temperature.cpp 68 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "messages.h"
  33. #include "Timer.h"
  34. #include "Configuration_prusa.h"
  35. #include "config.h"
  36. //===========================================================================
  37. //=============================public variables============================
  38. //===========================================================================
  39. int target_temperature[EXTRUDERS] = { 0 };
  40. int target_temperature_bed = 0;
  41. int current_temperature_raw[EXTRUDERS] = { 0 };
  42. float current_temperature[EXTRUDERS] = { 0.0 };
  43. #ifdef PINDA_THERMISTOR
  44. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  45. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  46. float current_temperature_pinda = 0.0;
  47. #endif //PINDA_THERMISTOR
  48. #ifdef AMBIENT_THERMISTOR
  49. int current_temperature_raw_ambient = 0 ;
  50. float current_temperature_ambient = 0.0;
  51. #endif //AMBIENT_THERMISTOR
  52. #ifdef VOLT_PWR_PIN
  53. int current_voltage_raw_pwr = 0;
  54. #endif
  55. #ifdef VOLT_BED_PIN
  56. int current_voltage_raw_bed = 0;
  57. #endif
  58. #ifdef IR_SENSOR_ANALOG
  59. uint16_t current_voltage_raw_IR = 0;
  60. #endif //IR_SENSOR_ANALOG
  61. int current_temperature_bed_raw = 0;
  62. float current_temperature_bed = 0.0;
  63. #ifdef PIDTEMP
  64. float _Kp, _Ki, _Kd;
  65. int pid_cycle, pid_number_of_cycles;
  66. bool pid_tuning_finished = false;
  67. #ifdef PID_ADD_EXTRUSION_RATE
  68. float Kc=DEFAULT_Kc;
  69. #endif
  70. #endif //PIDTEMP
  71. #ifdef FAN_SOFT_PWM
  72. unsigned char fanSpeedSoftPwm;
  73. #endif
  74. #ifdef FANCHECK
  75. volatile uint8_t fan_check_error = EFCE_OK;
  76. #endif
  77. unsigned char soft_pwm_bed;
  78. #ifdef BABYSTEPPING
  79. volatile int babystepsTodo[3]={0,0,0};
  80. #endif
  81. //===========================================================================
  82. //=============================private variables============================
  83. //===========================================================================
  84. static volatile bool temp_meas_ready = false;
  85. #ifdef PIDTEMP
  86. //static cannot be external:
  87. static float iState_sum[EXTRUDERS] = { 0 };
  88. static float dState_last[EXTRUDERS] = { 0 };
  89. static float pTerm[EXTRUDERS];
  90. static float iTerm[EXTRUDERS];
  91. static float dTerm[EXTRUDERS];
  92. //int output;
  93. static float pid_error[EXTRUDERS];
  94. static float iState_sum_min[EXTRUDERS];
  95. static float iState_sum_max[EXTRUDERS];
  96. // static float pid_input[EXTRUDERS];
  97. // static float pid_output[EXTRUDERS];
  98. static bool pid_reset[EXTRUDERS];
  99. #endif //PIDTEMP
  100. #ifdef PIDTEMPBED
  101. //static cannot be external:
  102. static float temp_iState_bed = { 0 };
  103. static float temp_dState_bed = { 0 };
  104. static float pTerm_bed;
  105. static float iTerm_bed;
  106. static float dTerm_bed;
  107. //int output;
  108. static float pid_error_bed;
  109. static float temp_iState_min_bed;
  110. static float temp_iState_max_bed;
  111. #else //PIDTEMPBED
  112. static unsigned long previous_millis_bed_heater;
  113. #endif //PIDTEMPBED
  114. static unsigned char soft_pwm[EXTRUDERS];
  115. #ifdef FAN_SOFT_PWM
  116. static unsigned char soft_pwm_fan;
  117. #endif
  118. uint8_t fanSpeedBckp = 255;
  119. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  120. unsigned long extruder_autofan_last_check = _millis();
  121. bool fan_measuring = false;
  122. uint8_t fanState = 0;
  123. #ifdef EXTRUDER_ALTFAN_DETECT
  124. bool extruderFanIsAltfan = false; //set to Noctua
  125. #endif //EXTRUDER_ALTFAN_DETECT
  126. #endif
  127. #if EXTRUDERS > 3
  128. # error Unsupported number of extruders
  129. #elif EXTRUDERS > 2
  130. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  131. #elif EXTRUDERS > 1
  132. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  133. #else
  134. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  135. #endif
  136. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  137. // Init min and max temp with extreme values to prevent false errors during startup
  138. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  139. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  140. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  141. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  142. #ifdef BED_MINTEMP
  143. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  144. #endif
  145. #ifdef BED_MAXTEMP
  146. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  147. #endif
  148. #ifdef AMBIENT_MINTEMP
  149. static int ambient_minttemp_raw = AMBIENT_RAW_LO_TEMP;
  150. #endif
  151. #ifdef AMBIENT_MAXTEMP
  152. static int ambient_maxttemp_raw = AMBIENT_RAW_HI_TEMP;
  153. #endif
  154. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  155. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  156. static float analog2temp(int raw, uint8_t e);
  157. static float analog2tempBed(int raw);
  158. static float analog2tempAmbient(int raw);
  159. static void updateTemperaturesFromRawValues();
  160. enum TempRunawayStates
  161. {
  162. TempRunaway_INACTIVE = 0,
  163. TempRunaway_PREHEAT = 1,
  164. TempRunaway_ACTIVE = 2,
  165. };
  166. #ifndef SOFT_PWM_SCALE
  167. #define SOFT_PWM_SCALE 0
  168. #endif
  169. //===========================================================================
  170. //============================= functions ============================
  171. //===========================================================================
  172. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  173. static float temp_runaway_status[4];
  174. static float temp_runaway_target[4];
  175. static float temp_runaway_timer[4];
  176. static int temp_runaway_error_counter[4];
  177. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  178. static void temp_runaway_stop(bool isPreheat, bool isBed);
  179. #endif
  180. #ifdef EXTRUDER_ALTFAN_DETECT
  181. ISR(INT6_vect) {
  182. fan_edge_counter[0]++;
  183. }
  184. bool extruder_altfan_detect()
  185. {
  186. setExtruderAutoFanState(3);
  187. SET_INPUT(TACH_0);
  188. CRITICAL_SECTION_START;
  189. EICRB &= ~(1 << ISC61);
  190. EICRB |= (1 << ISC60);
  191. EIMSK |= (1 << INT6);
  192. fan_edge_counter[0] = 0;
  193. CRITICAL_SECTION_END;
  194. extruder_autofan_last_check = _millis();
  195. _delay(1000);
  196. EIMSK &= ~(1 << INT6);
  197. countFanSpeed();
  198. extruderFanIsAltfan = fan_speed[0] > 100;
  199. setExtruderAutoFanState(1);
  200. return extruderFanIsAltfan;
  201. }
  202. #endif //EXTRUDER_ALTFAN_DETECT
  203. // return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on')
  204. bool checkAllHotends(void)
  205. {
  206. bool result=false;
  207. for(int i=0;i<EXTRUDERS;i++) result=(result||(target_temperature[i]!=0));
  208. return(result);
  209. }
  210. void PID_autotune(float temp, int extruder, int ncycles)
  211. {
  212. pid_number_of_cycles = ncycles;
  213. pid_tuning_finished = false;
  214. float input = 0.0;
  215. pid_cycle=0;
  216. bool heating = true;
  217. unsigned long temp_millis = _millis();
  218. unsigned long t1=temp_millis;
  219. unsigned long t2=temp_millis;
  220. long t_high = 0;
  221. long t_low = 0;
  222. long bias, d;
  223. float Ku, Tu;
  224. float max = 0, min = 10000;
  225. uint8_t safety_check_cycles = 0;
  226. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  227. float temp_ambient;
  228. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  229. unsigned long extruder_autofan_last_check = _millis();
  230. #endif
  231. if ((extruder >= EXTRUDERS)
  232. #if (TEMP_BED_PIN <= -1)
  233. ||(extruder < 0)
  234. #endif
  235. ){
  236. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  237. pid_tuning_finished = true;
  238. pid_cycle = 0;
  239. return;
  240. }
  241. SERIAL_ECHOLN("PID Autotune start");
  242. disable_heater(); // switch off all heaters.
