Marlin_main.cpp 305 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef FILAMENT_SENSOR
  80. #include "fsensor.h"
  81. #endif //FILAMENT_SENSOR
  82. #ifdef TMC2130
  83. #include "tmc2130.h"
  84. #endif //TMC2130
  85. #ifdef W25X20CL
  86. #include "w25x20cl.h"
  87. #include "optiboot_w25x20cl.h"
  88. #endif //W25X20CL
  89. #ifdef BLINKM
  90. #include "BlinkM.h"
  91. #include "Wire.h"
  92. #endif
  93. #ifdef ULTRALCD
  94. #include "ultralcd.h"
  95. #endif
  96. #if NUM_SERVOS > 0
  97. #include "Servo.h"
  98. #endif
  99. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  100. #include <SPI.h>
  101. #endif
  102. #include "mmu.h"
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "sound.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. //filament types
  116. #define FILAMENT_DEFAULT 0
  117. #define FILAMENT_FLEX 1
  118. #define FILAMENT_PVA 2
  119. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  120. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  121. //Implemented Codes
  122. //-------------------
  123. // PRUSA CODES
  124. // P F - Returns FW versions
  125. // P R - Returns revision of printer
  126. // G0 -> G1
  127. // G1 - Coordinated Movement X Y Z E
  128. // G2 - CW ARC
  129. // G3 - CCW ARC
  130. // G4 - Dwell S<seconds> or P<milliseconds>
  131. // G10 - retract filament according to settings of M207
  132. // G11 - retract recover filament according to settings of M208
  133. // G28 - Home all Axis
  134. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  135. // G30 - Single Z Probe, probes bed at current XY location.
  136. // G31 - Dock sled (Z_PROBE_SLED only)
  137. // G32 - Undock sled (Z_PROBE_SLED only)
  138. // G80 - Automatic mesh bed leveling
  139. // G81 - Print bed profile
  140. // G90 - Use Absolute Coordinates
  141. // G91 - Use Relative Coordinates
  142. // G92 - Set current position to coordinates given
  143. // M Codes
  144. // M0 - Unconditional stop - Wait for user to press a button on the LCD
  145. // M1 - Same as M0
  146. // M17 - Enable/Power all stepper motors
  147. // M18 - Disable all stepper motors; same as M84
  148. // M20 - List SD card
  149. // M21 - Init SD card
  150. // M22 - Release SD card
  151. // M23 - Select SD file (M23 filename.g)
  152. // M24 - Start/resume SD print
  153. // M25 - Pause SD print
  154. // M26 - Set SD position in bytes (M26 S12345)
  155. // M27 - Report SD print status
  156. // M28 - Start SD write (M28 filename.g)
  157. // M29 - Stop SD write
  158. // M30 - Delete file from SD (M30 filename.g)
  159. // M31 - Output time since last M109 or SD card start to serial
  160. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  161. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  162. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  163. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  164. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  165. // M73 - Show percent done and print time remaining
  166. // M80 - Turn on Power Supply
  167. // M81 - Turn off Power Supply
  168. // M82 - Set E codes absolute (default)
  169. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  170. // M84 - Disable steppers until next move,
  171. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  172. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  173. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  174. // M92 - Set axis_steps_per_unit - same syntax as G92
  175. // M104 - Set extruder target temp
  176. // M105 - Read current temp
  177. // M106 - Fan on
  178. // M107 - Fan off
  179. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  180. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  181. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  182. // M112 - Emergency stop
  183. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  184. // M114 - Output current position to serial port
  185. // M115 - Capabilities string
  186. // M117 - display message
  187. // M119 - Output Endstop status to serial port
  188. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  189. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  190. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  191. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  192. // M140 - Set bed target temp
  193. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  194. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  195. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  196. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  197. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  198. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  199. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  200. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  201. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  202. // M206 - set additional homing offset
  203. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  204. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  205. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  206. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  207. // M220 S<factor in percent>- set speed factor override percentage
  208. // M221 S<factor in percent>- set extrude factor override percentage
  209. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  210. // M240 - Trigger a camera to take a photograph
  211. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  212. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  213. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  214. // M301 - Set PID parameters P I and D
  215. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  216. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  217. // M304 - Set bed PID parameters P I and D
  218. // M400 - Finish all moves
  219. // M401 - Lower z-probe if present
  220. // M402 - Raise z-probe if present
  221. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  222. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  223. // M406 - Turn off Filament Sensor extrusion control
  224. // M407 - Displays measured filament diameter
  225. // M500 - stores parameters in EEPROM
  226. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  227. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  228. // M503 - print the current settings (from memory not from EEPROM)
  229. // M509 - force language selection on next restart
  230. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  231. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  232. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  233. // M860 - Wait for PINDA thermistor to reach target temperature.
  234. // M861 - Set / Read PINDA temperature compensation offsets
  235. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  236. // M907 - Set digital trimpot motor current using axis codes.
  237. // M908 - Control digital trimpot directly.
  238. // M350 - Set microstepping mode.
  239. // M351 - Toggle MS1 MS2 pins directly.
  240. // M928 - Start SD logging (M928 filename.g) - ended by M29
  241. // M999 - Restart after being stopped by error
  242. //Stepper Movement Variables
  243. //===========================================================================
  244. //=============================imported variables============================
  245. //===========================================================================
  246. //===========================================================================
  247. //=============================public variables=============================
  248. //===========================================================================
  249. #ifdef SDSUPPORT
  250. CardReader card;
  251. #endif
  252. unsigned long PingTime = millis();
  253. unsigned long NcTime;
  254. //used for PINDA temp calibration and pause print
  255. #define DEFAULT_RETRACTION 1
  256. #define DEFAULT_RETRACTION_MM 4 //MM
  257. float default_retraction = DEFAULT_RETRACTION;
  258. float homing_feedrate[] = HOMING_FEEDRATE;
  259. // Currently only the extruder axis may be switched to a relative mode.
  260. // Other axes are always absolute or relative based on the common relative_mode flag.
  261. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  262. int feedmultiply=100; //100->1 200->2
  263. int saved_feedmultiply;
  264. int extrudemultiply=100; //100->1 200->2
  265. int extruder_multiply[EXTRUDERS] = {100
  266. #if EXTRUDERS > 1
  267. , 100
  268. #if EXTRUDERS > 2
  269. , 100
  270. #endif
  271. #endif
  272. };
  273. int bowden_length[4] = {385, 385, 385, 385};
  274. bool is_usb_printing = false;
  275. bool homing_flag = false;
  276. bool temp_cal_active = false;
  277. unsigned long kicktime = millis()+100000;
  278. unsigned int usb_printing_counter;
  279. int8_t lcd_change_fil_state = 0;
  280. int feedmultiplyBckp = 100;
  281. float HotendTempBckp = 0;
  282. int fanSpeedBckp = 0;
  283. float pause_lastpos[4];
  284. unsigned long pause_time = 0;
  285. unsigned long start_pause_print = millis();
  286. unsigned long t_fan_rising_edge = millis();
  287. LongTimer safetyTimer;
  288. LongTimer crashDetTimer;
  289. //unsigned long load_filament_time;
  290. bool mesh_bed_leveling_flag = false;
  291. bool mesh_bed_run_from_menu = false;
  292. int8_t FarmMode = 0;
  293. bool prusa_sd_card_upload = false;
  294. unsigned int status_number = 0;
  295. unsigned long total_filament_used;
  296. unsigned int heating_status;
  297. unsigned int heating_status_counter;
  298. bool loading_flag = false;
  299. char snmm_filaments_used = 0;
  300. bool fan_state[2];
  301. int fan_edge_counter[2];
  302. int fan_speed[2];
  303. char dir_names[3][9];
  304. bool sortAlpha = false;
  305. bool volumetric_enabled = false;
  306. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  307. #if EXTRUDERS > 1
  308. , DEFAULT_NOMINAL_FILAMENT_DIA
  309. #if EXTRUDERS > 2
  310. , DEFAULT_NOMINAL_FILAMENT_DIA
  311. #endif
  312. #endif
  313. };
  314. float extruder_multiplier[EXTRUDERS] = {1.0
  315. #if EXTRUDERS > 1
  316. , 1.0
  317. #if EXTRUDERS > 2
  318. , 1.0
  319. #endif
  320. #endif
  321. };
  322. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  323. //shortcuts for more readable code
  324. #define _x current_position[X_AXIS]
  325. #define _y current_position[Y_AXIS]
  326. #define _z current_position[Z_AXIS]
  327. #define _e current_position[E_AXIS]
  328. float add_homing[3]={0,0,0};
  329. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  330. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  331. bool axis_known_position[3] = {false, false, false};
  332. float zprobe_zoffset;
  333. // Extruder offset
  334. #if EXTRUDERS > 1
  335. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  336. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  337. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  338. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  339. #endif
  340. };
  341. #endif
  342. uint8_t active_extruder = 0;
  343. int fanSpeed=0;
  344. #ifdef FWRETRACT
  345. bool autoretract_enabled=false;
  346. bool retracted[EXTRUDERS]={false
  347. #if EXTRUDERS > 1
  348. , false
  349. #if EXTRUDERS > 2
  350. , false
  351. #endif
  352. #endif
  353. };
  354. bool retracted_swap[EXTRUDERS]={false
  355. #if EXTRUDERS > 1
  356. , false
  357. #if EXTRUDERS > 2
  358. , false
  359. #endif
  360. #endif
  361. };
  362. float retract_length = RETRACT_LENGTH;
  363. float retract_length_swap = RETRACT_LENGTH_SWAP;
  364. float retract_feedrate = RETRACT_FEEDRATE;
  365. float retract_zlift = RETRACT_ZLIFT;
  366. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  367. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  368. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  369. #endif
  370. #ifdef PS_DEFAULT_OFF
  371. bool powersupply = false;
  372. #else
  373. bool powersupply = true;
  374. #endif
  375. bool cancel_heatup = false ;
  376. #ifdef HOST_KEEPALIVE_FEATURE
  377. int busy_state = NOT_BUSY;
  378. static long prev_busy_signal_ms = -1;
  379. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  380. #else
  381. #define host_keepalive();
  382. #define KEEPALIVE_STATE(n);
  383. #endif
  384. const char errormagic[] PROGMEM = "Error:";
  385. const char echomagic[] PROGMEM = "echo:";
  386. bool no_response = false;
  387. uint8_t important_status;
  388. uint8_t saved_filament_type;
  389. // save/restore printing
  390. bool saved_printing = false;
  391. // save/restore printing in case that mmu was not responding
  392. bool mmu_print_saved = false;
  393. // storing estimated time to end of print counted by slicer
  394. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  395. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  396. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  397. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  398. bool wizard_active = false; //autoload temporarily disabled during wizard
  399. //===========================================================================
  400. //=============================Private Variables=============================
  401. //===========================================================================
  402. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  403. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  404. // For tracing an arc
  405. static float offset[3] = {0.0, 0.0, 0.0};
  406. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  407. // Determines Absolute or Relative Coordinates.
  408. // Also there is bool axis_relative_modes[] per axis flag.
  409. static bool relative_mode = false;
  410. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  411. //static float tt = 0;
  412. //static float bt = 0;
  413. //Inactivity shutdown variables
  414. static unsigned long previous_millis_cmd = 0;
  415. unsigned long max_inactive_time = 0;
  416. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  417. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  418. unsigned long starttime=0;
  419. unsigned long stoptime=0;
  420. unsigned long _usb_timer = 0;
  421. bool extruder_under_pressure = true;
  422. bool Stopped=false;
  423. #if NUM_SERVOS > 0
  424. Servo servos[NUM_SERVOS];
  425. #endif
  426. bool CooldownNoWait = true;
  427. bool target_direction;
  428. //Insert variables if CHDK is defined
  429. #ifdef CHDK
  430. unsigned long chdkHigh = 0;
  431. boolean chdkActive = false;
  432. #endif
  433. // save/restore printing
  434. static uint32_t saved_sdpos = 0;
  435. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  436. static float saved_pos[4] = { 0, 0, 0, 0 };
  437. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  438. static float saved_feedrate2 = 0;
  439. static uint8_t saved_active_extruder = 0;
  440. static bool saved_extruder_under_pressure = false;
  441. static bool saved_extruder_relative_mode = false;
  442. //===========================================================================
  443. //=============================Routines======================================
  444. //===========================================================================
  445. static void get_arc_coordinates();
  446. static bool setTargetedHotend(int code, uint8_t &extruder);
  447. static void print_time_remaining_init();
  448. static void wait_for_heater(long codenum, uint8_t extruder);
  449. uint16_t gcode_in_progress = 0;
  450. uint16_t mcode_in_progress = 0;
  451. void serial_echopair_P(const char *s_P, float v)
  452. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  453. void serial_echopair_P(const char *s_P, double v)
  454. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  455. void serial_echopair_P(const char *s_P, unsigned long v)
  456. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  457. #ifdef SDSUPPORT
  458. #include "SdFatUtil.h"
  459. int freeMemory() { return SdFatUtil::FreeRam(); }
  460. #else
  461. extern "C" {
  462. extern unsigned int __bss_end;
  463. extern unsigned int __heap_start;
  464. extern void *__brkval;
  465. int freeMemory() {
  466. int free_memory;
  467. if ((int)__brkval == 0)
  468. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  469. else
  470. free_memory = ((int)&free_memory) - ((int)__brkval);
  471. return free_memory;
  472. }
  473. }
  474. #endif //!SDSUPPORT
  475. void setup_killpin()
  476. {
  477. #if defined(KILL_PIN) && KILL_PIN > -1
  478. SET_INPUT(KILL_PIN);
  479. WRITE(KILL_PIN,HIGH);
  480. #endif
  481. }
  482. // Set home pin
  483. void setup_homepin(void)
  484. {
  485. #if defined(HOME_PIN) && HOME_PIN > -1
  486. SET_INPUT(HOME_PIN);
  487. WRITE(HOME_PIN,HIGH);
  488. #endif
  489. }
  490. void setup_photpin()
  491. {
  492. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  493. SET_OUTPUT(PHOTOGRAPH_PIN);
  494. WRITE(PHOTOGRAPH_PIN, LOW);
  495. #endif
  496. }
  497. void setup_powerhold()
  498. {
  499. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  500. SET_OUTPUT(SUICIDE_PIN);
  501. WRITE(SUICIDE_PIN, HIGH);
  502. #endif
  503. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  504. SET_OUTPUT(PS_ON_PIN);
  505. #if defined(PS_DEFAULT_OFF)
  506. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  507. #else
  508. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  509. #endif
  510. #endif
  511. }
  512. void suicide()
  513. {
  514. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  515. SET_OUTPUT(SUICIDE_PIN);
  516. WRITE(SUICIDE_PIN, LOW);
  517. #endif
  518. }
  519. void servo_init()
  520. {
  521. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  522. servos[0].attach(SERVO0_PIN);
  523. #endif
  524. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  525. servos[1].attach(SERVO1_PIN);
  526. #endif
  527. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  528. servos[2].attach(SERVO2_PIN);
  529. #endif
  530. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  531. servos[3].attach(SERVO3_PIN);
  532. #endif
  533. #if (NUM_SERVOS >= 5)
  534. #error "TODO: enter initalisation code for more servos"
  535. #endif
  536. }
  537. void stop_and_save_print_to_ram(float z_move, float e_move);
  538. void restore_print_from_ram_and_continue(float e_move);
  539. bool fans_check_enabled = true;
  540. #ifdef TMC2130
  541. extern int8_t CrashDetectMenu;
  542. void crashdet_enable()
  543. {
  544. tmc2130_sg_stop_on_crash = true;
  545. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  546. CrashDetectMenu = 1;
  547. }
  548. void crashdet_disable()
  549. {
  550. tmc2130_sg_stop_on_crash = false;
  551. tmc2130_sg_crash = 0;
  552. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  553. CrashDetectMenu = 0;
  554. }
  555. void crashdet_stop_and_save_print()
  556. {
  557. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  558. }
  559. void crashdet_restore_print_and_continue()
  560. {
  561. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  562. // babystep_apply();
  563. }
  564. void crashdet_stop_and_save_print2()
  565. {
  566. cli();
  567. planner_abort_hard(); //abort printing
  568. cmdqueue_reset(); //empty cmdqueue
  569. card.sdprinting = false;
  570. card.closefile();
  571. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  572. st_reset_timer();
  573. sei();
  574. }
  575. void crashdet_detected(uint8_t mask)
  576. {
  577. st_synchronize();
  578. static uint8_t crashDet_counter = 0;
  579. bool automatic_recovery_after_crash = true;
  580. if (crashDet_counter++ == 0) {
  581. crashDetTimer.start();
  582. }
  583. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  584. crashDetTimer.stop();
  585. crashDet_counter = 0;
  586. }
  587. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  588. automatic_recovery_after_crash = false;
  589. crashDetTimer.stop();
  590. crashDet_counter = 0;
  591. }
  592. else {
  593. crashDetTimer.start();
  594. }
  595. lcd_update_enable(true);
  596. lcd_clear();
  597. lcd_update(2);
  598. if (mask & X_AXIS_MASK)
  599. {
  600. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  601. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  602. }
  603. if (mask & Y_AXIS_MASK)
  604. {
  605. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  606. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  607. }
  608. lcd_update_enable(true);
  609. lcd_update(2);
  610. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  611. gcode_G28(true, true, false); //home X and Y
  612. st_synchronize();
  613. if (automatic_recovery_after_crash) {
  614. enquecommand_P(PSTR("CRASH_RECOVER"));
  615. }else{
  616. HotendTempBckp = degTargetHotend(active_extruder);
  617. setTargetHotend(0, active_extruder);
  618. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  619. lcd_update_enable(true);
  620. if (yesno)
  621. {
  622. char cmd1[10];
  623. strcpy(cmd1, "M109 S");
  624. strcat(cmd1, ftostr3(HotendTempBckp));
  625. enquecommand(cmd1);
  626. enquecommand_P(PSTR("CRASH_RECOVER"));
  627. }
  628. else
  629. {
  630. enquecommand_P(PSTR("CRASH_CANCEL"));
  631. }
  632. }
  633. }
  634. void crashdet_recover()
  635. {
  636. crashdet_restore_print_and_continue();
  637. tmc2130_sg_stop_on_crash = true;
  638. }
  639. void crashdet_cancel()
  640. {
  641. tmc2130_sg_stop_on_crash = true;
  642. if (saved_printing_type == PRINTING_TYPE_SD) {
  643. lcd_print_stop();
  644. }else if(saved_printing_type == PRINTING_TYPE_USB){
  645. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  646. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  647. }
  648. }
  649. #endif //TMC2130
  650. void failstats_reset_print()
  651. {
  652. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  653. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  654. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  655. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  656. }
  657. #ifdef MESH_BED_LEVELING
  658. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  659. #endif
  660. // Factory reset function
  661. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  662. // Level input parameter sets depth of reset
  663. // Quiet parameter masks all waitings for user interact.
  664. int er_progress = 0;
  665. void factory_reset(char level, bool quiet)
  666. {
  667. lcd_clear();
  668. switch (level) {
  669. // Level 0: Language reset
  670. case 0:
  671. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  672. WRITE(BEEPER, HIGH);
  673. _delay_ms(100);
  674. WRITE(BEEPER, LOW);
  675. lang_reset();
  676. break;
  677. //Level 1: Reset statistics
  678. case 1:
  679. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  680. WRITE(BEEPER, HIGH);
  681. _delay_ms(100);
  682. WRITE(BEEPER, LOW);
  683. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  684. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  685. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  686. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  687. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  688. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  689. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  690. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  691. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  692. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  693. lcd_menu_statistics();
  694. break;
  695. // Level 2: Prepare for shipping
  696. case 2:
  697. //lcd_puts_P(PSTR("Factory RESET"));
  698. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  699. // Force language selection at the next boot up.
  700. lang_reset();
  701. // Force the "Follow calibration flow" message at the next boot up.
  702. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  703. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  704. farm_no = 0;
  705. farm_mode = false;
  706. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  707. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  708. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  709. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  710. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  711. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  712. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  713. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  714. #ifdef FILAMENT_SENSOR
  715. fsensor_enable();
  716. fsensor_autoload_set(true);
  717. #endif //FILAMENT_SENSOR
  718. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  719. WRITE(BEEPER, HIGH);
  720. _delay_ms(100);
  721. WRITE(BEEPER, LOW);
  722. //_delay_ms(2000);
  723. break;
  724. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  725. case 3:
  726. lcd_puts_P(PSTR("Factory RESET"));
  727. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  728. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  729. WRITE(BEEPER, HIGH);
  730. _delay_ms(100);
  731. WRITE(BEEPER, LOW);
  732. er_progress = 0;
  733. lcd_puts_at_P(3, 3, PSTR(" "));
  734. lcd_set_cursor(3, 3);
  735. lcd_print(er_progress);
  736. // Erase EEPROM
  737. for (int i = 0; i < 4096; i++) {
  738. eeprom_write_byte((uint8_t*)i, 0xFF);
  739. if (i % 41 == 0) {
  740. er_progress++;
  741. lcd_puts_at_P(3, 3, PSTR(" "));
  742. lcd_set_cursor(3, 3);
  743. lcd_print(er_progress);
  744. lcd_puts_P(PSTR("%"));
  745. }
  746. }
  747. break;
  748. case 4:
  749. bowden_menu();
  750. break;
  751. default:
  752. break;
  753. }
  754. }
  755. FILE _uartout = {0};
  756. int uart_putchar(char c, FILE *stream)
  757. {
  758. MYSERIAL.write(c);
  759. return 0;
  760. }
  761. void lcd_splash()
  762. {
  763. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  764. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  765. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  766. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  767. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  768. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  769. }
  770. void factory_reset()
  771. {
  772. KEEPALIVE_STATE(PAUSED_FOR_USER);
  773. if (!READ(BTN_ENC))
  774. {
  775. _delay_ms(1000);
  776. if (!READ(BTN_ENC))
  777. {
  778. lcd_clear();
  779. lcd_puts_P(PSTR("Factory RESET"));
  780. SET_OUTPUT(BEEPER);
  781. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  782. WRITE(BEEPER, HIGH);
  783. while (!READ(BTN_ENC));
  784. WRITE(BEEPER, LOW);
  785. _delay_ms(2000);
  786. char level = reset_menu();
  787. factory_reset(level, false);
  788. switch (level) {
  789. case 0: _delay_ms(0); break;
  790. case 1: _delay_ms(0); break;
  791. case 2: _delay_ms(0); break;
  792. case 3: _delay_ms(0); break;
  793. }
  794. }
  795. }
  796. KEEPALIVE_STATE(IN_HANDLER);
  797. }
  798. void show_fw_version_warnings() {
  799. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  800. switch (FW_DEV_VERSION) {
  801. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  802. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  803. case(FW_VERSION_DEVEL):
  804. case(FW_VERSION_DEBUG):
  805. lcd_update_enable(false);
  806. lcd_clear();
  807. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  808. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  809. #else
  810. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  811. #endif
  812. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  813. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  814. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  815. lcd_wait_for_click();
  816. break;
  817. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  818. }
  819. lcd_update_enable(true);
  820. }
  821. uint8_t check_printer_version()
  822. {
  823. uint8_t version_changed = 0;
  824. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  825. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  826. if (printer_type != PRINTER_TYPE) {
  827. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  828. else version_changed |= 0b10;
  829. }
  830. if (motherboard != MOTHERBOARD) {
  831. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  832. else version_changed |= 0b01;
  833. }
  834. return version_changed;
  835. }
  836. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  837. {
  838. for (unsigned int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  839. }
  840. #ifdef BOOTAPP
  841. #include "bootapp.h" //bootloader support
  842. #endif //BOOTAPP
  843. #if (LANG_MODE != 0) //secondary language support
  844. #ifdef W25X20CL
  845. // language update from external flash
  846. #define LANGBOOT_BLOCKSIZE 0x1000u
  847. #define LANGBOOT_RAMBUFFER 0x0800
  848. void update_sec_lang_from_external_flash()
  849. {
  850. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  851. {
  852. uint8_t lang = boot_reserved >> 4;
  853. uint8_t state = boot_reserved & 0xf;
  854. lang_table_header_t header;
  855. uint32_t src_addr;
  856. if (lang_get_header(lang, &header, &src_addr))
  857. {
  858. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  859. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  860. delay(100);
  861. boot_reserved = (state + 1) | (lang << 4);
  862. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  863. {
  864. cli();
  865. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  866. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  867. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  868. if (state == 0)
  869. {
  870. //TODO - check header integrity
  871. }
  872. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  873. }
  874. else
  875. {
  876. //TODO - check sec lang data integrity
  877. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  878. }
  879. }
  880. }
  881. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  882. }
  883. #ifdef DEBUG_W25X20CL
  884. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  885. {
  886. lang_table_header_t header;
  887. uint8_t count = 0;
  888. uint32_t addr = 0x00000;
  889. while (1)
  890. {
  891. printf_P(_n("LANGTABLE%d:"), count);
  892. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  893. if (header.magic != LANG_MAGIC)
  894. {
  895. printf_P(_n("NG!\n"));
  896. break;
  897. }
  898. printf_P(_n("OK\n"));
  899. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  900. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  901. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  902. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  903. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  904. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  905. addr += header.size;
  906. codes[count] = header.code;
  907. count ++;
  908. }
  909. return count;
  910. }
  911. void list_sec_lang_from_external_flash()
  912. {
  913. uint16_t codes[8];
  914. uint8_t count = lang_xflash_enum_codes(codes);
  915. printf_P(_n("XFlash lang count = %hhd\n"), count);
  916. }
  917. #endif //DEBUG_W25X20CL
  918. #endif //W25X20CL
  919. #endif //(LANG_MODE != 0)
  920. // "Setup" function is called by the Arduino framework on startup.
  921. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  922. // are initialized by the main() routine provided by the Arduino framework.
  923. void setup()
  924. {
  925. mmu_init();
  926. ultralcd_init();
  927. spi_init();
  928. lcd_splash();
  929. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  930. #ifdef W25X20CL
  931. if (!w25x20cl_init())
  932. kill(_i("External SPI flash W25X20CL not responding."));
  933. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  934. optiboot_w25x20cl_enter();
  935. #endif
  936. #if (LANG_MODE != 0) //secondary language support
  937. #ifdef W25X20CL
  938. if (w25x20cl_init())
  939. update_sec_lang_from_external_flash();
  940. #endif //W25X20CL
  941. #endif //(LANG_MODE != 0)
  942. setup_killpin();
  943. setup_powerhold();
  944. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  945. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  946. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  947. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  948. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  949. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  950. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  951. if (farm_mode)
  952. {
  953. no_response = true; //we need confirmation by recieving PRUSA thx
  954. important_status = 8;
  955. prusa_statistics(8);
  956. selectedSerialPort = 1;
  957. #ifdef TMC2130
  958. //increased extruder current (PFW363)
  959. tmc2130_current_h[E_AXIS] = 36;
  960. tmc2130_current_r[E_AXIS] = 36;
  961. #endif //TMC2130
  962. #ifdef FILAMENT_SENSOR
  963. //disabled filament autoload (PFW360)
  964. fsensor_autoload_set(false);
  965. #endif //FILAMENT_SENSOR
  966. }
  967. MYSERIAL.begin(BAUDRATE);
  968. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  969. stdout = uartout;
  970. SERIAL_ECHO_START;
  971. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  972. #ifdef DEBUG_SEC_LANG
  973. lang_table_header_t header;
  974. uint32_t src_addr = 0x00000;
  975. if (lang_get_header(1, &header, &src_addr))
  976. {
  977. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  978. #define LT_PRINT_TEST 2
  979. // flash usage
  980. // total p.test
  981. //0 252718 t+c text code
  982. //1 253142 424 170 254
  983. //2 253040 322 164 158
  984. //3 253248 530 135 395
  985. #if (LT_PRINT_TEST==1) //not optimized printf
  986. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  987. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  988. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  989. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  990. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  991. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  992. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  993. #elif (LT_PRINT_TEST==2) //optimized printf
  994. printf_P(
  995. _n(
  996. " _src_addr = 0x%08lx\n"
  997. " _lt_magic = 0x%08lx %S\n"
  998. " _lt_size = 0x%04x (%d)\n"
  999. " _lt_count = 0x%04x (%d)\n"
  1000. " _lt_chsum = 0x%04x\n"
  1001. " _lt_code = 0x%04x (%c%c)\n"
  1002. " _lt_resv1 = 0x%08lx\n"
  1003. ),
  1004. src_addr,
  1005. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1006. header.size, header.size,
  1007. header.count, header.count,
  1008. header.checksum,
  1009. header.code, header.code >> 8, header.code & 0xff,
  1010. header.signature
  1011. );
  1012. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1013. MYSERIAL.print(" _src_addr = 0x");
  1014. MYSERIAL.println(src_addr, 16);
  1015. MYSERIAL.print(" _lt_magic = 0x");
  1016. MYSERIAL.print(header.magic, 16);
  1017. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1018. MYSERIAL.print(" _lt_size = 0x");
  1019. MYSERIAL.print(header.size, 16);
  1020. MYSERIAL.print(" (");
  1021. MYSERIAL.print(header.size, 10);
  1022. MYSERIAL.println(")");
  1023. MYSERIAL.print(" _lt_count = 0x");
  1024. MYSERIAL.print(header.count, 16);
  1025. MYSERIAL.print(" (");
  1026. MYSERIAL.print(header.count, 10);
  1027. MYSERIAL.println(")");
  1028. MYSERIAL.print(" _lt_chsum = 0x");
  1029. MYSERIAL.println(header.checksum, 16);
  1030. MYSERIAL.print(" _lt_code = 0x");
  1031. MYSERIAL.print(header.code, 16);
  1032. MYSERIAL.print(" (");
  1033. MYSERIAL.print((char)(header.code >> 8), 0);
  1034. MYSERIAL.print((char)(header.code & 0xff), 0);
  1035. MYSERIAL.println(")");
  1036. MYSERIAL.print(" _lt_resv1 = 0x");
  1037. MYSERIAL.println(header.signature, 16);
  1038. #endif //(LT_PRINT_TEST==)
  1039. #undef LT_PRINT_TEST
  1040. #if 0
  1041. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1042. for (uint16_t i = 0; i < 1024; i++)
  1043. {
  1044. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1045. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1046. if ((i % 16) == 15) putchar('\n');
  1047. }
  1048. #endif
  1049. uint16_t sum = 0;
  1050. for (uint16_t i = 0; i < header.size; i++)
  1051. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1052. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1053. sum -= header.checksum; //subtract checksum
  1054. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1055. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1056. if (sum == header.checksum)
  1057. printf_P(_n("Checksum OK\n"), sum);
  1058. else
  1059. printf_P(_n("Checksum NG\n"), sum);
  1060. }
  1061. else
  1062. printf_P(_n("lang_get_header failed!\n"));
  1063. #if 0
  1064. for (uint16_t i = 0; i < 1024*10; i++)
  1065. {
  1066. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1067. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1068. if ((i % 16) == 15) putchar('\n');
  1069. }
  1070. #endif
  1071. #if 0
  1072. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1073. for (int i = 0; i < 4096; ++i) {
  1074. int b = eeprom_read_byte((unsigned char*)i);
  1075. if (b != 255) {
  1076. SERIAL_ECHO(i);
  1077. SERIAL_ECHO(":");
  1078. SERIAL_ECHO(b);
  1079. SERIAL_ECHOLN("");
  1080. }
  1081. }
  1082. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1083. #endif
  1084. #endif //DEBUG_SEC_LANG
  1085. // Check startup - does nothing if bootloader sets MCUSR to 0
  1086. byte mcu = MCUSR;
  1087. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1088. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1089. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1090. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1091. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1092. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1093. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1094. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1095. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1096. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1097. MCUSR = 0;
  1098. //SERIAL_ECHORPGM(MSG_MARLIN);
  1099. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1100. #ifdef STRING_VERSION_CONFIG_H
  1101. #ifdef STRING_CONFIG_H_AUTHOR
  1102. SERIAL_ECHO_START;
  1103. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1104. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1105. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1106. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1107. SERIAL_ECHOPGM("Compiled: ");
  1108. SERIAL_ECHOLNPGM(__DATE__);
  1109. #endif
  1110. #endif
  1111. SERIAL_ECHO_START;
  1112. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1113. SERIAL_ECHO(freeMemory());
  1114. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1115. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1116. //lcd_update_enable(false); // why do we need this?? - andre
  1117. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1118. bool previous_settings_retrieved = false;
  1119. uint8_t hw_changed = check_printer_version();
  1120. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1121. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1122. }
  1123. else { //printer version was changed so use default settings
  1124. Config_ResetDefault();
  1125. }
  1126. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1127. tp_init(); // Initialize temperature loop
  1128. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1129. plan_init(); // Initialize planner;
  1130. factory_reset();
  1131. lcd_encoder_diff=0;
  1132. #ifdef TMC2130
  1133. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1134. if (silentMode == 0xff) silentMode = 0;
  1135. tmc2130_mode = TMC2130_MODE_NORMAL;
  1136. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1137. if (crashdet && !farm_mode)
  1138. {
  1139. crashdet_enable();
  1140. puts_P(_N("CrashDetect ENABLED!"));
  1141. }
  1142. else
  1143. {
  1144. crashdet_disable();
  1145. puts_P(_N("CrashDetect DISABLED"));
  1146. }
  1147. #ifdef TMC2130_LINEARITY_CORRECTION
  1148. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1149. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1150. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1151. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1152. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1153. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1154. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1155. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1156. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1157. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1158. #endif //TMC2130_LINEARITY_CORRECTION
  1159. #ifdef TMC2130_VARIABLE_RESOLUTION
  1160. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1161. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1162. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1163. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1164. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1165. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1166. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1167. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1168. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1169. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1170. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1171. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1172. #else //TMC2130_VARIABLE_RESOLUTION
  1173. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1174. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1175. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1176. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1177. #endif //TMC2130_VARIABLE_RESOLUTION
  1178. #endif //TMC2130
  1179. st_init(); // Initialize stepper, this enables interrupts!
