| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400 | /*  stepper.c - stepper motor driver: executes motion plans using stepper motors  Part of Grbl  Copyright (c) 2009-2011 Simen Svale Skogsrud  Grbl is free software: you can redistribute it and/or modify  it under the terms of the GNU General Public License as published by  the Free Software Foundation, either version 3 of the License, or  (at your option) any later version.  Grbl is distributed in the hope that it will be useful,  but WITHOUT ANY WARRANTY; without even the implied warranty of  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the  GNU General Public License for more details.  You should have received a copy of the GNU General Public License  along with Grbl.  If not, see <http://www.gnu.org/licenses/>.*//* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith   and Philipp Tiefenbacher. */#include "Marlin.h"#include "stepper.h"#include "planner.h"#include "temperature.h"#include "ultralcd.h"#include "language.h"#include "cardreader.h"#include "speed_lookuptable.h"#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1#include <SPI.h>#endif#ifdef TMC2130#include "tmc2130.h"#endif //TMC2130#ifdef PAT9125extern uint8_t fsensor_err_cnt;#endif //PAT9125//===========================================================================//=============================public variables  ============================//===========================================================================block_t *current_block;  // A pointer to the block currently being tracedbool x_min_endstop = false;bool x_max_endstop = false;bool y_min_endstop = false;bool y_max_endstop = false;bool z_min_endstop = false;bool z_max_endstop = false;//===========================================================================//=============================private variables ============================//===========================================================================//static makes it inpossible to be called from outside of this file by extern.!// Variables used by The Stepper Driver Interruptstatic unsigned char out_bits;        // The next stepping-bits to be outputstatic int32_t counter_x,       // Counter variables for the bresenham line tracer               counter_y,               counter_z,               counter_e;volatile uint32_t step_events_completed; // The number of step events executed in the current blockstatic int32_t  acceleration_time, deceleration_time;//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;static uint16_t acc_step_rate; // needed for deccelaration start pointstatic uint8_t  step_loops;static uint16_t OCR1A_nominal;static uint8_t  step_loops_nominal;volatile long endstops_trigsteps[3]={0,0,0};volatile long endstops_stepsTotal,endstops_stepsDone;static volatile bool endstop_x_hit=false;static volatile bool endstop_y_hit=false;static volatile bool endstop_z_hit=false;#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLEDbool abort_on_endstop_hit = false;#endif#ifdef MOTOR_CURRENT_PWM_XY_PIN  int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;  int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;  int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;#endifstatic bool old_x_min_endstop=false;static bool old_x_max_endstop=false;static bool old_y_min_endstop=false;static bool old_y_max_endstop=false;static bool old_z_min_endstop=false;static bool old_z_max_endstop=false;static bool check_endstops = true;static bool check_z_endstop = false;int8_t SilentMode = 0;volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};uint8_t LastStepMask = 0;#ifdef LIN_ADVANCE  uint16_t ADV_NEVER = 65535;  static uint16_t nextMainISR = 0;  static uint16_t nextAdvanceISR = ADV_NEVER;  static uint16_t eISR_Rate = ADV_NEVER;  static volatile int e_steps; //Extrusion steps to be executed by the stepper  static int final_estep_rate; //Speed of extruder at cruising speed  static int current_estep_rate; //The current speed of the extruder  static int current_adv_steps; //The current pretension of filament expressed in steps  #define ADV_RATE(T, L) (e_steps ? (T) * (L) / abs(e_steps) : ADV_NEVER)  #define _NEXT_ISR(T) nextMainISR = T#else  #define _NEXT_ISR(T) OCR1A = T#endif//===========================================================================//=============================functions         ============================//===========================================================================#define CHECK_ENDSTOPS  if(check_endstops)// intRes = intIn1 * intIn2 >> 16// uses:// r26 to store 0// r27 to store the byte 1 of the 24 bit result#define MultiU16X8toH16(intRes, charIn1, intIn2) \asm volatile ( \"clr r26 \n\t" \"mul %A1, %B2 \n\t" \"movw %A0, r0 \n\t" \"mul %A1, %A2 \n\t" \"add %A0, r1 \n\t" \"adc %B0, r26 \n\t" \"lsr r0 \n\t" \"adc %A0, r26 \n\t" \"adc %B0, r26 \n\t" \"clr r1 \n\t" \: \"=&r" (intRes) \: \"d" (charIn1), \"d" (intIn2) \: \"r26" \)// intRes = longIn1 * longIn2 >> 24// uses:// r26 to store 0// r27 to store the byte 1 of the 48bit result#define