planner.cpp 60 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "fancheck.h"
  41. #include "ultralcd.h"
  42. #include "language.h"
  43. #include "ConfigurationStore.h"
  44. #ifdef MESH_BED_LEVELING
  45. #include "mesh_bed_leveling.h"
  46. #include "mesh_bed_calibration.h"
  47. #endif
  48. #ifdef TMC2130
  49. #include "tmc2130.h"
  50. #endif //TMC2130
  51. #include <util/atomic.h>
  52. //===========================================================================
  53. //=============================public variables ============================
  54. //===========================================================================
  55. // Use M203 to override by software
  56. float* max_feedrate = cs.max_feedrate_normal;
  57. // Use M201 to override by software
  58. unsigned long* max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  59. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  60. #ifdef ENABLE_AUTO_BED_LEVELING
  61. // this holds the required transform to compensate for bed level
  62. matrix_3x3 plan_bed_level_matrix = {
  63. 1.0, 0.0, 0.0,
  64. 0.0, 1.0, 0.0,
  65. 0.0, 0.0, 1.0,
  66. };
  67. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  68. // The current position of the tool in absolute steps
  69. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  70. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  71. static float previous_nominal_speed; // Nominal speed of previous path line segment
  72. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  73. #ifdef AUTOTEMP
  74. float autotemp_max=250;
  75. float autotemp_min=210;
  76. float autotemp_factor=0.1;
  77. bool autotemp_enabled=false;
  78. #endif
  79. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  80. //===========================================================================
  81. //=================semi-private variables, used in inline functions =====
  82. //===========================================================================
  83. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  84. volatile uint8_t block_buffer_head; // Index of the next block to be pushed
  85. volatile uint8_t block_buffer_tail; // Index of the block to process now
  86. #ifdef PLANNER_DIAGNOSTICS
  87. // Diagnostic function: Minimum number of planned moves since the last
  88. static uint8_t g_cntr_planner_queue_min = 0;
  89. #endif /* PLANNER_DIAGNOSTICS */
  90. //===========================================================================
  91. //=============================private variables ============================
  92. //===========================================================================
  93. #ifdef PREVENT_DANGEROUS_EXTRUDE
  94. int extrude_min_temp = EXTRUDE_MINTEMP;
  95. #endif
  96. #ifdef LIN_ADVANCE
  97. float extruder_advance_K = LA_K_DEF;
  98. float position_float[NUM_AXIS];
  99. #endif
  100. // Request the next block to start at zero E count
  101. static bool plan_reset_next_e_queue;
  102. static bool plan_reset_next_e_sched;
  103. // Returns the index of the next block in the ring buffer
  104. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  105. static inline uint8_t next_block_index(uint8_t block_index) {
  106. if (++ block_index == BLOCK_BUFFER_SIZE)
  107. block_index = 0;
  108. return block_index;
  109. }
  110. // Returns the index of the previous block in the ring buffer
  111. static inline uint8_t prev_block_index(uint8_t block_index) {
  112. if (block_index == 0)
  113. block_index = BLOCK_BUFFER_SIZE;
  114. -- block_index;
  115. return block_index;
  116. }
  117. //===========================================================================
  118. //=============================functions ============================
  119. //===========================================================================
  120. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  121. // given acceleration:
  122. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  123. {
  124. if (acceleration!=0) {
  125. return((target_rate*target_rate-initial_rate*initial_rate)/
  126. (2.0*acceleration));
  127. }
  128. else {
  129. return 0.0; // acceleration was 0, set acceleration distance to 0
  130. }
  131. }
  132. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  133. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  134. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  135. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  136. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  137. {
  138. if (acceleration!=0) {
  139. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  140. (4.0*acceleration) );
  141. }
  142. else {
  143. return 0.0; // acceleration was 0, set intersection distance to 0
  144. }
  145. }
  146. // Minimum stepper rate 120Hz.
  147. #define MINIMAL_STEP_RATE 120
  148. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  149. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  150. {
  151. // These two lines are the only floating point calculations performed in this routine.
  152. // initial_rate, final_rate in Hz.
  153. // Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
  154. // the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
  155. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  156. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  157. // Limit minimal step rate (Otherwise the timer will overflow.)
  158. if (initial_rate < MINIMAL_STEP_RATE)
  159. initial_rate = MINIMAL_STEP_RATE;
  160. if (initial_rate > block->nominal_rate)
  161. initial_rate = block->nominal_rate;
  162. if (final_rate < MINIMAL_STEP_RATE)
  163. final_rate = MINIMAL_STEP_RATE;
  164. if (final_rate > block->nominal_rate)
  165. final_rate = block->nominal_rate;
  166. uint32_t acceleration = block->acceleration_st;
  167. if (acceleration == 0)
  168. // Don't allow zero acceleration.
  169. acceleration = 1;
  170. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  171. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  172. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  173. //FIXME assert that this result fits a 64bit unsigned int.
  174. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  175. uint32_t final_rate_sqr = final_rate*final_rate;
  176. uint32_t acceleration_x2 = acceleration << 1;
  177. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  178. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  179. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  180. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  181. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  182. // Size of Plateau of Nominal Rate.
  183. uint32_t plateau_steps = 0;
  184. #ifdef LIN_ADVANCE
  185. uint16_t final_adv_steps = 0;
  186. uint16_t max_adv_steps = 0;
  187. if (block->use_advance_lead) {
  188. final_adv_steps = final_rate * block->adv_comp;
  189. }
  190. #endif
  191. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  192. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  193. // in order to reach the final_rate exactly at the end of this block.
