temperature.cpp 66 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "messages.h"
  33. #include "Timer.h"
  34. #include "Configuration_prusa.h"
  35. #include "config.h"
  36. //===========================================================================
  37. //=============================public variables============================
  38. //===========================================================================
  39. int target_temperature[EXTRUDERS] = { 0 };
  40. int target_temperature_bed = 0;
  41. int current_temperature_raw[EXTRUDERS] = { 0 };
  42. float current_temperature[EXTRUDERS] = { 0.0 };
  43. #ifdef PINDA_THERMISTOR
  44. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  45. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  46. float current_temperature_pinda = 0.0;
  47. #endif //PINDA_THERMISTOR
  48. #ifdef AMBIENT_THERMISTOR
  49. int current_temperature_raw_ambient = 0 ;
  50. float current_temperature_ambient = 0.0;
  51. #endif //AMBIENT_THERMISTOR
  52. #ifdef VOLT_PWR_PIN
  53. int current_voltage_raw_pwr = 0;
  54. #endif
  55. #ifdef VOLT_BED_PIN
  56. int current_voltage_raw_bed = 0;
  57. #endif
  58. #ifdef IR_SENSOR_ANALOG
  59. uint16_t current_voltage_raw_IR = 0;
  60. #endif //IR_SENSOR_ANALOG
  61. int current_temperature_bed_raw = 0;
  62. float current_temperature_bed = 0.0;
  63. #ifdef PIDTEMP
  64. float _Kp, _Ki, _Kd;
  65. int pid_cycle, pid_number_of_cycles;
  66. bool pid_tuning_finished = false;
  67. #ifdef PID_ADD_EXTRUSION_RATE
  68. float Kc=DEFAULT_Kc;
  69. #endif
  70. #endif //PIDTEMP
  71. #ifdef FAN_SOFT_PWM
  72. unsigned char fanSpeedSoftPwm;
  73. #endif
  74. #ifdef FANCHECK
  75. volatile uint8_t fan_check_error = EFCE_OK;
  76. #endif
  77. unsigned char soft_pwm_bed;
  78. #ifdef BABYSTEPPING
  79. volatile int babystepsTodo[3]={0,0,0};
  80. #endif
  81. //===========================================================================
  82. //=============================private variables============================
  83. //===========================================================================
  84. static volatile bool temp_meas_ready = false;
  85. #ifdef PIDTEMP
  86. //static cannot be external:
  87. static float iState_sum[EXTRUDERS] = { 0 };
  88. static float dState_last[EXTRUDERS] = { 0 };
  89. static float pTerm[EXTRUDERS];
  90. static float iTerm[EXTRUDERS];
  91. static float dTerm[EXTRUDERS];
  92. //int output;
  93. static float pid_error[EXTRUDERS];
  94. static float iState_sum_min[EXTRUDERS];
  95. static float iState_sum_max[EXTRUDERS];
  96. // static float pid_input[EXTRUDERS];
  97. // static float pid_output[EXTRUDERS];
  98. static bool pid_reset[EXTRUDERS];
  99. #endif //PIDTEMP
  100. #ifdef PIDTEMPBED
  101. //static cannot be external:
  102. static float temp_iState_bed = { 0 };
  103. static float temp_dState_bed = { 0 };
  104. static float pTerm_bed;
  105. static float iTerm_bed;
  106. static float dTerm_bed;
  107. //int output;
  108. static float pid_error_bed;
  109. static float temp_iState_min_bed;
  110. static float temp_iState_max_bed;
  111. #else //PIDTEMPBED
  112. static unsigned long previous_millis_bed_heater;
  113. #endif //PIDTEMPBED
  114. static unsigned char soft_pwm[EXTRUDERS];
  115. #ifdef FAN_SOFT_PWM
  116. static unsigned char soft_pwm_fan;
  117. #endif
  118. uint8_t fanSpeedBckp = 255;
  119. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  120. unsigned long extruder_autofan_last_check = _millis();
  121. bool fan_measuring = false;
  122. uint8_t fanState = 0;
  123. #ifdef EXTRUDER_ALTFAN_DETECT
  124. bool extruderFanIsAltfan = false; //set to Noctua
  125. uint8_t altfanOverride = 0;
  126. #endif //EXTRUDER_ALTFAN_DETECT
  127. #endif
  128. #if EXTRUDERS > 3
  129. # error Unsupported number of extruders
  130. #elif EXTRUDERS > 2
  131. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  132. #elif EXTRUDERS > 1
  133. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  134. #else
  135. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  136. #endif
  137. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  138. // Init min and max temp with extreme values to prevent false errors during startup
  139. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  140. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  141. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  142. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  143. #ifdef BED_MINTEMP
  144. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  145. #endif
  146. #ifdef BED_MAXTEMP
  147. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  148. #endif
  149. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  150. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  151. static float analog2temp(int raw, uint8_t e);
  152. static float analog2tempBed(int raw);
  153. static float analog2tempAmbient(int raw);
  154. static void updateTemperaturesFromRawValues();
  155. enum TempRunawayStates
  156. {
  157. TempRunaway_INACTIVE = 0,
  158. TempRunaway_PREHEAT = 1,
  159. TempRunaway_ACTIVE = 2,
  160. };
  161. #ifndef SOFT_PWM_SCALE
  162. #define SOFT_PWM_SCALE 0
  163. #endif
  164. //===========================================================================
  165. //============================= functions ============================
  166. //===========================================================================
  167. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  168. static float temp_runaway_status[4];
  169. static float temp_runaway_target[4];
  170. static float temp_runaway_timer[4];
  171. static int temp_runaway_error_counter[4];
  172. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  173. static void temp_runaway_stop(bool isPreheat, bool isBed);
  174. #endif
  175. #ifdef EXTRUDER_ALTFAN_DETECT
  176. ISR(INT6_vect) {
  177. fan_edge_counter[0]++;
  178. }
  179. bool extruder_altfan_detect()
  180. {
  181. setExtruderAutoFanState(3);
  182. SET_INPUT(TACH_0);
  183. altfanOverride = eeprom_read_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE);
  184. if (altfanOverride == EEPROM_EMPTY_VALUE)
  185. {
  186. altfanOverride = 0;
  187. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, altfanOverride);
  188. }
  189. CRITICAL_SECTION_START;
  190. EICRB &= ~(1 << ISC61);
  191. EICRB |= (1 << ISC60);
  192. EIMSK |= (1 << INT6);
  193. fan_edge_counter[0] = 0;
  194. CRITICAL_SECTION_END;
  195. extruder_autofan_last_check = _millis();
  196. _delay(1000);
  197. EIMSK &= ~(1 << INT6);
  198. countFanSpeed();
  199. extruderFanIsAltfan = fan_speed[0] > 100;
  200. setExtruderAutoFanState(1);
  201. return extruderFanIsAltfan;
  202. }
  203. void altfanOverride_toggle()
  204. {
  205. altfanOverride = !altfanOverride;
  206. eeprom_update_byte((uint8_t *)EEPROM_ALTFAN_OVERRIDE, altfanOverride);
  207. }
  208. bool altfanOverride_get()
  209. {
  210. return altfanOverride;
  211. }
  212. #endif //EXTRUDER_ALTFAN_DETECT
  213. // return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on')
  214. bool checkAllHotends(void)
  215. {
  216. bool result=false;
  217. for(int i=0;i<EXTRUDERS;i++) result=(result||(target_temperature[i]!=0));
  218. return(result);
  219. }
  220. void PID_autotune(float temp, int extruder, int ncycles)
  221. {
  222. pid_number_of_cycles = ncycles;
  223. pid_tuning_finished = false;
  224. float input = 0.0;
  225. pid_cycle=0;
  226. bool heating = true;
  227. unsigned long temp_millis = _millis();
  228. unsigned long t1=temp_millis;
  229. unsigned long t2=temp_millis;
  230. long t_high = 0;
  231. long t_low = 0;
  232. long bias, d;
  233. float Ku, Tu;
  234. float max = 0, min = 10000;
  235. uint8_t safety_check_cycles = 0;
  236. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  237. float temp_ambient;
  238. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  239. unsigned long extruder_autofan_last_check = _millis();
  240. #endif
  241. if ((extruder >= EXTRUDERS)
  242. #if (TEMP_BED_PIN <= -1)
  243. ||(extruder < 0)
  244. #endif
  245. ){
  246. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  247. pid_tuning_finished = true;
  248. pid_cycle = 0;
  249. return;
  250. }
  251. SERIAL_ECHOLN("PID Autotune start");
  252. disable_heater(); // switch off all heaters.