MultiU24X24toH16(intRes, longIn1, longIn2) \asm volatile ( \"clr r26 \n\t" \"mul %A1, %B2 \n\t" \"mov r27, r1 \n\t" \"mul %B1, %C2 \n\t" \"movw %A0, r0 \n\t" \"mul %C1, %C2 \n\t" \"add %B0, r0 \n\t" \"mul %C1, %B2 \n\t" \"add %A0, r0 \n\t" \"adc %B0, r1 \n\t" \"mul %A1, %C2 \n\t" \"add r27, r0 \n\t" \"adc %A0, r1 \n\t" \"adc %B0, r26 \n\t" \"mul %B1, %B2 \n\t" \"add r27, r0 \n\t" \"adc %A0, r1 \n\t" \"adc %B0, r26 \n\t" \"mul %C1, %A2 \n\t" \"add r27, r0 \n\t" \"adc %A0, r1 \n\t" \"adc %B0, r26 \n\t" \"mul %B1, %A2 \n\t" \"add r27, r1 \n\t" \"adc %A0, r26 \n\t" \"adc %B0, r26 \n\t" \"lsr r27 \n\t" \"adc %A0, r26 \n\t" \"adc %B0, r26 \n\t" \"clr r1 \n\t" \: \"=&r" (intRes) \: \"d" (longIn1), \"d" (longIn2) \: \"r26" , "r27" \)// Some useful constants#define ENABLE_STEPPER_DRIVER_INTERRUPT()  TIMSK1 |= (1<<OCIE1A)#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)void checkHitEndstops(){ if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {   SERIAL_ECHO_START;   SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT);   if(endstop_x_hit) {     SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);     LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("X")));   }   if(endstop_y_hit) {     SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);     LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("Y")));   }   if(endstop_z_hit) {     SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);     LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT,PSTR("Z")));   }   SERIAL_ECHOLN("");   endstop_x_hit=false;   endstop_y_hit=false;   endstop_z_hit=false;#if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)   if (abort_on_endstop_hit)   {     card.sdprinting = false;     card.closefile();     quickStop();     setTargetHotend0(0);     setTargetHotend1(0);     setTargetHotend2(0);   }#endif }}bool endstops_hit_on_purpose(){  bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit;  endstop_x_hit=false;  endstop_y_hit=false;  endstop_z_hit=false;  return hit;}bool endstop_z_hit_on_purpose(){  bool hit = endstop_z_hit;  endstop_z_hit=false;  return hit;}bool enable_endstops(bool check){  bool old = check_endstops;  check_endstops = check;  return old;}bool enable_z_endstop(bool check){  bool old = check_z_endstop;  check_z_endstop = check;  endstop_z_hit=false;  return old;}//         __________________________//        /|                        |\     _________________         ^//       / |                        | \   /|               |\        |//      /  |                        |  \ / |               | \       s//     /   |                        |   |  |               |  \      p//    /    |                        |   |  |               |   \     e//   +-----+------------------------+---+--+---------------+----+    e//   |               BLOCK 1            |      BLOCK 2          |    d////                           time ----->////  The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates//  first block->accelerate_until step_events_completed, then keeps going at constant speed until//  step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.//  The slope of acceleration is calculated with the leib ramp alghorithm.void st_wake_up() {  //  TCNT1 = 0;  ENABLE_STEPPER_DRIVER_INTERRUPT();}void step_wait(){    for(int8_t i=0; i < 6; i++){    }}FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {  unsigned short timer;  if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;  if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times    step_rate = (step_rate >> 2)&0x3fff;    step_loops = 4;  }  else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times    step_rate = (step_rate >> 1)&0x7fff;    step_loops = 2;  }  else {    step_loops = 1;  }//    step_loops = 1;  if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);  step_rate -= (F_CPU/500000); // Correct for minimal speed  if(step_rate >= (8*256)){ // higher step rate    unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];    unsigned char tmp_step_rate = (step_rate & 0x00ff);    unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);    MultiU16X8toH16(timer, tmp_step_rate, gain);    timer = (unsigned short)pgm_read_word_near(table_address) - timer;  }  else { // lower step rates    unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];    table_address += ((step_rate)>>1) & 0xfffc;    timer = (unsigned short)pgm_read_word_near(table_address);    timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);  }  if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)  return timer;}// Initializes the trapezoid generator from the current block. Called whenever a new// block begins.FORCE_INLINE void trapezoid_generator_reset() {  deceleration_time = 0;  // step_rate to timer interval  OCR1A_nominal = calc_timer(current_block->nominal_rate);  // make a note of the number of step loops required at nominal speed  step_loops_nominal = step_loops;  acc_step_rate = current_block->initial_rate;  acceleration_time = calc_timer(acc_step_rate);  _NEXT_ISR(acceleration_time);  #ifdef LIN_ADVANCE    if (current_block->use_advance_lead) {        current_estep_rate = ((unsigned long)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;        final_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17;        }   #endif}// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.ISR(TIMER1_COMPA_vect) {  #ifdef LIN_ADVANCE    advance_isr_scheduler();  #else      isr();  #endif}void isr() {	//if (UVLO) uvlo();  // If there is no current block, attempt to pop one from the buffer  if (current_block == NULL) {    // Anything in the buffer?    