  243. if (extruder<0)
  244. {
  245. soft_pwm_bed = (MAX_BED_POWER)/2;
  246. timer02_set_pwm0(soft_pwm_bed << 1);
  247. bias = d = (MAX_BED_POWER)/2;
  248. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  249. }
  250. else
  251. {
  252. soft_pwm[extruder] = (PID_MAX)/2;
  253. bias = d = (PID_MAX)/2;
  254. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  255. }
  256. for(;;) {
  257. #ifdef WATCHDOG
  258. wdt_reset();
  259. #endif //WATCHDOG
  260. if(temp_meas_ready == true) { // temp sample ready
  261. updateTemperaturesFromRawValues();
  262. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  263. max=max(max,input);
  264. min=min(min,input);
  265. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  266. if(_millis() - extruder_autofan_last_check > 2500) {
  267. checkExtruderAutoFans();
  268. extruder_autofan_last_check = _millis();
  269. }
  270. #endif
  271. if(heating == true && input > temp) {
  272. if(_millis() - t2 > 5000) {
  273. heating=false;
  274. if (extruder<0)
  275. {
  276. soft_pwm_bed = (bias - d) >> 1;
  277. timer02_set_pwm0(soft_pwm_bed << 1);
  278. }
  279. else
  280. soft_pwm[extruder] = (bias - d) >> 1;
  281. t1=_millis();
  282. t_high=t1 - t2;
  283. max=temp;
  284. }
  285. }
  286. if(heating == false && input < temp) {
  287. if(_millis() - t1 > 5000) {
  288. heating=true;
  289. t2=_millis();
  290. t_low=t2 - t1;
  291. if(pid_cycle > 0) {
  292. bias += (d*(t_high - t_low))/(t_low + t_high);
  293. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  294. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  295. else d = bias;
  296. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  297. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  298. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  299. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  300. if(pid_cycle > 2) {
  301. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  302. Tu = ((float)(t_low + t_high)/1000.0);
  303. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  304. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  305. _Kp = 0.6*Ku;
  306. _Ki = 2*_Kp/Tu;
  307. _Kd = _Kp*Tu/8;
  308. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  309. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  310. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  311. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  312. /*
  313. _Kp = 0.33*Ku;
  314. _Ki = _Kp/Tu;
  315. _Kd = _Kp*Tu/3;
  316. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  317. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  318. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  319. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  320. _Kp = 0.2*Ku;
  321. _Ki = 2*_Kp/Tu;
  322. _Kd = _Kp*Tu/3;
  323. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  324. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  325. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  326. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  327. */
  328. }
  329. }
  330. if (extruder<0)
  331. {
  332. soft_pwm_bed = (bias + d) >> 1;
  333. timer02_set_pwm0(soft_pwm_bed << 1);
  334. }
  335. else
  336. soft_pwm[extruder] = (bias + d) >> 1;
  337. pid_cycle++;
  338. min=temp;
  339. }
  340. }
  341. }
  342. if(input > (temp + 20)) {
  343. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  344. pid_tuning_finished = true;
  345. pid_cycle = 0;
  346. return;
  347. }
  348. if(_millis() - temp_millis > 2000) {
  349. int p;
  350. if (extruder<0){
  351. p=soft_pwm_bed;
  352. SERIAL_PROTOCOLPGM("B:");
  353. }else{
  354. p=soft_pwm[extruder];
  355. SERIAL_PROTOCOLPGM("T:");
  356. }
  357. SERIAL_PROTOCOL(input);
  358. SERIAL_PROTOCOLPGM(" @:");
  359. SERIAL_PROTOCOLLN(p);
  360. if (safety_check_cycles == 0) { //save ambient temp
  361. temp_ambient = input;
  362. //SERIAL_ECHOPGM("Ambient T: ");
  363. //MYSERIAL.println(temp_ambient);
  364. safety_check_cycles++;
  365. }
  366. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  367. safety_check_cycles++;
  368. }
  369. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  370. safety_check_cycles++;
  371. //SERIAL_ECHOPGM("Time from beginning: ");
  372. //MYSERIAL.print(safety_check_cycles_count * 2);
  373. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  374. //MYSERIAL.println(input - temp_ambient);
  375. if (abs(input - temp_ambient) < 5.0) {
  376. temp_runaway_stop(false, (extruder<0));
  377. pid_tuning_finished = true;
  378. return;
  379. }
  380. }
  381. temp_millis = _millis();
  382. }
  383. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  384. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  385. pid_tuning_finished = true;
  386. pid_cycle = 0;
  387. return;
  388. }
  389. if(pid_cycle > ncycles) {
  390. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  391. pid_tuning_finished = true;
  392. pid_cycle = 0;
  393. return;
  394. }
  395. lcd_update(0);
  396. }
  397. }
  398. void updatePID()
  399. {
  400. #ifdef PIDTEMP
  401. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  402. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  403. }
  404. #endif
  405. #ifdef PIDTEMPBED
  406. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  407. #endif
  408. }
  409. int getHeaterPower(int heater) {
  410. if (heater<0)
  411. return soft_pwm_bed;
  412. return soft_pwm[heater];
  413. }
  414. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  415. #if defined(FAN_PIN) && FAN_PIN > -1
  416. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  417. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  418. #endif
  419. #endif
  420. void setExtruderAutoFanState(uint8_t state)
  421. {
  422. //If bit 1 is set (0x02), then the extruder fan speed won't be adjusted according to temperature. Useful for forcing
  423. //the fan to either On or Off during certain tests/errors.
  424. fanState = state;
  425. uint8_t newFanSpeed = 0;
  426. if (fanState & 0x01)
  427. {
  428. #ifdef EXTRUDER_ALTFAN_DETECT
  429. if (extruderFanIsAltfan) newFanSpeed = EXTRUDER_ALTFAN_SPEED_SILENT;
  430. else newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  431. #else //EXTRUDER_ALTFAN_DETECT
  432. newFanSpeed = EXTRUDER_AUTO_FAN_SPEED;
  433. #endif //EXTRUDER_ALTFAN_DETECT
  434. }
  435. timer4_set_fan0(newFanSpeed);
  436. }
  437. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  438. void countFanSpeed()
  439. {
  440. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  441. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  442. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  443. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  444. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  445. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  446. SERIAL_ECHOLNPGM(" ");*/
  447. fan_edge_counter[0] = 0;
  448. fan_edge_counter[1] = 0;
  449. }
  450. void checkFanSpeed()
  451. {
  452. uint8_t max_print_fan_errors = 0;
  453. uint8_t max_extruder_fan_errors = 0;
  454. #ifdef FAN_SOFT_PWM
  455. max_print_fan_errors = 3; //15 seconds
  456. max_extruder_fan_errors = 2; //10seconds
  457. #else //FAN_SOFT_PWM
  458. max_print_fan_errors = 15; //15 seconds
  459. max_extruder_fan_errors = 5; //5 seconds
  460. #endif //FAN_SOFT_PWM
  461. if(fans_check_enabled != false)
  462. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  463. static unsigned char fan_speed_errors[2] = { 0,0 };
  464. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  465. if ((fan_speed[0] < 20) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
  466. else{
  467. fan_speed_errors[0] = 0;
  468. host_keepalive();
  469. }
  470. #endif
  471. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  472. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  473. else fan_speed_errors[1] = 0;
  474. #endif
  475. // drop the fan_check_error flag when both fans are ok
  476. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  477. // we may even send some info to the LCD from here
  478. fan_check_error = EFCE_FIXED;
  479. }
  480. if ((fan_check_error == EFCE_FIXED) && !PRINTER_ACTIVE){
  481. fan_check_error = EFCE_OK; //if the issue is fixed while the printer is doing nothing, reenable processing immediately.
  482. lcd_reset_alert_level(); //for another fan speed error
  483. }
  484. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  485. fan_speed_errors[0] = 0;
  486. fanSpeedError(0); //extruder fan
  487. }
  488. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  489. fan_speed_errors[1] = 0;
  490. fanSpeedError(1); //print fan
  491. }
  492. }
  493. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  494. //! Extracted from fanSpeedError to save some space.
  495. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  496. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  497. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  498. SERIAL_ECHOLNRPGM(serialMsg);
  499. if (get_message_level() == 0) {
  500. Sound_MakeCustom(200,0,true);
  501. LCD_ALERTMESSAGERPGM(lcdMsg);
  502. }
  503. }
  504. void fanSpeedError(unsigned char _fan) {
  505. if (get_message_level() != 0 && isPrintPaused) return;
  506. //to ensure that target temp. is not set to zero in case that we are resuming print
  507. if (card.sdprinting || is_usb_printing) {
  508. if (heating_status != 0) {
  509. lcd_print_stop();
  510. }
  511. else {
  512. fan_check_error = EFCE_DETECTED; //plans error for next processed command
  513. }
  514. }
  515. else {
  516. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED); //Why pause octoprint? is_usb_printing would be true in that case, so there is no need for this.