  253. if (extruder<0)
  254. {
  255. soft_pwm_bed = (MAX_BED_POWER)/2;
  256. timer02_set_pwm0(soft_pwm_bed << 1);
  257. bias = d = (MAX_BED_POWER)/2;
  258. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  259. }
  260. else
  261. {
  262. soft_pwm[extruder] = (PID_MAX)/2;
  263. bias = d = (PID_MAX)/2;
  264. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  265. }
  266. for(;;) {
  267. #ifdef WATCHDOG
  268. wdt_reset();
  269. #endif //WATCHDOG
  270. if(temp_meas_ready == true) { // temp sample ready
  271. updateTemperaturesFromRawValues();
  272. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  273. max=max(max,input);
  274. min=min(min,input);
  275. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  276. if(_millis() - extruder_autofan_last_check > 2500) {
  277. checkExtruderAutoFans();
  278. extruder_autofan_last_check = _millis();
  279. }
  280. #endif
  281. if(heating == true && input > temp) {
  282. if(_millis() - t2 > 5000) {
  283. heating=false;
  284. if (extruder<0)
  285. {
  286. soft_pwm_bed = (bias - d) >> 1;
  287. timer02_set_pwm0(soft_pwm_bed << 1);
  288. }
  289. else
  290. soft_pwm[extruder] = (bias - d) >> 1;
  291. t1=_millis();
  292. t_high=t1 - t2;
  293. max=temp;
  294. }
  295. }
  296. if(heating == false && input < temp) {
  297. if(_millis() - t1 > 5000) {
  298. heating=true;
  299. t2=_millis();
  300. t_low=t2 - t1;
  301. if(pid_cycle > 0) {
  302. bias += (d*(t_high - t_low))/(t_low + t_high);
  303. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  304. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  305. else d = bias;
  306. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  307. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  308. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  309. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  310. if(pid_cycle > 2) {
  311. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  312. Tu = ((float)(t_low + t_high)/1000.0);
  313. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  314. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  315. _Kp = 0.6*Ku;
  316. _Ki = 2*_Kp/Tu;
  317. _Kd = _Kp*Tu/8;
  318. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  319. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  320. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  321. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  322. /*
  323. _Kp = 0.33*Ku;
  324. _Ki = _Kp/Tu;
  325. _Kd = _Kp*Tu/3;
  326. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  327. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  328. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  329. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  330. _Kp = 0.2*Ku;
  331. _Ki = 2*_Kp/Tu;
  332. _Kd = _Kp*Tu/3;
  333. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  334. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  335. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  336. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  337. */
  338. }
  339. }
  340. if (extruder<0)
  341. {
  342. soft_pwm_bed = (bias + d) >> 1;
  343. timer02_set_pwm0(soft_pwm_bed << 1);
  344. }
  345. else
  346. soft_pwm[extruder] = (bias + d) >> 1;
  347. pid_cycle++;
  348. min=temp;
  349. }
  350. }
  351. }
  352. if(input > (temp + 20)) {
  353. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  354. pid_tuning_finished = true;
  355. pid_cycle = 0;
  356. return;
  357. }
  358. if(_millis() - temp_millis > 2000) {
  359. int p;
  360. if (extruder<0){
  361. p=soft_pwm_bed;
  362. SERIAL_PROTOCOLPGM("B:");
  363. }else{
  364. p=soft_pwm[extruder];
  365. SERIAL_PROTOCOLPGM("T:");
  366. }
  367. SERIAL_PROTOCOL(input);
  368. SERIAL_PROTOCOLPGM(" @:");
  369. SERIAL_PROTOCOLLN(p);
  370. if (safety_check_cycles == 0) { //save ambient temp
  371. temp_ambient = input;
  372. //SERIAL_ECHOPGM("Ambient T: ");
  373. //MYSERIAL.println(temp_ambient);
  374. safety_check_cycles++;
  375. }
  376. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  377. safety_check_cycles++;
  378. }
  379. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  380. safety_check_cycles++;
  381. //SERIAL_ECHOPGM("Time from beginning: ");
  382. //MYSERIAL.print(safety_check_cycles_count * 2);
  383. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  384. //MYSERIAL.println(input - temp_ambient);
  385. if (abs(input - temp_ambient) < 5.0) {
  386. temp_runaway_stop(false, (extruder<0));
  387. pid_tuning_finished = true;
  388. return;
  389. }
  390. }
  391. temp_millis = _millis();
  392. }
  393. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  394. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  395. pid_tuning_finished = true;
  396. pid_cycle = 0;
  397. return;
  398. }
  399. if(pid_cycle > ncycles) {
  400. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  401. pid_tuning_finished = true;
  402. pid_cycle = 0;
  403. return;
  404. }
  405. lcd_update(0);
  406. }
  407. }
  408. void updatePID()
  409. {
  410. #ifdef PIDTEMP
  411. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  412. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  413. }
  414. #endif
  415. #ifdef PIDTEMPBED
  416. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  417. #endif
  418. }
  419. int getHeaterPower(int heater) {
  420. if (heater<0)
  421. return soft_pwm_bed;
  422. return soft_pwm[heater];
  423. }
  424. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  425. #if defined(FAN_PIN) && FAN_PIN > -1
  426. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  427. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  428. #endif
  429. #endif
  430. void setExtruderAutoFanState(uint8_t state)
  431. {
  432. //If bit 1 is set (0x02), then the extruder fan speed won't be adjusted according to temperature. Useful for forcing
  433. //the fan to either On or Off during certain tests/errors.
  434. fanState = state;
  435. uint8_t newFanSpeed = 0;
  436. if (fanState & 0x01)
  437. {
  438. #ifdef EXTRUDER_ALTFAN_DETECT
  439. if (extruderFanIsAltfan && !altfanOverride) newFanSpeed = EXTRUDER_ALTFAN_SPEED_SILENT;
  440. else newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  441. #else //EXTRUDER_ALTFAN_DETECT
  442. newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  443. #endif //EXTRUDER_ALTFAN_DETECT
  444. }
  445. timer4_set_fan0(newFanSpeed);
  446. }
  447. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  448. void countFanSpeed()
  449. {
  450. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  451. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  452. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  453. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  454. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  455. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  456. SERIAL_ECHOLNPGM(" ");*/
  457. fan_edge_counter[0] = 0;
  458. fan_edge_counter[1] = 0;
  459. }
  460. void checkFanSpeed()
  461. {
  462. uint8_t max_print_fan_errors = 0;
  463. uint8_t max_extruder_fan_errors = 0;
  464. #ifdef FAN_SOFT_PWM
  465. max_print_fan_errors = 3; //15 seconds
  466. max_extruder_fan_errors = 2; //10seconds
  467. #else //FAN_SOFT_PWM
  468. max_print_fan_errors = 15; //15 seconds
  469. max_extruder_fan_errors = 5; //5 seconds
  470. #endif //FAN_SOFT_PWM
  471. if(fans_check_enabled != false)
  472. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  473. static unsigned char fan_speed_errors[2] = { 0,0 };
  474. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  475. if ((fan_speed[0] < 20) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
  476. else{
  477. fan_speed_errors[0] = 0;
  478. host_keepalive();
  479. }
  480. #endif
  481. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  482. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  483. else fan_speed_errors[1] = 0;
  484. #endif
  485. // drop the fan_check_error flag when both fans are ok
  486. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  487. // we may even send some info to the LCD from here
  488. fan_check_error = EFCE_FIXED;
  489. }
  490. if ((fan_check_error == EFCE_FIXED) && !PRINTER_ACTIVE){
  491. fan_check_error = EFCE_OK; //if the issue is fixed while the printer is doing nothing, reenable processing immediately.
  492. lcd_reset_alert_level(); //for another fan speed error
  493. }
  494. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  495. fan_speed_errors[0] = 0;
  496. fanSpeedError(0); //extruder fan
  497. }
  498. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  499. fan_speed_errors[1] = 0;
  500. fanSpeedError(1); //print fan
  501. }
  502. }
  503. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  504. //! Extracted from fanSpeedError to save some space.