  194. if (accel_decel_steps < block->step_event_count.wide) {
  195. plateau_steps = block->step_event_count.wide - accel_decel_steps;
  196. #ifdef LIN_ADVANCE
  197. if (block->use_advance_lead)
  198. max_adv_steps = block->nominal_rate * block->adv_comp;
  199. #endif
  200. } else {
  201. uint32_t acceleration_x4 = acceleration << 2;
  202. // Avoid negative numbers
  203. if (final_rate_sqr >= initial_rate_sqr) {
  204. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  205. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  206. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  207. #if 0
  208. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  209. #else
  210. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  211. if (block->step_event_count.wide & 1)
  212. accelerate_steps += acceleration_x2;
  213. accelerate_steps /= acceleration_x4;
  214. accelerate_steps += (block->step_event_count.wide >> 1);
  215. #endif
  216. if (accelerate_steps > block->step_event_count.wide)
  217. accelerate_steps = block->step_event_count.wide;
  218. } else {
  219. #if 0
  220. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  221. #else
  222. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  223. if (block->step_event_count.wide & 1)
  224. decelerate_steps += acceleration_x2;
  225. decelerate_steps /= acceleration_x4;
  226. decelerate_steps += (block->step_event_count.wide >> 1);
  227. #endif
  228. if (decelerate_steps > block->step_event_count.wide)
  229. decelerate_steps = block->step_event_count.wide;
  230. accelerate_steps = block->step_event_count.wide - decelerate_steps;
  231. }
  232. #ifdef LIN_ADVANCE
  233. if (block->use_advance_lead) {
  234. if(!accelerate_steps || !decelerate_steps) {
  235. // accelerate_steps=0: deceleration-only ramp, max_rate is effectively unused
  236. // decelerate_steps=0: acceleration-only ramp, max_rate _is_ final_rate
  237. max_adv_steps = final_adv_steps;
  238. } else {
  239. float max_rate = sqrt(acceleration_x2 * accelerate_steps + initial_rate_sqr);
  240. max_adv_steps = max_rate * block->adv_comp;
  241. }
  242. }
  243. #endif
  244. }
  245. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  246. // This block locks the interrupts globally for 4.38 us,
  247. // which corresponds to a maximum repeat frequency of 228.57 kHz.
  248. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  249. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  250. if (! block->busy) { // Don't update variables if block is busy.
  251. block->accelerate_until = accelerate_steps;
  252. block->decelerate_after = accelerate_steps+plateau_steps;
  253. block->initial_rate = initial_rate;
  254. block->final_rate = final_rate;
  255. #ifdef LIN_ADVANCE
  256. block->final_adv_steps = final_adv_steps;
  257. block->max_adv_steps = max_adv_steps;
  258. #endif
  259. }
  260. CRITICAL_SECTION_END;
  261. }
  262. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  263. // decceleration within the allotted distance.
  264. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  265. {
  266. // assert(decceleration < 0);
  267. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  268. }
  269. // Recalculates the motion plan according to the following algorithm:
  270. //
  271. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  272. // so that:
  273. // a. The junction jerk is within the set limit
  274. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  275. // acceleration.
  276. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  277. // a. The speed increase within one block would require faster accelleration than the one, true
  278. // constant acceleration.
  279. //
  280. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  281. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  282. // the set limit. Finally it will:
  283. //
  284. // 3. Recalculate trapezoids for all blocks.
  285. //
  286. //FIXME This routine is called 15x every time a new line is added to the planner,
  287. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  288. // if the CPU is found lacking computational power.
  289. //
  290. // Following sources may be used to optimize the 8-bit AVR code:
  291. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  292. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  293. //
  294. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  295. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  296. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  297. //
  298. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  299. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  300. // https://github.com/rekka/avrmultiplication
  301. //
  302. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  303. // https://courses.cit.cornell.edu/ee476/Math/
  304. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  305. //
  306. void planner_recalculate(const float &safe_final_speed)
  307. {
  308. // Reverse pass
  309. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  310. // by consuming the blocks, therefore shortening the queue.
  311. uint8_t tail = block_buffer_tail;
  312. uint8_t block_index;
  313. block_t *prev, *current, *next;
  314. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  315. // At least three blocks are in the queue?
  316. uint8_t n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  317. if (n_blocks >= 3) {
  318. // Initialize the last tripple of blocks.
  319. block_index = prev_block_index(block_buffer_head);
  320. next = block_buffer + block_index;
  321. current = block_buffer + (block_index = prev_block_index(block_index));
  322. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  323. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  324. // 1) it may already be running at the stepper interrupt,
  325. // 2) there is no way to limit it when going in the forward direction.
  326. while (block_index != tail) {
  327. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  328. // Don't modify the entry velocity of the starting block.
  329. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  330. // for the stepper interrupt routine to use them.
  331. tail = block_index;
  332. // Update the number of blocks to process.
  333. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  334. // SERIAL_ECHOLNPGM("START");
  335. break;
  336. }
  337. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  338. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  339. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  340. if (current->entry_speed != current->max_entry_speed) {
  341. // assert(current->entry_speed < current->max_entry_speed);
  342. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  343. // segment and the maximum acceleration allowed for this segment.
  344. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  345. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  346. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  347. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  348. // together with an assembly 32bit->16bit sqrt function.
  349. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  350. current->max_entry_speed :
  351. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  352. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  353. current->flag |= BLOCK_FLAG_RECALCULATE;
  354. }
  355. next = current;
  356. current = block_buffer + (block_index = prev_block_index(block_index));
  357. }
  358. }
  359. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  360. // Forward pass and recalculate the trapezoids.
  361. if (n_blocks >= 2) {
  362. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  363. block_index = tail;
  364. prev = block_buffer + block_index;
  365. current = block_buffer + (block_index = next_block_index(block_index));
  366. do {
  367. // If the previous block is an acceleration block, but it is not long enough to complete the
  368. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  369. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  370. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  371. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  372. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  373. // Check for junction speed change
  374. if (current->entry_speed != entry_speed) {
  375. current->entry_speed = entry_speed;
  376. current->flag |= BLOCK_FLAG_RECALCULATE;
  377. }
  378. }
  379. // Recalculate if current block entry or exit junction speed has changed.
