Marlin_main.cpp 231 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #ifdef BLINKM
  49. #include "BlinkM.h"
  50. #include "Wire.h"
  51. #endif
  52. #ifdef ULTRALCD
  53. #include "ultralcd.h"
  54. #endif
  55. #if NUM_SERVOS > 0
  56. #include "Servo.h"
  57. #endif
  58. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  59. #include <SPI.h>
  60. #endif
  61. #define VERSION_STRING "1.0.2"
  62. #include "ultralcd.h"
  63. // Macros for bit masks
  64. #define BIT(b) (1<<(b))
  65. #define TEST(n,b) (((n)&BIT(b))!=0)
  66. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  67. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  68. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  69. //Implemented Codes
  70. //-------------------
  71. // PRUSA CODES
  72. // P F - Returns FW versions
  73. // P R - Returns revision of printer
  74. // G0 -> G1
  75. // G1 - Coordinated Movement X Y Z E
  76. // G2 - CW ARC
  77. // G3 - CCW ARC
  78. // G4 - Dwell S<seconds> or P<milliseconds>
  79. // G10 - retract filament according to settings of M207
  80. // G11 - retract recover filament according to settings of M208
  81. // G28 - Home all Axis
  82. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  83. // G30 - Single Z Probe, probes bed at current XY location.
  84. // G31 - Dock sled (Z_PROBE_SLED only)
  85. // G32 - Undock sled (Z_PROBE_SLED only)
  86. // G80 - Automatic mesh bed leveling
  87. // G81 - Print bed profile
  88. // G90 - Use Absolute Coordinates
  89. // G91 - Use Relative Coordinates
  90. // G92 - Set current position to coordinates given
  91. // M Codes
  92. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  93. // M1 - Same as M0
  94. // M17 - Enable/Power all stepper motors
  95. // M18 - Disable all stepper motors; same as M84
  96. // M20 - List SD card
  97. // M21 - Init SD card
  98. // M22 - Release SD card
  99. // M23 - Select SD file (M23 filename.g)
  100. // M24 - Start/resume SD print
  101. // M25 - Pause SD print
  102. // M26 - Set SD position in bytes (M26 S12345)
  103. // M27 - Report SD print status
  104. // M28 - Start SD write (M28 filename.g)
  105. // M29 - Stop SD write
  106. // M30 - Delete file from SD (M30 filename.g)
  107. // M31 - Output time since last M109 or SD card start to serial
  108. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  109. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  110. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  111. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  112. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  113. // M80 - Turn on Power Supply
  114. // M81 - Turn off Power Supply
  115. // M82 - Set E codes absolute (default)
  116. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  117. // M84 - Disable steppers until next move,
  118. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  119. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  120. // M92 - Set axis_steps_per_unit - same syntax as G92
  121. // M104 - Set extruder target temp
  122. // M105 - Read current temp
  123. // M106 - Fan on
  124. // M107 - Fan off
  125. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  126. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  127. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  128. // M112 - Emergency stop
  129. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  130. // M114 - Output current position to serial port
  131. // M115 - Capabilities string
  132. // M117 - display message
  133. // M119 - Output Endstop status to serial port
  134. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  135. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  136. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  138. // M140 - Set bed target temp
  139. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  140. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  141. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  142. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  143. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  144. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  145. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  146. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  147. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  148. // M206 - set additional homing offset
  149. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  150. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  151. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  152. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  153. // M220 S<factor in percent>- set speed factor override percentage
  154. // M221 S<factor in percent>- set extrude factor override percentage
  155. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  156. // M240 - Trigger a camera to take a photograph
  157. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  158. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  159. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  160. // M301 - Set PID parameters P I and D
  161. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  162. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  163. // M304 - Set bed PID parameters P I and D
  164. // M400 - Finish all moves
  165. // M401 - Lower z-probe if present
  166. // M402 - Raise z-probe if present
  167. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  168. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  169. // M406 - Turn off Filament Sensor extrusion control
  170. // M407 - Displays measured filament diameter
  171. // M500 - stores parameters in EEPROM
  172. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  173. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  174. // M503 - print the current settings (from memory not from EEPROM)
  175. // M509 - force language selection on next restart
  176. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  177. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  178. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  179. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  180. // M907 - Set digital trimpot motor current using axis codes.
  181. // M908 - Control digital trimpot directly.
  182. // M350 - Set microstepping mode.
  183. // M351 - Toggle MS1 MS2 pins directly.
  184. // M928 - Start SD logging (M928 filename.g) - ended by M29
  185. // M999 - Restart after being stopped by error
  186. //Stepper Movement Variables
  187. //===========================================================================
  188. //=============================imported variables============================
  189. //===========================================================================
  190. //===========================================================================
  191. //=============================public variables=============================
  192. //===========================================================================
  193. #ifdef SDSUPPORT
  194. CardReader card;
  195. #endif
  196. unsigned long TimeSent = millis();
  197. unsigned long TimeNow = millis();
  198. unsigned long PingTime = millis();
  199. unsigned long NcTime;
  200. union Data
  201. {
  202. byte b[2];
  203. int value;
  204. };
  205. float homing_feedrate[] = HOMING_FEEDRATE;
  206. // Currently only the extruder axis may be switched to a relative mode.
  207. // Other axes are always absolute or relative based on the common relative_mode flag.
  208. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  209. int feedmultiply=100; //100->1 200->2
  210. int saved_feedmultiply;
  211. int extrudemultiply=100; //100->1 200->2
  212. int extruder_multiply[EXTRUDERS] = {100
  213. #if EXTRUDERS > 1
  214. , 100
  215. #if EXTRUDERS > 2
  216. , 100
  217. #endif
  218. #endif
  219. };
  220. int bowden_length[4];
  221. bool is_usb_printing = false;
  222. bool homing_flag = false;
  223. bool temp_cal_active = false;
  224. unsigned long kicktime = millis()+100000;
  225. unsigned int usb_printing_counter;
  226. int lcd_change_fil_state = 0;
  227. int feedmultiplyBckp = 100;
  228. float HotendTempBckp = 0;
  229. int fanSpeedBckp = 0;
  230. float pause_lastpos[4];
  231. unsigned long pause_time = 0;
  232. unsigned long start_pause_print = millis();
  233. unsigned long load_filament_time;
  234. bool mesh_bed_leveling_flag = false;
  235. bool mesh_bed_run_from_menu = false;
  236. unsigned char lang_selected = 0;
  237. int8_t FarmMode = 0;
  238. bool prusa_sd_card_upload = false;
  239. unsigned int status_number = 0;
  240. unsigned long total_filament_used;
  241. unsigned int heating_status;
  242. unsigned int heating_status_counter;
  243. bool custom_message;
  244. bool loading_flag = false;
  245. unsigned int custom_message_type;
  246. unsigned int custom_message_state;
  247. char snmm_filaments_used = 0;
  248. int selectedSerialPort;
  249. float distance_from_min[3];
  250. bool sortAlpha = false;
  251. bool volumetric_enabled = false;
  252. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  253. #if EXTRUDERS > 1
  254. , DEFAULT_NOMINAL_FILAMENT_DIA
  255. #if EXTRUDERS > 2
  256. , DEFAULT_NOMINAL_FILAMENT_DIA
  257. #endif
  258. #endif
  259. };
  260. float volumetric_multiplier[EXTRUDERS] = {1.0
  261. #if EXTRUDERS > 1
  262. , 1.0
  263. #if EXTRUDERS > 2
  264. , 1.0
  265. #endif
  266. #endif
  267. };
  268. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  269. float add_homing[3]={0,0,0};
  270. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  271. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  272. bool axis_known_position[3] = {false, false, false};
  273. float zprobe_zoffset;
  274. // Extruder offset
  275. #if EXTRUDERS > 1
  276. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  277. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  278. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  279. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  280. #endif
  281. };
  282. #endif
  283. uint8_t active_extruder = 0;
  284. int fanSpeed=0;
  285. #ifdef FWRETRACT
  286. bool autoretract_enabled=false;
  287. bool retracted[EXTRUDERS]={false
  288. #if EXTRUDERS > 1
  289. , false
  290. #if EXTRUDERS > 2
  291. , false
  292. #endif
  293. #endif
  294. };
  295. bool retracted_swap[EXTRUDERS]={false
  296. #if EXTRUDERS > 1
  297. , false
  298. #if EXTRUDERS > 2
  299. , false
  300. #endif
  301. #endif
  302. };
  303. float retract_length = RETRACT_LENGTH;
  304. float retract_length_swap = RETRACT_LENGTH_SWAP;
  305. float retract_feedrate = RETRACT_FEEDRATE;
  306. float retract_zlift = RETRACT_ZLIFT;
  307. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  308. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  309. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  310. #endif
  311. #ifdef ULTIPANEL
  312. #ifdef PS_DEFAULT_OFF
  313. bool powersupply = false;
  314. #else
  315. bool powersupply = true;
  316. #endif
  317. #endif
  318. bool cancel_heatup = false ;
  319. #ifdef HOST_KEEPALIVE_FEATURE
  320. MarlinBusyState busy_state = NOT_BUSY;
  321. static long prev_busy_signal_ms = -1;
  322. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  323. #else
  324. #define host_keepalive();
  325. #define KEEPALIVE_STATE(n);
  326. #endif
  327. #ifdef FILAMENT_SENSOR
  328. //Variables for Filament Sensor input
  329. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  330. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  331. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  332. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  333. int delay_index1=0; //index into ring buffer
  334. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  335. float delay_dist=0; //delay distance counter
  336. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  337. #endif
  338. const char errormagic[] PROGMEM = "Error:";
  339. const char echomagic[] PROGMEM = "echo:";
  340. bool no_response = false;
  341. uint8_t important_status;
  342. uint8_t saved_filament_type;
  343. //===========================================================================
  344. //=============================Private Variables=============================
  345. //===========================================================================
  346. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  347. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  348. static float delta[3] = {0.0, 0.0, 0.0};
  349. // For tracing an arc
  350. static float offset[3] = {0.0, 0.0, 0.0};
  351. static bool home_all_axis = true;
  352. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  353. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  354. // Determines Absolute or Relative Coordinates.
  355. // Also there is bool axis_relative_modes[] per axis flag.
  356. static bool relative_mode = false;
  357. // String circular buffer. Commands may be pushed to the buffer from both sides:
  358. // Chained commands will be pushed to the front, interactive (from LCD menu)
  359. // and printing commands (from serial line or from SD card) are pushed to the tail.
  360. // First character of each entry indicates the type of the entry:
  361. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  362. // Command in cmdbuffer was sent over USB.
  363. #define CMDBUFFER_CURRENT_TYPE_USB 1
  364. // Command in cmdbuffer was read from SDCARD.
  365. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  366. // Command in cmdbuffer was generated by the UI.
  367. #define CMDBUFFER_CURRENT_TYPE_UI 3
  368. // Command in cmdbuffer was generated by another G-code.
  369. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  370. // How much space to reserve for the chained commands
  371. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  372. // which are pushed to the front of the queue?
  373. // Maximum 5 commands of max length 20 + null terminator.
  374. #define CMDBUFFER_RESERVE_FRONT (5*21)
  375. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  376. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  377. // Head of the circular buffer, where to read.
  378. static int bufindr = 0;
  379. // Tail of the buffer, where to write.
  380. static int bufindw = 0;
  381. // Number of lines in cmdbuffer.
  382. static int buflen = 0;
  383. // Flag for processing the current command inside the main Arduino loop().
  384. // If a new command was pushed to the front of a command buffer while
  385. // processing another command, this replaces the command on the top.
  386. // Therefore don't remove the command from the queue in the loop() function.
  387. static bool cmdbuffer_front_already_processed = false;
  388. // Type of a command, which is to be executed right now.
  389. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  390. // String of a command, which is to be executed right now.
  391. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  392. // Enable debugging of the command buffer.
  393. // Debugging information will be sent to serial line.
  394. // #define CMDBUFFER_DEBUG
  395. static int serial_count = 0; //index of character read from serial line
  396. static boolean comment_mode = false;
  397. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  398. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  399. //static float tt = 0;
  400. //static float bt = 0;
  401. //Inactivity shutdown variables
  402. static unsigned long previous_millis_cmd = 0;
  403. unsigned long max_inactive_time = 0;
  404. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  405. unsigned long starttime=0;
  406. unsigned long stoptime=0;
  407. unsigned long _usb_timer = 0;
  408. static uint8_t tmp_extruder;
  409. bool Stopped=false;
  410. #if NUM_SERVOS > 0
  411. Servo servos[NUM_SERVOS];
  412. #endif
  413. bool CooldownNoWait = true;
  414. bool target_direction;
  415. //Insert variables if CHDK is defined
  416. #ifdef CHDK
  417. unsigned long chdkHigh = 0;
  418. boolean chdkActive = false;
  419. #endif
  420. //===========================================================================
  421. //=============================Routines======================================
  422. //===========================================================================
  423. void get_arc_coordinates();
  424. bool setTargetedHotend(int code);
  425. void serial_echopair_P(const char *s_P, float v)
  426. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  427. void serial_echopair_P(const char *s_P, double v)
  428. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  429. void serial_echopair_P(const char *s_P, unsigned long v)
  430. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  431. #ifdef SDSUPPORT
  432. #include "SdFatUtil.h"
  433. int freeMemory() { return SdFatUtil::FreeRam(); }
  434. #else
  435. extern "C" {
  436. extern unsigned int __bss_end;
  437. extern unsigned int __heap_start;
  438. extern void *__brkval;
  439. int freeMemory() {
  440. int free_memory;
  441. if ((int)__brkval == 0)
  442. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  443. else
  444. free_memory = ((int)&free_memory) - ((int)__brkval);
  445. return free_memory;
  446. }
  447. }
  448. #endif //!SDSUPPORT
  449. // Pop the currently processed command from the queue.
  450. // It is expected, that there is at least one command in the queue.
  451. bool cmdqueue_pop_front()
  452. {
  453. if (buflen > 0) {
  454. #ifdef CMDBUFFER_DEBUG
  455. SERIAL_ECHOPGM("Dequeing ");
  456. SERIAL_ECHO(cmdbuffer+bufindr+1);
  457. SERIAL_ECHOLNPGM("");
  458. SERIAL_ECHOPGM("Old indices: buflen ");
  459. SERIAL_ECHO(buflen);
  460. SERIAL_ECHOPGM(", bufindr ");
  461. SERIAL_ECHO(bufindr);
  462. SERIAL_ECHOPGM(", bufindw ");
  463. SERIAL_ECHO(bufindw);
  464. SERIAL_ECHOPGM(", serial_count ");
  465. SERIAL_ECHO(serial_count);
  466. SERIAL_ECHOPGM(", bufsize ");
  467. SERIAL_ECHO(sizeof(cmdbuffer));
  468. SERIAL_ECHOLNPGM("");
  469. #endif /* CMDBUFFER_DEBUG */
  470. if (-- buflen == 0) {
  471. // Empty buffer.
  472. if (serial_count == 0)
  473. // No serial communication is pending. Reset both pointers to zero.
  474. bufindw = 0;
  475. bufindr = bufindw;
  476. } else {
  477. // There is at least one ready line in the buffer.
  478. // First skip the current command ID and iterate up to the end of the string.
  479. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  480. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  481. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  482. // If the end of the buffer was empty,
  483. if (bufindr == sizeof(cmdbuffer)) {
  484. // skip to the start and find the nonzero command.
  485. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  486. }
  487. #ifdef CMDBUFFER_DEBUG
  488. SERIAL_ECHOPGM("New indices: buflen ");
  489. SERIAL_ECHO(buflen);
  490. SERIAL_ECHOPGM(", bufindr ");
  491. SERIAL_ECHO(bufindr);
  492. SERIAL_ECHOPGM(", bufindw ");
  493. SERIAL_ECHO(bufindw);
  494. SERIAL_ECHOPGM(", serial_count ");
  495. SERIAL_ECHO(serial_count);
  496. SERIAL_ECHOPGM(" new command on the top: ");
  497. SERIAL_ECHO(cmdbuffer+bufindr+1);
  498. SERIAL_ECHOLNPGM("");
  499. #endif /* CMDBUFFER_DEBUG */
  500. }
  501. return true;
  502. }
  503. return false;
  504. }
  505. void cmdqueue_reset()
  506. {
  507. while (cmdqueue_pop_front()) ;
  508. }
  509. // How long a string could be pushed to the front of the command queue?
  510. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  511. // len_asked does not contain the zero terminator size.
  512. bool cmdqueue_could_enqueue_front(int len_asked)
  513. {
  514. // MAX_CMD_SIZE has to accommodate the zero terminator.
  515. if (len_asked >= MAX_CMD_SIZE)
  516. return false;
  517. // Remove the currently processed command from the queue.
  518. if (! cmdbuffer_front_already_processed) {
  519. cmdqueue_pop_front();
  520. cmdbuffer_front_already_processed = true;
  521. }
  522. if (bufindr == bufindw && buflen > 0)
  523. // Full buffer.
  524. return false;
  525. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  526. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  527. if (bufindw < bufindr) {
  528. int bufindr_new = bufindr - len_asked - 2;
  529. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  530. if (endw <= bufindr_new) {
  531. bufindr = bufindr_new;
  532. return true;
  533. }
  534. } else {
  535. // Otherwise the free space is split between the start and end.
  536. if (len_asked + 2 <= bufindr) {
  537. // Could fit at the start.
  538. bufindr -= len_asked + 2;
  539. return true;
  540. }
  541. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  542. if (endw <= bufindr_new) {
  543. memset(cmdbuffer, 0, bufindr);
  544. bufindr = bufindr_new;
  545. return true;
  546. }
  547. }
  548. return false;
  549. }
  550. // Could one enqueue a command of lenthg len_asked into the buffer,
  551. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  552. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  553. // len_asked does not contain the zero terminator size.
  554. bool cmdqueue_could_enqueue_back(int len_asked)
  555. {
  556. // MAX_CMD_SIZE has to accommodate the zero terminator.
  557. if (len_asked >= MAX_CMD_SIZE)
  558. return false;
  559. if (bufindr == bufindw && buflen > 0)
  560. // Full buffer.
  561. return false;
  562. if (serial_count > 0) {
  563. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  564. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  565. // serial data.
  566. // How much memory to reserve for the commands pushed to the front?
  567. // End of the queue, when pushing to the end.
  568. int endw = bufindw + len_asked + 2;
  569. if (bufindw < bufindr)
  570. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  571. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  572. // Otherwise the free space is split between the start and end.
  573. if (// Could one fit to the end, including the reserve?
  574. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  575. // Could one fit to the end, and the reserve to the start?
  576. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  577. return true;
  578. // Could one fit both to the start?
  579. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  580. // Mark the rest of the buffer as used.
  581. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  582. // and point to the start.
  583. bufindw = 0;
  584. return true;
  585. }
  586. } else {
  587. // How much memory to reserve for the commands pushed to the front?
  588. // End of the queue, when pushing to the end.
  589. int endw = bufindw + len_asked + 2;
  590. if (bufindw < bufindr)
  591. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  592. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  593. // Otherwise the free space is split between the start and end.
  594. if (// Could one fit to the end, including the reserve?
  595. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  596. // Could one fit to the end, and the reserve to the start?
  597. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  598. return true;
  599. // Could one fit both to the start?
  600. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  601. // Mark the rest of the buffer as used.
  602. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  603. // and point to the start.
  604. bufindw = 0;
  605. return true;
  606. }
  607. }
  608. return false;
  609. }
  610. #ifdef CMDBUFFER_DEBUG
  611. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  612. {
  613. SERIAL_ECHOPGM("Entry nr: ");
  614. SERIAL_ECHO(nr);
  615. SERIAL_ECHOPGM(", type: ");
  616. SERIAL_ECHO(int(*p));
  617. SERIAL_ECHOPGM(", cmd: ");
  618. SERIAL_ECHO(p+1);
  619. SERIAL_ECHOLNPGM("");
  620. }
  621. static void cmdqueue_dump_to_serial()
  622. {
  623. if (buflen == 0) {
  624. SERIAL_ECHOLNPGM("The command buffer is empty.");
  625. } else {
  626. SERIAL_ECHOPGM("Content of the buffer: entries ");
  627. SERIAL_ECHO(buflen);
  628. SERIAL_ECHOPGM(", indr ");
  629. SERIAL_ECHO(bufindr);
  630. SERIAL_ECHOPGM(", indw ");
  631. SERIAL_ECHO(bufindw);
  632. SERIAL_ECHOLNPGM("");
  633. int nr = 0;
  634. if (bufindr < bufindw) {
  635. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  636. cmdqueue_dump_to_serial_single_line(nr, p);
  637. // Skip the command.
  638. for (++p; *p != 0; ++ p);
  639. // Skip the gaps.
  640. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  641. }
  642. } else {
  643. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  644. cmdqueue_dump_to_serial_single_line(nr, p);
  645. // Skip the command.
  646. for (++p; *p != 0; ++ p);
  647. // Skip the gaps.
  648. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  649. }
  650. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  651. cmdqueue_dump_to_serial_single_line(nr, p);
  652. // Skip the command.
  653. for (++p; *p != 0; ++ p);
  654. // Skip the gaps.
  655. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  656. }
  657. }
  658. SERIAL_ECHOLNPGM("End of the buffer.");
  659. }
  660. }
  661. #endif /* CMDBUFFER_DEBUG */
  662. //adds an command to the main command buffer
  663. //thats really done in a non-safe way.
  664. //needs overworking someday
  665. // Currently the maximum length of a command piped through this function is around 20 characters
  666. void enquecommand(const char *cmd, bool from_progmem)
  667. {
  668. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  669. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  670. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  671. if (cmdqueue_could_enqueue_back(len)) {
  672. // This is dangerous if a mixing of serial and this happens
  673. // This may easily be tested: If serial_count > 0, we have a problem.
  674. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  675. if (from_progmem)
  676. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  677. else
  678. strcpy(cmdbuffer + bufindw + 1, cmd);
  679. SERIAL_ECHO_START;
  680. SERIAL_ECHORPGM(MSG_Enqueing);
  681. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  682. SERIAL_ECHOLNPGM("\"");
  683. bufindw += len + 2;
  684. if (bufindw == sizeof(cmdbuffer))
  685. bufindw = 0;
  686. ++ buflen;
  687. #ifdef CMDBUFFER_DEBUG
  688. cmdqueue_dump_to_serial();
  689. #endif /* CMDBUFFER_DEBUG */
  690. } else {
  691. SERIAL_ERROR_START;
  692. SERIAL_ECHORPGM(MSG_Enqueing);
  693. if (from_progmem)
  694. SERIAL_PROTOCOLRPGM(cmd);
  695. else
  696. SERIAL_ECHO(cmd);
  697. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  698. #ifdef CMDBUFFER_DEBUG
  699. cmdqueue_dump_to_serial();
  700. #endif /* CMDBUFFER_DEBUG */
  701. }
  702. }
  703. void enquecommand_front(const char *cmd, bool from_progmem)
  704. {
  705. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  706. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  707. if (cmdqueue_could_enqueue_front(len)) {
  708. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  709. if (from_progmem)
  710. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  711. else
  712. strcpy(cmdbuffer + bufindr + 1, cmd);
  713. ++ buflen;
  714. SERIAL_ECHO_START;
  715. SERIAL_ECHOPGM("Enqueing to the front: \"");
  716. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  717. SERIAL_ECHOLNPGM("\"");
  718. #ifdef CMDBUFFER_DEBUG
  719. cmdqueue_dump_to_serial();
  720. #endif /* CMDBUFFER_DEBUG */
  721. } else {
  722. SERIAL_ERROR_START;
  723. SERIAL_ECHOPGM("Enqueing to the front: \"");
  724. if (from_progmem)
  725. SERIAL_PROTOCOLRPGM(cmd);
  726. else
  727. SERIAL_ECHO(cmd);
  728. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  729. #ifdef CMDBUFFER_DEBUG
  730. cmdqueue_dump_to_serial();
  731. #endif /* CMDBUFFER_DEBUG */
  732. }
  733. }
  734. // Mark the command at the top of the command queue as new.
