed = entry_speed;
  345. current->flag |= BLOCK_FLAG_RECALCULATE;
  346. }
  347. }
  348. // Recalculate if current block entry or exit junction speed has changed.
  349. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  350. // @wavexx: FIXME: the following check is not really enough. calculate_trapezoid does block
  351. // the isr to update the rates, but we don't. we should update atomically
  352. if (!prev->busy) {
  353. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  354. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  355. #ifdef LIN_ADVANCE
  356. if (prev->use_advance_lead) {
  357. const float comp = prev->e_D_ratio * extruder_advance_K * cs.axis_steps_per_unit[E_AXIS];
  358. prev->final_adv_steps = current->entry_speed * comp;
  359. }
  360. #endif
  361. }
  362. // Reset current only to ensure next trapezoid is computed.
  363. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  364. }
  365. prev = current;
  366. current = block_buffer + (block_index = next_block_index(block_index));
  367. } while (block_index != block_buffer_head);
  368. }
  369. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  370. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  371. current = block_buffer + prev_block_index(block_buffer_head);
  372. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  373. #ifdef LIN_ADVANCE
  374. if (current->use_advance_lead) {
  375. const float comp = current->e_D_ratio * extruder_advance_K * cs.axis_steps_per_unit[E_AXIS];
  376. current->max_adv_steps = current->nominal_speed * comp;
  377. current->final_adv_steps = safe_final_speed * comp;
  378. }
  379. #endif
  380. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  381. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  382. }
  383. void plan_init() {
  384. block_buffer_head = 0;
  385. block_buffer_tail = 0;
  386. memset(position, 0, sizeof(position)); // clear position
  387. #ifdef LIN_ADVANCE
  388. memset(position_float, 0, sizeof(position_float)); // clear position
  389. #endif
  390. previous_speed[0] = 0.0;
  391. previous_speed[1] = 0.0;
  392. previous_speed[2] = 0.0;
  393. previous_speed[3] = 0.0;
  394. previous_nominal_speed = 0.0;
  395. }
  396. #ifdef AUTOTEMP
  397. void getHighESpeed()
  398. {
  399. static float oldt=0;
  400. if(!autotemp_enabled){
  401. return;
  402. }
  403. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  404. return; //do nothing
  405. }
  406. float high=0.0;
  407. uint8_t block_index = block_buffer_tail;
  408. while(block_index != block_buffer_head) {
  409. if((block_buffer[block_index].steps_x.wide != 0) ||
  410. (block_buffer[block_index].steps_y.wide != 0) ||
  411. (block_buffer[block_index].steps_z.wide != 0)) {
  412. float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
  413. //se; mm/sec;
  414. if(se>high)
  415. {
  416. high=se;
  417. }
  418. }
  419. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  420. }
  421. float g=autotemp_min+high*autotemp_factor;
  422. float t=g;
  423. if(t<autotemp_min)
  424. t=autotemp_min;
  425. if(t>autotemp_max)
  426. t=autotemp_max;
  427. if(oldt>t)
  428. {
  429. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  430. }
  431. oldt=t;
  432. setTargetHotend0(t);
  433. }
  434. #endif
  435. bool e_active()
  436. {
  437. unsigned char e_active = 0;
  438. block_t *block;
  439. if(block_buffer_tail != block_buffer_head)
  440. {
  441. uint8_t block_index = block_buffer_tail;
  442. while(block_index != block_buffer_head)
  443. {
  444. block = &block_buffer[block_index];
  445. if(block->steps_e.wide != 0) e_active++;
  446. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  447. }
  448. }
  449. return (e_active > 0) ? true : false ;
  450. }
  451. void check_axes_activity()
  452. {
  453. unsigned char x_active = 0;
  454. unsigned char y_active = 0;
  455. unsigned char z_active = 0;
  456. unsigned char e_active = 0;
  457. unsigned char tail_fan_speed = fanSpeed;
  458. block_t *block;
  459. if(block_buffer_tail != block_buffer_head)
  460. {
  461. uint8_t block_index = block_buffer_tail;
  462. tail_fan_speed = block_buffer[block_index].fan_speed;
  463. while(block_index != block_buffer_head)
  464. {
  465. block = &block_buffer[block_index];
  466. if(block->steps_x.wide != 0) x_active++;
  467. if(block->steps_y.wide != 0) y_active++;
  468. if(block->steps_z.wide != 0) z_active++;
  469. if(block->steps_e.wide != 0) e_active++;
  470. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  471. }
  472. }
  473. if((DISABLE_X) && (x_active == 0)) disable_x();
  474. if((DISABLE_Y) && (y_active == 0)) disable_y();
  475. if((DISABLE_Z) && (z_active == 0)) disable_z();
  476. if((DISABLE_E) && (e_active == 0))
  477. {
  478. disable_e0();
  479. disable_e1();
  480. disable_e2();
  481. }
  482. #if defined(FAN_PIN) && FAN_PIN > -1
  483. #ifdef FAN_KICKSTART_TIME
  484. static unsigned long fan_kick_end;
  485. if (tail_fan_speed) {
  486. if (fan_kick_end == 0) {
  487. // Just starting up fan - run at full power.