  517. setTargetHotend0(0);
  518. heating_status = 0;
  519. fan_check_error = EFCE_REPORTED;
  520. }
  521. switch (_fan) {
  522. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  523. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), MSG_FANCHECK_EXTRUDER);
  524. break;
  525. case 1:
  526. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT);
  527. break;
  528. }
  529. // SERIAL_PROTOCOLLNRPGM(MSG_OK); //This ok messes things up with octoprint.
  530. }
  531. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  532. void checkExtruderAutoFans()
  533. {
  534. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  535. if (!(fanState & 0x02))
  536. {
  537. fanState &= ~1;
  538. fanState |= current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE;
  539. }
  540. setExtruderAutoFanState(fanState);
  541. #endif
  542. }
  543. #endif // any extruder auto fan pins set
  544. // ready for eventually parameters adjusting
  545. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  546. //void resetPID(uint8_t extruder)
  547. {
  548. }
  549. void manage_heater()
  550. {
  551. #ifdef WATCHDOG
  552. wdt_reset();
  553. #endif //WATCHDOG
  554. float pid_input;
  555. float pid_output;
  556. if(temp_meas_ready != true) //better readability
  557. return;
  558. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  559. // ADC values need to be converted before checking: converted values are later used in MINTEMP
  560. updateTemperaturesFromRawValues();
  561. check_max_temp();
  562. check_min_temp();
  563. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  564. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  565. #endif
  566. for(int e = 0; e < EXTRUDERS; e++)
  567. {
  568. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  569. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  570. #endif
  571. #ifdef PIDTEMP
  572. pid_input = current_temperature[e];
  573. #ifndef PID_OPENLOOP
  574. if(target_temperature[e] == 0) {
  575. pid_output = 0;
  576. pid_reset[e] = true;
  577. } else {
  578. pid_error[e] = target_temperature[e] - pid_input;
  579. if(pid_reset[e]) {
  580. iState_sum[e] = 0.0;
  581. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  582. pid_reset[e] = false;
  583. }
  584. #ifndef PonM
  585. pTerm[e] = cs.Kp * pid_error[e];
  586. iState_sum[e] += pid_error[e];
  587. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  588. iTerm[e] = cs.Ki * iState_sum[e];
  589. // PID_K1 defined in Configuration.h in the PID settings
  590. #define K2 (1.0-PID_K1)
  591. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  592. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  593. if (pid_output > PID_MAX) {
  594. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  595. pid_output=PID_MAX;
  596. } else if (pid_output < 0) {
  597. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  598. pid_output=0;
  599. }
  600. #else // PonM ("Proportional on Measurement" method)
  601. iState_sum[e] += cs.Ki * pid_error[e];
  602. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  603. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  604. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  605. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  606. pid_output = constrain(pid_output, 0, PID_MAX);
  607. #endif // PonM
  608. }
  609. dState_last[e] = pid_input;
  610. #else
  611. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  612. #endif //PID_OPENLOOP
  613. #ifdef PID_DEBUG
  614. SERIAL_ECHO_START;
  615. SERIAL_ECHO(" PID_DEBUG ");
  616. SERIAL_ECHO(e);
  617. SERIAL_ECHO(": Input ");
  618. SERIAL_ECHO(pid_input);
  619. SERIAL_ECHO(" Output ");
  620. SERIAL_ECHO(pid_output);
  621. SERIAL_ECHO(" pTerm ");
  622. SERIAL_ECHO(pTerm[e]);
  623. SERIAL_ECHO(" iTerm ");
  624. SERIAL_ECHO(iTerm[e]);
  625. SERIAL_ECHO(" dTerm ");
  626. SERIAL_ECHOLN(-dTerm[e]);
  627. #endif //PID_DEBUG
  628. #else /* PID off */
  629. pid_output = 0;
  630. if(current_temperature[e] < target_temperature[e]) {
  631. pid_output = PID_MAX;
  632. }
  633. #endif
  634. // Check if temperature is within the correct range
  635. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  636. {
  637. soft_pwm[e] = (int)pid_output >> 1;
  638. }
  639. else
  640. {
  641. soft_pwm[e] = 0;
  642. }
  643. } // End extruder for loop
  644. #define FAN_CHECK_PERIOD 5000 //5s
  645. #define FAN_CHECK_DURATION 100 //100ms
  646. #ifndef DEBUG_DISABLE_FANCHECK
  647. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)
  648. #ifdef FAN_SOFT_PWM
  649. #ifdef FANCHECK
  650. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  651. extruder_autofan_last_check = _millis();
  652. fanSpeedBckp = fanSpeedSoftPwm;
  653. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  654. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  655. fanSpeedSoftPwm = 255;
  656. }
  657. fan_measuring = true;
  658. }
  659. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  660. countFanSpeed();
  661. checkFanSpeed();
  662. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  663. fanSpeedSoftPwm = fanSpeedBckp;
  664. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  665. extruder_autofan_last_check = _millis();
  666. fan_measuring = false;
  667. }
  668. #endif //FANCHECK
  669. checkExtruderAutoFans();
  670. #else //FAN_SOFT_PWM
  671. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  672. {
  673. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  674. countFanSpeed();
  675. checkFanSpeed();
  676. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  677. checkExtruderAutoFans();
  678. extruder_autofan_last_check = _millis();
  679. }
  680. #endif //FAN_SOFT_PWM
  681. #endif
  682. #endif //DEBUG_DISABLE_FANCHECK
  683. #ifndef PIDTEMPBED
  684. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  685. return;
  686. previous_millis_bed_heater = _millis();
  687. #endif
  688. #if TEMP_SENSOR_BED != 0
  689. #ifdef PIDTEMPBED
  690. pid_input = current_temperature_bed;
  691. #ifndef PID_OPENLOOP
  692. pid_error_bed = target_temperature_bed - pid_input;
  693. pTerm_bed = cs.bedKp * pid_error_bed;
  694. temp_iState_bed += pid_error_bed;
  695. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  696. iTerm_bed = cs.bedKi * temp_iState_bed;
  697. //PID_K1 defined in Configuration.h in the PID settings
  698. #define K2 (1.0-PID_K1)
  699. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  700. temp_dState_bed = pid_input;
  701. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  702. if (pid_output > MAX_BED_POWER) {
  703. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  704. pid_output=MAX_BED_POWER;
  705. } else if (pid_output < 0){
  706. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  707. pid_output=0;
  708. }
  709. #else
  710. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  711. #endif //PID_OPENLOOP
  712. if(current_temperature_bed < BED_MAXTEMP)
  713. {
  714. soft_pwm_bed = (int)pid_output >> 1;
  715. timer02_set_pwm0(soft_pwm_bed << 1);
  716. }
  717. else {
  718. soft_pwm_bed = 0;
  719. timer02_set_pwm0(soft_pwm_bed << 1);
  720. }
  721. #elif !defined(BED_LIMIT_SWITCHING)
  722. // Check if temperature is within the correct range
  723. if(current_temperature_bed < BED_MAXTEMP)
  724. {
  725. if(current_temperature_bed >= target_temperature_bed)
  726. {
  727. soft_pwm_bed = 0;
  728. timer02_set_pwm0(soft_pwm_bed << 1);
  729. }
  730. else
  731. {
  732. soft_pwm_bed = MAX_BED_POWER>>1;
  733. timer02_set_pwm0(soft_pwm_bed << 1);
  734. }
  735. }
  736. else
  737. {
  738. soft_pwm_bed = 0;
  739. timer02_set_pwm0(soft_pwm_bed << 1);
  740. WRITE(HEATER_BED_PIN,LOW);
  741. }
  742. #else //#ifdef BED_LIMIT_SWITCHING
  743. // Check if temperature is within the correct band
  744. if(current_temperature_bed < BED_MAXTEMP)
  745. {
  746. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  747. {
  748. soft_pwm_bed = 0;
  749. timer02_set_pwm0(soft_pwm_bed << 1);
  750. }
  751. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  752. {
  753. soft_pwm_bed = MAX_BED_POWER>>1;
  754. timer02_set_pwm0(soft_pwm_bed << 1);
  755. }
  756. }
  757. else
  758. {
  759. soft_pwm_bed = 0;
  760. timer02_set_pwm0(soft_pwm_bed << 1);
  761. WRITE(HEATER_BED_PIN,LOW);
  762. }
  763. #endif
  764. if(target_temperature_bed==0)
  765. {
  766. soft_pwm_bed = 0;
  767. timer02_set_pwm0(soft_pwm_bed << 1);
  768. }
  769. #endif
  770. host_keepalive();
  771. }
  772. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  773. // Derived from RepRap FiveD extruder::getTemperature()
  774. // For hot end temperature measurement.