current_block = plan_get_current_block();    if (current_block != NULL) {      // The busy flag is set by the plan_get_current_block() call.      // current_block->busy = true;      trapezoid_generator_reset();      counter_x = -(current_block->step_event_count >> 1);      counter_y = counter_x;      counter_z = counter_x;      counter_e = counter_x;      step_events_completed = 0;      #ifdef Z_LATE_ENABLE        if(current_block->steps_z > 0) {          enable_z();          _NEXT_ISR(2000); //1ms wait          return;        }      #endif    }    else {        _NEXT_ISR(2000); // 1kHz.    }  }	LastStepMask = 0;  if (current_block != NULL) {    // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt    out_bits = current_block->direction_bits;    // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)    if((out_bits & (1<<X_AXIS))!=0){        WRITE(X_DIR_PIN, INVERT_X_DIR);      count_direction[X_AXIS]=-1;    }    else{        WRITE(X_DIR_PIN, !INVERT_X_DIR);      count_direction[X_AXIS]=1;    }    if((out_bits & (1<<Y_AXIS))!=0){      WRITE(Y_DIR_PIN, INVERT_Y_DIR);	  	  #ifdef Y_DUAL_STEPPER_DRIVERS	    WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));	  #endif	        count_direction[Y_AXIS]=-1;    }    else{      WRITE(Y_DIR_PIN, !INVERT_Y_DIR);	  	  #ifdef Y_DUAL_STEPPER_DRIVERS	    WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));	  #endif	        count_direction[Y_AXIS]=1;    }    // Set direction en check limit switches    #ifndef COREXY    if ((out_bits & (1<<X_AXIS)) != 0) {   // stepping along -X axis    #else    if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) {   //-X occurs for -A and -B    #endif      CHECK_ENDSTOPS      {        {          #if defined(X_MIN_PIN) && (X_MIN_PIN > -1) && !defined(DEBUG_DISABLE_XMINLIMIT)			#ifndef TMC2130_SG_HOMING_SW_XY				x_min_endstop = (READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);			#else //TMC2130_SG_HOMING_SW_XY				x_min_endstop = tmc2130_axis_stalled[X_AXIS];			#endif //TMC2130_SG_HOMING_SW_XY            if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {              endstops_trigsteps[X_AXIS] = count_position[X_AXIS];              endstop_x_hit=true;              step_events_completed = current_block->step_event_count;            }            old_x_min_endstop = x_min_endstop;          #endif        }      }    }    else { // +direction      CHECK_ENDSTOPS      {        {          #if defined(X_MAX_PIN) && (X_MAX_PIN > -1) && !defined(DEBUG_DISABLE_XMAXLIMIT)			#ifndef TMC2130_SG_HOMING_SW_XY				x_max_endstop = (READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);			#else //TMC2130_SG_HOMING_SW_XY				x_max_endstop = tmc2130_axis_stalled[X_AXIS];			#endif //TMC2130_SG_HOMING_SW_XY            if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){              endstops_trigsteps[X_AXIS] = count_position[X_AXIS];              endstop_x_hit=true;              step_events_completed = current_block->step_event_count;            }            old_x_max_endstop = x_max_endstop;          #endif        }      }    }    #ifndef COREXY    if ((out_bits & (1<<Y_AXIS)) != 0) {   // -direction    #else    if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) {   // -Y occurs for -A and +B    #endif      CHECK_ENDSTOPS      {        #if defined(Y_MIN_PIN) && (Y_MIN_PIN > -1) && !defined(DEBUG_DISABLE_YMINLIMIT)			#ifndef TMC2130_SG_HOMING_SW_XY				y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);			#else //TMC2130_SG_HOMING_SW_XY				y_min_endstop = tmc2130_axis_stalled[Y_AXIS];			#endif //TMC2130_SG_HOMING_SW_XY          if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {            endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];            endstop_y_hit=true;            step_events_completed = current_block->step_event_count;          }          old_y_min_endstop = y_min_endstop;        #endif      }    }    else { // +direction      CHECK_ENDSTOPS      {        #if defined(Y_MAX_PIN) && (Y_MAX_PIN > -1) && !defined(DEBUG_DISABLE_YMAXLIMIT)			#ifndef TMC2130_SG_HOMING_SW_XY				y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);			#else //TMC2130_SG_HOMING_SW_XY				y_max_endstop = tmc2130_axis_stalled[Y_AXIS];			#endif //TMC2130_SG_HOMING_SW_XY          if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){            endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];            endstop_y_hit=true;            step_events_completed = current_block->step_event_count;          }          old_y_max_endstop = y_max_endstop;        #endif      }    }    if ((out_bits & (1<<Z_AXIS)) != 0) {   // -direction      WRITE(Z_DIR_PIN,INVERT_Z_DIR);            #ifdef Z_DUAL_STEPPER_DRIVERS        WRITE(Z2_DIR_PIN,INVERT_Z_DIR);      #endif      count_direction[Z_AXIS]=-1;      if(check_endstops && ! check_z_endstop)      {        #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)          z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);          if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {            endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];            endstop_z_hit=true;            step_events_completed = current_block->step_event_count;          }          old_z_min_endstop = z_min_endstop;        #endif      }    }    else { // +direction      WRITE(Z_DIR_PIN,!INVERT_Z_DIR);      #ifdef Z_DUAL_STEPPER_DRIVERS        WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);      #endif      count_direction[Z_AXIS]=1;      CHECK_ENDSTOPS      {        #if defined(Z_MAX_PIN) && (Z_MAX_PIN > -1) && !defined(DEBUG_DISABLE_ZMAXLIMIT)			#ifndef TMC2130_SG_HOMING_SW_Z				z_max_endstop = (READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);			#else //TMC2130_SG_HOMING_SW_Z				z_max_endstop = tmc2130_axis_stalled[Z_AXIS];			#endif //TMC2130_SG_HOMING_SW_Z          if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {            endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];            endstop_z_hit=true;            step_events_completed = current_block->step_event_count;          }          old_z_max_endstop = z_max_endstop;        #endif      }    }    // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.    #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)    if(check_z_endstop) {        // Check the Z min end-stop no matter what.        // Good for searching for the center of an induction target.        z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);        if(z_min_endstop && old_z_min_endstop) {          endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];          endstop_z_hit=true;          step_events_completed = current_block->step_event_count;        }        old_z_min_endstop = z_min_endstop;    }    #endif	if ((out_bits & (1 << E_AXIS)) != 0)	{	// -direction		//AKU#ifdef SNMM		if (snmm_extruder == 0 || snmm_extruder == 2)		{			NORM_E_DIR();		}		else		{			REV_E_DIR();		}#else		REV_E_DIR();#endif // SNMM		count_direction[E_AXIS] = -1;	}	else	{	// +direction#ifdef SNMM		if (snmm_extruder == 0 || snmm_extruder == 2)		{			REV_E_DIR();		}		else		{			NORM_E_DIR();		}#else		NORM_E_DIR();#endif // SNMM		count_direction[E_AXIS] = 1;	}    for(uint8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)      #ifndef AT90USB      MSerial.checkRx(); // Check for serial chars.      #endif#ifdef LIN_ADVANCE        counter_e += current_block->steps_e;        if (counter_e > 0) {          counter_e -= current_block->step_event_count;          count_position[E_AXIS] += count_direction[E_AXIS];          ((out_bits&(1<<E_AXIS))!=0) ? --e_steps : ++e_steps;        }#endif                counter_x += current_block->steps_x;        if (counter_x > 0) {          WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);		  LastStepMask |= X_AXIS_MASK;#ifdef DEBUG_XSTEP_DUP_PIN    WRITE(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);#endif //DEBUG_XSTEP_DUP_PIN          counter_x -= current_block->step_event_count;          count_position[X_AXIS]+=count_direction[X_AXIS];             WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);#ifdef DEBUG_XSTEP_DUP_PIN    WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);#endif //DEBUG_XSTEP_DUP_PIN        }        counter_y += current_block->steps_y;        if (counter_y > 0) {          WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);		  LastStepMask |= Y_AXIS_MASK;#ifdef DEBUG_YSTEP_DUP_PIN    WRITE(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);#endif //DEBUG_YSTEP_DUP_PIN		  		  #ifdef Y_DUAL_STEPPER_DRIVERS			WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);		  #endif		            counter_y -= current_block->step_event_count;          count_position[Y_AXIS]+=count_direction[Y_AXIS];          WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);#ifdef DEBUG_YSTEP_DUP_PIN    WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);#endif //DEBUG_YSTEP_DUP_PIN		  		  #ifdef Y_DUAL_STEPPER_DRIVERS			WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);		  #endif        }      counter_z += current_block->steps_z;      if (counter_z > 0) {        WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);        LastStepMask |= Z_AXIS_MASK;        #ifdef Z_DUAL_STEPPER_DRIVERS          WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);        #endif        counter_z -= current_block->step_event_count;        count_position[Z_AXIS]+=count_direction[Z_AXIS];        WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);                #ifdef