  488. fan_kick_end = _millis() + FAN_KICKSTART_TIME;
  489. tail_fan_speed = 255;
  490. } else if (fan_kick_end > _millis())
  491. // Fan still spinning up.
  492. tail_fan_speed = 255;
  493. } else {
  494. fan_kick_end = 0;
  495. }
  496. #endif//FAN_KICKSTART_TIME
  497. #ifdef FAN_SOFT_PWM
  498. if (fan_measuring) { //if measurement is currently in process, fanSpeedSoftPwm must remain set to 255, but we must update fanSpeedBckp value
  499. fanSpeedBckp = tail_fan_speed;
  500. }
  501. else {
  502. fanSpeedSoftPwm = tail_fan_speed;
  503. }
  504. //printf_P(PSTR("fanspeedsoftPWM %d \n"), fanSpeedSoftPwm);
  505. #else
  506. analogWrite(FAN_PIN,tail_fan_speed);
  507. #endif//!FAN_SOFT_PWM
  508. #endif//FAN_PIN > -1
  509. #ifdef AUTOTEMP
  510. getHighESpeed();
  511. #endif
  512. }
  513. bool waiting_inside_plan_buffer_line_print_aborted = false;
  514. /*
  515. void planner_abort_soft()
  516. {
  517. // Empty the queue.
  518. while (blocks_queued()) plan_discard_current_block();
  519. // Relay to planner wait routine, that the current line shall be canceled.
  520. waiting_inside_plan_buffer_line_print_aborted = true;
  521. //current_position[i]
  522. }
  523. */
  524. #ifdef PLANNER_DIAGNOSTICS
  525. static inline void planner_update_queue_min_counter()
  526. {
  527. uint8_t new_counter = moves_planned();
  528. if (new_counter < g_cntr_planner_queue_min)
  529. g_cntr_planner_queue_min = new_counter;
  530. }
  531. #endif /* PLANNER_DIAGNOSTICS */
  532. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  533. void planner_abort_hard()
  534. {
  535. // Abort the stepper routine and flush the planner queue.
  536. DISABLE_STEPPER_DRIVER_INTERRUPT();
  537. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  538. // First update the planner's current position in the physical motor steps.
  539. position[X_AXIS] = st_get_position(X_AXIS);
  540. position[Y_AXIS] = st_get_position(Y_AXIS);
  541. position[Z_AXIS] = st_get_position(Z_AXIS);
  542. position[E_AXIS] = st_get_position(E_AXIS);
  543. // Second update the current position of the front end.
  544. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  545. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  546. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  547. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  548. // Apply the mesh bed leveling correction to the Z axis.
  549. #ifdef MESH_BED_LEVELING
  550. if (mbl.active) {
  551. #if 1
  552. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  553. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  554. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  555. #else
  556. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  557. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  558. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  559. else {
  560. float t = float(step_events_completed) / float(current_block->step_event_count);
  561. float vec[3] = {
  562. current_block->steps_x / cs.axis_steps_per_unit[X_AXIS],
  563. current_block->steps_y / cs.axis_steps_per_unit[Y_AXIS],
  564. current_block->steps_z / cs.axis_steps_per_unit[Z_AXIS]
  565. };
  566. float pos1[3], pos2[3];
  567. for (int8_t i = 0; i < 3; ++ i) {
  568. if (current_block->direction_bits & (1<<i))
  569. vec[i] = - vec[i];
  570. pos1[i] = current_position[i] - vec[i] * t;
  571. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  572. }
  573. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  574. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  575. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  576. }
  577. #endif
  578. }
  579. #endif
  580. // Clear the planner queue, reset and re-enable the stepper timer.