  735. // Therefore it will not be removed from the queue.
  736. void repeatcommand_front()
  737. {
  738. cmdbuffer_front_already_processed = true;
  739. }
  740. bool is_buffer_empty()
  741. {
  742. if (buflen == 0) return true;
  743. else return false;
  744. }
  745. void setup_killpin()
  746. {
  747. #if defined(KILL_PIN) && KILL_PIN > -1
  748. SET_INPUT(KILL_PIN);
  749. WRITE(KILL_PIN,HIGH);
  750. #endif
  751. }
  752. // Set home pin
  753. void setup_homepin(void)
  754. {
  755. #if defined(HOME_PIN) && HOME_PIN > -1
  756. SET_INPUT(HOME_PIN);
  757. WRITE(HOME_PIN,HIGH);
  758. #endif
  759. }
  760. void setup_photpin()
  761. {
  762. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  763. SET_OUTPUT(PHOTOGRAPH_PIN);
  764. WRITE(PHOTOGRAPH_PIN, LOW);
  765. #endif
  766. }
  767. void setup_powerhold()
  768. {
  769. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  770. SET_OUTPUT(SUICIDE_PIN);
  771. WRITE(SUICIDE_PIN, HIGH);
  772. #endif
  773. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  774. SET_OUTPUT(PS_ON_PIN);
  775. #if defined(PS_DEFAULT_OFF)
  776. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  777. #else
  778. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  779. #endif
  780. #endif
  781. }
  782. void suicide()
  783. {
  784. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  785. SET_OUTPUT(SUICIDE_PIN);
  786. WRITE(SUICIDE_PIN, LOW);
  787. #endif
  788. }
  789. void servo_init()
  790. {
  791. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  792. servos[0].attach(SERVO0_PIN);
  793. #endif
  794. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  795. servos[1].attach(SERVO1_PIN);
  796. #endif
  797. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  798. servos[2].attach(SERVO2_PIN);
  799. #endif
  800. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  801. servos[3].attach(SERVO3_PIN);
  802. #endif
  803. #if (NUM_SERVOS >= 5)
  804. #error "TODO: enter initalisation code for more servos"
  805. #endif
  806. }
  807. static void lcd_language_menu();
  808. #ifdef MESH_BED_LEVELING
  809. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  810. #endif
  811. // Factory reset function
  812. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  813. // Level input parameter sets depth of reset
  814. // Quiet parameter masks all waitings for user interact.
  815. int er_progress = 0;
  816. void factory_reset(char level, bool quiet)
  817. {
  818. lcd_implementation_clear();
  819. int cursor_pos = 0;
  820. switch (level) {
  821. // Level 0: Language reset
  822. case 0:
  823. WRITE(BEEPER, HIGH);
  824. _delay_ms(100);
  825. WRITE(BEEPER, LOW);
  826. lcd_force_language_selection();
  827. break;
  828. //Level 1: Reset statistics
  829. case 1:
  830. WRITE(BEEPER, HIGH);
  831. _delay_ms(100);
  832. WRITE(BEEPER, LOW);
  833. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  834. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  835. lcd_menu_statistics();
  836. break;
  837. // Level 2: Prepare for shipping
  838. case 2:
  839. //lcd_printPGM(PSTR("Factory RESET"));
  840. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  841. // Force language selection at the next boot up.
  842. lcd_force_language_selection();
  843. // Force the "Follow calibration flow" message at the next boot up.
  844. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  845. farm_no = 0;
  846. farm_mode == false;
  847. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  848. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  849. WRITE(BEEPER, HIGH);
  850. _delay_ms(100);
  851. WRITE(BEEPER, LOW);
  852. //_delay_ms(2000);
  853. break;
  854. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  855. case 3:
  856. lcd_printPGM(PSTR("Factory RESET"));
  857. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  858. WRITE(BEEPER, HIGH);
  859. _delay_ms(100);
  860. WRITE(BEEPER, LOW);
  861. er_progress = 0;
  862. lcd_print_at_PGM(3, 3, PSTR(" "));
  863. lcd_implementation_print_at(3, 3, er_progress);
  864. // Erase EEPROM
  865. for (int i = 0; i < 4096; i++) {
  866. eeprom_write_byte((uint8_t*)i, 0xFF);
  867. if (i % 41 == 0) {
  868. er_progress++;
  869. lcd_print_at_PGM(3, 3, PSTR(" "));
  870. lcd_implementation_print_at(3, 3, er_progress);
  871. lcd_printPGM(PSTR("%"));
  872. }
  873. }
  874. break;
  875. case 4:
  876. bowden_menu();
  877. break;
  878. default:
  879. break;
  880. }
  881. }
  882. // "Setup" function is called by the Arduino framework on startup.
  883. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  884. // are initialized by the main() routine provided by the Arduino framework.
  885. void setup()
  886. {
  887. lcd_init();
  888. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  889. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  890. setup_killpin();
  891. setup_powerhold();
  892. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  893. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  894. //if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  895. if (farm_no == 0xFFFF) farm_no = 0;
  896. if (farm_mode)
  897. {
  898. prusa_statistics(8);
  899. no_response = true; //we need confirmation by recieving PRUSA thx
  900. important_status = 8;
  901. selectedSerialPort = 1;
  902. } else {
  903. selectedSerialPort = 0;
  904. }
  905. MYSERIAL.begin(BAUDRATE);
  906. SERIAL_PROTOCOLLNPGM("start");
  907. SERIAL_ECHO_START;
  908. #if 0
  909. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  910. for (int i = 0; i < 4096; ++i) {
  911. int b = eeprom_read_byte((unsigned char*)i);
  912. if (b != 255) {
  913. SERIAL_ECHO(i);
  914. SERIAL_ECHO(":");
  915. SERIAL_ECHO(b);
  916. SERIAL_ECHOLN("");
  917. }
  918. }
  919. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  920. #endif
  921. // Check startup - does nothing if bootloader sets MCUSR to 0
  922. byte mcu = MCUSR;
  923. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  924. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  925. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  926. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  927. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  928. MCUSR = 0;
  929. //SERIAL_ECHORPGM(MSG_MARLIN);
  930. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  931. #ifdef STRING_VERSION_CONFIG_H
  932. #ifdef STRING_CONFIG_H_AUTHOR
  933. SERIAL_ECHO_START;
  934. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  935. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  936. SERIAL_ECHORPGM(MSG_AUTHOR);
  937. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  938. SERIAL_ECHOPGM("Compiled: ");
  939. SERIAL_ECHOLNPGM(__DATE__);
  940. #endif
  941. #endif
  942. SERIAL_ECHO_START;
  943. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  944. SERIAL_ECHO(freeMemory());
  945. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  946. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  947. lcd_update_enable(false);
  948. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  949. bool previous_settings_retrieved = Config_RetrieveSettings();
  950. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  951. tp_init(); // Initialize temperature loop
  952. plan_init(); // Initialize planner;
  953. watchdog_init();
  954. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
  955. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  956. st_init(); // Initialize stepper, this enables interrupts!
  957. setup_photpin();
  958. servo_init();
  959. // Reset the machine correction matrix.
  960. // It does not make sense to load the correction matrix until the machine is homed.
  961. world2machine_reset();
  962. lcd_init();
  963. KEEPALIVE_STATE(PAUSED_FOR_USER);
  964. if (!READ(BTN_ENC))
  965. {
  966. _delay_ms(1000);
  967. if (!READ(BTN_ENC))
  968. {
  969. lcd_implementation_clear();
  970. lcd_printPGM(PSTR("Factory RESET"));
  971. SET_OUTPUT(BEEPER);
  972. WRITE(BEEPER, HIGH);
  973. while (!READ(BTN_ENC));
  974. WRITE(BEEPER, LOW);
  975. _delay_ms(2000);
  976. char level = reset_menu();
  977. factory_reset(level, false);
  978. switch (level) {
  979. case 0: _delay_ms(0); break;
  980. case 1: _delay_ms(0); break;
  981. case 2: _delay_ms(0); break;
  982. case 3: _delay_ms(0); break;
  983. }
  984. // _delay_ms(100);
  985. /*
  986. #ifdef MESH_BED_LEVELING
  987. _delay_ms(2000);
  988. if (!READ(BTN_ENC))
  989. {
  990. WRITE(BEEPER, HIGH);
  991. _delay_ms(100);
  992. WRITE(BEEPER, LOW);
  993. _delay_ms(200);
  994. WRITE(BEEPER, HIGH);
  995. _delay_ms(100);
  996. WRITE(BEEPER, LOW);
  997. int _z = 0;
  998. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  999. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  1000. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  1001. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  1002. }
  1003. else
  1004. {
  1005. WRITE(BEEPER, HIGH);
  1006. _delay_ms(100);
  1007. WRITE(BEEPER, LOW);
  1008. }
  1009. #endif // mesh */
  1010. }
  1011. }
  1012. else
  1013. {
  1014. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  1015. }
  1016. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  1017. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1018. #endif
  1019. #ifdef DIGIPOT_I2C
  1020. digipot_i2c_init();
  1021. #endif
  1022. setup_homepin();
  1023. #if defined(Z_AXIS_ALWAYS_ON)
  1024. enable_z();
  1025. #endif
  1026. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1027. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1028. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1029. if (farm_no == 0xFFFF) farm_no = 0;
  1030. if (farm_mode)
  1031. {
  1032. prusa_statistics(8);
  1033. no_response = true; //we need confirmation by recieving PRUSA thx
  1034. important_status = 8;
  1035. }
  1036. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1037. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1038. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1039. // but this times out if a blocking dialog is shown in setup().
  1040. card.initsd();
  1041. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1042. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  1043. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  1044. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1045. // where all the EEPROM entries are set to 0x0ff.
  1046. // Once a firmware boots up, it forces at least a language selection, which changes
  1047. // EEPROM_LANG to number lower than 0x0ff.
  1048. // 1) Set a high power mode.
  1049. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1050. }
  1051. #ifdef SNMM
  1052. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1053. int _z = BOWDEN_LENGTH;
  1054. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1055. }
  1056. #endif
  1057. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1058. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1059. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1060. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1061. if (lang_selected >= LANG_NUM){
  1062. lcd_mylang();
  1063. }
  1064. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1065. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1066. temp_cal_active = false;
  1067. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1068. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1069. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1070. }
  1071. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1072. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1073. }
  1074. #ifndef DEBUG_DISABLE_STARTMSGS
  1075. check_babystep(); //checking if Z babystep is in allowed range
  1076. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1077. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1078. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1079. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1080. // Show the message.
  1081. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1082. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1083. // Show the message.
  1084. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1085. lcd_update_enable(true);
  1086. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1087. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1088. lcd_update_enable(true);
  1089. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1090. // Show the message.
  1091. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1092. }
  1093. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1094. //If eeprom version for storing parameters to eeprom using M500 changed, default settings are used. Inform user in this case
  1095. if (!previous_settings_retrieved) {
  1096. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED);
  1097. }
  1098. #endif //DEBUG_DISABLE_STARTMSGS
  1099. lcd_update_enable(true);
  1100. // Store the currently running firmware into an eeprom,
  1101. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1102. update_current_firmware_version_to_eeprom();
  1103. KEEPALIVE_STATE(NOT_BUSY);
  1104. }
  1105. void trace();
  1106. #define CHUNK_SIZE 64 // bytes
  1107. #define SAFETY_MARGIN 1
  1108. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1109. int chunkHead = 0;
  1110. int serial_read_stream() {
  1111. setTargetHotend(0, 0);
  1112. setTargetBed(0);
  1113. lcd_implementation_clear();
  1114. lcd_printPGM(PSTR(" Upload in progress"));
  1115. // first wait for how many bytes we will receive
  1116. uint32_t bytesToReceive;
  1117. // receive the four bytes
  1118. char bytesToReceiveBuffer[4];
  1119. for (int i=0; i<4; i++) {
  1120. int data;
  1121. while ((data = MYSERIAL.read()) == -1) {};
  1122. bytesToReceiveBuffer[i] = data;
  1123. }
  1124. // make it a uint32
  1125. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1126. // we're ready, notify the sender
  1127. MYSERIAL.write('+');
  1128. // lock in the routine
  1129. uint32_t receivedBytes = 0;
  1130. while (prusa_sd_card_upload) {
  1131. int i;
  1132. for (i=0; i<CHUNK_SIZE; i++) {
  1133. int data;
  1134. // check if we're not done
  1135. if (receivedBytes == bytesToReceive) {
  1136. break;
  1137. }
  1138. // read the next byte
  1139. while ((data = MYSERIAL.read()) == -1) {};
  1140. receivedBytes++;
  1141. // save it to the chunk
  1142. chunk[i] = data;
  1143. }
  1144. // write the chunk to SD
  1145. card.write_command_no_newline(&chunk[0]);
  1146. // notify the sender we're ready for more data
  1147. MYSERIAL.write('+');
  1148. // for safety
  1149. manage_heater();
  1150. // check if we're done
  1151. if(receivedBytes == bytesToReceive) {
  1152. trace(); // beep
  1153. card.closefile();
  1154. prusa_sd_card_upload = false;
  1155. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1156. return 0;
  1157. }
  1158. }
  1159. }
  1160. #ifdef HOST_KEEPALIVE_FEATURE
  1161. /**
  1162. * Output a "busy" message at regular intervals
  1163. * while the machine is not accepting commands.
  1164. */
  1165. void host_keepalive() {
  1166. long ms = millis();
  1167. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1168. if (ms - prev_busy_signal_ms < 1000UL * host_keepalive_interval) return;
  1169. switch (busy_state) {
  1170. case IN_HANDLER:
  1171. case IN_PROCESS:
  1172. SERIAL_ECHO_START;
  1173. SERIAL_ECHOLNPGM("busy: processing");
  1174. break;
  1175. case PAUSED_FOR_USER:
  1176. SERIAL_ECHO_START;
  1177. SERIAL_ECHOLNPGM("busy: paused for user");
  1178. break;
  1179. case PAUSED_FOR_INPUT:
  1180. SERIAL_ECHO_START;
  1181. SERIAL_ECHOLNPGM("busy: paused for input");
  1182. break;
  1183. }
  1184. }
  1185. prev_busy_signal_ms = ms;
  1186. }
  1187. #endif
  1188. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1189. // Before loop(), the setup() function is called by the main() routine.
  1190. void loop()
  1191. {
  1192. bool stack_integrity = true;
  1193. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1194. {
  1195. is_usb_printing = true;
  1196. usb_printing_counter--;
  1197. _usb_timer = millis();
  1198. }
  1199. if (usb_printing_counter == 0)
  1200. {
  1201. is_usb_printing = false;
  1202. }
  1203. if (prusa_sd_card_upload)
  1204. {
  1205. //we read byte-by byte
  1206. serial_read_stream();
  1207. } else
  1208. {
  1209. get_command();
  1210. #ifdef SDSUPPORT
  1211. card.checkautostart(false);
  1212. #endif
  1213. if(buflen)
  1214. {
  1215. #ifdef SDSUPPORT
  1216. if(card.saving)
  1217. {
  1218. // Saving a G-code file onto an SD-card is in progress.
  1219. // Saving starts with M28, saving until M29 is seen.
  1220. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1221. card.write_command(CMDBUFFER_CURRENT_STRING);
  1222. if(card.logging)
  1223. process_commands();
  1224. else
  1225. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1226. } else {
  1227. card.closefile();
  1228. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1229. }
  1230. } else {
  1231. process_commands();
  1232. }
  1233. #else
  1234. process_commands();
  1235. #endif //SDSUPPORT
  1236. if (! cmdbuffer_front_already_processed)
  1237. cmdqueue_pop_front();
  1238. cmdbuffer_front_already_processed = false;
  1239. host_keepalive();
  1240. }
  1241. }
  1242. //check heater every n milliseconds
  1243. manage_heater();
  1244. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1245. checkHitEndstops();
  1246. lcd_update();
  1247. }
  1248. void proc_commands() {
  1249. if (buflen)
  1250. {
  1251. process_commands();
  1252. if (!cmdbuffer_front_already_processed)
  1253. cmdqueue_pop_front();
  1254. cmdbuffer_front_already_processed = false;
  1255. }
  1256. }
  1257. void get_command()
  1258. {
  1259. // Test and reserve space for the new command string.
  1260. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1261. return;
  1262. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1263. while (MYSERIAL.available() > 0) {
  1264. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1265. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1266. rx_buffer_full = true; //sets flag that buffer was full
  1267. }
  1268. char serial_char = MYSERIAL.read();
  1269. if (selectedSerialPort == 1) {
  1270. selectedSerialPort = 0;
  1271. MYSERIAL.write(serial_char);
  1272. selectedSerialPort = 1;
  1273. }
  1274. TimeSent = millis();
  1275. TimeNow = millis();
  1276. if (serial_char < 0)
  1277. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1278. // and Marlin does not support such file names anyway.
  1279. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1280. // to a hang-up of the print process from an SD card.
  1281. continue;
  1282. if(serial_char == '\n' ||
  1283. serial_char == '\r' ||
  1284. (serial_char == ':' && comment_mode == false) ||
  1285. serial_count >= (MAX_CMD_SIZE - 1) )
  1286. {
  1287. if(!serial_count) { //if empty line
  1288. comment_mode = false; //for new command
  1289. return;
  1290. }
  1291. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1292. if(!comment_mode){
  1293. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1294. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1295. {
  1296. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1297. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1298. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1299. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1300. // M110 - set current line number.
  1301. // Line numbers not sent in succession.
  1302. SERIAL_ERROR_START;
  1303. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1304. SERIAL_ERRORLN(gcode_LastN);
  1305. //Serial.println(gcode_N);
  1306. FlushSerialRequestResend();
  1307. serial_count = 0;
  1308. return;
  1309. }
  1310. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1311. {
  1312. byte checksum = 0;
  1313. char *p = cmdbuffer+bufindw+1;
  1314. while (p != strchr_pointer)
  1315. checksum = checksum^(*p++);
  1316. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1317. SERIAL_ERROR_START;
  1318. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1319. SERIAL_ERRORLN(gcode_LastN);
  1320. FlushSerialRequestResend();
  1321. serial_count = 0;
  1322. return;
  1323. }
  1324. // If no errors, remove the checksum and continue parsing.
  1325. *strchr_pointer = 0;
  1326. }
  1327. else
  1328. {
  1329. SERIAL_ERROR_START;
  1330. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1331. SERIAL_ERRORLN(gcode_LastN);
  1332. FlushSerialRequestResend();
  1333. serial_count = 0;
  1334. return;
  1335. }
  1336. gcode_LastN = gcode_N;
  1337. //if no errors, continue parsing
  1338. } // end of 'N' command
  1339. }
  1340. else // if we don't receive 'N' but still see '*'
  1341. {
  1342. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1343. {
  1344. SERIAL_ERROR_START;
  1345. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1346. SERIAL_ERRORLN(gcode_LastN);
  1347. serial_count = 0;
  1348. return;
  1349. }
  1350. } // end of '*' command
  1351. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1352. if (! IS_SD_PRINTING) {
  1353. usb_printing_counter = 10;
  1354. is_usb_printing = true;
  1355. }
  1356. if (Stopped == true) {
  1357. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1358. if (gcode >= 0 && gcode <= 3) {
  1359. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1360. LCD_MESSAGERPGM(MSG_STOPPED);
  1361. }
  1362. }
  1363. } // end of 'G' command
  1364. //If command was e-stop process now
  1365. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1366. kill();
  1367. // Store the current line into buffer, move to the next line.
  1368. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1369. #ifdef CMDBUFFER_DEBUG
  1370. SERIAL_ECHO_START;
  1371. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1372. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1373. SERIAL_ECHOLNPGM("");
  1374. #endif /* CMDBUFFER_DEBUG */
  1375. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1376. if (bufindw == sizeof(cmdbuffer))
  1377. bufindw = 0;
  1378. ++ buflen;
  1379. #ifdef CMDBUFFER_DEBUG
  1380. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1381. SERIAL_ECHO(buflen);
  1382. SERIAL_ECHOLNPGM("");
  1383. #endif /* CMDBUFFER_DEBUG */
  1384. } // end of 'not comment mode'
  1385. serial_count = 0; //clear buffer
  1386. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1387. // in the queue, as this function will reserve the memory.
  1388. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1389. return;
  1390. } // end of "end of line" processing
  1391. else {
  1392. // Not an "end of line" symbol. Store the new character into a buffer.
  1393. if(serial_char == ';') comment_mode = true;
  1394. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1395. }
  1396. } // end of serial line processing loop
  1397. if(farm_mode){
  1398. TimeNow = millis();
  1399. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1400. cmdbuffer[bufindw+serial_count+1] = 0;
  1401. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1402. if (bufindw == sizeof(cmdbuffer))
  1403. bufindw = 0;
  1404. ++ buflen;
  1405. serial_count = 0;
  1406. SERIAL_ECHOPGM("TIMEOUT:");
  1407. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1408. return;
  1409. }
  1410. }
  1411. //add comment
  1412. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1413. rx_buffer_full = false;
  1414. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1415. serial_count = 0;
  1416. }
  1417. #ifdef SDSUPPORT
  1418. if(!card.sdprinting || serial_count!=0){
  1419. // If there is a half filled buffer from serial line, wait until return before
  1420. // continuing with the serial line.
  1421. return;
  1422. }
  1423. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1424. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1425. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1426. static bool stop_buffering=false;
  1427. if(buflen==0) stop_buffering=false;
  1428. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1429. while( !card.eof() && !stop_buffering) {
  1430. int16_t n=card.get();
  1431. char serial_char = (char)n;
  1432. if(serial_char == '\n' ||
  1433. serial_char == '\r' ||
  1434. (serial_char == '#' && comment_mode == false) ||
  1435. (serial_char == ':' && comment_mode == false) ||
  1436. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1437. {
  1438. if(card.eof()){
  1439. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1440. stoptime=millis();
  1441. char time[30];
  1442. unsigned long t=(stoptime-starttime-pause_time)/1000;
  1443. pause_time = 0;
  1444. int hours, minutes;
  1445. minutes=(t/60)%60;
  1446. hours=t/60/60;
  1447. save_statistics(total_filament_used, t);
  1448. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1449. SERIAL_ECHO_START;
  1450. SERIAL_ECHOLN(time);
  1451. lcd_setstatus(time);
  1452. card.printingHasFinished();
  1453. card.checkautostart(true);
  1454. if (farm_mode)
  1455. {
  1456. prusa_statistics(6);
  1457. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1458. }
  1459. }
  1460. if(serial_char=='#')
  1461. stop_buffering=true;
  1462. if(!serial_count)
  1463. {
  1464. comment_mode = false; //for new command
  1465. return; //if empty line
  1466. }
  1467. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1468. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1469. ++ buflen;
  1470. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1471. if (bufindw == sizeof(cmdbuffer))
  1472. bufindw = 0;
  1473. comment_mode = false; //for new command
  1474. serial_count = 0; //clear buffer
  1475. // The following line will reserve buffer space if available.
