| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789 | //! @file#include "Marlin.h"#include "fsensor.h"#include <avr/pgmspace.h>#include "pat9125.h"#include "stepper.h"#include "cmdqueue.h"#include "ultralcd.h"#include "mmu.h"#include "cardreader.h"#include "adc.h"#include "temperature.h"#include "config.h"//! @name Basic parameters//! @{#define FSENSOR_CHUNK_LEN      1.25 //!< filament sensor chunk length (mm)#define FSENSOR_ERR_MAX           4 //!< filament sensor maximum error/chunk count for runout detection#define FSENSOR_SOFTERR_CMAX      3 //!< number of contiguous soft failures before a triggering a runout#define FSENSOR_SOFTERR_DELTA 30000 //!< maximum interval (ms) to consider soft failures contiguous//! @}//! @name Optical quality measurement parameters//! @{#define FSENSOR_OQ_MAX_ES      2    //!< maximum sum of error blocks during filament recheck#define FSENSOR_OQ_MIN_YD      2    //!< minimum yd sum during filament check (counts per inch)#define FSENSOR_OQ_MIN_BR      80   //!< minimum brightness value#define FSENSOR_OQ_MAX_SH      10   //!< maximum shutter value//! @}const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";// PJ7 can not be used (does not have PinChangeInterrupt possibility)#define FSENSOR_INT_PIN          75 //!< filament sensor interrupt pin PJ4#define FSENSOR_INT_PIN_MASK   0x10 //!< filament sensor interrupt pin mask (bit4)#define FSENSOR_INT_PIN_PIN_REG PINJ              // PIN register @ PJ4#define FSENSOR_INT_PIN_VECT PCINT1_vect          // PinChange ISR @ PJ4#define FSENSOR_INT_PIN_PCMSK_REG PCMSK1          // PinChangeMaskRegister @ PJ4#define FSENSOR_INT_PIN_PCMSK_BIT PCINT13         // PinChange Interrupt / PinChange Enable Mask @ PJ4#define FSENSOR_INT_PIN_PCICR_BIT PCIE1           // PinChange Interrupt Enable / Flag @ PJ4//! enabled = initialized and sampled every chunk eventbool fsensor_enabled = true;//! runout watching is done in fsensor_update (called from main loop)bool fsensor_watch_runout = true;//! not responding - is set if any communication error occurred during initialization or readoutbool fsensor_not_responding = false;#ifdef PAT9125uint8_t fsensor_int_pin_old = 0;//! optical checking "chunk lenght" (already in steps)int16_t fsensor_chunk_len = 0;//! enable/disable quality meassurementbool fsensor_oq_meassure_enabled = false;//! number of errors, updated in ISRuint8_t fsensor_err_cnt = 0;//! variable for accumulating step count (updated callbacks from stepper and ISR)int16_t fsensor_st_cnt = 0;//! count of total sensor "soft" failures (filament status checks)uint8_t fsensor_softfail = 0;//! timestamp of last soft failureunsigned long fsensor_softfail_last = 0;//! count of soft failures within the configured timeuint8_t fsensor_softfail_ccnt = 0;#endif#ifdef DEBUG_FSENSOR_LOG//! log flag: 0=log disabled, 1=log enableduint8_t fsensor_log = 1;#endif //DEBUG_FSENSOR_LOG//! @name filament autoload variables//! @{//! autoload feature enabledbool fsensor_autoload_enabled = true;//! autoload watching enable/disable flagbool fsensor_watch_autoload = false;#ifdef PAT9125//uint16_t fsensor_autoload_y;//uint8_t fsensor_autoload_c;//uint32_t fsensor_autoload_last_millis;//uint8_t fsensor_autoload_sum;//! @}#endif//! @name filament optical quality measurement variables//! @{//! Measurement enable/disable flagbool fsensor_oq_meassure = false;//! skip-chunk counter, for accurate measurement is necessary to skip first chunk...uint8_t  fsensor_oq_skipchunk;//! number of samples from start of measurementuint8_t fsensor_oq_samples;//! sum of steps in positive direction movementsuint16_t fsensor_oq_st_sum;//! sum of deltas in positive direction movementsuint16_t fsensor_oq_yd_sum;//! sum of errors during measurementuint16_t fsensor_oq_er_sum;//! max error counter value during measurementuint8_t  fsensor_oq_er_max;//! minimum delta valueint16_t fsensor_oq_yd_min;//! maximum delta valueint16_t fsensor_oq_yd_max;//! sum of shutter valueuint16_t fsensor_oq_sh_sum;//! @}#ifdef IR_SENSOR_ANALOGClFsensorPCB oFsensorPCB;ClFsensorActionNA oFsensorActionNA;bool bIRsensorStateFlag=false;unsigned long nIRsensorLastTime;#endif //IR_SENSOR_ANALOGvoid fsensor_stop_and_save_print(void){    puts_P(PSTR("fsensor_stop_and_save_print"));    stop_and_save_print_to_ram(0, 0);    fsensor_watch_runout = false;}#ifdef PAT9125// Reset all internal counters to zero, including stepper