  581. quickStop();
  582. // Apply inverse world correction matrix.
  583. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  584. memcpy(destination, current_position, sizeof(destination));
  585. #ifdef LIN_ADVANCE
  586. memcpy(position_float, current_position, sizeof(position_float));
  587. #endif
  588. // Resets planner junction speeds. Assumes start from rest.
  589. previous_nominal_speed = 0.0;
  590. previous_speed[0] = 0.0;
  591. previous_speed[1] = 0.0;
  592. previous_speed[2] = 0.0;
  593. previous_speed[3] = 0.0;
  594. // Relay to planner wait routine, that the current line shall be canceled.
  595. waiting_inside_plan_buffer_line_print_aborted = true;
  596. }
  597. float junction_deviation = 0.1;
  598. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  599. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  600. // calculation the caller must also provide the physical length of the line in millimeters.
  601. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  602. {
  603. // Calculate the buffer head after we push this byte
  604. int next_buffer_head = next_block_index(block_buffer_head);
  605. // If the buffer is full: good! That means we are well ahead of the robot.
  606. // Rest here until there is room in the buffer.
  607. if (block_buffer_tail == next_buffer_head) {
  608. waiting_inside_plan_buffer_line_print_aborted = false;
  609. do {
  610. manage_heater();
  611. // Vojtech: Don't disable motors inside the planner!
  612. manage_inactivity(false);
  613. lcd_update(0);
  614. } while (block_buffer_tail == next_buffer_head);
  615. if (waiting_inside_plan_buffer_line_print_aborted) {
  616. // Inside the lcd_update(0) routine the print has been aborted.
  617. // Cancel the print, do not plan the current line this routine is waiting on.
  618. #ifdef PLANNER_DIAGNOSTICS
  619. planner_update_queue_min_counter();
  620. #endif /* PLANNER_DIAGNOSTICS */
  621. return;
  622. }
  623. }
  624. #ifdef PLANNER_DIAGNOSTICS
  625. planner_update_queue_min_counter();
  626. #endif /* PLANNER_DIAGNOSTICS */
  627. #ifdef ENABLE_AUTO_BED_LEVELING
  628. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  629. #endif // ENABLE_AUTO_BED_LEVELING
  630. // Apply the machine correction matrix.
  631. {
  632. #if 0
  633. SERIAL_ECHOPGM("Planner, current position - servos: ");
  634. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  635. SERIAL_ECHOPGM(", ");
  636. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  637. SERIAL_ECHOPGM(", ");
  638. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  639. SERIAL_ECHOLNPGM("");
  640. SERIAL_ECHOPGM("Planner, target position, initial: ");
  641. MYSERIAL.print(x, 5);
  642. SERIAL_ECHOPGM(", ");
  643. MYSERIAL.print(y, 5);
  644. SERIAL_ECHOLNPGM("");
  645. SERIAL_ECHOPGM("Planner, world2machine: ");
  646. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  647. SERIAL_ECHOPGM(", ");
  648. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  649. SERIAL_ECHOPGM(", ");
  650. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  651. SERIAL_ECHOPGM(", ");
  652. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  653. SERIAL_ECHOLNPGM("");
  654. SERIAL_ECHOPGM("Planner, offset: ");
  655. MYSERIAL.print(world2machine_shift[0], 5);
  656. SERIAL_ECHOPGM(", ");
  657. MYSERIAL.print(world2machine_shift[1], 5);
  658. SERIAL_ECHOLNPGM("");
  659. #endif
  660. world2machine(x, y);
  661. #if 0
  662. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  663. MYSERIAL.print(x, 5);
  664. SERIAL_ECHOPGM(", ");
  665. MYSERIAL.print(y, 5);
  666. SERIAL_ECHOLNPGM("");
  667. #endif
  668. }
  669. // The target position of the tool in absolute steps
  670. // Calculate target position in absolute steps
  671. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  672. long target[4];
  673. target[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  674. target[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  675. #ifdef MESH_BED_LEVELING
  676. if (mbl.active){
  677. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]);
  678. }else{
  679. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  680. }
  681. #else
  682. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  683. #endif // ENABLE_MESH_BED_LEVELING
  684. target[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  685. #ifdef PREVENT_DANGEROUS_EXTRUDE
  686. if(target[E_AXIS]!=position[E_AXIS])
  687. {
  688. if(degHotend(active_extruder)<extrude_min_temp)
  689. {