  1476. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1477. return;
  1478. }
  1479. else
  1480. {
  1481. if(serial_char == ';') comment_mode = true;
  1482. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1483. }
  1484. }
  1485. #endif //SDSUPPORT
  1486. }
  1487. // Return True if a character was found
  1488. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1489. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1490. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1491. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1492. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1493. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1494. static inline float code_value_float() {
  1495. char* e = strchr(strchr_pointer, 'E');
  1496. if (!e) return strtod(strchr_pointer + 1, NULL);
  1497. *e = 0;
  1498. float ret = strtod(strchr_pointer + 1, NULL);
  1499. *e = 'E';
  1500. return ret;
  1501. }
  1502. #define DEFINE_PGM_READ_ANY(type, reader) \
  1503. static inline type pgm_read_any(const type *p) \
  1504. { return pgm_read_##reader##_near(p); }
  1505. DEFINE_PGM_READ_ANY(float, float);
  1506. DEFINE_PGM_READ_ANY(signed char, byte);
  1507. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1508. static const PROGMEM type array##_P[3] = \
  1509. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1510. static inline type array(int axis) \
  1511. { return pgm_read_any(&array##_P[axis]); } \
  1512. type array##_ext(int axis) \
  1513. { return pgm_read_any(&array##_P[axis]); }
  1514. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1515. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1516. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1517. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1518. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1519. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1520. static void axis_is_at_home(int axis) {
  1521. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1522. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1523. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1524. }
  1525. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1526. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1527. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1528. saved_feedrate = feedrate;
  1529. saved_feedmultiply = feedmultiply;
  1530. feedmultiply = 100;
  1531. previous_millis_cmd = millis();
  1532. enable_endstops(enable_endstops_now);
  1533. }
  1534. static void clean_up_after_endstop_move() {
  1535. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1536. enable_endstops(false);
  1537. #endif
  1538. feedrate = saved_feedrate;
  1539. feedmultiply = saved_feedmultiply;
  1540. previous_millis_cmd = millis();
  1541. }
  1542. #ifdef ENABLE_AUTO_BED_LEVELING
  1543. #ifdef AUTO_BED_LEVELING_GRID
  1544. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1545. {
  1546. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1547. planeNormal.debug("planeNormal");
  1548. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1549. //bedLevel.debug("bedLevel");
  1550. //plan_bed_level_matrix.debug("bed level before");
  1551. //vector_3 uncorrected_position = plan_get_position_mm();
  1552. //uncorrected_position.debug("position before");
  1553. vector_3 corrected_position = plan_get_position();
  1554. // corrected_position.debug("position after");
  1555. current_position[X_AXIS] = corrected_position.x;
  1556. current_position[Y_AXIS] = corrected_position.y;
  1557. current_position[Z_AXIS] = corrected_position.z;
  1558. // put the bed at 0 so we don't go below it.
  1559. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1560. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1561. }
  1562. #else // not AUTO_BED_LEVELING_GRID
  1563. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1564. plan_bed_level_matrix.set_to_identity();
  1565. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1566. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1567. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1568. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1569. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1570. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1571. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1572. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1573. vector_3 corrected_position = plan_get_position();
  1574. current_position[X_AXIS] = corrected_position.x;
  1575. current_position[Y_AXIS] = corrected_position.y;
  1576. current_position[Z_AXIS] = corrected_position.z;
  1577. // put the bed at 0 so we don't go below it.
  1578. current_position[Z_AXIS] = zprobe_zoffset;
  1579. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1580. }
  1581. #endif // AUTO_BED_LEVELING_GRID
  1582. static void run_z_probe() {
  1583. plan_bed_level_matrix.set_to_identity();
  1584. feedrate = homing_feedrate[Z_AXIS];
  1585. // move down until you find the bed
  1586. float zPosition = -10;
  1587. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1588. st_synchronize();
  1589. // we have to let the planner know where we are right now as it is not where we said to go.
  1590. zPosition = st_get_position_mm(Z_AXIS);
  1591. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1592. // move up the retract distance
  1593. zPosition += home_retract_mm(Z_AXIS);
  1594. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1595. st_synchronize();
  1596. // move back down slowly to find bed
  1597. feedrate = homing_feedrate[Z_AXIS]/4;
  1598. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1600. st_synchronize();
  1601. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1602. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1603. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1604. }
  1605. static void do_blocking_move_to(float x, float y, float z) {
  1606. float oldFeedRate = feedrate;
  1607. feedrate = homing_feedrate[Z_AXIS];
  1608. current_position[Z_AXIS] = z;
  1609. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1610. st_synchronize();
  1611. feedrate = XY_TRAVEL_SPEED;
  1612. current_position[X_AXIS] = x;
  1613. current_position[Y_AXIS] = y;
  1614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1615. st_synchronize();
  1616. feedrate = oldFeedRate;
  1617. }
  1618. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1619. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1620. }
  1621. /// Probe bed height at position (x,y), returns the measured z value
  1622. static float probe_pt(float x, float y, float z_before) {
  1623. // move to right place
  1624. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1625. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1626. run_z_probe();
  1627. float measured_z = current_position[Z_AXIS];
  1628. SERIAL_PROTOCOLRPGM(MSG_BED);
  1629. SERIAL_PROTOCOLPGM(" x: ");
  1630. SERIAL_PROTOCOL(x);
  1631. SERIAL_PROTOCOLPGM(" y: ");
  1632. SERIAL_PROTOCOL(y);
  1633. SERIAL_PROTOCOLPGM(" z: ");
  1634. SERIAL_PROTOCOL(measured_z);
  1635. SERIAL_PROTOCOLPGM("\n");
  1636. return measured_z;
  1637. }
  1638. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1639. #ifdef LIN_ADVANCE
  1640. /**
  1641. * M900: Set and/or Get advance K factor and WH/D ratio
  1642. *
  1643. * K<factor> Set advance K factor
  1644. * R<ratio> Set ratio directly (overrides WH/D)
  1645. * W<width> H<height> D<diam> Set ratio from WH/D
  1646. */
  1647. inline void gcode_M900() {
  1648. st_synchronize();
  1649. const float newK = code_seen('K') ? code_value_float() : -1;
  1650. if (newK >= 0) extruder_advance_k = newK;
  1651. float newR = code_seen('R') ? code_value_float() : -1;
  1652. if (newR < 0) {
  1653. const float newD = code_seen('D') ? code_value_float() : -1,
  1654. newW = code_seen('W') ? code_value_float() : -1,
  1655. newH = code_seen('H') ? code_value_float() : -1;
  1656. if (newD >= 0 && newW >= 0 && newH >= 0)
  1657. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1658. }
  1659. if (newR >= 0) advance_ed_ratio = newR;
  1660. SERIAL_ECHO_START;
  1661. SERIAL_ECHOPGM("Advance K=");
  1662. SERIAL_ECHOLN(extruder_advance_k);
  1663. SERIAL_ECHOPGM(" E/D=");
  1664. const float ratio = advance_ed_ratio;
  1665. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1666. }
  1667. #endif // LIN_ADVANCE
  1668. void homeaxis(int axis) {
  1669. #define HOMEAXIS_DO(LETTER) \
  1670. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1671. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1672. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1673. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1674. 0) {
  1675. int axis_home_dir = home_dir(axis);
  1676. current_position[axis] = 0;
  1677. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1678. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1679. feedrate = homing_feedrate[axis];
  1680. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1681. st_synchronize();
  1682. current_position[axis] = 0;
  1683. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1684. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1685. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1686. st_synchronize();
  1687. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1688. feedrate = homing_feedrate[axis]/2 ;
  1689. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1690. st_synchronize();
  1691. axis_is_at_home(axis);
  1692. destination[axis] = current_position[axis];
  1693. feedrate = 0.0;
  1694. endstops_hit_on_purpose();
  1695. axis_known_position[axis] = true;
  1696. }
  1697. }
  1698. void home_xy()
  1699. {
  1700. set_destination_to_current();
  1701. homeaxis(X_AXIS);
  1702. homeaxis(Y_AXIS);
  1703. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1704. endstops_hit_on_purpose();
  1705. }
  1706. void refresh_cmd_timeout(void)
  1707. {
  1708. previous_millis_cmd = millis();
  1709. }
  1710. #ifdef FWRETRACT
  1711. void retract(bool retracting, bool swapretract = false) {
  1712. if(retracting && !retracted[active_extruder]) {
  1713. destination[X_AXIS]=current_position[X_AXIS];
  1714. destination[Y_AXIS]=current_position[Y_AXIS];
  1715. destination[Z_AXIS]=current_position[Z_AXIS];
  1716. destination[E_AXIS]=current_position[E_AXIS];
  1717. if (swapretract) {
  1718. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1719. } else {
  1720. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1721. }
  1722. plan_set_e_position(current_position[E_AXIS]);
  1723. float oldFeedrate = feedrate;
  1724. feedrate=retract_feedrate*60;
  1725. retracted[active_extruder]=true;
  1726. prepare_move();
  1727. current_position[Z_AXIS]-=retract_zlift;
  1728. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1729. prepare_move();
  1730. feedrate = oldFeedrate;
  1731. } else if(!retracting && retracted[active_extruder]) {
  1732. destination[X_AXIS]=current_position[X_AXIS];
  1733. destination[Y_AXIS]=current_position[Y_AXIS];
  1734. destination[Z_AXIS]=current_position[Z_AXIS];
  1735. destination[E_AXIS]=current_position[E_AXIS];
  1736. current_position[Z_AXIS]+=retract_zlift;
  1737. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1738. //prepare_move();
  1739. if (swapretract) {
  1740. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1741. } else {
  1742. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1743. }
  1744. plan_set_e_position(current_position[E_AXIS]);
  1745. float oldFeedrate = feedrate;
  1746. feedrate=retract_recover_feedrate*60;
  1747. retracted[active_extruder]=false;
  1748. prepare_move();
  1749. feedrate = oldFeedrate;
  1750. }
  1751. } //retract
  1752. #endif //FWRETRACT
  1753. void trace() {
  1754. tone(BEEPER, 440);
  1755. delay(25);
  1756. noTone(BEEPER);
  1757. delay(20);
  1758. }
  1759. /*
  1760. void ramming() {
  1761. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1762. if (current_temperature[0] < 230) {
  1763. //PLA
  1764. max_feedrate[E_AXIS] = 50;
  1765. //current_position[E_AXIS] -= 8;
  1766. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1767. //current_position[E_AXIS] += 8;
  1768. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1769. current_position[E_AXIS] += 5.4;
  1770. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1771. current_position[E_AXIS] += 3.2;
  1772. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1773. current_position[E_AXIS] += 3;
  1774. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1775. st_synchronize();
  1776. max_feedrate[E_AXIS] = 80;
  1777. current_position[E_AXIS] -= 82;
  1778. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1779. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1780. current_position[E_AXIS] -= 20;
  1781. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1782. current_position[E_AXIS] += 5;
  1783. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1784. current_position[E_AXIS] += 5;
  1785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1786. current_position[E_AXIS] -= 10;
  1787. st_synchronize();
  1788. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1789. current_position[E_AXIS] += 10;
  1790. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1791. current_position[E_AXIS] -= 10;
  1792. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1793. current_position[E_AXIS] += 10;
  1794. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1795. current_position[E_AXIS] -= 10;
  1796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1797. st_synchronize();
  1798. }
  1799. else {
  1800. //ABS
  1801. max_feedrate[E_AXIS] = 50;
  1802. //current_position[E_AXIS] -= 8;
  1803. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1804. //current_position[E_AXIS] += 8;
  1805. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1806. current_position[E_AXIS] += 3.1;
  1807. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1808. current_position[E_AXIS] += 3.1;
  1809. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1810. current_position[E_AXIS] += 4;
  1811. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1812. st_synchronize();
  1813. //current_position[X_AXIS] += 23; //delay
  1814. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1815. //current_position[X_AXIS] -= 23; //delay
  1816. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1817. delay(4700);
  1818. max_feedrate[E_AXIS] = 80;
  1819. current_position[E_AXIS] -= 92;
  1820. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1821. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1822. current_position[E_AXIS] -= 5;
  1823. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1824. current_position[E_AXIS] += 5;
  1825. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1826. current_position[E_AXIS] -= 5;
  1827. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1828. st_synchronize();
  1829. current_position[E_AXIS] += 5;
  1830. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1831. current_position[E_AXIS] -= 5;
  1832. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1833. current_position[E_AXIS] += 5;
  1834. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1835. current_position[E_AXIS] -= 5;
  1836. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1837. st_synchronize();
  1838. }
  1839. }
  1840. */
  1841. void process_commands()
  1842. {
  1843. #ifdef FILAMENT_RUNOUT_SUPPORT
  1844. SET_INPUT(FR_SENS);
  1845. #endif
  1846. #ifdef CMDBUFFER_DEBUG
  1847. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1848. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1849. SERIAL_ECHOLNPGM("");
  1850. SERIAL_ECHOPGM("In cmdqueue: ");
  1851. SERIAL_ECHO(buflen);
  1852. SERIAL_ECHOLNPGM("");
  1853. #endif /* CMDBUFFER_DEBUG */
  1854. unsigned long codenum; //throw away variable
  1855. char *starpos = NULL;
  1856. #ifdef ENABLE_AUTO_BED_LEVELING
  1857. float x_tmp, y_tmp, z_tmp, real_z;
  1858. #endif
  1859. // PRUSA GCODES
  1860. #ifdef SNMM
  1861. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1862. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1863. int8_t SilentMode;
  1864. #endif
  1865. KEEPALIVE_STATE(IN_HANDLER);
  1866. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1867. starpos = (strchr(strchr_pointer + 5, '*'));
  1868. if (starpos != NULL)
  1869. *(starpos) = '\0';
  1870. lcd_setstatus(strchr_pointer + 5);
  1871. }
  1872. else if(code_seen("PRUSA")){
  1873. if (code_seen("Ping")) { //PRUSA Ping
  1874. if (farm_mode) {
  1875. PingTime = millis();
  1876. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1877. }
  1878. } else if (code_seen("PRN")) {
  1879. MYSERIAL.println(status_number);
  1880. } else if (code_seen("RESET")) {
  1881. // careful!
  1882. if (farm_mode) {
  1883. asm volatile(" jmp 0x3E000");
  1884. }
  1885. else {
  1886. MYSERIAL.println("Not in farm mode.");
  1887. }
  1888. } else if (code_seen("fn")) {
  1889. if (farm_mode) {
  1890. MYSERIAL.println(farm_no);
  1891. }
  1892. else {
  1893. MYSERIAL.println("Not in farm mode.");
  1894. }
  1895. }
  1896. else if (code_seen("thx")) {
  1897. no_response = false;
  1898. }else if (code_seen("fv")) {
  1899. // get file version
  1900. #ifdef SDSUPPORT
  1901. card.openFile(strchr_pointer + 3,true);
  1902. while (true) {
  1903. uint16_t readByte = card.get();
  1904. MYSERIAL.write(readByte);
  1905. if (readByte=='\n') {
  1906. break;
  1907. }
  1908. }
  1909. card.closefile();
  1910. #endif // SDSUPPORT
  1911. } else if (code_seen("M28")) {
  1912. trace();
  1913. prusa_sd_card_upload = true;
  1914. card.openFile(strchr_pointer+4,false);
  1915. } else if (code_seen("SN")) {
  1916. if (farm_mode) {
  1917. selectedSerialPort = 0;
  1918. MSerial.write(";S");
  1919. // S/N is:CZPX0917X003XC13518
  1920. int numbersRead = 0;
  1921. while (numbersRead < 19) {
  1922. while (MSerial.available() > 0) {
  1923. uint8_t serial_char = MSerial.read();
  1924. selectedSerialPort = 1;
  1925. MSerial.write(serial_char);
  1926. numbersRead++;
  1927. selectedSerialPort = 0;
  1928. }
  1929. }
  1930. selectedSerialPort = 1;
  1931. MSerial.write('\n');
  1932. /*for (int b = 0; b < 3; b++) {
  1933. tone(BEEPER, 110);
  1934. delay(50);
  1935. noTone(BEEPER);
  1936. delay(50);
  1937. }*/
  1938. } else {
  1939. MYSERIAL.println("Not in farm mode.");
  1940. }
  1941. } else if(code_seen("Fir")){
  1942. SERIAL_PROTOCOLLN(FW_version);
  1943. } else if(code_seen("Rev")){
  1944. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1945. } else if(code_seen("Lang")) {
  1946. lcd_force_language_selection();
  1947. } else if(code_seen("Lz")) {
  1948. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1949. } else if (code_seen("SERIAL LOW")) {
  1950. MYSERIAL.println("SERIAL LOW");
  1951. MYSERIAL.begin(BAUDRATE);
  1952. return;
  1953. } else if (code_seen("SERIAL HIGH")) {
  1954. MYSERIAL.println("SERIAL HIGH");
  1955. MYSERIAL.begin(1152000);
  1956. return;
  1957. } else if(code_seen("Beat")) {
  1958. // Kick farm link timer
  1959. kicktime = millis();
  1960. } else if(code_seen("FR")) {
  1961. // Factory full reset
  1962. factory_reset(0,true);
  1963. }
  1964. //else if (code_seen('Cal')) {
  1965. // lcd_calibration();
  1966. // }
  1967. }
  1968. else if (code_seen('^')) {
  1969. // nothing, this is a version line
  1970. } else if(code_seen('G'))
  1971. {
  1972. switch((int)code_value())
  1973. {
  1974. case 0: // G0 -> G1
  1975. case 1: // G1
  1976. if(Stopped == false) {
  1977. #ifdef FILAMENT_RUNOUT_SUPPORT
  1978. if(READ(FR_SENS)){
  1979. feedmultiplyBckp=feedmultiply;
  1980. float target[4];
  1981. float lastpos[4];
  1982. target[X_AXIS]=current_position[X_AXIS];
  1983. target[Y_AXIS]=current_position[Y_AXIS];
  1984. target[Z_AXIS]=current_position[Z_AXIS];
  1985. target[E_AXIS]=current_position[E_AXIS];
  1986. lastpos[X_AXIS]=current_position[X_AXIS];
  1987. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1988. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1989. lastpos[E_AXIS]=current_position[E_AXIS];
  1990. //retract by E
  1991. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1992. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1993. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1994. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1995. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1996. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1997. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1998. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1999. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2000. //finish moves
  2001. st_synchronize();
  2002. //disable extruder steppers so filament can be removed
  2003. disable_e0();
  2004. disable_e1();
  2005. disable_e2();
  2006. delay(100);
  2007. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2008. uint8_t cnt=0;
  2009. int counterBeep = 0;
  2010. lcd_wait_interact();
  2011. while(!lcd_clicked()){
  2012. cnt++;
  2013. manage_heater();
  2014. manage_inactivity(true);
  2015. //lcd_update();
  2016. if(cnt==0)
  2017. {
  2018. #if BEEPER > 0
  2019. if (counterBeep== 500){
  2020. counterBeep = 0;
  2021. }
  2022. SET_OUTPUT(BEEPER);
  2023. if (counterBeep== 0){
  2024. WRITE(BEEPER,HIGH);
  2025. }
  2026. if (counterBeep== 20){
  2027. WRITE(BEEPER,LOW);
  2028. }
  2029. counterBeep++;
  2030. #else
  2031. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2032. lcd_buzz(1000/6,100);
  2033. #else
  2034. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2035. #endif
  2036. #endif
  2037. }
  2038. }
  2039. WRITE(BEEPER,LOW);
  2040. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2041. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2042. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2043. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2044. lcd_change_fil_state = 0;
  2045. lcd_loading_filament();
  2046. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2047. lcd_change_fil_state = 0;
  2048. lcd_alright();
  2049. switch(lcd_change_fil_state){
  2050. case 2:
  2051. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2052. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2053. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2054. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2055. lcd_loading_filament();
  2056. break;
  2057. case 3:
  2058. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2059. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2060. lcd_loading_color();
  2061. break;
  2062. default:
  2063. lcd_change_success();
  2064. break;
  2065. }
  2066. }
  2067. target[E_AXIS]+= 5;
  2068. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2069. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2070. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2071. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2072. //plan_set_e_position(current_position[E_AXIS]);
  2073. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2074. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2075. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2076. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2077. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2078. plan_set_e_position(lastpos[E_AXIS]);
  2079. feedmultiply=feedmultiplyBckp;
  2080. char cmd[9];
  2081. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2082. enquecommand(cmd);
  2083. }
  2084. #endif
  2085. get_coordinates(); // For X Y Z E F
  2086. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2087. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2088. }
  2089. #ifdef FWRETRACT
  2090. if(autoretract_enabled)
  2091. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2092. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2093. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2094. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2095. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2096. retract(!retracted);
  2097. return;
  2098. }
  2099. }
  2100. #endif //FWRETRACT
  2101. prepare_move();
  2102. //ClearToSend();
  2103. }
  2104. break;
  2105. case 2: // G2 - CW ARC
  2106. if(Stopped == false) {
  2107. get_arc_coordinates();
  2108. prepare_arc_move(true);
  2109. }
  2110. break;
  2111. case 3: // G3 - CCW ARC
  2112. if(Stopped == false) {
  2113. get_arc_coordinates();
  2114. prepare_arc_move(false);
  2115. }
  2116. break;
  2117. case 4: // G4 dwell
  2118. codenum = 0;
  2119. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2120. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2121. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2122. st_synchronize();
  2123. codenum += millis(); // keep track of when we started waiting
  2124. previous_millis_cmd = millis();
  2125. while(millis() < codenum) {
  2126. manage_heater();
  2127. manage_inactivity();
  2128. lcd_update();
  2129. }
  2130. break;
  2131. #ifdef FWRETRACT
  2132. case 10: // G10 retract
  2133. #if EXTRUDERS > 1
  2134. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2135. retract(true,retracted_swap[active_extruder]);
  2136. #else
  2137. retract(true);
  2138. #endif
  2139. break;
  2140. case 11: // G11 retract_recover
  2141. #if EXTRUDERS > 1
  2142. retract(false,retracted_swap[active_extruder]);
  2143. #else
  2144. retract(false);
  2145. #endif
  2146. break;
  2147. #endif //FWRETRACT
  2148. case 28: //G28 Home all Axis one at a time
  2149. homing_flag = true;
  2150. #ifdef ENABLE_AUTO_BED_LEVELING
  2151. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2152. #endif //ENABLE_AUTO_BED_LEVELING
  2153. // For mesh bed leveling deactivate the matrix temporarily
  2154. #ifdef MESH_BED_LEVELING
  2155. mbl.active = 0;
  2156. #endif
  2157. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2158. // the planner will not perform any adjustments in the XY plane.
  2159. // Wait for the motors to stop and update the current position with the absolute values.
  2160. world2machine_revert_to_uncorrected();
  2161. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2162. // consumed during the first movements following this statement.
  2163. babystep_undo();
  2164. saved_feedrate = feedrate;
  2165. saved_feedmultiply = feedmultiply;
  2166. feedmultiply = 100;
  2167. previous_millis_cmd = millis();
  2168. enable_endstops(true);
  2169. for(int8_t i=0; i < NUM_AXIS; i++)
  2170. destination[i] = current_position[i];
  2171. feedrate = 0.0;
  2172. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2173. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2174. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2175. homeaxis(Z_AXIS);
  2176. }
  2177. #endif
  2178. #ifdef QUICK_HOME
  2179. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2180. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2181. {
  2182. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2183. int x_axis_home_dir = home_dir(X_AXIS);
  2184. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2185. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2186. feedrate = homing_feedrate[X_AXIS];
  2187. if(homing_feedrate[Y_AXIS]<feedrate)
  2188. feedrate = homing_feedrate[Y_AXIS];
  2189. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2190. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2191. } else {
  2192. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2193. }
  2194. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2195. st_synchronize();
  2196. axis_is_at_home(X_AXIS);
  2197. axis_is_at_home(Y_AXIS);
  2198. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2199. destination[X_AXIS] = current_position[X_AXIS];
  2200. destination[Y_AXIS] = current_position[Y_AXIS];
  2201. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2202. feedrate = 0.0;
  2203. st_synchronize();
  2204. endstops_hit_on_purpose();
  2205. current_position[X_AXIS] = destination[X_AXIS];
  2206. current_position[Y_AXIS] = destination[Y_AXIS];
  2207. current_position[Z_AXIS] = destination[Z_AXIS];
  2208. }
  2209. #endif /* QUICK_HOME */
  2210. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2211. homeaxis(X_AXIS);
  2212. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2213. homeaxis(Y_AXIS);
  2214. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2215. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2216. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2217. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2218. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2219. #ifndef Z_SAFE_HOMING
  2220. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2221. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2222. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2223. feedrate = max_feedrate[Z_AXIS];
  2224. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2225. st_synchronize();
  2226. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2227. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2228. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2229. {
  2230. homeaxis(X_AXIS);
  2231. homeaxis(Y_AXIS);
  2232. }
  2233. // 1st mesh bed leveling measurement point, corrected.