  1180. #ifdef TMC2130
  1181. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1182. update_mode_profile();
  1183. tmc2130_init();
  1184. #endif //TMC2130
  1185. setup_photpin();
  1186. servo_init();
  1187. // Reset the machine correction matrix.
  1188. // It does not make sense to load the correction matrix until the machine is homed.
  1189. world2machine_reset();
  1190. #ifdef FILAMENT_SENSOR
  1191. fsensor_init();
  1192. #endif //FILAMENT_SENSOR
  1193. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1194. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1195. #endif
  1196. setup_homepin();
  1197. #ifdef TMC2130
  1198. if (1) {
  1199. // try to run to zero phase before powering the Z motor.
  1200. // Move in negative direction
  1201. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1202. // Round the current micro-micro steps to micro steps.
  1203. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1204. // Until the phase counter is reset to zero.
  1205. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1206. delay(2);
  1207. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1208. delay(2);
  1209. }
  1210. }
  1211. #endif //TMC2130
  1212. #if defined(Z_AXIS_ALWAYS_ON)
  1213. enable_z();
  1214. #endif
  1215. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1216. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1217. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1218. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1219. if (farm_mode)
  1220. {
  1221. prusa_statistics(8);
  1222. }
  1223. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1224. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1225. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1226. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1227. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1228. // where all the EEPROM entries are set to 0x0ff.
  1229. // Once a firmware boots up, it forces at least a language selection, which changes
  1230. // EEPROM_LANG to number lower than 0x0ff.
  1231. // 1) Set a high power mode.
  1232. #ifdef TMC2130
  1233. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1234. tmc2130_mode = TMC2130_MODE_NORMAL;
  1235. #endif //TMC2130
  1236. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1237. }
  1238. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1239. // but this times out if a blocking dialog is shown in setup().
  1240. card.initsd();
  1241. #ifdef DEBUG_SD_SPEED_TEST
  1242. if (card.cardOK)
  1243. {
  1244. uint8_t* buff = (uint8_t*)block_buffer;
  1245. uint32_t block = 0;
  1246. uint32_t sumr = 0;
  1247. uint32_t sumw = 0;
  1248. for (int i = 0; i < 1024; i++)
  1249. {
  1250. uint32_t u = micros();
  1251. bool res = card.card.readBlock(i, buff);
  1252. u = micros() - u;
  1253. if (res)
  1254. {
  1255. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1256. sumr += u;
  1257. u = micros();
  1258. res = card.card.writeBlock(i, buff);
  1259. u = micros() - u;
  1260. if (res)
  1261. {
  1262. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1263. sumw += u;
  1264. }
  1265. else
  1266. {
  1267. printf_P(PSTR("writeBlock %4d error\n"), i);
  1268. break;
  1269. }
  1270. }
  1271. else
  1272. {
  1273. printf_P(PSTR("readBlock %4d error\n"), i);
  1274. break;
  1275. }
  1276. }
  1277. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1278. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1279. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1280. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1281. }
  1282. else
  1283. printf_P(PSTR("Card NG!\n"));
  1284. #endif //DEBUG_SD_SPEED_TEST
  1285. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1286. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1287. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1288. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1289. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1290. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1291. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1292. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1293. #ifdef SNMM
  1294. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1295. int _z = BOWDEN_LENGTH;
  1296. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1297. }
  1298. #endif
  1299. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1300. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1301. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1302. #if (LANG_MODE != 0) //secondary language support
  1303. #ifdef DEBUG_W25X20CL
  1304. W25X20CL_SPI_ENTER();
  1305. uint8_t uid[8]; // 64bit unique id
  1306. w25x20cl_rd_uid(uid);
  1307. puts_P(_n("W25X20CL UID="));
  1308. for (uint8_t i = 0; i < 8; i ++)
  1309. printf_P(PSTR("%02hhx"), uid[i]);
  1310. putchar('\n');
  1311. list_sec_lang_from_external_flash();
  1312. #endif //DEBUG_W25X20CL
  1313. // lang_reset();
  1314. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1315. lcd_language();
  1316. #ifdef DEBUG_SEC_LANG
  1317. uint16_t sec_lang_code = lang_get_code(1);
  1318. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1319. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1320. // lang_print_sec_lang(uartout);
  1321. #endif //DEBUG_SEC_LANG
  1322. #endif //(LANG_MODE != 0)
  1323. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1324. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1325. temp_cal_active = false;
  1326. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1327. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1328. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1329. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1330. int16_t z_shift = 0;
  1331. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1332. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1333. temp_cal_active = false;
  1334. }
  1335. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1336. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1337. }
  1338. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1339. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1340. }
  1341. check_babystep(); //checking if Z babystep is in allowed range
  1342. #ifdef UVLO_SUPPORT
  1343. setup_uvlo_interrupt();
  1344. #endif //UVLO_SUPPORT
  1345. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1346. setup_fan_interrupt();
  1347. #endif //DEBUG_DISABLE_FANCHECK
  1348. #ifdef FILAMENT_SENSOR
  1349. fsensor_setup_interrupt();
  1350. #endif //FILAMENT_SENSOR
  1351. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1352. #ifndef DEBUG_DISABLE_STARTMSGS
  1353. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1354. show_fw_version_warnings();
  1355. switch (hw_changed) {
  1356. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1357. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1358. case(0b01):
  1359. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1360. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1361. break;
  1362. case(0b10):
  1363. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1364. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1365. break;
  1366. case(0b11):
  1367. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1368. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1369. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1370. break;
  1371. default: break; //no change, show no message
  1372. }
  1373. if (!previous_settings_retrieved) {
  1374. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1375. erase_eeprom_section(EEPROM_OFFSET, EEPROM_M500_SIZE); //erase M500 part of eeprom
  1376. }
  1377. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1378. lcd_wizard(0);
  1379. }
  1380. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1381. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1382. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1383. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1384. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1385. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1386. // Show the message.
  1387. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1388. }
  1389. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1390. // Show the message.
  1391. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1392. lcd_update_enable(true);
  1393. }
  1394. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1395. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1396. lcd_update_enable(true);
  1397. }
  1398. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1399. // Show the message.
  1400. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1401. }
  1402. }
  1403. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1404. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1405. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1406. update_current_firmware_version_to_eeprom();
  1407. lcd_selftest();
  1408. }
  1409. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1410. KEEPALIVE_STATE(IN_PROCESS);
  1411. #endif //DEBUG_DISABLE_STARTMSGS
  1412. lcd_update_enable(true);
  1413. lcd_clear();
  1414. lcd_update(2);
  1415. // Store the currently running firmware into an eeprom,
  1416. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1417. update_current_firmware_version_to_eeprom();
  1418. #ifdef TMC2130
  1419. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1420. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1421. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1422. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1423. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1424. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1425. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1426. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1427. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1428. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1429. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1430. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1431. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1432. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1433. #endif //TMC2130
  1434. #ifdef UVLO_SUPPORT
  1435. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1436. /*
  1437. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1438. else {
  1439. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1440. lcd_update_enable(true);
  1441. lcd_update(2);
  1442. lcd_setstatuspgm(_T(WELCOME_MSG));
  1443. }
  1444. */
  1445. manage_heater(); // Update temperatures
  1446. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1447. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1448. #endif
  1449. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1450. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1451. puts_P(_N("Automatic recovery!"));
  1452. #endif
  1453. recover_print(1);
  1454. }
  1455. else{
  1456. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1457. puts_P(_N("Normal recovery!"));
  1458. #endif
  1459. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1460. else {
  1461. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1462. lcd_update_enable(true);
  1463. lcd_update(2);
  1464. lcd_setstatuspgm(_T(WELCOME_MSG));
  1465. }
  1466. }
  1467. }
  1468. #endif //UVLO_SUPPORT
  1469. KEEPALIVE_STATE(NOT_BUSY);
  1470. #ifdef WATCHDOG
  1471. wdt_enable(WDTO_4S);
  1472. #endif //WATCHDOG
  1473. }
  1474. void trace();
  1475. #define CHUNK_SIZE 64 // bytes
  1476. #define SAFETY_MARGIN 1
  1477. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1478. int chunkHead = 0;
  1479. void serial_read_stream() {
  1480. setAllTargetHotends(0);
  1481. setTargetBed(0);
  1482. lcd_clear();
  1483. lcd_puts_P(PSTR(" Upload in progress"));
  1484. // first wait for how many bytes we will receive
  1485. uint32_t bytesToReceive;
  1486. // receive the four bytes
  1487. char bytesToReceiveBuffer[4];
  1488. for (int i=0; i<4; i++) {
  1489. int data;
  1490. while ((data = MYSERIAL.read()) == -1) {};
  1491. bytesToReceiveBuffer[i] = data;
  1492. }
  1493. // make it a uint32
  1494. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1495. // we're ready, notify the sender
  1496. MYSERIAL.write('+');
  1497. // lock in the routine
  1498. uint32_t receivedBytes = 0;
  1499. while (prusa_sd_card_upload) {
  1500. int i;
  1501. for (i=0; i<CHUNK_SIZE; i++) {
  1502. int data;
  1503. // check if we're not done
  1504. if (receivedBytes == bytesToReceive) {
  1505. break;
  1506. }
  1507. // read the next byte
  1508. while ((data = MYSERIAL.read()) == -1) {};
  1509. receivedBytes++;
  1510. // save it to the chunk
  1511. chunk[i] = data;
  1512. }
  1513. // write the chunk to SD
  1514. card.write_command_no_newline(&chunk[0]);
  1515. // notify the sender we're ready for more data
  1516. MYSERIAL.write('+');
  1517. // for safety
  1518. manage_heater();
  1519. // check if we're done
  1520. if(receivedBytes == bytesToReceive) {
  1521. trace(); // beep
  1522. card.closefile();
  1523. prusa_sd_card_upload = false;
  1524. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1525. }
  1526. }
  1527. }
  1528. #ifdef HOST_KEEPALIVE_FEATURE
  1529. /**
  1530. * Output a "busy" message at regular intervals
  1531. * while the machine is not accepting commands.
  1532. */
  1533. void host_keepalive() {
  1534. if (farm_mode) return;
  1535. long ms = millis();
  1536. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1537. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1538. switch (busy_state) {
  1539. case IN_HANDLER:
  1540. case IN_PROCESS:
  1541. SERIAL_ECHO_START;
  1542. SERIAL_ECHOLNPGM("busy: processing");
  1543. break;
  1544. case PAUSED_FOR_USER:
  1545. SERIAL_ECHO_START;
  1546. SERIAL_ECHOLNPGM("busy: paused for user");
  1547. break;
  1548. case PAUSED_FOR_INPUT:
  1549. SERIAL_ECHO_START;
  1550. SERIAL_ECHOLNPGM("busy: paused for input");
  1551. break;
  1552. default:
  1553. break;
  1554. }
  1555. }
  1556. prev_busy_signal_ms = ms;
  1557. }
  1558. #endif
  1559. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1560. // Before loop(), the setup() function is called by the main() routine.
  1561. void loop()
  1562. {
  1563. KEEPALIVE_STATE(NOT_BUSY);
  1564. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1565. {
  1566. is_usb_printing = true;
  1567. usb_printing_counter--;
  1568. _usb_timer = millis();
  1569. }
  1570. if (usb_printing_counter == 0)
  1571. {
  1572. is_usb_printing = false;
  1573. }
  1574. if (prusa_sd_card_upload)
  1575. {
  1576. //we read byte-by byte
  1577. serial_read_stream();
  1578. } else
  1579. {
  1580. get_command();
  1581. #ifdef SDSUPPORT
  1582. card.checkautostart(false);
  1583. #endif
  1584. if(buflen)
  1585. {
  1586. cmdbuffer_front_already_processed = false;
  1587. #ifdef SDSUPPORT
  1588. if(card.saving)
  1589. {
  1590. // Saving a G-code file onto an SD-card is in progress.
  1591. // Saving starts with M28, saving until M29 is seen.
  1592. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1593. card.write_command(CMDBUFFER_CURRENT_STRING);
  1594. if(card.logging)
  1595. process_commands();
  1596. else
  1597. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1598. } else {
  1599. card.closefile();
  1600. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1601. }
  1602. } else {
  1603. process_commands();
  1604. }
  1605. #else
  1606. process_commands();
  1607. #endif //SDSUPPORT
  1608. if (! cmdbuffer_front_already_processed && buflen)
  1609. {
  1610. // ptr points to the start of the block currently being processed.
  1611. // The first character in the block is the block type.
  1612. char *ptr = cmdbuffer + bufindr;
  1613. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1614. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1615. union {
  1616. struct {
  1617. char lo;
  1618. char hi;
  1619. } lohi;
  1620. uint16_t value;
  1621. } sdlen;
  1622. sdlen.value = 0;
  1623. {
  1624. // This block locks the interrupts globally for 3.25 us,
  1625. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1626. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1627. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1628. cli();
  1629. // Reset the command to something, which will be ignored by the power panic routine,
  1630. // so this buffer length will not be counted twice.
  1631. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1632. // Extract the current buffer length.
  1633. sdlen.lohi.lo = *ptr ++;
  1634. sdlen.lohi.hi = *ptr;
  1635. // and pass it to the planner queue.
  1636. planner_add_sd_length(sdlen.value);
  1637. sei();
  1638. }
  1639. }
  1640. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1641. cli();
  1642. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1643. // and one for each command to previous block in the planner queue.
  1644. planner_add_sd_length(1);
  1645. sei();
  1646. }
  1647. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1648. // this block's SD card length will not be counted twice as its command type has been replaced
  1649. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1650. cmdqueue_pop_front();
  1651. }
  1652. host_keepalive();
  1653. }
  1654. }
  1655. //check heater every n milliseconds
  1656. manage_heater();
  1657. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1658. checkHitEndstops();
  1659. lcd_update(0);
  1660. #ifdef TMC2130
  1661. tmc2130_check_overtemp();
  1662. if (tmc2130_sg_crash)
  1663. {
  1664. uint8_t crash = tmc2130_sg_crash;
  1665. tmc2130_sg_crash = 0;
  1666. // crashdet_stop_and_save_print();
  1667. switch (crash)
  1668. {
  1669. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1670. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1671. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1672. }
  1673. }
  1674. #endif //TMC2130
  1675. mmu_loop();
  1676. }
  1677. #define DEFINE_PGM_READ_ANY(type, reader) \
  1678. static inline type pgm_read_any(const type *p) \
  1679. { return pgm_read_##reader##_near(p); }
  1680. DEFINE_PGM_READ_ANY(float, float);
  1681. DEFINE_PGM_READ_ANY(signed char, byte);
  1682. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1683. static const PROGMEM type array##_P[3] = \
  1684. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1685. static inline type array(int axis) \
  1686. { return pgm_read_any(&array##_P[axis]); } \
  1687. type array##_ext(int axis) \
  1688. { return pgm_read_any(&array##_P[axis]); }
  1689. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1690. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1691. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1692. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1693. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1694. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1695. static void axis_is_at_home(int axis) {
  1696. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1697. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1698. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1699. }
  1700. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1701. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1702. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1703. saved_feedrate = feedrate;
  1704. saved_feedmultiply = feedmultiply;
  1705. feedmultiply = 100;
  1706. previous_millis_cmd = millis();
  1707. enable_endstops(enable_endstops_now);
  1708. }
  1709. static void clean_up_after_endstop_move() {
  1710. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1711. enable_endstops(false);
  1712. #endif
  1713. feedrate = saved_feedrate;
  1714. feedmultiply = saved_feedmultiply;
  1715. previous_millis_cmd = millis();
  1716. }
  1717. #ifdef ENABLE_AUTO_BED_LEVELING
  1718. #ifdef AUTO_BED_LEVELING_GRID
  1719. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1720. {
  1721. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1722. planeNormal.debug("planeNormal");
  1723. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1724. //bedLevel.debug("bedLevel");
  1725. //plan_bed_level_matrix.debug("bed level before");
  1726. //vector_3 uncorrected_position = plan_get_position_mm();
  1727. //uncorrected_position.debug("position before");
  1728. vector_3 corrected_position = plan_get_position();
  1729. // corrected_position.debug("position after");
  1730. current_position[X_AXIS] = corrected_position.x;
  1731. current_position[Y_AXIS] = corrected_position.y;
  1732. current_position[Z_AXIS] = corrected_position.z;
  1733. // put the bed at 0 so we don't go below it.
  1734. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1735. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1736. }
  1737. #else // not AUTO_BED_LEVELING_GRID
  1738. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1739. plan_bed_level_matrix.set_to_identity();
  1740. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1741. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1742. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1743. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1744. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1745. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1746. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1747. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1748. vector_3 corrected_position = plan_get_position();
  1749. current_position[X_AXIS] = corrected_position.x;
  1750. current_position[Y_AXIS] = corrected_position.y;
  1751. current_position[Z_AXIS] = corrected_position.z;
  1752. // put the bed at 0 so we don't go below it.
  1753. current_position[Z_AXIS] = zprobe_zoffset;
  1754. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1755. }
  1756. #endif // AUTO_BED_LEVELING_GRID
  1757. static void run_z_probe() {
  1758. plan_bed_level_matrix.set_to_identity();
  1759. feedrate = homing_feedrate[Z_AXIS];
  1760. // move down until you find the bed
  1761. float zPosition = -10;
  1762. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1763. st_synchronize();
  1764. // we have to let the planner know where we are right now as it is not where we said to go.
  1765. zPosition = st_get_position_mm(Z_AXIS);
  1766. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1767. // move up the retract distance
  1768. zPosition += home_retract_mm(Z_AXIS);
  1769. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1770. st_synchronize();
  1771. // move back down slowly to find bed
  1772. feedrate = homing_feedrate[Z_AXIS]/4;
  1773. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1774. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1775. st_synchronize();
  1776. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1777. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1778. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1779. }
  1780. static void do_blocking_move_to(float x, float y, float z) {
  1781. float oldFeedRate = feedrate;
  1782. feedrate = homing_feedrate[Z_AXIS];
  1783. current_position[Z_AXIS] = z;
  1784. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1785. st_synchronize();
  1786. feedrate = XY_TRAVEL_SPEED;
  1787. current_position[X_AXIS] = x;
  1788. current_position[Y_AXIS] = y;
  1789. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1790. st_synchronize();
  1791. feedrate = oldFeedRate;
  1792. }
  1793. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1794. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1795. }
  1796. /// Probe bed height at position (x,y), returns the measured z value
  1797. static float probe_pt(float x, float y, float z_before) {
  1798. // move to right place
  1799. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1800. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1801. run_z_probe();
  1802. float measured_z = current_position[Z_AXIS];
  1803. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1804. SERIAL_PROTOCOLPGM(" x: ");
  1805. SERIAL_PROTOCOL(x);
  1806. SERIAL_PROTOCOLPGM(" y: ");
  1807. SERIAL_PROTOCOL(y);
  1808. SERIAL_PROTOCOLPGM(" z: ");
  1809. SERIAL_PROTOCOL(measured_z);
  1810. SERIAL_PROTOCOLPGM("\n");
  1811. return measured_z;
  1812. }
  1813. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1814. #ifdef LIN_ADVANCE
  1815. /**
  1816. * M900: Set and/or Get advance K factor and WH/D ratio
  1817. *
  1818. * K<factor> Set advance K factor
  1819. * R<ratio> Set ratio directly (overrides WH/D)
  1820. * W<width> H<height> D<diam> Set ratio from WH/D
  1821. */
  1822. inline void gcode_M900() {
  1823. st_synchronize();
  1824. const float newK = code_seen('K') ? code_value_float() : -1;
  1825. if (newK >= 0) extruder_advance_k = newK;
  1826. float newR = code_seen('R') ? code_value_float() : -1;
  1827. if (newR < 0) {
  1828. const float newD = code_seen('D') ? code_value_float() : -1,
  1829. newW = code_seen('W') ? code_value_float() : -1,
  1830. newH = code_seen('H') ? code_value_float() : -1;
  1831. if (newD >= 0 && newW >= 0 && newH >= 0)
  1832. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1833. }
  1834. if (newR >= 0) advance_ed_ratio = newR;
  1835. SERIAL_ECHO_START;
  1836. SERIAL_ECHOPGM("Advance K=");
  1837. SERIAL_ECHOLN(extruder_advance_k);
  1838. SERIAL_ECHOPGM(" E/D=");
  1839. const float ratio = advance_ed_ratio;
  1840. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1841. }
  1842. #endif // LIN_ADVANCE
  1843. bool check_commands() {
  1844. bool end_command_found = false;
  1845. while (buflen)
  1846. {
  1847. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1848. if (!cmdbuffer_front_already_processed)
  1849. cmdqueue_pop_front();
  1850. cmdbuffer_front_already_processed = false;
  1851. }
  1852. return end_command_found;
  1853. }
  1854. #ifdef TMC2130
  1855. bool calibrate_z_auto()
  1856. {
  1857. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1858. lcd_clear();
  1859. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1860. bool endstops_enabled = enable_endstops(true);
  1861. int axis_up_dir = -home_dir(Z_AXIS);
  1862. tmc2130_home_enter(Z_AXIS_MASK);
  1863. current_position[Z_AXIS] = 0;
  1864. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1865. set_destination_to_current();
  1866. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1867. feedrate = homing_feedrate[Z_AXIS];
  1868. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1869. st_synchronize();
  1870. // current_position[axis] = 0;
  1871. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1872. tmc2130_home_exit();
  1873. enable_endstops(false);
  1874. current_position[Z_AXIS] = 0;
  1875. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1876. set_destination_to_current();
  1877. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1878. feedrate = homing_feedrate[Z_AXIS] / 2;
  1879. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1880. st_synchronize();
  1881. enable_endstops(endstops_enabled);
  1882. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1883. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1884. return true;
  1885. }
  1886. #endif //TMC2130
  1887. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1888. {
  1889. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1890. #define HOMEAXIS_DO(LETTER) \
  1891. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1892. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1893. {
  1894. int axis_home_dir = home_dir(axis);
  1895. feedrate = homing_feedrate[axis];
  1896. #ifdef TMC2130
  1897. tmc2130_home_enter(X_AXIS_MASK << axis);
  1898. #endif //TMC2130
  1899. // Move right a bit, so that the print head does not touch the left end position,
  1900. // and the following left movement has a chance to achieve the required velocity
  1901. // for the stall guard to work.
  1902. current_position[axis] = 0;
  1903. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1904. set_destination_to_current();
  1905. // destination[axis] = 11.f;
  1906. destination[axis] = 3.f;
  1907. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1908. st_synchronize();
  1909. // Move left away from the possible collision with the collision detection disabled.
  1910. endstops_hit_on_purpose();
  1911. enable_endstops(false);
  1912. current_position[axis] = 0;
  1913. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1914. destination[axis] = - 1.;
  1915. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1916. st_synchronize();
  1917. // Now continue to move up to the left end stop with the collision detection enabled.
  1918. enable_endstops(true);
  1919. destination[axis] = - 1.1 * max_length(axis);
  1920. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1921. st_synchronize();
  1922. for (uint8_t i = 0; i < cnt; i++)
  1923. {
  1924. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1925. endstops_hit_on_purpose();
  1926. enable_endstops(false);
  1927. current_position[axis] = 0;
  1928. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1929. destination[axis] = 10.f;
  1930. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1931. st_synchronize();
  1932. endstops_hit_on_purpose();
  1933. // Now move left up to the collision, this time with a repeatable velocity.