  690. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  691. #ifdef LIN_ADVANCE
  692. position_float[E_AXIS] = e;
  693. #endif
  694. SERIAL_ECHO_START;
  695. SERIAL_ECHOLNRPGM(_n(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP
  696. }
  697. #ifdef PREVENT_LENGTHY_EXTRUDE
  698. if(labs(target[E_AXIS]-position[E_AXIS])>cs.axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  699. {
  700. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  701. #ifdef LIN_ADVANCE
  702. position_float[E_AXIS] = e;
  703. #endif
  704. SERIAL_ECHO_START;
  705. SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP
  706. }
  707. #endif
  708. }
  709. #endif
  710. // Prepare to set up new block
  711. block_t *block = &block_buffer[block_buffer_head];
  712. // Set sdlen for calculating sd position
  713. block->sdlen = 0;
  714. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  715. block->busy = false;
  716. // Number of steps for each axis
  717. #ifndef COREXY
  718. // default non-h-bot planning
  719. block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
  720. block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
  721. #else
  722. // corexy planning
  723. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  724. block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  725. block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  726. #endif
  727. block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
  728. block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
  729. block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
  730. // Bail if this is a zero-length block
  731. if (block->step_event_count.wide <= dropsegments)
  732. {
  733. #ifdef PLANNER_DIAGNOSTICS
  734. planner_update_queue_min_counter();
  735. #endif /* PLANNER_DIAGNOSTICS */
  736. return;
  737. }
  738. block->fan_speed = fanSpeed;
  739. // Compute direction bits for this block
  740. block->direction_bits = 0;
  741. #ifndef COREXY
  742. if (target[X_AXIS] < position[X_AXIS])
  743. {
  744. block->direction_bits |= (1<<X_AXIS);
  745. }
  746. if (target[Y_AXIS] < position[Y_AXIS])
  747. {
  748. block->direction_bits |= (1<<Y_AXIS);
  749. }
  750. #else
  751. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  752. {
  753. block->direction_bits |= (1<<X_AXIS);
  754. }
  755. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  756. {
  757. block->direction_bits |= (1<<Y_AXIS);
  758. }
  759. #endif
  760. if (target[Z_AXIS] < position[Z_AXIS])
  761. {
  762. block->direction_bits |= (1<<Z_AXIS);
  763. }
  764. if (target[E_AXIS] < position[E_AXIS])
  765. {
  766. block->direction_bits |= (1<<E_AXIS);
  767. }
  768. block->active_extruder = extruder;
  769. //enable active axes
  770. #ifdef COREXY
  771. if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
  772. {
  773. enable_x();
  774. enable_y();
  775. }
  776. #else
  777. if(block->steps_x.wide != 0) enable_x();
  778. if(block->steps_y.wide != 0) enable_y();
  779. #endif
  780. if(block->steps_z.wide != 0) enable_z();
  781. // Enable extruder(s)
  782. if(block->steps_e.wide != 0)
  783. {
  784. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  785. {
  786. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  787. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  788. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  789. switch(extruder)
  790. {
  791. case 0:
  792. enable_e0();
  793. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  794. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  795. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  796. break;
  797. case 1:
  798. enable_e1();
  799. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  800. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  801. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  802. break;
  803. case 2:
  804. enable_e2();
  805. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  806. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  807. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  808. break;
  809. }
  810. }
  811. else //enable all
  812. {
  813. enable_e0();
  814. enable_e1();
  815. enable_e2();
  816. }
  817. }
  818. if (block->steps_e.wide == 0)
  819. {
  820. if(feed_rate<cs.mintravelfeedrate) feed_rate=cs.mintravelfeedrate;
  821. }
  822. else
  823. {
  824. if(feed_rate<cs.minimumfeedrate) feed_rate=cs.minimumfeedrate;
  825. }
  826. /* This part of the code calculates the total length of the movement.