  775. static float analog2temp(int raw, uint8_t e) {
  776. if(e >= EXTRUDERS)
  777. {
  778. SERIAL_ERROR_START;
  779. SERIAL_ERROR((int)e);
  780. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  781. kill(NULL, 6);
  782. return 0.0;
  783. }
  784. #ifdef HEATER_0_USES_MAX6675
  785. if (e == 0)
  786. {
  787. return 0.25 * raw;
  788. }
  789. #endif
  790. if(heater_ttbl_map[e] != NULL)
  791. {
  792. float celsius = 0;
  793. uint8_t i;
  794. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  795. for (i=1; i<heater_ttbllen_map[e]; i++)
  796. {
  797. if (PGM_RD_W((*tt)[i][0]) > raw)
  798. {
  799. celsius = PGM_RD_W((*tt)[i-1][1]) +
  800. (raw - PGM_RD_W((*tt)[i-1][0])) *
  801. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  802. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  803. break;
  804. }
  805. }
  806. // Overflow: Set to last value in the table
  807. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  808. return celsius;
  809. }
  810. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  811. }
  812. // Derived from RepRap FiveD extruder::getTemperature()
  813. // For bed temperature measurement.
  814. static float analog2tempBed(int raw) {
  815. #ifdef BED_USES_THERMISTOR
  816. float celsius = 0;
  817. byte i;
  818. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  819. {
  820. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  821. {
  822. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  823. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  824. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  825. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  826. break;
  827. }
  828. }
  829. // Overflow: Set to last value in the table
  830. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  831. // temperature offset adjustment
  832. #ifdef BED_OFFSET
  833. float _offset = BED_OFFSET;
  834. float _offset_center = BED_OFFSET_CENTER;
  835. float _offset_start = BED_OFFSET_START;
  836. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  837. float _second_koef = (_offset / 2) / (100 - _offset_center);
  838. if (celsius >= _offset_start && celsius <= _offset_center)
  839. {
  840. celsius = celsius + (_first_koef * (celsius - _offset_start));
  841. }
  842. else if (celsius > _offset_center && celsius <= 100)
  843. {
  844. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  845. }
  846. else if (celsius > 100)
  847. {
  848. celsius = celsius + _offset;
  849. }
  850. #endif
  851. return celsius;
  852. #elif defined BED_USES_AD595
  853. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  854. #else
  855. return 0;
  856. #endif
  857. }
  858. #ifdef AMBIENT_THERMISTOR
  859. static float analog2tempAmbient(int raw)
  860. {
  861. float celsius = 0;
  862. byte i;
  863. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  864. {
  865. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  866. {
  867. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  868. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  869. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  870. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  871. break;
  872. }
  873. }
  874. // Overflow: Set to last value in the table
  875. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  876. return celsius;
  877. }
  878. #endif //AMBIENT_THERMISTOR
  879. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  880. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  881. static void updateTemperaturesFromRawValues()
  882. {
  883. for(uint8_t e=0;e<EXTRUDERS;e++)
  884. {
  885. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  886. }
  887. #ifdef PINDA_THERMISTOR
  888. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  889. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  890. #endif
  891. #ifdef AMBIENT_THERMISTOR
  892. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  893. #endif
  894. #ifdef DEBUG_HEATER_BED_SIM
  895. current_temperature_bed = target_temperature_bed;
  896. #else //DEBUG_HEATER_BED_SIM
  897. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  898. #endif //DEBUG_HEATER_BED_SIM
  899. CRITICAL_SECTION_START;
  900. temp_meas_ready = false;
  901. CRITICAL_SECTION_END;
  902. }
  903. void tp_init()
  904. {
  905. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  906. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  907. MCUCR=(1<<JTD);
  908. MCUCR=(1<<JTD);
  909. #endif
  910. // Finish init of mult extruder arrays
  911. for(int e = 0; e < EXTRUDERS; e++) {
  912. // populate with the first value
  913. maxttemp[e] = maxttemp[0];
  914. #ifdef PIDTEMP
  915. iState_sum_min[e] = 0.0;
  916. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  917. #endif //PIDTEMP
  918. #ifdef PIDTEMPBED
  919. temp_iState_min_bed = 0.0;
  920. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  921. #endif //PIDTEMPBED
  922. }
  923. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  924. SET_OUTPUT(HEATER_0_PIN);
  925. #endif
  926. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  927. SET_OUTPUT(HEATER_1_PIN);
  928. #endif
  929. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  930. SET_OUTPUT(HEATER_2_PIN);
  931. #endif
  932. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  933. SET_OUTPUT(HEATER_BED_PIN);
  934. #endif
  935. #if defined(FAN_PIN) && (FAN_PIN > -1)
  936. SET_OUTPUT(FAN_PIN);
  937. #ifdef FAST_PWM_FAN
  938. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  939. #endif
  940. #ifdef FAN_SOFT_PWM
  941. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  942. #endif
  943. #endif
  944. #ifdef HEATER_0_USES_MAX6675
  945. #ifndef SDSUPPORT
  946. SET_OUTPUT(SCK_PIN);
  947. WRITE(SCK_PIN,0);
  948. SET_OUTPUT(MOSI_PIN);
  949. WRITE(MOSI_PIN,1);
  950. SET_INPUT(MISO_PIN);
  951. WRITE(MISO_PIN,1);
  952. #endif
  953. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  954. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  955. pinMode(SS_PIN, OUTPUT);
  956. digitalWrite(SS_PIN,0);
  957. pinMode(MAX6675_SS, OUTPUT);
  958. digitalWrite(MAX6675_SS,1);
  959. #endif
  960. adc_init();
  961. timer0_init();
  962. OCR2B = 128;
  963. TIMSK2 |= (1<<OCIE2B);
  964. timer4_init(); //for tone and Extruder fan PWM
  965. // Wait for temperature measurement to settle
  966. _delay(250);
  967. #ifdef HEATER_0_MINTEMP
  968. minttemp[0] = HEATER_0_MINTEMP;
  969. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  970. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  971. minttemp_raw[0] += OVERSAMPLENR;
  972. #else
  973. minttemp_raw[0] -= OVERSAMPLENR;
  974. #endif
  975. }
  976. #endif //MINTEMP
  977. #ifdef HEATER_0_MAXTEMP
  978. maxttemp[0] = HEATER_0_MAXTEMP;
  979. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  980. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  981. maxttemp_raw[0] -= OVERSAMPLENR;
  982. #else
  983. maxttemp_raw[0] += OVERSAMPLENR;
  984. #endif
  985. }
  986. #endif //MAXTEMP
  987. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  988. minttemp[1] = HEATER_1_MINTEMP;
  989. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  990. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  991. minttemp_raw[1] += OVERSAMPLENR;
  992. #else
  993. minttemp_raw[1] -= OVERSAMPLENR;
  994. #endif
  995. }
  996. #endif // MINTEMP 1
  997. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  998. maxttemp[1] = HEATER_1_MAXTEMP;
  999. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1000. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1001. maxttemp_raw[1] -= OVERSAMPLENR;
  1002. #else
  1003. maxttemp_raw[1] += OVERSAMPLENR;
  1004. #endif
  1005. }
  1006. #endif //MAXTEMP 1
  1007. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1008. minttemp[2] = HEATER_2_MINTEMP;
  1009. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1010. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1011. minttemp_raw[2] += OVERSAMPLENR;
  1012. #else
  1013. minttemp_raw[2] -= OVERSAMPLENR;
  1014. #endif
  1015. }
  1016. #endif //MINTEMP 2
  1017. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1018. maxttemp[2] = HEATER_2_MAXTEMP;
  1019. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1020. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1021. maxttemp_raw[2] -= OVERSAMPLENR;
  1022. #else
  1023. maxttemp_raw[2] += OVERSAMPLENR;
  1024. #endif
  1025. }
  1026. #endif //MAXTEMP 2
  1027. #ifdef BED_MINTEMP
  1028. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1029. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1030. bed_minttemp_raw += OVERSAMPLENR;
  1031. #else
  1032. bed_minttemp_raw -= OVERSAMPLENR;
  1033. #endif
  1034. }
  1035. #endif //BED_MINTEMP
  1036. #ifdef BED_MAXTEMP
