Marlin_main.cpp 271 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. // M114 - Output current position to serial port
  148. // M115 - Capabilities string
  149. // M117 - display message
  150. // M119 - Output Endstop status to serial port
  151. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  152. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  153. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M140 - Set bed target temp
  156. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  160. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  164. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. // M206 - set additional homing offset
  166. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  168. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. // M220 S<factor in percent>- set speed factor override percentage
  171. // M221 S<factor in percent>- set extrude factor override percentage
  172. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  173. // M240 - Trigger a camera to take a photograph
  174. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  176. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. // M301 - Set PID parameters P I and D
  178. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. // M304 - Set bed PID parameters P I and D
  181. // M400 - Finish all moves
  182. // M401 - Lower z-probe if present
  183. // M402 - Raise z-probe if present
  184. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  185. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  186. // M406 - Turn off Filament Sensor extrusion control
  187. // M407 - Displays measured filament diameter
  188. // M500 - stores parameters in EEPROM
  189. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  190. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  191. // M503 - print the current settings (from memory not from EEPROM)
  192. // M509 - force language selection on next restart
  193. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  196. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  197. // M907 - Set digital trimpot motor current using axis codes.
  198. // M908 - Control digital trimpot directly.
  199. // M350 - Set microstepping mode.
  200. // M351 - Toggle MS1 MS2 pins directly.
  201. // M928 - Start SD logging (M928 filename.g) - ended by M29
  202. // M999 - Restart after being stopped by error
  203. //Stepper Movement Variables
  204. //===========================================================================
  205. //=============================imported variables============================
  206. //===========================================================================
  207. //===========================================================================
  208. //=============================public variables=============================
  209. //===========================================================================
  210. #ifdef SDSUPPORT
  211. CardReader card;
  212. #endif
  213. unsigned long PingTime = millis();
  214. union Data
  215. {
  216. byte b[2];
  217. int value;
  218. };
  219. float homing_feedrate[] = HOMING_FEEDRATE;
  220. // Currently only the extruder axis may be switched to a relative mode.
  221. // Other axes are always absolute or relative based on the common relative_mode flag.
  222. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  223. int feedmultiply=100; //100->1 200->2
  224. int saved_feedmultiply;
  225. int extrudemultiply=100; //100->1 200->2
  226. int extruder_multiply[EXTRUDERS] = {100
  227. #if EXTRUDERS > 1
  228. , 100
  229. #if EXTRUDERS > 2
  230. , 100
  231. #endif
  232. #endif
  233. };
  234. int bowden_length[4] = {385, 385, 385, 385};
  235. bool is_usb_printing = false;
  236. bool homing_flag = false;
  237. bool temp_cal_active = false;
  238. unsigned long kicktime = millis()+100000;
  239. unsigned int usb_printing_counter;
  240. int lcd_change_fil_state = 0;
  241. int feedmultiplyBckp = 100;
  242. float HotendTempBckp = 0;
  243. int fanSpeedBckp = 0;
  244. float pause_lastpos[4];
  245. unsigned long pause_time = 0;
  246. unsigned long start_pause_print = millis();
  247. unsigned long t_fan_rising_edge = millis();
  248. //unsigned long load_filament_time;
  249. bool mesh_bed_leveling_flag = false;
  250. bool mesh_bed_run_from_menu = false;
  251. unsigned char lang_selected = 0;
  252. int8_t FarmMode = 0;
  253. bool prusa_sd_card_upload = false;
  254. unsigned int status_number = 0;
  255. unsigned long total_filament_used;
  256. unsigned int heating_status;
  257. unsigned int heating_status_counter;
  258. bool custom_message;
  259. bool loading_flag = false;
  260. unsigned int custom_message_type;
  261. unsigned int custom_message_state;
  262. char snmm_filaments_used = 0;
  263. float distance_from_min[2];
  264. bool fan_state[2];
  265. int fan_edge_counter[2];
  266. int fan_speed[2];
  267. char dir_names[3][9];
  268. bool sortAlpha = false;
  269. bool volumetric_enabled = false;
  270. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  271. #if EXTRUDERS > 1
  272. , DEFAULT_NOMINAL_FILAMENT_DIA
  273. #if EXTRUDERS > 2
  274. , DEFAULT_NOMINAL_FILAMENT_DIA
  275. #endif
  276. #endif
  277. };
  278. float volumetric_multiplier[EXTRUDERS] = {1.0