  827. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  828. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  829. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  830. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  831. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  832. */
  833. #ifndef COREXY
  834. float delta_mm[4];
  835. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  836. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  837. #else
  838. float delta_mm[6];
  839. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  840. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  841. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[X_AXIS];
  842. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[Y_AXIS];
  843. #endif
  844. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/cs.axis_steps_per_unit[Z_AXIS];
  845. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/cs.axis_steps_per_unit[E_AXIS];
  846. if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
  847. {
  848. block->millimeters = fabs(delta_mm[E_AXIS]);
  849. }
  850. else
  851. {
  852. #ifndef COREXY
  853. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  854. #else
  855. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  856. #endif
  857. }
  858. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  859. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  860. float inverse_second = feed_rate * inverse_millimeters;
  861. int moves_queued = moves_planned();
  862. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  863. #ifdef SLOWDOWN
  864. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  865. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  866. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  867. // segment time in micro seconds
  868. unsigned long segment_time = lround(1000000.0/inverse_second);
  869. if (segment_time < cs.minsegmenttime)
  870. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  871. inverse_second=1000000.0/(segment_time+lround(2*(cs.minsegmenttime-segment_time)/moves_queued));
  872. }
  873. #endif // SLOWDOWN
  874. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  875. block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
  876. // Calculate and limit speed in mm/sec for each axis
  877. float current_speed[4];
  878. float speed_factor = 1.0; //factor <=1 do decrease speed
  879. // maxlimit_status &= ~0xf;
  880. for(int i=0; i < 4; i++)
  881. {
  882. current_speed[i] = delta_mm[i] * inverse_second;
  883. if(fabs(current_speed[i]) > max_feedrate[i])
  884. {
  885. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  886. maxlimit_status |= (1 << i);
  887. }
  888. }
  889. // Correct the speed
  890. if( speed_factor < 1.0)
  891. {
  892. for(unsigned char i=0; i < 4; i++)
  893. {
  894. current_speed[i] *= speed_factor;
  895. }
  896. block->nominal_speed *= speed_factor;
  897. block->nominal_rate *= speed_factor;
  898. }
  899. // Compute and limit the acceleration rate for the trapezoid generator.
  900. // block->step_event_count ... event count of the fastest axis
  901. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  902. float steps_per_mm = block->step_event_count.wide/block->millimeters;
  903. if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
  904. {
  905. block->acceleration_st = ceil(cs.retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  906. #ifdef LIN_ADVANCE
  907. block->use_advance_lead = false;
  908. #endif
  909. }
  910. else
  911. {
  912. block->acceleration_st = ceil(cs.acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  913. #ifdef LIN_ADVANCE
  914. /**
  915. * Use LIN_ADVANCE for blocks if all these are true:
  916. *
  917. * block->steps_e : This is a print move, because we checked for X, Y, Z steps before.
  918. * extruder_advance_K : There is an advance factor set.