  1037. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1038. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1039. bed_maxttemp_raw -= OVERSAMPLENR;
  1040. #else
  1041. bed_maxttemp_raw += OVERSAMPLENR;
  1042. #endif
  1043. }
  1044. #endif //BED_MAXTEMP
  1045. #ifdef AMBIENT_MINTEMP
  1046. while(analog2tempAmbient(ambient_minttemp_raw) < AMBIENT_MINTEMP) {
  1047. #if HEATER_AMBIENT_RAW_LO_TEMP < HEATER_AMBIENT_RAW_HI_TEMP
  1048. ambient_minttemp_raw += OVERSAMPLENR;
  1049. #else
  1050. ambient_minttemp_raw -= OVERSAMPLENR;
  1051. #endif
  1052. }
  1053. #endif //AMBIENT_MINTEMP
  1054. #ifdef AMBIENT_MAXTEMP
  1055. while(analog2tempAmbient(ambient_maxttemp_raw) > AMBIENT_MAXTEMP) {
  1056. #if HEATER_AMBIENT_RAW_LO_TEMP < HEATER_AMBIENT_RAW_HI_TEMP
  1057. ambient_maxttemp_raw -= OVERSAMPLENR;
  1058. #else
  1059. ambient_maxttemp_raw += OVERSAMPLENR;
  1060. #endif
  1061. }
  1062. #endif //AMBIENT_MAXTEMP
  1063. }
  1064. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1065. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1066. {
  1067. float __delta;
  1068. float __hysteresis = 0;
  1069. int __timeout = 0;
  1070. bool temp_runaway_check_active = false;
  1071. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1072. static int __preheat_counter[2] = { 0,0};
  1073. static int __preheat_errors[2] = { 0,0};
  1074. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1075. {
  1076. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1077. if (_isbed)
  1078. {
  1079. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1080. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1081. }
  1082. #endif
  1083. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1084. if (!_isbed)
  1085. {
  1086. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1087. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1088. }
  1089. #endif
  1090. temp_runaway_timer[_heater_id] = _millis();
  1091. if (_output == 0)
  1092. {
  1093. temp_runaway_check_active = false;
  1094. temp_runaway_error_counter[_heater_id] = 0;
  1095. }
  1096. if (temp_runaway_target[_heater_id] != _target_temperature)
  1097. {
  1098. if (_target_temperature > 0)
  1099. {
  1100. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1101. temp_runaway_target[_heater_id] = _target_temperature;
  1102. __preheat_start[_heater_id] = _current_temperature;
  1103. __preheat_counter[_heater_id] = 0;
  1104. }
  1105. else
  1106. {
  1107. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1108. temp_runaway_target[_heater_id] = _target_temperature;
  1109. }
  1110. }
  1111. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1112. {
  1113. __preheat_counter[_heater_id]++;
  1114. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1115. {
  1116. /*SERIAL_ECHOPGM("Heater:");
  1117. MYSERIAL.print(_heater_id);
  1118. SERIAL_ECHOPGM(" T:");
  1119. MYSERIAL.print(_current_temperature);
  1120. SERIAL_ECHOPGM(" Tstart:");
  1121. MYSERIAL.print(__preheat_start[_heater_id]);
  1122. SERIAL_ECHOPGM(" delta:");
  1123. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1124. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1125. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1126. __delta=2.0;
  1127. if(_isbed)
  1128. {
  1129. __delta=3.0;
  1130. if(_current_temperature>90.0) __delta=2.0;
  1131. if(_current_temperature>105.0) __delta=0.6;
  1132. }
  1133. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1134. __preheat_errors[_heater_id]++;
  1135. /*SERIAL_ECHOPGM(" Preheat errors:");
  1136. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1137. }
  1138. else {
  1139. //SERIAL_ECHOLNPGM("");
  1140. __preheat_errors[_heater_id] = 0;
  1141. }
  1142. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1143. {
  1144. if (farm_mode) { prusa_statistics(0); }
  1145. temp_runaway_stop(true, _isbed);
  1146. if (farm_mode) { prusa_statistics(91); }
  1147. }
  1148. __preheat_start[_heater_id] = _current_temperature;
  1149. __preheat_counter[_heater_id] = 0;
  1150. }
  1151. }
  1152. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1153. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1154. {
  1155. /*SERIAL_ECHOPGM("Heater:");
  1156. MYSERIAL.print(_heater_id);
  1157. MYSERIAL.println(" ->tempRunaway");*/
  1158. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1159. temp_runaway_check_active = false;
  1160. temp_runaway_error_counter[_heater_id] = 0;
  1161. }
  1162. if (_output > 0)
  1163. {
  1164. temp_runaway_check_active = true;
  1165. }
  1166. if (temp_runaway_check_active)
  1167. {
  1168. // we are in range
  1169. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1170. {
  1171. temp_runaway_check_active = false;
  1172. temp_runaway_error_counter[_heater_id] = 0;
  1173. }
  1174. else
  1175. {
  1176. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1177. {
  1178. temp_runaway_error_counter[_heater_id]++;
  1179. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1180. {
  1181. if (farm_mode) { prusa_statistics(0); }
  1182. temp_runaway_stop(false, _isbed);
  1183. if (farm_mode) { prusa_statistics(90); }
  1184. }
  1185. }
  1186. }
  1187. }
  1188. }
  1189. }
  1190. void temp_runaway_stop(bool isPreheat, bool isBed)
  1191. {
  1192. cancel_heatup = true;
  1193. quickStop();
  1194. if (card.sdprinting)
  1195. {
  1196. card.sdprinting = false;
  1197. card.closefile();
  1198. }
  1199. // Clean the input command queue
  1200. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1201. cmdqueue_reset();
  1202. disable_heater();
  1203. disable_x();
  1204. disable_y();
  1205. disable_e0();
  1206. disable_e1();
  1207. disable_e2();
  1208. manage_heater();
  1209. lcd_update(0);
  1210. Sound_MakeCustom(200,0,true);
  1211. if (isPreheat)
  1212. {
  1213. Stop();
  1214. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1215. SERIAL_ERROR_START;
  1216. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1217. #ifdef EXTRUDER_ALTFAN_DETECT
  1218. extruderFanIsAltfan = false; //full speed
  1219. #endif //EXTRUDER_ALTFAN_DETECT
  1220. setExtruderAutoFanState(3);
  1221. SET_OUTPUT(FAN_PIN);
  1222. #ifdef FAN_SOFT_PWM
  1223. fanSpeedSoftPwm = 255;
  1224. #else //FAN_SOFT_PWM
  1225. analogWrite(FAN_PIN, 255);
  1226. #endif //FAN_SOFT_PWM
  1227. fanSpeed = 255;
  1228. delayMicroseconds(2000);
  1229. }
  1230. else
  1231. {
  1232. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1233. SERIAL_ERROR_START;
  1234. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1235. }
  1236. }
  1237. #endif
  1238. void disable_heater()
  1239. {
  1240. setAllTargetHotends(0);
  1241. setTargetBed(0);
  1242. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1243. target_temperature[0]=0;
  1244. soft_pwm[0]=0;
  1245. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1246. WRITE(HEATER_0_PIN,LOW);
  1247. #endif
  1248. #endif
  1249. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1250. target_temperature[1]=0;
  1251. soft_pwm[1]=0;
  1252. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1253. WRITE(HEATER_1_PIN,LOW);
  1254. #endif
  1255. #endif
  1256. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1257. target_temperature[2]=0;
  1258. soft_pwm[2]=0;
  1259. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1260. WRITE(HEATER_2_PIN,LOW);
  1261. #endif
  1262. #endif
  1263. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1264. target_temperature_bed=0;
  1265. soft_pwm_bed=0;
  1266. timer02_set_pwm0(soft_pwm_bed << 1);
  1267. bedPWMDisabled = 0;
  1268. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1269. //WRITE(HEATER_BED_PIN,LOW);
  1270. #endif
  1271. #endif
  1272. }
  1273. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1274. //! than raw const char * of the messages themselves.
  1275. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1276. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1277. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1278. //! remember the last alert message sent to the LCD
  1279. //! to prevent flicker and improve speed
  1280. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1281. void max_temp_error(uint8_t e) {
  1282. disable_heater();
  1283. if(IsStopped() == false) {
  1284. SERIAL_ERROR_START;
  1285. SERIAL_ERRORLN((int)e);
  1286. SERIAL_ERRORLNPGM(": Heaters switched off. MAXTEMP triggered !");
  1287. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1288. }
  1289. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1290. Stop();
  1291. #endif
  1292. SET_OUTPUT(FAN_PIN);
  1293. SET_OUTPUT(BEEPER);
  1294. WRITE(FAN_PIN, 1);
  1295. WRITE(BEEPER, 1);
  1296. #ifdef EXTRUDER_ALTFAN_DETECT
  1297. extruderFanIsAltfan = false; //full speed
  1298. #endif //EXTRUDER_ALTFAN_DETECT
  1299. setExtruderAutoFanState(3);
  1300. // fanSpeed will consumed by the check_axes_activity() routine.