callbacksvoid fsensor_reset_err_cnt(){    fsensor_err_cnt = 0;    pat9125_y = 0;    st_reset_fsensor();}void fsensor_set_axis_steps_per_unit(float u){    fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * u);}#endifvoid fsensor_restore_print_and_continue(void){    puts_P(PSTR("fsensor_restore_print_and_continue"));    fsensor_watch_runout = true;#ifdef PAT9125    fsensor_reset_err_cnt();#endif    restore_print_from_ram_and_continue(0);}// fsensor_checkpoint_print cuts the current print job at the current position,// allowing new instructions to be inserted in the middlevoid fsensor_checkpoint_print(void){    puts_P(PSTR("fsensor_checkpoint_print"));    stop_and_save_print_to_ram(0, 0);    restore_print_from_ram_and_continue(0);}#ifdef IR_SENSOR_ANALOGconst char* FsensorIRVersionText(){	switch(oFsensorPCB)	{		case ClFsensorPCB::_Old:			return _T(MSG_IR_03_OR_OLDER);		case ClFsensorPCB::_Rev04:			return _T(MSG_IR_04_OR_NEWER);		default:			return _T(MSG_IR_UNKNOWN);	}}#endif //IR_SENSOR_ANALOGvoid fsensor_init(void){#ifdef PAT9125	uint8_t pat9125 = pat9125_init();	printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);#endif //PAT9125	uint8_t fsensor_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);	fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);	fsensor_not_responding = false;#ifdef PAT9125	uint8_t oq_meassure_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENS_OQ_MEASS_ENABLED);	fsensor_oq_meassure_enabled = (oq_meassure_enabled == 1)?true:false;	fsensor_set_axis_steps_per_unit(cs.axis_steps_per_unit[E_AXIS]);		if (!pat9125){		fsensor_enabled = 0; //disable sensor		fsensor_not_responding = true;	}#endif //PAT9125#ifdef IR_SENSOR_ANALOG	bIRsensorStateFlag=false;	oFsensorPCB = (ClFsensorPCB)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_PCB);	oFsensorActionNA = (ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA);	// If the fsensor is not responding even at the start of the printer,	// set this flag accordingly to show N/A in Settings->Filament sensor.	// This is even valid for both fsensor board revisions (0.3 or older and 0.4).	// Must be done after reading what type of fsensor board we have	fsensor_not_responding = ! fsensor_IR_check();#endif //IR_SENSOR_ANALOG	if (fsensor_enabled){		fsensor_enable(false);                  // (in this case) EEPROM update is not necessary	} else {		fsensor_disable(false);                 // (in this case) EEPROM update is not necessary	}	printf_P(PSTR("FSensor %S"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED")));#ifdef IR_SENSOR_ANALOG	printf_P(PSTR(" (sensor board revision:%S)\n"), FsensorIRVersionText());#else //IR_SENSOR_ANALOG	MYSERIAL.println();#endif //IR_SENSOR_ANALOG	if (check_for_ir_sensor()){		ir_sensor_detected = true;	}}bool fsensor_enable(bool bUpdateEEPROM){#ifdef PAT9125    (void)bUpdateEEPROM; // silence unused warning in this variant	if (mmu_enabled == false) { //filament sensor is pat9125, enable only if it is working		uint8_t pat9125 = pat9125_init();		printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);		if (pat9125)			fsensor_not_responding = false;		else			fsensor_not_responding = true;		fsensor_enabled = pat9125 ? true : false;		fsensor_watch_runout = true;		fsensor_oq_meassure = false;        fsensor_reset_err_cnt();		eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled ? 0x01 : 0x00);		FSensorStateMenu = fsensor_enabled ? 1 : 0;	}	else //filament sensor is FINDA, always enable 	{		fsensor_enabled = true;		eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x01);		FSensorStateMenu = 1;	}#else // PAT9125#ifdef IR_SENSOR_ANALOG     if(!fsensor_IR_check())          {          bUpdateEEPROM=true;          fsensor_enabled=false;          fsensor_not_responding=true;          FSensorStateMenu=0;          }     else {#endif //IR_SENSOR_ANALOG     fsensor_enabled=true;     fsensor_not_responding=false;     FSensorStateMenu=1;#ifdef IR_SENSOR_ANALOG          }#endif //IR_SENSOR_ANALOG     if(bUpdateEEPROM)          eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, FSensorStateMenu);#endif //PAT9125	return fsensor_enabled;}void fsensor_disable(bool bUpdateEEPROM){ 	fsensor_enabled = false;	FSensorStateMenu = 0;     if(bUpdateEEPROM)          eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00); }void fsensor_autoload_set(bool State){#ifdef PAT9125	if (!State) fsensor_autoload_check_stop();#endif //PAT9125	fsensor_autoload_enabled = State;	eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);}void pciSetup(byte pin){// !!! "digitalPinTo?????bit()" does not provide the correct results for some MCU pins	*digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin	PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt	PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group }#ifdef PAT9125void fsensor_autoload_check_start(void){//	puts_P(_N("fsensor_autoload_check_start\n"));	if (!fsensor_enabled) return;	if (!fsensor_autoload_enabled) return;	if (fsensor_watch_autoload) return;	if (!pat9125_update()) //update sensor	{		fsensor_disable();		fsensor_not_responding = true;		fsensor_watch_autoload = false;		printf_P(ERRMSG_PAT9125_NOT_RESP, 3);		return;	}	puts_P(_N("fsensor_autoload_check_start - autoload ENABLED"));	fsensor_autoload_y = pat9125_y; //save current y value	fsensor_autoload_c = 0; //reset number of changes counter	fsensor_autoload_sum = 0;	fsensor_autoload_last_millis = _millis();	fsensor_watch_runout = false;	fsensor_watch_autoload = true;}void fsensor_autoload_check_stop(void){//	puts_P(_N("fsensor_autoload_check_stop\n"));	if (!fsensor_enabled) return;//	puts_P(_N("fsensor_autoload_check_stop 1\n"));	if (!fsensor_autoload_enabled) return;//	puts_P(_N("fsensor_autoload_check_stop 2\n"));	if (!fsensor_watch_autoload) return;	puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED"));	fsensor_autoload_sum = 0;	fsensor_watch_autoload = false;	fsensor_watch_runout = true;    fsensor_reset_err_cnt();}#endif //PAT9125bool fsensor_check_autoload(void){	if (!fsensor_enabled) return false;	if (!fsensor_autoload_enabled) return false;	if (ir_sensor_detected) {		if (digitalRead(IR_SENSOR_PIN) == 1) {			fsensor_watch_autoload = true;		}		else if (fsensor_watch_autoload == true) {			fsensor_watch_autoload = false;			return true;		}	}#ifdef PAT9125	if (!fsensor_watch_autoload)	{		fsensor_autoload_check_start();		return false;	}#if 0	uint8_t fsensor_autoload_c_old = fsensor_autoload_c;#endif	if ((_millis() - fsensor_autoload_last_millis) < 25) return false;	fsensor_autoload_last_millis = _millis();	if (!pat9125_update_y()) //update sensor	{		fsensor_disable();		fsensor_not_responding = true;		printf_P(ERRMSG_PAT9125_NOT_RESP, 2);		return false;	}	int16_t dy = pat9125_y - fsensor_autoload_y;	if (dy) //? dy value is nonzero	{		if (dy > 0) //? delta-y value is positive (inserting)		{			fsensor_autoload_sum += dy;			fsensor_autoload_c += 3; //increment change counter by 3		}		else if (fsensor_autoload_c > 1)			fsensor_autoload_c -= 2; //decrement change counter by 2 		fsensor_autoload_y = pat9125_y; //save current value	}	else if (fsensor_autoload_c > 0)		fsensor_autoload_c--;	if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;#if 0  	puts_P(_N("fsensor_check_autoload\n"));  	if (fsensor_autoload_c != fsensor_autoload_c_old)  		printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);#endif//	if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))	if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20))	{//		puts_P(_N("fsensor_check_autoload = true !!!\n"));		return true;	}#endif //PAT9125	return false;}#ifdef PAT9125void fsensor_oq_meassure_set(bool State){	fsensor_oq_meassure_enabled = State;	eeprom_update_byte((unsigned char *)EEPROM_FSENS_OQ_MEASS_ENABLED, fsensor_oq_meassure_enabled);}void fsensor_oq_meassure_start(uint8_t skip){	if (!fsensor_enabled) return;	if (!fsensor_oq_meassure_enabled) return;	puts_P(PSTR("fsensor_oq_meassure_start"));	fsensor_oq_skipchunk = skip;	fsensor_oq_samples = 0;	fsensor_oq_st_sum = 0;	fsensor_oq_yd_sum = 0;	fsensor_oq_er_sum = 0;	fsensor_oq_er_max = 0;	fsensor_oq_yd_min = INT16_MAX;	fsensor_oq_yd_max = 0;	fsensor_oq_sh_sum = 0;	pat9125_update();	pat9125_y = 0;	fsensor_oq_meassure = true;}void fsensor_oq_meassure_stop(void){	if (!fsensor_enabled) return;	if (!fsensor_oq_meassure_enabled) return;	printf_P(PSTR("fsensor_oq_meassure_stop, %hhu samples\n"), fsensor_oq_samples);	printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);	printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));	fsensor_oq_meassure = false;}#ifdef FSENSOR_QUALITYconst char _OK[] PROGMEM = "OK";const char _NG[] PROGMEM = "NG!";bool fsensor_oq_result(void){	if (!fsensor_enabled) return true;	if (!fsensor_oq_meassure_enabled) return true;	puts_P(_N("fsensor_oq_result"));	bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);	printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));	bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);	printf_P(_N(" er_max = %hhu %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));	uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum);	bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);	printf_P(_N(" yd_avg = %hhu %S\n"), yd_avg, (res_yd_avg?