  919. * delta_mm[E_AXIS] > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  920. * |delta_mm[Z_AXIS]| < 0.5 : Z is only moved for leveling (_not_ for priming)
  921. */
  922. block->use_advance_lead = block->steps_e.wide
  923. && extruder_advance_K
  924. && delta_mm[E_AXIS] > 0
  925. && abs(delta_mm[Z_AXIS]) < 0.5;
  926. if (block->use_advance_lead) {
  927. block->e_D_ratio = (e - position_float[E_AXIS]) /
  928. sqrt(sq(x - position_float[X_AXIS])
  929. + sq(y - position_float[Y_AXIS])
  930. + sq(z - position_float[Z_AXIS]));
  931. // Check for unusual high e_D ratio to detect if a retract move was combined with the last
  932. // print move due to min. steps per segment. Never execute this with advance! This assumes
  933. // no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print
  934. // 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
  935. if (block->e_D_ratio > 3.0)
  936. block->use_advance_lead = false;
  937. else {
  938. const uint32_t max_accel_steps_per_s2 = cs.max_jerk[E_AXIS] / (extruder_advance_K * block->e_D_ratio) * steps_per_mm;
  939. if (block->acceleration_st > max_accel_steps_per_s2) {
  940. block->acceleration_st = max_accel_steps_per_s2;
  941. #ifdef LA_DEBUG
  942. SERIAL_ECHOLNPGM("LA: Block acceleration limited due to max E-jerk");
  943. #endif
  944. }
  945. }
  946. }
  947. #endif
  948. // Limit acceleration per axis
  949. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  950. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  951. { block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; maxlimit_status |= (X_AXIS_MASK << 4); }
  952. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  953. { block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; maxlimit_status |= (Y_AXIS_MASK << 4); }
  954. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  955. { block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; maxlimit_status |= (Z_AXIS_MASK << 4); }
  956. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
  957. { block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; maxlimit_status |= (E_AXIS_MASK << 4); }
  958. }
  959. // Acceleration of the segment, in mm/sec^2
  960. block->acceleration = block->acceleration_st / steps_per_mm;
  961. #if 0
  962. // Oversample diagonal movements by a power of 2 up to 8x
  963. // to achieve more accurate diagonal movements.
  964. uint8_t bresenham_oversample = 1;
  965. for (uint8_t i = 0; i < 3; ++ i) {
  966. if (block->nominal_rate >= 5000) // 5kHz
  967. break;
  968. block->nominal_rate << 1;
  969. bresenham_oversample << 1;
  970. block->step_event_count << 1;
  971. }
  972. if (bresenham_oversample > 1)
  973. // Lower the acceleration steps/sec^2 to account for the oversampling.
  974. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  975. #endif
  976. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  977. #ifdef LIN_ADVANCE
  978. if (block->use_advance_lead) {
  979. // to save more space we avoid another copy of calc_timer and go through slow division, but we
  980. // still need to replicate the *exact* same step grouping policy (see below)
  981. float advance_speed = (extruder_advance_K * block->e_D_ratio * block->acceleration * cs.axis_steps_per_unit[E_AXIS]);
  982. if (advance_speed > MAX_STEP_FREQUENCY) advance_speed = MAX_STEP_FREQUENCY;
  983. block->advance_rate = (F_CPU / 8.0) / advance_speed;
  984. if (block->advance_rate > 20000) {
  985. block->advance_rate = (block->advance_rate >> 2)&0x3fff;
  986. block->advance_step_loops = 4;
  987. }
  988. else if (block->advance_rate > 10000) {
  989. block->advance_rate = (block->advance_rate >> 1)&0x7fff;
  990. block->advance_step_loops = 2;
  991. }
  992. else
  993. block->advance_step_loops = 1;
  994. #ifdef LA_DEBUG
  995. if (block->advance_step_loops > 2)
  996. // @wavexx: we should really check for the difference between step_loops and
  997. // advance_step_loops instead. A difference of more than 1 will lead
  998. // to uneven speed and *should* be adjusted here by furthermore
  999. // reducing the speed.
  1000. SERIAL_ECHOLNPGM("LA: More than 2 steps per eISR loop executed.");
  1001. #endif
  1002. }
  1003. #endif
  1004. // Start with a safe speed.
  1005. // Safe speed is the speed, from which the machine may halt to stop immediately.
  1006. float safe_speed = block->nominal_speed;
  1007. bool limited = false;
  1008. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1009. float jerk = fabs(current_speed[axis]);
  1010. if (jerk > cs.max_jerk[axis]) {
  1011. // The actual jerk is lower, if it has been limited by the XY jerk.
  1012. if (limited) {
  1013. // Spare one division by a following gymnastics:
  1014. // Instead of jerk *= safe_speed / block->nominal_speed,
  1015. // multiply max_jerk[axis] by the divisor.
  1016. jerk *= safe_speed;
  1017. float mjerk = cs.max_jerk[axis] * block->nominal_speed;
  1018. if (jerk > mjerk) {
  1019. safe_speed *= mjerk / jerk;
  1020. limited = true;
  1021. }
  1022. } else {
  1023. safe_speed = cs.max_jerk[axis];
  1024. limited = true;
  1025. }
  1026. }
  1027. }
  1028. // Reset the block flag.