  2234. world2machine_initialize();
  2235. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2236. world2machine_reset();
  2237. if (destination[Y_AXIS] < Y_MIN_POS)
  2238. destination[Y_AXIS] = Y_MIN_POS;
  2239. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2240. feedrate = homing_feedrate[Z_AXIS]/10;
  2241. current_position[Z_AXIS] = 0;
  2242. enable_endstops(false);
  2243. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2244. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2245. st_synchronize();
  2246. current_position[X_AXIS] = destination[X_AXIS];
  2247. current_position[Y_AXIS] = destination[Y_AXIS];
  2248. enable_endstops(true);
  2249. endstops_hit_on_purpose();
  2250. homeaxis(Z_AXIS);
  2251. #else // MESH_BED_LEVELING
  2252. homeaxis(Z_AXIS);
  2253. #endif // MESH_BED_LEVELING
  2254. }
  2255. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2256. if(home_all_axis) {
  2257. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2258. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2259. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2260. feedrate = XY_TRAVEL_SPEED/60;
  2261. current_position[Z_AXIS] = 0;
  2262. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2263. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2264. st_synchronize();
  2265. current_position[X_AXIS] = destination[X_AXIS];
  2266. current_position[Y_AXIS] = destination[Y_AXIS];
  2267. homeaxis(Z_AXIS);
  2268. }
  2269. // Let's see if X and Y are homed and probe is inside bed area.
  2270. if(code_seen(axis_codes[Z_AXIS])) {
  2271. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2272. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2273. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2274. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2275. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2276. current_position[Z_AXIS] = 0;
  2277. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2278. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2279. feedrate = max_feedrate[Z_AXIS];
  2280. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2281. st_synchronize();
  2282. homeaxis(Z_AXIS);
  2283. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2284. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2285. SERIAL_ECHO_START;
  2286. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2287. } else {
  2288. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2289. SERIAL_ECHO_START;
  2290. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2291. }
  2292. }
  2293. #endif // Z_SAFE_HOMING
  2294. #endif // Z_HOME_DIR < 0
  2295. if(code_seen(axis_codes[Z_AXIS])) {
  2296. if(code_value_long() != 0) {
  2297. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2298. }
  2299. }
  2300. #ifdef ENABLE_AUTO_BED_LEVELING
  2301. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2302. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2303. }
  2304. #endif
  2305. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2306. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2307. enable_endstops(false);
  2308. #endif
  2309. feedrate = saved_feedrate;
  2310. feedmultiply = saved_feedmultiply;
  2311. previous_millis_cmd = millis();
  2312. endstops_hit_on_purpose();
  2313. #ifndef MESH_BED_LEVELING
  2314. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2315. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2316. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2317. lcd_adjust_z();
  2318. #endif
  2319. // Load the machine correction matrix
  2320. world2machine_initialize();
  2321. // and correct the current_position to match the transformed coordinate system.
  2322. world2machine_update_current();
  2323. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2324. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2325. {
  2326. }
  2327. else
  2328. {
  2329. st_synchronize();
  2330. homing_flag = false;
  2331. // Push the commands to the front of the message queue in the reverse order!
  2332. // There shall be always enough space reserved for these commands.
  2333. // enquecommand_front_P((PSTR("G80")));
  2334. goto case_G80;
  2335. }
  2336. #endif
  2337. if (farm_mode) { prusa_statistics(20); };
  2338. homing_flag = false;
  2339. break;
  2340. #ifdef ENABLE_AUTO_BED_LEVELING
  2341. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2342. {
  2343. #if Z_MIN_PIN == -1
  2344. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2345. #endif
  2346. // Prevent user from running a G29 without first homing in X and Y
  2347. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2348. {
  2349. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2350. SERIAL_ECHO_START;
  2351. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2352. break; // abort G29, since we don't know where we are
  2353. }
  2354. st_synchronize();
  2355. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2356. //vector_3 corrected_position = plan_get_position_mm();
  2357. //corrected_position.debug("position before G29");
  2358. plan_bed_level_matrix.set_to_identity();
  2359. vector_3 uncorrected_position = plan_get_position();
  2360. //uncorrected_position.debug("position durring G29");
  2361. current_position[X_AXIS] = uncorrected_position.x;
  2362. current_position[Y_AXIS] = uncorrected_position.y;
  2363. current_position[Z_AXIS] = uncorrected_position.z;
  2364. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2365. setup_for_endstop_move();
  2366. feedrate = homing_feedrate[Z_AXIS];
  2367. #ifdef AUTO_BED_LEVELING_GRID
  2368. // probe at the points of a lattice grid
  2369. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2370. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2371. // solve the plane equation ax + by + d = z
  2372. // A is the matrix with rows [x y 1] for all the probed points
  2373. // B is the vector of the Z positions
  2374. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2375. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2376. // "A" matrix of the linear system of equations
  2377. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2378. // "B" vector of Z points
  2379. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2380. int probePointCounter = 0;
  2381. bool zig = true;
  2382. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2383. {
  2384. int xProbe, xInc;
  2385. if (zig)
  2386. {
  2387. xProbe = LEFT_PROBE_BED_POSITION;
  2388. //xEnd = RIGHT_PROBE_BED_POSITION;
  2389. xInc = xGridSpacing;
  2390. zig = false;
  2391. } else // zag
  2392. {
  2393. xProbe = RIGHT_PROBE_BED_POSITION;
  2394. //xEnd = LEFT_PROBE_BED_POSITION;
  2395. xInc = -xGridSpacing;
  2396. zig = true;
  2397. }
  2398. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2399. {
  2400. float z_before;
  2401. if (probePointCounter == 0)
  2402. {
  2403. // raise before probing
  2404. z_before = Z_RAISE_BEFORE_PROBING;
  2405. } else
  2406. {
  2407. // raise extruder
  2408. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2409. }
  2410. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2411. eqnBVector[probePointCounter] = measured_z;
  2412. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2413. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2414. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2415. probePointCounter++;
  2416. xProbe += xInc;
  2417. }
  2418. }
  2419. clean_up_after_endstop_move();
  2420. // solve lsq problem
  2421. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2422. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2423. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2424. SERIAL_PROTOCOLPGM(" b: ");
  2425. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2426. SERIAL_PROTOCOLPGM(" d: ");
  2427. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2428. set_bed_level_equation_lsq(plane_equation_coefficients);
  2429. free(plane_equation_coefficients);
  2430. #else // AUTO_BED_LEVELING_GRID not defined
  2431. // Probe at 3 arbitrary points
  2432. // probe 1
  2433. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2434. // probe 2
  2435. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2436. // probe 3
  2437. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2438. clean_up_after_endstop_move();
  2439. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2440. #endif // AUTO_BED_LEVELING_GRID
  2441. st_synchronize();
  2442. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2443. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2444. // When the bed is uneven, this height must be corrected.
  2445. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2446. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2447. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2448. z_tmp = current_position[Z_AXIS];
  2449. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2450. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2451. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2452. }
  2453. break;
  2454. #ifndef Z_PROBE_SLED
  2455. case 30: // G30 Single Z Probe
  2456. {
  2457. st_synchronize();
  2458. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2459. setup_for_endstop_move();
  2460. feedrate = homing_feedrate[Z_AXIS];
  2461. run_z_probe();
  2462. SERIAL_PROTOCOLPGM(MSG_BED);
  2463. SERIAL_PROTOCOLPGM(" X: ");
  2464. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2465. SERIAL_PROTOCOLPGM(" Y: ");
  2466. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2467. SERIAL_PROTOCOLPGM(" Z: ");
  2468. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2469. SERIAL_PROTOCOLPGM("\n");
  2470. clean_up_after_endstop_move();
  2471. }
  2472. break;
  2473. #else
  2474. case 31: // dock the sled
  2475. dock_sled(true);
  2476. break;
  2477. case 32: // undock the sled
  2478. dock_sled(false);
  2479. break;
  2480. #endif // Z_PROBE_SLED
  2481. #endif // ENABLE_AUTO_BED_LEVELING
  2482. #ifdef MESH_BED_LEVELING
  2483. case 30: // G30 Single Z Probe
  2484. {
  2485. st_synchronize();
  2486. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2487. setup_for_endstop_move();
  2488. feedrate = homing_feedrate[Z_AXIS];
  2489. find_bed_induction_sensor_point_z(-10.f, 3);
  2490. SERIAL_PROTOCOLRPGM(MSG_BED);
  2491. SERIAL_PROTOCOLPGM(" X: ");
  2492. MYSERIAL.print(current_position[X_AXIS], 5);
  2493. SERIAL_PROTOCOLPGM(" Y: ");
  2494. MYSERIAL.print(current_position[Y_AXIS], 5);
  2495. SERIAL_PROTOCOLPGM(" Z: ");
  2496. MYSERIAL.print(current_position[Z_AXIS], 5);
  2497. SERIAL_PROTOCOLPGM("\n");
  2498. clean_up_after_endstop_move();
  2499. }
  2500. break;
  2501. case 75:
  2502. {
  2503. for (int i = 40; i <= 110; i++) {
  2504. MYSERIAL.print(i);
  2505. MYSERIAL.print(" ");
  2506. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2507. }
  2508. }
  2509. break;
  2510. case 76: //PINDA probe temperature calibration
  2511. {
  2512. setTargetBed(PINDA_MIN_T);
  2513. float zero_z;
  2514. int z_shift = 0; //unit: steps
  2515. int t_c; // temperature
  2516. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2517. // We don't know where we are! HOME!
  2518. // Push the commands to the front of the message queue in the reverse order!
  2519. // There shall be always enough space reserved for these commands.
  2520. repeatcommand_front(); // repeat G76 with all its parameters
  2521. enquecommand_front_P((PSTR("G28 W0")));
  2522. break;
  2523. }
  2524. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2525. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2526. custom_message = true;
  2527. custom_message_type = 4;
  2528. custom_message_state = 1;
  2529. custom_message = MSG_TEMP_CALIBRATION;
  2530. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2531. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2532. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2533. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2534. st_synchronize();
  2535. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2536. delay_keep_alive(1000);
  2537. serialecho_temperatures();
  2538. }
  2539. //enquecommand_P(PSTR("M190 S50"));
  2540. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2541. delay_keep_alive(1000);
  2542. serialecho_temperatures();
  2543. }
  2544. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2545. current_position[Z_AXIS] = 5;
  2546. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2547. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2548. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2549. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2550. st_synchronize();
  2551. find_bed_induction_sensor_point_z(-1.f);
  2552. zero_z = current_position[Z_AXIS];
  2553. //current_position[Z_AXIS]
  2554. SERIAL_ECHOLNPGM("");
  2555. SERIAL_ECHOPGM("ZERO: ");
  2556. MYSERIAL.print(current_position[Z_AXIS]);
  2557. SERIAL_ECHOLNPGM("");
  2558. for (int i = 0; i<5; i++) {
  2559. SERIAL_ECHOPGM("Step: ");
  2560. MYSERIAL.print(i+2);
  2561. SERIAL_ECHOLNPGM("/6");
  2562. custom_message_state = i + 2;
  2563. t_c = 60 + i * 10;
  2564. setTargetBed(t_c);
  2565. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2566. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2567. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2568. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2569. st_synchronize();
  2570. while (degBed() < t_c) {
  2571. delay_keep_alive(1000);
  2572. serialecho_temperatures();
  2573. }
  2574. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2575. delay_keep_alive(1000);
  2576. serialecho_temperatures();
  2577. }
  2578. current_position[Z_AXIS] = 5;
  2579. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2580. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2581. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2582. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2583. st_synchronize();
  2584. find_bed_induction_sensor_point_z(-1.f);
  2585. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2586. SERIAL_ECHOLNPGM("");
  2587. SERIAL_ECHOPGM("Temperature: ");
  2588. MYSERIAL.print(t_c);
  2589. SERIAL_ECHOPGM(" Z shift (mm):");
  2590. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2591. SERIAL_ECHOLNPGM("");
  2592. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2593. }
  2594. custom_message_type = 0;
  2595. custom_message = false;
  2596. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2597. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2598. disable_x();
  2599. disable_y();
  2600. disable_z();
  2601. disable_e0();
  2602. disable_e1();
  2603. disable_e2();
  2604. setTargetBed(0); //set bed target temperature back to 0
  2605. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2606. lcd_update_enable(true);
  2607. lcd_update(2);
  2608. }
  2609. break;
  2610. #ifdef DIS
  2611. case 77:
  2612. {
  2613. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2614. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2615. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2616. float dimension_x = 40;
  2617. float dimension_y = 40;
  2618. int points_x = 40;
  2619. int points_y = 40;
  2620. float offset_x = 74;
  2621. float offset_y = 33;
  2622. if (code_seen('X')) dimension_x = code_value();
  2623. if (code_seen('Y')) dimension_y = code_value();
  2624. if (code_seen('XP')) points_x = code_value();
  2625. if (code_seen('YP')) points_y = code_value();
  2626. if (code_seen('XO')) offset_x = code_value();
  2627. if (code_seen('YO')) offset_y = code_value();
  2628. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2629. } break;
  2630. #endif
  2631. /**
  2632. * G80: Mesh-based Z probe, probes a grid and produces a
  2633. * mesh to compensate for variable bed height
  2634. *
  2635. * The S0 report the points as below
  2636. *
  2637. * +----> X-axis
  2638. * |
  2639. * |
  2640. * v Y-axis
  2641. *
  2642. */
  2643. case 80:
  2644. #ifdef MK1BP
  2645. break;
  2646. #endif //MK1BP
  2647. case_G80:
  2648. {
  2649. mesh_bed_leveling_flag = true;
  2650. int8_t verbosity_level = 0;
  2651. static bool run = false;
  2652. if (code_seen('V')) {
  2653. // Just 'V' without a number counts as V1.
  2654. char c = strchr_pointer[1];
  2655. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2656. }
  2657. // Firstly check if we know where we are
  2658. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2659. // We don't know where we are! HOME!
  2660. // Push the commands to the front of the message queue in the reverse order!
  2661. // There shall be always enough space reserved for these commands.
  2662. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2663. repeatcommand_front(); // repeat G80 with all its parameters
  2664. enquecommand_front_P((PSTR("G28 W0")));
  2665. }
  2666. else {
  2667. mesh_bed_leveling_flag = false;
  2668. }
  2669. break;
  2670. }
  2671. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2672. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2673. temp_compensation_start();
  2674. run = true;
  2675. repeatcommand_front(); // repeat G80 with all its parameters
  2676. enquecommand_front_P((PSTR("G28 W0")));
  2677. }
  2678. else {
  2679. mesh_bed_leveling_flag = false;
  2680. }
  2681. break;
  2682. }
  2683. run = false;
  2684. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2685. mesh_bed_leveling_flag = false;
  2686. break;
  2687. }
  2688. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2689. bool custom_message_old = custom_message;
  2690. unsigned int custom_message_type_old = custom_message_type;
  2691. unsigned int custom_message_state_old = custom_message_state;
  2692. custom_message = true;
  2693. custom_message_type = 1;
  2694. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2695. lcd_update(1);
  2696. mbl.reset(); //reset mesh bed leveling
  2697. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2698. // consumed during the first movements following this statement.
  2699. babystep_undo();
  2700. // Cycle through all points and probe them
  2701. // First move up. During this first movement, the babystepping will be reverted.
  2702. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2703. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2704. // The move to the first calibration point.
  2705. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2706. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2707. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2708. if (verbosity_level >= 1) {
  2709. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2710. }
  2711. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2712. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2713. // Wait until the move is finished.
  2714. st_synchronize();
  2715. int mesh_point = 0; //index number of calibration point
  2716. int ix = 0;
  2717. int iy = 0;
  2718. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2719. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2720. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2721. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2722. if (verbosity_level >= 1) {
  2723. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2724. }
  2725. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2726. const char *kill_message = NULL;
  2727. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2728. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2729. // Get coords of a measuring point.
  2730. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2731. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2732. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2733. float z0 = 0.f;
  2734. if (has_z && mesh_point > 0) {
  2735. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2736. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2737. //#if 0
  2738. if (verbosity_level >= 1) {
  2739. SERIAL_ECHOPGM("Bed leveling, point: ");
  2740. MYSERIAL.print(mesh_point);
  2741. SERIAL_ECHOPGM(", calibration z: ");
  2742. MYSERIAL.print(z0, 5);
  2743. SERIAL_ECHOLNPGM("");
  2744. }
  2745. //#endif
  2746. }
  2747. // Move Z up to MESH_HOME_Z_SEARCH.
  2748. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2749. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2750. st_synchronize();
  2751. // Move to XY position of the sensor point.
  2752. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2753. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2754. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2755. if (verbosity_level >= 1) {
  2756. SERIAL_PROTOCOL(mesh_point);
  2757. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2758. }
  2759. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2760. st_synchronize();
  2761. // Go down until endstop is hit
  2762. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2763. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2764. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2765. break;
  2766. }
  2767. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2768. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2769. break;
  2770. }
  2771. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2772. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2773. break;
  2774. }
  2775. if (verbosity_level >= 10) {
  2776. SERIAL_ECHOPGM("X: ");
  2777. MYSERIAL.print(current_position[X_AXIS], 5);
  2778. SERIAL_ECHOLNPGM("");
  2779. SERIAL_ECHOPGM("Y: ");
  2780. MYSERIAL.print(current_position[Y_AXIS], 5);
  2781. SERIAL_PROTOCOLPGM("\n");
  2782. }
  2783. if (verbosity_level >= 1) {
  2784. SERIAL_ECHOPGM("mesh bed leveling: ");
  2785. MYSERIAL.print(current_position[Z_AXIS], 5);
  2786. SERIAL_ECHOLNPGM("");
  2787. }
  2788. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2789. custom_message_state--;
  2790. mesh_point++;
  2791. lcd_update(1);
  2792. }
  2793. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2794. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2795. if (verbosity_level >= 20) {
  2796. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2797. MYSERIAL.print(current_position[Z_AXIS], 5);
  2798. }
  2799. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2800. st_synchronize();
  2801. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2802. kill(kill_message);
  2803. SERIAL_ECHOLNPGM("killed");
  2804. }
  2805. clean_up_after_endstop_move();
  2806. SERIAL_ECHOLNPGM("clean up finished ");
  2807. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2808. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2809. SERIAL_ECHOLNPGM("babystep applied");
  2810. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2811. if (verbosity_level >= 1) {
  2812. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2813. }
  2814. for (uint8_t i = 0; i < 4; ++i) {
  2815. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2816. long correction = 0;
  2817. if (code_seen(codes[i]))
  2818. correction = code_value_long();
  2819. else if (eeprom_bed_correction_valid) {
  2820. unsigned char *addr = (i < 2) ?
  2821. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2822. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2823. correction = eeprom_read_int8(addr);
  2824. }
  2825. if (correction == 0)
  2826. continue;
  2827. float offset = float(correction) * 0.001f;
  2828. if (fabs(offset) > 0.101f) {
  2829. SERIAL_ERROR_START;
  2830. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2831. SERIAL_ECHO(offset);
  2832. SERIAL_ECHOLNPGM(" microns");
  2833. }
  2834. else {
  2835. switch (i) {
  2836. case 0:
  2837. for (uint8_t row = 0; row < 3; ++row) {
  2838. mbl.z_values[row][1] += 0.5f * offset;
  2839. mbl.z_values[row][0] += offset;
  2840. }
  2841. break;
  2842. case 1:
  2843. for (uint8_t row = 0; row < 3; ++row) {
  2844. mbl.z_values[row][1] += 0.5f * offset;
  2845. mbl.z_values[row][2] += offset;
  2846. }
  2847. break;
  2848. case 2:
  2849. for (uint8_t col = 0; col < 3; ++col) {
  2850. mbl.z_values[1][col] += 0.5f * offset;
  2851. mbl.z_values[0][col] += offset;
  2852. }
  2853. break;
  2854. case 3:
  2855. for (uint8_t col = 0; col < 3; ++col) {
  2856. mbl.z_values[1][col] += 0.5f * offset;
  2857. mbl.z_values[2][col] += offset;
  2858. }
  2859. break;
  2860. }
  2861. }
  2862. }
  2863. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2864. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2865. SERIAL_ECHOLNPGM("Upsample finished");
  2866. mbl.active = 1; //activate mesh bed leveling
  2867. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2868. go_home_with_z_lift();
  2869. SERIAL_ECHOLNPGM("Go home finished");
  2870. //unretract (after PINDA preheat retraction)
  2871. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2872. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2873. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2874. }
  2875. KEEPALIVE_STATE(NOT_BUSY);
  2876. // Restore custom message state
  2877. custom_message = custom_message_old;
  2878. custom_message_type = custom_message_type_old;
  2879. custom_message_state = custom_message_state_old;
  2880. mesh_bed_leveling_flag = false;
  2881. mesh_bed_run_from_menu = false;
  2882. lcd_update(2);
  2883. }
  2884. break;
  2885. /**
  2886. * G81: Print mesh bed leveling status and bed profile if activated
  2887. */
  2888. case 81:
  2889. if (mbl.active) {
  2890. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2891. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2892. SERIAL_PROTOCOLPGM(",");
  2893. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2894. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2895. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2896. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2897. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2898. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2899. SERIAL_PROTOCOLPGM(" ");
  2900. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2901. }
  2902. SERIAL_PROTOCOLPGM("\n");
  2903. }
  2904. }
  2905. else
  2906. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2907. break;
  2908. #if 0
  2909. /**
  2910. * G82: Single Z probe at current location
  2911. *
  2912. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2913. *
  2914. */
  2915. case 82:
  2916. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2917. setup_for_endstop_move();
  2918. find_bed_induction_sensor_point_z();
  2919. clean_up_after_endstop_move();
  2920. SERIAL_PROTOCOLPGM("Bed found at: ");
  2921. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2922. SERIAL_PROTOCOLPGM("\n");
  2923. break;
  2924. /**
  2925. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2926. */
  2927. case 83:
  2928. {
  2929. int babystepz = code_seen('S') ? code_value() : 0;
  2930. int BabyPosition = code_seen('P') ? code_value() : 0;
  2931. if (babystepz != 0) {
  2932. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2933. // Is the axis indexed starting with zero or one?
  2934. if (BabyPosition > 4) {
  2935. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2936. }else{
  2937. // Save it to the eeprom
  2938. babystepLoadZ = babystepz;
  2939. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2940. // adjust the Z
  2941. babystepsTodoZadd(babystepLoadZ);
  2942. }
  2943. }
  2944. }
  2945. break;
  2946. /**
  2947. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2948. */
  2949. case 84:
  2950. babystepsTodoZsubtract(babystepLoadZ);
  2951. // babystepLoadZ = 0;
  2952. break;
  2953. /**
  2954. * G85: Prusa3D specific: Pick best babystep
  2955. */
  2956. case 85:
  2957. lcd_pick_babystep();
  2958. break;
  2959. #endif
  2960. /**
  2961. * G86: Prusa3D specific: Disable babystep correction after home.
  2962. * This G-code will be performed at the start of a calibration script.