Z_DUAL_STEPPER_DRIVERS          WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);        #endif      }#ifndef LIN_ADVANCE        counter_e += current_block->steps_e;        if (counter_e > 0) {          WRITE_E_STEP(!INVERT_E_STEP_PIN);          counter_e -= current_block->step_event_count;          count_position[E_AXIS]+=count_direction[E_AXIS];          WRITE_E_STEP(INVERT_E_STEP_PIN);        }#endif              step_events_completed += 1;      if(step_events_completed >= current_block->step_event_count) break;    }#ifdef LIN_ADVANCE      if (current_block->use_advance_lead) {        const int delta_adv_steps = current_estep_rate - current_adv_steps;        current_adv_steps += delta_adv_steps;        e_steps += delta_adv_steps;      }      // If we have esteps to execute, fire the next advance_isr "now"      if (e_steps) nextAdvanceISR = 0;#endif            // Calculare new timer value    unsigned short timer;    unsigned short step_rate;    if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {      // v = t * a   ->   acc_step_rate = acceleration_time * current_block->acceleration_rate      MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);      acc_step_rate += current_block->initial_rate;      // upper limit      if(acc_step_rate > current_block->nominal_rate)        acc_step_rate = current_block->nominal_rate;      // step_rate to timer interval      timer = calc_timer(acc_step_rate);      _NEXT_ISR(timer);      acceleration_time += timer;        #ifdef LIN_ADVANCE        if (current_block->use_advance_lead) {         current_estep_rate = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;        }        eISR_Rate = ADV_RATE(timer, step_loops);#endif    }    else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {      MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);      if(step_rate > acc_step_rate) { // Check step_rate stays positive        step_rate = current_block->final_rate;      }      else {        step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.      }      // lower limit      if(step_rate < current_block->final_rate)        step_rate = current_block->final_rate;      // step_rate to timer interval      timer = calc_timer(step_rate);      _NEXT_ISR(timer);      deceleration_time += timer;        #ifdef LIN_ADVANCE        if (current_block->use_advance_lead) {          current_estep_rate = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;        }        eISR_Rate = ADV_RATE(timer, step_loops);#endif    }    else {#ifdef LIN_ADVANCE        if (current_block->use_advance_lead)          current_estep_rate = final_estep_rate;        eISR_Rate = ADV_RATE(OCR1A_nominal, step_loops_nominal);#endif      _NEXT_ISR(OCR1A_nominal);      // ensure we're running at the correct step rate, even if we just came off an acceleration      step_loops = step_loops_nominal;    }    // If current block is finished, reset pointer    if (step_events_completed >= current_block->step_event_count) {#ifdef PAT9125		if (current_block->steps_e < 0) //black magic - decrement filament sensor errors for negative extruder move			if (fsensor_err_cnt) fsensor_err_cnt--;#endif //PAT9125      current_block = NULL;      plan_discard_current_block();    }  }#ifdef TMC2130	tmc2130_st_isr(LastStepMask);#endif //TMC2130}#ifdef LIN_ADVANCE            // Timer interrupt for E. e_steps is set in the main routine.      void advance_isr() {    nextAdvanceISR = eISR_Rate;    if (e_steps) {      bool dir =#ifdef SNMM      ((e_steps < 0) == (snmm_extruder & 1))#else      (e_steps < 0)#endif      ? INVERT_E0_DIR : !INVERT_E0_DIR; //If we have SNMM, reverse every second extruder.      WRITE(E0_DIR_PIN, dir);            for (uint8_t i = step_loops; e_steps && i--;) {          WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);          e_steps < 0 ? ++e_steps : --e_steps;          WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);      }  }}void advance_isr_scheduler() {  // Run main stepping ISR if flagged  if (!nextMainISR) isr();    // Run Advance stepping ISR if flagged  if (!nextAdvanceISR) advance_isr();    // Is the next advance ISR scheduled before the next main ISR?  if (nextAdvanceISR <= nextMainISR) {      // Set up the next interrupt      OCR1A = nextAdvanceISR;      // New interval for the next main ISR      if (nextMainISR) nextMainISR -= nextAdvanceISR;      // Will call Stepper::advance_isr on the next interrupt      nextAdvanceISR = 0;  }  else {      // The next main ISR comes first      OCR1A = nextMainISR;      // New interval for the next advance ISR, if any      if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)          nextAdvanceISR -= nextMainISR;      // Will call Stepper::isr on the next interrupt      nextMainISR = 0;  }    // Don't run the ISR faster than possible  if (OCR1A < TCNT1 + 16) OCR1A = TCNT1 + 16;}void clear_current_adv_vars() {  e_steps = 0; //Should be already 0 at an filament change event, but just to be sure..  current_adv_steps = 0;}#endif // LIN_ADVANCE      void st_init(){#ifdef