_OK:_NG));	bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));	printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));	bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));	printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));	uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min);	printf_P(_N(" yd_dev = %u\n"), yd_dev);	uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1);	printf_P(_N(" yd_qua = %u %S\n"), yd_qua, ((yd_qua >= 8)?_OK:_NG));	uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);	bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);	if (yd_qua >= 8) res_sh_avg = true;	printf_P(_N(" sh_avg = %hhu %S\n"), sh_avg, (res_sh_avg?_OK:_NG));	bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;	printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));	return res;}#endif //FSENSOR_QUALITYFORCE_INLINE static void fsensor_isr(int st_cnt){	uint8_t old_err_cnt = fsensor_err_cnt;	uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();	if (!pat9125_res)	{		fsensor_disable();		fsensor_not_responding = true;		printf_P(ERRMSG_PAT9125_NOT_RESP, 1);	}	if (st_cnt != 0)	{        // movement was planned, check for sensor movement        int8_t st_dir = st_cnt >= 0;        int8_t pat9125_dir = pat9125_y >= 0;        if (pat9125_y == 0)        {            if (st_dir)            {                // no movement detected: we might be within a blind sensor range,                // update the frame and shutter parameters we didn't earlier                if (!fsensor_oq_meassure)                    pat9125_update_bs();                // increment the error count only if underexposed: filament likely missing                if ((pat9125_b < FSENSOR_OQ_MIN_BR) && (pat9125_s > FSENSOR_OQ_MAX_SH))                {                    // check for a dark frame (<30% avg brightness) with long exposure                    ++fsensor_err_cnt;                }                else                {                    // good frame, filament likely present                    if(fsensor_err_cnt) --fsensor_err_cnt;                }            }        }        else if (pat9125_dir != st_dir)        {            // detected direction opposite of motor movement            if (st_dir) ++fsensor_err_cnt;        }        else if (pat9125_dir == st_dir)        {            // direction agreeing with planned movement            if (fsensor_err_cnt) --fsensor_err_cnt;        }        if (st_dir && fsensor_oq_meassure)        {            // extruding with quality assessment            if (fsensor_oq_skipchunk)            {                fsensor_oq_skipchunk--;                fsensor_err_cnt = 0;            }            else            {                if (st_cnt == fsensor_chunk_len)                {                    if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;                    if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;                }                fsensor_oq_samples++;                fsensor_oq_st_sum += st_cnt;                if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y;                if (fsensor_err_cnt > old_err_cnt)                    fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);                if (fsensor_oq_er_max < fsensor_err_cnt)                    fsensor_oq_er_max = fsensor_err_cnt;                fsensor_oq_sh_sum += pat9125_s;            }        }	}#ifdef DEBUG_FSENSOR_LOG	if (fsensor_log)	{		printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));		if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);	}#endif //DEBUG_FSENSOR_LOG	pat9125_y = 0;}ISR(FSENSOR_INT_PIN_VECT){    if (mmu_enabled || ir_sensor_detected) return;    if (!((fsensor_int_pin_old ^ FSENSOR_INT_PIN_PIN_REG) & FSENSOR_INT_PIN_MASK)) return;    fsensor_int_pin_old = FSENSOR_INT_PIN_PIN_REG;    // prevent isr re-entry    static bool _lock = false;    if (!