  2963. */
  2964. case 86:
  2965. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2966. break;
  2967. /**
  2968. * G87: Prusa3D specific: Enable babystep correction after home
  2969. * This G-code will be performed at the end of a calibration script.
  2970. */
  2971. case 87:
  2972. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2973. break;
  2974. /**
  2975. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2976. */
  2977. case 88:
  2978. break;
  2979. #endif // ENABLE_MESH_BED_LEVELING
  2980. case 90: // G90
  2981. relative_mode = false;
  2982. break;
  2983. case 91: // G91
  2984. relative_mode = true;
  2985. break;
  2986. case 92: // G92
  2987. if(!code_seen(axis_codes[E_AXIS]))
  2988. st_synchronize();
  2989. for(int8_t i=0; i < NUM_AXIS; i++) {
  2990. if(code_seen(axis_codes[i])) {
  2991. if(i == E_AXIS) {
  2992. current_position[i] = code_value();
  2993. plan_set_e_position(current_position[E_AXIS]);
  2994. }
  2995. else {
  2996. current_position[i] = code_value()+add_homing[i];
  2997. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2998. }
  2999. }
  3000. }
  3001. break;
  3002. case 98: //activate farm mode
  3003. farm_mode = 1;
  3004. PingTime = millis();
  3005. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3006. break;
  3007. case 99: //deactivate farm mode
  3008. farm_mode = 0;
  3009. lcd_printer_connected();
  3010. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3011. lcd_update(2);
  3012. break;
  3013. }
  3014. } // end if(code_seen('G'))
  3015. else if(code_seen('M'))
  3016. {
  3017. int index;
  3018. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3019. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3020. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3021. SERIAL_ECHOLNPGM("Invalid M code");
  3022. } else
  3023. switch((int)code_value())
  3024. {
  3025. #ifdef ULTIPANEL
  3026. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3027. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3028. {
  3029. char *src = strchr_pointer + 2;
  3030. codenum = 0;
  3031. bool hasP = false, hasS = false;
  3032. if (code_seen('P')) {
  3033. codenum = code_value(); // milliseconds to wait
  3034. hasP = codenum > 0;
  3035. }
  3036. if (code_seen('S')) {
  3037. codenum = code_value() * 1000; // seconds to wait
  3038. hasS = codenum > 0;
  3039. }
  3040. starpos = strchr(src, '*');
  3041. if (starpos != NULL) *(starpos) = '\0';
  3042. while (*src == ' ') ++src;
  3043. if (!hasP && !hasS && *src != '\0') {
  3044. lcd_setstatus(src);
  3045. } else {
  3046. LCD_MESSAGERPGM(MSG_USERWAIT);
  3047. }
  3048. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3049. st_synchronize();
  3050. previous_millis_cmd = millis();
  3051. if (codenum > 0){
  3052. codenum += millis(); // keep track of when we started waiting
  3053. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3054. while(millis() < codenum && !lcd_clicked()){
  3055. manage_heater();
  3056. manage_inactivity(true);
  3057. lcd_update();
  3058. }
  3059. KEEPALIVE_STATE(IN_HANDLER);
  3060. lcd_ignore_click(false);
  3061. }else{
  3062. if (!lcd_detected())
  3063. break;
  3064. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3065. while(!lcd_clicked()){
  3066. manage_heater();
  3067. manage_inactivity(true);
  3068. lcd_update();
  3069. }
  3070. KEEPALIVE_STATE(IN_HANDLER);
  3071. }
  3072. if (IS_SD_PRINTING)
  3073. LCD_MESSAGERPGM(MSG_RESUMING);
  3074. else
  3075. LCD_MESSAGERPGM(WELCOME_MSG);
  3076. }
  3077. break;
  3078. #endif
  3079. case 17:
  3080. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3081. enable_x();
  3082. enable_y();
  3083. enable_z();
  3084. enable_e0();
  3085. enable_e1();
  3086. enable_e2();
  3087. break;
  3088. #ifdef SDSUPPORT
  3089. case 20: // M20 - list SD card
  3090. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3091. card.ls();
  3092. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3093. break;
  3094. case 21: // M21 - init SD card
  3095. card.initsd();
  3096. break;
  3097. case 22: //M22 - release SD card
  3098. card.release();
  3099. break;
  3100. case 23: //M23 - Select file
  3101. starpos = (strchr(strchr_pointer + 4,'*'));
  3102. if(starpos!=NULL)
  3103. *(starpos)='\0';
  3104. card.openFile(strchr_pointer + 4,true);
  3105. break;
  3106. case 24: //M24 - Start SD print
  3107. card.startFileprint();
  3108. starttime=millis();
  3109. break;
  3110. case 25: //M25 - Pause SD print
  3111. card.pauseSDPrint();
  3112. break;
  3113. case 26: //M26 - Set SD index
  3114. if(card.cardOK && code_seen('S')) {
  3115. card.setIndex(code_value_long());
  3116. }
  3117. break;
  3118. case 27: //M27 - Get SD status
  3119. card.getStatus();
  3120. break;
  3121. case 28: //M28 - Start SD write
  3122. starpos = (strchr(strchr_pointer + 4,'*'));
  3123. if(starpos != NULL){
  3124. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3125. strchr_pointer = strchr(npos,' ') + 1;
  3126. *(starpos) = '\0';
  3127. }
  3128. card.openFile(strchr_pointer+4,false);
  3129. break;
  3130. case 29: //M29 - Stop SD write
  3131. //processed in write to file routine above
  3132. //card,saving = false;
  3133. break;
  3134. case 30: //M30 <filename> Delete File
  3135. if (card.cardOK){
  3136. card.closefile();
  3137. starpos = (strchr(strchr_pointer + 4,'*'));
  3138. if(starpos != NULL){
  3139. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3140. strchr_pointer = strchr(npos,' ') + 1;
  3141. *(starpos) = '\0';
  3142. }
  3143. card.removeFile(strchr_pointer + 4);
  3144. }
  3145. break;
  3146. case 32: //M32 - Select file and start SD print
  3147. {
  3148. if(card.sdprinting) {
  3149. st_synchronize();
  3150. }
  3151. starpos = (strchr(strchr_pointer + 4,'*'));
  3152. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3153. if(namestartpos==NULL)
  3154. {
  3155. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3156. }
  3157. else
  3158. namestartpos++; //to skip the '!'
  3159. if(starpos!=NULL)
  3160. *(starpos)='\0';
  3161. bool call_procedure=(code_seen('P'));
  3162. if(strchr_pointer>namestartpos)
  3163. call_procedure=false; //false alert, 'P' found within filename
  3164. if( card.cardOK )
  3165. {
  3166. card.openFile(namestartpos,true,!call_procedure);
  3167. if(code_seen('S'))
  3168. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3169. card.setIndex(code_value_long());
  3170. card.startFileprint();
  3171. if(!call_procedure)
  3172. starttime=millis(); //procedure calls count as normal print time.
  3173. }
  3174. } break;
  3175. case 928: //M928 - Start SD write
  3176. starpos = (strchr(strchr_pointer + 5,'*'));
  3177. if(starpos != NULL){
  3178. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3179. strchr_pointer = strchr(npos,' ') + 1;
  3180. *(starpos) = '\0';
  3181. }
  3182. card.openLogFile(strchr_pointer+5);
  3183. break;
  3184. #endif //SDSUPPORT
  3185. case 31: //M31 take time since the start of the SD print or an M109 command
  3186. {
  3187. stoptime=millis();
  3188. char time[30];
  3189. unsigned long t=(stoptime-starttime)/1000;
  3190. int sec,min;
  3191. min=t/60;
  3192. sec=t%60;
  3193. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3194. SERIAL_ECHO_START;
  3195. SERIAL_ECHOLN(time);
  3196. lcd_setstatus(time);
  3197. autotempShutdown();
  3198. }
  3199. break;
  3200. case 42: //M42 -Change pin status via gcode
  3201. if (code_seen('S'))
  3202. {
  3203. int pin_status = code_value();
  3204. int pin_number = LED_PIN;
  3205. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3206. pin_number = code_value();
  3207. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3208. {
  3209. if (sensitive_pins[i] == pin_number)
  3210. {
  3211. pin_number = -1;
  3212. break;
  3213. }
  3214. }
  3215. #if defined(FAN_PIN) && FAN_PIN > -1
  3216. if (pin_number == FAN_PIN)
  3217. fanSpeed = pin_status;
  3218. #endif
  3219. if (pin_number > -1)
  3220. {
  3221. pinMode(pin_number, OUTPUT);
  3222. digitalWrite(pin_number, pin_status);
  3223. analogWrite(pin_number, pin_status);
  3224. }
  3225. }
  3226. break;
  3227. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3228. // Reset the baby step value and the baby step applied flag.
  3229. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3230. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3231. // Reset the skew and offset in both RAM and EEPROM.
  3232. reset_bed_offset_and_skew();
  3233. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3234. // the planner will not perform any adjustments in the XY plane.
  3235. // Wait for the motors to stop and update the current position with the absolute values.
  3236. world2machine_revert_to_uncorrected();
  3237. break;
  3238. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3239. {
  3240. // Only Z calibration?
  3241. bool onlyZ = code_seen('Z');
  3242. if (!onlyZ) {
  3243. setTargetBed(0);
  3244. setTargetHotend(0, 0);
  3245. setTargetHotend(0, 1);
  3246. setTargetHotend(0, 2);
  3247. adjust_bed_reset(); //reset bed level correction
  3248. }
  3249. // Disable the default update procedure of the display. We will do a modal dialog.
  3250. lcd_update_enable(false);
  3251. // Let the planner use the uncorrected coordinates.
  3252. mbl.reset();
  3253. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3254. // the planner will not perform any adjustments in the XY plane.
  3255. // Wait for the motors to stop and update the current position with the absolute values.
  3256. world2machine_revert_to_uncorrected();
  3257. // Reset the baby step value applied without moving the axes.
  3258. babystep_reset();
  3259. // Mark all axes as in a need for homing.
  3260. memset(axis_known_position, 0, sizeof(axis_known_position));
  3261. // Let the user move the Z axes up to the end stoppers.
  3262. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3263. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3264. KEEPALIVE_STATE(IN_HANDLER);
  3265. refresh_cmd_timeout();
  3266. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3267. lcd_wait_for_cool_down();
  3268. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3269. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3270. lcd_implementation_print_at(0, 2, 1);
  3271. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3272. }
  3273. // Move the print head close to the bed.
  3274. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3275. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3276. st_synchronize();
  3277. // Home in the XY plane.
  3278. set_destination_to_current();
  3279. setup_for_endstop_move();
  3280. home_xy();
  3281. int8_t verbosity_level = 0;
  3282. if (code_seen('V')) {
  3283. // Just 'V' without a number counts as V1.
  3284. char c = strchr_pointer[1];
  3285. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3286. }
  3287. if (onlyZ) {
  3288. clean_up_after_endstop_move();
  3289. // Z only calibration.
  3290. // Load the machine correction matrix
  3291. world2machine_initialize();
  3292. // and correct the current_position to match the transformed coordinate system.
  3293. world2machine_update_current();
  3294. //FIXME
  3295. bool result = sample_mesh_and_store_reference();
  3296. if (result) {
  3297. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3298. // Shipped, the nozzle height has been set already. The user can start printing now.
  3299. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3300. // babystep_apply();
  3301. }
  3302. } else {
  3303. // Reset the baby step value and the baby step applied flag.
  3304. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3305. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3306. // Complete XYZ calibration.
  3307. uint8_t point_too_far_mask = 0;
  3308. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3309. clean_up_after_endstop_move();
  3310. // Print head up.
  3311. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3312. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3313. st_synchronize();
  3314. if (result >= 0) {
  3315. point_too_far_mask = 0;
  3316. // Second half: The fine adjustment.
  3317. // Let the planner use the uncorrected coordinates.
  3318. mbl.reset();
  3319. world2machine_reset();
  3320. // Home in the XY plane.
  3321. setup_for_endstop_move();
  3322. home_xy();
  3323. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3324. clean_up_after_endstop_move();
  3325. // Print head up.
  3326. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3327. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3328. st_synchronize();
  3329. // if (result >= 0) babystep_apply();
  3330. }
  3331. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3332. if (result >= 0) {
  3333. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3334. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3335. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3336. }
  3337. }
  3338. } else {
  3339. // Timeouted.
  3340. KEEPALIVE_STATE(IN_HANDLER);
  3341. }
  3342. lcd_update_enable(true);
  3343. break;
  3344. }
  3345. /*
  3346. case 46:
  3347. {
  3348. // M46: Prusa3D: Show the assigned IP address.
  3349. uint8_t ip[4];
  3350. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3351. if (hasIP) {
  3352. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3353. SERIAL_ECHO(int(ip[0]));
  3354. SERIAL_ECHOPGM(".");
  3355. SERIAL_ECHO(int(ip[1]));
  3356. SERIAL_ECHOPGM(".");
  3357. SERIAL_ECHO(int(ip[2]));
  3358. SERIAL_ECHOPGM(".");
  3359. SERIAL_ECHO(int(ip[3]));
  3360. SERIAL_ECHOLNPGM("");
  3361. } else {
  3362. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3363. }
  3364. break;
  3365. }
  3366. */
  3367. case 47:
  3368. // M47: Prusa3D: Show end stops dialog on the display.
  3369. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3370. lcd_diag_show_end_stops();
  3371. KEEPALIVE_STATE(IN_HANDLER);
  3372. break;
  3373. #if 0
  3374. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3375. {
  3376. // Disable the default update procedure of the display. We will do a modal dialog.
  3377. lcd_update_enable(false);
  3378. // Let the planner use the uncorrected coordinates.
  3379. mbl.reset();
  3380. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3381. // the planner will not perform any adjustments in the XY plane.
  3382. // Wait for the motors to stop and update the current position with the absolute values.
  3383. world2machine_revert_to_uncorrected();
  3384. // Move the print head close to the bed.
  3385. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3386. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3387. st_synchronize();
  3388. // Home in the XY plane.
  3389. set_destination_to_current();
  3390. setup_for_endstop_move();
  3391. home_xy();
  3392. int8_t verbosity_level = 0;
  3393. if (code_seen('V')) {
  3394. // Just 'V' without a number counts as V1.
  3395. char c = strchr_pointer[1];
  3396. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3397. }
  3398. bool success = scan_bed_induction_points(verbosity_level);
  3399. clean_up_after_endstop_move();
  3400. // Print head up.
  3401. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3402. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3403. st_synchronize();
  3404. lcd_update_enable(true);
  3405. break;
  3406. }
  3407. #endif
  3408. // M48 Z-Probe repeatability measurement function.
  3409. //
  3410. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3411. //
  3412. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3413. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3414. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3415. // regenerated.
  3416. //
  3417. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3418. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3419. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3420. //
  3421. #ifdef ENABLE_AUTO_BED_LEVELING
  3422. #ifdef Z_PROBE_REPEATABILITY_TEST
  3423. case 48: // M48 Z-Probe repeatability
  3424. {
  3425. #if Z_MIN_PIN == -1
  3426. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3427. #endif
  3428. double sum=0.0;
  3429. double mean=0.0;
  3430. double sigma=0.0;
  3431. double sample_set[50];
  3432. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3433. double X_current, Y_current, Z_current;
  3434. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3435. if (code_seen('V') || code_seen('v')) {
  3436. verbose_level = code_value();
  3437. if (verbose_level<0 || verbose_level>4 ) {
  3438. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3439. goto Sigma_Exit;
  3440. }
  3441. }
  3442. if (verbose_level > 0) {
  3443. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3444. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3445. }
  3446. if (code_seen('n')) {
  3447. n_samples = code_value();
  3448. if (n_samples<4 || n_samples>50 ) {
  3449. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3450. goto Sigma_Exit;
  3451. }
  3452. }
  3453. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3454. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3455. Z_current = st_get_position_mm(Z_AXIS);
  3456. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3457. ext_position = st_get_position_mm(E_AXIS);
  3458. if (code_seen('X') || code_seen('x') ) {
  3459. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3460. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3461. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3462. goto Sigma_Exit;
  3463. }
  3464. }
  3465. if (code_seen('Y') || code_seen('y') ) {
  3466. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3467. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3468. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3469. goto Sigma_Exit;
  3470. }
  3471. }
  3472. if (code_seen('L') || code_seen('l') ) {
  3473. n_legs = code_value();
  3474. if ( n_legs==1 )
  3475. n_legs = 2;
  3476. if ( n_legs<0 || n_legs>15 ) {
  3477. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3478. goto Sigma_Exit;
  3479. }
  3480. }
  3481. //
  3482. // Do all the preliminary setup work. First raise the probe.
  3483. //
  3484. st_synchronize();
  3485. plan_bed_level_matrix.set_to_identity();
  3486. plan_buffer_line( X_current, Y_current, Z_start_location,
  3487. ext_position,
  3488. homing_feedrate[Z_AXIS]/60,
  3489. active_extruder);
  3490. st_synchronize();
  3491. //
  3492. // Now get everything to the specified probe point So we can safely do a probe to
  3493. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3494. // use that as a starting point for each probe.
  3495. //
  3496. if (verbose_level > 2)
  3497. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3498. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3499. ext_position,
  3500. homing_feedrate[X_AXIS]/60,
  3501. active_extruder);
  3502. st_synchronize();
  3503. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3504. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3505. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3506. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3507. //
  3508. // OK, do the inital probe to get us close to the bed.
  3509. // Then retrace the right amount and use that in subsequent probes
  3510. //
  3511. setup_for_endstop_move();
  3512. run_z_probe();
  3513. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3514. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3515. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3516. ext_position,
  3517. homing_feedrate[X_AXIS]/60,
  3518. active_extruder);
  3519. st_synchronize();
  3520. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3521. for( n=0; n<n_samples; n++) {
  3522. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3523. if ( n_legs) {
  3524. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3525. int rotational_direction, l;
  3526. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3527. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3528. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3529. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3530. //SERIAL_ECHOPAIR(" theta: ",theta);
  3531. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3532. //SERIAL_PROTOCOLLNPGM("");
  3533. for( l=0; l<n_legs-1; l++) {
  3534. if (rotational_direction==1)
  3535. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3536. else
  3537. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3538. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3539. if ( radius<0.0 )
  3540. radius = -radius;
  3541. X_current = X_probe_location + cos(theta) * radius;
  3542. Y_current = Y_probe_location + sin(theta) * radius;
  3543. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3544. X_current = X_MIN_POS;
  3545. if ( X_current>X_MAX_POS)
  3546. X_current = X_MAX_POS;
  3547. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3548. Y_current = Y_MIN_POS;
  3549. if ( Y_current>Y_MAX_POS)
  3550. Y_current = Y_MAX_POS;
  3551. if (verbose_level>3 ) {
  3552. SERIAL_ECHOPAIR("x: ", X_current);
  3553. SERIAL_ECHOPAIR("y: ", Y_current);
  3554. SERIAL_PROTOCOLLNPGM("");
  3555. }
  3556. do_blocking_move_to( X_current, Y_current, Z_current );
  3557. }
  3558. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3559. }
  3560. setup_for_endstop_move();
  3561. run_z_probe();
  3562. sample_set[n] = current_position[Z_AXIS];
  3563. //
  3564. // Get the current mean for the data points we have so far
  3565. //
  3566. sum=0.0;
  3567. for( j=0; j<=n; j++) {
  3568. sum = sum + sample_set[j];
  3569. }
  3570. mean = sum / (double (n+1));
  3571. //
  3572. // Now, use that mean to calculate the standard deviation for the
  3573. // data points we have so far
  3574. //
  3575. sum=0.0;
  3576. for( j=0; j<=n; j++) {
  3577. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3578. }
  3579. sigma = sqrt( sum / (double (n+1)) );
  3580. if (verbose_level > 1) {
  3581. SERIAL_PROTOCOL(n+1);
  3582. SERIAL_PROTOCOL(" of ");
  3583. SERIAL_PROTOCOL(n_samples);
  3584. SERIAL_PROTOCOLPGM(" z: ");
  3585. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3586. }
  3587. if (verbose_level > 2) {
  3588. SERIAL_PROTOCOL(" mean: ");
  3589. SERIAL_PROTOCOL_F(mean,6);
  3590. SERIAL_PROTOCOL(" sigma: ");
  3591. SERIAL_PROTOCOL_F(sigma,6);
  3592. }
  3593. if (verbose_level > 0)
  3594. SERIAL_PROTOCOLPGM("\n");
  3595. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3596. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3597. st_synchronize();
  3598. }
  3599. delay(1000);
  3600. clean_up_after_endstop_move();
  3601. // enable_endstops(true);
  3602. if (verbose_level > 0) {
  3603. SERIAL_PROTOCOLPGM("Mean: ");
  3604. SERIAL_PROTOCOL_F(mean, 6);
  3605. SERIAL_PROTOCOLPGM("\n");
  3606. }
  3607. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3608. SERIAL_PROTOCOL_F(sigma, 6);
  3609. SERIAL_PROTOCOLPGM("\n\n");
  3610. Sigma_Exit:
  3611. break;
  3612. }
  3613. #endif // Z_PROBE_REPEATABILITY_TEST
  3614. #endif // ENABLE_AUTO_BED_LEVELING
  3615. case 104: // M104
  3616. if(setTargetedHotend(104)){
  3617. break;
  3618. }
  3619. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3620. setWatch();
  3621. break;
  3622. case 112: // M112 -Emergency Stop
  3623. kill();
  3624. break;
  3625. case 140: // M140 set bed temp
  3626. if (code_seen('S')) setTargetBed(code_value());
  3627. break;
  3628. case 105 : // M105
  3629. if(setTargetedHotend(105)){
  3630. break;
  3631. }
  3632. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3633. SERIAL_PROTOCOLPGM("ok T:");
  3634. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3635. SERIAL_PROTOCOLPGM(" /");
  3636. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3637. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3638. SERIAL_PROTOCOLPGM(" B:");
  3639. SERIAL_PROTOCOL_F(degBed(),1);
  3640. SERIAL_PROTOCOLPGM(" /");
  3641. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3642. #endif //TEMP_BED_PIN
  3643. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3644. SERIAL_PROTOCOLPGM(" T");
  3645. SERIAL_PROTOCOL(cur_extruder);
  3646. SERIAL_PROTOCOLPGM(":");
  3647. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3648. SERIAL_PROTOCOLPGM(" /");
  3649. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3650. }
  3651. #else
  3652. SERIAL_ERROR_START;
  3653. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3654. #endif
  3655. SERIAL_PROTOCOLPGM(" @:");
  3656. #ifdef EXTRUDER_WATTS
  3657. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3658. SERIAL_PROTOCOLPGM("W");
  3659. #else
  3660. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3661. #endif
  3662. SERIAL_PROTOCOLPGM(" B@:");
  3663. #ifdef BED_WATTS
  3664. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3665. SERIAL_PROTOCOLPGM("W");
  3666. #else
  3667. SERIAL_PROTOCOL(getHeaterPower(-1));
  3668. #endif
  3669. #ifdef SHOW_TEMP_ADC_VALUES
  3670. {float raw = 0.0;
  3671. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3672. SERIAL_PROTOCOLPGM(" ADC B:");
  3673. SERIAL_PROTOCOL_F(degBed(),1);
  3674. SERIAL_PROTOCOLPGM("C->");
  3675. raw = rawBedTemp();
  3676. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3677. SERIAL_PROTOCOLPGM(" Rb->");
  3678. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3679. SERIAL_PROTOCOLPGM(" Rxb->");
  3680. SERIAL_PROTOCOL_F(raw, 5);
  3681. #endif
  3682. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3683. SERIAL_PROTOCOLPGM(" T");
  3684. SERIAL_PROTOCOL(cur_extruder);
  3685. SERIAL_PROTOCOLPGM(":");
  3686. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3687. SERIAL_PROTOCOLPGM("C->");
  3688. raw = rawHotendTemp(cur_extruder);
  3689. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3690. SERIAL_PROTOCOLPGM(" Rt");
  3691. SERIAL_PROTOCOL(cur_extruder);
  3692. SERIAL_PROTOCOLPGM("->");
  3693. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3694. SERIAL_PROTOCOLPGM(" Rx");
  3695. SERIAL_PROTOCOL(cur_extruder);
  3696. SERIAL_PROTOCOLPGM("->");
  3697. SERIAL_PROTOCOL_F(raw, 5);
  3698. }}
  3699. #endif
  3700. SERIAL_PROTOCOLLN("");
  3701. KEEPALIVE_STATE(NOT_BUSY);
  3702. return;
  3703. break;
  3704. case 109:
  3705. {// M109 - Wait for extruder heater to reach target.