  380. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  381. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  382. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  383. // Reset current only to ensure next trapezoid is computed.
  384. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  385. }
  386. prev = current;
  387. current = block_buffer + (block_index = next_block_index(block_index));
  388. } while (block_index != block_buffer_head);
  389. }
  390. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  391. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  392. current = block_buffer + prev_block_index(block_buffer_head);
  393. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  394. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  395. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  396. }
  397. void plan_init() {
  398. block_buffer_head = 0;
  399. block_buffer_tail = 0;
  400. memset(position, 0, sizeof(position)); // clear position
  401. #ifdef LIN_ADVANCE
  402. memset(position_float, 0, sizeof(position_float)); // clear position
  403. #endif
  404. memset(previous_speed, 0, sizeof(previous_speed));
  405. previous_nominal_speed = 0.0;
  406. plan_reset_next_e_queue = false;
  407. plan_reset_next_e_sched = false;
  408. }
  409. #ifdef AUTOTEMP
  410. void getHighESpeed()
  411. {
  412. static float oldt=0;
  413. if(!autotemp_enabled){
  414. return;
  415. }
  416. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  417. return; //do nothing
  418. }
  419. float high=0.0;
  420. uint8_t block_index = block_buffer_tail;
  421. while(block_index != block_buffer_head) {
  422. if((block_buffer[block_index].steps_x.wide != 0) ||
  423. (block_buffer[block_index].steps_y.wide != 0) ||
  424. (block_buffer[block_index].steps_z.wide != 0)) {
  425. float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
  426. //se; mm/sec;
  427. if(se>high)
  428. {
  429. high=se;
  430. }
  431. }
  432. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  433. }
  434. float g=autotemp_min+high*autotemp_factor;
  435. float t=g;
  436. if(t<autotemp_min)
  437. t=autotemp_min;
  438. if(t>autotemp_max)
  439. t=autotemp_max;
  440. if(oldt>t)
  441. {
  442. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  443. }
  444. oldt=t;
  445. setTargetHotend0(t);
  446. }
  447. #endif
  448. bool e_active()
  449. {
  450. unsigned char e_active = 0;
  451. block_t *block;
  452. if(block_buffer_tail != block_buffer_head)
  453. {
  454. uint8_t block_index = block_buffer_tail;
  455. while(block_index != block_buffer_head)
  456. {
  457. block = &block_buffer[block_index];
  458. if(block->steps_e.wide != 0) e_active++;
  459. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  460. }
  461. }
  462. return (e_active > 0) ? true : false ;
  463. }
  464. void check_axes_activity()
  465. {
  466. unsigned char x_active = 0;
  467. unsigned char y_active = 0;
  468. unsigned char z_active = 0;
  469. unsigned char e_active = 0;
  470. unsigned char tail_fan_speed = fanSpeed;
  471. block_t *block;
  472. if(block_buffer_tail != block_buffer_head)
  473. {
  474. uint8_t block_index = block_buffer_tail;
  475. tail_fan_speed = block_buffer[block_index].fan_speed;
  476. while(block_index != block_buffer_head)
  477. {
  478. block = &block_buffer[block_index];
  479. if(block->steps_x.wide != 0) x_active++;
  480. if(block->steps_y.wide != 0) y_active++;
  481. if(block->steps_z.wide != 0) z_active++;
  482. if(block->steps_e.wide != 0) e_active++;
  483. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  484. }
  485. }
  486. if((DISABLE_X) && (x_active == 0)) disable_x();
  487. if((DISABLE_Y) && (y_active == 0)) disable_y();
  488. if((DISABLE_Z) && (z_active == 0)) disable_z();
  489. if((DISABLE_E) && (e_active == 0))
  490. {
  491. disable_e0();
  492. disable_e1();
  493. disable_e2();
  494. }
  495. #if defined(FAN_PIN) && FAN_PIN > -1
  496. #ifdef FAN_KICKSTART_TIME
  497. static unsigned long fan_kick_end;
  498. if (tail_fan_speed) {
  499. if (fan_kick_end == 0) {
  500. // Just starting up fan - run at full power.
  501. fan_kick_end = _millis() + FAN_KICKSTART_TIME;
  502. tail_fan_speed = 255;
  503. } else if (fan_kick_end > _millis())
  504. // Fan still spinning up.
  505. tail_fan_speed = 255;
  506. } else {
  507. fan_kick_end = 0;
  508. }
  509. #endif//FAN_KICKSTART_TIME
  510. #ifdef FAN_SOFT_PWM
  511. if (fan_measuring) { //if measurement is currently in process, fanSpeedSoftPwm must remain set to 255, but we must update fanSpeedBckp value
  512. fanSpeedBckp = tail_fan_speed;
  513. }
  514. else {
  515. fanSpeedSoftPwm = tail_fan_speed;
  516. }
  517. //printf_P(PSTR("fanspeedsoftPWM %d \n"), fanSpeedSoftPwm);
  518. #else
  519. analogWrite(FAN_PIN,tail_fan_speed);
  520. #endif//!FAN_SOFT_PWM
  521. #endif//FAN_PIN > -1
  522. #ifdef AUTOTEMP
  523. getHighESpeed();
  524. #endif
  525. }
  526. bool planner_aborted = false;
  527. #ifdef PLANNER_DIAGNOSTICS
  528. static inline void planner_update_queue_min_counter()
  529. {
  530. uint8_t new_counter = moves_planned();
  531. if (new_counter < g_cntr_planner_queue_min)
  532. g_cntr_planner_queue_min = new_counter;
  533. }
  534. #endif /* PLANNER_DIAGNOSTICS */
  535. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  536. void planner_reset_position()
  537. {
  538. // First update the planner's current position in the physical motor steps.