  279. #if EXTRUDERS > 1
  280. , 1.0
  281. #if EXTRUDERS > 2
  282. , 1.0
  283. #endif
  284. #endif
  285. };
  286. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  287. float add_homing[3]={0,0,0};
  288. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  289. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  290. bool axis_known_position[3] = {false, false, false};
  291. float zprobe_zoffset;
  292. // Extruder offset
  293. #if EXTRUDERS > 1
  294. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  295. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  296. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  297. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  298. #endif
  299. };
  300. #endif
  301. uint8_t active_extruder = 0;
  302. int fanSpeed=0;
  303. #ifdef FWRETRACT
  304. bool autoretract_enabled=false;
  305. bool retracted[EXTRUDERS]={false
  306. #if EXTRUDERS > 1
  307. , false
  308. #if EXTRUDERS > 2
  309. , false
  310. #endif
  311. #endif
  312. };
  313. bool retracted_swap[EXTRUDERS]={false
  314. #if EXTRUDERS > 1
  315. , false
  316. #if EXTRUDERS > 2
  317. , false
  318. #endif
  319. #endif
  320. };
  321. float retract_length = RETRACT_LENGTH;
  322. float retract_length_swap = RETRACT_LENGTH_SWAP;
  323. float retract_feedrate = RETRACT_FEEDRATE;
  324. float retract_zlift = RETRACT_ZLIFT;
  325. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  326. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  327. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  328. #endif
  329. #ifdef ULTIPANEL
  330. #ifdef PS_DEFAULT_OFF
  331. bool powersupply = false;
  332. #else
  333. bool powersupply = true;
  334. #endif
  335. #endif
  336. bool cancel_heatup = false ;
  337. #ifdef HOST_KEEPALIVE_FEATURE
  338. int busy_state = NOT_BUSY;
  339. static long prev_busy_signal_ms = -1;
  340. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  341. #else
  342. #define host_keepalive();
  343. #define KEEPALIVE_STATE(n);
  344. #endif
  345. #ifdef FILAMENT_SENSOR
  346. //Variables for Filament Sensor input
  347. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  348. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  349. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  350. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  351. int delay_index1=0; //index into ring buffer
  352. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  353. float delay_dist=0; //delay distance counter
  354. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  355. #endif
  356. const char errormagic[] PROGMEM = "Error:";
  357. const char echomagic[] PROGMEM = "echo:";
  358. //===========================================================================
  359. //=============================Private Variables=============================
  360. //===========================================================================
  361. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  362. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  363. static float delta[3] = {0.0, 0.0, 0.0};
  364. // For tracing an arc
  365. static float offset[3] = {0.0, 0.0, 0.0};
  366. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  367. // Determines Absolute or Relative Coordinates.
  368. // Also there is bool axis_relative_modes[] per axis flag.
  369. static bool relative_mode = false;
  370. #ifndef _DISABLE_M42_M226
  371. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  372. #endif //_DISABLE_M42_M226
  373. //static float tt = 0;
  374. //static float bt = 0;
  375. //Inactivity shutdown variables
  376. static unsigned long previous_millis_cmd = 0;
  377. unsigned long max_inactive_time = 0;
  378. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  379. unsigned long starttime=0;
  380. unsigned long stoptime=0;
  381. unsigned long _usb_timer = 0;
  382. static uint8_t tmp_extruder;
  383. bool extruder_under_pressure = true;
  384. bool Stopped=false;
  385. #if NUM_SERVOS > 0
  386. Servo servos[NUM_SERVOS];
  387. #endif
  388. bool CooldownNoWait = true;
  389. bool target_direction;
  390. //Insert variables if CHDK is defined
  391. #ifdef CHDK
  392. unsigned long chdkHigh = 0;
  393. boolean chdkActive = false;
  394. #endif
  395. //===========================================================================
  396. //=============================Routines======================================
  397. //===========================================================================
  398. void get_arc_coordinates();
  399. bool setTargetedHotend(int code);
  400. void serial_echopair_P(const char *s_P, float v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. void serial_echopair_P(const char *s_P, double v)
  403. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  404. void serial_echopair_P(const char *s_P, unsigned long v)
  405. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  406. #ifdef SDSUPPORT
  407. #include "SdFatUtil.h"
  408. int freeMemory() { return SdFatUtil::FreeRam(); }
  409. #else
  410. extern "C" {
  411. extern unsigned int __bss_end;
  412. extern unsigned int __heap_start;
  413. extern void *__brkval;
  414. int freeMemory() {
  415. int free_memory;
  416. if ((int)__brkval == 0)