_lock)    {        // fetch fsensor_st_cnt atomically        int st_cnt = fsensor_st_cnt;        fsensor_st_cnt = 0;        _lock = true;        sei();        fsensor_isr(st_cnt);        cli();        _lock = false;    }}void fsensor_setup_interrupt(void){	pinMode(FSENSOR_INT_PIN, OUTPUT);	digitalWrite(FSENSOR_INT_PIN, LOW);	fsensor_int_pin_old = 0;	//pciSetup(FSENSOR_INT_PIN);// !!! "pciSetup()" does not provide the correct results for some MCU pins// so interrupt registers settings:     FSENSOR_INT_PIN_PCMSK_REG |= bit(FSENSOR_INT_PIN_PCMSK_BIT); // enable corresponding PinChangeInterrupt (individual pin)     PCIFR |= bit(FSENSOR_INT_PIN_PCICR_BIT);     // clear previous occasional interrupt (set of pins)     PCICR |= bit(FSENSOR_INT_PIN_PCICR_BIT);     // enable corresponding PinChangeInterrupt (set of pins)}void fsensor_st_block_chunk(int cnt){	if (!fsensor_enabled) return;	fsensor_st_cnt += cnt;	// !!! bit toggling (PINxn <- 1) (for PinChangeInterrupt) does not work for some MCU pins	WRITE(FSENSOR_INT_PIN, !READ(FSENSOR_INT_PIN));}#endif //PAT9125//! Common code for enqueing M600 and supplemental codes into the command queue.//! Used both for the IR sensor and the PAT9125void fsensor_enque_M600(){	puts_P(PSTR("fsensor_update - M600"));	eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);	eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);	enquecommand_front_P((PSTR("M600")));}//! @brief filament sensor update (perform M600 on filament runout)//!//! Works only if filament sensor is enabled.//! When the filament sensor error count is larger then FSENSOR_ERR_MAX, pauses print, tries to move filament back and forth.//! If there is still no plausible signal from filament sensor plans M600 (Filament change).void fsensor_update(void){#ifdef PAT9125    if (fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))        {            fsensor_stop_and_save_print();            KEEPALIVE_STATE(IN_HANDLER);            bool autoload_enabled_tmp = fsensor_autoload_enabled;            fsensor_autoload_enabled = false;            bool oq_meassure_enabled_tmp = fsensor_oq_meassure_enabled;            fsensor_oq_meassure_enabled = true;            // move the nozzle away while checking the filament            current_position[Z_AXIS] += 0.8;            if(current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;            plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);            st_synchronize();            // check the filament in isolation            fsensor_reset_err_cnt();            fsensor_oq_meassure_start(0);            float e_tmp = current_position[E_AXIS];            current_position[E_AXIS] -= 3;            plan_buffer_line_curposXYZE(250/60);            current_position[E_AXIS] = e_tmp;            plan_buffer_line_curposXYZE(200/60);            st_synchronize();            fsensor_oq_meassure_stop();            bool err = false;            err |= (fsensor_err_cnt > 0);                   // final error count is non-zero            err |= (fsensor_oq_er_sum > FSENSOR_OQ_MAX_ES); // total error count is above limit            err |= (fsensor_oq_yd_sum < FSENSOR_OQ_MIN_YD); // total measured distance is below limit            fsensor_restore_print_and_continue();            fsensor_autoload_enabled = autoload_enabled_tmp;            fsensor_oq_meassure_enabled = oq_meassure_enabled_tmp;            unsigned long now = _millis();            if (!err && (now - fsensor_softfail_last) > FSENSOR_SOFTERR_DELTA)                fsensor_softfail_ccnt = 0;            if (!err && fsensor_softfail_ccnt <= FSENSOR_SOFTERR_CMAX)            {                puts_P(PSTR("fsensor_err_cnt = 0"));                ++fsensor_softfail;                ++fsensor_softfail_ccnt;                fsensor_softfail_last = now;            }            else            {                fsensor_softfail_ccnt = 0;                fsensor_softfail_last = 0;                fsensor_enque_M600();            }        }#else //PAT9125        if (CHECK_FSENSOR && ir_sensor_detected)        {            if(digitalRead(IR_SENSOR_PIN))            {                                  // IR_SENSOR_PIN ~ H#ifdef IR_SENSOR_ANALOG                if(!bIRsensorStateFlag)                {                    bIRsensorStateFlag=true;                    nIRsensorLastTime=_millis();                }                else                {                    if((_millis()-nIRsensorLastTime)>IR_SENSOR_STEADY)                    {                        