  1301. fanSpeed=255;
  1302. if (farm_mode) { prusa_statistics(93); }
  1303. }
  1304. void min_temp_error(uint8_t e) {
  1305. #ifdef DEBUG_DISABLE_MINTEMP
  1306. return;
  1307. #endif
  1308. disable_heater();
  1309. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1310. static const char err[] PROGMEM = "Err: MINTEMP";
  1311. if(IsStopped() == false) {
  1312. SERIAL_ERROR_START;
  1313. SERIAL_ERRORLN((int)e);
  1314. SERIAL_ERRORLNPGM(": Heaters switched off. MINTEMP triggered !");
  1315. lcd_setalertstatuspgm(err);
  1316. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1317. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1318. // we are already stopped due to some error, only update the status message without flickering
  1319. lcd_updatestatuspgm(err);
  1320. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1321. }
  1322. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1323. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1324. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1325. // lcd_print_stop();
  1326. // }
  1327. Stop();
  1328. #endif
  1329. if (farm_mode) { prusa_statistics(92); }
  1330. }
  1331. void bed_max_temp_error(void) {
  1332. disable_heater();
  1333. if(IsStopped() == false) {
  1334. SERIAL_ERROR_START;
  1335. SERIAL_ERRORLNPGM("Heaters switched off. MAXTEMP BED triggered !");
  1336. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1337. }
  1338. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1339. Stop();
  1340. #endif
  1341. }
  1342. void bed_min_temp_error(void) {
  1343. #ifdef DEBUG_DISABLE_MINTEMP
  1344. return;
  1345. #endif
  1346. disable_heater();
  1347. static const char err[] PROGMEM = "MINTEMP BED";
  1348. if(IsStopped() == false) {
  1349. SERIAL_ERROR_START;
  1350. SERIAL_ERRORLNPGM("Heaters switched off. MINTEMP BED triggered !");
  1351. lcd_setalertstatuspgm(err);
  1352. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1353. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1354. // we are already stopped due to some error, only update the status message without flickering
  1355. lcd_updatestatuspgm(err);
  1356. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1357. }
  1358. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1359. Stop();
  1360. #endif
  1361. }
  1362. #ifdef AMBIENT_THERMISTOR
  1363. void ambient_max_temp_error(void) {
  1364. disable_heater();
  1365. if(IsStopped() == false) {
  1366. SERIAL_ERROR_START;
  1367. SERIAL_ERRORLNPGM("Heaters switched off. MAXTEMP AMBIENT triggered !");
  1368. LCD_ALERTMESSAGEPGM("Err: MAXTEMP AMBIENT");
  1369. }
  1370. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1371. Stop();
  1372. #endif
  1373. }
  1374. void ambient_min_temp_error(void) {
  1375. #ifdef DEBUG_DISABLE_MINTEMP
  1376. return;
  1377. #endif
  1378. disable_heater();
  1379. if(IsStopped() == false) {
  1380. SERIAL_ERROR_START;
  1381. SERIAL_ERRORLNPGM("Heaters switched off. MINTEMP AMBIENT triggered !");
  1382. LCD_ALERTMESSAGEPGM("Err: MINTEMP AMBIENT");
  1383. }
  1384. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1385. Stop();
  1386. #endif
  1387. }
  1388. #endif
  1389. #ifdef HEATER_0_USES_MAX6675
  1390. #define MAX6675_HEAT_INTERVAL 250
  1391. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1392. int max6675_temp = 2000;
  1393. int read_max6675()
  1394. {
  1395. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1396. return max6675_temp;
  1397. max6675_previous_millis = _millis();
  1398. max6675_temp = 0;
  1399. #ifdef PRR
  1400. PRR &= ~(1<<PRSPI);
  1401. #elif defined PRR0
  1402. PRR0 &= ~(1<<PRSPI);
  1403. #endif
  1404. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1405. // enable TT_MAX6675
  1406. WRITE(MAX6675_SS, 0);
  1407. // ensure 100ns delay - a bit extra is fine
  1408. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1409. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1410. // read MSB
  1411. SPDR = 0;
  1412. for (;(SPSR & (1<<SPIF)) == 0;);
  1413. max6675_temp = SPDR;
  1414. max6675_temp <<= 8;
  1415. // read LSB
  1416. SPDR = 0;
  1417. for (;(SPSR & (1<<SPIF)) == 0;);
  1418. max6675_temp |= SPDR;
  1419. // disable TT_MAX6675
  1420. WRITE(MAX6675_SS, 1);
  1421. if (max6675_temp & 4)
  1422. {
  1423. // thermocouple open
  1424. max6675_temp = 2000;
  1425. }
  1426. else
  1427. {
  1428. max6675_temp = max6675_temp >> 3;
  1429. }
  1430. return max6675_temp;
  1431. }
  1432. #endif
  1433. extern "C" {
  1434. void adc_ready(void) //callback from adc when sampling finished
  1435. {
  1436. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1437. #ifdef PINDA_THERMISTOR
  1438. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1439. #endif //PINDA_THERMISTOR
  1440. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1441. #ifdef VOLT_PWR_PIN
  1442. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1443. #endif
  1444. #ifdef AMBIENT_THERMISTOR
  1445. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
  1446. #endif //AMBIENT_THERMISTOR
  1447. #ifdef VOLT_BED_PIN
  1448. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1449. #endif
  1450. #ifdef IR_SENSOR_ANALOG
  1451. current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
  1452. #endif //IR_SENSOR_ANALOG
  1453. temp_meas_ready = true;
  1454. }
  1455. } // extern "C"
  1456. // Timer2 (originaly timer0) is shared with millies
  1457. #ifdef SYSTEM_TIMER_2
  1458. ISR(TIMER2_COMPB_vect)
  1459. #else //SYSTEM_TIMER_2
  1460. ISR(TIMER0_COMPB_vect)
  1461. #endif //SYSTEM_TIMER_2
  1462. {
  1463. static bool _lock = false;
  1464. if (_lock) return;
  1465. _lock = true;
  1466. asm("sei");
  1467. if (!temp_meas_ready) adc_cycle();
  1468. lcd_buttons_update();
  1469. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1470. static uint8_t soft_pwm_0;
  1471. #ifdef SLOW_PWM_HEATERS
  1472. static unsigned char slow_pwm_count = 0;
  1473. static unsigned char state_heater_0 = 0;
  1474. static unsigned char state_timer_heater_0 = 0;
  1475. #endif
  1476. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1477. static unsigned char soft_pwm_1;
  1478. #ifdef SLOW_PWM_HEATERS
  1479. static unsigned char state_heater_1 = 0;
  1480. static unsigned char state_timer_heater_1 = 0;
  1481. #endif
  1482. #endif
  1483. #if EXTRUDERS > 2
  1484. static unsigned char soft_pwm_2;
  1485. #ifdef SLOW_PWM_HEATERS
  1486. static unsigned char state_heater_2 = 0;
  1487. static unsigned char state_timer_heater_2 = 0;
  1488. #endif
  1489. #endif
  1490. #if HEATER_BED_PIN > -1
  1491. // @@DR static unsigned char soft_pwm_b;
  1492. #ifdef SLOW_PWM_HEATERS
  1493. static unsigned char state_heater_b = 0;
  1494. static unsigned char state_timer_heater_b = 0;
  1495. #endif
  1496. #endif
  1497. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1498. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1499. #endif
  1500. #ifndef SLOW_PWM_HEATERS
  1501. /*
  1502. * standard PWM modulation
  1503. */
  1504. if (pwm_count == 0)
  1505. {
  1506. soft_pwm_0 = soft_pwm[0];
  1507. if(soft_pwm_0 > 0)
  1508. {
  1509. WRITE(HEATER_0_PIN,1);
  1510. #ifdef HEATERS_PARALLEL
  1511. WRITE(HEATER_1_PIN,1);
  1512. #endif
  1513. } else WRITE(HEATER_0_PIN,0);
  1514. #if EXTRUDERS > 1
  1515. soft_pwm_1 = soft_pwm[1];
  1516. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1517. #endif
  1518. #if EXTRUDERS > 2
  1519. soft_pwm_2 = soft_pwm[2];
  1520. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1521. #endif
  1522. }
  1523. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1524. #if 0 // @@DR vypnuto pro hw pwm bedu
  1525. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1526. // teoreticky by se tato cast uz vubec nemusela poustet
  1527. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1528. {
  1529. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1530. # ifndef SYSTEM_TIMER_2
  1531. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1532. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1533. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1534. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1535. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1536. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1537. # endif //SYSTEM_TIMER_2