TMC2130	tmc2130_init();#endif //TMC2130  digipot_init(); //Initialize Digipot Motor Current  microstep_init(); //Initialize Microstepping Pins  //Initialize Dir Pins  #if defined(X_DIR_PIN) && X_DIR_PIN > -1    SET_OUTPUT(X_DIR_PIN);  #endif  #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1    SET_OUTPUT(X2_DIR_PIN);  #endif  #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1    SET_OUTPUT(Y_DIR_PIN);			#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)	  SET_OUTPUT(Y2_DIR_PIN);	#endif  #endif  #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1    SET_OUTPUT(Z_DIR_PIN);    #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)      SET_OUTPUT(Z2_DIR_PIN);    #endif  #endif  #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1    SET_OUTPUT(E0_DIR_PIN);  #endif  #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)    SET_OUTPUT(E1_DIR_PIN);  #endif  #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)    SET_OUTPUT(E2_DIR_PIN);  #endif  //Initialize Enable Pins - steppers default to disabled.  #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1    SET_OUTPUT(X_ENABLE_PIN);    if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);  #endif  #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1    SET_OUTPUT(X2_ENABLE_PIN);    if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);  #endif  #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1    SET_OUTPUT(Y_ENABLE_PIN);    if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);		#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)	  SET_OUTPUT(Y2_ENABLE_PIN);	  if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);	#endif  #endif  #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1    SET_OUTPUT(Z_ENABLE_PIN);    if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);    #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)      SET_OUTPUT(Z2_ENABLE_PIN);      if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);    #endif  #endif  #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)    SET_OUTPUT(E0_ENABLE_PIN);    if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);  #endif  #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)    SET_OUTPUT(E1_ENABLE_PIN);    if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);  #endif  #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)    SET_OUTPUT(E2_ENABLE_PIN);    if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);  #endif  //endstops and pullups  #if defined(X_MIN_PIN) && X_MIN_PIN > -1    SET_INPUT(X_MIN_PIN);    #ifdef ENDSTOPPULLUP_XMIN      WRITE(X_MIN_PIN,HIGH);    #endif  #endif  #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1    SET_INPUT(Y_MIN_PIN);    #ifdef ENDSTOPPULLUP_YMIN      WRITE(Y_MIN_PIN,HIGH);    #endif  #endif  #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1    SET_INPUT(Z_MIN_PIN);    #ifdef ENDSTOPPULLUP_ZMIN      WRITE(Z_MIN_PIN,HIGH);    #endif  #endif  #if defined(X_MAX_PIN) && X_MAX_PIN > -1    SET_INPUT(X_MAX_PIN);    #ifdef ENDSTOPPULLUP_XMAX      WRITE(X_MAX_PIN,HIGH);    #endif  #endif  #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1    SET_INPUT(Y_MAX_PIN);    #ifdef ENDSTOPPULLUP_YMAX      WRITE(Y_MAX_PIN,HIGH);    #endif  #endif  #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1    SET_INPUT(Z_MAX_PIN);    #ifdef ENDSTOPPULLUP_ZMAX      WRITE(Z_MAX_PIN,HIGH);    #endif  #endif  //Initialize Step Pins#if defined(X_STEP_PIN) && (X_STEP_PIN > -1)    SET_OUTPUT(X_STEP_PIN);    WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);#ifdef DEBUG_XSTEP_DUP_PIN    SET_OUTPUT(DEBUG_XSTEP_DUP_PIN);    WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);#endif //DEBUG_XSTEP_DUP_PIN    disable_x();  #endif  #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)    SET_OUTPUT(X2_STEP_PIN);    WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);    disable_x();  #endif  #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)    SET_OUTPUT(Y_STEP_PIN);    WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);#ifdef DEBUG_YSTEP_DUP_PIN    SET_OUTPUT(DEBUG_YSTEP_DUP_PIN);    WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);#endif //DEBUG_YSTEP_DUP_PIN    #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)      SET_OUTPUT(Y2_STEP_PIN);      WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);    #endif    disable_y();  #endif  #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)    SET_OUTPUT(Z_STEP_PIN);    WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);    #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)      SET_OUTPUT(Z2_STEP_PIN);      WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);    #endif    disable_z();  #endif  #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)    SET_OUTPUT(E0_STEP_PIN);    WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);    disable_e0();  #endif  #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)    SET_OUTPUT(E1_STEP_PIN);    WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);    disable_e1();  #endif  #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)    SET_OUTPUT(E2_STEP_PIN);    WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);    disable_e2();  #endif  // waveform generation = 0100 = CTC  TCCR1B &= ~(1<<WGM13);  TCCR1B |=  (1<<WGM12);  TCCR1A &= ~(1<<WGM11);  TCCR1A &= ~(1<<WGM10);  // output mode = 00 (disconnected)  TCCR1A &= ~(3<<COM1A0);  TCCR1A &= ~(3<<COM1B0);  // Set the timer pre-scaler  // Generally we use a divider of 8, resulting in a 2MHz timer  // frequency on a 16MHz MCU. If you are going to change this, be  // sure to regenerate speed_lookuptable.h with  // create_speed_lookuptable.py  TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);  OCR1A = 0x4000;  TCNT1 = 0;  ENABLE_STEPPER_DRIVER_INTERRUPT();#ifdef LIN_ADVANCE    e_steps = 0;    current_adv_steps = 0;#endif      enable_endstops(true); // Start with endstops active. After homing they can be disabled  sei();}// Block until all buffered steps are executedvoid st_synchronize(){	while(blocks_queued())	{#ifdef TMC2130		manage_heater();		// Vojtech: Don't disable motors inside the planner!		if (!tmc2130_update_sg())		{			manage_inactivity(true);			lcd_update();		}#else //TMC2130		manage_heater();		// Vojtech: Don't disable motors inside the planner!		manage_inactivity(true);		lcd_update();#endif //TMC2130	}}void st_set_position(const long &x, const long &y, const long &z, const long &e){  CRITICAL_SECTION_START;  count_position[X_AXIS] = x;  count_position[Y_AXIS] = y;  count_position[Z_AXIS] = z;  count_position[E_AXIS] = e;  CRITICAL_SECTION_END;}void st_set_e_position(const long &e){  CRITICAL_SECTION_START;  count_position[E_AXIS] = e;  CRITICAL_SECTION_END;}long st_get_position(uint8_t axis){  long count_pos;  CRITICAL_SECTION_START;  count_pos = count_position[axis];  CRITICAL_SECTION_END;  return count_pos;}void st_get_position_xy(long &x, long &y){  CRITICAL_SECTION_START;  x = count_position[X_AXIS];  y = count_position[Y_AXIS];  CRITICAL_SECTION_END;}float st_get_position_mm(uint8_t axis){  float steper_position_in_steps = st_get_position(axis);  return steper_position_in_steps / axis_steps_per_unit[axis];}void finishAndDisableSteppers(){  st_synchronize();  disable_x();  disable_y();  disable_z();  disable_e0();  disable_e1();  disable_e2();}void quickStop(){  DISABLE_STEPPER_DRIVER_INTERRUPT();  while (blocks_queued()) plan_discard_current_block();   current_block = NULL;  ENABLE_STEPPER_DRIVER_INTERRUPT();}#ifdef BABYSTEPPINGvoid babystep(const uint8_t axis,const bool direction){  //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this    //store initial pin states  switch(axis)  {  case X_AXIS:  {    enable_x();       uint8_t old_x_dir_pin= READ(X_DIR_PIN);  //if dualzstepper, both point to same direction.       //setup new step    WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);        //perform step     WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); 	LastStepMask |= X_AXIS_MASK;#ifdef DEBUG_XSTEP_DUP_PIN    WRITE(DEBUG_XSTEP_DUP_PIN,!INVERT_X_STEP_PIN);#endif //DEBUG_XSTEP_DUP_PIN    {    volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit    }    WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);#ifdef DEBUG_XSTEP_DUP_PIN    WRITE(DEBUG_XSTEP_DUP_PIN,INVERT_X_STEP_PIN);#endif //DEBUG_XSTEP_DUP_PIN    //get old pin state back.    WRITE(X_DIR_PIN,old_x_dir_pin);  }  break;  case Y_AXIS:  {    enable_y();       uint8_t old_y_dir_pin= READ(Y_DIR_PIN);  //if dualzstepper, both point to same direction.       //setup new step    WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);        //perform step     WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); 	LastStepMask |= Y_AXIS_MASK;#ifdef DEBUG_YSTEP_DUP_PIN    WRITE(DEBUG_YSTEP_DUP_PIN,!INVERT_Y_STEP_PIN);#endif //DEBUG_YSTEP_DUP_PIN    {    volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit    }    WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);#ifdef DEBUG_YSTEP_DUP_PIN    WRITE(DEBUG_YSTEP_DUP_PIN,INVERT_Y_STEP_PIN);#endif //DEBUG_YSTEP_DUP_PIN    //get old pin state back.    WRITE(Y_DIR_PIN,old_y_dir_pin);  }  break;   case Z_AXIS:  {    enable_z();    uint8_t old_z_dir_pin= READ(Z_DIR_PIN);  //if dualzstepper, both point to same direction.    //setup new step    WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);    #ifdef Z_DUAL_STEPPER_DRIVERS      WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);    #endif    //perform step     WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); 	LastStepMask |= Z_AXIS_MASK;    #ifdef Z_DUAL_STEPPER_DRIVERS      WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);    #endif    //wait a tiny bit    {    volatile float x=1./float(axis+1); //absolutely useless    }    WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);    #ifdef Z_DUAL_STEPPER_DRIVERS      WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);    #endif    //get old pin state back.    