  1934. enable_endstops(true);
  1935. destination[axis] = - 11.f;
  1936. #ifdef TMC2130
  1937. feedrate = homing_feedrate[axis];
  1938. #else //TMC2130
  1939. feedrate = homing_feedrate[axis] / 2;
  1940. #endif //TMC2130
  1941. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1942. st_synchronize();
  1943. #ifdef TMC2130
  1944. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1945. if (pstep) pstep[i] = mscnt >> 4;
  1946. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1947. #endif //TMC2130
  1948. }
  1949. endstops_hit_on_purpose();
  1950. enable_endstops(false);
  1951. #ifdef TMC2130
  1952. uint8_t orig = tmc2130_home_origin[axis];
  1953. uint8_t back = tmc2130_home_bsteps[axis];
  1954. if (tmc2130_home_enabled && (orig <= 63))
  1955. {
  1956. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1957. if (back > 0)
  1958. tmc2130_do_steps(axis, back, 1, 1000);
  1959. }
  1960. else
  1961. tmc2130_do_steps(axis, 8, 2, 1000);
  1962. tmc2130_home_exit();
  1963. #endif //TMC2130
  1964. axis_is_at_home(axis);
  1965. axis_known_position[axis] = true;
  1966. // Move from minimum
  1967. #ifdef TMC2130
  1968. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1969. #else //TMC2130
  1970. float dist = 0.01f * 64;
  1971. #endif //TMC2130
  1972. current_position[axis] -= dist;
  1973. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1974. current_position[axis] += dist;
  1975. destination[axis] = current_position[axis];
  1976. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1977. st_synchronize();
  1978. feedrate = 0.0;
  1979. }
  1980. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1981. {
  1982. #ifdef TMC2130
  1983. FORCE_HIGH_POWER_START;
  1984. #endif
  1985. int axis_home_dir = home_dir(axis);
  1986. current_position[axis] = 0;
  1987. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1988. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1989. feedrate = homing_feedrate[axis];
  1990. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1991. st_synchronize();
  1992. #ifdef TMC2130
  1993. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1994. FORCE_HIGH_POWER_END;
  1995. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1996. return;
  1997. }
  1998. #endif //TMC2130
  1999. current_position[axis] = 0;
  2000. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2001. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2002. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2003. st_synchronize();
  2004. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2005. feedrate = homing_feedrate[axis]/2 ;
  2006. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2007. st_synchronize();
  2008. #ifdef TMC2130
  2009. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2010. FORCE_HIGH_POWER_END;
  2011. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2012. return;
  2013. }
  2014. #endif //TMC2130
  2015. axis_is_at_home(axis);
  2016. destination[axis] = current_position[axis];
  2017. feedrate = 0.0;
  2018. endstops_hit_on_purpose();
  2019. axis_known_position[axis] = true;
  2020. #ifdef TMC2130
  2021. FORCE_HIGH_POWER_END;
  2022. #endif
  2023. }
  2024. enable_endstops(endstops_enabled);
  2025. }
  2026. /**/
  2027. void home_xy()
  2028. {
  2029. set_destination_to_current();
  2030. homeaxis(X_AXIS);
  2031. homeaxis(Y_AXIS);
  2032. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2033. endstops_hit_on_purpose();
  2034. }
  2035. void refresh_cmd_timeout(void)
  2036. {
  2037. previous_millis_cmd = millis();
  2038. }
  2039. #ifdef FWRETRACT
  2040. void retract(bool retracting, bool swapretract = false) {
  2041. if(retracting && !retracted[active_extruder]) {
  2042. destination[X_AXIS]=current_position[X_AXIS];
  2043. destination[Y_AXIS]=current_position[Y_AXIS];
  2044. destination[Z_AXIS]=current_position[Z_AXIS];
  2045. destination[E_AXIS]=current_position[E_AXIS];
  2046. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2047. plan_set_e_position(current_position[E_AXIS]);
  2048. float oldFeedrate = feedrate;
  2049. feedrate=retract_feedrate*60;
  2050. retracted[active_extruder]=true;
  2051. prepare_move();
  2052. current_position[Z_AXIS]-=retract_zlift;
  2053. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2054. prepare_move();
  2055. feedrate = oldFeedrate;
  2056. } else if(!retracting && retracted[active_extruder]) {
  2057. destination[X_AXIS]=current_position[X_AXIS];
  2058. destination[Y_AXIS]=current_position[Y_AXIS];
  2059. destination[Z_AXIS]=current_position[Z_AXIS];
  2060. destination[E_AXIS]=current_position[E_AXIS];
  2061. current_position[Z_AXIS]+=retract_zlift;
  2062. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2063. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2064. plan_set_e_position(current_position[E_AXIS]);
  2065. float oldFeedrate = feedrate;
  2066. feedrate=retract_recover_feedrate*60;
  2067. retracted[active_extruder]=false;
  2068. prepare_move();
  2069. feedrate = oldFeedrate;
  2070. }
  2071. } //retract
  2072. #endif //FWRETRACT
  2073. void trace() {
  2074. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  2075. tone(BEEPER, 440);
  2076. delay(25);
  2077. noTone(BEEPER);
  2078. delay(20);
  2079. }
  2080. /*
  2081. void ramming() {
  2082. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2083. if (current_temperature[0] < 230) {
  2084. //PLA
  2085. max_feedrate[E_AXIS] = 50;
  2086. //current_position[E_AXIS] -= 8;
  2087. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2088. //current_position[E_AXIS] += 8;
  2089. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2090. current_position[E_AXIS] += 5.4;
  2091. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2092. current_position[E_AXIS] += 3.2;
  2093. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2094. current_position[E_AXIS] += 3;
  2095. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2096. st_synchronize();
  2097. max_feedrate[E_AXIS] = 80;
  2098. current_position[E_AXIS] -= 82;
  2099. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2100. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2101. current_position[E_AXIS] -= 20;
  2102. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2103. current_position[E_AXIS] += 5;
  2104. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2105. current_position[E_AXIS] += 5;
  2106. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2107. current_position[E_AXIS] -= 10;
  2108. st_synchronize();
  2109. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2110. current_position[E_AXIS] += 10;
  2111. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2112. current_position[E_AXIS] -= 10;
  2113. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2114. current_position[E_AXIS] += 10;
  2115. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2116. current_position[E_AXIS] -= 10;
  2117. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2118. st_synchronize();
  2119. }
  2120. else {
  2121. //ABS
  2122. max_feedrate[E_AXIS] = 50;
  2123. //current_position[E_AXIS] -= 8;
  2124. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2125. //current_position[E_AXIS] += 8;
  2126. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2127. current_position[E_AXIS] += 3.1;
  2128. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2129. current_position[E_AXIS] += 3.1;
  2130. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2131. current_position[E_AXIS] += 4;
  2132. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2133. st_synchronize();
  2134. //current_position[X_AXIS] += 23; //delay
  2135. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2136. //current_position[X_AXIS] -= 23; //delay
  2137. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2138. delay(4700);
  2139. max_feedrate[E_AXIS] = 80;
  2140. current_position[E_AXIS] -= 92;
  2141. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2142. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2143. current_position[E_AXIS] -= 5;
  2144. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2145. current_position[E_AXIS] += 5;
  2146. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2147. current_position[E_AXIS] -= 5;
  2148. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2149. st_synchronize();
  2150. current_position[E_AXIS] += 5;
  2151. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2152. current_position[E_AXIS] -= 5;
  2153. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2154. current_position[E_AXIS] += 5;
  2155. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2156. current_position[E_AXIS] -= 5;
  2157. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2158. st_synchronize();
  2159. }
  2160. }
  2161. */
  2162. #ifdef TMC2130
  2163. void force_high_power_mode(bool start_high_power_section) {
  2164. uint8_t silent;
  2165. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2166. if (silent == 1) {
  2167. //we are in silent mode, set to normal mode to enable crash detection
  2168. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2169. st_synchronize();
  2170. cli();
  2171. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2172. update_mode_profile();
  2173. tmc2130_init();
  2174. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2175. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2176. st_reset_timer();
  2177. sei();
  2178. }
  2179. }
  2180. #endif //TMC2130
  2181. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2182. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2183. }
  2184. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2185. st_synchronize();
  2186. #if 0
  2187. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2188. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2189. #endif
  2190. // Flag for the display update routine and to disable the print cancelation during homing.
  2191. homing_flag = true;
  2192. // Which axes should be homed?
  2193. bool home_x = home_x_axis;
  2194. bool home_y = home_y_axis;
  2195. bool home_z = home_z_axis;
  2196. // Either all X,Y,Z codes are present, or none of them.
  2197. bool home_all_axes = home_x == home_y && home_x == home_z;
  2198. if (home_all_axes)
  2199. // No X/Y/Z code provided means to home all axes.
  2200. home_x = home_y = home_z = true;
  2201. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2202. if (home_all_axes) {
  2203. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2204. feedrate = homing_feedrate[Z_AXIS];
  2205. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2206. st_synchronize();
  2207. }
  2208. #ifdef ENABLE_AUTO_BED_LEVELING
  2209. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2210. #endif //ENABLE_AUTO_BED_LEVELING
  2211. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2212. // the planner will not perform any adjustments in the XY plane.
  2213. // Wait for the motors to stop and update the current position with the absolute values.
  2214. world2machine_revert_to_uncorrected();
  2215. // For mesh bed leveling deactivate the matrix temporarily.
  2216. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2217. // in a single axis only.
  2218. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2219. #ifdef MESH_BED_LEVELING
  2220. uint8_t mbl_was_active = mbl.active;
  2221. mbl.active = 0;
  2222. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2223. #endif
  2224. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2225. // consumed during the first movements following this statement.
  2226. if (home_z)
  2227. babystep_undo();
  2228. saved_feedrate = feedrate;
  2229. saved_feedmultiply = feedmultiply;
  2230. feedmultiply = 100;
  2231. previous_millis_cmd = millis();
  2232. enable_endstops(true);
  2233. memcpy(destination, current_position, sizeof(destination));
  2234. feedrate = 0.0;
  2235. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2236. if(home_z)
  2237. homeaxis(Z_AXIS);
  2238. #endif
  2239. #ifdef QUICK_HOME
  2240. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2241. if(home_x && home_y) //first diagonal move
  2242. {
  2243. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2244. int x_axis_home_dir = home_dir(X_AXIS);
  2245. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2246. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2247. feedrate = homing_feedrate[X_AXIS];
  2248. if(homing_feedrate[Y_AXIS]<feedrate)
  2249. feedrate = homing_feedrate[Y_AXIS];
  2250. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2251. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2252. } else {
  2253. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2254. }
  2255. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2256. st_synchronize();
  2257. axis_is_at_home(X_AXIS);
  2258. axis_is_at_home(Y_AXIS);
  2259. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2260. destination[X_AXIS] = current_position[X_AXIS];
  2261. destination[Y_AXIS] = current_position[Y_AXIS];
  2262. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2263. feedrate = 0.0;
  2264. st_synchronize();
  2265. endstops_hit_on_purpose();
  2266. current_position[X_AXIS] = destination[X_AXIS];
  2267. current_position[Y_AXIS] = destination[Y_AXIS];
  2268. current_position[Z_AXIS] = destination[Z_AXIS];
  2269. }
  2270. #endif /* QUICK_HOME */
  2271. #ifdef TMC2130
  2272. if(home_x)
  2273. {
  2274. if (!calib)
  2275. homeaxis(X_AXIS);
  2276. else
  2277. tmc2130_home_calibrate(X_AXIS);
  2278. }
  2279. if(home_y)
  2280. {
  2281. if (!calib)
  2282. homeaxis(Y_AXIS);
  2283. else
  2284. tmc2130_home_calibrate(Y_AXIS);
  2285. }
  2286. #endif //TMC2130
  2287. if(home_x_axis && home_x_value != 0)
  2288. current_position[X_AXIS]=home_x_value+add_homing[X_AXIS];
  2289. if(home_y_axis && home_y_value != 0)
  2290. current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS];
  2291. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2292. #ifndef Z_SAFE_HOMING
  2293. if(home_z) {
  2294. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2295. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2296. feedrate = max_feedrate[Z_AXIS];
  2297. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2298. st_synchronize();
  2299. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2300. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2301. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2302. {
  2303. homeaxis(X_AXIS);
  2304. homeaxis(Y_AXIS);
  2305. }
  2306. // 1st mesh bed leveling measurement point, corrected.
  2307. world2machine_initialize();
  2308. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2309. world2machine_reset();
  2310. if (destination[Y_AXIS] < Y_MIN_POS)
  2311. destination[Y_AXIS] = Y_MIN_POS;
  2312. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2313. feedrate = homing_feedrate[Z_AXIS]/10;
  2314. current_position[Z_AXIS] = 0;
  2315. enable_endstops(false);
  2316. #ifdef DEBUG_BUILD
  2317. SERIAL_ECHOLNPGM("plan_set_position()");
  2318. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2319. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2320. #endif
  2321. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2322. #ifdef DEBUG_BUILD
  2323. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2324. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2325. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2326. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2327. #endif
  2328. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2329. st_synchronize();
  2330. current_position[X_AXIS] = destination[X_AXIS];
  2331. current_position[Y_AXIS] = destination[Y_AXIS];
  2332. enable_endstops(true);
  2333. endstops_hit_on_purpose();
  2334. homeaxis(Z_AXIS);
  2335. #else // MESH_BED_LEVELING
  2336. homeaxis(Z_AXIS);
  2337. #endif // MESH_BED_LEVELING
  2338. }
  2339. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2340. if(home_all_axes) {
  2341. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2342. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2343. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2344. feedrate = XY_TRAVEL_SPEED/60;
  2345. current_position[Z_AXIS] = 0;
  2346. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2347. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2348. st_synchronize();
  2349. current_position[X_AXIS] = destination[X_AXIS];
  2350. current_position[Y_AXIS] = destination[Y_AXIS];
  2351. homeaxis(Z_AXIS);
  2352. }
  2353. // Let's see if X and Y are homed and probe is inside bed area.
  2354. if(home_z) {
  2355. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2356. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2357. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2358. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2359. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2360. current_position[Z_AXIS] = 0;
  2361. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2362. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2363. feedrate = max_feedrate[Z_AXIS];
  2364. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2365. st_synchronize();
  2366. homeaxis(Z_AXIS);
  2367. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2368. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2369. SERIAL_ECHO_START;
  2370. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2371. } else {
  2372. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2373. SERIAL_ECHO_START;
  2374. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2375. }
  2376. }
  2377. #endif // Z_SAFE_HOMING
  2378. #endif // Z_HOME_DIR < 0
  2379. if(home_z_axis && home_z_value != 0)
  2380. current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS];
  2381. #ifdef ENABLE_AUTO_BED_LEVELING
  2382. if(home_z)
  2383. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2384. #endif
  2385. // Set the planner and stepper routine positions.
  2386. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2387. // contains the machine coordinates.
  2388. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2389. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2390. enable_endstops(false);
  2391. #endif
  2392. feedrate = saved_feedrate;
  2393. feedmultiply = saved_feedmultiply;
  2394. previous_millis_cmd = millis();
  2395. endstops_hit_on_purpose();
  2396. #ifndef MESH_BED_LEVELING
  2397. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2398. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2399. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2400. lcd_adjust_z();
  2401. #endif
  2402. // Load the machine correction matrix
  2403. world2machine_initialize();
  2404. // and correct the current_position XY axes to match the transformed coordinate system.
  2405. world2machine_update_current();
  2406. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2407. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2408. {
  2409. if (! home_z && mbl_was_active) {
  2410. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2411. mbl.active = true;
  2412. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2413. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2414. }
  2415. }
  2416. else
  2417. {
  2418. st_synchronize();
  2419. homing_flag = false;
  2420. }
  2421. #endif
  2422. if (farm_mode) { prusa_statistics(20); };
  2423. homing_flag = false;
  2424. #if 0
  2425. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2426. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2427. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2428. #endif
  2429. }
  2430. void adjust_bed_reset()
  2431. {
  2432. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2433. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2434. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2435. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2436. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2437. }
  2438. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2439. {
  2440. bool final_result = false;
  2441. #ifdef TMC2130
  2442. FORCE_HIGH_POWER_START;
  2443. #endif // TMC2130
  2444. // Only Z calibration?
  2445. if (!onlyZ)
  2446. {
  2447. setTargetBed(0);
  2448. setAllTargetHotends(0);
  2449. adjust_bed_reset(); //reset bed level correction
  2450. }
  2451. // Disable the default update procedure of the display. We will do a modal dialog.
  2452. lcd_update_enable(false);
  2453. // Let the planner use the uncorrected coordinates.
  2454. mbl.reset();
  2455. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2456. // the planner will not perform any adjustments in the XY plane.
  2457. // Wait for the motors to stop and update the current position with the absolute values.
  2458. world2machine_revert_to_uncorrected();
  2459. // Reset the baby step value applied without moving the axes.
  2460. babystep_reset();
  2461. // Mark all axes as in a need for homing.
  2462. memset(axis_known_position, 0, sizeof(axis_known_position));
  2463. // Home in the XY plane.
  2464. //set_destination_to_current();
  2465. setup_for_endstop_move();
  2466. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2467. home_xy();
  2468. enable_endstops(false);
  2469. current_position[X_AXIS] += 5;
  2470. current_position[Y_AXIS] += 5;
  2471. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2472. st_synchronize();
  2473. // Let the user move the Z axes up to the end stoppers.
  2474. #ifdef TMC2130
  2475. if (calibrate_z_auto())
  2476. {
  2477. #else //TMC2130
  2478. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2479. {
  2480. #endif //TMC2130
  2481. refresh_cmd_timeout();
  2482. #ifndef STEEL_SHEET
  2483. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2484. {
  2485. lcd_wait_for_cool_down();
  2486. }
  2487. #endif //STEEL_SHEET
  2488. if(!onlyZ)
  2489. {
  2490. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2491. #ifdef STEEL_SHEET
  2492. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2493. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2494. #endif //STEEL_SHEET
  2495. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2496. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2497. KEEPALIVE_STATE(IN_HANDLER);
  2498. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2499. lcd_set_cursor(0, 2);
  2500. lcd_print(1);
  2501. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2502. }
  2503. // Move the print head close to the bed.
  2504. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2505. bool endstops_enabled = enable_endstops(true);
  2506. #ifdef TMC2130
  2507. tmc2130_home_enter(Z_AXIS_MASK);
  2508. #endif //TMC2130
  2509. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2510. st_synchronize();
  2511. #ifdef TMC2130
  2512. tmc2130_home_exit();
  2513. #endif //TMC2130
  2514. enable_endstops(endstops_enabled);
  2515. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2516. {
  2517. int8_t verbosity_level = 0;
  2518. if (code_seen('V'))
  2519. {
  2520. // Just 'V' without a number counts as V1.
  2521. char c = strchr_pointer[1];
  2522. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2523. }
  2524. if (onlyZ)
  2525. {
  2526. clean_up_after_endstop_move();
  2527. // Z only calibration.
  2528. // Load the machine correction matrix
  2529. world2machine_initialize();
  2530. // and correct the current_position to match the transformed coordinate system.
  2531. world2machine_update_current();
  2532. //FIXME
  2533. bool result = sample_mesh_and_store_reference();
  2534. if (result)
  2535. {
  2536. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2537. // Shipped, the nozzle height has been set already. The user can start printing now.
  2538. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2539. final_result = true;
  2540. // babystep_apply();
  2541. }
  2542. }
  2543. else
  2544. {
  2545. // Reset the baby step value and the baby step applied flag.
  2546. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2547. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2548. // Complete XYZ calibration.
  2549. uint8_t point_too_far_mask = 0;
  2550. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2551. clean_up_after_endstop_move();
  2552. // Print head up.
  2553. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2554. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2555. st_synchronize();
  2556. //#ifndef NEW_XYZCAL
  2557. if (result >= 0)
  2558. {
  2559. #ifdef HEATBED_V2
  2560. sample_z();
  2561. #else //HEATBED_V2
  2562. point_too_far_mask = 0;
  2563. // Second half: The fine adjustment.
  2564. // Let the planner use the uncorrected coordinates.
  2565. mbl.reset();
  2566. world2machine_reset();
  2567. // Home in the XY plane.
  2568. setup_for_endstop_move();
  2569. home_xy();
  2570. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2571. clean_up_after_endstop_move();
  2572. // Print head up.
  2573. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2574. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2575. st_synchronize();
  2576. // if (result >= 0) babystep_apply();
  2577. #endif //HEATBED_V2
  2578. }
  2579. //#endif //NEW_XYZCAL
  2580. lcd_update_enable(true);
  2581. lcd_update(2);
  2582. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2583. if (result >= 0)
  2584. {
  2585. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2586. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2587. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2588. final_result = true;
  2589. }
  2590. }
  2591. #ifdef TMC2130
  2592. tmc2130_home_exit();
  2593. #endif
  2594. }
  2595. else
  2596. {
  2597. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2598. final_result = false;
  2599. }
  2600. }
  2601. else
  2602. {
  2603. // Timeouted.
  2604. }
  2605. lcd_update_enable(true);
  2606. #ifdef TMC2130
  2607. FORCE_HIGH_POWER_END;
  2608. #endif // TMC2130
  2609. return final_result;
  2610. }
  2611. void gcode_M114()
  2612. {
  2613. SERIAL_PROTOCOLPGM("X:");
  2614. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2615. SERIAL_PROTOCOLPGM(" Y:");
  2616. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2617. SERIAL_PROTOCOLPGM(" Z:");
  2618. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2619. SERIAL_PROTOCOLPGM(" E:");
  2620. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2621. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2622. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2623. SERIAL_PROTOCOLPGM(" Y:");
  2624. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2625. SERIAL_PROTOCOLPGM(" Z:");
  2626. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2627. SERIAL_PROTOCOLPGM(" E:");
  2628. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2629. SERIAL_PROTOCOLLN("");
  2630. }
  2631. void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float e_shift_late) {
  2632. st_synchronize();
  2633. float lastpos[4];
  2634. if (farm_mode)
  2635. {
  2636. prusa_statistics(22);
  2637. }
  2638. //First backup current position and settings
  2639. feedmultiplyBckp=feedmultiply;
  2640. HotendTempBckp = degTargetHotend(active_extruder);
  2641. fanSpeedBckp = fanSpeed;
  2642. lastpos[X_AXIS]=current_position[X_AXIS];
  2643. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2644. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2645. lastpos[E_AXIS]=current_position[E_AXIS];
  2646. //Retract E
  2647. current_position[E_AXIS]+= e_shift;
  2648. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2649. st_synchronize();
  2650. //Lift Z
  2651. current_position[Z_AXIS]+= z_shift;
  2652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2653. st_synchronize();
  2654. //Move XY to side
  2655. current_position[X_AXIS]= x_position;
  2656. current_position[Y_AXIS]= y_position;
  2657. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2658. st_synchronize();
  2659. //Beep, manage nozzle heater and wait for user to start unload filament
  2660. if(!mmu_enabled) M600_wait_for_user();
  2661. lcd_change_fil_state = 0;
  2662. // Unload filament
  2663. if (mmu_enabled)
  2664. extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2665. else
  2666. unload_filament(); //unload filament for single material (used also in M702)
  2667. //finish moves
  2668. st_synchronize();
  2669. if (!mmu_enabled)
  2670. {
  2671. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2672. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2673. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2674. lcd_update_enable(true);
  2675. }
  2676. if (mmu_enabled)
  2677. {
  2678. if (!automatic) {
  2679. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2680. mmu_M600_wait_and_beep();
  2681. if (saved_printing) {
  2682. lcd_clear();
  2683. lcd_set_cursor(0, 2);
  2684. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2685. mmu_command(MMU_CMD_R0);
  2686. manage_response(false, false);
  2687. }
  2688. }
  2689. mmu_M600_load_filament(automatic);
  2690. }
  2691. else
  2692. M600_load_filament();
  2693. if(!automatic) M600_check_state();
  2694. lcd_update_enable(true);
  2695. //Not let's go back to print
  2696. fanSpeed = fanSpeedBckp;
  2697. //Feed a little of filament to stabilize pressure
  2698. if (!automatic) {
  2699. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2700. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2701. }
  2702. //Move XY back
  2703. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2704. st_synchronize();
  2705. //Move Z back
  2706. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2707. st_synchronize();
  2708. //Set E position to original
  2709. plan_set_e_position(lastpos[E_AXIS]);
  2710. memcpy(current_position, lastpos, sizeof(lastpos));
  2711. memcpy(destination, current_position, sizeof(current_position));
  2712. //Recover feed rate
  2713. feedmultiply=feedmultiplyBckp;
  2714. char cmd[9];
  2715. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2716. enquecommand(cmd);
  2717. lcd_setstatuspgm(_T(WELCOME_MSG));
  2718. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2719. }
  2720. void gcode_M701()
  2721. {
  2722. printf_P(PSTR("gcode_M701 begin\n"));
  2723. if (mmu_enabled)
  2724. {
  2725. extr_adj(tmp_extruder);//loads current extruder
  2726. mmu_extruder = tmp_extruder;
  2727. }
  2728. else
  2729. {
  2730. enable_z();
  2731. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2732. #ifdef FSENSOR_QUALITY
  2733. fsensor_oq_meassure_start(40);
  2734. #endif //FSENSOR_QUALITY
  2735. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2736. current_position[E_AXIS] += 40;
  2737. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2738. st_synchronize();
  2739. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2740. current_position[E_AXIS] += 30;
  2741. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2742. st_synchronize();
  2743. current_position[E_AXIS] += 25;
  2744. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2745. st_synchronize();
  2746. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) tone(BEEPER, 500);
  2747. delay_keep_alive(50);
  2748. noTone(BEEPER);
  2749. if (!farm_mode && loading_flag) {
  2750. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2751. while (!clean) {
  2752. lcd_update_enable(true);
  2753. lcd_update(2);
  2754. current_position[E_AXIS] += 25;
  2755. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2756. st_synchronize();
  2757. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2758. }
  2759. }
  2760. lcd_update_enable(true);
  2761. lcd_update(2);
  2762. lcd_setstatuspgm(_T(WELCOME_MSG));
  2763. disable_z();
  2764. loading_flag = false;
  2765. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2766. #ifdef FSENSOR_QUALITY
  2767. fsensor_oq_meassure_stop();
  2768. if (!fsensor_oq_result())
  2769. {
  2770. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2771. lcd_update_enable(true);
  2772. lcd_update(2);
  2773. if (disable)
  2774. fsensor_disable();
  2775. }
  2776. #endif //FSENSOR_QUALITY
  2777. }
  2778. }
  2779. /**
  2780. * @brief Get serial number from 32U2 processor
  2781. *
  2782. * Typical format of S/N is:CZPX0917X003XC13518
  2783. *
  2784. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2785. *
  2786. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2787. * reply is transmitted to serial port 1 character by character.
  2788. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2789. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2790. * in any case.
  2791. */
  2792. static void gcode_PRUSA_SN()
  2793. {
  2794. if (farm_mode) {
  2795. selectedSerialPort = 0;
  2796. putchar(';');
  2797. putchar('S');
  2798. int numbersRead = 0;
  2799. ShortTimer timeout;
  2800. timeout.start();
  2801. while (numbersRead < 19) {
  2802. while (MSerial.available() > 0) {
  2803. uint8_t serial_char = MSerial.read();
  2804. selectedSerialPort = 1;
  2805. putchar(serial_char);
  2806. numbersRead++;
  2807. selectedSerialPort = 0;
  2808. }
  2809. if (timeout.expired(100u)) break;
  2810. }
  2811. selectedSerialPort = 1;
  2812. putchar('\n');
  2813. #if 0
  2814. for (int b = 0; b < 3; b++) {
  2815. tone(BEEPER, 110);
  2816. delay(50);
  2817. noTone(BEEPER);
  2818. delay(50);
  2819. }
  2820. #endif
  2821. } else {
  2822. puts_P(_N("Not in farm mode."));
  2823. }
  2824. }
  2825. #ifdef BACKLASH_X
  2826. extern uint8_t st_backlash_x;
  2827. #endif //BACKLASH_X
  2828. #ifdef BACKLASH_Y
  2829. extern uint8_t st_backlash_y;
  2830. #endif //BACKLASH_Y
  2831. void process_commands()
  2832. {
  2833. if (!buflen) return; //empty command
  2834. #ifdef FILAMENT_RUNOUT_SUPPORT
  2835. SET_INPUT(FR_SENS);
  2836. #endif
  2837. #ifdef CMDBUFFER_DEBUG
  2838. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2839. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2840. SERIAL_ECHOLNPGM("");
  2841. SERIAL_ECHOPGM("In cmdqueue: ");
  2842. SERIAL_ECHO(buflen);
  2843. SERIAL_ECHOLNPGM("");
  2844. #endif /* CMDBUFFER_DEBUG */
  2845. unsigned long codenum; //throw away variable
  2846. char *starpos = NULL;
  2847. #ifdef ENABLE_AUTO_BED_LEVELING
  2848. float x_tmp, y_tmp, z_tmp, real_z;
  2849. #endif
  2850. // PRUSA GCODES
  2851. KEEPALIVE_STATE(IN_HANDLER);
  2852. #ifdef SNMM
  2853. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2854. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2855. int8_t SilentMode;
  2856. #endif
  2857. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2858. starpos = (strchr(strchr_pointer + 5, '*'));
  2859. if (starpos != NULL)
  2860. *(starpos) = '\0';
  2861. lcd_setstatus(strchr_pointer + 5);
  2862. }
  2863. #ifdef TMC2130
  2864. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2865. {
  2866. if(code_seen("CRASH_DETECTED"))
  2867. {
  2868. uint8_t mask = 0;
  2869. if (code_seen('X')) mask |= X_AXIS_MASK;
  2870. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2871. crashdet_detected(mask);
  2872. }
  2873. else if(code_seen("CRASH_RECOVER"))
  2874. crashdet_recover();
  2875. else if(code_seen("CRASH_CANCEL"))
  2876. crashdet_cancel();
  2877. }
  2878. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2879. {
  2880. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2881. {
  2882. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2883. axis = (axis == 'E')?3:(axis - 'X');
  2884. if (axis < 4)
  2885. {
  2886. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2887. tmc2130_set_wave(axis, 247, fac);
  2888. }
  2889. }
  2890. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2891. {
  2892. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2893. axis = (axis == 'E')?3:(axis - 'X');
  2894. if (axis < 4)
  2895. {
  2896. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2897. uint16_t res = tmc2130_get_res(axis);
  2898. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2899. }
  2900. }
  2901. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2902. {
  2903. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2904. axis = (axis == 'E')?3:(axis - 'X');
  2905. if (axis < 4)
  2906. {
  2907. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2908. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2909. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2910. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2911. char* str_end = 0;
  2912. if (CMDBUFFER_CURRENT_STRING[14])
  2913. {
  2914. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2915. if (str_end && *str_end)
  2916. {
  2917. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2918. if (str_end && *str_end)
  2919. {
  2920. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2921. if (str_end && *str_end)
  2922. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2923. }
  2924. }
  2925. }
  2926. tmc2130_chopper_config[axis].toff = chop0;
  2927. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2928. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2929. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2930. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2931. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2932. }
  2933. }
  2934. }
  2935. #ifdef BACKLASH_X
  2936. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2937. {
  2938. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2939. st_backlash_x = bl;
  2940. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2941. }
  2942. #endif //BACKLASH_X
  2943. #ifdef BACKLASH_Y
  2944. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2945. {
  2946. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2947. st_backlash_y = bl;
  2948. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2949. }
  2950. #endif //BACKLASH_Y
  2951. #endif //TMC2130
  2952. else if (code_seen("FSENSOR_RECOVER")) {
  2953. fsensor_restore_print_and_continue();
  2954. }
  2955. else if(code_seen("PRUSA")){
  2956. if (code_seen("Ping")) { //PRUSA Ping
  2957. if (farm_mode) {
  2958. PingTime = millis();
  2959. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2960. }
  2961. }
  2962. else if (code_seen("PRN")) {
  2963. printf_P(_N("%d"), status_number);
  2964. }else if (code_seen("FAN")) {
  2965. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2966. }else if (code_seen("fn")) {
  2967. if (farm_mode) {
  2968. printf_P(_N("%d"), farm_no);
  2969. }
  2970. else {
  2971. puts_P(_N("Not in farm mode."));
  2972. }
  2973. }
  2974. else if (code_seen("thx"))
  2975. {
  2976. no_response = false;
  2977. }
  2978. else if (code_seen("uvlo"))
  2979. {
  2980. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  2981. enquecommand_P(PSTR("M24"));
  2982. }
  2983. else if (code_seen("MMURES"))
  2984. {
  2985. mmu_reset();
  2986. }
  2987. else if (code_seen("RESET")) {
  2988. // careful!