  505. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  506. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  507. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  508. SERIAL_ECHOLNRPGM(serialMsg);
  509. if (get_message_level() == 0) {
  510. Sound_MakeCustom(200,0,true);
  511. LCD_ALERTMESSAGERPGM(lcdMsg);
  512. }
  513. }
  514. void fanSpeedError(unsigned char _fan) {
  515. if (get_message_level() != 0 && isPrintPaused) return;
  516. //to ensure that target temp. is not set to zero in case that we are resuming print
  517. if (card.sdprinting || is_usb_printing) {
  518. if (heating_status != 0) {
  519. lcd_print_stop();
  520. }
  521. else {
  522. fan_check_error = EFCE_DETECTED; //plans error for next processed command
  523. }
  524. }
  525. else {
  526. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED); //Why pause octoprint? is_usb_printing would be true in that case, so there is no need for this.
  527. setTargetHotend0(0);
  528. heating_status = 0;
  529. fan_check_error = EFCE_REPORTED;
  530. }
  531. switch (_fan) {
  532. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  533. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), MSG_FANCHECK_EXTRUDER);
  534. break;
  535. case 1:
  536. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT);
  537. break;
  538. }
  539. // SERIAL_PROTOCOLLNRPGM(MSG_OK); //This ok messes things up with octoprint.
  540. }
  541. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  542. void checkExtruderAutoFans()
  543. {
  544. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  545. if (!(fanState & 0x02))
  546. {
  547. fanState &= ~1;
  548. fanState |= current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE;
  549. }
  550. setExtruderAutoFanState(fanState);
  551. #endif
  552. }
  553. #endif // any extruder auto fan pins set
  554. // ready for eventually parameters adjusting
  555. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  556. //void resetPID(uint8_t extruder)
  557. {
  558. }
  559. void manage_heater()
  560. {
  561. #ifdef WATCHDOG
  562. wdt_reset();
  563. #endif //WATCHDOG
  564. float pid_input;
  565. float pid_output;
  566. if(temp_meas_ready != true) //better readability
  567. return;
  568. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  569. updateTemperaturesFromRawValues();
  570. check_max_temp();
  571. check_min_temp();
  572. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  573. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  574. #endif
  575. for(int e = 0; e < EXTRUDERS; e++)
  576. {
  577. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  578. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  579. #endif
  580. #ifdef PIDTEMP
  581. pid_input = current_temperature[e];
  582. #ifndef PID_OPENLOOP
  583. if(target_temperature[e] == 0) {
  584. pid_output = 0;
  585. pid_reset[e] = true;
  586. } else {
  587. pid_error[e] = target_temperature[e] - pid_input;
  588. if(pid_reset[e]) {
  589. iState_sum[e] = 0.0;
  590. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  591. pid_reset[e] = false;
  592. }
  593. #ifndef PonM
  594. pTerm[e] = cs.Kp * pid_error[e];
  595. iState_sum[e] += pid_error[e];
  596. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  597. iTerm[e] = cs.Ki * iState_sum[e];
  598. // PID_K1 defined in Configuration.h in the PID settings
  599. #define K2 (1.0-PID_K1)
  600. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  601. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  602. if (pid_output > PID_MAX) {
  603. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  604. pid_output=PID_MAX;
  605. } else if (pid_output < 0) {
  606. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  607. pid_output=0;
  608. }
  609. #else // PonM ("Proportional on Measurement" method)
  610. iState_sum[e] += cs.Ki * pid_error[e];
  611. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  612. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  613. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  614. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  615. pid_output = constrain(pid_output, 0, PID_MAX);
  616. #endif // PonM
  617. }
  618. dState_last[e] = pid_input;
  619. #else
  620. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  621. #endif //PID_OPENLOOP
  622. #ifdef PID_DEBUG
  623. SERIAL_ECHO_START;
  624. SERIAL_ECHO(" PID_DEBUG ");
  625. SERIAL_ECHO(e);
  626. SERIAL_ECHO(": Input ");
  627. SERIAL_ECHO(pid_input);
  628. SERIAL_ECHO(" Output ");
  629. SERIAL_ECHO(pid_output);
  630. SERIAL_ECHO(" pTerm ");
  631. SERIAL_ECHO(pTerm[e]);
  632. SERIAL_ECHO(" iTerm ");
  633. SERIAL_ECHO(iTerm[e]);
  634. SERIAL_ECHO(" dTerm ");
  635. SERIAL_ECHOLN(-dTerm[e]);
  636. #endif //PID_DEBUG
  637. #else /* PID off */
  638. pid_output = 0;
  639. if(current_temperature[e] < target_temperature[e]) {
  640. pid_output = PID_MAX;
  641. }
  642. #endif
  643. // Check if temperature is within the correct range
  644. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  645. {
  646. soft_pwm[e] = (int)pid_output >> 1;
  647. }
  648. else
  649. {
  650. soft_pwm[e] = 0;
  651. }
  652. } // End extruder for loop
  653. #define FAN_CHECK_PERIOD 5000 //5s
  654. #define FAN_CHECK_DURATION 100 //100ms
  655. #ifndef DEBUG_DISABLE_FANCHECK
  656. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  657. #ifdef FAN_SOFT_PWM
  658. #ifdef FANCHECK
  659. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  660. extruder_autofan_last_check = _millis();
  661. fanSpeedBckp = fanSpeedSoftPwm;
  662. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  663. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  664. fanSpeedSoftPwm = 255;
  665. }
  666. fan_measuring = true;
  667. }
  668. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  669. countFanSpeed();
  670. checkFanSpeed();
  671. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  672. fanSpeedSoftPwm = fanSpeedBckp;
  673. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  674. extruder_autofan_last_check = _millis();
  675. fan_measuring = false;
  676. }
  677. #endif //FANCHECK
  678. checkExtruderAutoFans();
  679. #else //FAN_SOFT_PWM
  680. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  681. {
  682. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  683. countFanSpeed();
  684. checkFanSpeed();
  685. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  686. checkExtruderAutoFans();
  687. extruder_autofan_last_check = _millis();
  688. }
  689. #endif //FAN_SOFT_PWM
  690. #endif
  691. #endif //DEBUG_DISABLE_FANCHECK
  692. #ifndef PIDTEMPBED
  693. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  694. return;
  695. previous_millis_bed_heater = _millis();
  696. #endif
  697. #if TEMP_SENSOR_BED != 0
  698. #ifdef PIDTEMPBED
  699. pid_input = current_temperature_bed;
  700. #ifndef PID_OPENLOOP
  701. pid_error_bed = target_temperature_bed - pid_input;
  702. pTerm_bed = cs.bedKp * pid_error_bed;
  703. temp_iState_bed += pid_error_bed;
  704. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  705. iTerm_bed = cs.bedKi * temp_iState_bed;
  706. //PID_K1 defined in Configuration.h in the PID settings
  707. #define K2 (1.0-PID_K1)
  708. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  709. temp_dState_bed = pid_input;
  710. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  711. if (pid_output > MAX_BED_POWER) {
  712. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  713. pid_output=MAX_BED_POWER;
  714. } else if (pid_output < 0){
  715. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  716. pid_output=0;
  717. }
  718. #else
  719. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  720. #endif //PID_OPENLOOP
  721. if(current_temperature_bed < BED_MAXTEMP)
  722. {
  723. soft_pwm_bed = (int)pid_output >> 1;
  724. timer02_set_pwm0(soft_pwm_bed << 1);
  725. }
  726. else {
  727. soft_pwm_bed = 0;
  728. timer02_set_pwm0(soft_pwm_bed << 1);
  729. }
  730. #elif !defined(BED_LIMIT_SWITCHING)
  731. // Check if temperature is within the correct range
  732. if(current_temperature_bed < BED_MAXTEMP)
  733. {
  734. if(current_temperature_bed >= target_temperature_bed)
  735. {
  736. soft_pwm_bed = 0;
  737. timer02_set_pwm0(soft_pwm_bed << 1);
  738. }
  739. else
  740. {
  741. soft_pwm_bed = MAX_BED_POWER>>1;
  742. timer02_set_pwm0(soft_pwm_bed << 1);
  743. }
  744. }
  745. else
  746. {
  747. soft_pwm_bed = 0;
  748. timer02_set_pwm0(soft_pwm_bed << 1);
  749. WRITE(HEATER_BED_PIN,LOW);
  750. }
  751. #else //#ifdef BED_LIMIT_SWITCHING
  752. // Check if temperature is within the correct band
  753. if(current_temperature_bed < BED_MAXTEMP)
  754. {
  755. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  756. {
  757. soft_pwm_bed = 0;
  758. timer02_set_pwm0(soft_pwm_bed << 1);
  759. }
  760. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  761. {
  762. soft_pwm_bed = MAX_BED_POWER>>1;
  763. timer02_set_pwm0(soft_pwm_bed << 1);
  764. }
  765. }
  766. else
  767. {
  768. soft_pwm_bed = 0;
  769. timer02_set_pwm0(soft_pwm_bed << 1);
  770. WRITE(HEATER_BED_PIN,LOW);
  771. }
  772. #endif
  773. if(target_temperature_bed==0)
  774. {
  775. soft_pwm_bed = 0;
  776. timer02_set_pwm0(soft_pwm_bed << 1);
  777. }
  778. #endif
  779. host_keepalive();
  780. }
  781. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  782. // Derived from RepRap FiveD extruder::getTemperature()
  783. // For hot end temperature measurement.