  3706. if(setTargetedHotend(109)){
  3707. break;
  3708. }
  3709. LCD_MESSAGERPGM(MSG_HEATING);
  3710. heating_status = 1;
  3711. if (farm_mode) { prusa_statistics(1); };
  3712. #ifdef AUTOTEMP
  3713. autotemp_enabled=false;
  3714. #endif
  3715. if (code_seen('S')) {
  3716. setTargetHotend(code_value(), tmp_extruder);
  3717. CooldownNoWait = true;
  3718. } else if (code_seen('R')) {
  3719. setTargetHotend(code_value(), tmp_extruder);
  3720. CooldownNoWait = false;
  3721. }
  3722. #ifdef AUTOTEMP
  3723. if (code_seen('S')) autotemp_min=code_value();
  3724. if (code_seen('B')) autotemp_max=code_value();
  3725. if (code_seen('F'))
  3726. {
  3727. autotemp_factor=code_value();
  3728. autotemp_enabled=true;
  3729. }
  3730. #endif
  3731. setWatch();
  3732. codenum = millis();
  3733. /* See if we are heating up or cooling down */
  3734. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3735. KEEPALIVE_STATE(NOT_BUSY);
  3736. cancel_heatup = false;
  3737. wait_for_heater(codenum); //loops until target temperature is reached
  3738. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3739. KEEPALIVE_STATE(IN_HANDLER);
  3740. heating_status = 2;
  3741. if (farm_mode) { prusa_statistics(2); };
  3742. //starttime=millis();
  3743. previous_millis_cmd = millis();
  3744. }
  3745. break;
  3746. case 190: // M190 - Wait for bed heater to reach target.
  3747. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3748. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3749. heating_status = 3;
  3750. if (farm_mode) { prusa_statistics(1); };
  3751. if (code_seen('S'))
  3752. {
  3753. setTargetBed(code_value());
  3754. CooldownNoWait = true;
  3755. }
  3756. else if (code_seen('R'))
  3757. {
  3758. setTargetBed(code_value());
  3759. CooldownNoWait = false;
  3760. }
  3761. codenum = millis();
  3762. cancel_heatup = false;
  3763. target_direction = isHeatingBed(); // true if heating, false if cooling
  3764. KEEPALIVE_STATE(NOT_BUSY);
  3765. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3766. {
  3767. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3768. {
  3769. if (!farm_mode) {
  3770. float tt = degHotend(active_extruder);
  3771. SERIAL_PROTOCOLPGM("T:");
  3772. SERIAL_PROTOCOL(tt);
  3773. SERIAL_PROTOCOLPGM(" E:");
  3774. SERIAL_PROTOCOL((int)active_extruder);
  3775. SERIAL_PROTOCOLPGM(" B:");
  3776. SERIAL_PROTOCOL_F(degBed(), 1);
  3777. SERIAL_PROTOCOLLN("");
  3778. }
  3779. codenum = millis();
  3780. }
  3781. manage_heater();
  3782. manage_inactivity();
  3783. lcd_update();
  3784. }
  3785. LCD_MESSAGERPGM(MSG_BED_DONE);
  3786. KEEPALIVE_STATE(IN_HANDLER);
  3787. heating_status = 4;
  3788. previous_millis_cmd = millis();
  3789. #endif
  3790. break;
  3791. #if defined(FAN_PIN) && FAN_PIN > -1
  3792. case 106: //M106 Fan On
  3793. if (code_seen('S')){
  3794. fanSpeed=constrain(code_value(),0,255);
  3795. }
  3796. else {
  3797. fanSpeed=255;
  3798. }
  3799. break;
  3800. case 107: //M107 Fan Off
  3801. fanSpeed = 0;
  3802. break;
  3803. #endif //FAN_PIN
  3804. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3805. case 80: // M80 - Turn on Power Supply
  3806. SET_OUTPUT(PS_ON_PIN); //GND
  3807. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3808. // If you have a switch on suicide pin, this is useful
  3809. // if you want to start another print with suicide feature after
  3810. // a print without suicide...
  3811. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3812. SET_OUTPUT(SUICIDE_PIN);
  3813. WRITE(SUICIDE_PIN, HIGH);
  3814. #endif
  3815. #ifdef ULTIPANEL
  3816. powersupply = true;
  3817. LCD_MESSAGERPGM(WELCOME_MSG);
  3818. lcd_update();
  3819. #endif
  3820. break;
  3821. #endif
  3822. case 81: // M81 - Turn off Power Supply
  3823. disable_heater();
  3824. st_synchronize();
  3825. disable_e0();
  3826. disable_e1();
  3827. disable_e2();
  3828. finishAndDisableSteppers();
  3829. fanSpeed = 0;
  3830. delay(1000); // Wait a little before to switch off
  3831. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3832. st_synchronize();
  3833. suicide();
  3834. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3835. SET_OUTPUT(PS_ON_PIN);
  3836. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3837. #endif
  3838. #ifdef ULTIPANEL
  3839. powersupply = false;
  3840. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3841. /*
  3842. MACHNAME = "Prusa i3"
  3843. MSGOFF = "Vypnuto"
  3844. "Prusai3"" ""vypnuto""."
  3845. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3846. */
  3847. lcd_update();
  3848. #endif
  3849. break;
  3850. case 82:
  3851. axis_relative_modes[3] = false;
  3852. break;
  3853. case 83:
  3854. axis_relative_modes[3] = true;
  3855. break;
  3856. case 18: //compatibility
  3857. case 84: // M84
  3858. if(code_seen('S')){
  3859. stepper_inactive_time = code_value() * 1000;
  3860. }
  3861. else
  3862. {
  3863. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3864. if(all_axis)
  3865. {
  3866. st_synchronize();
  3867. disable_e0();
  3868. disable_e1();
  3869. disable_e2();
  3870. finishAndDisableSteppers();
  3871. }
  3872. else
  3873. {
  3874. st_synchronize();
  3875. if (code_seen('X')) disable_x();
  3876. if (code_seen('Y')) disable_y();
  3877. if (code_seen('Z')) disable_z();
  3878. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3879. if (code_seen('E')) {
  3880. disable_e0();
  3881. disable_e1();
  3882. disable_e2();
  3883. }
  3884. #endif
  3885. }
  3886. }
  3887. snmm_filaments_used = 0;
  3888. break;
  3889. case 85: // M85
  3890. if(code_seen('S')) {
  3891. max_inactive_time = code_value() * 1000;
  3892. }
  3893. break;
  3894. case 92: // M92
  3895. for(int8_t i=0; i < NUM_AXIS; i++)
  3896. {
  3897. if(code_seen(axis_codes[i]))
  3898. {
  3899. if(i == 3) { // E
  3900. float value = code_value();
  3901. if(value < 20.0) {
  3902. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3903. max_jerk[E_AXIS] *= factor;
  3904. max_feedrate[i] *= factor;
  3905. axis_steps_per_sqr_second[i] *= factor;
  3906. }
  3907. axis_steps_per_unit[i] = value;
  3908. }
  3909. else {
  3910. axis_steps_per_unit[i] = code_value();
  3911. }
  3912. }
  3913. }
  3914. break;
  3915. case 110: // M110 - reset line pos
  3916. if (code_seen('N'))
  3917. gcode_LastN = code_value_long();
  3918. else
  3919. gcode_LastN = 0;
  3920. break;
  3921. #ifdef HOST_KEEPALIVE_FEATURE
  3922. case 113: // M113 - Get or set Host Keepalive interval
  3923. if (code_seen('S')) {
  3924. host_keepalive_interval = (uint8_t)code_value_short();
  3925. NOMORE(host_keepalive_interval, 60);
  3926. } else {
  3927. SERIAL_ECHO_START;
  3928. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  3929. SERIAL_PROTOCOLLN("");
  3930. }
  3931. break;
  3932. #endif
  3933. case 115: // M115
  3934. if (code_seen('V')) {
  3935. // Report the Prusa version number.
  3936. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3937. } else if (code_seen('U')) {
  3938. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3939. // pause the print and ask the user to upgrade the firmware.
  3940. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3941. } else {
  3942. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3943. }
  3944. break;
  3945. /* case 117: // M117 display message
  3946. starpos = (strchr(strchr_pointer + 5,'*'));
  3947. if(starpos!=NULL)
  3948. *(starpos)='\0';
  3949. lcd_setstatus(strchr_pointer + 5);
  3950. break;*/
  3951. case 114: // M114
  3952. SERIAL_PROTOCOLPGM("X:");
  3953. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3954. SERIAL_PROTOCOLPGM(" Y:");
  3955. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3956. SERIAL_PROTOCOLPGM(" Z:");
  3957. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3958. SERIAL_PROTOCOLPGM(" E:");
  3959. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3960. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3961. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3962. SERIAL_PROTOCOLPGM(" Y:");
  3963. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3964. SERIAL_PROTOCOLPGM(" Z:");
  3965. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3966. SERIAL_PROTOCOLLN("");
  3967. break;
  3968. case 120: // M120
  3969. enable_endstops(false) ;
  3970. break;
  3971. case 121: // M121
  3972. enable_endstops(true) ;
  3973. break;
  3974. case 119: // M119
  3975. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3976. SERIAL_PROTOCOLLN("");
  3977. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3978. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3979. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3980. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3981. }else{
  3982. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3983. }
  3984. SERIAL_PROTOCOLLN("");
  3985. #endif
  3986. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3987. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3988. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3989. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3990. }else{
  3991. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3992. }
  3993. SERIAL_PROTOCOLLN("");
  3994. #endif
  3995. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3996. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3997. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3998. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3999. }else{
  4000. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4001. }
  4002. SERIAL_PROTOCOLLN("");
  4003. #endif
  4004. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4005. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4006. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4007. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4008. }else{
  4009. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4010. }
  4011. SERIAL_PROTOCOLLN("");
  4012. #endif
  4013. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4014. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4015. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4016. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4017. }else{
  4018. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4019. }
  4020. SERIAL_PROTOCOLLN("");
  4021. #endif
  4022. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4023. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4024. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4025. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4026. }else{
  4027. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4028. }
  4029. SERIAL_PROTOCOLLN("");
  4030. #endif
  4031. break;
  4032. //TODO: update for all axis, use for loop
  4033. #ifdef BLINKM
  4034. case 150: // M150
  4035. {
  4036. byte red;
  4037. byte grn;
  4038. byte blu;
  4039. if(code_seen('R')) red = code_value();
  4040. if(code_seen('U')) grn = code_value();
  4041. if(code_seen('B')) blu = code_value();
  4042. SendColors(red,grn,blu);
  4043. }
  4044. break;
  4045. #endif //BLINKM
  4046. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4047. {
  4048. tmp_extruder = active_extruder;
  4049. if(code_seen('T')) {
  4050. tmp_extruder = code_value();
  4051. if(tmp_extruder >= EXTRUDERS) {
  4052. SERIAL_ECHO_START;
  4053. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4054. break;
  4055. }
  4056. }
  4057. float area = .0;
  4058. if(code_seen('D')) {
  4059. float diameter = (float)code_value();
  4060. if (diameter == 0.0) {
  4061. // setting any extruder filament size disables volumetric on the assumption that
  4062. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4063. // for all extruders
  4064. volumetric_enabled = false;
  4065. } else {
  4066. filament_size[tmp_extruder] = (float)code_value();
  4067. // make sure all extruders have some sane value for the filament size
  4068. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4069. #if EXTRUDERS > 1
  4070. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4071. #if EXTRUDERS > 2
  4072. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4073. #endif
  4074. #endif
  4075. volumetric_enabled = true;
  4076. }
  4077. } else {
  4078. //reserved for setting filament diameter via UFID or filament measuring device
  4079. break;
  4080. }
  4081. calculate_volumetric_multipliers();
  4082. }
  4083. break;
  4084. case 201: // M201
  4085. for(int8_t i=0; i < NUM_AXIS; i++)
  4086. {
  4087. if(code_seen(axis_codes[i]))
  4088. {
  4089. max_acceleration_units_per_sq_second[i] = code_value();
  4090. }
  4091. }
  4092. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4093. reset_acceleration_rates();
  4094. break;
  4095. #if 0 // Not used for Sprinter/grbl gen6
  4096. case 202: // M202
  4097. for(int8_t i=0; i < NUM_AXIS; i++) {
  4098. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4099. }
  4100. break;
  4101. #endif
  4102. case 203: // M203 max feedrate mm/sec
  4103. for(int8_t i=0; i < NUM_AXIS; i++) {
  4104. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4105. }
  4106. break;
  4107. case 204: // M204 acclereration S normal moves T filmanent only moves
  4108. {
  4109. if(code_seen('S')) acceleration = code_value() ;
  4110. if(code_seen('T')) retract_acceleration = code_value() ;
  4111. }
  4112. break;
  4113. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4114. {
  4115. if(code_seen('S')) minimumfeedrate = code_value();
  4116. if(code_seen('T')) mintravelfeedrate = code_value();
  4117. if(code_seen('B')) minsegmenttime = code_value() ;
  4118. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4119. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4120. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4121. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4122. }
  4123. break;
  4124. case 206: // M206 additional homing offset
  4125. for(int8_t i=0; i < 3; i++)
  4126. {
  4127. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4128. }
  4129. break;
  4130. #ifdef FWRETRACT
  4131. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4132. {
  4133. if(code_seen('S'))
  4134. {
  4135. retract_length = code_value() ;
  4136. }
  4137. if(code_seen('F'))
  4138. {
  4139. retract_feedrate = code_value()/60 ;
  4140. }
  4141. if(code_seen('Z'))
  4142. {
  4143. retract_zlift = code_value() ;
  4144. }
  4145. }break;
  4146. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4147. {
  4148. if(code_seen('S'))
  4149. {
  4150. retract_recover_length = code_value() ;
  4151. }
  4152. if(code_seen('F'))
  4153. {
  4154. retract_recover_feedrate = code_value()/60 ;
  4155. }
  4156. }break;
  4157. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4158. {
  4159. if(code_seen('S'))
  4160. {
  4161. int t= code_value() ;
  4162. switch(t)
  4163. {
  4164. case 0:
  4165. {
  4166. autoretract_enabled=false;
  4167. retracted[0]=false;
  4168. #if EXTRUDERS > 1
  4169. retracted[1]=false;
  4170. #endif
  4171. #if EXTRUDERS > 2
  4172. retracted[2]=false;
  4173. #endif
  4174. }break;
  4175. case 1:
  4176. {
  4177. autoretract_enabled=true;
  4178. retracted[0]=false;
  4179. #if EXTRUDERS > 1
  4180. retracted[1]=false;
  4181. #endif
  4182. #if EXTRUDERS > 2
  4183. retracted[2]=false;
  4184. #endif
  4185. }break;
  4186. default:
  4187. SERIAL_ECHO_START;
  4188. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4189. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4190. SERIAL_ECHOLNPGM("\"");
  4191. }
  4192. }
  4193. }break;
  4194. #endif // FWRETRACT
  4195. #if EXTRUDERS > 1
  4196. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4197. {
  4198. if(setTargetedHotend(218)){
  4199. break;
  4200. }
  4201. if(code_seen('X'))
  4202. {
  4203. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4204. }
  4205. if(code_seen('Y'))
  4206. {
  4207. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4208. }
  4209. SERIAL_ECHO_START;
  4210. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4211. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4212. {
  4213. SERIAL_ECHO(" ");
  4214. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4215. SERIAL_ECHO(",");
  4216. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4217. }
  4218. SERIAL_ECHOLN("");
  4219. }break;
  4220. #endif
  4221. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4222. {
  4223. if(code_seen('S'))
  4224. {
  4225. feedmultiply = code_value() ;
  4226. }
  4227. }
  4228. break;
  4229. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4230. {
  4231. if(code_seen('S'))
  4232. {
  4233. int tmp_code = code_value();
  4234. if (code_seen('T'))
  4235. {
  4236. if(setTargetedHotend(221)){
  4237. break;
  4238. }
  4239. extruder_multiply[tmp_extruder] = tmp_code;
  4240. }
  4241. else
  4242. {
  4243. extrudemultiply = tmp_code ;
  4244. }
  4245. }
  4246. }
  4247. break;
  4248. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4249. {
  4250. if(code_seen('P')){
  4251. int pin_number = code_value(); // pin number
  4252. int pin_state = -1; // required pin state - default is inverted
  4253. if(code_seen('S')) pin_state = code_value(); // required pin state
  4254. if(pin_state >= -1 && pin_state <= 1){
  4255. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4256. {
  4257. if (sensitive_pins[i] == pin_number)
  4258. {
  4259. pin_number = -1;
  4260. break;
  4261. }
  4262. }
  4263. if (pin_number > -1)
  4264. {
  4265. int target = LOW;
  4266. st_synchronize();
  4267. pinMode(pin_number, INPUT);
  4268. switch(pin_state){
  4269. case 1:
  4270. target = HIGH;
  4271. break;
  4272. case 0:
  4273. target = LOW;
  4274. break;
  4275. case -1:
  4276. target = !digitalRead(pin_number);
  4277. break;
  4278. }
  4279. while(digitalRead(pin_number) != target){
  4280. manage_heater();
  4281. manage_inactivity();
  4282. lcd_update();
  4283. }
  4284. }
  4285. }
  4286. }
  4287. }
  4288. break;
  4289. #if NUM_SERVOS > 0
  4290. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4291. {
  4292. int servo_index = -1;
  4293. int servo_position = 0;
  4294. if (code_seen('P'))
  4295. servo_index = code_value();
  4296. if (code_seen('S')) {
  4297. servo_position = code_value();
  4298. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4299. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4300. servos[servo_index].attach(0);
  4301. #endif
  4302. servos[servo_index].write(servo_position);
  4303. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4304. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4305. servos[servo_index].detach();
  4306. #endif
  4307. }
  4308. else {
  4309. SERIAL_ECHO_START;
  4310. SERIAL_ECHO("Servo ");
  4311. SERIAL_ECHO(servo_index);
  4312. SERIAL_ECHOLN(" out of range");
  4313. }
  4314. }
  4315. else if (servo_index >= 0) {
  4316. SERIAL_PROTOCOL(MSG_OK);
  4317. SERIAL_PROTOCOL(" Servo ");
  4318. SERIAL_PROTOCOL(servo_index);
  4319. SERIAL_PROTOCOL(": ");
  4320. SERIAL_PROTOCOL(servos[servo_index].read());
  4321. SERIAL_PROTOCOLLN("");
  4322. }
  4323. }
  4324. break;
  4325. #endif // NUM_SERVOS > 0
  4326. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4327. case 300: // M300
  4328. {
  4329. int beepS = code_seen('S') ? code_value() : 110;
  4330. int beepP = code_seen('P') ? code_value() : 1000;
  4331. if (beepS > 0)
  4332. {
  4333. #if BEEPER > 0
  4334. tone(BEEPER, beepS);
  4335. delay(beepP);
  4336. noTone(BEEPER);
  4337. #elif defined(ULTRALCD)
  4338. lcd_buzz(beepS, beepP);
  4339. #elif defined(LCD_USE_I2C_BUZZER)
  4340. lcd_buzz(beepP, beepS);
  4341. #endif
  4342. }
  4343. else
  4344. {
  4345. delay(beepP);
  4346. }
  4347. }
  4348. break;
  4349. #endif // M300
  4350. #ifdef PIDTEMP
  4351. case 301: // M301
  4352. {
  4353. if(code_seen('P')) Kp = code_value();
  4354. if(code_seen('I')) Ki = scalePID_i(code_value());
  4355. if(code_seen('D')) Kd = scalePID_d(code_value());
  4356. #ifdef PID_ADD_EXTRUSION_RATE
  4357. if(code_seen('C')) Kc = code_value();
  4358. #endif
  4359. updatePID();
  4360. SERIAL_PROTOCOLRPGM(MSG_OK);
  4361. SERIAL_PROTOCOL(" p:");
  4362. SERIAL_PROTOCOL(Kp);
  4363. SERIAL_PROTOCOL(" i:");
  4364. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4365. SERIAL_PROTOCOL(" d:");
  4366. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4367. #ifdef PID_ADD_EXTRUSION_RATE
  4368. SERIAL_PROTOCOL(" c:");
  4369. //Kc does not have scaling applied above, or in resetting defaults
  4370. SERIAL_PROTOCOL(Kc);
  4371. #endif
  4372. SERIAL_PROTOCOLLN("");
  4373. }
  4374. break;
  4375. #endif //PIDTEMP
  4376. #ifdef PIDTEMPBED
  4377. case 304: // M304
  4378. {
  4379. if(code_seen('P')) bedKp = code_value();
  4380. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4381. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4382. updatePID();
  4383. SERIAL_PROTOCOLRPGM(MSG_OK);
  4384. SERIAL_PROTOCOL(" p:");
  4385. SERIAL_PROTOCOL(bedKp);
  4386. SERIAL_PROTOCOL(" i:");
  4387. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4388. SERIAL_PROTOCOL(" d:");
  4389. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4390. SERIAL_PROTOCOLLN("");
  4391. }
  4392. break;
  4393. #endif //PIDTEMP
  4394. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4395. {
  4396. #ifdef CHDK
  4397. SET_OUTPUT(CHDK);
  4398. WRITE(CHDK, HIGH);
  4399. chdkHigh = millis();
  4400. chdkActive = true;
  4401. #else
  4402. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4403. const uint8_t NUM_PULSES=16;
  4404. const float PULSE_LENGTH=0.01524;
  4405. for(int i=0; i < NUM_PULSES; i++) {
  4406. WRITE(PHOTOGRAPH_PIN, HIGH);
  4407. _delay_ms(PULSE_LENGTH);
  4408. WRITE(PHOTOGRAPH_PIN, LOW);
  4409. _delay_ms(PULSE_LENGTH);
  4410. }
  4411. delay(7.33);
  4412. for(int i=0; i < NUM_PULSES; i++) {
  4413. WRITE(PHOTOGRAPH_PIN, HIGH);
  4414. _delay_ms(PULSE_LENGTH);
  4415. WRITE(PHOTOGRAPH_PIN, LOW);
  4416. _delay_ms(PULSE_LENGTH);
  4417. }
  4418. #endif
  4419. #endif //chdk end if
  4420. }
  4421. break;
  4422. #ifdef DOGLCD
  4423. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4424. {
  4425. if (code_seen('C')) {
  4426. lcd_setcontrast( ((int)code_value())&63 );
  4427. }
  4428. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4429. SERIAL_PROTOCOL(lcd_contrast);
  4430. SERIAL_PROTOCOLLN("");
  4431. }
  4432. break;
  4433. #endif
  4434. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4435. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4436. {
  4437. float temp = .0;
  4438. if (code_seen('S')) temp=code_value();
  4439. set_extrude_min_temp(temp);
  4440. }
  4441. break;
  4442. #endif
  4443. case 303: // M303 PID autotune
  4444. {
  4445. float temp = 150.0;
  4446. int e=0;
  4447. int c=5;
  4448. if (code_seen('E')) e=code_value();
  4449. if (e<0)
  4450. temp=70;
  4451. if (code_seen('S')) temp=code_value();
  4452. if (code_seen('C')) c=code_value();
  4453. PID_autotune(temp, e, c);
  4454. }
  4455. break;
  4456. case 400: // M400 finish all moves
  4457. {
  4458. st_synchronize();
  4459. }
  4460. break;
  4461. #ifdef FILAMENT_SENSOR
  4462. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4463. {
  4464. #if (FILWIDTH_PIN > -1)
  4465. if(code_seen('N')) filament_width_nominal=code_value();
  4466. else{
  4467. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4468. SERIAL_PROTOCOLLN(filament_width_nominal);
  4469. }
  4470. #endif
  4471. }
  4472. break;
  4473. case 405: //M405 Turn on filament sensor for control
  4474. {
  4475. if(code_seen('D')) meas_delay_cm=code_value();
  4476. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4477. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4478. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4479. {
  4480. int temp_ratio = widthFil_to_size_ratio();
  4481. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4482. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4483. }
  4484. delay_index1=0;