  2989. if (farm_mode) {
  2990. #ifdef WATCHDOG
  2991. boot_app_magic = BOOT_APP_MAGIC;
  2992. boot_app_flags = BOOT_APP_FLG_RUN;
  2993. wdt_enable(WDTO_15MS);
  2994. cli();
  2995. while(1);
  2996. #else //WATCHDOG
  2997. asm volatile("jmp 0x3E000");
  2998. #endif //WATCHDOG
  2999. }
  3000. else {
  3001. MYSERIAL.println("Not in farm mode.");
  3002. }
  3003. }else if (code_seen("fv")) {
  3004. // get file version
  3005. #ifdef SDSUPPORT
  3006. card.openFile(strchr_pointer + 3,true);
  3007. while (true) {
  3008. uint16_t readByte = card.get();
  3009. MYSERIAL.write(readByte);
  3010. if (readByte=='\n') {
  3011. break;
  3012. }
  3013. }
  3014. card.closefile();
  3015. #endif // SDSUPPORT
  3016. } else if (code_seen("M28")) {
  3017. trace();
  3018. prusa_sd_card_upload = true;
  3019. card.openFile(strchr_pointer+4,false);
  3020. } else if (code_seen("SN")) {
  3021. gcode_PRUSA_SN();
  3022. } else if(code_seen("Fir")){
  3023. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3024. } else if(code_seen("Rev")){
  3025. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3026. } else if(code_seen("Lang")) {
  3027. lang_reset();
  3028. } else if(code_seen("Lz")) {
  3029. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3030. } else if(code_seen("Beat")) {
  3031. // Kick farm link timer
  3032. kicktime = millis();
  3033. } else if(code_seen("FR")) {
  3034. // Factory full reset
  3035. factory_reset(0,true);
  3036. }
  3037. //else if (code_seen('Cal')) {
  3038. // lcd_calibration();
  3039. // }
  3040. }
  3041. else if (code_seen('^')) {
  3042. // nothing, this is a version line
  3043. } else if(code_seen('G'))
  3044. {
  3045. gcode_in_progress = (int)code_value();
  3046. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3047. switch (gcode_in_progress)
  3048. {
  3049. case 0: // G0 -> G1
  3050. case 1: // G1
  3051. if(Stopped == false) {
  3052. #ifdef FILAMENT_RUNOUT_SUPPORT
  3053. if(READ(FR_SENS)){
  3054. feedmultiplyBckp=feedmultiply;
  3055. float target[4];
  3056. float lastpos[4];
  3057. target[X_AXIS]=current_position[X_AXIS];
  3058. target[Y_AXIS]=current_position[Y_AXIS];
  3059. target[Z_AXIS]=current_position[Z_AXIS];
  3060. target[E_AXIS]=current_position[E_AXIS];
  3061. lastpos[X_AXIS]=current_position[X_AXIS];
  3062. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3063. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3064. lastpos[E_AXIS]=current_position[E_AXIS];
  3065. //retract by E
  3066. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3067. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3068. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3069. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3070. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3071. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3072. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3073. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3074. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3075. //finish moves
  3076. st_synchronize();
  3077. //disable extruder steppers so filament can be removed
  3078. disable_e0();
  3079. disable_e1();
  3080. disable_e2();
  3081. delay(100);
  3082. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3083. uint8_t cnt=0;
  3084. int counterBeep = 0;
  3085. lcd_wait_interact();
  3086. while(!lcd_clicked()){
  3087. cnt++;
  3088. manage_heater();
  3089. manage_inactivity(true);
  3090. //lcd_update(0);
  3091. if(cnt==0)
  3092. {
  3093. #if BEEPER > 0
  3094. if (counterBeep== 500){
  3095. counterBeep = 0;
  3096. }
  3097. SET_OUTPUT(BEEPER);
  3098. if (counterBeep== 0){
  3099. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3100. WRITE(BEEPER,HIGH);
  3101. }
  3102. if (counterBeep== 20){
  3103. WRITE(BEEPER,LOW);
  3104. }
  3105. counterBeep++;
  3106. #else
  3107. #endif
  3108. }
  3109. }
  3110. WRITE(BEEPER,LOW);
  3111. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3112. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3113. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3114. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3115. lcd_change_fil_state = 0;
  3116. lcd_loading_filament();
  3117. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3118. lcd_change_fil_state = 0;
  3119. lcd_alright();
  3120. switch(lcd_change_fil_state){
  3121. case 2:
  3122. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3123. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3124. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3125. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3126. lcd_loading_filament();
  3127. break;
  3128. case 3:
  3129. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3130. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3131. lcd_loading_color();
  3132. break;
  3133. default:
  3134. lcd_change_success();
  3135. break;
  3136. }
  3137. }
  3138. target[E_AXIS]+= 5;
  3139. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3140. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3141. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3142. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3143. //plan_set_e_position(current_position[E_AXIS]);
  3144. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3145. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3146. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3147. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3148. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3149. plan_set_e_position(lastpos[E_AXIS]);
  3150. feedmultiply=feedmultiplyBckp;
  3151. char cmd[9];
  3152. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3153. enquecommand(cmd);
  3154. }
  3155. #endif
  3156. get_coordinates(); // For X Y Z E F
  3157. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3158. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3159. }
  3160. #ifdef FWRETRACT
  3161. if(autoretract_enabled)
  3162. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3163. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3164. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3165. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3166. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3167. retract(!retracted[active_extruder]);
  3168. return;
  3169. }
  3170. }
  3171. #endif //FWRETRACT
  3172. prepare_move();
  3173. //ClearToSend();
  3174. }
  3175. break;
  3176. case 2: // G2 - CW ARC
  3177. if(Stopped == false) {
  3178. get_arc_coordinates();
  3179. prepare_arc_move(true);
  3180. }
  3181. break;
  3182. case 3: // G3 - CCW ARC
  3183. if(Stopped == false) {
  3184. get_arc_coordinates();
  3185. prepare_arc_move(false);
  3186. }
  3187. break;
  3188. case 4: // G4 dwell
  3189. codenum = 0;
  3190. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3191. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3192. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3193. st_synchronize();
  3194. codenum += millis(); // keep track of when we started waiting
  3195. previous_millis_cmd = millis();
  3196. while(millis() < codenum) {
  3197. manage_heater();
  3198. manage_inactivity();
  3199. lcd_update(0);
  3200. }
  3201. break;
  3202. #ifdef FWRETRACT
  3203. case 10: // G10 retract
  3204. #if EXTRUDERS > 1
  3205. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3206. retract(true,retracted_swap[active_extruder]);
  3207. #else
  3208. retract(true);
  3209. #endif
  3210. break;
  3211. case 11: // G11 retract_recover
  3212. #if EXTRUDERS > 1
  3213. retract(false,retracted_swap[active_extruder]);
  3214. #else
  3215. retract(false);
  3216. #endif
  3217. break;
  3218. #endif //FWRETRACT
  3219. case 28: //G28 Home all Axis one at a time
  3220. {
  3221. long home_x_value = 0;
  3222. long home_y_value = 0;
  3223. long home_z_value = 0;
  3224. // Which axes should be homed?
  3225. bool home_x = code_seen(axis_codes[X_AXIS]);
  3226. home_x_value = code_value_long();
  3227. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3228. home_y_value = code_value_long();
  3229. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3230. home_z_value = code_value_long();
  3231. bool without_mbl = code_seen('W');
  3232. // calibrate?
  3233. bool calib = code_seen('C');
  3234. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3235. if ((home_x || home_y || without_mbl || home_z) == false) {
  3236. // Push the commands to the front of the message queue in the reverse order!
  3237. // There shall be always enough space reserved for these commands.
  3238. goto case_G80;
  3239. }
  3240. break;
  3241. }
  3242. #ifdef ENABLE_AUTO_BED_LEVELING
  3243. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3244. {
  3245. #if Z_MIN_PIN == -1
  3246. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3247. #endif
  3248. // Prevent user from running a G29 without first homing in X and Y
  3249. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3250. {
  3251. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3252. SERIAL_ECHO_START;
  3253. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3254. break; // abort G29, since we don't know where we are
  3255. }
  3256. st_synchronize();
  3257. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3258. //vector_3 corrected_position = plan_get_position_mm();
  3259. //corrected_position.debug("position before G29");
  3260. plan_bed_level_matrix.set_to_identity();
  3261. vector_3 uncorrected_position = plan_get_position();
  3262. //uncorrected_position.debug("position durring G29");
  3263. current_position[X_AXIS] = uncorrected_position.x;
  3264. current_position[Y_AXIS] = uncorrected_position.y;
  3265. current_position[Z_AXIS] = uncorrected_position.z;
  3266. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3267. setup_for_endstop_move();
  3268. feedrate = homing_feedrate[Z_AXIS];
  3269. #ifdef AUTO_BED_LEVELING_GRID
  3270. // probe at the points of a lattice grid
  3271. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3272. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3273. // solve the plane equation ax + by + d = z
  3274. // A is the matrix with rows [x y 1] for all the probed points
  3275. // B is the vector of the Z positions
  3276. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3277. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3278. // "A" matrix of the linear system of equations
  3279. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3280. // "B" vector of Z points
  3281. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3282. int probePointCounter = 0;
  3283. bool zig = true;
  3284. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3285. {
  3286. int xProbe, xInc;
  3287. if (zig)
  3288. {
  3289. xProbe = LEFT_PROBE_BED_POSITION;
  3290. //xEnd = RIGHT_PROBE_BED_POSITION;
  3291. xInc = xGridSpacing;
  3292. zig = false;
  3293. } else // zag
  3294. {
  3295. xProbe = RIGHT_PROBE_BED_POSITION;
  3296. //xEnd = LEFT_PROBE_BED_POSITION;
  3297. xInc = -xGridSpacing;
  3298. zig = true;
  3299. }
  3300. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3301. {
  3302. float z_before;
  3303. if (probePointCounter == 0)
  3304. {
  3305. // raise before probing
  3306. z_before = Z_RAISE_BEFORE_PROBING;
  3307. } else
  3308. {
  3309. // raise extruder
  3310. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3311. }
  3312. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3313. eqnBVector[probePointCounter] = measured_z;
  3314. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3315. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3316. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3317. probePointCounter++;
  3318. xProbe += xInc;
  3319. }
  3320. }
  3321. clean_up_after_endstop_move();
  3322. // solve lsq problem
  3323. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3324. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3325. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3326. SERIAL_PROTOCOLPGM(" b: ");
  3327. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3328. SERIAL_PROTOCOLPGM(" d: ");
  3329. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3330. set_bed_level_equation_lsq(plane_equation_coefficients);
  3331. free(plane_equation_coefficients);
  3332. #else // AUTO_BED_LEVELING_GRID not defined
  3333. // Probe at 3 arbitrary points
  3334. // probe 1
  3335. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3336. // probe 2
  3337. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3338. // probe 3
  3339. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3340. clean_up_after_endstop_move();
  3341. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3342. #endif // AUTO_BED_LEVELING_GRID
  3343. st_synchronize();
  3344. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3345. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3346. // When the bed is uneven, this height must be corrected.
  3347. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3348. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3349. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3350. z_tmp = current_position[Z_AXIS];
  3351. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3352. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3353. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3354. }
  3355. break;
  3356. #ifndef Z_PROBE_SLED
  3357. case 30: // G30 Single Z Probe
  3358. {
  3359. st_synchronize();
  3360. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3361. setup_for_endstop_move();
  3362. feedrate = homing_feedrate[Z_AXIS];
  3363. run_z_probe();
  3364. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3365. SERIAL_PROTOCOLPGM(" X: ");
  3366. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3367. SERIAL_PROTOCOLPGM(" Y: ");
  3368. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3369. SERIAL_PROTOCOLPGM(" Z: ");
  3370. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3371. SERIAL_PROTOCOLPGM("\n");
  3372. clean_up_after_endstop_move();
  3373. }
  3374. break;
  3375. #else
  3376. case 31: // dock the sled
  3377. dock_sled(true);
  3378. break;
  3379. case 32: // undock the sled
  3380. dock_sled(false);
  3381. break;
  3382. #endif // Z_PROBE_SLED
  3383. #endif // ENABLE_AUTO_BED_LEVELING
  3384. #ifdef MESH_BED_LEVELING
  3385. case 30: // G30 Single Z Probe
  3386. {
  3387. st_synchronize();
  3388. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3389. setup_for_endstop_move();
  3390. feedrate = homing_feedrate[Z_AXIS];
  3391. find_bed_induction_sensor_point_z(-10.f, 3);
  3392. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3393. clean_up_after_endstop_move();
  3394. }
  3395. break;
  3396. case 75:
  3397. {
  3398. for (int i = 40; i <= 110; i++)
  3399. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3400. }
  3401. break;
  3402. case 76: //PINDA probe temperature calibration
  3403. {
  3404. #ifdef PINDA_THERMISTOR
  3405. if (true)
  3406. {
  3407. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3408. //we need to know accurate position of first calibration point
  3409. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3410. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3411. break;
  3412. }
  3413. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3414. {
  3415. // We don't know where we are! HOME!
  3416. // Push the commands to the front of the message queue in the reverse order!
  3417. // There shall be always enough space reserved for these commands.
  3418. repeatcommand_front(); // repeat G76 with all its parameters
  3419. enquecommand_front_P((PSTR("G28 W0")));
  3420. break;
  3421. }
  3422. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3423. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3424. if (result)
  3425. {
  3426. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3427. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3428. current_position[Z_AXIS] = 50;
  3429. current_position[Y_AXIS] = 180;
  3430. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3431. st_synchronize();
  3432. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3433. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3434. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3435. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3436. st_synchronize();
  3437. gcode_G28(false, false, true);
  3438. }
  3439. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3440. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3441. current_position[Z_AXIS] = 100;
  3442. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3443. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3444. lcd_temp_cal_show_result(false);
  3445. break;
  3446. }
  3447. }
  3448. lcd_update_enable(true);
  3449. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3450. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3451. float zero_z;
  3452. int z_shift = 0; //unit: steps
  3453. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3454. if (start_temp < 35) start_temp = 35;
  3455. if (start_temp < current_temperature_pinda) start_temp += 5;
  3456. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3457. // setTargetHotend(200, 0);
  3458. setTargetBed(70 + (start_temp - 30));
  3459. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3460. custom_message_state = 1;
  3461. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3462. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3463. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3464. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3465. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3466. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3467. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3468. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3469. st_synchronize();
  3470. while (current_temperature_pinda < start_temp)
  3471. {
  3472. delay_keep_alive(1000);
  3473. serialecho_temperatures();
  3474. }
  3475. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3476. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3477. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3478. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3479. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3480. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3481. st_synchronize();
  3482. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3483. if (find_z_result == false) {
  3484. lcd_temp_cal_show_result(find_z_result);
  3485. break;
  3486. }
  3487. zero_z = current_position[Z_AXIS];
  3488. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3489. int i = -1; for (; i < 5; i++)
  3490. {
  3491. float temp = (40 + i * 5);
  3492. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3493. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3494. if (start_temp <= temp) break;
  3495. }
  3496. for (i++; i < 5; i++)
  3497. {
  3498. float temp = (40 + i * 5);
  3499. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3500. custom_message_state = i + 2;
  3501. setTargetBed(50 + 10 * (temp - 30) / 5);
  3502. // setTargetHotend(255, 0);
  3503. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3504. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3505. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3506. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3507. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3508. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3509. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3510. st_synchronize();
  3511. while (current_temperature_pinda < temp)
  3512. {
  3513. delay_keep_alive(1000);
  3514. serialecho_temperatures();
  3515. }
  3516. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3518. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3519. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3520. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3521. st_synchronize();
  3522. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3523. if (find_z_result == false) {
  3524. lcd_temp_cal_show_result(find_z_result);
  3525. break;
  3526. }
  3527. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3528. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3529. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3530. }
  3531. lcd_temp_cal_show_result(true);
  3532. break;
  3533. }
  3534. #endif //PINDA_THERMISTOR
  3535. setTargetBed(PINDA_MIN_T);
  3536. float zero_z;
  3537. int z_shift = 0; //unit: steps
  3538. int t_c; // temperature
  3539. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3540. // We don't know where we are! HOME!
  3541. // Push the commands to the front of the message queue in the reverse order!
  3542. // There shall be always enough space reserved for these commands.
  3543. repeatcommand_front(); // repeat G76 with all its parameters
  3544. enquecommand_front_P((PSTR("G28 W0")));
  3545. break;
  3546. }
  3547. puts_P(_N("PINDA probe calibration start"));
  3548. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3549. custom_message_state = 1;
  3550. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3551. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3552. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3553. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3554. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3555. st_synchronize();
  3556. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3557. delay_keep_alive(1000);
  3558. serialecho_temperatures();
  3559. }
  3560. //enquecommand_P(PSTR("M190 S50"));
  3561. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3562. delay_keep_alive(1000);
  3563. serialecho_temperatures();
  3564. }
  3565. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3566. current_position[Z_AXIS] = 5;
  3567. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3568. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3569. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3570. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3571. st_synchronize();
  3572. find_bed_induction_sensor_point_z(-1.f);
  3573. zero_z = current_position[Z_AXIS];
  3574. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3575. for (int i = 0; i<5; i++) {
  3576. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3577. custom_message_state = i + 2;
  3578. t_c = 60 + i * 10;
  3579. setTargetBed(t_c);
  3580. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3581. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3582. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3583. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3584. st_synchronize();
  3585. while (degBed() < t_c) {
  3586. delay_keep_alive(1000);
  3587. serialecho_temperatures();
  3588. }
  3589. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3590. delay_keep_alive(1000);
  3591. serialecho_temperatures();
  3592. }
  3593. current_position[Z_AXIS] = 5;
  3594. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3595. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3596. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3598. st_synchronize();
  3599. find_bed_induction_sensor_point_z(-1.f);
  3600. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3601. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3602. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3603. }
  3604. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3605. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3606. puts_P(_N("Temperature calibration done."));
  3607. disable_x();
  3608. disable_y();
  3609. disable_z();
  3610. disable_e0();
  3611. disable_e1();
  3612. disable_e2();
  3613. setTargetBed(0); //set bed target temperature back to 0
  3614. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3615. temp_cal_active = true;
  3616. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3617. lcd_update_enable(true);
  3618. lcd_update(2);
  3619. }
  3620. break;
  3621. #ifdef DIS
  3622. case 77:
  3623. {
  3624. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3625. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3626. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3627. float dimension_x = 40;
  3628. float dimension_y = 40;
  3629. int points_x = 40;
  3630. int points_y = 40;
  3631. float offset_x = 74;
  3632. float offset_y = 33;
  3633. if (code_seen('X')) dimension_x = code_value();
  3634. if (code_seen('Y')) dimension_y = code_value();
  3635. if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
  3636. if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
  3637. if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
  3638. if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
  3639. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3640. } break;
  3641. #endif
  3642. case 79: {
  3643. for (int i = 255; i > 0; i = i - 5) {
  3644. fanSpeed = i;
  3645. //delay_keep_alive(2000);
  3646. for (int j = 0; j < 100; j++) {
  3647. delay_keep_alive(100);
  3648. }
  3649. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3650. }
  3651. }break;
  3652. /**
  3653. * G80: Mesh-based Z probe, probes a grid and produces a
  3654. * mesh to compensate for variable bed height
  3655. *
  3656. * The S0 report the points as below
  3657. *
  3658. * +----> X-axis
  3659. * |
  3660. * |
  3661. * v Y-axis
  3662. *
  3663. */
  3664. case 80:
  3665. #ifdef MK1BP
  3666. break;
  3667. #endif //MK1BP
  3668. case_G80:
  3669. {
  3670. mesh_bed_leveling_flag = true;
  3671. static bool run = false;
  3672. #ifdef SUPPORT_VERBOSITY
  3673. int8_t verbosity_level = 0;
  3674. if (code_seen('V')) {
  3675. // Just 'V' without a number counts as V1.
  3676. char c = strchr_pointer[1];
  3677. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3678. }
  3679. #endif //SUPPORT_VERBOSITY
  3680. // Firstly check if we know where we are
  3681. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3682. // We don't know where we are! HOME!
  3683. // Push the commands to the front of the message queue in the reverse order!
  3684. // There shall be always enough space reserved for these commands.
  3685. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3686. repeatcommand_front(); // repeat G80 with all its parameters
  3687. enquecommand_front_P((PSTR("G28 W0")));
  3688. }
  3689. else {
  3690. mesh_bed_leveling_flag = false;
  3691. }
  3692. break;
  3693. }
  3694. bool temp_comp_start = true;
  3695. #ifdef PINDA_THERMISTOR
  3696. temp_comp_start = false;
  3697. #endif //PINDA_THERMISTOR
  3698. if (temp_comp_start)
  3699. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3700. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3701. temp_compensation_start();
  3702. run = true;
  3703. repeatcommand_front(); // repeat G80 with all its parameters
  3704. enquecommand_front_P((PSTR("G28 W0")));
  3705. }
  3706. else {
  3707. mesh_bed_leveling_flag = false;
  3708. }
  3709. break;
  3710. }
  3711. run = false;
  3712. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3713. mesh_bed_leveling_flag = false;
  3714. break;
  3715. }
  3716. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3717. unsigned int custom_message_type_old = custom_message_type;
  3718. unsigned int custom_message_state_old = custom_message_state;
  3719. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3720. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3721. lcd_update(1);
  3722. mbl.reset(); //reset mesh bed leveling
  3723. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3724. // consumed during the first movements following this statement.
  3725. babystep_undo();
  3726. // Cycle through all points and probe them
  3727. // First move up. During this first movement, the babystepping will be reverted.
  3728. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3729. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3730. // The move to the first calibration point.
  3731. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3732. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3733. #ifdef SUPPORT_VERBOSITY
  3734. if (verbosity_level >= 1)
  3735. {
  3736. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3737. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3738. }
  3739. #endif //SUPPORT_VERBOSITY
  3740. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3741. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3742. // Wait until the move is finished.
  3743. st_synchronize();
  3744. int mesh_point = 0; //index number of calibration point
  3745. int ix = 0;
  3746. int iy = 0;
  3747. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3748. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3749. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3750. #ifdef SUPPORT_VERBOSITY
  3751. if (verbosity_level >= 1) {
  3752. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3753. }
  3754. #endif // SUPPORT_VERBOSITY
  3755. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3756. const char *kill_message = NULL;
  3757. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3758. // Get coords of a measuring point.
  3759. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3760. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3761. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3762. float z0 = 0.f;
  3763. if (has_z && mesh_point > 0) {
  3764. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3765. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3766. //#if 0
  3767. #ifdef SUPPORT_VERBOSITY
  3768. if (verbosity_level >= 1) {
  3769. SERIAL_ECHOLNPGM("");
  3770. SERIAL_ECHOPGM("Bed leveling, point: ");
  3771. MYSERIAL.print(mesh_point);
  3772. SERIAL_ECHOPGM(", calibration z: ");
  3773. MYSERIAL.print(z0, 5);
  3774. SERIAL_ECHOLNPGM("");
  3775. }
  3776. #endif // SUPPORT_VERBOSITY
  3777. //#endif
  3778. }
  3779. // Move Z up to MESH_HOME_Z_SEARCH.
  3780. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3781. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3782. st_synchronize();
  3783. // Move to XY position of the sensor point.
  3784. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3785. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3786. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3787. #ifdef SUPPORT_VERBOSITY
  3788. if (verbosity_level >= 1) {
  3789. SERIAL_PROTOCOL(mesh_point);
  3790. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3791. }
  3792. #endif // SUPPORT_VERBOSITY
  3793. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3794. st_synchronize();
  3795. // Go down until endstop is hit
  3796. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3797. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3798. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3799. break;
  3800. }
  3801. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3802. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3803. break;
  3804. }
  3805. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3806. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3807. break;
  3808. }
  3809. #ifdef SUPPORT_VERBOSITY
  3810. if (verbosity_level >= 10) {
  3811. SERIAL_ECHOPGM("X: ");
  3812. MYSERIAL.print(current_position[X_AXIS], 5);
  3813. SERIAL_ECHOLNPGM("");
  3814. SERIAL_ECHOPGM("Y: ");
  3815. MYSERIAL.print(current_position[Y_AXIS], 5);
  3816. SERIAL_PROTOCOLPGM("\n");
  3817. }
  3818. #endif // SUPPORT_VERBOSITY
  3819. float offset_z = 0;
  3820. #ifdef PINDA_THERMISTOR
  3821. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3822. #endif //PINDA_THERMISTOR
  3823. // #ifdef SUPPORT_VERBOSITY
  3824. /* if (verbosity_level >= 1)
  3825. {
  3826. SERIAL_ECHOPGM("mesh bed leveling: ");
  3827. MYSERIAL.print(current_position[Z_AXIS], 5);
  3828. SERIAL_ECHOPGM(" offset: ");
  3829. MYSERIAL.print(offset_z, 5);
  3830. SERIAL_ECHOLNPGM("");
  3831. }*/
  3832. // #endif // SUPPORT_VERBOSITY
  3833. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3834. custom_message_state--;
  3835. mesh_point++;
  3836. lcd_update(1);
  3837. }
  3838. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3839. #ifdef SUPPORT_VERBOSITY
  3840. if (verbosity_level >= 20) {
  3841. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3842. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3843. MYSERIAL.print(current_position[Z_AXIS], 5);
  3844. }
  3845. #endif // SUPPORT_VERBOSITY
  3846. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3847. st_synchronize();
  3848. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3849. kill(kill_message);
  3850. SERIAL_ECHOLNPGM("killed");
  3851. }
  3852. clean_up_after_endstop_move();
  3853. // SERIAL_ECHOLNPGM("clean up finished ");
  3854. bool apply_temp_comp = true;
  3855. #ifdef PINDA_THERMISTOR
  3856. apply_temp_comp = false;
  3857. #endif
  3858. if (apply_temp_comp)
  3859. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3860. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3861. // SERIAL_ECHOLNPGM("babystep applied");
  3862. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3863. #ifdef SUPPORT_VERBOSITY
  3864. if (verbosity_level >= 1) {
  3865. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3866. }
  3867. #endif // SUPPORT_VERBOSITY
  3868. for (uint8_t i = 0; i < 4; ++i) {
  3869. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3870. long correction = 0;
  3871. if (code_seen(codes[i]))
  3872. correction = code_value_long();
  3873. else if (eeprom_bed_correction_valid) {
  3874. unsigned char *addr = (i < 2) ?
  3875. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3876. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3877. correction = eeprom_read_int8(addr);
  3878. }
  3879. if (correction == 0)
  3880. continue;
  3881. float offset = float(correction) * 0.001f;
  3882. if (fabs(offset) > 0.101f) {
  3883. SERIAL_ERROR_START;
  3884. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3885. SERIAL_ECHO(offset);
  3886. SERIAL_ECHOLNPGM(" microns");
  3887. }
  3888. else {
  3889. switch (i) {
  3890. case 0:
  3891. for (uint8_t row = 0; row < 3; ++row) {
  3892. mbl.z_values[row][1] += 0.5f * offset;
  3893. mbl.z_values[row][0] += offset;
  3894. }
  3895. break;
  3896. case 1:
  3897. for (uint8_t row = 0; row < 3; ++row) {
  3898. mbl.z_values[row][1] += 0.5f * offset;
  3899. mbl.z_values[row][2] += offset;
  3900. }
  3901. break;
  3902. case 2:
  3903. for (uint8_t col = 0; col < 3; ++col) {
  3904. mbl.z_values[1][col] += 0.5f * offset;
  3905. mbl.z_values[0][col] += offset;
  3906. }
  3907. break;
  3908. case 3:
  3909. for (uint8_t col = 0; col < 3; ++col) {
  3910. mbl.z_values[1][col] += 0.5f * offset;
  3911. mbl.z_values[2][col] += offset;
  3912. }
  3913. break;
  3914. }
  3915. }
  3916. }
  3917. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3918. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3919. // SERIAL_ECHOLNPGM("Upsample finished");
  3920. mbl.active = 1; //activate mesh bed leveling
  3921. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3922. go_home_with_z_lift();
  3923. // SERIAL_ECHOLNPGM("Go home finished");
  3924. //unretract (after PINDA preheat retraction)
  3925. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3926. current_position[E_AXIS] += default_retraction;
  3927. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3928. }
  3929. KEEPALIVE_STATE(NOT_BUSY);
  3930. // Restore custom message state
  3931. lcd_setstatuspgm(_T(WELCOME_MSG));
  3932. custom_message_type = custom_message_type_old;
  3933. custom_message_state = custom_message_state_old;
  3934. mesh_bed_leveling_flag = false;
  3935. mesh_bed_run_from_menu = false;
  3936. lcd_update(2);
  3937. }
  3938. break;
  3939. /**
  3940. * G81: Print mesh bed leveling status and bed profile if activated
  3941. */
  3942. case 81:
  3943. if (mbl.active) {
  3944. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3945. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3946. SERIAL_PROTOCOLPGM(",");
  3947. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3948. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3949. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3950. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3951. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3952. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3953. SERIAL_PROTOCOLPGM(" ");
  3954. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3955. }
  3956. SERIAL_PROTOCOLPGM("\n");
  3957. }
  3958. }
  3959. else
  3960. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3961. break;
  3962. #if 0
  3963. /**
  3964. * G82: Single Z probe at current location
  3965. *
  3966. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3967. *
  3968. */
  3969. case 82:
  3970. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3971. setup_for_endstop_move();
  3972. find_bed_induction_sensor_point_z();
  3973. clean_up_after_endstop_move();
  3974. SERIAL_PROTOCOLPGM("Bed found at: ");
  3975. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3976. SERIAL_PROTOCOLPGM("\n");
  3977. break;
  3978. /**
  3979. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3980. */
  3981. case 83:
  3982. {
  3983. int babystepz = code_seen('S') ? code_value() : 0;
  3984. int BabyPosition = code_seen('P') ? code_value() : 0;
  3985. if (babystepz != 0) {
  3986. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3987. // Is the axis indexed starting with zero or one?
  3988. if (BabyPosition > 4) {
  3989. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3990. }else{
  3991. // Save it to the eeprom
  3992. babystepLoadZ = babystepz;
  3993. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3994. // adjust the Z
  3995. babystepsTodoZadd(babystepLoadZ);
  3996. }
  3997. }
  3998. }
  3999. break;
  4000. /**
  4001. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4002. */
  4003. case 84:
  4004. babystepsTodoZsubtract(babystepLoadZ);
  4005. // babystepLoadZ = 0;
  4006. break;
  4007. /**
  4008. * G85: Prusa3D specific: Pick best babystep
  4009. */
  4010. case 85:
  4011. lcd_pick_babystep();
  4012. break;
  4013. #endif
  4014. /**
  4015. * G86: Prusa3D specific: Disable babystep correction after home.
  4016. * This G-code will be performed at the start of a calibration script.
  4017. */
  4018. case 86:
  4019. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4020. break;
  4021. /**
  4022. * G87: Prusa3D specific: Enable babystep correction after home
  4023. * This G-code will be performed at the end of a calibration script.