  784. static float analog2temp(int raw, uint8_t e) {
  785. if(e >= EXTRUDERS)
  786. {
  787. SERIAL_ERROR_START;
  788. SERIAL_ERROR((int)e);
  789. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  790. kill(NULL, 6);
  791. return 0.0;
  792. }
  793. #ifdef HEATER_0_USES_MAX6675
  794. if (e == 0)
  795. {
  796. return 0.25 * raw;
  797. }
  798. #endif
  799. if(heater_ttbl_map[e] != NULL)
  800. {
  801. float celsius = 0;
  802. uint8_t i;
  803. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  804. for (i=1; i<heater_ttbllen_map[e]; i++)
  805. {
  806. if (PGM_RD_W((*tt)[i][0]) > raw)
  807. {
  808. celsius = PGM_RD_W((*tt)[i-1][1]) +
  809. (raw - PGM_RD_W((*tt)[i-1][0])) *
  810. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  811. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  812. break;
  813. }
  814. }
  815. // Overflow: Set to last value in the table
  816. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  817. return celsius;
  818. }
  819. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  820. }
  821. // Derived from RepRap FiveD extruder::getTemperature()
  822. // For bed temperature measurement.
  823. static float analog2tempBed(int raw) {
  824. #ifdef BED_USES_THERMISTOR
  825. float celsius = 0;
  826. byte i;
  827. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  828. {
  829. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  830. {
  831. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  832. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  833. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  834. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  835. break;
  836. }
  837. }
  838. // Overflow: Set to last value in the table
  839. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  840. // temperature offset adjustment
  841. #ifdef BED_OFFSET
  842. float _offset = BED_OFFSET;
  843. float _offset_center = BED_OFFSET_CENTER;
  844. float _offset_start = BED_OFFSET_START;
  845. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  846. float _second_koef = (_offset / 2) / (100 - _offset_center);
  847. if (celsius >= _offset_start && celsius <= _offset_center)
  848. {
  849. celsius = celsius + (_first_koef * (celsius - _offset_start));
  850. }
  851. else if (celsius > _offset_center && celsius <= 100)
  852. {
  853. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  854. }
  855. else if (celsius > 100)
  856. {
  857. celsius = celsius + _offset;
  858. }
  859. #endif
  860. return celsius;
  861. #elif defined BED_USES_AD595
  862. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  863. #else
  864. return 0;
  865. #endif
  866. }
  867. #ifdef AMBIENT_THERMISTOR
  868. static float analog2tempAmbient(int raw)
  869. {
  870. float celsius = 0;
  871. byte i;
  872. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  873. {
  874. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  875. {
  876. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  877. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  878. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  879. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  880. break;
  881. }
  882. }
  883. // Overflow: Set to last value in the table
  884. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  885. return celsius;
  886. }
  887. #endif //AMBIENT_THERMISTOR
  888. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  889. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  890. static void updateTemperaturesFromRawValues()
  891. {
  892. for(uint8_t e=0;e<EXTRUDERS;e++)
  893. {
  894. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  895. }
  896. #ifdef PINDA_THERMISTOR
  897. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  898. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  899. #endif
  900. #ifdef AMBIENT_THERMISTOR
  901. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  902. #endif
  903. #ifdef DEBUG_HEATER_BED_SIM
  904. current_temperature_bed = target_temperature_bed;
  905. #else //DEBUG_HEATER_BED_SIM
  906. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  907. #endif //DEBUG_HEATER_BED_SIM
  908. CRITICAL_SECTION_START;
  909. temp_meas_ready = false;
  910. CRITICAL_SECTION_END;
  911. }
  912. void tp_init()
  913. {
  914. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  915. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  916. MCUCR=(1<<JTD);
  917. MCUCR=(1<<JTD);
  918. #endif
  919. // Finish init of mult extruder arrays
  920. for(int e = 0; e < EXTRUDERS; e++) {
  921. // populate with the first value
  922. maxttemp[e] = maxttemp[0];
  923. #ifdef PIDTEMP
  924. iState_sum_min[e] = 0.0;
  925. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  926. #endif //PIDTEMP
  927. #ifdef PIDTEMPBED
  928. temp_iState_min_bed = 0.0;
  929. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  930. #endif //PIDTEMPBED
  931. }
  932. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  933. SET_OUTPUT(HEATER_0_PIN);
  934. #endif
  935. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  936. SET_OUTPUT(HEATER_1_PIN);
  937. #endif
  938. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  939. SET_OUTPUT(HEATER_2_PIN);
  940. #endif
  941. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  942. SET_OUTPUT(HEATER_BED_PIN);
  943. #endif
  944. #if defined(FAN_PIN) && (FAN_PIN > -1)
  945. SET_OUTPUT(FAN_PIN);
  946. #ifdef FAST_PWM_FAN
  947. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  948. #endif
  949. #ifdef FAN_SOFT_PWM
  950. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  951. #endif
  952. #endif
  953. #ifdef HEATER_0_USES_MAX6675
  954. #ifndef SDSUPPORT
  955. SET_OUTPUT(SCK_PIN);
  956. WRITE(SCK_PIN,0);
  957. SET_OUTPUT(MOSI_PIN);
  958. WRITE(MOSI_PIN,1);
  959. SET_INPUT(MISO_PIN);
  960. WRITE(MISO_PIN,1);
  961. #endif
  962. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  963. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  964. pinMode(SS_PIN, OUTPUT);
  965. digitalWrite(SS_PIN,0);
  966. pinMode(MAX6675_SS, OUTPUT);
  967. digitalWrite(MAX6675_SS,1);
  968. #endif
  969. adc_init();
  970. timer0_init();
  971. OCR2B = 128;
  972. TIMSK2 |= (1<<OCIE2B);
  973. timer4_init(); //for tone and Extruder fan PWM
  974. // Wait for temperature measurement to settle
  975. _delay(250);
  976. #ifdef HEATER_0_MINTEMP
  977. minttemp[0] = HEATER_0_MINTEMP;
  978. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  979. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  980. minttemp_raw[0] += OVERSAMPLENR;
  981. #else
  982. minttemp_raw[0] -= OVERSAMPLENR;
  983. #endif
  984. }
  985. #endif //MINTEMP
  986. #ifdef HEATER_0_MAXTEMP
  987. maxttemp[0] = HEATER_0_MAXTEMP;
  988. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  989. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  990. maxttemp_raw[0] -= OVERSAMPLENR;
  991. #else
  992. maxttemp_raw[0] += OVERSAMPLENR;
  993. #endif
  994. }
  995. #endif //MAXTEMP
  996. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  997. minttemp[1] = HEATER_1_MINTEMP;
  998. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  999. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1000. minttemp_raw[1] += OVERSAMPLENR;
  1001. #else
  1002. minttemp_raw[1] -= OVERSAMPLENR;
  1003. #endif
  1004. }
  1005. #endif // MINTEMP 1
  1006. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1007. maxttemp[1] = HEATER_1_MAXTEMP;
  1008. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1009. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1010. maxttemp_raw[1] -= OVERSAMPLENR;
  1011. #else
  1012. maxttemp_raw[1] += OVERSAMPLENR;
  1013. #endif
  1014. }
  1015. #endif //MAXTEMP 1
  1016. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1017. minttemp[2] = HEATER_2_MINTEMP;
  1018. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1019. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1020. minttemp_raw[2] += OVERSAMPLENR;