  4485. delay_index2=0;
  4486. }
  4487. filament_sensor = true ;
  4488. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4489. //SERIAL_PROTOCOL(filament_width_meas);
  4490. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4491. //SERIAL_PROTOCOL(extrudemultiply);
  4492. }
  4493. break;
  4494. case 406: //M406 Turn off filament sensor for control
  4495. {
  4496. filament_sensor = false ;
  4497. }
  4498. break;
  4499. case 407: //M407 Display measured filament diameter
  4500. {
  4501. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4502. SERIAL_PROTOCOLLN(filament_width_meas);
  4503. }
  4504. break;
  4505. #endif
  4506. case 500: // M500 Store settings in EEPROM
  4507. {
  4508. Config_StoreSettings();
  4509. }
  4510. break;
  4511. case 501: // M501 Read settings from EEPROM
  4512. {
  4513. Config_RetrieveSettings();
  4514. }
  4515. break;
  4516. case 502: // M502 Revert to default settings
  4517. {
  4518. Config_ResetDefault();
  4519. }
  4520. break;
  4521. case 503: // M503 print settings currently in memory
  4522. {
  4523. Config_PrintSettings();
  4524. }
  4525. break;
  4526. case 509: //M509 Force language selection
  4527. {
  4528. lcd_force_language_selection();
  4529. SERIAL_ECHO_START;
  4530. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4531. }
  4532. break;
  4533. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4534. case 540:
  4535. {
  4536. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4537. }
  4538. break;
  4539. #endif
  4540. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4541. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4542. {
  4543. float value;
  4544. if (code_seen('Z'))
  4545. {
  4546. value = code_value();
  4547. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4548. {
  4549. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4550. SERIAL_ECHO_START;
  4551. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4552. SERIAL_PROTOCOLLN("");
  4553. }
  4554. else
  4555. {
  4556. SERIAL_ECHO_START;
  4557. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4558. SERIAL_ECHORPGM(MSG_Z_MIN);
  4559. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4560. SERIAL_ECHORPGM(MSG_Z_MAX);
  4561. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4562. SERIAL_PROTOCOLLN("");
  4563. }
  4564. }
  4565. else
  4566. {
  4567. SERIAL_ECHO_START;
  4568. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4569. SERIAL_ECHO(-zprobe_zoffset);
  4570. SERIAL_PROTOCOLLN("");
  4571. }
  4572. break;
  4573. }
  4574. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4575. #ifdef FILAMENTCHANGEENABLE
  4576. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4577. {
  4578. st_synchronize();
  4579. float target[4];
  4580. float lastpos[4];
  4581. if (farm_mode)
  4582. {
  4583. prusa_statistics(22);
  4584. }
  4585. feedmultiplyBckp=feedmultiply;
  4586. int8_t TooLowZ = 0;
  4587. target[X_AXIS]=current_position[X_AXIS];
  4588. target[Y_AXIS]=current_position[Y_AXIS];
  4589. target[Z_AXIS]=current_position[Z_AXIS];
  4590. target[E_AXIS]=current_position[E_AXIS];
  4591. lastpos[X_AXIS]=current_position[X_AXIS];
  4592. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4593. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4594. lastpos[E_AXIS]=current_position[E_AXIS];
  4595. //Retract extruder
  4596. if(code_seen('E'))
  4597. {
  4598. target[E_AXIS]+= code_value();
  4599. }
  4600. else
  4601. {
  4602. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4603. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4604. #endif
  4605. }
  4606. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4607. //Lift Z
  4608. if(code_seen('Z'))
  4609. {
  4610. target[Z_AXIS]+= code_value();
  4611. }
  4612. else
  4613. {
  4614. #ifdef FILAMENTCHANGE_ZADD
  4615. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4616. if(target[Z_AXIS] < 10){
  4617. target[Z_AXIS]+= 10 ;
  4618. TooLowZ = 1;
  4619. }else{
  4620. TooLowZ = 0;
  4621. }
  4622. #endif
  4623. }
  4624. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4625. //Move XY to side
  4626. if(code_seen('X'))
  4627. {
  4628. target[X_AXIS]+= code_value();
  4629. }
  4630. else
  4631. {
  4632. #ifdef FILAMENTCHANGE_XPOS
  4633. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4634. #endif
  4635. }
  4636. if(code_seen('Y'))
  4637. {
  4638. target[Y_AXIS]= code_value();
  4639. }
  4640. else
  4641. {
  4642. #ifdef FILAMENTCHANGE_YPOS
  4643. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4644. #endif
  4645. }
  4646. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4647. st_synchronize();
  4648. custom_message = true;
  4649. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4650. // Unload filament
  4651. if(code_seen('L'))
  4652. {
  4653. target[E_AXIS]+= code_value();
  4654. }
  4655. else
  4656. {
  4657. #ifdef SNMM
  4658. #else
  4659. #ifdef FILAMENTCHANGE_FINALRETRACT
  4660. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4661. #endif
  4662. #endif // SNMM
  4663. }
  4664. #ifdef SNMM
  4665. target[E_AXIS] += 12;
  4666. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4667. target[E_AXIS] += 6;
  4668. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4669. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4670. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4671. st_synchronize();
  4672. target[E_AXIS] += (FIL_COOLING);
  4673. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4674. target[E_AXIS] += (FIL_COOLING*-1);
  4675. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4676. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4677. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4678. st_synchronize();
  4679. #else
  4680. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4681. #endif // SNMM
  4682. //finish moves
  4683. st_synchronize();
  4684. //disable extruder steppers so filament can be removed
  4685. disable_e0();
  4686. disable_e1();
  4687. disable_e2();
  4688. delay(100);
  4689. //Wait for user to insert filament
  4690. uint8_t cnt=0;
  4691. int counterBeep = 0;
  4692. lcd_wait_interact();
  4693. load_filament_time = millis();
  4694. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4695. while(!lcd_clicked()){
  4696. cnt++;
  4697. manage_heater();
  4698. manage_inactivity(true);
  4699. /*#ifdef SNMM
  4700. target[E_AXIS] += 0.002;
  4701. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4702. #endif // SNMM*/
  4703. if(cnt==0)
  4704. {
  4705. #if BEEPER > 0
  4706. if (counterBeep== 500){
  4707. counterBeep = 0;
  4708. }
  4709. SET_OUTPUT(BEEPER);
  4710. if (counterBeep== 0){
  4711. WRITE(BEEPER,HIGH);
  4712. }
  4713. if (counterBeep== 20){
  4714. WRITE(BEEPER,LOW);
  4715. }
  4716. counterBeep++;
  4717. #else
  4718. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4719. lcd_buzz(1000/6,100);
  4720. #else
  4721. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4722. #endif
  4723. #endif
  4724. }
  4725. }
  4726. KEEPALIVE_STATE(IN_HANDLER);
  4727. WRITE(BEEPER, LOW);
  4728. #ifdef SNMM
  4729. display_loading();
  4730. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4731. do {
  4732. target[E_AXIS] += 0.002;
  4733. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4734. delay_keep_alive(2);
  4735. } while (!lcd_clicked());
  4736. KEEPALIVE_STATE(IN_HANDLER);
  4737. /*if (millis() - load_filament_time > 2) {
  4738. load_filament_time = millis();
  4739. target[E_AXIS] += 0.001;
  4740. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4741. }*/
  4742. #endif
  4743. //Filament inserted
  4744. //Feed the filament to the end of nozzle quickly
  4745. #ifdef SNMM
  4746. st_synchronize();
  4747. target[E_AXIS] += bowden_length[snmm_extruder];
  4748. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4749. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4750. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4751. target[E_AXIS] += 40;
  4752. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4753. target[E_AXIS] += 10;
  4754. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4755. #else
  4756. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4757. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4758. #endif // SNMM
  4759. //Extrude some filament
  4760. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4761. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4762. //Wait for user to check the state
  4763. lcd_change_fil_state = 0;
  4764. lcd_loading_filament();
  4765. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4766. lcd_change_fil_state = 0;
  4767. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4768. lcd_alright();
  4769. KEEPALIVE_STATE(IN_HANDLER);
  4770. switch(lcd_change_fil_state){
  4771. // Filament failed to load so load it again
  4772. case 2:
  4773. #ifdef SNMM
  4774. display_loading();
  4775. do {
  4776. target[E_AXIS] += 0.002;
  4777. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4778. delay_keep_alive(2);
  4779. } while (!lcd_clicked());
  4780. st_synchronize();
  4781. target[E_AXIS] += bowden_length[snmm_extruder];
  4782. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4783. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4784. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4785. target[E_AXIS] += 40;
  4786. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4787. target[E_AXIS] += 10;
  4788. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4789. #else
  4790. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4791. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4792. #endif
  4793. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4794. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4795. lcd_loading_filament();
  4796. break;
  4797. // Filament loaded properly but color is not clear
  4798. case 3:
  4799. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4800. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4801. lcd_loading_color();
  4802. break;
  4803. // Everything good
  4804. default:
  4805. lcd_change_success();
  4806. lcd_update_enable(true);
  4807. break;
  4808. }
  4809. }
  4810. //Not let's go back to print
  4811. //Feed a little of filament to stabilize pressure
  4812. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4813. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4814. //Retract
  4815. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4816. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4817. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4818. //Move XY back
  4819. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4820. //Move Z back
  4821. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4822. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4823. //Unretract
  4824. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4825. //Set E position to original
  4826. plan_set_e_position(lastpos[E_AXIS]);
  4827. //Recover feed rate
  4828. feedmultiply=feedmultiplyBckp;
  4829. char cmd[9];
  4830. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4831. enquecommand(cmd);
  4832. lcd_setstatuspgm(WELCOME_MSG);
  4833. custom_message = false;
  4834. custom_message_type = 0;
  4835. }
  4836. break;
  4837. #endif //FILAMENTCHANGEENABLE
  4838. case 601: {
  4839. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4840. }
  4841. break;
  4842. case 602: {
  4843. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4844. }
  4845. break;
  4846. #ifdef LIN_ADVANCE
  4847. case 900: // M900: Set LIN_ADVANCE options.
  4848. gcode_M900();
  4849. break;
  4850. #endif
  4851. case 907: // M907 Set digital trimpot motor current using axis codes.
  4852. {
  4853. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4854. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4855. if(code_seen('B')) digipot_current(4,code_value());
  4856. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4857. #endif
  4858. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4859. if(code_seen('X')) digipot_current(0, code_value());
  4860. #endif
  4861. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4862. if(code_seen('Z')) digipot_current(1, code_value());
  4863. #endif
  4864. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4865. if(code_seen('E')) digipot_current(2, code_value());
  4866. #endif
  4867. #ifdef DIGIPOT_I2C
  4868. // this one uses actual amps in floating point
  4869. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4870. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4871. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4872. #endif
  4873. }
  4874. break;
  4875. case 908: // M908 Control digital trimpot directly.
  4876. {
  4877. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4878. uint8_t channel,current;
  4879. if(code_seen('P')) channel=code_value();
  4880. if(code_seen('S')) current=code_value();
  4881. digitalPotWrite(channel, current);
  4882. #endif
  4883. }
  4884. break;
  4885. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4886. {
  4887. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4888. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4889. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4890. if(code_seen('B')) microstep_mode(4,code_value());
  4891. microstep_readings();
  4892. #endif
  4893. }
  4894. break;
  4895. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4896. {
  4897. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4898. if(code_seen('S')) switch((int)code_value())
  4899. {
  4900. case 1:
  4901. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4902. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4903. break;
  4904. case 2:
  4905. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4906. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4907. break;
  4908. }
  4909. microstep_readings();
  4910. #endif
  4911. }
  4912. break;
  4913. case 701: //M701: load filament
  4914. {
  4915. #ifdef SNMM
  4916. extr_adj(snmm_extruder);//loads current extruder
  4917. #else
  4918. enable_z();
  4919. custom_message = true;
  4920. custom_message_type = 2;
  4921. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4922. current_position[E_AXIS] += 70;
  4923. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4924. current_position[E_AXIS] += 25;
  4925. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4926. st_synchronize();
  4927. if (!farm_mode && loading_flag) {
  4928. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4929. while (!clean) {
  4930. lcd_update_enable(true);
  4931. lcd_update(2);
  4932. current_position[E_AXIS] += 25;
  4933. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4934. st_synchronize();
  4935. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4936. }
  4937. }
  4938. lcd_update_enable(true);
  4939. lcd_update(2);
  4940. lcd_setstatuspgm(WELCOME_MSG);
  4941. disable_z();
  4942. loading_flag = false;
  4943. custom_message = false;
  4944. custom_message_type = 0;
  4945. #endif
  4946. }
  4947. break;
  4948. case 702:
  4949. {
  4950. #ifdef SNMM
  4951. if (code_seen('U')) {
  4952. extr_unload_used(); //unload all filaments which were used in current print
  4953. }
  4954. else if (code_seen('C')) {
  4955. extr_unload(); //unload just current filament
  4956. }
  4957. else {
  4958. extr_unload_all(); //unload all filaments
  4959. }
  4960. #else
  4961. custom_message = true;
  4962. custom_message_type = 2;
  4963. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4964. current_position[E_AXIS] -= 80;
  4965. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4966. st_synchronize();
  4967. lcd_setstatuspgm(WELCOME_MSG);
  4968. custom_message = false;
  4969. custom_message_type = 0;
  4970. #endif
  4971. }
  4972. break;
  4973. case 999: // M999: Restart after being stopped
  4974. Stopped = false;
  4975. lcd_reset_alert_level();
  4976. gcode_LastN = Stopped_gcode_LastN;
  4977. FlushSerialRequestResend();
  4978. break;
  4979. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4980. }
  4981. } // end if(code_seen('M')) (end of M codes)
  4982. else if(code_seen('T'))
  4983. {
  4984. int index;
  4985. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4986. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  4987. SERIAL_ECHOLNPGM("Invalid T code.");
  4988. }
  4989. else {
  4990. if (*(strchr_pointer + index) == '?') {
  4991. tmp_extruder = choose_extruder_menu();
  4992. }
  4993. else {
  4994. tmp_extruder = code_value();
  4995. }
  4996. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  4997. #ifdef SNMM
  4998. #ifdef LIN_ADVANCE
  4999. if (snmm_extruder != tmp_extruder)
  5000. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5001. #endif
  5002. snmm_extruder = tmp_extruder;
  5003. st_synchronize();
  5004. delay(100);
  5005. disable_e0();
  5006. disable_e1();
  5007. disable_e2();
  5008. pinMode(E_MUX0_PIN, OUTPUT);
  5009. pinMode(E_MUX1_PIN, OUTPUT);
  5010. delay(100);
  5011. SERIAL_ECHO_START;
  5012. SERIAL_ECHO("T:");
  5013. SERIAL_ECHOLN((int)tmp_extruder);
  5014. switch (tmp_extruder) {
  5015. case 1:
  5016. WRITE(E_MUX0_PIN, HIGH);
  5017. WRITE(E_MUX1_PIN, LOW);
  5018. break;
  5019. case 2:
  5020. WRITE(E_MUX0_PIN, LOW);
  5021. WRITE(E_MUX1_PIN, HIGH);
  5022. break;
  5023. case 3:
  5024. WRITE(E_MUX0_PIN, HIGH);
  5025. WRITE(E_MUX1_PIN, HIGH);
  5026. break;
  5027. default:
  5028. WRITE(E_MUX0_PIN, LOW);
  5029. WRITE(E_MUX1_PIN, LOW);
  5030. break;
  5031. }
  5032. delay(100);
  5033. #else
  5034. if (tmp_extruder >= EXTRUDERS) {
  5035. SERIAL_ECHO_START;
  5036. SERIAL_ECHOPGM("T");
  5037. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5038. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5039. }
  5040. else {
  5041. boolean make_move = false;
  5042. if (code_seen('F')) {
  5043. make_move = true;
  5044. next_feedrate = code_value();
  5045. if (next_feedrate > 0.0) {
  5046. feedrate = next_feedrate;
  5047. }
  5048. }
  5049. #if EXTRUDERS > 1
  5050. if (tmp_extruder != active_extruder) {
  5051. // Save current position to return to after applying extruder offset
  5052. memcpy(destination, current_position, sizeof(destination));
  5053. // Offset extruder (only by XY)
  5054. int i;
  5055. for (i = 0; i < 2; i++) {
  5056. current_position[i] = current_position[i] -
  5057. extruder_offset[i][active_extruder] +
  5058. extruder_offset[i][tmp_extruder];
  5059. }
  5060. // Set the new active extruder and position
  5061. active_extruder = tmp_extruder;
  5062. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5063. // Move to the old position if 'F' was in the parameters
  5064. if (make_move && Stopped == false) {
  5065. prepare_move();
  5066. }
  5067. }
  5068. #endif
  5069. SERIAL_ECHO_START;
  5070. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5071. SERIAL_PROTOCOLLN((int)active_extruder);
  5072. }
  5073. #endif
  5074. }
  5075. } // end if(code_seen('T')) (end of T codes)
  5076. #ifdef DEBUG_DCODES
  5077. else if (code_seen('D')) // D codes (debug)
  5078. {
  5079. switch((int)code_value_uint8())
  5080. {
  5081. case 0: // D0 - Reset
  5082. if (*(strchr_pointer + 1) == 0) break;
  5083. MYSERIAL.println("D0 - Reset");
  5084. asm volatile("jmp 0x00000");
  5085. break;
  5086. case 1: // D1 - Clear EEPROM
  5087. {
  5088. MYSERIAL.println("D1 - Clear EEPROM");
  5089. cli();
  5090. for (int i = 0; i < 4096; i++)
  5091. eeprom_write_byte((unsigned char*)i, (unsigned char)0);
  5092. sei();
  5093. }
  5094. break;
  5095. case 2: // D2 - Read/Write PIN
  5096. {
  5097. if (code_seen('P')) // Pin (0-255)
  5098. {
  5099. int pin = (int)code_value();
  5100. if ((pin >= 0) && (pin <= 255))
  5101. {
  5102. if (code_seen('F')) // Function in/out (0/1)
  5103. {
  5104. int fnc = (int)code_value();
  5105. if (fnc == 0) pinMode(pin, INPUT);
  5106. else if (fnc == 1) pinMode(pin, OUTPUT);
  5107. }
  5108. if (code_seen('V')) // Value (0/1)
  5109. {
  5110. int val = (int)code_value();
  5111. if (val == 0) digitalWrite(pin, LOW);
  5112. else if (val == 1) digitalWrite(pin, HIGH);
  5113. }
  5114. else
  5115. {
  5116. int val = (digitalRead(pin) != LOW)?1:0;
  5117. MYSERIAL.print("PIN");
  5118. MYSERIAL.print(pin);
  5119. MYSERIAL.print("=");
  5120. MYSERIAL.println(val);
  5121. }
  5122. }
  5123. }
  5124. }
  5125. break;
  5126. }
  5127. }
  5128. #endif //DEBUG_DCODES
  5129. else
  5130. {
  5131. SERIAL_ECHO_START;
  5132. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5133. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5134. SERIAL_ECHOLNPGM("\"");
  5135. }
  5136. KEEPALIVE_STATE(NOT_BUSY);
  5137. ClearToSend();
  5138. }
  5139. void FlushSerialRequestResend()
  5140. {
  5141. //char cmdbuffer[bufindr][100]="Resend:";
  5142. MYSERIAL.flush();
  5143. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5144. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5145. ClearToSend();
  5146. }
  5147. // Confirm the execution of a command, if sent from a serial line.
  5148. // Execution of a command from a SD card will not be confirmed.
  5149. void ClearToSend()
  5150. {
  5151. previous_millis_cmd = millis();
  5152. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5153. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5154. }
  5155. void get_coordinates()
  5156. {
  5157. bool seen[4]={false,false,false,false};
  5158. for(int8_t i=0; i < NUM_AXIS; i++) {
  5159. if(code_seen(axis_codes[i]))
  5160. {
  5161. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5162. seen[i]=true;
  5163. }
  5164. else destination[i] = current_position[i]; //Are these else lines really needed?
  5165. }
  5166. if(code_seen('F')) {
  5167. next_feedrate = code_value();
  5168. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5169. }
  5170. }
  5171. void get_arc_coordinates()
  5172. {
  5173. #ifdef SF_ARC_FIX
  5174. bool relative_mode_backup = relative_mode;
  5175. relative_mode = true;
  5176. #endif
  5177. get_coordinates();
  5178. #ifdef SF_ARC_FIX
  5179. relative_mode=relative_mode_backup;
  5180. #endif
  5181. if(code_seen('I')) {
  5182. offset[0] = code_value();
  5183. }
  5184. else {
  5185. offset[0] = 0.0;
  5186. }
  5187. if(code_seen('J')) {
  5188. offset[1] = code_value();
  5189. }
  5190. else {
  5191. offset[1] = 0.0;
  5192. }
  5193. }
  5194. void clamp_to_software_endstops(float target[3])
  5195. {
  5196. #ifdef DEBUG_DISABLE_SWLIMITS
  5197. return;
  5198. #endif //DEBUG_DISABLE_SWLIMITS
  5199. world2machine_clamp(target[0], target[1]);
  5200. // Clamp the Z coordinate.
  5201. if (min_software_endstops) {
  5202. float negative_z_offset = 0;
  5203. #ifdef ENABLE_AUTO_BED_LEVELING
  5204. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5205. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5206. #endif
  5207. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5208. }
  5209. if (max_software_endstops) {
  5210. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5211. }
  5212. }
  5213. #ifdef MESH_BED_LEVELING
  5214. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5215. float dx = x - current_position[X_AXIS];
  5216. float dy = y - current_position[Y_AXIS];
  5217. float dz = z - current_position[Z_AXIS];
  5218. int n_segments = 0;
  5219. if (mbl.active) {
  5220. float len = abs(dx) + abs(dy);
  5221. if (len > 0)
  5222. // Split to 3cm segments or shorter.
  5223. n_segments = int(ceil(len / 30.f));
  5224. }
  5225. if (n_segments > 1) {
  5226. float de = e - current_position[E_AXIS];
  5227. for (int i = 1; i < n_segments; ++ i) {
  5228. float t = float(i) / float(n_segments);
  5229. plan_buffer_line(
  5230. current_position[X_AXIS] + t * dx,
  5231. current_position[Y_AXIS] + t * dy,
  5232. current_position[Z_AXIS] + t * dz,
  5233. current_position[E_AXIS] + t * de,
  5234. feed_rate, extruder);
  5235. }
  5236. }
  5237. // The rest of the path.