  1029. block->flag = 0;
  1030. // Initial limit on the segment entry velocity.
  1031. float vmax_junction;
  1032. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  1033. // Is it because we don't want to tinker with the first buffer line, which
  1034. // is likely to be executed by the stepper interrupt routine soon?
  1035. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  1036. // Estimate a maximum velocity allowed at a joint of two successive segments.
  1037. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  1038. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  1039. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  1040. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  1041. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  1042. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  1043. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  1044. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  1045. float v_factor = 1.f;
  1046. limited = false;
  1047. // Now limit the jerk in all axes.
  1048. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1049. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  1050. float v_exit = previous_speed[axis];
  1051. float v_entry = current_speed [axis];
  1052. if (prev_speed_larger)
  1053. v_exit *= smaller_speed_factor;
  1054. if (limited) {
  1055. v_exit *= v_factor;
  1056. v_entry *= v_factor;
  1057. }
  1058. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  1059. float jerk =
  1060. (v_exit > v_entry) ?
  1061. ((v_entry > 0.f || v_exit < 0.f) ?
  1062. // coasting
  1063. (v_exit - v_entry) :
  1064. // axis reversal
  1065. max(v_exit, - v_entry)) :
  1066. // v_exit <= v_entry
  1067. ((v_entry < 0.f || v_exit > 0.f) ?
  1068. // coasting
  1069. (v_entry - v_exit) :
  1070. // axis reversal
  1071. max(- v_exit, v_entry));
  1072. if (jerk > cs.max_jerk[axis]) {
  1073. v_factor *= cs.max_jerk[axis] / jerk;
  1074. limited = true;
  1075. }
  1076. }
  1077. if (limited)
  1078. vmax_junction *= v_factor;
  1079. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1080. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1081. float vmax_junction_threshold = vmax_junction * 0.99f;
  1082. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1083. // Not coasting. The machine will stop and start the movements anyway,
  1084. // better to start the segment from start.
  1085. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1086. vmax_junction = safe_speed;
  1087. }
  1088. } else {
  1089. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1090. vmax_junction = safe_speed;
  1091. }
  1092. // Max entry speed of this block equals the max exit speed of the previous block.
  1093. block->max_entry_speed = vmax_junction;
  1094. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1095. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1096. block->entry_speed = min(vmax_junction, v_allowable);
  1097. // Initialize planner efficiency flags
  1098. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1099. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1100. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1101. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1102. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1103. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1104. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1105. // Always calculate trapezoid for new block
  1106. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1107. // Update previous path unit_vector and nominal speed
  1108. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1109. previous_nominal_speed = block->nominal_speed;
  1110. previous_safe_speed = safe_speed;
  1111. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1112. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1113. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1114. if (block->step_event_count.wide <= 32767)
  1115. block->flag |= BLOCK_FLAG_DDA_LOWRES;
  1116. // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
  1117. block_buffer_head = next_buffer_head;
  1118. // Update position
  1119. memcpy(position, target, sizeof(target)); // position[] = target[]
  1120. #ifdef LIN_ADVANCE
  1121. position_float[X_AXIS] = x;
  1122. position_float[Y_AXIS] = y;
  1123. position_float[Z_AXIS] = z;
  1124. position_float[E_AXIS] = e;
  1125. #endif
  1126. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1127. // the machine limits (maximum acceleration and maximum jerk).
  1128. // This runs asynchronously with the stepper interrupt controller, which may
  1129. // interfere with the process.
  1130. planner_recalculate(safe_speed);
  1131. // SERIAL_ECHOPGM("Q");
  1132. // SERIAL_ECHO(int(moves_planned()));
  1133. // SERIAL_ECHOLNPGM("");
  1134. #ifdef PLANNER_DIAGNOSTICS
  1135. planner_update_queue_min_counter();
  1136. #endif /* PLANNER_DIAGNOSTIC */
  1137. // The stepper timer interrupt will run continuously from now on.
  1138. // If there are no planner blocks to be executed by the stepper routine,
  1139. // the stepper interrupt ticks at 1kHz to wake up and pick a block
  1140. // from the planner queue if available.