  1021. #else
  1022. minttemp_raw[2] -= OVERSAMPLENR;
  1023. #endif
  1024. }
  1025. #endif //MINTEMP 2
  1026. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1027. maxttemp[2] = HEATER_2_MAXTEMP;
  1028. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1029. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1030. maxttemp_raw[2] -= OVERSAMPLENR;
  1031. #else
  1032. maxttemp_raw[2] += OVERSAMPLENR;
  1033. #endif
  1034. }
  1035. #endif //MAXTEMP 2
  1036. #ifdef BED_MINTEMP
  1037. /* No bed MINTEMP error implemented?!? */
  1038. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1039. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1040. bed_minttemp_raw += OVERSAMPLENR;
  1041. #else
  1042. bed_minttemp_raw -= OVERSAMPLENR;
  1043. #endif
  1044. }
  1045. #endif //BED_MINTEMP
  1046. #ifdef BED_MAXTEMP
  1047. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1048. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1049. bed_maxttemp_raw -= OVERSAMPLENR;
  1050. #else
  1051. bed_maxttemp_raw += OVERSAMPLENR;
  1052. #endif
  1053. }
  1054. #endif //BED_MAXTEMP
  1055. }
  1056. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1057. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1058. {
  1059. float __delta;
  1060. float __hysteresis = 0;
  1061. int __timeout = 0;
  1062. bool temp_runaway_check_active = false;
  1063. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1064. static int __preheat_counter[2] = { 0,0};
  1065. static int __preheat_errors[2] = { 0,0};
  1066. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1067. {
  1068. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1069. if (_isbed)
  1070. {
  1071. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1072. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1073. }
  1074. #endif
  1075. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1076. if (!_isbed)
  1077. {
  1078. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1079. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1080. }
  1081. #endif
  1082. temp_runaway_timer[_heater_id] = _millis();
  1083. if (_output == 0)
  1084. {
  1085. temp_runaway_check_active = false;
  1086. temp_runaway_error_counter[_heater_id] = 0;
  1087. }
  1088. if (temp_runaway_target[_heater_id] != _target_temperature)
  1089. {
  1090. if (_target_temperature > 0)
  1091. {
  1092. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1093. temp_runaway_target[_heater_id] = _target_temperature;
  1094. __preheat_start[_heater_id] = _current_temperature;
  1095. __preheat_counter[_heater_id] = 0;
  1096. }
  1097. else
  1098. {
  1099. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1100. temp_runaway_target[_heater_id] = _target_temperature;
  1101. }
  1102. }
  1103. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1104. {
  1105. __preheat_counter[_heater_id]++;
  1106. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1107. {
  1108. /*SERIAL_ECHOPGM("Heater:");
  1109. MYSERIAL.print(_heater_id);
  1110. SERIAL_ECHOPGM(" T:");
  1111. MYSERIAL.print(_current_temperature);
  1112. SERIAL_ECHOPGM(" Tstart:");
  1113. MYSERIAL.print(__preheat_start[_heater_id]);
  1114. SERIAL_ECHOPGM(" delta:");
  1115. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1116. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1117. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1118. __delta=2.0;
  1119. if(_isbed)
  1120. {
  1121. __delta=3.0;
  1122. if(_current_temperature>90.0) __delta=2.0;
  1123. if(_current_temperature>105.0) __delta=0.6;
  1124. }
  1125. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1126. __preheat_errors[_heater_id]++;
  1127. /*SERIAL_ECHOPGM(" Preheat errors:");
  1128. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1129. }
  1130. else {
  1131. //SERIAL_ECHOLNPGM("");
  1132. __preheat_errors[_heater_id] = 0;
  1133. }
  1134. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1135. {
  1136. if (farm_mode) { prusa_statistics(0); }
  1137. temp_runaway_stop(true, _isbed);
  1138. if (farm_mode) { prusa_statistics(91); }
  1139. }
  1140. __preheat_start[_heater_id] = _current_temperature;
  1141. __preheat_counter[_heater_id] = 0;
  1142. }
  1143. }
  1144. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1145. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1146. {
  1147. /*SERIAL_ECHOPGM("Heater:");
  1148. MYSERIAL.print(_heater_id);
  1149. MYSERIAL.println(" ->tempRunaway");*/
  1150. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1151. temp_runaway_check_active = false;
  1152. temp_runaway_error_counter[_heater_id] = 0;
  1153. }
  1154. if (_output > 0)
  1155. {
  1156. temp_runaway_check_active = true;
  1157. }
  1158. if (temp_runaway_check_active)
  1159. {
  1160. // we are in range
  1161. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1162. {
  1163. temp_runaway_check_active = false;
  1164. temp_runaway_error_counter[_heater_id] = 0;
  1165. }
  1166. else
  1167. {
  1168. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1169. {
  1170. temp_runaway_error_counter[_heater_id]++;
  1171. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1172. {
  1173. if (farm_mode) { prusa_statistics(0); }
  1174. temp_runaway_stop(false, _isbed);
  1175. if (farm_mode) { prusa_statistics(90); }
  1176. }
  1177. }
  1178. }
  1179. }
  1180. }
  1181. }
  1182. void temp_runaway_stop(bool isPreheat, bool isBed)
  1183. {
  1184. cancel_heatup = true;
  1185. quickStop();
  1186. if (card.sdprinting)
  1187. {
  1188. card.sdprinting = false;
  1189. card.closefile();
  1190. }
  1191. // Clean the input command queue
  1192. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1193. cmdqueue_reset();
  1194. disable_heater();
  1195. disable_x();
  1196. disable_y();
  1197. disable_e0();
  1198. disable_e1();
  1199. disable_e2();
  1200. manage_heater();
  1201. lcd_update(0);
  1202. Sound_MakeCustom(200,0,true);
  1203. if (isPreheat)
  1204. {
  1205. Stop();
  1206. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1207. SERIAL_ERROR_START;
  1208. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1209. #ifdef EXTRUDER_ALTFAN_DETECT
  1210. altfanOverride = 1; //full speed
  1211. #endif //EXTRUDER_ALTFAN_DETECT
  1212. setExtruderAutoFanState(3);
  1213. SET_OUTPUT(FAN_PIN);
  1214. #ifdef FAN_SOFT_PWM
  1215. fanSpeedSoftPwm = 255;
  1216. #else //FAN_SOFT_PWM
  1217. analogWrite(FAN_PIN, 255);
  1218. #endif //FAN_SOFT_PWM
  1219. fanSpeed = 255;
  1220. delayMicroseconds(2000);
  1221. }
  1222. else
  1223. {
  1224. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1225. SERIAL_ERROR_START;
  1226. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1227. }
  1228. }
  1229. #endif
  1230. void disable_heater()
  1231. {
  1232. setAllTargetHotends(0);
  1233. setTargetBed(0);
  1234. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1235. target_temperature[0]=0;
  1236. soft_pwm[0]=0;
  1237. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1238. WRITE(HEATER_0_PIN,LOW);
  1239. #endif
  1240. #endif
  1241. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1242. target_temperature[1]=0;
  1243. soft_pwm[1]=0;
  1244. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1245. WRITE(HEATER_1_PIN,LOW);
  1246. #endif
  1247. #endif
  1248. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1249. target_temperature[2]=0;
  1250. soft_pwm[2]=0;
  1251. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1252. WRITE(HEATER_2_PIN,LOW);
  1253. #endif
  1254. #endif
  1255. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1256. target_temperature_bed=0;
  1257. soft_pwm_bed=0;
  1258. timer02_set_pwm0(soft_pwm_bed << 1);
  1259. bedPWMDisabled = 0;
  1260. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1261. //WRITE(HEATER_BED_PIN,LOW);
  1262. #endif
  1263. #endif
  1264. }
  1265. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1266. //! than raw const char * of the messages themselves.