  5238. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5239. current_position[X_AXIS] = x;
  5240. current_position[Y_AXIS] = y;
  5241. current_position[Z_AXIS] = z;
  5242. current_position[E_AXIS] = e;
  5243. }
  5244. #endif // MESH_BED_LEVELING
  5245. void prepare_move()
  5246. {
  5247. clamp_to_software_endstops(destination);
  5248. previous_millis_cmd = millis();
  5249. // Do not use feedmultiply for E or Z only moves
  5250. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5251. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5252. }
  5253. else {
  5254. #ifdef MESH_BED_LEVELING
  5255. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5256. #else
  5257. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5258. #endif
  5259. }
  5260. for(int8_t i=0; i < NUM_AXIS; i++) {
  5261. current_position[i] = destination[i];
  5262. }
  5263. }
  5264. void prepare_arc_move(char isclockwise) {
  5265. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5266. // Trace the arc
  5267. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5268. // As far as the parser is concerned, the position is now == target. In reality the
  5269. // motion control system might still be processing the action and the real tool position
  5270. // in any intermediate location.
  5271. for(int8_t i=0; i < NUM_AXIS; i++) {
  5272. current_position[i] = destination[i];
  5273. }
  5274. previous_millis_cmd = millis();
  5275. }
  5276. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5277. #if defined(FAN_PIN)
  5278. #if CONTROLLERFAN_PIN == FAN_PIN
  5279. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5280. #endif
  5281. #endif
  5282. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5283. unsigned long lastMotorCheck = 0;
  5284. void controllerFan()
  5285. {
  5286. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5287. {
  5288. lastMotorCheck = millis();
  5289. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5290. #if EXTRUDERS > 2
  5291. || !READ(E2_ENABLE_PIN)
  5292. #endif
  5293. #if EXTRUDER > 1
  5294. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5295. || !READ(X2_ENABLE_PIN)
  5296. #endif
  5297. || !READ(E1_ENABLE_PIN)
  5298. #endif
  5299. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5300. {
  5301. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5302. }
  5303. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5304. {
  5305. digitalWrite(CONTROLLERFAN_PIN, 0);
  5306. analogWrite(CONTROLLERFAN_PIN, 0);
  5307. }
  5308. else
  5309. {
  5310. // allows digital or PWM fan output to be used (see M42 handling)
  5311. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5312. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5313. }
  5314. }
  5315. }
  5316. #endif
  5317. #ifdef TEMP_STAT_LEDS
  5318. static bool blue_led = false;
  5319. static bool red_led = false;
  5320. static uint32_t stat_update = 0;
  5321. void handle_status_leds(void) {
  5322. float max_temp = 0.0;
  5323. if(millis() > stat_update) {
  5324. stat_update += 500; // Update every 0.5s
  5325. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5326. max_temp = max(max_temp, degHotend(cur_extruder));
  5327. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5328. }
  5329. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5330. max_temp = max(max_temp, degTargetBed());
  5331. max_temp = max(max_temp, degBed());
  5332. #endif
  5333. if((max_temp > 55.0) && (red_led == false)) {
  5334. digitalWrite(STAT_LED_RED, 1);
  5335. digitalWrite(STAT_LED_BLUE, 0);
  5336. red_led = true;
  5337. blue_led = false;
  5338. }
  5339. if((max_temp < 54.0) && (blue_led == false)) {
  5340. digitalWrite(STAT_LED_RED, 0);
  5341. digitalWrite(STAT_LED_BLUE, 1);
  5342. red_led = false;
  5343. blue_led = true;
  5344. }
  5345. }
  5346. }
  5347. #endif
  5348. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5349. {
  5350. #if defined(KILL_PIN) && KILL_PIN > -1
  5351. static int killCount = 0; // make the inactivity button a bit less responsive
  5352. const int KILL_DELAY = 10000;
  5353. #endif
  5354. if(buflen < (BUFSIZE-1)){
  5355. get_command();
  5356. }
  5357. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5358. if(max_inactive_time)
  5359. kill();
  5360. if(stepper_inactive_time) {
  5361. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5362. {
  5363. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5364. disable_x();
  5365. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5366. disable_y();
  5367. disable_z();
  5368. disable_e0();
  5369. disable_e1();
  5370. disable_e2();
  5371. }
  5372. }
  5373. }
  5374. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5375. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5376. {
  5377. chdkActive = false;
  5378. WRITE(CHDK, LOW);
  5379. }
  5380. #endif
  5381. #if defined(KILL_PIN) && KILL_PIN > -1
  5382. // Check if the kill button was pressed and wait just in case it was an accidental
  5383. // key kill key press
  5384. // -------------------------------------------------------------------------------
  5385. if( 0 == READ(KILL_PIN) )
  5386. {
  5387. killCount++;
  5388. }
  5389. else if (killCount > 0)
  5390. {
  5391. killCount--;
  5392. }
  5393. // Exceeded threshold and we can confirm that it was not accidental
  5394. // KILL the machine
  5395. // ----------------------------------------------------------------
  5396. if ( killCount >= KILL_DELAY)
  5397. {
  5398. kill();
  5399. }
  5400. #endif
  5401. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5402. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5403. #endif
  5404. #ifdef EXTRUDER_RUNOUT_PREVENT
  5405. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5406. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5407. {
  5408. bool oldstatus=READ(E0_ENABLE_PIN);
  5409. enable_e0();
  5410. float oldepos=current_position[E_AXIS];
  5411. float oldedes=destination[E_AXIS];
  5412. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5413. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5414. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5415. current_position[E_AXIS]=oldepos;
  5416. destination[E_AXIS]=oldedes;
  5417. plan_set_e_position(oldepos);
  5418. previous_millis_cmd=millis();
  5419. st_synchronize();
  5420. WRITE(E0_ENABLE_PIN,oldstatus);
  5421. }
  5422. #endif
  5423. #ifdef TEMP_STAT_LEDS
  5424. handle_status_leds();
  5425. #endif
  5426. check_axes_activity();
  5427. }
  5428. void kill(const char *full_screen_message)
  5429. {
  5430. cli(); // Stop interrupts
  5431. disable_heater();
  5432. disable_x();
  5433. // SERIAL_ECHOLNPGM("kill - disable Y");
  5434. disable_y();
  5435. disable_z();
  5436. disable_e0();
  5437. disable_e1();
  5438. disable_e2();
  5439. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5440. pinMode(PS_ON_PIN,INPUT);
  5441. #endif
  5442. SERIAL_ERROR_START;
  5443. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5444. if (full_screen_message != NULL) {
  5445. SERIAL_ERRORLNRPGM(full_screen_message);
  5446. lcd_display_message_fullscreen_P(full_screen_message);
  5447. } else {
  5448. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5449. }
  5450. // FMC small patch to update the LCD before ending
  5451. sei(); // enable interrupts
  5452. for ( int i=5; i--; lcd_update())
  5453. {
  5454. delay(200);
  5455. }
  5456. cli(); // disable interrupts
  5457. suicide();
  5458. while(1) { /* Intentionally left empty */ } // Wait for reset
  5459. }
  5460. void Stop()
  5461. {
  5462. disable_heater();
  5463. if(Stopped == false) {
  5464. Stopped = true;
  5465. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5466. SERIAL_ERROR_START;
  5467. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5468. LCD_MESSAGERPGM(MSG_STOPPED);
  5469. }
  5470. }
  5471. bool IsStopped() { return Stopped; };
  5472. #ifdef FAST_PWM_FAN
  5473. void setPwmFrequency(uint8_t pin, int val)
  5474. {
  5475. val &= 0x07;
  5476. switch(digitalPinToTimer(pin))
  5477. {
  5478. #if defined(TCCR0A)
  5479. case TIMER0A:
  5480. case TIMER0B:
  5481. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5482. // TCCR0B |= val;
  5483. break;
  5484. #endif
  5485. #if defined(TCCR1A)
  5486. case TIMER1A:
  5487. case TIMER1B:
  5488. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5489. // TCCR1B |= val;
  5490. break;
  5491. #endif
  5492. #if defined(TCCR2)
  5493. case TIMER2:
  5494. case TIMER2:
  5495. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5496. TCCR2 |= val;
  5497. break;
  5498. #endif
  5499. #if defined(TCCR2A)
  5500. case TIMER2A:
  5501. case TIMER2B:
  5502. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5503. TCCR2B |= val;
  5504. break;
  5505. #endif
  5506. #if defined(TCCR3A)
  5507. case TIMER3A:
  5508. case TIMER3B:
  5509. case TIMER3C:
  5510. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5511. TCCR3B |= val;
  5512. break;
  5513. #endif
  5514. #if defined(TCCR4A)
  5515. case TIMER4A:
  5516. case TIMER4B:
  5517. case TIMER4C:
  5518. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5519. TCCR4B |= val;
  5520. break;
  5521. #endif
  5522. #if defined(TCCR5A)
  5523. case TIMER5A:
  5524. case TIMER5B:
  5525. case TIMER5C:
  5526. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5527. TCCR5B |= val;
  5528. break;
  5529. #endif
  5530. }
  5531. }
  5532. #endif //FAST_PWM_FAN
  5533. bool setTargetedHotend(int code){
  5534. tmp_extruder = active_extruder;
  5535. if(code_seen('T')) {
  5536. tmp_extruder = code_value();
  5537. if(tmp_extruder >= EXTRUDERS) {
  5538. SERIAL_ECHO_START;
  5539. switch(code){
  5540. case 104:
  5541. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5542. break;
  5543. case 105:
  5544. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5545. break;
  5546. case 109:
  5547. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5548. break;
  5549. case 218:
  5550. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5551. break;
  5552. case 221:
  5553. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5554. break;
  5555. }
  5556. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5557. return true;
  5558. }
  5559. }
  5560. return false;
  5561. }
  5562. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5563. {
  5564. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5565. {
  5566. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5567. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5568. }
  5569. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5570. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5571. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5572. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5573. total_filament_used = 0;
  5574. }
  5575. float calculate_volumetric_multiplier(float diameter) {
  5576. float area = .0;
  5577. float radius = .0;
  5578. radius = diameter * .5;
  5579. if (! volumetric_enabled || radius == 0) {
  5580. area = 1;
  5581. }
  5582. else {
  5583. area = M_PI * pow(radius, 2);
  5584. }
  5585. return 1.0 / area;
  5586. }
  5587. void calculate_volumetric_multipliers() {
  5588. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5589. #if EXTRUDERS > 1
  5590. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5591. #if EXTRUDERS > 2
  5592. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5593. #endif
  5594. #endif
  5595. }
  5596. void delay_keep_alive(unsigned int ms)
  5597. {
  5598. for (;;) {
  5599. manage_heater();
  5600. // Manage inactivity, but don't disable steppers on timeout.
  5601. manage_inactivity(true);
  5602. lcd_update();
  5603. if (ms == 0)
  5604. break;
  5605. else if (ms >= 50) {
  5606. delay(50);
  5607. ms -= 50;
  5608. } else {
  5609. delay(ms);
  5610. ms = 0;
  5611. }
  5612. }
  5613. }
  5614. void wait_for_heater(long codenum) {
  5615. #ifdef TEMP_RESIDENCY_TIME
  5616. long residencyStart;
  5617. residencyStart = -1;
  5618. /* continue to loop until we have reached the target temp
  5619. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5620. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5621. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5622. #else
  5623. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5624. #endif //TEMP_RESIDENCY_TIME
  5625. if ((millis() - codenum) > 1000UL)
  5626. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5627. if (!farm_mode) {
  5628. SERIAL_PROTOCOLPGM("T:");
  5629. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5630. SERIAL_PROTOCOLPGM(" E:");
  5631. SERIAL_PROTOCOL((int)tmp_extruder);
  5632. #ifdef TEMP_RESIDENCY_TIME
  5633. SERIAL_PROTOCOLPGM(" W:");
  5634. if (residencyStart > -1)
  5635. {
  5636. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5637. SERIAL_PROTOCOLLN(codenum);
  5638. }
  5639. else
  5640. {
  5641. SERIAL_PROTOCOLLN("?");
  5642. }
  5643. }
  5644. #else
  5645. SERIAL_PROTOCOLLN("");
  5646. #endif
  5647. codenum = millis();
  5648. }
  5649. manage_heater();
  5650. manage_inactivity();
  5651. lcd_update();
  5652. #ifdef TEMP_RESIDENCY_TIME
  5653. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5654. or when current temp falls outside the hysteresis after target temp was reached */
  5655. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5656. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5657. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5658. {
  5659. residencyStart = millis();
  5660. }
  5661. #endif //TEMP_RESIDENCY_TIME
  5662. }
  5663. }
  5664. void check_babystep() {
  5665. int babystep_z;
  5666. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5667. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5668. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5669. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5670. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5671. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5672. lcd_update_enable(true);
  5673. }
  5674. }
  5675. #ifdef DIS
  5676. void d_setup()
  5677. {
  5678. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5679. pinMode(D_DATA, INPUT_PULLUP);
  5680. pinMode(D_REQUIRE, OUTPUT);
  5681. digitalWrite(D_REQUIRE, HIGH);
  5682. }
  5683. float d_ReadData()
  5684. {
  5685. int digit[13];
  5686. String mergeOutput;
  5687. float output;
  5688. digitalWrite(D_REQUIRE, HIGH);
  5689. for (int i = 0; i<13; i++)
  5690. {
  5691. for (int j = 0; j < 4; j++)
  5692. {
  5693. while (digitalRead(D_DATACLOCK) == LOW) {}
  5694. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5695. bitWrite(digit[i], j, digitalRead(D_DATA));
  5696. }
  5697. }
  5698. digitalWrite(D_REQUIRE, LOW);
  5699. mergeOutput = "";
  5700. output = 0;
  5701. for (int r = 5; r <= 10; r++) //Merge digits
  5702. {
  5703. mergeOutput += digit[r];
  5704. }
  5705. output = mergeOutput.toFloat();
  5706. if (digit[4] == 8) //Handle sign
  5707. {
  5708. output *= -1;
  5709. }
  5710. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5711. {
  5712. output /= 10;
  5713. }
  5714. return output;
  5715. }
  5716. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5717. int t1 = 0;
  5718. int t_delay = 0;
  5719. int digit[13];
  5720. int m;
  5721. char str[3];
  5722. //String mergeOutput;
  5723. char mergeOutput[15];
  5724. float output;
  5725. int mesh_point = 0; //index number of calibration point
  5726. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5727. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5728. float mesh_home_z_search = 4;
  5729. float row[x_points_num];
  5730. int ix = 0;
  5731. int iy = 0;
  5732. char* filename_wldsd = "wldsd.txt";
  5733. char data_wldsd[70];
  5734. char numb_wldsd[10];
  5735. d_setup();
  5736. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5737. // We don't know where we are! HOME!
  5738. // Push the commands to the front of the message queue in the reverse order!
  5739. // There shall be always enough space reserved for these commands.
  5740. repeatcommand_front(); // repeat G80 with all its parameters
  5741. enquecommand_front_P((PSTR("G28 W0")));
  5742. enquecommand_front_P((PSTR("G1 Z5")));
  5743. return;
  5744. }
  5745. bool custom_message_old = custom_message;
  5746. unsigned int custom_message_type_old = custom_message_type;
  5747. unsigned int custom_message_state_old = custom_message_state;
  5748. custom_message = true;
  5749. custom_message_type = 1;
  5750. custom_message_state = (x_points_num * y_points_num) + 10;
  5751. lcd_update(1);
  5752. mbl.reset();
  5753. babystep_undo();
  5754. card.openFile(filename_wldsd, false);
  5755. current_position[Z_AXIS] = mesh_home_z_search;
  5756. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5757. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5758. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5759. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5760. setup_for_endstop_move(false);
  5761. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5762. SERIAL_PROTOCOL(x_points_num);
  5763. SERIAL_PROTOCOLPGM(",");
  5764. SERIAL_PROTOCOL(y_points_num);
  5765. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5766. SERIAL_PROTOCOL(mesh_home_z_search);
  5767. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5768. SERIAL_PROTOCOL(x_dimension);
  5769. SERIAL_PROTOCOLPGM(",");
  5770. SERIAL_PROTOCOL(y_dimension);
  5771. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5772. while (mesh_point != x_points_num * y_points_num) {
  5773. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5774. iy = mesh_point / x_points_num;
  5775. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5776. float z0 = 0.f;
  5777. current_position[Z_AXIS] = mesh_home_z_search;
  5778. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5779. st_synchronize();
  5780. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5781. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5782. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5783. st_synchronize();
  5784. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5785. break;
  5786. card.closefile();
  5787. }
  5788. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5789. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5790. //strcat(data_wldsd, numb_wldsd);
  5791. //MYSERIAL.println(data_wldsd);
  5792. //delay(1000);
  5793. //delay(3000);
  5794. //t1 = millis();
  5795. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5796. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5797. memset(digit, 0, sizeof(digit));
  5798. //cli();
  5799. digitalWrite(D_REQUIRE, LOW);
  5800. for (int i = 0; i<13; i++)
  5801. {
  5802. //t1 = millis();
  5803. for (int j = 0; j < 4; j++)
  5804. {
  5805. while (digitalRead(D_DATACLOCK) == LOW) {}
  5806. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5807. bitWrite(digit[i], j, digitalRead(D_DATA));
  5808. }
  5809. //t_delay = (millis() - t1);
  5810. //SERIAL_PROTOCOLPGM(" ");
  5811. //SERIAL_PROTOCOL_F(t_delay, 5);
  5812. //SERIAL_PROTOCOLPGM(" ");
  5813. }
  5814. //sei();
  5815. digitalWrite(D_REQUIRE, HIGH);
  5816. mergeOutput[0] = '\0';
  5817. output = 0;
  5818. for (int r = 5; r <= 10; r++) //Merge digits
  5819. {
  5820. sprintf(str, "%d", digit[r]);
  5821. strcat(mergeOutput, str);
  5822. }
  5823. output = atof(mergeOutput);
  5824. if (digit[4] == 8) //Handle sign
  5825. {
  5826. output *= -1;
  5827. }
  5828. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5829. {
  5830. output *= 0.1;
  5831. }
  5832. //output = d_ReadData();
  5833. //row[ix] = current_position[Z_AXIS];
  5834. memset(data_wldsd, 0, sizeof(data_wldsd));
  5835. for (int i = 0; i <3; i++) {
  5836. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5837. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5838. strcat(data_wldsd, numb_wldsd);
  5839. strcat(data_wldsd, ";");
  5840. }
  5841. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5842. dtostrf(output, 8, 5, numb_wldsd);
  5843. strcat(data_wldsd, numb_wldsd);
  5844. //strcat(data_wldsd, ";");
  5845. card.write_command(data_wldsd);
  5846. //row[ix] = d_ReadData();
  5847. row[ix] = output; // current_position[Z_AXIS];
  5848. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5849. for (int i = 0; i < x_points_num; i++) {
  5850. SERIAL_PROTOCOLPGM(" ");
  5851. SERIAL_PROTOCOL_F(row[i], 5);
  5852. }
  5853. SERIAL_PROTOCOLPGM("\n");
  5854. }
  5855. custom_message_state--;
  5856. mesh_point++;
  5857. lcd_update(1);
  5858. }
  5859. card.closefile();
  5860. }
  5861. #endif
  5862. void temp_compensation_start() {
  5863. custom_message = true;
  5864. custom_message_type = 5;
  5865. custom_message_state = PINDA_HEAT_T + 1;
  5866. lcd_update(2);
  5867. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5868. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5869. }
  5870. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5871. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5872. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5873. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5874. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5875. st_synchronize();
  5876. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5877. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5878. delay_keep_alive(1000);
  5879. custom_message_state = PINDA_HEAT_T - i;
  5880. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5881. else lcd_update(1);
  5882. }
  5883. custom_message_type = 0;
  5884. custom_message_state = 0;
  5885. custom_message = false;
  5886. }
  5887. void temp_compensation_apply() {
  5888. int i_add;
  5889. int compensation_value;
  5890. int z_shift = 0;
  5891. float z_shift_mm;
  5892. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5893. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5894. i_add = (target_temperature_bed - 60) / 10;
  5895. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5896. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5897. }else {
  5898. //interpolation
  5899. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5900. }
  5901. SERIAL_PROTOCOLPGM("\n");
  5902. SERIAL_PROTOCOLPGM("Z shift applied:");
  5903. MYSERIAL.print(z_shift_mm);
  5904. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5905. st_synchronize();
  5906. plan_set_z_position(current_position[Z_AXIS]);
  5907. }
  5908. else {
  5909. //we have no temp compensation data
  5910. }
  5911. }
  5912. float temp_comp_interpolation(float inp_temperature) {
  5913. //cubic spline interpolation
  5914. int n, i, j, k;
  5915. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5916. int shift[10];
  5917. int temp_C[10];
  5918. n = 6; //number of measured points
  5919. shift[0] = 0;
  5920. for (i = 0; i < n; i++) {
  5921. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5922. temp_C[i] = 50 + i * 10; //temperature in C
  5923. x[i] = (float)temp_C[i];
  5924. f[i] = (float)shift[i];
  5925. }
  5926. if (inp_temperature < x[0]) return 0;
  5927. for (i = n - 1; i>0; i--) {
  5928. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5929. h[i - 1] = x[i] - x[i - 1];
  5930. }
  5931. //*********** formation of h, s , f matrix **************
  5932. for (i = 1; i<n - 1; i++) {
  5933. m[i][i] = 2 * (h[i - 1] + h[i]);
  5934. if (i != 1) {
  5935. m[i][i - 1] = h[i - 1];
  5936. m[i - 1][i] = h[i - 1];
  5937. }
  5938. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5939. }
  5940. //*********** forward elimination **************
  5941. for (i = 1; i<n - 2; i++) {
  5942. temp = (m[i + 1][i] / m[i][i]);
  5943. for (j = 1; j <= n - 1; j++)
  5944. m[i + 1][j] -= temp*m[i][j];
  5945. }
  5946. //*********** backward substitution *********
  5947. for (i = n - 2; i>0; i--) {
  5948. sum = 0;
  5949. for (j = i; j <= n - 2; j++)
  5950. sum += m[i][j] * s[j];
  5951. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5952. }
  5953. for (i = 0; i<n - 1; i++)
  5954. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5955. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5956. b = s[i] / 2;
  5957. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5958. d = f[i];
  5959. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5960. }
  5961. return sum;
  5962. }
  5963. void long_pause() //long pause print
  5964. {
  5965. st_synchronize();
  5966. //save currently set parameters to global variables
  5967. saved_feedmultiply = feedmultiply;
  5968. HotendTempBckp = degTargetHotend(active_extruder);
  5969. fanSpeedBckp = fanSpeed;
  5970. start_pause_print = millis();
  5971. //save position
  5972. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  5973. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  5974. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  5975. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  5976. //retract
  5977. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5978. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5979. //lift z
  5980. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  5981. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  5982. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  5983. //set nozzle target temperature to 0
  5984. setTargetHotend(0, 0);
  5985. setTargetHotend(0, 1);
  5986. setTargetHotend(0, 2);
  5987. //Move XY to side
  5988. current_position[X_AXIS] = X_PAUSE_POS;
  5989. current_position[Y_AXIS] = Y_PAUSE_POS;
  5990. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5991. // Turn off the print fan
  5992. fanSpeed = 0;
  5993. st_synchronize();
  5994. }
  5995. void serialecho_temperatures() {
  5996. float tt = degHotend(active_extruder);
  5997. SERIAL_PROTOCOLPGM("T:");
  5998. SERIAL_PROTOCOL(tt);
  5999. SERIAL_PROTOCOLPGM(" E:");
  6000. SERIAL_PROTOCOL((int)active_extruder);
  6001. SERIAL_PROTOCOLPGM(" B:");
  6002. SERIAL_PROTOCOL_F(degBed(), 1);
  6003. SERIAL_PROTOCOLLN("");
  6004. }