  1141. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1142. }
  1143. #ifdef ENABLE_AUTO_BED_LEVELING
  1144. vector_3 plan_get_position() {
  1145. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1146. //position.debug("in plan_get position");
  1147. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1148. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1149. //inverse.debug("in plan_get inverse");
  1150. position.apply_rotation(inverse);
  1151. //position.debug("after rotation");
  1152. return position;
  1153. }
  1154. #endif // ENABLE_AUTO_BED_LEVELING
  1155. void plan_set_position(float x, float y, float z, const float &e)
  1156. {
  1157. #ifdef ENABLE_AUTO_BED_LEVELING
  1158. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1159. #endif // ENABLE_AUTO_BED_LEVELING
  1160. // Apply the machine correction matrix.
  1161. if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE)
  1162. {
  1163. float tmpx = x;
  1164. float tmpy = y;
  1165. x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
  1166. y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
  1167. }
  1168. position[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  1169. position[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  1170. #ifdef MESH_BED_LEVELING
  1171. position[Z_AXIS] = mbl.active ?
  1172. lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]) :
  1173. lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1174. #else
  1175. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1176. #endif // ENABLE_MESH_BED_LEVELING
  1177. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1178. #ifdef LIN_ADVANCE
  1179. position_float[X_AXIS] = x;
  1180. position_float[Y_AXIS] = y;
  1181. position_float[Z_AXIS] = z;
  1182. position_float[E_AXIS] = e;
  1183. #endif
  1184. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1185. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1186. previous_speed[0] = 0.0;
  1187. previous_speed[1] = 0.0;
  1188. previous_speed[2] = 0.0;
  1189. previous_speed[3] = 0.0;
  1190. }
  1191. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1192. void plan_set_z_position(const float &z)
  1193. {
  1194. #ifdef LIN_ADVANCE
  1195. position_float[Z_AXIS] = z;
  1196. #endif
  1197. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1198. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1199. }
  1200. void plan_set_e_position(const float &e)
  1201. {
  1202. #ifdef LIN_ADVANCE
  1203. position_float[E_AXIS] = e;
  1204. #endif
  1205. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1206. st_set_e_position(position[E_AXIS]);
  1207. }
  1208. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1209. void set_extrude_min_temp(float temp)
  1210. {
  1211. extrude_min_temp=temp;
  1212. }
  1213. #endif
  1214. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1215. void reset_acceleration_rates()
  1216. {
  1217. for(int8_t i=0; i < NUM_AXIS; i++)
  1218. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * cs.axis_steps_per_unit[i];
  1219. }
  1220. #ifdef TMC2130
  1221. void update_mode_profile()
  1222. {
  1223. if (tmc2130_mode == TMC2130_MODE_NORMAL)
  1224. {
  1225. max_feedrate = cs.max_feedrate_normal;
  1226. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  1227. }
  1228. else if (tmc2130_mode == TMC2130_MODE_SILENT)
  1229. {
  1230. max_feedrate = cs.max_feedrate_silent;
  1231. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_silent;
  1232. }
  1233. reset_acceleration_rates();
  1234. }
  1235. #endif //TMC2130
  1236. unsigned char number_of_blocks()
  1237. {
  1238. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1239. }
  1240. #ifdef PLANNER_DIAGNOSTICS
  1241. uint8_t planner_queue_min()
  1242. {
  1243. return g_cntr_planner_queue_min;
  1244. }
  1245. void planner_queue_min_reset()
  1246. {
  1247. g_cntr_planner_queue_min = moves_planned();
  1248. }
  1249. #endif /* PLANNER_DIAGNOSTICS */
  1250. void planner_add_sd_length(uint16_t sdlen)
  1251. {
  1252. if (block_buffer_head != block_buffer_tail) {
  1253. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1254. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1255. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1256. } else {
  1257. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1258. // at a power panic, so the length of this command may be forgotten.
  1259. }
  1260. }
  1261. uint16_t planner_calc_sd_length()
  1262. {
  1263. unsigned char _block_buffer_head = block_buffer_head;
  1264. unsigned char _block_buffer_tail = block_buffer_tail;
  1265. uint16_t sdlen = 0;
  1266. while (_block_buffer_head != _block_buffer_tail)
  1267. {
  1268. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1269. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1270. }
  1271. return sdlen;
  1272. }