  1538. }
  1539. #endif
  1540. #endif
  1541. #ifdef FAN_SOFT_PWM
  1542. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1543. {
  1544. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1545. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1546. }
  1547. #endif
  1548. if(soft_pwm_0 < pwm_count)
  1549. {
  1550. WRITE(HEATER_0_PIN,0);
  1551. #ifdef HEATERS_PARALLEL
  1552. WRITE(HEATER_1_PIN,0);
  1553. #endif
  1554. }
  1555. #if EXTRUDERS > 1
  1556. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1557. #endif
  1558. #if EXTRUDERS > 2
  1559. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1560. #endif
  1561. #if 0 // @@DR
  1562. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1563. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1564. //WRITE(HEATER_BED_PIN,0);
  1565. }
  1566. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1567. #endif
  1568. #endif
  1569. #ifdef FAN_SOFT_PWM
  1570. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1571. #endif
  1572. pwm_count += (1 << SOFT_PWM_SCALE);
  1573. pwm_count &= 0x7f;
  1574. #else //ifndef SLOW_PWM_HEATERS
  1575. /*
  1576. * SLOW PWM HEATERS
  1577. *
  1578. * for heaters drived by relay
  1579. */
  1580. #ifndef MIN_STATE_TIME
  1581. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1582. #endif
  1583. if (slow_pwm_count == 0) {
  1584. // EXTRUDER 0
  1585. soft_pwm_0 = soft_pwm[0];
  1586. if (soft_pwm_0 > 0) {
  1587. // turn ON heather only if the minimum time is up
  1588. if (state_timer_heater_0 == 0) {
  1589. // if change state set timer
  1590. if (state_heater_0 == 0) {
  1591. state_timer_heater_0 = MIN_STATE_TIME;
  1592. }
  1593. state_heater_0 = 1;
  1594. WRITE(HEATER_0_PIN, 1);
  1595. #ifdef HEATERS_PARALLEL
  1596. WRITE(HEATER_1_PIN, 1);
  1597. #endif
  1598. }
  1599. } else {
  1600. // turn OFF heather only if the minimum time is up
  1601. if (state_timer_heater_0 == 0) {
  1602. // if change state set timer
  1603. if (state_heater_0 == 1) {
  1604. state_timer_heater_0 = MIN_STATE_TIME;
  1605. }
  1606. state_heater_0 = 0;
  1607. WRITE(HEATER_0_PIN, 0);
  1608. #ifdef HEATERS_PARALLEL
  1609. WRITE(HEATER_1_PIN, 0);
  1610. #endif
  1611. }
  1612. }
  1613. #if EXTRUDERS > 1
  1614. // EXTRUDER 1
  1615. soft_pwm_1 = soft_pwm[1];
  1616. if (soft_pwm_1 > 0) {
  1617. // turn ON heather only if the minimum time is up
  1618. if (state_timer_heater_1 == 0) {
  1619. // if change state set timer
  1620. if (state_heater_1 == 0) {
  1621. state_timer_heater_1 = MIN_STATE_TIME;
  1622. }
  1623. state_heater_1 = 1;
  1624. WRITE(HEATER_1_PIN, 1);
  1625. }
  1626. } else {
  1627. // turn OFF heather only if the minimum time is up
  1628. if (state_timer_heater_1 == 0) {
  1629. // if change state set timer
  1630. if (state_heater_1 == 1) {
  1631. state_timer_heater_1 = MIN_STATE_TIME;
  1632. }
  1633. state_heater_1 = 0;
  1634. WRITE(HEATER_1_PIN, 0);
  1635. }
  1636. }
  1637. #endif
  1638. #if EXTRUDERS > 2
  1639. // EXTRUDER 2
  1640. soft_pwm_2 = soft_pwm[2];
  1641. if (soft_pwm_2 > 0) {
  1642. // turn ON heather only if the minimum time is up
  1643. if (state_timer_heater_2 == 0) {
  1644. // if change state set timer
  1645. if (state_heater_2 == 0) {
  1646. state_timer_heater_2 = MIN_STATE_TIME;
  1647. }
  1648. state_heater_2 = 1;
  1649. WRITE(HEATER_2_PIN, 1);
  1650. }
  1651. } else {
  1652. // turn OFF heather only if the minimum time is up
  1653. if (state_timer_heater_2 == 0) {
  1654. // if change state set timer
  1655. if (state_heater_2 == 1) {
  1656. state_timer_heater_2 = MIN_STATE_TIME;
  1657. }
  1658. state_heater_2 = 0;
  1659. WRITE(HEATER_2_PIN, 0);
  1660. }
  1661. }
  1662. #endif
  1663. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1664. // BED
  1665. soft_pwm_b = soft_pwm_bed;
  1666. if (soft_pwm_b > 0) {
  1667. // turn ON heather only if the minimum time is up
  1668. if (state_timer_heater_b == 0) {
  1669. // if change state set timer
  1670. if (state_heater_b == 0) {
  1671. state_timer_heater_b = MIN_STATE_TIME;
  1672. }
  1673. state_heater_b = 1;
  1674. //WRITE(HEATER_BED_PIN, 1);
  1675. }
  1676. } else {
  1677. // turn OFF heather only if the minimum time is up
  1678. if (state_timer_heater_b == 0) {
  1679. // if change state set timer
  1680. if (state_heater_b == 1) {
  1681. state_timer_heater_b = MIN_STATE_TIME;
  1682. }
  1683. state_heater_b = 0;
  1684. WRITE(HEATER_BED_PIN, 0);
  1685. }
  1686. }
  1687. #endif
  1688. } // if (slow_pwm_count == 0)
  1689. // EXTRUDER 0
  1690. if (soft_pwm_0 < slow_pwm_count) {
  1691. // turn OFF heather only if the minimum time is up
  1692. if (state_timer_heater_0 == 0) {
  1693. // if change state set timer
  1694. if (state_heater_0 == 1) {
  1695. state_timer_heater_0 = MIN_STATE_TIME;
  1696. }
  1697. state_heater_0 = 0;
  1698. WRITE(HEATER_0_PIN, 0);
  1699. #ifdef HEATERS_PARALLEL
  1700. WRITE(HEATER_1_PIN, 0);
  1701. #endif
  1702. }
  1703. }
  1704. #if EXTRUDERS > 1
  1705. // EXTRUDER 1
  1706. if (soft_pwm_1 < slow_pwm_count) {
  1707. // turn OFF heather only if the minimum time is up
  1708. if (state_timer_heater_1 == 0) {
  1709. // if change state set timer
  1710. if (state_heater_1 == 1) {
  1711. state_timer_heater_1 = MIN_STATE_TIME;
  1712. }
  1713. state_heater_1 = 0;
  1714. WRITE(HEATER_1_PIN, 0);
  1715. }
  1716. }
  1717. #endif
  1718. #if EXTRUDERS > 2
  1719. // EXTRUDER 2
  1720. if (soft_pwm_2 < slow_pwm_count) {
  1721. // turn OFF heather only if the minimum time is up
  1722. if (state_timer_heater_2 == 0) {
  1723. // if change state set timer
  1724. if (state_heater_2 == 1) {
  1725. state_timer_heater_2 = MIN_STATE_TIME;
  1726. }
  1727. state_heater_2 = 0;
  1728. WRITE(HEATER_2_PIN, 0);
  1729. }
  1730. }
  1731. #endif
  1732. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1733. // BED
  1734. if (soft_pwm_b < slow_pwm_count) {
  1735. // turn OFF heather only if the minimum time is up
  1736. if (state_timer_heater_b == 0) {
  1737. // if change state set timer
  1738. if (state_heater_b == 1) {
  1739. state_timer_heater_b = MIN_STATE_TIME;
  1740. }
  1741. state_heater_b = 0;
  1742. WRITE(HEATER_BED_PIN, 0);
  1743. }
  1744. }
  1745. #endif
  1746. #ifdef FAN_SOFT_PWM
  1747. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1748. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1749. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1750. }
  1751. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1752. #endif
  1753. pwm_count += (1 << SOFT_PWM_SCALE);
  1754. pwm_count &= 0x7f;
  1755. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1756. if ((pwm_count % 64) == 0) {
  1757. slow_pwm_count++;
  1758. slow_pwm_count &= 0x7f;
  1759. // Extruder 0
  1760. if (state_timer_heater_0 > 0) {
  1761. state_timer_heater_0--;
  1762. }
  1763. #if EXTRUDERS > 1
  1764. // Extruder 1
  1765. if (state_timer_heater_1 > 0)
  1766. state_timer_heater_1--;
  1767. #endif
  1768. #if EXTRUDERS > 2
  1769. // Extruder 2
  1770. if (state_timer_heater_2 > 0)
  1771. state_timer_heater_2--;
  1772. #endif
  1773. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1774. // Bed
  1775. if (state_timer_heater_b > 0)
  1776. state_timer_heater_b--;
  1777. #endif
  1778. } //if ((pwm_count % 64) == 0) {
  1779. #endif //ifndef SLOW_PWM_HEATERS
  1780. #ifdef BABYSTEPPING
  1781. for(uint8_t axis=0;axis<3;axis++)
  1782. {
  1783. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1784. if(curTodo>0)
  1785. {
  1786. asm("cli");
  1787. babystep(axis,/*fwd*/true);
  1788. babystepsTodo[axis]--; //less to do next time
  1789. asm("sei");
  1790. }
  1791. else
  1792. if(curTodo<0)
  1793. {
  1794. asm("cli");
  1795. babystep(axis,/*fwd*/false);
  1796. babystepsTodo[axis]++; //less to do next time
  1797. asm("sei");
  1798. }
  1799. }
  1800. #endif //BABYSTEPPING
  1801. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1802. check_fans();
  1803. #endif //(defined(TACH_0))
  1804. _lock = false;
  1805. }
  1806. void check_max_temp()
  1807. {
  1808. //heater
  1809. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1810. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1811. #else
  1812. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1813. #endif