uint8_t nMUX1,nMUX2;                        uint16_t nADC;                        bIRsensorStateFlag=false;                        // sequence for direct data reading from AD converter                        DISABLE_TEMPERATURE_INTERRUPT();                        nMUX1=ADMUX;        // ADMUX saving                        nMUX2=ADCSRB;                        adc_setmux(VOLT_IR_PIN);                        ADCSRA|=(1<<ADSC);  // first conversion after ADMUX change discarded (preventively)                        while(ADCSRA&(1<<ADSC))                            ;                        ADCSRA|=(1<<ADSC);  // second conversion used                        while(ADCSRA&(1<<ADSC))                            ;                        nADC=ADC;                        ADMUX=nMUX1;        // ADMUX restoring                        ADCSRB=nMUX2;                        ENABLE_TEMPERATURE_INTERRUPT();                        // end of sequence for ...                        // Detection of correct function of fsensor v04 - it must NOT read >4.6V                        // If it does, it means a disconnected cables or faulty board                        if( (oFsensorPCB == ClFsensorPCB::_Rev04) && ( (nADC*OVERSAMPLENR) > IRsensor_Hopen_TRESHOLD ) )                        {                            fsensor_disable();                            fsensor_not_responding = true;                            printf_P(PSTR("IR sensor not responding (%d)!\n"),1);                            if((ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA)==ClFsensorActionNA::_Pause)                            // if we are printing and FS action is set to "Pause", force pause the print                            if(oFsensorActionNA==ClFsensorActionNA::_Pause)                                lcd_pause_print();                        }                        else                        {#endif //IR_SENSOR_ANALOG                            fsensor_checkpoint_print();                            fsensor_enque_M600();#ifdef IR_SENSOR_ANALOG                        }                    }                }                   }                   else                   {                                  // IR_SENSOR_PIN ~ L                        bIRsensorStateFlag=false;#endif //IR_SENSOR_ANALOG            }        }#endif //PAT9125}#ifdef IR_SENSOR_ANALOG/// This is called only upon start of the printer or when switching the fsensor ON in the menu/// We cannot do temporal window checks here (aka the voltage has been in some range for a period of time)bool fsensor_IR_check(){    if( IRsensor_Lmax_TRESHOLD <= current_voltage_raw_IR && current_voltage_raw_IR <= IRsensor_Hmin_TRESHOLD ){        /// If the voltage is in forbidden range, the fsensor is ok, but the lever is mounted improperly.        /// Or the user is so creative so that he can hold a piece of fillament in the hole in such a genius way,        /// that the IR fsensor reading is within 1.5 and 3V ... this would have been highly unusual        /// and would have been considered more like a sabotage than normal printer operation        puts_P(PSTR("fsensor in forbidden range 1.5-3V - check sensor"));        return false;     }    if( oFsensorPCB == ClFsensorPCB::_Rev04 ){        /// newer IR sensor cannot normally produce 4.6-5V, this is considered a failure/bad mount        if( IRsensor_Hopen_TRESHOLD <= current_voltage_raw_IR && current_voltage_raw_IR <= IRsensor_VMax_TRESHOLD ){            puts_P(PSTR("fsensor v0.4 in fault range 4.6-5V - unconnected"));            return false;        }        /// newer IR sensor cannot normally produce 0-0.3V, this is considered a failure #if 0	//Disabled as it has to be decided if we gonna use this or not.        if( IRsensor_Hopen_TRESHOLD <= current_voltage_raw_IR && current_voltage_raw_IR <= IRsensor_VMax_TRESHOLD ){            puts_P(PSTR("fsensor v0.4 in fault range 0.0-0.3V - wrong IR sensor"));            return false;        }#endif    }    /// If IR sensor is "uknown state" and filament is not loaded > 1.5V return false#if 0    if( (oFsensorPCB == ClFsensorPCB::_Undef) && ( current_voltage_raw_IR > IRsensor_Lmax_TRESHOLD ) ){        puts_P(PSTR("Unknown IR sensor version and no filament loaded detected."));        return false;    }#endif    // otherwise the IR fsensor is considered working correctly    return true;}#endif //IR_SENSOR_ANALOG
 |