  417. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  418. else
  419. free_memory = ((int)&free_memory) - ((int)__brkval);
  420. return free_memory;
  421. }
  422. }
  423. #endif //!SDSUPPORT
  424. void setup_killpin()
  425. {
  426. #if defined(KILL_PIN) && KILL_PIN > -1
  427. SET_INPUT(KILL_PIN);
  428. WRITE(KILL_PIN,HIGH);
  429. #endif
  430. }
  431. // Set home pin
  432. void setup_homepin(void)
  433. {
  434. #if defined(HOME_PIN) && HOME_PIN > -1
  435. SET_INPUT(HOME_PIN);
  436. WRITE(HOME_PIN,HIGH);
  437. #endif
  438. }
  439. void setup_photpin()
  440. {
  441. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  442. SET_OUTPUT(PHOTOGRAPH_PIN);
  443. WRITE(PHOTOGRAPH_PIN, LOW);
  444. #endif
  445. }
  446. void setup_powerhold()
  447. {
  448. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  449. SET_OUTPUT(SUICIDE_PIN);
  450. WRITE(SUICIDE_PIN, HIGH);
  451. #endif
  452. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  453. SET_OUTPUT(PS_ON_PIN);
  454. #if defined(PS_DEFAULT_OFF)
  455. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  456. #else
  457. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  458. #endif
  459. #endif
  460. }
  461. void suicide()
  462. {
  463. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  464. SET_OUTPUT(SUICIDE_PIN);
  465. WRITE(SUICIDE_PIN, LOW);
  466. #endif
  467. }
  468. void servo_init()
  469. {
  470. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  471. servos[0].attach(SERVO0_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  474. servos[1].attach(SERVO1_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  477. servos[2].attach(SERVO2_PIN);
  478. #endif
  479. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  480. servos[3].attach(SERVO3_PIN);
  481. #endif
  482. #if (NUM_SERVOS >= 5)
  483. #error "TODO: enter initalisation code for more servos"
  484. #endif
  485. }
  486. static void lcd_language_menu();
  487. void stop_and_save_print_to_ram(float z_move, float e_move);
  488. void restore_print_from_ram_and_continue(float e_move);
  489. bool fans_check_enabled = true;
  490. bool filament_autoload_enabled = true;
  491. extern int8_t CrashDetectMenu;
  492. void crashdet_enable()
  493. {
  494. // MYSERIAL.println("crashdet_enable");
  495. tmc2130_sg_stop_on_crash = true;
  496. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  497. CrashDetectMenu = 1;
  498. }
  499. void crashdet_disable()
  500. {
  501. // MYSERIAL.println("crashdet_disable");
  502. tmc2130_sg_stop_on_crash = false;
  503. tmc2130_sg_crash = 0;
  504. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  505. CrashDetectMenu = 0;
  506. }
  507. void crashdet_stop_and_save_print()
  508. {
  509. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  510. }
  511. void crashdet_restore_print_and_continue()
  512. {
  513. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  514. // babystep_apply();
  515. }
  516. void crashdet_stop_and_save_print2()
  517. {
  518. cli();
  519. planner_abort_hard(); //abort printing
  520. cmdqueue_reset(); //empty cmdqueue
  521. card.sdprinting = false;
  522. card.closefile();
  523. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  524. st_reset_timer();
  525. sei();
  526. }
  527. void crashdet_detected(uint8_t mask)
  528. {
  529. // printf("CRASH_DETECTED");
  530. /* while (!is_buffer_empty())
  531. {
  532. process_commands();
  533. cmdqueue_pop_front();
  534. }*/
  535. st_synchronize();
  536. lcd_update_enable(true);
  537. lcd_implementation_clear();
  538. lcd_update(2);
  539. if (mask & X_AXIS_MASK)
  540. {
  541. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  542. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  543. }
  544. if (mask & Y_AXIS_MASK)
  545. {
  546. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  547. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  548. }
  549. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  550. bool yesno = true;
  551. #else
  552. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  553. #endif
  554. lcd_update_enable(true);
  555. lcd_update(2);
  556. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  557. if (yesno)
  558. {
  559. enquecommand_P(PSTR("G28 X Y"));
  560. enquecommand_P(PSTR("CRASH_RECOVER"));
  561. }
  562. else
  563. {
  564. enquecommand_P(PSTR("CRASH_CANCEL"));
  565. }
  566. }
  567. void crashdet_recover()
  568. {
  569. crashdet_restore_print_and_continue();
  570. tmc2130_sg_stop_on_crash = true;
  571. }
  572. void crashdet_cancel()
  573. {
  574. card.sdprinting = false;
  575. card.closefile();
  576. tmc2130_sg_stop_on_crash = true;
  577. }
  578. void failstats_reset_print()
  579. {
  580. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  581. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  582. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  583. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  584. }
  585. #ifdef MESH_BED_LEVELING
  586. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  587. #endif
  588. // Factory reset function
  589. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  590. // Level input parameter sets depth of reset
  591. // Quiet parameter masks all waitings for user interact.