  1267. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1268. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1269. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1270. //! remember the last alert message sent to the LCD
  1271. //! to prevent flicker and improve speed
  1272. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1273. void max_temp_error(uint8_t e) {
  1274. disable_heater();
  1275. if(IsStopped() == false) {
  1276. SERIAL_ERROR_START;
  1277. SERIAL_ERRORLN((int)e);
  1278. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1279. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1280. }
  1281. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1282. Stop();
  1283. #endif
  1284. SET_OUTPUT(FAN_PIN);
  1285. SET_OUTPUT(BEEPER);
  1286. WRITE(FAN_PIN, 1);
  1287. WRITE(BEEPER, 1);
  1288. #ifdef EXTRUDER_ALTFAN_DETECT
  1289. altfanOverride = 1; //full speed
  1290. #endif //EXTRUDER_ALTFAN_DETECT
  1291. setExtruderAutoFanState(3);
  1292. // fanSpeed will consumed by the check_axes_activity() routine.
  1293. fanSpeed=255;
  1294. if (farm_mode) { prusa_statistics(93); }
  1295. }
  1296. void min_temp_error(uint8_t e) {
  1297. #ifdef DEBUG_DISABLE_MINTEMP
  1298. return;
  1299. #endif
  1300. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1301. disable_heater();
  1302. static const char err[] PROGMEM = "Err: MINTEMP";
  1303. if(IsStopped() == false) {
  1304. SERIAL_ERROR_START;
  1305. SERIAL_ERRORLN((int)e);
  1306. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1307. lcd_setalertstatuspgm(err);
  1308. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1309. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1310. // we are already stopped due to some error, only update the status message without flickering
  1311. lcd_updatestatuspgm(err);
  1312. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1313. }
  1314. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1315. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1316. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1317. // lcd_print_stop();
  1318. // }
  1319. Stop();
  1320. #endif
  1321. if (farm_mode) { prusa_statistics(92); }
  1322. }
  1323. void bed_max_temp_error(void) {
  1324. #if HEATER_BED_PIN > -1
  1325. //WRITE(HEATER_BED_PIN, 0);
  1326. #endif
  1327. if(IsStopped() == false) {
  1328. SERIAL_ERROR_START;
  1329. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1330. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1331. }
  1332. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1333. Stop();
  1334. #endif
  1335. }
  1336. void bed_min_temp_error(void) {
  1337. #ifdef DEBUG_DISABLE_MINTEMP
  1338. return;
  1339. #endif
  1340. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1341. #if HEATER_BED_PIN > -1
  1342. //WRITE(HEATER_BED_PIN, 0);
  1343. #endif
  1344. static const char err[] PROGMEM = "Err: MINTEMP BED";
  1345. if(IsStopped() == false) {
  1346. SERIAL_ERROR_START;
  1347. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1348. lcd_setalertstatuspgm(err);
  1349. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1350. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1351. // we are already stopped due to some error, only update the status message without flickering
  1352. lcd_updatestatuspgm(err);
  1353. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1354. }
  1355. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1356. Stop();
  1357. #endif
  1358. }
  1359. #ifdef HEATER_0_USES_MAX6675
  1360. #define MAX6675_HEAT_INTERVAL 250
  1361. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1362. int max6675_temp = 2000;
  1363. int read_max6675()
  1364. {
  1365. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1366. return max6675_temp;
  1367. max6675_previous_millis = _millis();
  1368. max6675_temp = 0;
  1369. #ifdef PRR
  1370. PRR &= ~(1<<PRSPI);
  1371. #elif defined PRR0
  1372. PRR0 &= ~(1<<PRSPI);
  1373. #endif
  1374. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1375. // enable TT_MAX6675
  1376. WRITE(MAX6675_SS, 0);
  1377. // ensure 100ns delay - a bit extra is fine
  1378. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1379. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1380. // read MSB
  1381. SPDR = 0;
  1382. for (;(SPSR & (1<<SPIF)) == 0;);
  1383. max6675_temp = SPDR;
  1384. max6675_temp <<= 8;
  1385. // read LSB
  1386. SPDR = 0;
  1387. for (;(SPSR & (1<<SPIF)) == 0;);
  1388. max6675_temp |= SPDR;
  1389. // disable TT_MAX6675
  1390. WRITE(MAX6675_SS, 1);
  1391. if (max6675_temp & 4)
  1392. {
  1393. // thermocouple open
  1394. max6675_temp = 2000;
  1395. }
  1396. else
  1397. {
  1398. max6675_temp = max6675_temp >> 3;
  1399. }
  1400. return max6675_temp;
  1401. }
  1402. #endif
  1403. extern "C" {
  1404. void adc_ready(void) //callback from adc when sampling finished
  1405. {
  1406. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1407. #ifdef PINDA_THERMISTOR
  1408. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1409. #endif //PINDA_THERMISTOR
  1410. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1411. #ifdef VOLT_PWR_PIN
  1412. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1413. #endif
  1414. #ifdef AMBIENT_THERMISTOR
  1415. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
  1416. #endif //AMBIENT_THERMISTOR
  1417. #ifdef VOLT_BED_PIN
  1418. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1419. #endif
  1420. #ifdef IR_SENSOR_ANALOG
  1421. current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
  1422. #endif //IR_SENSOR_ANALOG
  1423. temp_meas_ready = true;
  1424. }
  1425. } // extern "C"
  1426. // Timer2 (originaly timer0) is shared with millies
  1427. #ifdef SYSTEM_TIMER_2
  1428. ISR(TIMER2_COMPB_vect)
  1429. #else //SYSTEM_TIMER_2
  1430. ISR(TIMER0_COMPB_vect)
  1431. #endif //SYSTEM_TIMER_2
  1432. {
  1433. static bool _lock = false;
  1434. if (_lock) return;
  1435. _lock = true;
  1436. asm("sei");
  1437. if (!temp_meas_ready) adc_cycle();
  1438. lcd_buttons_update();
  1439. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1440. static uint8_t soft_pwm_0;
  1441. #ifdef SLOW_PWM_HEATERS
  1442. static unsigned char slow_pwm_count = 0;
  1443. static unsigned char state_heater_0 = 0;
  1444. static unsigned char state_timer_heater_0 = 0;
  1445. #endif
  1446. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1447. static unsigned char soft_pwm_1;
  1448. #ifdef SLOW_PWM_HEATERS
  1449. static unsigned char state_heater_1 = 0;
  1450. static unsigned char state_timer_heater_1 = 0;
  1451. #endif
  1452. #endif
  1453. #if EXTRUDERS > 2
  1454. static unsigned char soft_pwm_2;
  1455. #ifdef SLOW_PWM_HEATERS
  1456. static unsigned char state_heater_2 = 0;
  1457. static unsigned char state_timer_heater_2 = 0;
  1458. #endif
  1459. #endif
  1460. #if HEATER_BED_PIN > -1
  1461. // @@DR static unsigned char soft_pwm_b;
  1462. #ifdef SLOW_PWM_HEATERS
  1463. static unsigned char state_heater_b = 0;
  1464. static unsigned char state_timer_heater_b = 0;
  1465. #endif
  1466. #endif
  1467. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1468. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1469. #endif
  1470. #ifndef SLOW_PWM_HEATERS
  1471. /*
  1472. * standard PWM modulation
  1473. */
  1474. if (pwm_count == 0)
  1475. {
  1476. soft_pwm_0 = soft_pwm[0];
  1477. if(soft_pwm_0 > 0)
  1478. {
  1479. WRITE(HEATER_0_PIN,1);
  1480. #ifdef HEATERS_PARALLEL
  1481. WRITE(HEATER_1_PIN,1);
  1482. #endif
  1483. } else WRITE(HEATER_0_PIN,0);
  1484. #if EXTRUDERS > 1
  1485. soft_pwm_1 = soft_pwm[1];
  1486. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1487. #endif
  1488. #if EXTRUDERS > 2
  1489. soft_pwm_2 = soft_pwm[2];
  1490. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1491. #endif
  1492. }
  1493. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1494. #if 0 // @@DR vypnuto pro hw pwm bedu
  1495. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1496. // teoreticky by se tato cast uz vubec nemusela poustet
