123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- /*
- * Created by Joachim on 16/04/2019.
- * Adapted from donated nonius code.
- *
- * Distributed under the Boost Software License, Version 1.0. (See accompanying
- * file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- */
- // Statistical analysis tools
- #ifndef TWOBLUECUBES_CATCH_DETAIL_ANALYSIS_HPP_INCLUDED
- #define TWOBLUECUBES_CATCH_DETAIL_ANALYSIS_HPP_INCLUDED
- #include "../catch_clock.hpp"
- #include "../catch_estimate.hpp"
- #include "../catch_outlier_classification.hpp"
- #include <algorithm>
- #include <functional>
- #include <vector>
- #include <iterator>
- #include <numeric>
- #include <tuple>
- #include <cmath>
- #include <utility>
- #include <cstddef>
- #include <random>
- namespace Catch {
- namespace Benchmark {
- namespace Detail {
- using sample = std::vector<double>;
- double weighted_average_quantile(int k, int q, std::vector<double>::iterator first, std::vector<double>::iterator last);
- template <typename Iterator>
- OutlierClassification classify_outliers(Iterator first, Iterator last) {
- std::vector<double> copy(first, last);
- auto q1 = weighted_average_quantile(1, 4, copy.begin(), copy.end());
- auto q3 = weighted_average_quantile(3, 4, copy.begin(), copy.end());
- auto iqr = q3 - q1;
- auto los = q1 - (iqr * 3.);
- auto lom = q1 - (iqr * 1.5);
- auto him = q3 + (iqr * 1.5);
- auto his = q3 + (iqr * 3.);
- OutlierClassification o;
- for (; first != last; ++first) {
- auto&& t = *first;
- if (t < los) ++o.low_severe;
- else if (t < lom) ++o.low_mild;
- else if (t > his) ++o.high_severe;
- else if (t > him) ++o.high_mild;
- ++o.samples_seen;
- }
- return o;
- }
- template <typename Iterator>
- double mean(Iterator first, Iterator last) {
- auto count = last - first;
- double sum = std::accumulate(first, last, 0.);
- return sum / count;
- }
- template <typename URng, typename Iterator, typename Estimator>
- sample resample(URng& rng, int resamples, Iterator first, Iterator last, Estimator& estimator) {
- auto n = last - first;
- std::uniform_int_distribution<decltype(n)> dist(0, n - 1);
- sample out;
- out.reserve(resamples);
- std::generate_n(std::back_inserter(out), resamples, [n, first, &estimator, &dist, &rng] {
- std::vector<double> resampled;
- resampled.reserve(n);
- std::generate_n(std::back_inserter(resampled), n, [first, &dist, &rng] { return first[dist(rng)]; });
- return estimator(resampled.begin(), resampled.end());
- });
- std::sort(out.begin(), out.end());
- return out;
- }
- template <typename Estimator, typename Iterator>
- sample jackknife(Estimator&& estimator, Iterator first, Iterator last) {
- auto n = last - first;
- auto second = std::next(first);
- sample results;
- results.reserve(n);
- for (auto it = first; it != last; ++it) {
- std::iter_swap(it, first);
- results.push_back(estimator(second, last));
- }
- return results;
- }
- inline double normal_cdf(double x) {
- return std::erfc(-x / std::sqrt(2.0)) / 2.0;
- }
- double erfc_inv(double x);
- double normal_quantile(double p);
- template <typename Iterator, typename Estimator>
- Estimate<double> bootstrap(double confidence_level, Iterator first, Iterator last, sample const& resample, Estimator&& estimator) {
- auto n_samples = last - first;
- double point = estimator(first, last);
- // Degenerate case with a single sample
- if (n_samples == 1) return { point, point, point, confidence_level };
- sample jack = jackknife(estimator, first, last);
- double jack_mean = mean(jack.begin(), jack.end());
- double sum_squares, sum_cubes;
- std::tie(sum_squares, sum_cubes) = std::accumulate(jack.begin(), jack.end(), std::make_pair(0., 0.), [jack_mean](std::pair<double, double> sqcb, double x) -> std::pair<double, double> {
- auto d = jack_mean - x;
- auto d2 = d * d;
- auto d3 = d2 * d;
- return { sqcb.first + d2, sqcb.second + d3 };
- });
- double accel = sum_cubes / (6 * std::pow(sum_squares, 1.5));
- int n = static_cast<int>(resample.size());
- double prob_n = std::count_if(resample.begin(), resample.end(), [point](double x) { return x < point; }) / (double)n;
- // degenerate case with uniform samples
- if (prob_n == 0) return { point, point, point, confidence_level };
- double bias = normal_quantile(prob_n);
- double z1 = normal_quantile((1. - confidence_level) / 2.);
- auto cumn = [n](double x) -> int {
- return std::lround(normal_cdf(x) * n); };
- auto a = [bias, accel](double b) { return bias + b / (1. - accel * b); };
- double b1 = bias + z1;
- double b2 = bias - z1;
- double a1 = a(b1);
- double a2 = a(b2);
- auto lo = (std::max)(cumn(a1), 0);
- auto hi = (std::min)(cumn(a2), n - 1);
- return { point, resample[lo], resample[hi], confidence_level };
- }
- double outlier_variance(Estimate<double> mean, Estimate<double> stddev, int n);
- struct bootstrap_analysis {
- Estimate<double> mean;
- Estimate<double> standard_deviation;
- double outlier_variance;
- };
- bootstrap_analysis analyse_samples(double confidence_level, int n_resamples, std::vector<double>::iterator first, std::vector<double>::iterator last);
- } // namespace Detail
- } // namespace Benchmark
- } // namespace Catch
- #endif // TWOBLUECUBES_CATCH_DETAIL_ANALYSIS_HPP_INCLUDED
|