  539. position[X_AXIS] = st_get_position(X_AXIS);
  540. position[Y_AXIS] = st_get_position(Y_AXIS);
  541. position[Z_AXIS] = st_get_position(Z_AXIS);
  542. position[E_AXIS] = st_get_position(E_AXIS);
  543. // Second update the current position of the front end.
  544. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  545. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  546. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  547. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  548. // Apply the mesh bed leveling correction to the Z axis.
  549. #ifdef MESH_BED_LEVELING
  550. if (mbl.active) {
  551. #if 1
  552. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  553. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  554. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  555. #else
  556. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  557. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  558. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  559. else {
  560. float t = float(step_events_completed) / float(current_block->step_event_count);
  561. float vec[3] = {
  562. current_block->steps_x / cs.axis_steps_per_unit[X_AXIS],
  563. current_block->steps_y / cs.axis_steps_per_unit[Y_AXIS],
  564. current_block->steps_z / cs.axis_steps_per_unit[Z_AXIS]
  565. };
  566. float pos1[3], pos2[3];
  567. for (int8_t i = 0; i < 3; ++ i) {
  568. if (current_block->direction_bits & (1<<i))
  569. vec[i] = - vec[i];
  570. pos1[i] = current_position[i] - vec[i] * t;
  571. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  572. }
  573. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  574. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  575. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  576. }
  577. #endif
  578. }
  579. #endif
  580. // Apply inverse world correction matrix.
  581. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  582. set_destination_to_current();
  583. #ifdef LIN_ADVANCE
  584. memcpy(position_float, current_position, sizeof(position_float));
  585. #endif
  586. }
  587. void planner_abort_hard()
  588. {
  589. // Abort the stepper routine and flush the planner queue.
  590. DISABLE_STEPPER_DRIVER_INTERRUPT();
  591. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  592. planner_reset_position();
  593. // Relay to planner wait routine that the current line shall be canceled.
  594. planner_aborted = true;
  595. // Clear the planner queue, reset and re-enable the stepper timer.
  596. quickStop();
  597. // Resets planner junction speeds. Assumes start from rest.
  598. previous_nominal_speed = 0.0;
  599. memset(previous_speed, 0, sizeof(previous_speed));
  600. // Reset position sync requests
  601. plan_reset_next_e_queue = false;
  602. plan_reset_next_e_sched = false;
  603. }
  604. void plan_buffer_line_curposXYZE(float feed_rate) {
  605. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder );
  606. }
  607. void plan_buffer_line_destinationXYZE(float feed_rate) {
  608. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_rate, active_extruder);
  609. }
  610. void plan_set_position_curposXYZE(){
  611. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  612. }
  613. float junction_deviation = 0.1;
  614. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  615. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  616. // calculation the caller must also provide the physical length of the line in millimeters.
  617. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, uint8_t extruder, const float* gcode_start_position, uint16_t segment_idx)
  618. {
  619. // CRITICAL_SECTION_START; //prevent stack overflow in ISR
  620. // printf_P(PSTR("plan_buffer_line(%f, %f, %f, %f, %f, %u, [%f,%f,%f,%f], %u)\n"), x, y, z, e, feed_rate, extruder, gcode_start_position[0], gcode_start_position[1], gcode_start_position[2], gcode_start_position[3], segment_idx);
  621. // CRITICAL_SECTION_END;
  622. // Calculate the buffer head after we push this byte
  623. uint8_t next_buffer_head = next_block_index(block_buffer_head);
  624. // If the buffer is full: good! That means we are well ahead of the robot.
  625. // Rest here until there is room in the buffer.
  626. if (block_buffer_tail == next_buffer_head) {
  627. do {
  628. manage_heater();
  629. // Vojtech: Don't disable motors inside the planner!
  630. manage_inactivity(false);
  631. lcd_update(0);
  632. } while (block_buffer_tail == next_buffer_head);
  633. }
  634. #ifdef PLANNER_DIAGNOSTICS
  635. planner_update_queue_min_counter();
  636. #endif /* PLANNER_DIAGNOSTICS */
  637. if(planner_aborted) {
  638. // avoid planning the block early if aborted
  639. return;
  640. }
  641. // Prepare to set up new block
  642. block_t *block = &block_buffer[block_buffer_head];
  643. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  644. block->busy = false;
  645. // Set sdlen for calculating sd position
  646. block->sdlen = 0;
  647. // Save original start position of the move
  648. if (gcode_start_position)
  649. memcpy(block->gcode_start_position, gcode_start_position, sizeof(block_t::gcode_start_position));
  650. else
  651. memcpy(block->gcode_start_position, current_position, sizeof(block_t::gcode_start_position));
  652. // Save the index of this segment (when a single G0/1/2/3 command plans multiple segments)
  653. block->segment_idx = segment_idx;
  654. // Save the global feedrate at scheduling time
  655. block->gcode_feedrate = feedrate;
  656. // Reset the starting E position when requested
  657. if (plan_reset_next_e_queue)
  658. {
  659. position[E_AXIS] = 0;
  660. #ifdef LIN_ADVANCE
  661. position_float[E_AXIS] = 0;
  662. #endif
  663. // the block might still be discarded later, but we need to ensure the lower-level
  664. // count_position is also reset correctly for consistent results!
  665. plan_reset_next_e_queue = false;
  666. plan_reset_next_e_sched = true;
  667. }
  668. #ifdef ENABLE_AUTO_BED_LEVELING
  669. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  670. #endif // ENABLE_AUTO_BED_LEVELING
  671. // Apply the machine correction matrix.