  4024. */
  4025. case 87:
  4026. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4027. break;
  4028. /**
  4029. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4030. */
  4031. case 88:
  4032. break;
  4033. #endif // ENABLE_MESH_BED_LEVELING
  4034. case 90: // G90
  4035. relative_mode = false;
  4036. break;
  4037. case 91: // G91
  4038. relative_mode = true;
  4039. break;
  4040. case 92: // G92
  4041. if(!code_seen(axis_codes[E_AXIS]))
  4042. st_synchronize();
  4043. for(int8_t i=0; i < NUM_AXIS; i++) {
  4044. if(code_seen(axis_codes[i])) {
  4045. if(i == E_AXIS) {
  4046. current_position[i] = code_value();
  4047. plan_set_e_position(current_position[E_AXIS]);
  4048. }
  4049. else {
  4050. current_position[i] = code_value()+add_homing[i];
  4051. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4052. }
  4053. }
  4054. }
  4055. break;
  4056. case 98: // G98 (activate farm mode)
  4057. farm_mode = 1;
  4058. PingTime = millis();
  4059. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4060. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4061. SilentModeMenu = SILENT_MODE_OFF;
  4062. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4063. break;
  4064. case 99: // G99 (deactivate farm mode)
  4065. farm_mode = 0;
  4066. lcd_printer_connected();
  4067. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4068. lcd_update(2);
  4069. break;
  4070. default:
  4071. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4072. }
  4073. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4074. gcode_in_progress = 0;
  4075. } // end if(code_seen('G'))
  4076. else if(code_seen('M'))
  4077. {
  4078. int index;
  4079. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4080. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4081. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4082. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4083. } else
  4084. {
  4085. mcode_in_progress = (int)code_value();
  4086. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4087. switch(mcode_in_progress)
  4088. {
  4089. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4090. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4091. {
  4092. char *src = strchr_pointer + 2;
  4093. codenum = 0;
  4094. bool hasP = false, hasS = false;
  4095. if (code_seen('P')) {
  4096. codenum = code_value(); // milliseconds to wait
  4097. hasP = codenum > 0;
  4098. }
  4099. if (code_seen('S')) {
  4100. codenum = code_value() * 1000; // seconds to wait
  4101. hasS = codenum > 0;
  4102. }
  4103. starpos = strchr(src, '*');
  4104. if (starpos != NULL) *(starpos) = '\0';
  4105. while (*src == ' ') ++src;
  4106. if (!hasP && !hasS && *src != '\0') {
  4107. lcd_setstatus(src);
  4108. } else {
  4109. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4110. }
  4111. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4112. st_synchronize();
  4113. previous_millis_cmd = millis();
  4114. if (codenum > 0){
  4115. codenum += millis(); // keep track of when we started waiting
  4116. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4117. while(millis() < codenum && !lcd_clicked()){
  4118. manage_heater();
  4119. manage_inactivity(true);
  4120. lcd_update(0);
  4121. }
  4122. KEEPALIVE_STATE(IN_HANDLER);
  4123. lcd_ignore_click(false);
  4124. }else{
  4125. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4126. while(!lcd_clicked()){
  4127. manage_heater();
  4128. manage_inactivity(true);
  4129. lcd_update(0);
  4130. }
  4131. KEEPALIVE_STATE(IN_HANDLER);
  4132. }
  4133. if (IS_SD_PRINTING)
  4134. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4135. else
  4136. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4137. }
  4138. break;
  4139. case 17:
  4140. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4141. enable_x();
  4142. enable_y();
  4143. enable_z();
  4144. enable_e0();
  4145. enable_e1();
  4146. enable_e2();
  4147. break;
  4148. #ifdef SDSUPPORT
  4149. case 20: // M20 - list SD card
  4150. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4151. card.ls();
  4152. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4153. break;
  4154. case 21: // M21 - init SD card
  4155. card.initsd();
  4156. break;
  4157. case 22: //M22 - release SD card
  4158. card.release();
  4159. break;
  4160. case 23: //M23 - Select file
  4161. starpos = (strchr(strchr_pointer + 4,'*'));
  4162. if(starpos!=NULL)
  4163. *(starpos)='\0';
  4164. card.openFile(strchr_pointer + 4,true);
  4165. break;
  4166. case 24: //M24 - Start SD print
  4167. if (!card.paused)
  4168. failstats_reset_print();
  4169. card.startFileprint();
  4170. starttime=millis();
  4171. break;
  4172. case 25: //M25 - Pause SD print
  4173. card.pauseSDPrint();
  4174. break;
  4175. case 26: //M26 - Set SD index
  4176. if(card.cardOK && code_seen('S')) {
  4177. card.setIndex(code_value_long());
  4178. }
  4179. break;
  4180. case 27: //M27 - Get SD status
  4181. card.getStatus();
  4182. break;
  4183. case 28: //M28 - Start SD write
  4184. starpos = (strchr(strchr_pointer + 4,'*'));
  4185. if(starpos != NULL){
  4186. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4187. strchr_pointer = strchr(npos,' ') + 1;
  4188. *(starpos) = '\0';
  4189. }
  4190. card.openFile(strchr_pointer+4,false);
  4191. break;
  4192. case 29: //M29 - Stop SD write
  4193. //processed in write to file routine above
  4194. //card,saving = false;
  4195. break;
  4196. case 30: //M30 <filename> Delete File
  4197. if (card.cardOK){
  4198. card.closefile();
  4199. starpos = (strchr(strchr_pointer + 4,'*'));
  4200. if(starpos != NULL){
  4201. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4202. strchr_pointer = strchr(npos,' ') + 1;
  4203. *(starpos) = '\0';
  4204. }
  4205. card.removeFile(strchr_pointer + 4);
  4206. }
  4207. break;
  4208. case 32: //M32 - Select file and start SD print
  4209. {
  4210. if(card.sdprinting) {
  4211. st_synchronize();
  4212. }
  4213. starpos = (strchr(strchr_pointer + 4,'*'));
  4214. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4215. if(namestartpos==NULL)
  4216. {
  4217. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4218. }
  4219. else
  4220. namestartpos++; //to skip the '!'
  4221. if(starpos!=NULL)
  4222. *(starpos)='\0';
  4223. bool call_procedure=(code_seen('P'));
  4224. if(strchr_pointer>namestartpos)
  4225. call_procedure=false; //false alert, 'P' found within filename
  4226. if( card.cardOK )
  4227. {
  4228. card.openFile(namestartpos,true,!call_procedure);
  4229. if(code_seen('S'))
  4230. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4231. card.setIndex(code_value_long());
  4232. card.startFileprint();
  4233. if(!call_procedure)
  4234. starttime=millis(); //procedure calls count as normal print time.
  4235. }
  4236. } break;
  4237. case 928: //M928 - Start SD write
  4238. starpos = (strchr(strchr_pointer + 5,'*'));
  4239. if(starpos != NULL){
  4240. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4241. strchr_pointer = strchr(npos,' ') + 1;
  4242. *(starpos) = '\0';
  4243. }
  4244. card.openLogFile(strchr_pointer+5);
  4245. break;
  4246. #endif //SDSUPPORT
  4247. case 31: //M31 take time since the start of the SD print or an M109 command
  4248. {
  4249. stoptime=millis();
  4250. char time[30];
  4251. unsigned long t=(stoptime-starttime)/1000;
  4252. int sec,min;
  4253. min=t/60;
  4254. sec=t%60;
  4255. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4256. SERIAL_ECHO_START;
  4257. SERIAL_ECHOLN(time);
  4258. lcd_setstatus(time);
  4259. autotempShutdown();
  4260. }
  4261. break;
  4262. case 42: //M42 -Change pin status via gcode
  4263. if (code_seen('S'))
  4264. {
  4265. int pin_status = code_value();
  4266. int pin_number = LED_PIN;
  4267. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4268. pin_number = code_value();
  4269. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4270. {
  4271. if (sensitive_pins[i] == pin_number)
  4272. {
  4273. pin_number = -1;
  4274. break;
  4275. }
  4276. }
  4277. #if defined(FAN_PIN) && FAN_PIN > -1
  4278. if (pin_number == FAN_PIN)
  4279. fanSpeed = pin_status;
  4280. #endif
  4281. if (pin_number > -1)
  4282. {
  4283. pinMode(pin_number, OUTPUT);
  4284. digitalWrite(pin_number, pin_status);
  4285. analogWrite(pin_number, pin_status);
  4286. }
  4287. }
  4288. break;
  4289. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4290. // Reset the baby step value and the baby step applied flag.
  4291. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4292. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4293. // Reset the skew and offset in both RAM and EEPROM.
  4294. reset_bed_offset_and_skew();
  4295. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4296. // the planner will not perform any adjustments in the XY plane.
  4297. // Wait for the motors to stop and update the current position with the absolute values.
  4298. world2machine_revert_to_uncorrected();
  4299. break;
  4300. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4301. {
  4302. int8_t verbosity_level = 0;
  4303. bool only_Z = code_seen('Z');
  4304. #ifdef SUPPORT_VERBOSITY
  4305. if (code_seen('V'))
  4306. {
  4307. // Just 'V' without a number counts as V1.
  4308. char c = strchr_pointer[1];
  4309. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4310. }
  4311. #endif //SUPPORT_VERBOSITY
  4312. gcode_M45(only_Z, verbosity_level);
  4313. }
  4314. break;
  4315. /*
  4316. case 46:
  4317. {
  4318. // M46: Prusa3D: Show the assigned IP address.
  4319. uint8_t ip[4];
  4320. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4321. if (hasIP) {
  4322. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4323. SERIAL_ECHO(int(ip[0]));
  4324. SERIAL_ECHOPGM(".");
  4325. SERIAL_ECHO(int(ip[1]));
  4326. SERIAL_ECHOPGM(".");
  4327. SERIAL_ECHO(int(ip[2]));
  4328. SERIAL_ECHOPGM(".");
  4329. SERIAL_ECHO(int(ip[3]));
  4330. SERIAL_ECHOLNPGM("");
  4331. } else {
  4332. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4333. }
  4334. break;
  4335. }
  4336. */
  4337. case 47:
  4338. // M47: Prusa3D: Show end stops dialog on the display.
  4339. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4340. lcd_diag_show_end_stops();
  4341. KEEPALIVE_STATE(IN_HANDLER);
  4342. break;
  4343. #if 0
  4344. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4345. {
  4346. // Disable the default update procedure of the display. We will do a modal dialog.
  4347. lcd_update_enable(false);
  4348. // Let the planner use the uncorrected coordinates.
  4349. mbl.reset();
  4350. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4351. // the planner will not perform any adjustments in the XY plane.
  4352. // Wait for the motors to stop and update the current position with the absolute values.
  4353. world2machine_revert_to_uncorrected();
  4354. // Move the print head close to the bed.
  4355. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4356. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4357. st_synchronize();
  4358. // Home in the XY plane.
  4359. set_destination_to_current();
  4360. setup_for_endstop_move();
  4361. home_xy();
  4362. int8_t verbosity_level = 0;
  4363. if (code_seen('V')) {
  4364. // Just 'V' without a number counts as V1.
  4365. char c = strchr_pointer[1];
  4366. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4367. }
  4368. bool success = scan_bed_induction_points(verbosity_level);
  4369. clean_up_after_endstop_move();
  4370. // Print head up.
  4371. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4372. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4373. st_synchronize();
  4374. lcd_update_enable(true);
  4375. break;
  4376. }
  4377. #endif
  4378. // M48 Z-Probe repeatability measurement function.
  4379. //
  4380. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4381. //
  4382. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4383. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4384. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4385. // regenerated.
  4386. //
  4387. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4388. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4389. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4390. //
  4391. #ifdef ENABLE_AUTO_BED_LEVELING
  4392. #ifdef Z_PROBE_REPEATABILITY_TEST
  4393. case 48: // M48 Z-Probe repeatability
  4394. {
  4395. #if Z_MIN_PIN == -1
  4396. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4397. #endif
  4398. double sum=0.0;
  4399. double mean=0.0;
  4400. double sigma=0.0;
  4401. double sample_set[50];
  4402. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4403. double X_current, Y_current, Z_current;
  4404. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4405. if (code_seen('V') || code_seen('v')) {
  4406. verbose_level = code_value();
  4407. if (verbose_level<0 || verbose_level>4 ) {
  4408. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4409. goto Sigma_Exit;
  4410. }
  4411. }
  4412. if (verbose_level > 0) {
  4413. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4414. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4415. }
  4416. if (code_seen('n')) {
  4417. n_samples = code_value();
  4418. if (n_samples<4 || n_samples>50 ) {
  4419. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4420. goto Sigma_Exit;
  4421. }
  4422. }
  4423. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4424. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4425. Z_current = st_get_position_mm(Z_AXIS);
  4426. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4427. ext_position = st_get_position_mm(E_AXIS);
  4428. if (code_seen('X') || code_seen('x') ) {
  4429. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4430. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4431. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4432. goto Sigma_Exit;
  4433. }
  4434. }
  4435. if (code_seen('Y') || code_seen('y') ) {
  4436. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4437. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4438. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4439. goto Sigma_Exit;
  4440. }
  4441. }
  4442. if (code_seen('L') || code_seen('l') ) {
  4443. n_legs = code_value();
  4444. if ( n_legs==1 )
  4445. n_legs = 2;
  4446. if ( n_legs<0 || n_legs>15 ) {
  4447. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4448. goto Sigma_Exit;
  4449. }
  4450. }
  4451. //
  4452. // Do all the preliminary setup work. First raise the probe.
  4453. //
  4454. st_synchronize();
  4455. plan_bed_level_matrix.set_to_identity();
  4456. plan_buffer_line( X_current, Y_current, Z_start_location,
  4457. ext_position,
  4458. homing_feedrate[Z_AXIS]/60,
  4459. active_extruder);
  4460. st_synchronize();
  4461. //
  4462. // Now get everything to the specified probe point So we can safely do a probe to
  4463. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4464. // use that as a starting point for each probe.
  4465. //
  4466. if (verbose_level > 2)
  4467. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4468. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4469. ext_position,
  4470. homing_feedrate[X_AXIS]/60,
  4471. active_extruder);
  4472. st_synchronize();
  4473. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4474. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4475. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4476. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4477. //
  4478. // OK, do the inital probe to get us close to the bed.
  4479. // Then retrace the right amount and use that in subsequent probes
  4480. //
  4481. setup_for_endstop_move();
  4482. run_z_probe();
  4483. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4484. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4485. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4486. ext_position,
  4487. homing_feedrate[X_AXIS]/60,
  4488. active_extruder);
  4489. st_synchronize();
  4490. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4491. for( n=0; n<n_samples; n++) {
  4492. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4493. if ( n_legs) {
  4494. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4495. int rotational_direction, l;
  4496. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4497. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4498. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4499. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4500. //SERIAL_ECHOPAIR(" theta: ",theta);
  4501. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4502. //SERIAL_PROTOCOLLNPGM("");
  4503. for( l=0; l<n_legs-1; l++) {
  4504. if (rotational_direction==1)
  4505. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4506. else
  4507. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4508. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4509. if ( radius<0.0 )
  4510. radius = -radius;
  4511. X_current = X_probe_location + cos(theta) * radius;
  4512. Y_current = Y_probe_location + sin(theta) * radius;
  4513. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4514. X_current = X_MIN_POS;
  4515. if ( X_current>X_MAX_POS)
  4516. X_current = X_MAX_POS;
  4517. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4518. Y_current = Y_MIN_POS;
  4519. if ( Y_current>Y_MAX_POS)
  4520. Y_current = Y_MAX_POS;
  4521. if (verbose_level>3 ) {
  4522. SERIAL_ECHOPAIR("x: ", X_current);
  4523. SERIAL_ECHOPAIR("y: ", Y_current);
  4524. SERIAL_PROTOCOLLNPGM("");
  4525. }
  4526. do_blocking_move_to( X_current, Y_current, Z_current );
  4527. }
  4528. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4529. }
  4530. setup_for_endstop_move();
  4531. run_z_probe();
  4532. sample_set[n] = current_position[Z_AXIS];
  4533. //
  4534. // Get the current mean for the data points we have so far
  4535. //
  4536. sum=0.0;
  4537. for( j=0; j<=n; j++) {
  4538. sum = sum + sample_set[j];
  4539. }
  4540. mean = sum / (double (n+1));
  4541. //
  4542. // Now, use that mean to calculate the standard deviation for the
  4543. // data points we have so far
  4544. //
  4545. sum=0.0;
  4546. for( j=0; j<=n; j++) {
  4547. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4548. }
  4549. sigma = sqrt( sum / (double (n+1)) );
  4550. if (verbose_level > 1) {
  4551. SERIAL_PROTOCOL(n+1);
  4552. SERIAL_PROTOCOL(" of ");
  4553. SERIAL_PROTOCOL(n_samples);
  4554. SERIAL_PROTOCOLPGM(" z: ");
  4555. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4556. }
  4557. if (verbose_level > 2) {
  4558. SERIAL_PROTOCOL(" mean: ");
  4559. SERIAL_PROTOCOL_F(mean,6);
  4560. SERIAL_PROTOCOL(" sigma: ");
  4561. SERIAL_PROTOCOL_F(sigma,6);
  4562. }
  4563. if (verbose_level > 0)
  4564. SERIAL_PROTOCOLPGM("\n");
  4565. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4566. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4567. st_synchronize();
  4568. }
  4569. delay(1000);
  4570. clean_up_after_endstop_move();
  4571. // enable_endstops(true);
  4572. if (verbose_level > 0) {
  4573. SERIAL_PROTOCOLPGM("Mean: ");
  4574. SERIAL_PROTOCOL_F(mean, 6);
  4575. SERIAL_PROTOCOLPGM("\n");
  4576. }
  4577. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4578. SERIAL_PROTOCOL_F(sigma, 6);
  4579. SERIAL_PROTOCOLPGM("\n\n");
  4580. Sigma_Exit:
  4581. break;
  4582. }
  4583. #endif // Z_PROBE_REPEATABILITY_TEST
  4584. #endif // ENABLE_AUTO_BED_LEVELING
  4585. case 73: //M73 show percent done and time remaining
  4586. if(code_seen('P')) print_percent_done_normal = code_value();
  4587. if(code_seen('R')) print_time_remaining_normal = code_value();
  4588. if(code_seen('Q')) print_percent_done_silent = code_value();
  4589. if(code_seen('S')) print_time_remaining_silent = code_value();
  4590. {
  4591. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4592. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4593. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4594. }
  4595. break;
  4596. case 104: // M104
  4597. {
  4598. uint8_t extruder;
  4599. if(setTargetedHotend(104,extruder)){
  4600. break;
  4601. }
  4602. if (code_seen('S'))
  4603. {
  4604. setTargetHotendSafe(code_value(), extruder);
  4605. }
  4606. setWatch();
  4607. break;
  4608. }
  4609. case 112: // M112 -Emergency Stop
  4610. kill(_n(""), 3);
  4611. break;
  4612. case 140: // M140 set bed temp
  4613. if (code_seen('S')) setTargetBed(code_value());
  4614. break;
  4615. case 105 : // M105
  4616. {
  4617. uint8_t extruder;
  4618. if(setTargetedHotend(105, extruder)){
  4619. break;
  4620. }
  4621. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4622. SERIAL_PROTOCOLPGM("ok T:");
  4623. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4624. SERIAL_PROTOCOLPGM(" /");
  4625. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4626. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4627. SERIAL_PROTOCOLPGM(" B:");
  4628. SERIAL_PROTOCOL_F(degBed(),1);
  4629. SERIAL_PROTOCOLPGM(" /");
  4630. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4631. #endif //TEMP_BED_PIN
  4632. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4633. SERIAL_PROTOCOLPGM(" T");
  4634. SERIAL_PROTOCOL(cur_extruder);
  4635. SERIAL_PROTOCOLPGM(":");
  4636. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4637. SERIAL_PROTOCOLPGM(" /");
  4638. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4639. }
  4640. #else
  4641. SERIAL_ERROR_START;
  4642. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4643. #endif
  4644. SERIAL_PROTOCOLPGM(" @:");
  4645. #ifdef EXTRUDER_WATTS
  4646. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4647. SERIAL_PROTOCOLPGM("W");
  4648. #else
  4649. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4650. #endif
  4651. SERIAL_PROTOCOLPGM(" B@:");
  4652. #ifdef BED_WATTS
  4653. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4654. SERIAL_PROTOCOLPGM("W");
  4655. #else
  4656. SERIAL_PROTOCOL(getHeaterPower(-1));
  4657. #endif
  4658. #ifdef PINDA_THERMISTOR
  4659. SERIAL_PROTOCOLPGM(" P:");
  4660. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4661. #endif //PINDA_THERMISTOR
  4662. #ifdef AMBIENT_THERMISTOR
  4663. SERIAL_PROTOCOLPGM(" A:");
  4664. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4665. #endif //AMBIENT_THERMISTOR
  4666. #ifdef SHOW_TEMP_ADC_VALUES
  4667. {float raw = 0.0;
  4668. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4669. SERIAL_PROTOCOLPGM(" ADC B:");
  4670. SERIAL_PROTOCOL_F(degBed(),1);
  4671. SERIAL_PROTOCOLPGM("C->");
  4672. raw = rawBedTemp();
  4673. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4674. SERIAL_PROTOCOLPGM(" Rb->");
  4675. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4676. SERIAL_PROTOCOLPGM(" Rxb->");
  4677. SERIAL_PROTOCOL_F(raw, 5);
  4678. #endif
  4679. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4680. SERIAL_PROTOCOLPGM(" T");
  4681. SERIAL_PROTOCOL(cur_extruder);
  4682. SERIAL_PROTOCOLPGM(":");
  4683. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4684. SERIAL_PROTOCOLPGM("C->");
  4685. raw = rawHotendTemp(cur_extruder);
  4686. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4687. SERIAL_PROTOCOLPGM(" Rt");
  4688. SERIAL_PROTOCOL(cur_extruder);
  4689. SERIAL_PROTOCOLPGM("->");
  4690. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4691. SERIAL_PROTOCOLPGM(" Rx");
  4692. SERIAL_PROTOCOL(cur_extruder);
  4693. SERIAL_PROTOCOLPGM("->");
  4694. SERIAL_PROTOCOL_F(raw, 5);
  4695. }}
  4696. #endif
  4697. SERIAL_PROTOCOLLN("");
  4698. KEEPALIVE_STATE(NOT_BUSY);
  4699. return;
  4700. break;
  4701. }
  4702. case 109:
  4703. {// M109 - Wait for extruder heater to reach target.
  4704. uint8_t extruder;
  4705. if(setTargetedHotend(109, extruder)){
  4706. break;
  4707. }
  4708. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4709. heating_status = 1;
  4710. if (farm_mode) { prusa_statistics(1); };
  4711. #ifdef AUTOTEMP
  4712. autotemp_enabled=false;
  4713. #endif
  4714. if (code_seen('S')) {
  4715. setTargetHotendSafe(code_value(), extruder);
  4716. CooldownNoWait = true;
  4717. } else if (code_seen('R')) {
  4718. setTargetHotendSafe(code_value(), extruder);
  4719. CooldownNoWait = false;
  4720. }
  4721. #ifdef AUTOTEMP
  4722. if (code_seen('S')) autotemp_min=code_value();
  4723. if (code_seen('B')) autotemp_max=code_value();
  4724. if (code_seen('F'))
  4725. {
  4726. autotemp_factor=code_value();
  4727. autotemp_enabled=true;
  4728. }
  4729. #endif
  4730. setWatch();
  4731. codenum = millis();
  4732. /* See if we are heating up or cooling down */
  4733. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4734. KEEPALIVE_STATE(NOT_BUSY);
  4735. cancel_heatup = false;
  4736. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4737. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4738. KEEPALIVE_STATE(IN_HANDLER);
  4739. heating_status = 2;
  4740. if (farm_mode) { prusa_statistics(2); };
  4741. //starttime=millis();
  4742. previous_millis_cmd = millis();
  4743. }
  4744. break;
  4745. case 190: // M190 - Wait for bed heater to reach target.
  4746. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4747. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4748. heating_status = 3;
  4749. if (farm_mode) { prusa_statistics(1); };
  4750. if (code_seen('S'))
  4751. {
  4752. setTargetBed(code_value());
  4753. CooldownNoWait = true;
  4754. }
  4755. else if (code_seen('R'))
  4756. {
  4757. setTargetBed(code_value());
  4758. CooldownNoWait = false;
  4759. }
  4760. codenum = millis();
  4761. cancel_heatup = false;
  4762. target_direction = isHeatingBed(); // true if heating, false if cooling
  4763. KEEPALIVE_STATE(NOT_BUSY);
  4764. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4765. {
  4766. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4767. {
  4768. if (!farm_mode) {
  4769. float tt = degHotend(active_extruder);
  4770. SERIAL_PROTOCOLPGM("T:");
  4771. SERIAL_PROTOCOL(tt);
  4772. SERIAL_PROTOCOLPGM(" E:");
  4773. SERIAL_PROTOCOL((int)active_extruder);
  4774. SERIAL_PROTOCOLPGM(" B:");
  4775. SERIAL_PROTOCOL_F(degBed(), 1);
  4776. SERIAL_PROTOCOLLN("");
  4777. }
  4778. codenum = millis();
  4779. }
  4780. manage_heater();
  4781. manage_inactivity();
  4782. lcd_update(0);
  4783. }
  4784. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4785. KEEPALIVE_STATE(IN_HANDLER);
  4786. heating_status = 4;
  4787. previous_millis_cmd = millis();
  4788. #endif
  4789. break;
  4790. #if defined(FAN_PIN) && FAN_PIN > -1
  4791. case 106: //M106 Fan On
  4792. if (code_seen('S')){
  4793. fanSpeed=constrain(code_value(),0,255);
  4794. }
  4795. else {
  4796. fanSpeed=255;
  4797. }
  4798. break;
  4799. case 107: //M107 Fan Off
  4800. fanSpeed = 0;
  4801. break;
  4802. #endif //FAN_PIN
  4803. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4804. case 80: // M80 - Turn on Power Supply
  4805. SET_OUTPUT(PS_ON_PIN); //GND
  4806. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4807. // If you have a switch on suicide pin, this is useful
  4808. // if you want to start another print with suicide feature after
  4809. // a print without suicide...
  4810. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4811. SET_OUTPUT(SUICIDE_PIN);
  4812. WRITE(SUICIDE_PIN, HIGH);
  4813. #endif
  4814. powersupply = true;
  4815. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4816. lcd_update(0);
  4817. break;
  4818. #endif
  4819. case 81: // M81 - Turn off Power Supply
  4820. disable_heater();
  4821. st_synchronize();
  4822. disable_e0();
  4823. disable_e1();
  4824. disable_e2();
  4825. finishAndDisableSteppers();
  4826. fanSpeed = 0;
  4827. delay(1000); // Wait a little before to switch off
  4828. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4829. st_synchronize();
  4830. suicide();
  4831. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4832. SET_OUTPUT(PS_ON_PIN);
  4833. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4834. #endif
  4835. powersupply = false;
  4836. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4837. lcd_update(0);
  4838. break;
  4839. case 82:
  4840. axis_relative_modes[3] = false;
  4841. break;
  4842. case 83:
  4843. axis_relative_modes[3] = true;
  4844. break;
  4845. case 18: //compatibility
  4846. case 84: // M84
  4847. if(code_seen('S')){
  4848. stepper_inactive_time = code_value() * 1000;
  4849. }
  4850. else
  4851. {
  4852. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4853. if(all_axis)
  4854. {
  4855. st_synchronize();
  4856. disable_e0();
  4857. disable_e1();
  4858. disable_e2();
  4859. finishAndDisableSteppers();
  4860. }
  4861. else
  4862. {
  4863. st_synchronize();
  4864. if (code_seen('X')) disable_x();
  4865. if (code_seen('Y')) disable_y();
  4866. if (code_seen('Z')) disable_z();
  4867. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4868. if (code_seen('E')) {
  4869. disable_e0();
  4870. disable_e1();
  4871. disable_e2();
  4872. }
  4873. #endif
  4874. }
  4875. }
  4876. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4877. print_time_remaining_init();
  4878. snmm_filaments_used = 0;
  4879. break;
  4880. case 85: // M85
  4881. if(code_seen('S')) {
  4882. max_inactive_time = code_value() * 1000;
  4883. }
  4884. break;
  4885. #ifdef SAFETYTIMER
  4886. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4887. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4888. if (code_seen('S')) {
  4889. safetytimer_inactive_time = code_value() * 1000;
  4890. safetyTimer.start();
  4891. }
  4892. break;
  4893. #endif
  4894. case 92: // M92
  4895. for(int8_t i=0; i < NUM_AXIS; i++)
  4896. {
  4897. if(code_seen(axis_codes[i]))
  4898. {
  4899. if(i == 3) { // E
  4900. float value = code_value();
  4901. if(value < 20.0) {
  4902. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4903. max_jerk[E_AXIS] *= factor;
  4904. max_feedrate[i] *= factor;
  4905. axis_steps_per_sqr_second[i] *= factor;
  4906. }
  4907. axis_steps_per_unit[i] = value;
  4908. }
  4909. else {
  4910. axis_steps_per_unit[i] = code_value();
  4911. }
  4912. }
  4913. }
  4914. break;
  4915. case 110: // M110 - reset line pos
  4916. if (code_seen('N'))
  4917. gcode_LastN = code_value_long();
  4918. break;
  4919. #ifdef HOST_KEEPALIVE_FEATURE
  4920. case 113: // M113 - Get or set Host Keepalive interval
  4921. if (code_seen('S')) {
  4922. host_keepalive_interval = (uint8_t)code_value_short();
  4923. // NOMORE(host_keepalive_interval, 60);
  4924. }
  4925. else {
  4926. SERIAL_ECHO_START;
  4927. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4928. SERIAL_PROTOCOLLN("");
  4929. }
  4930. break;
  4931. #endif
  4932. case 115: // M115
  4933. if (code_seen('V')) {
  4934. // Report the Prusa version number.
  4935. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4936. } else if (code_seen('U')) {
  4937. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4938. // pause the print and ask the user to upgrade the firmware.