WRITE(Z_DIR_PIN,old_z_dir_pin);    #ifdef Z_DUAL_STEPPER_DRIVERS      WRITE(Z2_DIR_PIN,old_z_dir_pin);    #endif  }  break;   default:    break;  }}#endif //BABYSTEPPINGvoid digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example{  #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1    digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip    SPI.transfer(address); //  send in the address and value via SPI:    SPI.transfer(value);    digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:    //delay(10);  #endif}void EEPROM_read_st(int pos, uint8_t* value, uint8_t size){    do    {        *value = eeprom_read_byte((unsigned char*)pos);        pos++;        value++;    }while(--size);}void digipot_init() //Initialize Digipot Motor Current{  EEPROM_read_st(EEPROM_SILENT,(uint8_t*)&SilentMode,sizeof(SilentMode));  #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1    if(SilentMode == 0){    const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT_LOUD;    }else{      const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;    }    SPI.begin();    pinMode(DIGIPOTSS_PIN, OUTPUT);    for(int i=0;i<=4;i++)      //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);      digipot_current(i,digipot_motor_current[i]);  #endif  #ifdef MOTOR_CURRENT_PWM_XY_PIN    pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);    pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);    pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);    if((SilentMode == 0) || (farm_mode) ){     motor_current_setting[0] = motor_current_setting_loud[0];     motor_current_setting[1] = motor_current_setting_loud[1];     motor_current_setting[2] = motor_current_setting_loud[2];    }else{     motor_current_setting[0] = motor_current_setting_silent[0];     motor_current_setting[1] = motor_current_setting_silent[1];     motor_current_setting[2] = motor_current_setting_silent[2];    }    digipot_current(0, motor_current_setting[0]);    digipot_current(1, motor_current_setting[1]);    digipot_current(2, motor_current_setting[2]);    //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)    TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);  #endif}void digipot_current(uint8_t driver, int current){  #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1    const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;    digitalPotWrite(digipot_ch[driver], current);  #endif  #ifdef MOTOR_CURRENT_PWM_XY_PIN  if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);  if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);  if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);  #endif}void microstep_init(){  const uint8_t microstep_modes[] = MICROSTEP_MODES;  #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1  pinMode(E1_MS1_PIN,OUTPUT);  pinMode(E1_MS2_PIN,OUTPUT);   #endif  #if defined(X_MS1_PIN) && X_MS1_PIN > -1  pinMode(X_MS1_PIN,OUTPUT);  pinMode(X_MS2_PIN,OUTPUT);    pinMode(Y_MS1_PIN,OUTPUT);  pinMode(Y_MS2_PIN,OUTPUT);  pinMode(Z_MS1_PIN,OUTPUT);  pinMode(Z_MS2_PIN,OUTPUT);  pinMode(E0_MS1_PIN,OUTPUT);  pinMode(E0_MS2_PIN,OUTPUT);  for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);  #endif}void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2){  if(ms1 > -1) switch(driver)  {    case 0: digitalWrite( X_MS1_PIN,ms1); break;    case 1: digitalWrite( Y_MS1_PIN,ms1); break;    case 2: digitalWrite( Z_MS1_PIN,ms1); break;    case 3: digitalWrite(E0_MS1_PIN,ms1); break;    #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1    case 4: digitalWrite(E1_MS1_PIN,ms1); break;    #endif  }  if(ms2 > -1) switch(driver)  {    case 0: digitalWrite( X_MS2_PIN,ms2); break;    case 1: digitalWrite( Y_MS2_PIN,ms2); break;    case 2: digitalWrite( Z_MS2_PIN,ms2); break;    case 3: digitalWrite(E0_MS2_PIN,ms2); break;    #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1    case 4: digitalWrite(E1_MS2_PIN,ms2); break;    #endif  }}void microstep_mode(uint8_t driver, uint8_t stepping_mode){  switch(stepping_mode)  {    case 1: microstep_ms(driver,MICROSTEP1); break;    case 2: microstep_ms(driver,MICROSTEP2); break;    case 4: microstep_ms(driver,MICROSTEP4); break;    case 8: microstep_ms(driver,MICROSTEP8); break;    case 16: microstep_ms(driver,MICROSTEP16); break;  }}void microstep_readings(){      SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");      SERIAL_PROTOCOLPGM("X: ");      SERIAL_PROTOCOL(   digitalRead(X_MS1_PIN));      SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));      SERIAL_PROTOCOLPGM("Y: ");      SERIAL_PROTOCOL(   digitalRead(Y_MS1_PIN));      SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));      SERIAL_PROTOCOLPGM("Z: ");      SERIAL_PROTOCOL(   digitalRead(Z_MS1_PIN));      SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));      SERIAL_PROTOCOLPGM("E0: ");      SERIAL_PROTOCOL(   digitalRead(E0_MS1_PIN));      SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));      #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1      SERIAL_PROTOCOLPGM("E1: ");      SERIAL_PROTOCOL(   digitalRead(E1_MS1_PIN));      SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));      #endif}
 |