  672. {
  673. #if 0
  674. SERIAL_ECHOPGM("Planner, current position - servos: ");
  675. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  676. SERIAL_ECHOPGM(", ");
  677. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  678. SERIAL_ECHOPGM(", ");
  679. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  680. SERIAL_ECHOLNPGM("");
  681. SERIAL_ECHOPGM("Planner, target position, initial: ");
  682. MYSERIAL.print(x, 5);
  683. SERIAL_ECHOPGM(", ");
  684. MYSERIAL.print(y, 5);
  685. SERIAL_ECHOLNPGM("");
  686. SERIAL_ECHOPGM("Planner, world2machine: ");
  687. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  688. SERIAL_ECHOPGM(", ");
  689. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  690. SERIAL_ECHOPGM(", ");
  691. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  692. SERIAL_ECHOPGM(", ");
  693. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  694. SERIAL_ECHOLNPGM("");
  695. SERIAL_ECHOPGM("Planner, offset: ");
  696. MYSERIAL.print(world2machine_shift[0], 5);
  697. SERIAL_ECHOPGM(", ");
  698. MYSERIAL.print(world2machine_shift[1], 5);
  699. SERIAL_ECHOLNPGM("");
  700. #endif
  701. world2machine(x, y);
  702. #if 0
  703. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  704. MYSERIAL.print(x, 5);
  705. SERIAL_ECHOPGM(", ");
  706. MYSERIAL.print(y, 5);
  707. SERIAL_ECHOLNPGM("");
  708. #endif
  709. }
  710. // The target position of the tool in absolute steps
  711. // Calculate target position in absolute steps
  712. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  713. long target[4];
  714. target[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  715. target[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  716. #ifdef MESH_BED_LEVELING
  717. if (mbl.active){
  718. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]);
  719. }else{
  720. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  721. }
  722. #else
  723. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  724. #endif // ENABLE_MESH_BED_LEVELING
  725. target[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  726. #ifdef PREVENT_DANGEROUS_EXTRUDE
  727. if(target[E_AXIS]!=position[E_AXIS])
  728. {
  729. if((int)degHotend(active_extruder)<extrude_min_temp)
  730. {
  731. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  732. #ifdef LIN_ADVANCE
  733. position_float[E_AXIS] = e;
  734. #endif
  735. SERIAL_ECHO_START;
  736. SERIAL_ECHOLNRPGM(_n(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP
  737. }
  738. #ifdef PREVENT_LENGTHY_EXTRUDE
  739. if(labs(target[E_AXIS]-position[E_AXIS])>cs.axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  740. {
  741. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  742. #ifdef LIN_ADVANCE
  743. position_float[E_AXIS] = e;
  744. #endif
  745. SERIAL_ECHO_START;
  746. SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP
  747. }
  748. #endif
  749. }
  750. #endif
  751. // Number of steps for each axis
  752. #ifndef COREXY
  753. // default non-h-bot planning
  754. block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
  755. block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
  756. #else
  757. // corexy planning
  758. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  759. block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  760. block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  761. #endif
  762. block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
  763. block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
  764. block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
  765. // Bail if this is a zero-length block
  766. if (block->step_event_count.wide <= dropsegments)
  767. {
  768. #ifdef PLANNER_DIAGNOSTICS
  769. planner_update_queue_min_counter();
  770. #endif /* PLANNER_DIAGNOSTICS */
  771. return;
  772. }
  773. block->fan_speed = fanSpeed;
  774. // Compute direction bits for this block
  775. block->direction_bits = 0;
  776. #ifndef COREXY
  777. if (target[X_AXIS] < position[X_AXIS])
  778. {
  779. block->direction_bits |= (1<<X_AXIS);
  780. }
  781. if (target[Y_AXIS] < position[Y_AXIS])
  782. {
  783. block->direction_bits |= (1<<Y_AXIS);
  784. }
  785. #else
  786. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  787. {
  788. block->direction_bits |= (1<<X_AXIS);
  789. }
  790. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  791. {
  792. block->direction_bits |= (1<<Y_AXIS);
  793. }
  794. #endif
  795. if (target[Z_AXIS] < position[Z_AXIS])
  796. {
  797. block->direction_bits |= (1<<Z_AXIS);
  798. }
  799. if (target[E_AXIS] < position[E_AXIS])
  800. {
  801. block->direction_bits |= (1<<E_AXIS);
  802. }
  803. //enable active axes
  804. #ifdef COREXY
  805. if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
  806. {
  807. enable_x();
  808. enable_y();
  809. }
  810. #else
  811. if(block->steps_x.wide != 0) enable_x();
  812. if(block->steps_y.wide != 0) enable_y();
  813. #endif
  814. if(block->steps_z.wide != 0) enable_z();
  815. // Enable extruder(s)
  816. if(block->steps_e.wide != 0)
  817. {
  818. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  819. {
  820. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  821. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  822. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  823. switch(extruder)
  824. {
  825. case 0:
  826. enable_e0();
  827. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  828. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  829. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  830. break;
  831. case 1:
  832. enable_e1();
  833. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  834. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  835. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  836. break;
  837. case 2:
  838. enable_e2();
  839. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  840. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  841. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  842. break;
  843. }
  844. }
  845. else //enable all
  846. {
  847. enable_e0();
  848. enable_e1();
  849. enable_e2();
  850. }
  851. }
  852. if (block->steps_e.wide == 0)
  853. {
  854. if(feed_rate<cs.mintravelfeedrate) feed_rate=cs.mintravelfeedrate;
  855. }
  856. else
  857. {
  858. if(feed_rate<cs.minimumfeedrate) feed_rate=cs.minimumfeedrate;
  859. }
  860. /* This part of the code calculates the total length of the movement.