  1814. max_temp_error(0);
  1815. }
  1816. //bed
  1817. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1818. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1819. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1820. #else
  1821. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1822. #endif
  1823. bed_max_temp_error();
  1824. }
  1825. #endif
  1826. //ambient
  1827. #if defined(AMBIENT_MAXTEMP) && (TEMP_SENSOR_AMBIENT != 0)
  1828. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1829. if (current_temperature_raw_ambient <= ambient_maxttemp_raw) {
  1830. #else
  1831. if (current_temperature_raw_ambient >= ambient_maxttemp_raw) {
  1832. #endif
  1833. ambient_max_temp_error();
  1834. }
  1835. #endif
  1836. }
  1837. //! number of repeating the same state with consecutive step() calls
  1838. //! used to slow down text switching
  1839. struct alert_automaton_mintemp {
  1840. const char *m2;
  1841. alert_automaton_mintemp(const char *m2):m2(m2){}
  1842. private:
  1843. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1844. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1845. States state = States::Init;
  1846. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1847. void substep(States next_state){
  1848. if( repeat == 0 ){
  1849. state = next_state; // advance to the next state
  1850. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1851. } else {
  1852. --repeat;
  1853. }
  1854. }
  1855. public:
  1856. //! brief state automaton step routine
  1857. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1858. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1859. void step(float current_temp, float mintemp){
  1860. static const char m1[] PROGMEM = "Please restart";
  1861. switch(state){
  1862. case States::Init: // initial state - check hysteresis
  1863. if( current_temp > mintemp ){
  1864. state = States::TempAboveMintemp;
  1865. }
  1866. // otherwise keep the Err MINTEMP alert message on the display,
  1867. // i.e. do not transfer to state 1
  1868. break;
  1869. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1870. lcd_setalertstatuspgm(m2);
  1871. substep(States::ShowMintemp);
  1872. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1873. break;
  1874. case States::ShowPleaseRestart: // displaying "Please restart"
  1875. lcd_updatestatuspgm(m1);
  1876. substep(States::ShowMintemp);
  1877. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1878. break;
  1879. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1880. lcd_updatestatuspgm(m2);
  1881. substep(States::ShowPleaseRestart);
  1882. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1883. break;
  1884. }
  1885. }
  1886. };
  1887. static const char m2hotend[] PROGMEM = "MINTEMP HOTEND fixed";
  1888. static const char m2bed[] PROGMEM = "MINTEMP BED fixed";
  1889. static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton_bed(m2bed);
  1890. void check_min_temp_heater0()
  1891. {
  1892. //heater
  1893. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1894. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1895. #else
  1896. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1897. #endif
  1898. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1899. min_temp_error(0);
  1900. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1901. // no recovery, just force the user to restart the printer
  1902. // which is a safer variant than just continuing printing
  1903. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1904. // we shall signalize, that MINTEMP has been fixed
  1905. // Code notice: normally the alert_automaton instance would have been placed here
  1906. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1907. // due to stupid compiler that takes 16 more bytes.
  1908. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1909. }
  1910. }
  1911. void check_min_temp_bed()
  1912. {
  1913. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1914. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1915. #else
  1916. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1917. #endif
  1918. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1919. bed_min_temp_error();
  1920. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1921. // no recovery, just force the user to restart the printer
  1922. // which is a safer variant than just continuing printing
  1923. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1924. }
  1925. }
  1926. #ifdef AMBIENT_MINTEMP
  1927. void check_min_temp_ambient()
  1928. {
  1929. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1930. if (current_temperature_raw_ambient >= ambient_minttemp_raw) {
  1931. #else
  1932. if (current_temperature_raw_ambient <= ambient_minttemp_raw) {
  1933. #endif
  1934. ambient_min_temp_error();
  1935. }
  1936. }
  1937. #endif
  1938. void check_min_temp()
  1939. {
  1940. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1941. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1942. #ifdef AMBIENT_THERMISTOR
  1943. #ifdef AMBIENT_MINTEMP
  1944. check_min_temp_ambient();
  1945. #endif
  1946. #if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP
  1947. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type
  1948. #else
  1949. if(current_temperature_raw_ambient=<(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW))
  1950. #endif
  1951. { // ambient temperature is low
  1952. #endif //AMBIENT_THERMISTOR
  1953. // *** 'common' part of code for MK2.5 & MK3
  1954. // * nozzle checking
  1955. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1956. { // ~ nozzle heating is on
  1957. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1958. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1959. {
  1960. bCheckingOnHeater=true; // not necessary
  1961. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1962. }
  1963. }
  1964. else { // ~ nozzle heating is off
  1965. oTimer4minTempHeater.start();
  1966. bCheckingOnHeater=false;
  1967. }
  1968. // * bed checking
  1969. if(target_temperature_bed>BED_MINTEMP)
  1970. { // ~ bed heating is on
  1971. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1972. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1973. {
  1974. bCheckingOnBed=true; // not necessary
  1975. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1976. }
  1977. }
  1978. else { // ~ bed heating is off
  1979. oTimer4minTempBed.start();
  1980. bCheckingOnBed=false;
  1981. }
  1982. // *** end of 'common' part
  1983. #ifdef AMBIENT_THERMISTOR
  1984. }
  1985. else { // ambient temperature is standard
  1986. check_min_temp_heater0();
  1987. check_min_temp_bed();
  1988. }
  1989. #endif //AMBIENT_THERMISTOR
  1990. }
  1991. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1992. void check_fans() {
  1993. #ifdef FAN_SOFT_PWM
  1994. if (READ(TACH_0) != fan_state[0]) {
  1995. if(fan_measuring) fan_edge_counter[0] ++;
  1996. fan_state[0] = !fan_state[0];
  1997. }
  1998. #else //FAN_SOFT_PWM
  1999. if (READ(TACH_0) != fan_state[0]) {
  2000. fan_edge_counter[0] ++;
  2001. fan_state[0] = !fan_state[0];
  2002. }
  2003. #endif
  2004. //if (READ(TACH_1) != fan_state[1]) {
  2005. // fan_edge_counter[1] ++;
  2006. // fan_state[1] = !fan_state[1];
  2007. //}
  2008. }
  2009. #endif //TACH_0
  2010. #ifdef PIDTEMP
  2011. // Apply the scale factors to the PID values
  2012. float scalePID_i(float i)
  2013. {
  2014. return i*PID_dT;
  2015. }
  2016. float unscalePID_i(float i)
  2017. {
  2018. return i/PID_dT;
  2019. }
  2020. float scalePID_d(float d)
  2021. {
  2022. return d/PID_dT;
  2023. }
  2024. float unscalePID_d(float d)
  2025. {
  2026. return d*PID_dT;
  2027. }
  2028. #endif //PIDTEMP
  2029. #ifdef PINDA_THERMISTOR
  2030. //! @brief PINDA thermistor detected
  2031. //!
  2032. //! @retval true firmware should do temperature compensation and allow calibration
  2033. //! @retval false PINDA thermistor is not detected, disable temperature compensation and calibration
  2034. //!
  2035. bool has_temperature_compensation()
  2036. {
  2037. #ifdef DETECT_SUPERPINDA
  2038. return (current_temperature_pinda >= PINDA_MINTEMP) ? true : false;
  2039. #else
  2040. return true;
  2041. #endif
  2042. }
  2043. #endif //PINDA_THERMISTOR