  4939. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4940. } else {
  4941. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4942. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4943. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4944. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4945. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4946. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4947. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4948. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4949. SERIAL_ECHOPGM(" UUID:");
  4950. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4951. }
  4952. break;
  4953. /* case 117: // M117 display message
  4954. starpos = (strchr(strchr_pointer + 5,'*'));
  4955. if(starpos!=NULL)
  4956. *(starpos)='\0';
  4957. lcd_setstatus(strchr_pointer + 5);
  4958. break;*/
  4959. case 114: // M114
  4960. gcode_M114();
  4961. break;
  4962. case 120: // M120
  4963. enable_endstops(false) ;
  4964. break;
  4965. case 121: // M121
  4966. enable_endstops(true) ;
  4967. break;
  4968. case 119: // M119
  4969. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4970. SERIAL_PROTOCOLLN("");
  4971. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4972. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4973. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4974. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4975. }else{
  4976. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4977. }
  4978. SERIAL_PROTOCOLLN("");
  4979. #endif
  4980. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4981. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4982. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4983. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4984. }else{
  4985. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4986. }
  4987. SERIAL_PROTOCOLLN("");
  4988. #endif
  4989. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4990. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4991. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4992. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4993. }else{
  4994. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4995. }
  4996. SERIAL_PROTOCOLLN("");
  4997. #endif
  4998. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4999. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  5000. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5001. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5002. }else{
  5003. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5004. }
  5005. SERIAL_PROTOCOLLN("");
  5006. #endif
  5007. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5008. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5009. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5010. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5011. }else{
  5012. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5013. }
  5014. SERIAL_PROTOCOLLN("");
  5015. #endif
  5016. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5017. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5018. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5019. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5020. }else{
  5021. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5022. }
  5023. SERIAL_PROTOCOLLN("");
  5024. #endif
  5025. break;
  5026. //TODO: update for all axis, use for loop
  5027. #ifdef BLINKM
  5028. case 150: // M150
  5029. {
  5030. byte red;
  5031. byte grn;
  5032. byte blu;
  5033. if(code_seen('R')) red = code_value();
  5034. if(code_seen('U')) grn = code_value();
  5035. if(code_seen('B')) blu = code_value();
  5036. SendColors(red,grn,blu);
  5037. }
  5038. break;
  5039. #endif //BLINKM
  5040. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5041. {
  5042. uint8_t extruder = active_extruder;
  5043. if(code_seen('T')) {
  5044. extruder = code_value();
  5045. if(extruder >= EXTRUDERS) {
  5046. SERIAL_ECHO_START;
  5047. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5048. break;
  5049. }
  5050. }
  5051. if(code_seen('D')) {
  5052. float diameter = (float)code_value();
  5053. if (diameter == 0.0) {
  5054. // setting any extruder filament size disables volumetric on the assumption that
  5055. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5056. // for all extruders
  5057. volumetric_enabled = false;
  5058. } else {
  5059. filament_size[extruder] = (float)code_value();
  5060. // make sure all extruders have some sane value for the filament size
  5061. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  5062. #if EXTRUDERS > 1
  5063. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  5064. #if EXTRUDERS > 2
  5065. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  5066. #endif
  5067. #endif
  5068. volumetric_enabled = true;
  5069. }
  5070. } else {
  5071. //reserved for setting filament diameter via UFID or filament measuring device
  5072. break;
  5073. }
  5074. calculate_extruder_multipliers();
  5075. }
  5076. break;
  5077. case 201: // M201
  5078. for (int8_t i = 0; i < NUM_AXIS; i++)
  5079. {
  5080. if (code_seen(axis_codes[i]))
  5081. {
  5082. unsigned long val = code_value();
  5083. #ifdef TMC2130
  5084. unsigned long val_silent = val;
  5085. if ((i == X_AXIS) || (i == Y_AXIS))
  5086. {
  5087. if (val > NORMAL_MAX_ACCEL_XY)
  5088. val = NORMAL_MAX_ACCEL_XY;
  5089. if (val_silent > SILENT_MAX_ACCEL_XY)
  5090. val_silent = SILENT_MAX_ACCEL_XY;
  5091. }
  5092. max_acceleration_units_per_sq_second_normal[i] = val;
  5093. max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5094. #else //TMC2130
  5095. max_acceleration_units_per_sq_second[i] = val;
  5096. #endif //TMC2130
  5097. }
  5098. }
  5099. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5100. reset_acceleration_rates();
  5101. break;
  5102. #if 0 // Not used for Sprinter/grbl gen6
  5103. case 202: // M202
  5104. for(int8_t i=0; i < NUM_AXIS; i++) {
  5105. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  5106. }
  5107. break;
  5108. #endif
  5109. case 203: // M203 max feedrate mm/sec
  5110. for (int8_t i = 0; i < NUM_AXIS; i++)
  5111. {
  5112. if (code_seen(axis_codes[i]))
  5113. {
  5114. float val = code_value();
  5115. #ifdef TMC2130
  5116. float val_silent = val;
  5117. if ((i == X_AXIS) || (i == Y_AXIS))
  5118. {
  5119. if (val > NORMAL_MAX_FEEDRATE_XY)
  5120. val = NORMAL_MAX_FEEDRATE_XY;
  5121. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5122. val_silent = SILENT_MAX_FEEDRATE_XY;
  5123. }
  5124. max_feedrate_normal[i] = val;
  5125. max_feedrate_silent[i] = val_silent;
  5126. #else //TMC2130
  5127. max_feedrate[i] = val;
  5128. #endif //TMC2130
  5129. }
  5130. }
  5131. break;
  5132. case 204:
  5133. // M204 acclereration settings.
  5134. // Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5135. // and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5136. {
  5137. if(code_seen('S')) {
  5138. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5139. // and it is also generated by Slic3r to control acceleration per extrusion type
  5140. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5141. acceleration = code_value();
  5142. // Interpret the T value as retract acceleration in the old Marlin format.
  5143. if(code_seen('T'))
  5144. retract_acceleration = code_value();
  5145. } else {
  5146. // New acceleration format, compatible with the upstream Marlin.
  5147. if(code_seen('P'))
  5148. acceleration = code_value();
  5149. if(code_seen('R'))
  5150. retract_acceleration = code_value();
  5151. if(code_seen('T')) {
  5152. // Interpret the T value as the travel acceleration in the new Marlin format.
  5153. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5154. // travel_acceleration = code_value();
  5155. }
  5156. }
  5157. }
  5158. break;
  5159. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5160. {
  5161. if(code_seen('S')) minimumfeedrate = code_value();
  5162. if(code_seen('T')) mintravelfeedrate = code_value();
  5163. if(code_seen('B')) minsegmenttime = code_value() ;
  5164. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5165. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5166. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5167. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5168. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5169. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5170. }
  5171. break;
  5172. case 206: // M206 additional homing offset
  5173. for(int8_t i=0; i < 3; i++)
  5174. {
  5175. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5176. }
  5177. break;
  5178. #ifdef FWRETRACT
  5179. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5180. {
  5181. if(code_seen('S'))
  5182. {
  5183. retract_length = code_value() ;
  5184. }
  5185. if(code_seen('F'))
  5186. {
  5187. retract_feedrate = code_value()/60 ;
  5188. }
  5189. if(code_seen('Z'))
  5190. {
  5191. retract_zlift = code_value() ;
  5192. }
  5193. }break;
  5194. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5195. {
  5196. if(code_seen('S'))
  5197. {
  5198. retract_recover_length = code_value() ;
  5199. }
  5200. if(code_seen('F'))
  5201. {
  5202. retract_recover_feedrate = code_value()/60 ;
  5203. }
  5204. }break;
  5205. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5206. {
  5207. if(code_seen('S'))
  5208. {
  5209. int t= code_value() ;
  5210. switch(t)
  5211. {
  5212. case 0:
  5213. {
  5214. autoretract_enabled=false;
  5215. retracted[0]=false;
  5216. #if EXTRUDERS > 1
  5217. retracted[1]=false;
  5218. #endif
  5219. #if EXTRUDERS > 2
  5220. retracted[2]=false;
  5221. #endif
  5222. }break;
  5223. case 1:
  5224. {
  5225. autoretract_enabled=true;
  5226. retracted[0]=false;
  5227. #if EXTRUDERS > 1
  5228. retracted[1]=false;
  5229. #endif
  5230. #if EXTRUDERS > 2
  5231. retracted[2]=false;
  5232. #endif
  5233. }break;
  5234. default:
  5235. SERIAL_ECHO_START;
  5236. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5237. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5238. SERIAL_ECHOLNPGM("\"(1)");
  5239. }
  5240. }
  5241. }break;
  5242. #endif // FWRETRACT
  5243. #if EXTRUDERS > 1
  5244. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5245. {
  5246. uint8_t extruder;
  5247. if(setTargetedHotend(218, extruder)){
  5248. break;
  5249. }
  5250. if(code_seen('X'))
  5251. {
  5252. extruder_offset[X_AXIS][extruder] = code_value();
  5253. }
  5254. if(code_seen('Y'))
  5255. {
  5256. extruder_offset[Y_AXIS][extruder] = code_value();
  5257. }
  5258. SERIAL_ECHO_START;
  5259. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5260. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5261. {
  5262. SERIAL_ECHO(" ");
  5263. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5264. SERIAL_ECHO(",");
  5265. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5266. }
  5267. SERIAL_ECHOLN("");
  5268. }break;
  5269. #endif
  5270. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5271. {
  5272. if(code_seen('S'))
  5273. {
  5274. feedmultiply = code_value() ;
  5275. }
  5276. }
  5277. break;
  5278. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5279. {
  5280. if(code_seen('S'))
  5281. {
  5282. int tmp_code = code_value();
  5283. if (code_seen('T'))
  5284. {
  5285. uint8_t extruder;
  5286. if(setTargetedHotend(221, extruder)){
  5287. break;
  5288. }
  5289. extruder_multiply[extruder] = tmp_code;
  5290. }
  5291. else
  5292. {
  5293. extrudemultiply = tmp_code ;
  5294. }
  5295. }
  5296. calculate_extruder_multipliers();
  5297. }
  5298. break;
  5299. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5300. {
  5301. if(code_seen('P')){
  5302. int pin_number = code_value(); // pin number
  5303. int pin_state = -1; // required pin state - default is inverted
  5304. if(code_seen('S')) pin_state = code_value(); // required pin state
  5305. if(pin_state >= -1 && pin_state <= 1){
  5306. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5307. {
  5308. if (sensitive_pins[i] == pin_number)
  5309. {
  5310. pin_number = -1;
  5311. break;
  5312. }
  5313. }
  5314. if (pin_number > -1)
  5315. {
  5316. int target = LOW;
  5317. st_synchronize();
  5318. pinMode(pin_number, INPUT);
  5319. switch(pin_state){
  5320. case 1:
  5321. target = HIGH;
  5322. break;
  5323. case 0:
  5324. target = LOW;
  5325. break;
  5326. case -1:
  5327. target = !digitalRead(pin_number);
  5328. break;
  5329. }
  5330. while(digitalRead(pin_number) != target){
  5331. manage_heater();
  5332. manage_inactivity();
  5333. lcd_update(0);
  5334. }
  5335. }
  5336. }
  5337. }
  5338. }
  5339. break;
  5340. #if NUM_SERVOS > 0
  5341. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5342. {
  5343. int servo_index = -1;
  5344. int servo_position = 0;
  5345. if (code_seen('P'))
  5346. servo_index = code_value();
  5347. if (code_seen('S')) {
  5348. servo_position = code_value();
  5349. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5350. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5351. servos[servo_index].attach(0);
  5352. #endif
  5353. servos[servo_index].write(servo_position);
  5354. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5355. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5356. servos[servo_index].detach();
  5357. #endif
  5358. }
  5359. else {
  5360. SERIAL_ECHO_START;
  5361. SERIAL_ECHO("Servo ");
  5362. SERIAL_ECHO(servo_index);
  5363. SERIAL_ECHOLN(" out of range");
  5364. }
  5365. }
  5366. else if (servo_index >= 0) {
  5367. SERIAL_PROTOCOL(_T(MSG_OK));
  5368. SERIAL_PROTOCOL(" Servo ");
  5369. SERIAL_PROTOCOL(servo_index);
  5370. SERIAL_PROTOCOL(": ");
  5371. SERIAL_PROTOCOL(servos[servo_index].read());
  5372. SERIAL_PROTOCOLLN("");
  5373. }
  5374. }
  5375. break;
  5376. #endif // NUM_SERVOS > 0
  5377. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5378. case 300: // M300
  5379. {
  5380. int beepS = code_seen('S') ? code_value() : 110;
  5381. int beepP = code_seen('P') ? code_value() : 1000;
  5382. if (beepS > 0)
  5383. {
  5384. #if BEEPER > 0
  5385. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5386. tone(BEEPER, beepS);
  5387. delay(beepP);
  5388. noTone(BEEPER);
  5389. #endif
  5390. }
  5391. else
  5392. {
  5393. delay(beepP);
  5394. }
  5395. }
  5396. break;
  5397. #endif // M300
  5398. #ifdef PIDTEMP
  5399. case 301: // M301
  5400. {
  5401. if(code_seen('P')) Kp = code_value();
  5402. if(code_seen('I')) Ki = scalePID_i(code_value());
  5403. if(code_seen('D')) Kd = scalePID_d(code_value());
  5404. #ifdef PID_ADD_EXTRUSION_RATE
  5405. if(code_seen('C')) Kc = code_value();
  5406. #endif
  5407. updatePID();
  5408. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5409. SERIAL_PROTOCOL(" p:");
  5410. SERIAL_PROTOCOL(Kp);
  5411. SERIAL_PROTOCOL(" i:");
  5412. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5413. SERIAL_PROTOCOL(" d:");
  5414. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5415. #ifdef PID_ADD_EXTRUSION_RATE
  5416. SERIAL_PROTOCOL(" c:");
  5417. //Kc does not have scaling applied above, or in resetting defaults
  5418. SERIAL_PROTOCOL(Kc);
  5419. #endif
  5420. SERIAL_PROTOCOLLN("");
  5421. }
  5422. break;
  5423. #endif //PIDTEMP
  5424. #ifdef PIDTEMPBED
  5425. case 304: // M304
  5426. {
  5427. if(code_seen('P')) bedKp = code_value();
  5428. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5429. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5430. updatePID();
  5431. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5432. SERIAL_PROTOCOL(" p:");
  5433. SERIAL_PROTOCOL(bedKp);
  5434. SERIAL_PROTOCOL(" i:");
  5435. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5436. SERIAL_PROTOCOL(" d:");
  5437. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5438. SERIAL_PROTOCOLLN("");
  5439. }
  5440. break;
  5441. #endif //PIDTEMP
  5442. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5443. {
  5444. #ifdef CHDK
  5445. SET_OUTPUT(CHDK);
  5446. WRITE(CHDK, HIGH);
  5447. chdkHigh = millis();
  5448. chdkActive = true;
  5449. #else
  5450. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5451. const uint8_t NUM_PULSES=16;
  5452. const float PULSE_LENGTH=0.01524;
  5453. for(int i=0; i < NUM_PULSES; i++) {
  5454. WRITE(PHOTOGRAPH_PIN, HIGH);
  5455. _delay_ms(PULSE_LENGTH);
  5456. WRITE(PHOTOGRAPH_PIN, LOW);
  5457. _delay_ms(PULSE_LENGTH);
  5458. }
  5459. delay(7.33);
  5460. for(int i=0; i < NUM_PULSES; i++) {
  5461. WRITE(PHOTOGRAPH_PIN, HIGH);
  5462. _delay_ms(PULSE_LENGTH);
  5463. WRITE(PHOTOGRAPH_PIN, LOW);
  5464. _delay_ms(PULSE_LENGTH);
  5465. }
  5466. #endif
  5467. #endif //chdk end if
  5468. }
  5469. break;
  5470. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5471. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5472. {
  5473. float temp = .0;
  5474. if (code_seen('S')) temp=code_value();
  5475. set_extrude_min_temp(temp);
  5476. }
  5477. break;
  5478. #endif
  5479. case 303: // M303 PID autotune
  5480. {
  5481. float temp = 150.0;
  5482. int e=0;
  5483. int c=5;
  5484. if (code_seen('E')) e=code_value();
  5485. if (e<0)
  5486. temp=70;
  5487. if (code_seen('S')) temp=code_value();
  5488. if (code_seen('C')) c=code_value();
  5489. PID_autotune(temp, e, c);
  5490. }
  5491. break;
  5492. case 400: // M400 finish all moves
  5493. {
  5494. st_synchronize();
  5495. }
  5496. break;
  5497. case 403: //M403 set filament type (material) for particular extruder and send this information to mmu
  5498. {
  5499. //currently three different materials are needed (default, flex and PVA)
  5500. //add storing this information for different load/unload profiles etc. in the future
  5501. //firmware does not wait for "ok" from mmu
  5502. if (mmu_enabled)
  5503. {
  5504. uint8_t extruder;
  5505. uint8_t filament;
  5506. if(code_seen('E')) extruder = code_value();
  5507. if(code_seen('F')) filament = code_value();
  5508. mmu_set_filament_type(extruder, filament);
  5509. }
  5510. }
  5511. break;
  5512. case 500: // M500 Store settings in EEPROM
  5513. {
  5514. Config_StoreSettings(EEPROM_OFFSET);
  5515. }
  5516. break;
  5517. case 501: // M501 Read settings from EEPROM
  5518. {
  5519. Config_RetrieveSettings(EEPROM_OFFSET);
  5520. }
  5521. break;
  5522. case 502: // M502 Revert to default settings
  5523. {
  5524. Config_ResetDefault();
  5525. }
  5526. break;
  5527. case 503: // M503 print settings currently in memory
  5528. {
  5529. Config_PrintSettings();
  5530. }
  5531. break;
  5532. case 509: //M509 Force language selection
  5533. {
  5534. lang_reset();
  5535. SERIAL_ECHO_START;
  5536. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5537. }
  5538. break;
  5539. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5540. case 540:
  5541. {
  5542. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5543. }
  5544. break;
  5545. #endif
  5546. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5547. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5548. {
  5549. float value;
  5550. if (code_seen('Z'))
  5551. {
  5552. value = code_value();
  5553. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5554. {
  5555. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5556. SERIAL_ECHO_START;
  5557. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5558. SERIAL_PROTOCOLLN("");
  5559. }
  5560. else
  5561. {
  5562. SERIAL_ECHO_START;
  5563. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5564. SERIAL_ECHORPGM(MSG_Z_MIN);
  5565. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5566. SERIAL_ECHORPGM(MSG_Z_MAX);
  5567. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5568. SERIAL_PROTOCOLLN("");
  5569. }
  5570. }
  5571. else
  5572. {
  5573. SERIAL_ECHO_START;
  5574. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5575. SERIAL_ECHO(-zprobe_zoffset);
  5576. SERIAL_PROTOCOLLN("");
  5577. }
  5578. break;
  5579. }
  5580. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5581. #ifdef FILAMENTCHANGEENABLE
  5582. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5583. {
  5584. st_synchronize();
  5585. float x_position = current_position[X_AXIS];
  5586. float y_position = current_position[Y_AXIS];
  5587. float z_shift = 0;
  5588. float e_shift_init = 0;
  5589. float e_shift_late = 0;
  5590. bool automatic = false;
  5591. //Retract extruder
  5592. if(code_seen('E'))
  5593. {
  5594. e_shift_init = code_value();
  5595. }
  5596. else
  5597. {
  5598. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5599. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5600. #endif
  5601. }
  5602. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5603. if (code_seen('L'))
  5604. {
  5605. e_shift_late = code_value();
  5606. }
  5607. else
  5608. {
  5609. #ifdef FILAMENTCHANGE_FINALRETRACT
  5610. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5611. #endif
  5612. }
  5613. //Lift Z
  5614. if(code_seen('Z'))
  5615. {
  5616. z_shift = code_value();
  5617. }
  5618. else
  5619. {
  5620. #ifdef FILAMENTCHANGE_ZADD
  5621. z_shift= FILAMENTCHANGE_ZADD ;
  5622. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5623. #endif
  5624. }
  5625. //Move XY to side
  5626. if(code_seen('X'))
  5627. {
  5628. x_position = code_value();
  5629. }
  5630. else
  5631. {
  5632. #ifdef FILAMENTCHANGE_XPOS
  5633. x_position = FILAMENTCHANGE_XPOS;
  5634. #endif
  5635. }
  5636. if(code_seen('Y'))
  5637. {
  5638. y_position = code_value();
  5639. }
  5640. else
  5641. {
  5642. #ifdef FILAMENTCHANGE_YPOS
  5643. y_position = FILAMENTCHANGE_YPOS ;
  5644. #endif
  5645. }
  5646. if (mmu_enabled && code_seen("AUTO"))
  5647. automatic = true;
  5648. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5649. }
  5650. break;
  5651. #endif //FILAMENTCHANGEENABLE
  5652. case 601: {
  5653. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5654. }
  5655. break;
  5656. case 602: {
  5657. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5658. }
  5659. break;
  5660. #ifdef PINDA_THERMISTOR
  5661. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5662. {
  5663. int set_target_pinda = 0;
  5664. if (code_seen('S')) {
  5665. set_target_pinda = code_value();
  5666. }
  5667. else {
  5668. break;
  5669. }
  5670. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5671. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5672. SERIAL_PROTOCOL(set_target_pinda);
  5673. SERIAL_PROTOCOLLN("");
  5674. codenum = millis();
  5675. cancel_heatup = false;
  5676. bool is_pinda_cooling = false;
  5677. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5678. is_pinda_cooling = true;
  5679. }
  5680. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5681. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5682. {
  5683. SERIAL_PROTOCOLPGM("P:");
  5684. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5685. SERIAL_PROTOCOLPGM("/");
  5686. SERIAL_PROTOCOL(set_target_pinda);
  5687. SERIAL_PROTOCOLLN("");
  5688. codenum = millis();
  5689. }
  5690. manage_heater();
  5691. manage_inactivity();
  5692. lcd_update(0);
  5693. }
  5694. LCD_MESSAGERPGM(_T(MSG_OK));
  5695. break;
  5696. }
  5697. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5698. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5699. uint8_t cal_status = calibration_status_pinda();
  5700. int16_t usteps = 0;
  5701. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5702. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5703. for (uint8_t i = 0; i < 6; i++)
  5704. {
  5705. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5706. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5707. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5708. SERIAL_PROTOCOLPGM(", ");
  5709. SERIAL_PROTOCOL(35 + (i * 5));
  5710. SERIAL_PROTOCOLPGM(", ");
  5711. SERIAL_PROTOCOL(usteps);
  5712. SERIAL_PROTOCOLPGM(", ");
  5713. SERIAL_PROTOCOL(mm * 1000);
  5714. SERIAL_PROTOCOLLN("");
  5715. }
  5716. }
  5717. else if (code_seen('!')) { // ! - Set factory default values
  5718. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5719. int16_t z_shift = 8; //40C - 20um - 8usteps
  5720. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5721. z_shift = 24; //45C - 60um - 24usteps
  5722. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5723. z_shift = 48; //50C - 120um - 48usteps
  5724. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5725. z_shift = 80; //55C - 200um - 80usteps
  5726. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5727. z_shift = 120; //60C - 300um - 120usteps
  5728. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5729. SERIAL_PROTOCOLLN("factory restored");
  5730. }
  5731. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5732. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5733. int16_t z_shift = 0;
  5734. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5735. SERIAL_PROTOCOLLN("zerorized");
  5736. }
  5737. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5738. int16_t usteps = code_value();
  5739. if (code_seen('I')) {
  5740. byte index = code_value();
  5741. if ((index >= 0) && (index < 5)) {
  5742. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5743. SERIAL_PROTOCOLLN("OK");
  5744. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5745. for (uint8_t i = 0; i < 6; i++)
  5746. {
  5747. usteps = 0;
  5748. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5749. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5750. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5751. SERIAL_PROTOCOLPGM(", ");
  5752. SERIAL_PROTOCOL(35 + (i * 5));
  5753. SERIAL_PROTOCOLPGM(", ");
  5754. SERIAL_PROTOCOL(usteps);
  5755. SERIAL_PROTOCOLPGM(", ");
  5756. SERIAL_PROTOCOL(mm * 1000);
  5757. SERIAL_PROTOCOLLN("");
  5758. }
  5759. }
  5760. }
  5761. }
  5762. else {
  5763. SERIAL_PROTOCOLPGM("no valid command");
  5764. }
  5765. break;
  5766. #endif //PINDA_THERMISTOR
  5767. #ifdef LIN_ADVANCE
  5768. case 900: // M900: Set LIN_ADVANCE options.
  5769. gcode_M900();
  5770. break;
  5771. #endif
  5772. case 907: // M907 Set digital trimpot motor current using axis codes.
  5773. {
  5774. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5775. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5776. if(code_seen('B')) st_current_set(4,code_value());
  5777. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5778. #endif
  5779. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5780. if(code_seen('X')) st_current_set(0, code_value());
  5781. #endif
  5782. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5783. if(code_seen('Z')) st_current_set(1, code_value());
  5784. #endif
  5785. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5786. if(code_seen('E')) st_current_set(2, code_value());
  5787. #endif
  5788. }
  5789. break;
  5790. case 908: // M908 Control digital trimpot directly.
  5791. {
  5792. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5793. uint8_t channel,current;
  5794. if(code_seen('P')) channel=code_value();
  5795. if(code_seen('S')) current=code_value();
  5796. digitalPotWrite(channel, current);
  5797. #endif
  5798. }
  5799. break;
  5800. #ifdef TMC2130
  5801. case 910: // M910 TMC2130 init
  5802. {
  5803. tmc2130_init();
  5804. }
  5805. break;
  5806. case 911: // M911 Set TMC2130 holding currents
  5807. {
  5808. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5809. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5810. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5811. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5812. }
  5813. break;
  5814. case 912: // M912 Set TMC2130 running currents
  5815. {
  5816. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5817. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5818. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5819. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5820. }
  5821. break;
  5822. case 913: // M913 Print TMC2130 currents
  5823. {
  5824. tmc2130_print_currents();
  5825. }
  5826. break;
  5827. case 914: // M914 Set normal mode
  5828. {
  5829. tmc2130_mode = TMC2130_MODE_NORMAL;
  5830. update_mode_profile();
  5831. tmc2130_init();
  5832. }
  5833. break;
  5834. case 915: // M915 Set silent mode
  5835. {
  5836. tmc2130_mode = TMC2130_MODE_SILENT;
  5837. update_mode_profile();
  5838. tmc2130_init();
  5839. }
  5840. break;
  5841. case 916: // M916 Set sg_thrs
  5842. {
  5843. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5844. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5845. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5846. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5847. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5848. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5849. }
  5850. break;
  5851. case 917: // M917 Set TMC2130 pwm_ampl
  5852. {
  5853. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5854. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5855. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5856. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5857. }
  5858. break;
  5859. case 918: // M918 Set TMC2130 pwm_grad
  5860. {
  5861. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5862. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5863. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5864. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5865. }
  5866. break;
  5867. #endif //TMC2130
  5868. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5869. {
  5870. #ifdef TMC2130
  5871. if(code_seen('E'))
  5872. {
  5873. uint16_t res_new = code_value();
  5874. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5875. {
  5876. st_synchronize();
  5877. uint8_t axis = E_AXIS;
  5878. uint16_t res = tmc2130_get_res(axis);
  5879. tmc2130_set_res(axis, res_new);
  5880. if (res_new > res)
  5881. {
  5882. uint16_t fac = (res_new / res);
  5883. axis_steps_per_unit[axis] *= fac;
  5884. position[E_AXIS] *= fac;
  5885. }
  5886. else
  5887. {
  5888. uint16_t fac = (res / res_new);
  5889. axis_steps_per_unit[axis] /= fac;
  5890. position[E_AXIS] /= fac;
  5891. }
  5892. }
  5893. }
  5894. #else //TMC2130
  5895. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5896. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5897. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5898. if(code_seen('B')) microstep_mode(4,code_value());
  5899. microstep_readings();
  5900. #endif
  5901. #endif //TMC2130
  5902. }
  5903. break;
  5904. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5905. {
  5906. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5907. if(code_seen('S')) switch((int)code_value())
  5908. {
  5909. case 1:
  5910. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5911. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5912. break;
  5913. case 2:
  5914. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5915. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5916. break;
  5917. }
  5918. microstep_readings();
  5919. #endif
  5920. }
  5921. break;
  5922. case 701: //M701: load filament
  5923. {
  5924. if (mmu_enabled && code_seen('E'))
  5925. tmp_extruder = code_value();
  5926. gcode_M701();
  5927. }
  5928. break;
  5929. case 702:
  5930. {
  5931. if (mmu_enabled)
  5932. {
  5933. if (code_seen('U'))
  5934. extr_unload_used(); //unload all filaments which were used in current print
  5935. else if (code_seen('C'))
  5936. extr_unload(); //unload just current filament
  5937. else
  5938. extr_unload_all(); //unload all filaments
  5939. }
  5940. else
  5941. unload_filament();
  5942. }
  5943. break;
  5944. case 999: // M999: Restart after being stopped
  5945. Stopped = false;
  5946. lcd_reset_alert_level();
  5947. gcode_LastN = Stopped_gcode_LastN;
  5948. FlushSerialRequestResend();
  5949. break;
  5950. default:
  5951. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5952. }
  5953. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  5954. mcode_in_progress = 0;
  5955. }
  5956. } // end if(code_seen('M')) (end of M codes)
  5957. else if(code_seen('T'))
  5958. {
  5959. int index;
  5960. st_synchronize();
  5961. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5962. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?') {
  5963. SERIAL_ECHOLNPGM("Invalid T code.");
  5964. }
  5965. else {
  5966. if (*(strchr_pointer + index) == '?') {
  5967. tmp_extruder = choose_extruder_menu();
  5968. }
  5969. else {
  5970. tmp_extruder = code_value();
  5971. }
  5972. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5973. if (mmu_enabled)
  5974. {
  5975. mmu_command(MMU_CMD_T0 + tmp_extruder);
  5976. manage_response(true, true);
  5977. mmu_command(MMU_CMD_C0);
  5978. mmu_extruder = tmp_extruder; //filament change is finished
  5979. if (*(strchr_pointer + index) == '?')// for single material usage with mmu
  5980. {
  5981. mmu_load_to_nozzle();
  5982. }
  5983. }
  5984. else
  5985. {
  5986. #ifdef SNMM
  5987. #ifdef LIN_ADVANCE
  5988. if (mmu_extruder != tmp_extruder)
  5989. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5990. #endif
  5991. mmu_extruder = tmp_extruder;
  5992. delay(100);
  5993. disable_e0();
  5994. disable_e1();
  5995. disable_e2();
  5996. pinMode(E_MUX0_PIN, OUTPUT);
  5997. pinMode(E_MUX1_PIN, OUTPUT);
  5998. delay(100);
  5999. SERIAL_ECHO_START;
  6000. SERIAL_ECHO("T:");
  6001. SERIAL_ECHOLN((int)tmp_extruder);
  6002. switch (tmp_extruder) {
  6003. case 1:
  6004. WRITE(E_MUX0_PIN, HIGH);
  6005. WRITE(E_MUX1_PIN, LOW);
  6006. break;
  6007. case 2:
  6008. WRITE(E_MUX0_PIN, LOW);
  6009. WRITE(E_MUX1_PIN, HIGH);
  6010. break;
  6011. case 3:
  6012. WRITE(E_MUX0_PIN, HIGH);
  6013. WRITE(E_MUX1_PIN, HIGH);
  6014. break;
  6015. default:
  6016. WRITE(E_MUX0_PIN, LOW);
  6017. WRITE(E_MUX1_PIN, LOW);
  6018. break;
  6019. }
  6020. delay(100);
  6021. #else //SNMM
  6022. if (tmp_extruder >= EXTRUDERS) {
  6023. SERIAL_ECHO_START;
  6024. SERIAL_ECHOPGM("T");
  6025. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6026. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6027. }
  6028. else {
  6029. #if EXTRUDERS > 1
  6030. boolean make_move = false;
  6031. #endif
  6032. if (code_seen('F')) {
  6033. #if EXTRUDERS > 1
  6034. make_move = true;
  6035. #endif
  6036. next_feedrate = code_value();
  6037. if (next_feedrate > 0.0) {
  6038. feedrate = next_feedrate;
  6039. }
  6040. }
  6041. #if EXTRUDERS > 1
  6042. if (tmp_extruder != active_extruder) {
  6043. // Save current position to return to after applying extruder offset
  6044. memcpy(destination, current_position, sizeof(destination));
  6045. // Offset extruder (only by XY)
  6046. int i;
  6047. for (i = 0; i < 2; i++) {
  6048. current_position[i] = current_position[i] -
  6049. extruder_offset[i][active_extruder] +
  6050. extruder_offset[i][tmp_extruder];
  6051. }
  6052. // Set the new active extruder and position
  6053. active_extruder = tmp_extruder;
  6054. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6055. // Move to the old position if 'F' was in the parameters
  6056. if (make_move && Stopped == false) {
  6057. prepare_move();
  6058. }
  6059. }
  6060. #endif
  6061. SERIAL_ECHO_START;
  6062. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6063. SERIAL_PROTOCOLLN((int)active_extruder);
  6064. }
  6065. #endif //SNMM
  6066. }
  6067. }
  6068. } // end if(code_seen('T')) (end of T codes)
  6069. else if (code_seen('D')) // D codes (debug)
  6070. {
  6071. switch((int)code_value())
  6072. {
  6073. #ifdef DEBUG_DCODES
  6074. case -1: // D-1 - Endless loop
  6075. dcode__1(); break;
  6076. case 0: // D0 - Reset
  6077. dcode_0(); break;
  6078. case 1: // D1 - Clear EEPROM
  6079. dcode_1(); break;
  6080. case 2: // D2 - Read/Write RAM
  6081. dcode_2(); break;
  6082. #endif //DEBUG_DCODES
  6083. #ifdef DEBUG_DCODE3
  6084. case 3: // D3 - Read/Write EEPROM
  6085. dcode_3(); break;
  6086. #endif //DEBUG_DCODE3
  6087. #ifdef DEBUG_DCODES
  6088. case 4: // D4 - Read/Write PIN
  6089. dcode_4(); break;
  6090. case 5: // D5 - Read/Write FLASH
  6091. // dcode_5(); break;
  6092. break;
  6093. case 6: // D6 - Read/Write external FLASH
  6094. dcode_6(); break;
  6095. case 7: // D7 - Read/Write Bootloader
  6096. dcode_7(); break;
  6097. case 8: // D8 - Read/Write PINDA
  6098. dcode_8(); break;
  6099. case 9: // D9 - Read/Write ADC
  6100. dcode_9(); break;
  6101. case 10: // D10 - XYZ calibration = OK
  6102. dcode_10(); break;
  6103. #ifdef TMC2130
  6104. case 2130: // D9125 - TMC2130
  6105. dcode_2130(); break;
  6106. #endif //TMC2130
  6107. #ifdef FILAMENT_SENSOR
  6108. case 9125: // D9125 - FILAMENT_SENSOR
  6109. dcode_9125(); break;
  6110. #endif //FILAMENT_SENSOR
  6111. #endif //DEBUG_DCODES
  6112. }
  6113. }
  6114. else
  6115. {
  6116. SERIAL_ECHO_START;
  6117. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6118. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6119. SERIAL_ECHOLNPGM("\"(2)");
  6120. }
  6121. KEEPALIVE_STATE(NOT_BUSY);
  6122. ClearToSend();
  6123. }
  6124. void FlushSerialRequestResend()
  6125. {
  6126. //char cmdbuffer[bufindr][100]="Resend:";
  6127. MYSERIAL.flush();
  6128. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6129. }
  6130. // Confirm the execution of a command, if sent from a serial line.