  861. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  862. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  863. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  864. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  865. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  866. */
  867. #ifndef COREXY
  868. float delta_mm[4];
  869. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  870. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  871. #else
  872. float delta_mm[6];
  873. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  874. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  875. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[X_AXIS];
  876. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[Y_AXIS];
  877. #endif
  878. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/cs.axis_steps_per_unit[Z_AXIS];
  879. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/cs.axis_steps_per_unit[E_AXIS];
  880. if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
  881. {
  882. block->millimeters = fabs(delta_mm[E_AXIS]);
  883. }
  884. else
  885. {
  886. #ifndef COREXY
  887. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  888. #else
  889. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  890. #endif
  891. }
  892. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  893. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  894. float inverse_second = feed_rate * inverse_millimeters;
  895. uint8_t moves_queued = moves_planned();
  896. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  897. #ifdef SLOWDOWN
  898. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  899. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  900. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  901. // segment time in micro seconds
  902. unsigned long segment_time = lround(1000000.0/inverse_second);
  903. if (segment_time < cs.minsegmenttime)
  904. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  905. inverse_second=1000000.0/(segment_time+lround(2*(cs.minsegmenttime-segment_time)/moves_queued));
  906. }
  907. #endif // SLOWDOWN
  908. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  909. block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
  910. // Calculate and limit speed in mm/sec for each axis
  911. float current_speed[4];
  912. float speed_factor = 1.0; //factor <=1 do decrease speed
  913. for(int i=0; i < 4; i++)
  914. {
  915. current_speed[i] = delta_mm[i] * inverse_second;
  916. if(fabs(current_speed[i]) > max_feedrate[i])
  917. {
  918. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  919. }
  920. }
  921. // Correct the speed
  922. if( speed_factor < 1.0)
  923. {
  924. for(unsigned char i=0; i < 4; i++)
  925. {
  926. current_speed[i] *= speed_factor;
  927. }
  928. block->nominal_speed *= speed_factor;
  929. block->nominal_rate *= speed_factor;
  930. }
  931. #ifdef LIN_ADVANCE
  932. float e_D_ratio = 0;
  933. #endif
  934. // Compute and limit the acceleration rate for the trapezoid generator.
  935. // block->step_event_count ... event count of the fastest axis
  936. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  937. float steps_per_mm = block->step_event_count.wide/block->millimeters;
  938. if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
  939. {
  940. block->acceleration_st = ceil(cs.retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  941. #ifdef LIN_ADVANCE
  942. block->use_advance_lead = false;
  943. #endif
  944. }
  945. else
  946. {
  947. float acceleration = (block->steps_e.wide == 0? cs.travel_acceleration: cs.acceleration);
  948. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  949. #ifdef LIN_ADVANCE
  950. /**
  951. * Use LIN_ADVANCE within this block if all these are true:
  952. *
  953. * extruder_advance_K : There is an advance factor set.
  954. * delta_mm[E_AXIS] >= 0 : Extruding or traveling, but _not_ retracting.
  955. * |delta_mm[Z_AXIS]| < 0.5 : Z is only moved for leveling (_not_ for priming)
  956. */
  957. block->use_advance_lead = extruder_advance_K > 0
  958. && delta_mm[E_AXIS] >= 0
  959. && fabs(delta_mm[Z_AXIS]) < 0.5;
  960. if (block->use_advance_lead) {
  961. #ifdef LA_FLOWADJ
  962. // M221/FLOW should change uniformly the extrusion thickness
  963. float delta_e = (e - position_float[E_AXIS]) / extruder_multiplier[extruder];
  964. #else
  965. // M221/FLOW only adjusts for an incorrect source diameter
  966. float delta_e = (e - position_float[E_AXIS]);
  967. #endif
  968. float delta_D = sqrt(sq(x - position_float[X_AXIS])
  969. + sq(y - position_float[Y_AXIS])
  970. + sq(z - position_float[Z_AXIS]));
  971. // all extrusion moves with LA require a compression which is proportional to the
  972. // extrusion_length to distance ratio (e/D)
  973. e_D_ratio = delta_e / delta_D;
  974. // Check for unusual high e_D ratio to detect if a retract move was combined with the last
  975. // print move due to min. steps per segment. Never execute this with advance! This assumes
  976. // no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print
  977. // 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
  978. if (e_D_ratio > 3.0)
  979. block->use_advance_lead = false;
  980. else if (e_D_ratio > 0) {
  981. const float max_accel_per_s2 = cs.max_jerk[E_AXIS] / (extruder_advance_K * e_D_ratio);
  982. if (cs.acceleration > max_accel_per_s2) {
  983. block->acceleration_st = ceil(max_accel_per_s2 * steps_per_mm);
  984. #ifdef LA_DEBUG
  985. SERIAL_ECHOLNPGM("LA: Block acceleration limited due to max E-jerk");
  986. #endif
  987. }
  988. }
  989. }
  990. #endif
  991. // Limit acceleration per axis
  992. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  993. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  994. { block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; }
  995. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  996. { block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; }
  997. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  998. { block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; }
  999. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
  1000. { block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; }
  1001. }
  1002. // Acceleration of the segment, in mm/sec^2
  1003. block->acceleration = block->acceleration_st / steps_per_mm;
  1004. #if 0
  1005. // Oversample diagonal movements by a power of 2 up to 8x
  1006. // to achieve more accurate diagonal movements.
  1007. uint8_t bresenham_oversample = 1;
  1008. for (uint8_t i = 0; i < 3; ++ i) {
  1009. if (block->nominal_rate >= 5000) // 5kHz
  1010. break;
  1011. block->nominal_rate << 1;
  1012. bresenham_oversample << 1;
  1013. block->step_event_count << 1;
  1014. }
  1015. if (bresenham_oversample > 1)
  1016. // Lower the acceleration steps/sec^2 to account for the oversampling.
  1017. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  1018. #endif
  1019. block->acceleration_rate = ((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  1020. // Start with a safe speed.
  1021. // Safe speed is the speed, from which the machine may halt to stop immediately.
  1022. float safe_speed = block->nominal_speed;
  1023. bool limited = false;
  1024. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1025. float jerk = fabs(current_speed[axis]);
  1026. if (jerk > cs.max_jerk[axis]) {
  1027. // The actual jerk is lower, if it has been limited by the XY jerk.