  1497. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1498. {
  1499. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1500. # ifndef SYSTEM_TIMER_2
  1501. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1502. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1503. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1504. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1505. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1506. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1507. # endif //SYSTEM_TIMER_2
  1508. }
  1509. #endif
  1510. #endif
  1511. #ifdef FAN_SOFT_PWM
  1512. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1513. {
  1514. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1515. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1516. }
  1517. #endif
  1518. if(soft_pwm_0 < pwm_count)
  1519. {
  1520. WRITE(HEATER_0_PIN,0);
  1521. #ifdef HEATERS_PARALLEL
  1522. WRITE(HEATER_1_PIN,0);
  1523. #endif
  1524. }
  1525. #if EXTRUDERS > 1
  1526. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1527. #endif
  1528. #if EXTRUDERS > 2
  1529. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1530. #endif
  1531. #if 0 // @@DR
  1532. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1533. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1534. //WRITE(HEATER_BED_PIN,0);
  1535. }
  1536. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1537. #endif
  1538. #endif
  1539. #ifdef FAN_SOFT_PWM
  1540. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1541. #endif
  1542. pwm_count += (1 << SOFT_PWM_SCALE);
  1543. pwm_count &= 0x7f;
  1544. #else //ifndef SLOW_PWM_HEATERS
  1545. /*
  1546. * SLOW PWM HEATERS
  1547. *
  1548. * for heaters drived by relay
  1549. */
  1550. #ifndef MIN_STATE_TIME
  1551. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1552. #endif
  1553. if (slow_pwm_count == 0) {
  1554. // EXTRUDER 0
  1555. soft_pwm_0 = soft_pwm[0];
  1556. if (soft_pwm_0 > 0) {
  1557. // turn ON heather only if the minimum time is up
  1558. if (state_timer_heater_0 == 0) {
  1559. // if change state set timer
  1560. if (state_heater_0 == 0) {
  1561. state_timer_heater_0 = MIN_STATE_TIME;
  1562. }
  1563. state_heater_0 = 1;
  1564. WRITE(HEATER_0_PIN, 1);
  1565. #ifdef HEATERS_PARALLEL
  1566. WRITE(HEATER_1_PIN, 1);
  1567. #endif
  1568. }
  1569. } else {
  1570. // turn OFF heather only if the minimum time is up
  1571. if (state_timer_heater_0 == 0) {
  1572. // if change state set timer
  1573. if (state_heater_0 == 1) {
  1574. state_timer_heater_0 = MIN_STATE_TIME;
  1575. }
  1576. state_heater_0 = 0;
  1577. WRITE(HEATER_0_PIN, 0);
  1578. #ifdef HEATERS_PARALLEL
  1579. WRITE(HEATER_1_PIN, 0);
  1580. #endif
  1581. }
  1582. }
  1583. #if EXTRUDERS > 1
  1584. // EXTRUDER 1
  1585. soft_pwm_1 = soft_pwm[1];
  1586. if (soft_pwm_1 > 0) {
  1587. // turn ON heather only if the minimum time is up
  1588. if (state_timer_heater_1 == 0) {
  1589. // if change state set timer
  1590. if (state_heater_1 == 0) {
  1591. state_timer_heater_1 = MIN_STATE_TIME;
  1592. }
  1593. state_heater_1 = 1;
  1594. WRITE(HEATER_1_PIN, 1);
  1595. }
  1596. } else {
  1597. // turn OFF heather only if the minimum time is up
  1598. if (state_timer_heater_1 == 0) {
  1599. // if change state set timer
  1600. if (state_heater_1 == 1) {
  1601. state_timer_heater_1 = MIN_STATE_TIME;
  1602. }
  1603. state_heater_1 = 0;
  1604. WRITE(HEATER_1_PIN, 0);
  1605. }
  1606. }
  1607. #endif
  1608. #if EXTRUDERS > 2
  1609. // EXTRUDER 2
  1610. soft_pwm_2 = soft_pwm[2];
  1611. if (soft_pwm_2 > 0) {
  1612. // turn ON heather only if the minimum time is up
  1613. if (state_timer_heater_2 == 0) {
  1614. // if change state set timer
  1615. if (state_heater_2 == 0) {
  1616. state_timer_heater_2 = MIN_STATE_TIME;
  1617. }
  1618. state_heater_2 = 1;
  1619. WRITE(HEATER_2_PIN, 1);
  1620. }
  1621. } else {
  1622. // turn OFF heather only if the minimum time is up
  1623. if (state_timer_heater_2 == 0) {
  1624. // if change state set timer
  1625. if (state_heater_2 == 1) {
  1626. state_timer_heater_2 = MIN_STATE_TIME;
  1627. }
  1628. state_heater_2 = 0;
  1629. WRITE(HEATER_2_PIN, 0);
  1630. }
  1631. }
  1632. #endif
  1633. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1634. // BED
  1635. soft_pwm_b = soft_pwm_bed;
  1636. if (soft_pwm_b > 0) {
  1637. // turn ON heather only if the minimum time is up
  1638. if (state_timer_heater_b == 0) {
  1639. // if change state set timer
  1640. if (state_heater_b == 0) {
  1641. state_timer_heater_b = MIN_STATE_TIME;
  1642. }
  1643. state_heater_b = 1;
  1644. //WRITE(HEATER_BED_PIN, 1);
  1645. }
  1646. } else {
  1647. // turn OFF heather only if the minimum time is up
  1648. if (state_timer_heater_b == 0) {
  1649. // if change state set timer
  1650. if (state_heater_b == 1) {
  1651. state_timer_heater_b = MIN_STATE_TIME;
  1652. }
  1653. state_heater_b = 0;
  1654. WRITE(HEATER_BED_PIN, 0);
  1655. }
  1656. }
  1657. #endif
  1658. } // if (slow_pwm_count == 0)
  1659. // EXTRUDER 0
  1660. if (soft_pwm_0 < slow_pwm_count) {
  1661. // turn OFF heather only if the minimum time is up
  1662. if (state_timer_heater_0 == 0) {
  1663. // if change state set timer
  1664. if (state_heater_0 == 1) {
  1665. state_timer_heater_0 = MIN_STATE_TIME;
  1666. }
  1667. state_heater_0 = 0;
  1668. WRITE(HEATER_0_PIN, 0);
  1669. #ifdef HEATERS_PARALLEL
  1670. WRITE(HEATER_1_PIN, 0);
  1671. #endif
  1672. }
  1673. }
  1674. #if EXTRUDERS > 1
  1675. // EXTRUDER 1
  1676. if (soft_pwm_1 < slow_pwm_count) {
  1677. // turn OFF heather only if the minimum time is up
  1678. if (state_timer_heater_1 == 0) {
  1679. // if change state set timer
  1680. if (state_heater_1 == 1) {
  1681. state_timer_heater_1 = MIN_STATE_TIME;
  1682. }
  1683. state_heater_1 = 0;
  1684. WRITE(HEATER_1_PIN, 0);
  1685. }
  1686. }
  1687. #endif
  1688. #if EXTRUDERS > 2
  1689. // EXTRUDER 2
  1690. if (soft_pwm_2 < slow_pwm_count) {
  1691. // turn OFF heather only if the minimum time is up
  1692. if (state_timer_heater_2 == 0) {
  1693. // if change state set timer
  1694. if (state_heater_2 == 1) {
  1695. state_timer_heater_2 = MIN_STATE_TIME;
  1696. }
  1697. state_heater_2 = 0;
  1698. WRITE(HEATER_2_PIN, 0);
  1699. }
  1700. }
  1701. #endif
  1702. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1703. // BED
  1704. if (soft_pwm_b < slow_pwm_count) {
  1705. // turn OFF heather only if the minimum time is up
  1706. if (state_timer_heater_b == 0) {
  1707. // if change state set timer
  1708. if (state_heater_b == 1) {
  1709. state_timer_heater_b = MIN_STATE_TIME;
  1710. }
  1711. state_heater_b = 0;
  1712. WRITE(HEATER_BED_PIN, 0);
  1713. }
  1714. }
  1715. #endif
  1716. #ifdef FAN_SOFT_PWM
  1717. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1718. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1719. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1720. }
  1721. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1722. #endif
  1723. pwm_count += (1 << SOFT_PWM_SCALE);
  1724. pwm_count &= 0x7f;
  1725. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1726. if ((pwm_count % 64) == 0) {
  1727. slow_pwm_count++;
  1728. slow_pwm_count &= 0x7f;
  1729. // Extruder 0
  1730. if (state_timer_heater_0 > 0) {
  1731. state_timer_heater_0--;
  1732. }
  1733. #if EXTRUDERS > 1
  1734. // Extruder 1
  1735. if (state_timer_heater_1 > 0)
  1736. state_timer_heater_1--;
  1737. #endif
  1738. #if EXTRUDERS > 2
  1739. // Extruder 2
  1740. if (state_timer_heater_2 > 0)
  1741. state_timer_heater_2--;
  1742. #endif
  1743. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1744. // Bed
  1745. if (state_timer_heater_b > 0)
  1746. state_timer_heater_b--;
  1747. #endif
  1748. } //if ((pwm_count % 64) == 0) {
  1749. #endif //ifndef SLOW_PWM_HEATERS
  1750. #ifdef BABYSTEPPING
  1751. for(uint8_t axis=0;axis<3;axis++)
  1752. {
  1753. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1754. if(curTodo>0)