  6131. // Execution of a command from a SD card will not be confirmed.
  6132. void ClearToSend()
  6133. {
  6134. previous_millis_cmd = millis();
  6135. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6136. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6137. }
  6138. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6139. void update_currents() {
  6140. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6141. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6142. float tmp_motor[3];
  6143. //SERIAL_ECHOLNPGM("Currents updated: ");
  6144. if (destination[Z_AXIS] < Z_SILENT) {
  6145. //SERIAL_ECHOLNPGM("LOW");
  6146. for (uint8_t i = 0; i < 3; i++) {
  6147. st_current_set(i, current_low[i]);
  6148. /*MYSERIAL.print(int(i));
  6149. SERIAL_ECHOPGM(": ");
  6150. MYSERIAL.println(current_low[i]);*/
  6151. }
  6152. }
  6153. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6154. //SERIAL_ECHOLNPGM("HIGH");
  6155. for (uint8_t i = 0; i < 3; i++) {
  6156. st_current_set(i, current_high[i]);
  6157. /*MYSERIAL.print(int(i));
  6158. SERIAL_ECHOPGM(": ");
  6159. MYSERIAL.println(current_high[i]);*/
  6160. }
  6161. }
  6162. else {
  6163. for (uint8_t i = 0; i < 3; i++) {
  6164. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6165. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6166. st_current_set(i, tmp_motor[i]);
  6167. /*MYSERIAL.print(int(i));
  6168. SERIAL_ECHOPGM(": ");
  6169. MYSERIAL.println(tmp_motor[i]);*/
  6170. }
  6171. }
  6172. }
  6173. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6174. void get_coordinates()
  6175. {
  6176. bool seen[4]={false,false,false,false};
  6177. for(int8_t i=0; i < NUM_AXIS; i++) {
  6178. if(code_seen(axis_codes[i]))
  6179. {
  6180. bool relative = axis_relative_modes[i] || relative_mode;
  6181. destination[i] = (float)code_value();
  6182. if (i == E_AXIS) {
  6183. float emult = extruder_multiplier[active_extruder];
  6184. if (emult != 1.) {
  6185. if (! relative) {
  6186. destination[i] -= current_position[i];
  6187. relative = true;
  6188. }
  6189. destination[i] *= emult;
  6190. }
  6191. }
  6192. if (relative)
  6193. destination[i] += current_position[i];
  6194. seen[i]=true;
  6195. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6196. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6197. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6198. }
  6199. else destination[i] = current_position[i]; //Are these else lines really needed?
  6200. }
  6201. if(code_seen('F')) {
  6202. next_feedrate = code_value();
  6203. #ifdef MAX_SILENT_FEEDRATE
  6204. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6205. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6206. #endif //MAX_SILENT_FEEDRATE
  6207. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6208. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6209. {
  6210. // float e_max_speed =
  6211. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6212. }
  6213. }
  6214. }
  6215. void get_arc_coordinates()
  6216. {
  6217. #ifdef SF_ARC_FIX
  6218. bool relative_mode_backup = relative_mode;
  6219. relative_mode = true;
  6220. #endif
  6221. get_coordinates();
  6222. #ifdef SF_ARC_FIX
  6223. relative_mode=relative_mode_backup;
  6224. #endif
  6225. if(code_seen('I')) {
  6226. offset[0] = code_value();
  6227. }
  6228. else {
  6229. offset[0] = 0.0;
  6230. }
  6231. if(code_seen('J')) {
  6232. offset[1] = code_value();
  6233. }
  6234. else {
  6235. offset[1] = 0.0;
  6236. }
  6237. }
  6238. void clamp_to_software_endstops(float target[3])
  6239. {
  6240. #ifdef DEBUG_DISABLE_SWLIMITS
  6241. return;
  6242. #endif //DEBUG_DISABLE_SWLIMITS
  6243. world2machine_clamp(target[0], target[1]);
  6244. // Clamp the Z coordinate.
  6245. if (min_software_endstops) {
  6246. float negative_z_offset = 0;
  6247. #ifdef ENABLE_AUTO_BED_LEVELING
  6248. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6249. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6250. #endif
  6251. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6252. }
  6253. if (max_software_endstops) {
  6254. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6255. }
  6256. }
  6257. #ifdef MESH_BED_LEVELING
  6258. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6259. float dx = x - current_position[X_AXIS];
  6260. float dy = y - current_position[Y_AXIS];
  6261. float dz = z - current_position[Z_AXIS];
  6262. int n_segments = 0;
  6263. if (mbl.active) {
  6264. float len = abs(dx) + abs(dy);
  6265. if (len > 0)
  6266. // Split to 3cm segments or shorter.
  6267. n_segments = int(ceil(len / 30.f));
  6268. }
  6269. if (n_segments > 1) {
  6270. float de = e - current_position[E_AXIS];
  6271. for (int i = 1; i < n_segments; ++ i) {
  6272. float t = float(i) / float(n_segments);
  6273. if (saved_printing || (mbl.active == false)) return;
  6274. plan_buffer_line(
  6275. current_position[X_AXIS] + t * dx,
  6276. current_position[Y_AXIS] + t * dy,
  6277. current_position[Z_AXIS] + t * dz,
  6278. current_position[E_AXIS] + t * de,
  6279. feed_rate, extruder);
  6280. }
  6281. }
  6282. // The rest of the path.
  6283. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6284. current_position[X_AXIS] = x;
  6285. current_position[Y_AXIS] = y;
  6286. current_position[Z_AXIS] = z;
  6287. current_position[E_AXIS] = e;
  6288. }
  6289. #endif // MESH_BED_LEVELING
  6290. void prepare_move()
  6291. {
  6292. clamp_to_software_endstops(destination);
  6293. previous_millis_cmd = millis();
  6294. // Do not use feedmultiply for E or Z only moves
  6295. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6296. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6297. }
  6298. else {
  6299. #ifdef MESH_BED_LEVELING
  6300. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6301. #else
  6302. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6303. #endif
  6304. }
  6305. for(int8_t i=0; i < NUM_AXIS; i++) {
  6306. current_position[i] = destination[i];
  6307. }
  6308. }
  6309. void prepare_arc_move(char isclockwise) {
  6310. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6311. // Trace the arc
  6312. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6313. // As far as the parser is concerned, the position is now == target. In reality the
  6314. // motion control system might still be processing the action and the real tool position
  6315. // in any intermediate location.
  6316. for(int8_t i=0; i < NUM_AXIS; i++) {
  6317. current_position[i] = destination[i];
  6318. }
  6319. previous_millis_cmd = millis();
  6320. }
  6321. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6322. #if defined(FAN_PIN)
  6323. #if CONTROLLERFAN_PIN == FAN_PIN
  6324. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6325. #endif
  6326. #endif
  6327. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6328. unsigned long lastMotorCheck = 0;
  6329. void controllerFan()
  6330. {
  6331. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6332. {
  6333. lastMotorCheck = millis();
  6334. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6335. #if EXTRUDERS > 2
  6336. || !READ(E2_ENABLE_PIN)
  6337. #endif
  6338. #if EXTRUDER > 1
  6339. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6340. || !READ(X2_ENABLE_PIN)
  6341. #endif
  6342. || !READ(E1_ENABLE_PIN)
  6343. #endif
  6344. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6345. {
  6346. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6347. }
  6348. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6349. {
  6350. digitalWrite(CONTROLLERFAN_PIN, 0);
  6351. analogWrite(CONTROLLERFAN_PIN, 0);
  6352. }
  6353. else
  6354. {
  6355. // allows digital or PWM fan output to be used (see M42 handling)
  6356. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6357. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6358. }
  6359. }
  6360. }
  6361. #endif
  6362. #ifdef TEMP_STAT_LEDS
  6363. static bool blue_led = false;
  6364. static bool red_led = false;
  6365. static uint32_t stat_update = 0;
  6366. void handle_status_leds(void) {
  6367. float max_temp = 0.0;
  6368. if(millis() > stat_update) {
  6369. stat_update += 500; // Update every 0.5s
  6370. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6371. max_temp = max(max_temp, degHotend(cur_extruder));
  6372. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6373. }
  6374. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6375. max_temp = max(max_temp, degTargetBed());
  6376. max_temp = max(max_temp, degBed());
  6377. #endif
  6378. if((max_temp > 55.0) && (red_led == false)) {
  6379. digitalWrite(STAT_LED_RED, 1);
  6380. digitalWrite(STAT_LED_BLUE, 0);
  6381. red_led = true;
  6382. blue_led = false;
  6383. }
  6384. if((max_temp < 54.0) && (blue_led == false)) {
  6385. digitalWrite(STAT_LED_RED, 0);
  6386. digitalWrite(STAT_LED_BLUE, 1);
  6387. red_led = false;
  6388. blue_led = true;
  6389. }
  6390. }
  6391. }
  6392. #endif
  6393. #ifdef SAFETYTIMER
  6394. /**
  6395. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6396. *
  6397. * Full screen blocking notification message is shown after heater turning off.
  6398. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6399. * damage print.
  6400. *
  6401. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6402. */
  6403. static void handleSafetyTimer()
  6404. {
  6405. #if (EXTRUDERS > 1)
  6406. #error Implemented only for one extruder.
  6407. #endif //(EXTRUDERS > 1)
  6408. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6409. {
  6410. safetyTimer.stop();
  6411. }
  6412. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6413. {
  6414. safetyTimer.start();
  6415. }
  6416. else if (safetyTimer.expired(safetytimer_inactive_time))
  6417. {
  6418. setTargetBed(0);
  6419. setAllTargetHotends(0);
  6420. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6421. }
  6422. }
  6423. #endif //SAFETYTIMER
  6424. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6425. {
  6426. #ifdef FILAMENT_SENSOR
  6427. if (mmu_enabled == false)
  6428. {
  6429. if (mcode_in_progress != 600) //M600 not in progress
  6430. {
  6431. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6432. {
  6433. if (fsensor_check_autoload())
  6434. {
  6435. fsensor_autoload_check_stop();
  6436. if (degHotend0() > EXTRUDE_MINTEMP)
  6437. {
  6438. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6439. tone(BEEPER, 1000);
  6440. delay_keep_alive(50);
  6441. noTone(BEEPER);
  6442. loading_flag = true;
  6443. enquecommand_front_P((PSTR("M701")));
  6444. }
  6445. else
  6446. {
  6447. lcd_update_enable(false);
  6448. lcd_clear();
  6449. lcd_set_cursor(0, 0);
  6450. lcd_puts_P(_T(MSG_ERROR));
  6451. lcd_set_cursor(0, 2);
  6452. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6453. delay(2000);
  6454. lcd_clear();
  6455. lcd_update_enable(true);
  6456. }
  6457. }
  6458. }
  6459. else
  6460. {
  6461. fsensor_autoload_check_stop();
  6462. fsensor_update();
  6463. }
  6464. }
  6465. }
  6466. #endif //FILAMENT_SENSOR
  6467. #ifdef SAFETYTIMER
  6468. handleSafetyTimer();
  6469. #endif //SAFETYTIMER
  6470. #if defined(KILL_PIN) && KILL_PIN > -1
  6471. static int killCount = 0; // make the inactivity button a bit less responsive
  6472. const int KILL_DELAY = 10000;
  6473. #endif
  6474. if(buflen < (BUFSIZE-1)){
  6475. get_command();
  6476. }
  6477. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6478. if(max_inactive_time)
  6479. kill(_n(""), 4);
  6480. if(stepper_inactive_time) {
  6481. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6482. {
  6483. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6484. disable_x();
  6485. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6486. disable_y();
  6487. disable_z();
  6488. disable_e0();
  6489. disable_e1();
  6490. disable_e2();
  6491. }
  6492. }
  6493. }
  6494. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6495. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6496. {
  6497. chdkActive = false;
  6498. WRITE(CHDK, LOW);
  6499. }
  6500. #endif
  6501. #if defined(KILL_PIN) && KILL_PIN > -1
  6502. // Check if the kill button was pressed and wait just in case it was an accidental
  6503. // key kill key press
  6504. // -------------------------------------------------------------------------------
  6505. if( 0 == READ(KILL_PIN) )
  6506. {
  6507. killCount++;
  6508. }
  6509. else if (killCount > 0)
  6510. {
  6511. killCount--;
  6512. }
  6513. // Exceeded threshold and we can confirm that it was not accidental
  6514. // KILL the machine
  6515. // ----------------------------------------------------------------
  6516. if ( killCount >= KILL_DELAY)
  6517. {
  6518. kill("", 5);
  6519. }
  6520. #endif
  6521. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6522. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6523. #endif
  6524. #ifdef EXTRUDER_RUNOUT_PREVENT
  6525. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6526. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6527. {
  6528. bool oldstatus=READ(E0_ENABLE_PIN);
  6529. enable_e0();
  6530. float oldepos=current_position[E_AXIS];
  6531. float oldedes=destination[E_AXIS];
  6532. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6533. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6534. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6535. current_position[E_AXIS]=oldepos;
  6536. destination[E_AXIS]=oldedes;
  6537. plan_set_e_position(oldepos);
  6538. previous_millis_cmd=millis();
  6539. st_synchronize();
  6540. WRITE(E0_ENABLE_PIN,oldstatus);
  6541. }
  6542. #endif
  6543. #ifdef TEMP_STAT_LEDS
  6544. handle_status_leds();
  6545. #endif
  6546. check_axes_activity();
  6547. mmu_loop();
  6548. }
  6549. void kill(const char *full_screen_message, unsigned char id)
  6550. {
  6551. printf_P(_N("KILL: %d\n"), id);
  6552. //return;
  6553. cli(); // Stop interrupts
  6554. disable_heater();
  6555. disable_x();
  6556. // SERIAL_ECHOLNPGM("kill - disable Y");
  6557. disable_y();
  6558. disable_z();
  6559. disable_e0();
  6560. disable_e1();
  6561. disable_e2();
  6562. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6563. pinMode(PS_ON_PIN,INPUT);
  6564. #endif
  6565. SERIAL_ERROR_START;
  6566. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6567. if (full_screen_message != NULL) {
  6568. SERIAL_ERRORLNRPGM(full_screen_message);
  6569. lcd_display_message_fullscreen_P(full_screen_message);
  6570. } else {
  6571. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6572. }
  6573. // FMC small patch to update the LCD before ending
  6574. sei(); // enable interrupts
  6575. for ( int i=5; i--; lcd_update(0))
  6576. {
  6577. delay(200);
  6578. }
  6579. cli(); // disable interrupts
  6580. suicide();
  6581. while(1)
  6582. {
  6583. #ifdef WATCHDOG
  6584. wdt_reset();
  6585. #endif //WATCHDOG
  6586. /* Intentionally left empty */
  6587. } // Wait for reset
  6588. }
  6589. void Stop()
  6590. {
  6591. disable_heater();
  6592. if(Stopped == false) {
  6593. Stopped = true;
  6594. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6595. SERIAL_ERROR_START;
  6596. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6597. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6598. }
  6599. }
  6600. bool IsStopped() { return Stopped; };
  6601. #ifdef FAST_PWM_FAN
  6602. void setPwmFrequency(uint8_t pin, int val)
  6603. {
  6604. val &= 0x07;
  6605. switch(digitalPinToTimer(pin))
  6606. {
  6607. #if defined(TCCR0A)
  6608. case TIMER0A:
  6609. case TIMER0B:
  6610. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6611. // TCCR0B |= val;
  6612. break;
  6613. #endif
  6614. #if defined(TCCR1A)
  6615. case TIMER1A:
  6616. case TIMER1B:
  6617. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6618. // TCCR1B |= val;
  6619. break;
  6620. #endif
  6621. #if defined(TCCR2)
  6622. case TIMER2:
  6623. case TIMER2:
  6624. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6625. TCCR2 |= val;
  6626. break;
  6627. #endif
  6628. #if defined(TCCR2A)
  6629. case TIMER2A:
  6630. case TIMER2B:
  6631. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6632. TCCR2B |= val;
  6633. break;
  6634. #endif
  6635. #if defined(TCCR3A)
  6636. case TIMER3A:
  6637. case TIMER3B:
  6638. case TIMER3C:
  6639. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6640. TCCR3B |= val;
  6641. break;
  6642. #endif
  6643. #if defined(TCCR4A)
  6644. case TIMER4A:
  6645. case TIMER4B:
  6646. case TIMER4C:
  6647. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6648. TCCR4B |= val;
  6649. break;
  6650. #endif
  6651. #if defined(TCCR5A)
  6652. case TIMER5A:
  6653. case TIMER5B:
  6654. case TIMER5C:
  6655. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6656. TCCR5B |= val;
  6657. break;
  6658. #endif
  6659. }
  6660. }
  6661. #endif //FAST_PWM_FAN
  6662. //! @brief Get and validate extruder number
  6663. //!
  6664. //! If it is not specified, active_extruder is returned in parameter extruder.
  6665. //! @param [in] code M code number
  6666. //! @param [out] extruder
  6667. //! @return error
  6668. //! @retval true Invalid extruder specified in T code
  6669. //! @retval false Valid extruder specified in T code, or not specifiead
  6670. bool setTargetedHotend(int code, uint8_t &extruder)
  6671. {
  6672. extruder = active_extruder;
  6673. if(code_seen('T')) {
  6674. extruder = code_value();
  6675. if(extruder >= EXTRUDERS) {
  6676. SERIAL_ECHO_START;
  6677. switch(code){
  6678. case 104:
  6679. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6680. break;
  6681. case 105:
  6682. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6683. break;
  6684. case 109:
  6685. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6686. break;
  6687. case 218:
  6688. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6689. break;
  6690. case 221:
  6691. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6692. break;
  6693. }
  6694. SERIAL_PROTOCOLLN((int)extruder);
  6695. return true;
  6696. }
  6697. }
  6698. return false;
  6699. }
  6700. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6701. {
  6702. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6703. {
  6704. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6705. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6706. }
  6707. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6708. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6709. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6710. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6711. total_filament_used = 0;
  6712. }
  6713. float calculate_extruder_multiplier(float diameter) {
  6714. float out = 1.f;
  6715. if (volumetric_enabled && diameter > 0.f) {
  6716. float area = M_PI * diameter * diameter * 0.25;
  6717. out = 1.f / area;
  6718. }
  6719. if (extrudemultiply != 100)
  6720. out *= float(extrudemultiply) * 0.01f;
  6721. return out;
  6722. }
  6723. void calculate_extruder_multipliers() {
  6724. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6725. #if EXTRUDERS > 1
  6726. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6727. #if EXTRUDERS > 2
  6728. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6729. #endif
  6730. #endif
  6731. }
  6732. void delay_keep_alive(unsigned int ms)
  6733. {
  6734. for (;;) {
  6735. manage_heater();
  6736. // Manage inactivity, but don't disable steppers on timeout.
  6737. manage_inactivity(true);
  6738. lcd_update(0);
  6739. if (ms == 0)
  6740. break;
  6741. else if (ms >= 50) {
  6742. delay(50);
  6743. ms -= 50;
  6744. } else {
  6745. delay(ms);
  6746. ms = 0;
  6747. }
  6748. }
  6749. }
  6750. static void wait_for_heater(long codenum, uint8_t extruder) {
  6751. #ifdef TEMP_RESIDENCY_TIME
  6752. long residencyStart;
  6753. residencyStart = -1;
  6754. /* continue to loop until we have reached the target temp
  6755. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6756. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6757. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6758. #else
  6759. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6760. #endif //TEMP_RESIDENCY_TIME
  6761. if ((millis() - codenum) > 1000UL)
  6762. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6763. if (!farm_mode) {
  6764. SERIAL_PROTOCOLPGM("T:");
  6765. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  6766. SERIAL_PROTOCOLPGM(" E:");
  6767. SERIAL_PROTOCOL((int)extruder);
  6768. #ifdef TEMP_RESIDENCY_TIME
  6769. SERIAL_PROTOCOLPGM(" W:");
  6770. if (residencyStart > -1)
  6771. {
  6772. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6773. SERIAL_PROTOCOLLN(codenum);
  6774. }
  6775. else
  6776. {
  6777. SERIAL_PROTOCOLLN("?");
  6778. }
  6779. }
  6780. #else
  6781. SERIAL_PROTOCOLLN("");
  6782. #endif
  6783. codenum = millis();
  6784. }
  6785. manage_heater();
  6786. manage_inactivity();
  6787. lcd_update(0);
  6788. #ifdef TEMP_RESIDENCY_TIME
  6789. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6790. or when current temp falls outside the hysteresis after target temp was reached */
  6791. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  6792. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  6793. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  6794. {
  6795. residencyStart = millis();
  6796. }
  6797. #endif //TEMP_RESIDENCY_TIME
  6798. }
  6799. }
  6800. void check_babystep()
  6801. {
  6802. int babystep_z;
  6803. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6804. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6805. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6806. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6807. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6808. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6809. lcd_update_enable(true);
  6810. }
  6811. }
  6812. #ifdef DIS
  6813. void d_setup()
  6814. {
  6815. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6816. pinMode(D_DATA, INPUT_PULLUP);
  6817. pinMode(D_REQUIRE, OUTPUT);
  6818. digitalWrite(D_REQUIRE, HIGH);
  6819. }
  6820. float d_ReadData()
  6821. {
  6822. int digit[13];
  6823. String mergeOutput;
  6824. float output;
  6825. digitalWrite(D_REQUIRE, HIGH);
  6826. for (int i = 0; i<13; i++)
  6827. {
  6828. for (int j = 0; j < 4; j++)
  6829. {
  6830. while (digitalRead(D_DATACLOCK) == LOW) {}
  6831. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6832. bitWrite(digit[i], j, digitalRead(D_DATA));
  6833. }
  6834. }
  6835. digitalWrite(D_REQUIRE, LOW);
  6836. mergeOutput = "";
  6837. output = 0;
  6838. for (int r = 5; r <= 10; r++) //Merge digits
  6839. {
  6840. mergeOutput += digit[r];
  6841. }
  6842. output = mergeOutput.toFloat();
  6843. if (digit[4] == 8) //Handle sign
  6844. {
  6845. output *= -1;
  6846. }
  6847. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6848. {
  6849. output /= 10;
  6850. }
  6851. return output;
  6852. }
  6853. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6854. int t1 = 0;
  6855. int t_delay = 0;
  6856. int digit[13];
  6857. int m;
  6858. char str[3];
  6859. //String mergeOutput;
  6860. char mergeOutput[15];
  6861. float output;
  6862. int mesh_point = 0; //index number of calibration point
  6863. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6864. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6865. float mesh_home_z_search = 4;
  6866. float row[x_points_num];
  6867. int ix = 0;
  6868. int iy = 0;
  6869. const char* filename_wldsd = "wldsd.txt";
  6870. char data_wldsd[70];
  6871. char numb_wldsd[10];
  6872. d_setup();
  6873. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6874. // We don't know where we are! HOME!
  6875. // Push the commands to the front of the message queue in the reverse order!
  6876. // There shall be always enough space reserved for these commands.