  1028. if (limited) {
  1029. // Spare one division by a following gymnastics:
  1030. // Instead of jerk *= safe_speed / block->nominal_speed,
  1031. // multiply max_jerk[axis] by the divisor.
  1032. jerk *= safe_speed;
  1033. float mjerk = cs.max_jerk[axis] * block->nominal_speed;
  1034. if (jerk > mjerk) {
  1035. safe_speed *= mjerk / jerk;
  1036. limited = true;
  1037. }
  1038. } else {
  1039. safe_speed = cs.max_jerk[axis];
  1040. limited = true;
  1041. }
  1042. }
  1043. }
  1044. // Reset the block flag.
  1045. block->flag = 0;
  1046. if (plan_reset_next_e_sched)
  1047. {
  1048. // finally propagate a pending reset
  1049. block->flag |= BLOCK_FLAG_E_RESET;
  1050. plan_reset_next_e_sched = false;
  1051. }
  1052. // Initial limit on the segment entry velocity.
  1053. float vmax_junction;
  1054. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  1055. // Is it because we don't want to tinker with the first buffer line, which
  1056. // is likely to be executed by the stepper interrupt routine soon?
  1057. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  1058. // Estimate a maximum velocity allowed at a joint of two successive segments.
  1059. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  1060. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  1061. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  1062. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  1063. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  1064. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  1065. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  1066. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  1067. float v_factor = 1.f;
  1068. limited = false;
  1069. // Now limit the jerk in all axes.
  1070. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1071. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  1072. float v_exit = previous_speed[axis];
  1073. float v_entry = current_speed [axis];
  1074. if (prev_speed_larger)
  1075. v_exit *= smaller_speed_factor;
  1076. if (limited) {
  1077. v_exit *= v_factor;
  1078. v_entry *= v_factor;
  1079. }
  1080. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  1081. float jerk =
  1082. (v_exit > v_entry) ?
  1083. ((v_entry > 0.f || v_exit < 0.f) ?
  1084. // coasting
  1085. (v_exit - v_entry) :
  1086. // axis reversal
  1087. max(v_exit, - v_entry)) :
  1088. // v_exit <= v_entry
  1089. ((v_entry < 0.f || v_exit > 0.f) ?
  1090. // coasting
  1091. (v_entry - v_exit) :
  1092. // axis reversal
  1093. max(- v_exit, v_entry));
  1094. if (jerk > cs.max_jerk[axis]) {
  1095. v_factor *= cs.max_jerk[axis] / jerk;
  1096. limited = true;
  1097. }
  1098. }
  1099. if (limited)
  1100. vmax_junction *= v_factor;
  1101. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1102. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1103. float vmax_junction_threshold = vmax_junction * 0.99f;
  1104. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1105. // Not coasting. The machine will stop and start the movements anyway,
  1106. // better to start the segment from start.
  1107. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1108. vmax_junction = safe_speed;
  1109. }
  1110. } else {
  1111. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1112. vmax_junction = safe_speed;
  1113. }
  1114. // Max entry speed of this block equals the max exit speed of the previous block.
  1115. block->max_entry_speed = vmax_junction;
  1116. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1117. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1118. block->entry_speed = min(vmax_junction, v_allowable);
  1119. // Initialize planner efficiency flags
  1120. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1121. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1122. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1123. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1124. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1125. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1126. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1127. // Always calculate trapezoid for new block
  1128. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1129. // Update previous path unit_vector and nominal speed
  1130. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1131. previous_nominal_speed = block->nominal_speed;
  1132. previous_safe_speed = safe_speed;
  1133. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1134. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1135. #ifdef LIN_ADVANCE
  1136. if (block->use_advance_lead) {
  1137. // calculate the compression ratio for the segment (the required advance steps are computed
  1138. // during trapezoid planning)
  1139. float adv_comp = extruder_advance_K * e_D_ratio * cs.axis_steps_per_unit[E_AXIS]; // (step/(mm/s))
  1140. block->adv_comp = adv_comp / block->speed_factor; // step/(step/min)
  1141. float advance_speed;
  1142. if (e_D_ratio > 0)
  1143. advance_speed = (extruder_advance_K * e_D_ratio * block->acceleration * cs.axis_steps_per_unit[E_AXIS]);
  1144. else
  1145. advance_speed = cs.max_jerk[E_AXIS] * cs.axis_steps_per_unit[E_AXIS];
  1146. // to save more space we avoid another copy of calc_timer and go through slow division, but we
  1147. // still need to replicate the *exact* same step grouping policy (see below)
  1148. if (advance_speed > MAX_STEP_FREQUENCY) advance_speed = MAX_STEP_FREQUENCY;
  1149. float advance_rate = (F_CPU / 8.0) / advance_speed;
  1150. if (advance_speed > 20000) {
  1151. block->advance_rate = advance_rate * 4;
  1152. block->advance_step_loops = 4;
  1153. }
  1154. else if (advance_speed > 10000) {
  1155. block->advance_rate = advance_rate * 2;
  1156. block->advance_step_loops = 2;
  1157. }
  1158. else
  1159. {
  1160. // never overflow the internal accumulator with very low rates
  1161. if (advance_rate < UINT16_MAX)
  1162. block->advance_rate = advance_rate;
  1163. else
  1164. block->advance_rate = UINT16_MAX;
  1165. block->advance_step_loops = 1;
  1166. }
  1167. #ifdef LA_DEBUG
  1168. if (block->advance_step_loops > 2)
  1169. // @wavexx: we should really check for the difference between step_loops and
  1170. // advance_step_loops instead. A difference of more than 1 will lead
  1171. // to uneven speed and *should* be adjusted here by furthermore
  1172. // reducing the speed.