  1755. {
  1756. asm("cli");
  1757. babystep(axis,/*fwd*/true);
  1758. babystepsTodo[axis]--; //less to do next time
  1759. asm("sei");
  1760. }
  1761. else
  1762. if(curTodo<0)
  1763. {
  1764. asm("cli");
  1765. babystep(axis,/*fwd*/false);
  1766. babystepsTodo[axis]++; //less to do next time
  1767. asm("sei");
  1768. }
  1769. }
  1770. #endif //BABYSTEPPING
  1771. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1772. check_fans();
  1773. #endif //(defined(TACH_0))
  1774. _lock = false;
  1775. }
  1776. void check_max_temp()
  1777. {
  1778. //heater
  1779. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1780. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1781. #else
  1782. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1783. #endif
  1784. max_temp_error(0);
  1785. }
  1786. //bed
  1787. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1788. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1789. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1790. #else
  1791. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1792. #endif
  1793. target_temperature_bed = 0;
  1794. bed_max_temp_error();
  1795. }
  1796. #endif
  1797. }
  1798. //! number of repeating the same state with consecutive step() calls
  1799. //! used to slow down text switching
  1800. struct alert_automaton_mintemp {
  1801. const char *m2;
  1802. alert_automaton_mintemp(const char *m2):m2(m2){}
  1803. private:
  1804. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1805. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1806. States state = States::Init;
  1807. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1808. void substep(States next_state){
  1809. if( repeat == 0 ){
  1810. state = next_state; // advance to the next state
  1811. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1812. } else {
  1813. --repeat;
  1814. }
  1815. }
  1816. public:
  1817. //! brief state automaton step routine
  1818. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1819. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1820. void step(float current_temp, float mintemp){
  1821. static const char m1[] PROGMEM = "Please restart";
  1822. switch(state){
  1823. case States::Init: // initial state - check hysteresis
  1824. if( current_temp > mintemp ){
  1825. state = States::TempAboveMintemp;
  1826. }
  1827. // otherwise keep the Err MINTEMP alert message on the display,
  1828. // i.e. do not transfer to state 1
  1829. break;
  1830. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1831. lcd_setalertstatuspgm(m2);
  1832. substep(States::ShowMintemp);
  1833. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1834. break;
  1835. case States::ShowPleaseRestart: // displaying "Please restart"
  1836. lcd_updatestatuspgm(m1);
  1837. substep(States::ShowMintemp);
  1838. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1839. break;
  1840. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1841. lcd_updatestatuspgm(m2);
  1842. substep(States::ShowPleaseRestart);
  1843. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1844. break;
  1845. }
  1846. }
  1847. };
  1848. static const char m2hotend[] PROGMEM = "MINTEMP HOTEND fixed";
  1849. static const char m2bed[] PROGMEM = "MINTEMP BED fixed";
  1850. static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton_bed(m2bed);
  1851. void check_min_temp_heater0()
  1852. {
  1853. //heater
  1854. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1855. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1856. #else
  1857. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1858. #endif
  1859. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1860. min_temp_error(0);
  1861. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1862. // no recovery, just force the user to restart the printer
  1863. // which is a safer variant than just continuing printing
  1864. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1865. // we shall signalize, that MINTEMP has been fixed
  1866. // Code notice: normally the alert_automaton instance would have been placed here
  1867. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1868. // due to stupid compiler that takes 16 more bytes.
  1869. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1870. }
  1871. }
  1872. void check_min_temp_bed()
  1873. {
  1874. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1875. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1876. #else
  1877. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1878. #endif
  1879. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1880. bed_min_temp_error();
  1881. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1882. // no recovery, just force the user to restart the printer
  1883. // which is a safer variant than just continuing printing
  1884. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1885. }
  1886. }
  1887. void check_min_temp()
  1888. {
  1889. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1890. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1891. #ifdef AMBIENT_THERMISTOR
  1892. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1893. { // ambient temperature is low
  1894. #endif //AMBIENT_THERMISTOR
  1895. // *** 'common' part of code for MK2.5 & MK3
  1896. // * nozzle checking
  1897. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1898. { // ~ nozzle heating is on
  1899. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1900. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1901. {
  1902. bCheckingOnHeater=true; // not necessary
  1903. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1904. }
  1905. }
  1906. else { // ~ nozzle heating is off
  1907. oTimer4minTempHeater.start();
  1908. bCheckingOnHeater=false;
  1909. }
  1910. // * bed checking
  1911. if(target_temperature_bed>BED_MINTEMP)
  1912. { // ~ bed heating is on
  1913. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1914. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1915. {
  1916. bCheckingOnBed=true; // not necessary
  1917. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1918. }
  1919. }
  1920. else { // ~ bed heating is off
  1921. oTimer4minTempBed.start();
  1922. bCheckingOnBed=false;
  1923. }
  1924. // *** end of 'common' part
  1925. #ifdef AMBIENT_THERMISTOR
  1926. }
  1927. else { // ambient temperature is standard
  1928. check_min_temp_heater0();
  1929. check_min_temp_bed();
  1930. }
  1931. #endif //AMBIENT_THERMISTOR
  1932. }
  1933. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1934. void check_fans() {
  1935. #ifdef FAN_SOFT_PWM
  1936. if (READ(TACH_0) != fan_state[0]) {
  1937. if(fan_measuring) fan_edge_counter[0] ++;
  1938. fan_state[0] = !fan_state[0];
  1939. }
  1940. #else //FAN_SOFT_PWM
  1941. if (READ(TACH_0) != fan_state[0]) {
  1942. fan_edge_counter[0] ++;
  1943. fan_state[0] = !fan_state[0];
  1944. }
  1945. #endif
  1946. //if (READ(TACH_1) != fan_state[1]) {
  1947. // fan_edge_counter[1] ++;
  1948. // fan_state[1] = !fan_state[1];
  1949. //}
  1950. }
  1951. #endif //TACH_0
  1952. #ifdef PIDTEMP
  1953. // Apply the scale factors to the PID values
  1954. float scalePID_i(float i)
  1955. {
  1956. return i*PID_dT;
  1957. }
  1958. float unscalePID_i(float i)
  1959. {
  1960. return i/PID_dT;
  1961. }
  1962. float scalePID_d(float d)
  1963. {
  1964. return d/PID_dT;
  1965. }
  1966. float unscalePID_d(float d)
  1967. {
  1968. return d*PID_dT;
  1969. }
  1970. #endif //PIDTEMP
  1971. #ifdef PINDA_THERMISTOR
  1972. //! @brief PINDA thermistor detected
  1973. //!
  1974. //! @retval true firmware should do temperature compensation and allow calibration
  1975. //! @retval false PINDA thermistor is not detected, disable temperature compensation and calibration
  1976. //!
  1977. bool has_temperature_compensation()
  1978. {
  1979. #ifdef DETECT_SUPERPINDA
  1980. return (current_temperature_pinda >= PINDA_MINTEMP) ? true : false;
  1981. #else
  1982. return true;
  1983. #endif
  1984. }
  1985. #endif //PINDA_THERMISTOR