  6877. repeatcommand_front(); // repeat G80 with all its parameters
  6878. enquecommand_front_P((PSTR("G28 W0")));
  6879. enquecommand_front_P((PSTR("G1 Z5")));
  6880. return;
  6881. }
  6882. unsigned int custom_message_type_old = custom_message_type;
  6883. unsigned int custom_message_state_old = custom_message_state;
  6884. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  6885. custom_message_state = (x_points_num * y_points_num) + 10;
  6886. lcd_update(1);
  6887. mbl.reset();
  6888. babystep_undo();
  6889. card.openFile(filename_wldsd, false);
  6890. current_position[Z_AXIS] = mesh_home_z_search;
  6891. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6892. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6893. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6894. setup_for_endstop_move(false);
  6895. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6896. SERIAL_PROTOCOL(x_points_num);
  6897. SERIAL_PROTOCOLPGM(",");
  6898. SERIAL_PROTOCOL(y_points_num);
  6899. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6900. SERIAL_PROTOCOL(mesh_home_z_search);
  6901. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6902. SERIAL_PROTOCOL(x_dimension);
  6903. SERIAL_PROTOCOLPGM(",");
  6904. SERIAL_PROTOCOL(y_dimension);
  6905. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6906. while (mesh_point != x_points_num * y_points_num) {
  6907. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6908. iy = mesh_point / x_points_num;
  6909. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6910. float z0 = 0.f;
  6911. current_position[Z_AXIS] = mesh_home_z_search;
  6912. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6913. st_synchronize();
  6914. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6915. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6916. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6917. st_synchronize();
  6918. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6919. break;
  6920. card.closefile();
  6921. }
  6922. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6923. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6924. //strcat(data_wldsd, numb_wldsd);
  6925. //MYSERIAL.println(data_wldsd);
  6926. //delay(1000);
  6927. //delay(3000);
  6928. //t1 = millis();
  6929. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6930. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6931. memset(digit, 0, sizeof(digit));
  6932. //cli();
  6933. digitalWrite(D_REQUIRE, LOW);
  6934. for (int i = 0; i<13; i++)
  6935. {
  6936. //t1 = millis();
  6937. for (int j = 0; j < 4; j++)
  6938. {
  6939. while (digitalRead(D_DATACLOCK) == LOW) {}
  6940. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6941. bitWrite(digit[i], j, digitalRead(D_DATA));
  6942. }
  6943. //t_delay = (millis() - t1);
  6944. //SERIAL_PROTOCOLPGM(" ");
  6945. //SERIAL_PROTOCOL_F(t_delay, 5);
  6946. //SERIAL_PROTOCOLPGM(" ");
  6947. }
  6948. //sei();
  6949. digitalWrite(D_REQUIRE, HIGH);
  6950. mergeOutput[0] = '\0';
  6951. output = 0;
  6952. for (int r = 5; r <= 10; r++) //Merge digits
  6953. {
  6954. sprintf(str, "%d", digit[r]);
  6955. strcat(mergeOutput, str);
  6956. }
  6957. output = atof(mergeOutput);
  6958. if (digit[4] == 8) //Handle sign
  6959. {
  6960. output *= -1;
  6961. }
  6962. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6963. {
  6964. output *= 0.1;
  6965. }
  6966. //output = d_ReadData();
  6967. //row[ix] = current_position[Z_AXIS];
  6968. memset(data_wldsd, 0, sizeof(data_wldsd));
  6969. for (int i = 0; i <3; i++) {
  6970. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6971. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6972. strcat(data_wldsd, numb_wldsd);
  6973. strcat(data_wldsd, ";");
  6974. }
  6975. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6976. dtostrf(output, 8, 5, numb_wldsd);
  6977. strcat(data_wldsd, numb_wldsd);
  6978. //strcat(data_wldsd, ";");
  6979. card.write_command(data_wldsd);
  6980. //row[ix] = d_ReadData();
  6981. row[ix] = output; // current_position[Z_AXIS];
  6982. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6983. for (int i = 0; i < x_points_num; i++) {
  6984. SERIAL_PROTOCOLPGM(" ");
  6985. SERIAL_PROTOCOL_F(row[i], 5);
  6986. }
  6987. SERIAL_PROTOCOLPGM("\n");
  6988. }
  6989. custom_message_state--;
  6990. mesh_point++;
  6991. lcd_update(1);
  6992. }
  6993. card.closefile();
  6994. }
  6995. #endif
  6996. void temp_compensation_start() {
  6997. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  6998. custom_message_state = PINDA_HEAT_T + 1;
  6999. lcd_update(2);
  7000. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7001. current_position[E_AXIS] -= default_retraction;
  7002. }
  7003. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7004. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7005. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7006. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7007. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7008. st_synchronize();
  7009. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7010. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7011. delay_keep_alive(1000);
  7012. custom_message_state = PINDA_HEAT_T - i;
  7013. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7014. else lcd_update(1);
  7015. }
  7016. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7017. custom_message_state = 0;
  7018. }
  7019. void temp_compensation_apply() {
  7020. int i_add;
  7021. int z_shift = 0;
  7022. float z_shift_mm;
  7023. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7024. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7025. i_add = (target_temperature_bed - 60) / 10;
  7026. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7027. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7028. }else {
  7029. //interpolation
  7030. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7031. }
  7032. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7034. st_synchronize();
  7035. plan_set_z_position(current_position[Z_AXIS]);
  7036. }
  7037. else {
  7038. //we have no temp compensation data
  7039. }
  7040. }
  7041. float temp_comp_interpolation(float inp_temperature) {
  7042. //cubic spline interpolation
  7043. int n, i, j;
  7044. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7045. int shift[10];
  7046. int temp_C[10];
  7047. n = 6; //number of measured points
  7048. shift[0] = 0;
  7049. for (i = 0; i < n; i++) {
  7050. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7051. temp_C[i] = 50 + i * 10; //temperature in C
  7052. #ifdef PINDA_THERMISTOR
  7053. temp_C[i] = 35 + i * 5; //temperature in C
  7054. #else
  7055. temp_C[i] = 50 + i * 10; //temperature in C
  7056. #endif
  7057. x[i] = (float)temp_C[i];
  7058. f[i] = (float)shift[i];
  7059. }
  7060. if (inp_temperature < x[0]) return 0;
  7061. for (i = n - 1; i>0; i--) {
  7062. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7063. h[i - 1] = x[i] - x[i - 1];
  7064. }
  7065. //*********** formation of h, s , f matrix **************
  7066. for (i = 1; i<n - 1; i++) {
  7067. m[i][i] = 2 * (h[i - 1] + h[i]);
  7068. if (i != 1) {
  7069. m[i][i - 1] = h[i - 1];
  7070. m[i - 1][i] = h[i - 1];
  7071. }
  7072. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7073. }
  7074. //*********** forward elimination **************
  7075. for (i = 1; i<n - 2; i++) {
  7076. temp = (m[i + 1][i] / m[i][i]);
  7077. for (j = 1; j <= n - 1; j++)
  7078. m[i + 1][j] -= temp*m[i][j];
  7079. }
  7080. //*********** backward substitution *********
  7081. for (i = n - 2; i>0; i--) {
  7082. sum = 0;
  7083. for (j = i; j <= n - 2; j++)
  7084. sum += m[i][j] * s[j];
  7085. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7086. }
  7087. for (i = 0; i<n - 1; i++)
  7088. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7089. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7090. b = s[i] / 2;
  7091. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7092. d = f[i];
  7093. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7094. }
  7095. return sum;
  7096. }
  7097. #ifdef PINDA_THERMISTOR
  7098. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7099. {
  7100. if (!temp_cal_active) return 0;
  7101. if (!calibration_status_pinda()) return 0;
  7102. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7103. }
  7104. #endif //PINDA_THERMISTOR
  7105. void long_pause() //long pause print
  7106. {
  7107. st_synchronize();
  7108. //save currently set parameters to global variables
  7109. saved_feedmultiply = feedmultiply;
  7110. HotendTempBckp = degTargetHotend(active_extruder);
  7111. fanSpeedBckp = fanSpeed;
  7112. start_pause_print = millis();
  7113. //save position
  7114. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7115. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7116. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7117. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7118. //retract
  7119. current_position[E_AXIS] -= default_retraction;
  7120. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7121. //lift z
  7122. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7123. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7124. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7125. //set nozzle target temperature to 0
  7126. setAllTargetHotends(0);
  7127. //Move XY to side
  7128. current_position[X_AXIS] = X_PAUSE_POS;
  7129. current_position[Y_AXIS] = Y_PAUSE_POS;
  7130. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7131. // Turn off the print fan
  7132. fanSpeed = 0;
  7133. st_synchronize();
  7134. }
  7135. void serialecho_temperatures() {
  7136. float tt = degHotend(active_extruder);
  7137. SERIAL_PROTOCOLPGM("T:");
  7138. SERIAL_PROTOCOL(tt);
  7139. SERIAL_PROTOCOLPGM(" E:");
  7140. SERIAL_PROTOCOL((int)active_extruder);
  7141. SERIAL_PROTOCOLPGM(" B:");
  7142. SERIAL_PROTOCOL_F(degBed(), 1);
  7143. SERIAL_PROTOCOLLN("");
  7144. }
  7145. extern uint32_t sdpos_atomic;
  7146. #ifdef UVLO_SUPPORT
  7147. void uvlo_()
  7148. {
  7149. unsigned long time_start = millis();
  7150. bool sd_print = card.sdprinting;
  7151. // Conserve power as soon as possible.
  7152. disable_x();
  7153. disable_y();
  7154. #ifdef TMC2130
  7155. tmc2130_set_current_h(Z_AXIS, 20);
  7156. tmc2130_set_current_r(Z_AXIS, 20);
  7157. tmc2130_set_current_h(E_AXIS, 20);
  7158. tmc2130_set_current_r(E_AXIS, 20);
  7159. #endif //TMC2130
  7160. // Indicate that the interrupt has been triggered.
  7161. // SERIAL_ECHOLNPGM("UVLO");
  7162. // Read out the current Z motor microstep counter. This will be later used
  7163. // for reaching the zero full step before powering off.
  7164. uint16_t z_microsteps = 0;
  7165. #ifdef TMC2130
  7166. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7167. #endif //TMC2130
  7168. // Calculate the file position, from which to resume this print.
  7169. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7170. {
  7171. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7172. sd_position -= sdlen_planner;
  7173. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7174. sd_position -= sdlen_cmdqueue;
  7175. if (sd_position < 0) sd_position = 0;
  7176. }
  7177. // Backup the feedrate in mm/min.
  7178. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7179. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7180. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7181. // are in action.
  7182. planner_abort_hard();
  7183. // Store the current extruder position.
  7184. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7185. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7186. // Clean the input command queue.
  7187. cmdqueue_reset();
  7188. card.sdprinting = false;
  7189. // card.closefile();
  7190. // Enable stepper driver interrupt to move Z axis.
  7191. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7192. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7193. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7194. sei();
  7195. plan_buffer_line(
  7196. current_position[X_AXIS],
  7197. current_position[Y_AXIS],
  7198. current_position[Z_AXIS],
  7199. current_position[E_AXIS] - default_retraction,
  7200. 95, active_extruder);
  7201. st_synchronize();
  7202. disable_e0();
  7203. plan_buffer_line(
  7204. current_position[X_AXIS],
  7205. current_position[Y_AXIS],
  7206. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7207. current_position[E_AXIS] - default_retraction,
  7208. 40, active_extruder);
  7209. st_synchronize();
  7210. disable_e0();
  7211. plan_buffer_line(
  7212. current_position[X_AXIS],
  7213. current_position[Y_AXIS],
  7214. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7215. current_position[E_AXIS] - default_retraction,
  7216. 40, active_extruder);
  7217. st_synchronize();
  7218. disable_e0();
  7219. disable_z();
  7220. // Move Z up to the next 0th full step.
  7221. // Write the file position.
  7222. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7223. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7224. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7225. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7226. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7227. // Scale the z value to 1u resolution.
  7228. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7229. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7230. }
  7231. // Read out the current Z motor microstep counter. This will be later used
  7232. // for reaching the zero full step before powering off.
  7233. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7234. // Store the current position.
  7235. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7236. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7237. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7238. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7239. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7240. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7241. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7242. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7243. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7244. #if EXTRUDERS > 1
  7245. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7246. #if EXTRUDERS > 2
  7247. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7248. #endif
  7249. #endif
  7250. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7251. // Finaly store the "power outage" flag.
  7252. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7253. st_synchronize();
  7254. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7255. disable_z();
  7256. // Increment power failure counter
  7257. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7258. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7259. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7260. #if 0
  7261. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7262. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7263. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7264. st_synchronize();
  7265. #endif
  7266. wdt_enable(WDTO_500MS);
  7267. WRITE(BEEPER,HIGH);
  7268. while(1)
  7269. ;
  7270. }
  7271. void uvlo_tiny()
  7272. {
  7273. uint16_t z_microsteps=0;
  7274. // Conserve power as soon as possible.
  7275. disable_x();
  7276. disable_y();
  7277. disable_e0();
  7278. #ifdef TMC2130
  7279. tmc2130_set_current_h(Z_AXIS, 20);
  7280. tmc2130_set_current_r(Z_AXIS, 20);
  7281. #endif //TMC2130
  7282. // Read out the current Z motor microstep counter
  7283. #ifdef TMC2130
  7284. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7285. #endif //TMC2130
  7286. planner_abort_hard();
  7287. sei();
  7288. plan_buffer_line(
  7289. current_position[X_AXIS],
  7290. current_position[Y_AXIS],
  7291. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7292. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7293. current_position[E_AXIS],
  7294. 40, active_extruder);
  7295. st_synchronize();
  7296. disable_z();
  7297. // Finaly store the "power outage" flag.
  7298. //if(sd_print)
  7299. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7300. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7301. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7302. // Increment power failure counter
  7303. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7304. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7305. wdt_enable(WDTO_500MS);
  7306. WRITE(BEEPER,HIGH);
  7307. while(1)
  7308. ;
  7309. }
  7310. #endif //UVLO_SUPPORT
  7311. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7312. void setup_fan_interrupt() {
  7313. //INT7
  7314. DDRE &= ~(1 << 7); //input pin
  7315. PORTE &= ~(1 << 7); //no internal pull-up
  7316. //start with sensing rising edge
  7317. EICRB &= ~(1 << 6);
  7318. EICRB |= (1 << 7);
  7319. //enable INT7 interrupt
  7320. EIMSK |= (1 << 7);
  7321. }
  7322. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7323. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7324. ISR(INT7_vect) {
  7325. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7326. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7327. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7328. t_fan_rising_edge = millis_nc();
  7329. }
  7330. else { //interrupt was triggered by falling edge
  7331. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7332. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7333. }
  7334. }
  7335. EICRB ^= (1 << 6); //change edge
  7336. }
  7337. #endif
  7338. #ifdef UVLO_SUPPORT
  7339. void setup_uvlo_interrupt() {
  7340. DDRE &= ~(1 << 4); //input pin
  7341. PORTE &= ~(1 << 4); //no internal pull-up
  7342. //sensing falling edge
  7343. EICRB |= (1 << 0);
  7344. EICRB &= ~(1 << 1);
  7345. //enable INT4 interrupt
  7346. EIMSK |= (1 << 4);
  7347. }
  7348. ISR(INT4_vect) {
  7349. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7350. SERIAL_ECHOLNPGM("INT4");
  7351. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7352. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7353. }
  7354. void recover_print(uint8_t automatic) {
  7355. char cmd[30];
  7356. lcd_update_enable(true);
  7357. lcd_update(2);
  7358. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7359. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7360. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7361. // Lift the print head, so one may remove the excess priming material.
  7362. if(!bTiny&&(current_position[Z_AXIS]<25))
  7363. enquecommand_P(PSTR("G1 Z25 F800"));
  7364. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7365. enquecommand_P(PSTR("G28 X Y"));
  7366. // Set the target bed and nozzle temperatures and wait.
  7367. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7368. enquecommand(cmd);
  7369. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7370. enquecommand(cmd);
  7371. enquecommand_P(PSTR("M83")); //E axis relative mode
  7372. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7373. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7374. if(automatic == 0){
  7375. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7376. }
  7377. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7378. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7379. // Restart the print.
  7380. restore_print_from_eeprom();
  7381. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7382. }
  7383. void recover_machine_state_after_power_panic(bool bTiny)
  7384. {
  7385. char cmd[30];
  7386. // 1) Recover the logical cordinates at the time of the power panic.
  7387. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7388. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7389. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7390. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7391. // The current position after power panic is moved to the next closest 0th full step.
  7392. if(bTiny)
  7393. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7394. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7395. else
  7396. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7397. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7398. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7399. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7400. sprintf_P(cmd, PSTR("G92 E"));
  7401. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7402. enquecommand(cmd);
  7403. }
  7404. memcpy(destination, current_position, sizeof(destination));
  7405. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7406. print_world_coordinates();
  7407. // 2) Initialize the logical to physical coordinate system transformation.
  7408. world2machine_initialize();
  7409. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7410. mbl.active = false;
  7411. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7412. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7413. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7414. // Scale the z value to 10u resolution.
  7415. int16_t v;
  7416. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7417. if (v != 0)
  7418. mbl.active = true;
  7419. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7420. }
  7421. if (mbl.active)
  7422. mbl.upsample_3x3();
  7423. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7424. // print_mesh_bed_leveling_table();
  7425. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7426. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7427. babystep_load();
  7428. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7429. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7430. // 6) Power up the motors, mark their positions as known.
  7431. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7432. axis_known_position[X_AXIS] = true; enable_x();
  7433. axis_known_position[Y_AXIS] = true; enable_y();
  7434. axis_known_position[Z_AXIS] = true; enable_z();
  7435. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7436. print_physical_coordinates();
  7437. // 7) Recover the target temperatures.
  7438. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7439. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7440. // 8) Recover extruder multipilers
  7441. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7442. #if EXTRUDERS > 1
  7443. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7444. #if EXTRUDERS > 2
  7445. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7446. #endif
  7447. #endif
  7448. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7449. }
  7450. void restore_print_from_eeprom() {
  7451. int feedrate_rec;
  7452. uint8_t fan_speed_rec;
  7453. char cmd[30];
  7454. char filename[13];
  7455. uint8_t depth = 0;
  7456. char dir_name[9];
  7457. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7458. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7459. SERIAL_ECHOPGM("Feedrate:");
  7460. MYSERIAL.println(feedrate_rec);
  7461. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7462. MYSERIAL.println(int(depth));
  7463. for (int i = 0; i < depth; i++) {
  7464. for (int j = 0; j < 8; j++) {
  7465. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7466. }
  7467. dir_name[8] = '\0';
  7468. MYSERIAL.println(dir_name);
  7469. strcpy(dir_names[i], dir_name);
  7470. card.chdir(dir_name);
  7471. }
  7472. for (int i = 0; i < 8; i++) {
  7473. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7474. }
  7475. filename[8] = '\0';
  7476. MYSERIAL.print(filename);
  7477. strcat_P(filename, PSTR(".gco"));
  7478. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7479. enquecommand(cmd);
  7480. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7481. SERIAL_ECHOPGM("Position read from eeprom:");
  7482. MYSERIAL.println(position);
  7483. // E axis relative mode.
  7484. enquecommand_P(PSTR("M83"));
  7485. // Move to the XY print position in logical coordinates, where the print has been killed.
  7486. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7487. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7488. strcat_P(cmd, PSTR(" F2000"));
  7489. enquecommand(cmd);
  7490. // Move the Z axis down to the print, in logical coordinates.
  7491. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7492. enquecommand(cmd);
  7493. // Unretract.
  7494. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7495. // Set the feedrate saved at the power panic.
  7496. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7497. enquecommand(cmd);
  7498. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7499. {
  7500. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7501. }
  7502. // Set the fan speed saved at the power panic.
  7503. strcpy_P(cmd, PSTR("M106 S"));
  7504. strcat(cmd, itostr3(int(fan_speed_rec)));
  7505. enquecommand(cmd);
  7506. // Set a position in the file.
  7507. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7508. enquecommand(cmd);
  7509. enquecommand_P(PSTR("G4 S0"));
  7510. enquecommand_P(PSTR("PRUSA uvlo"));
  7511. }
  7512. #endif //UVLO_SUPPORT
  7513. ////////////////////////////////////////////////////////////////////////////////
  7514. // save/restore printing
  7515. void stop_and_save_print_to_ram(float z_move, float e_move)
  7516. {
  7517. if (saved_printing) return;
  7518. #if 0
  7519. unsigned char nplanner_blocks;
  7520. #endif
  7521. unsigned char nlines;
  7522. uint16_t sdlen_planner;
  7523. uint16_t sdlen_cmdqueue;
  7524. cli();
  7525. if (card.sdprinting) {
  7526. #if 0
  7527. nplanner_blocks = number_of_blocks();
  7528. #endif
  7529. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7530. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7531. saved_sdpos -= sdlen_planner;
  7532. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7533. saved_sdpos -= sdlen_cmdqueue;
  7534. saved_printing_type = PRINTING_TYPE_SD;
  7535. }
  7536. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7537. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7538. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7539. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7540. saved_sdpos -= nlines;
  7541. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7542. saved_printing_type = PRINTING_TYPE_USB;
  7543. }
  7544. else {
  7545. //not sd printing nor usb printing
  7546. }
  7547. #if 0
  7548. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7549. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7550. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7551. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7552. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7553. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7554. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7555. {
  7556. card.setIndex(saved_sdpos);
  7557. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7558. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7559. MYSERIAL.print(char(card.get()));
  7560. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7561. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7562. MYSERIAL.print(char(card.get()));
  7563. SERIAL_ECHOLNPGM("End of command buffer");
  7564. }
  7565. {
  7566. // Print the content of the planner buffer, line by line:
  7567. card.setIndex(saved_sdpos);
  7568. int8_t iline = 0;
  7569. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7570. SERIAL_ECHOPGM("Planner line (from file): ");
  7571. MYSERIAL.print(int(iline), DEC);
  7572. SERIAL_ECHOPGM(", length: ");
  7573. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7574. SERIAL_ECHOPGM(", steps: (");
  7575. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7576. SERIAL_ECHOPGM(",");
  7577. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7578. SERIAL_ECHOPGM(",");
  7579. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7580. SERIAL_ECHOPGM(",");
  7581. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7582. SERIAL_ECHOPGM("), events: ");
  7583. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7584. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7585. MYSERIAL.print(char(card.get()));
  7586. }
  7587. }
  7588. {
  7589. // Print the content of the command buffer, line by line:
  7590. int8_t iline = 0;
  7591. union {
  7592. struct {
  7593. char lo;
  7594. char hi;
  7595. } lohi;
  7596. uint16_t value;
  7597. } sdlen_single;
  7598. int _bufindr = bufindr;
  7599. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7600. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7601. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7602. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7603. }
  7604. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7605. MYSERIAL.print(int(iline), DEC);
  7606. SERIAL_ECHOPGM(", type: ");
  7607. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7608. SERIAL_ECHOPGM(", len: ");
  7609. MYSERIAL.println(sdlen_single.value, DEC);
  7610. // Print the content of the buffer line.
  7611. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7612. SERIAL_ECHOPGM("Buffer line (from file): ");
  7613. MYSERIAL.println(int(iline), DEC);
  7614. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7615. MYSERIAL.print(char(card.get()));
  7616. if (-- _buflen == 0)
  7617. break;
  7618. // First skip the current command ID and iterate up to the end of the string.
  7619. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7620. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7621. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7622. // If the end of the buffer was empty,
  7623. if (_bufindr == sizeof(cmdbuffer)) {
  7624. // skip to the start and find the nonzero command.
  7625. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7626. }
  7627. }
  7628. }
  7629. #endif
  7630. #if 0
  7631. saved_feedrate2 = feedrate; //save feedrate
  7632. #else
  7633. // Try to deduce the feedrate from the first block of the planner.
  7634. // Speed is in mm/min.
  7635. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7636. #endif
  7637. planner_abort_hard(); //abort printing
  7638. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7639. saved_active_extruder = active_extruder; //save active_extruder
  7640. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7641. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7642. cmdqueue_reset(); //empty cmdqueue
  7643. card.sdprinting = false;
  7644. // card.closefile();
  7645. saved_printing = true;
  7646. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7647. st_reset_timer();
  7648. sei();
  7649. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7650. #if 1
  7651. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7652. char buf[48];
  7653. // First unretract (relative extrusion)
  7654. if(!saved_extruder_relative_mode){
  7655. strcpy_P(buf, PSTR("M83"));
  7656. enquecommand(buf, false);
  7657. }
  7658. //retract 45mm/s
  7659. strcpy_P(buf, PSTR("G1 E"));
  7660. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7661. strcat_P(buf, PSTR(" F"));
  7662. dtostrf(2700, 8, 3, buf + strlen(buf));
  7663. enquecommand(buf, false);
  7664. // Then lift Z axis
  7665. strcpy_P(buf, PSTR("G1 Z"));
  7666. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7667. strcat_P(buf, PSTR(" F"));
  7668. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7669. // At this point the command queue is empty.
  7670. enquecommand(buf, false);
  7671. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7672. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7673. repeatcommand_front();
  7674. #else
  7675. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7676. st_synchronize(); //wait moving
  7677. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7678. memcpy(destination, current_position, sizeof(destination));
  7679. #endif
  7680. }
  7681. }
  7682. void restore_print_from_ram_and_continue(float e_move)
  7683. {
  7684. if (!saved_printing) return;
  7685. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7686. // current_position[axis] = st_get_position_mm(axis);
  7687. active_extruder = saved_active_extruder; //restore active_extruder
  7688. feedrate = saved_feedrate2; //restore feedrate
  7689. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7690. float e = saved_pos[E_AXIS] - e_move;
  7691. plan_set_e_position(e);
  7692. //first move print head in XY to the saved position:
  7693. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7694. st_synchronize();
  7695. //then move Z
  7696. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7697. st_synchronize();
  7698. //and finaly unretract (35mm/s)
  7699. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7700. st_synchronize();
  7701. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7702. memcpy(destination, current_position, sizeof(destination));
  7703. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7704. card.setIndex(saved_sdpos);
  7705. sdpos_atomic = saved_sdpos;
  7706. card.sdprinting = true;
  7707. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7708. }
  7709. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7710. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7711. serial_count = 0;
  7712. FlushSerialRequestResend();
  7713. }
  7714. else {
  7715. //not sd printing nor usb printing
  7716. }
  7717. lcd_setstatuspgm(_T(WELCOME_MSG));
  7718. saved_printing = false;
  7719. }
  7720. void print_world_coordinates()
  7721. {
  7722. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7723. }
  7724. void print_physical_coordinates()
  7725. {
  7726. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7727. }
  7728. void print_mesh_bed_leveling_table()
  7729. {
  7730. SERIAL_ECHOPGM("mesh bed leveling: ");
  7731. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7732. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7733. MYSERIAL.print(mbl.z_values[y][x], 3);
  7734. SERIAL_ECHOPGM(" ");
  7735. }
  7736. SERIAL_ECHOLNPGM("");
  7737. }
  7738. uint16_t print_time_remaining() {
  7739. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7740. #ifdef TMC2130
  7741. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7742. else print_t = print_time_remaining_silent;
  7743. #else
  7744. print_t = print_time_remaining_normal;
  7745. #endif //TMC2130
  7746. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  7747. return print_t;
  7748. }
  7749. uint8_t calc_percent_done()
  7750. {
  7751. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7752. uint8_t percent_done = 0;
  7753. #ifdef TMC2130
  7754. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7755. percent_done = print_percent_done_normal;
  7756. }
  7757. else if (print_percent_done_silent <= 100) {
  7758. percent_done = print_percent_done_silent;
  7759. }
  7760. #else
  7761. if (print_percent_done_normal <= 100) {
  7762. percent_done = print_percent_done_normal;
  7763. }
  7764. #endif //TMC2130
  7765. else {
  7766. percent_done = card.percentDone();
  7767. }
  7768. return percent_done;
  7769. }
  7770. static void print_time_remaining_init()
  7771. {
  7772. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7773. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7774. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7775. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7776. }
  7777. void M600_check_state()
  7778. {
  7779. //Wait for user to check the state
  7780. lcd_change_fil_state = 0;
  7781. while (lcd_change_fil_state != 1){
  7782. lcd_change_fil_state = 0;
  7783. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7784. lcd_alright();
  7785. KEEPALIVE_STATE(IN_HANDLER);
  7786. switch(lcd_change_fil_state){
  7787. // Filament failed to load so load it again
  7788. case 2:
  7789. if (mmu_enabled)
  7790. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  7791. else
  7792. M600_load_filament_movements();
  7793. break;
  7794. // Filament loaded properly but color is not clear
  7795. case 3:
  7796. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7797. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  7798. lcd_loading_color();
  7799. break;
  7800. // Everything good
  7801. default:
  7802. lcd_change_success();
  7803. break;
  7804. }
  7805. }
  7806. }
  7807. void M600_wait_for_user() {
  7808. //Beep, manage nozzle heater and wait for user to start unload filament
  7809. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7810. int counterBeep = 0;
  7811. unsigned long waiting_start_time = millis();
  7812. uint8_t wait_for_user_state = 0;
  7813. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7814. bool bFirst=true;
  7815. while (!(wait_for_user_state == 0 && lcd_clicked())){
  7816. manage_heater();
  7817. manage_inactivity(true);
  7818. #if BEEPER > 0
  7819. if (counterBeep == 500) {
  7820. counterBeep = 0;
  7821. }
  7822. SET_OUTPUT(BEEPER);
  7823. if (counterBeep == 0) {
  7824. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  7825. {
  7826. bFirst=false;
  7827. WRITE(BEEPER, HIGH);
  7828. }
  7829. }
  7830. if (counterBeep == 20) {
  7831. WRITE(BEEPER, LOW);
  7832. }
  7833. counterBeep++;
  7834. #endif //BEEPER > 0
  7835. switch (wait_for_user_state) {
  7836. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  7837. delay_keep_alive(4);
  7838. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  7839. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  7840. wait_for_user_state = 1;
  7841. setTargetHotend(0, 0);
  7842. setTargetHotend(0, 1);
  7843. setTargetHotend(0, 2);
  7844. st_synchronize();
  7845. disable_e0();
  7846. disable_e1();
  7847. disable_e2();
  7848. }
  7849. break;
  7850. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  7851. delay_keep_alive(4);
  7852. if (lcd_clicked()) {
  7853. setTargetHotend(HotendTempBckp, active_extruder);
  7854. lcd_wait_for_heater();
  7855. wait_for_user_state = 2;
  7856. }
  7857. break;
  7858. case 2: //waiting for nozzle to reach target temperature
  7859. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  7860. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7861. waiting_start_time = millis();
  7862. wait_for_user_state = 0;
  7863. }
  7864. else {
  7865. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  7866. lcd_set_cursor(1, 4);
  7867. lcd_print(ftostr3(degHotend(active_extruder)));
  7868. }
  7869. break;
  7870. }
  7871. }
  7872. WRITE(BEEPER, LOW);
  7873. }
  7874. void M600_load_filament_movements()
  7875. {
  7876. #ifdef SNMM
  7877. display_loading();
  7878. do
  7879. {
  7880. current_position[E_AXIS] += 0.002;
  7881. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7882. delay_keep_alive(2);
  7883. }
  7884. while (!lcd_clicked());
  7885. st_synchronize();
  7886. current_position[E_AXIS] += bowden_length[mmu_extruder];
  7887. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  7888. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  7889. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  7890. current_position[E_AXIS] += 40;
  7891. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7892. current_position[E_AXIS] += 10;
  7893. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7894. #else
  7895. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  7896. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  7897. #endif
  7898. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7899. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  7900. lcd_loading_filament();
  7901. }
  7902. void M600_load_filament() {
  7903. //load filament for single material and SNMM
  7904. lcd_wait_interact();
  7905. //load_filament_time = millis();
  7906. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7907. #ifdef FILAMENT_SENSOR
  7908. fsensor_autoload_check_start();
  7909. #endif //FILAMENT_SENSOR
  7910. while(!lcd_clicked())
  7911. {
  7912. manage_heater();
  7913. manage_inactivity(true);
  7914. #ifdef FILAMENT_SENSOR
  7915. if (fsensor_check_autoload())
  7916. {
  7917. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7918. tone(BEEPER, 1000);
  7919. delay_keep_alive(50);
  7920. noTone(BEEPER);
  7921. break;
  7922. }
  7923. #endif //FILAMENT_SENSOR
  7924. }
  7925. #ifdef FILAMENT_SENSOR
  7926. fsensor_autoload_check_stop();
  7927. #endif //FILAMENT_SENSOR
  7928. KEEPALIVE_STATE(IN_HANDLER);
  7929. #ifdef FSENSOR_QUALITY
  7930. fsensor_oq_meassure_start(70);
  7931. #endif //FSENSOR_QUALITY
  7932. M600_load_filament_movements();
  7933. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  7934. tone(BEEPER, 500);
  7935. delay_keep_alive(50);
  7936. noTone(BEEPER);
  7937. #ifdef FSENSOR_QUALITY
  7938. fsensor_oq_meassure_stop();
  7939. if (!fsensor_oq_result())
  7940. {
  7941. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  7942. lcd_update_enable(true);
  7943. lcd_update(2);
  7944. if (disable)
  7945. fsensor_disable();
  7946. }
  7947. #endif //FSENSOR_QUALITY
  7948. lcd_update_enable(false);
  7949. }
  7950. #define FIL_LOAD_LENGTH 60