  1173. SERIAL_ECHOLNPGM("LA: More than 2 steps per eISR loop executed.");
  1174. #endif
  1175. }
  1176. #endif
  1177. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1178. if (block->step_event_count.wide <= 32767)
  1179. block->flag |= BLOCK_FLAG_DDA_LOWRES;
  1180. ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
  1181. // Move the buffer head ensuring the current block hasn't been cancelled from an isr context
  1182. // (this is possible both during crash detection *and* uvlo, thus needing a global cli)
  1183. if(planner_aborted) return;
  1184. block_buffer_head = next_buffer_head;
  1185. }
  1186. // Update position
  1187. memcpy(position, target, sizeof(target)); // position[] = target[]
  1188. #ifdef LIN_ADVANCE
  1189. position_float[X_AXIS] = x;
  1190. position_float[Y_AXIS] = y;
  1191. position_float[Z_AXIS] = z;
  1192. position_float[E_AXIS] = e;
  1193. #endif
  1194. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1195. // the machine limits (maximum acceleration and maximum jerk).
  1196. // This runs asynchronously with the stepper interrupt controller, which may
  1197. // interfere with the process.
  1198. planner_recalculate(safe_speed);
  1199. // SERIAL_ECHOPGM("Q");
  1200. // SERIAL_ECHO(int(moves_planned()));
  1201. // SERIAL_ECHOLNPGM("");
  1202. #ifdef PLANNER_DIAGNOSTICS
  1203. planner_update_queue_min_counter();
  1204. #endif /* PLANNER_DIAGNOSTIC */
  1205. // The stepper timer interrupt will run continuously from now on.
  1206. // If there are no planner blocks to be executed by the stepper routine,
  1207. // the stepper interrupt ticks at 1kHz to wake up and pick a block
  1208. // from the planner queue if available.
  1209. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1210. }
  1211. #ifdef ENABLE_AUTO_BED_LEVELING
  1212. vector_3 plan_get_position() {
  1213. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1214. //position.debug("in plan_get position");
  1215. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1216. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1217. //inverse.debug("in plan_get inverse");
  1218. position.apply_rotation(inverse);
  1219. //position.debug("after rotation");
  1220. return position;
  1221. }
  1222. #endif // ENABLE_AUTO_BED_LEVELING
  1223. void plan_set_position(float x, float y, float z, const float &e)
  1224. {
  1225. #ifdef ENABLE_AUTO_BED_LEVELING
  1226. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1227. #endif // ENABLE_AUTO_BED_LEVELING
  1228. world2machine(x, y);
  1229. position[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  1230. position[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  1231. #ifdef MESH_BED_LEVELING
  1232. position[Z_AXIS] = mbl.active ?
  1233. lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]) :
  1234. lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1235. #else
  1236. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1237. #endif // ENABLE_MESH_BED_LEVELING
  1238. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1239. #ifdef LIN_ADVANCE
  1240. position_float[X_AXIS] = x;
  1241. position_float[Y_AXIS] = y;
  1242. position_float[Z_AXIS] = z;
  1243. position_float[E_AXIS] = e;
  1244. #endif
  1245. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1246. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1247. memset(previous_speed, 0, sizeof(previous_speed));
  1248. }
  1249. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1250. void plan_set_z_position(const float &z)
  1251. {
  1252. #ifdef LIN_ADVANCE
  1253. position_float[Z_AXIS] = z;
  1254. #endif
  1255. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1256. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1257. }
  1258. void plan_set_e_position(const float &e)
  1259. {
  1260. #ifdef LIN_ADVANCE
  1261. position_float[E_AXIS] = e;
  1262. #endif
  1263. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1264. st_set_e_position(position[E_AXIS]);
  1265. }
  1266. void plan_reset_next_e()
  1267. {
  1268. plan_reset_next_e_queue = true;
  1269. }
  1270. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1271. void set_extrude_min_temp(int temp)
  1272. {
  1273. extrude_min_temp = temp;
  1274. }
  1275. #endif
  1276. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1277. void reset_acceleration_rates()
  1278. {
  1279. for(int8_t i=0; i < NUM_AXIS; i++)
  1280. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * cs.axis_steps_per_unit[i];
  1281. }
  1282. #ifdef TMC2130
  1283. void update_mode_profile()
  1284. {
  1285. if (tmc2130_mode == TMC2130_MODE_NORMAL)
  1286. {
  1287. max_feedrate = cs.max_feedrate_normal;
  1288. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  1289. }
  1290. else if (tmc2130_mode == TMC2130_MODE_SILENT)
  1291. {
  1292. max_feedrate = cs.max_feedrate_silent;
  1293. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_silent;
  1294. }
  1295. reset_acceleration_rates();
  1296. }
  1297. #endif //TMC2130
  1298. uint8_t number_of_blocks()
  1299. {
  1300. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1301. }
  1302. #ifdef PLANNER_DIAGNOSTICS
  1303. uint8_t planner_queue_min()
  1304. {
  1305. return g_cntr_planner_queue_min;
  1306. }
  1307. void planner_queue_min_reset()
  1308. {
  1309. g_cntr_planner_queue_min = moves_planned();
  1310. }
  1311. #endif /* PLANNER_DIAGNOSTICS */
  1312. void planner_add_sd_length(uint16_t sdlen)
  1313. {
  1314. if (block_buffer_head != block_buffer_tail) {
  1315. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1316. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1317. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1318. } else {
  1319. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1320. // at a power panic, so the length of this command may be forgotten.
  1321. }
  1322. }
  1323. uint16_t planner_calc_sd_length()
  1324. {
  1325. uint8_t _block_buffer_head = block_buffer_head;
  1326. uint8_t _block_buffer_tail = block_buffer_tail;
  1327. uint16_t sdlen = 0;
  1328. while (_block_buffer_head != _block_buffer_tail)
  1329. {
  1330. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1331. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1332. }
  1333. return sdlen;
  1334. }