  592. int er_progress = 0;
  593. void factory_reset(char level, bool quiet)
  594. {
  595. lcd_implementation_clear();
  596. int cursor_pos = 0;
  597. switch (level) {
  598. // Level 0: Language reset
  599. case 0:
  600. WRITE(BEEPER, HIGH);
  601. _delay_ms(100);
  602. WRITE(BEEPER, LOW);
  603. lcd_force_language_selection();
  604. break;
  605. //Level 1: Reset statistics
  606. case 1:
  607. WRITE(BEEPER, HIGH);
  608. _delay_ms(100);
  609. WRITE(BEEPER, LOW);
  610. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  611. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  612. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  613. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  614. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  615. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  616. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  617. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  618. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  619. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  620. lcd_menu_statistics();
  621. break;
  622. // Level 2: Prepare for shipping
  623. case 2:
  624. //lcd_printPGM(PSTR("Factory RESET"));
  625. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  626. // Force language selection at the next boot up.
  627. lcd_force_language_selection();
  628. // Force the "Follow calibration flow" message at the next boot up.
  629. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  630. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  631. farm_no = 0;
  632. farm_mode == false;
  633. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  634. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  635. WRITE(BEEPER, HIGH);
  636. _delay_ms(100);
  637. WRITE(BEEPER, LOW);
  638. //_delay_ms(2000);
  639. break;
  640. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  641. case 3:
  642. lcd_printPGM(PSTR("Factory RESET"));
  643. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  644. WRITE(BEEPER, HIGH);
  645. _delay_ms(100);
  646. WRITE(BEEPER, LOW);
  647. er_progress = 0;
  648. lcd_print_at_PGM(3, 3, PSTR(" "));
  649. lcd_implementation_print_at(3, 3, er_progress);
  650. // Erase EEPROM
  651. for (int i = 0; i < 4096; i++) {
  652. eeprom_write_byte((uint8_t*)i, 0xFF);
  653. if (i % 41 == 0) {
  654. er_progress++;
  655. lcd_print_at_PGM(3, 3, PSTR(" "));
  656. lcd_implementation_print_at(3, 3, er_progress);
  657. lcd_printPGM(PSTR("%"));
  658. }
  659. }
  660. break;
  661. case 4:
  662. bowden_menu();
  663. break;
  664. default:
  665. break;
  666. }
  667. }
  668. #include "LiquidCrystal.h"
  669. extern LiquidCrystal lcd;
  670. FILE _lcdout = {0};
  671. int lcd_putchar(char c, FILE *stream)
  672. {
  673. lcd.write(c);
  674. return 0;
  675. }
  676. FILE _uartout = {0};
  677. int uart_putchar(char c, FILE *stream)
  678. {
  679. MYSERIAL.write(c);
  680. return 0;
  681. }
  682. void lcd_splash()
  683. {
  684. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  685. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  686. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  687. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  688. }
  689. void factory_reset()
  690. {
  691. KEEPALIVE_STATE(PAUSED_FOR_USER);
  692. if (!READ(BTN_ENC))
  693. {
  694. _delay_ms(1000);
  695. if (!READ(BTN_ENC))
  696. {
  697. lcd_implementation_clear();
  698. lcd_printPGM(PSTR("Factory RESET"));
  699. SET_OUTPUT(BEEPER);
  700. WRITE(BEEPER, HIGH);
  701. while (!READ(BTN_ENC));
  702. WRITE(BEEPER, LOW);
  703. _delay_ms(2000);
  704. char level = reset_menu();
  705. factory_reset(level, false);
  706. switch (level) {
  707. case 0: _delay_ms(0); break;
  708. case 1: _delay_ms(0); break;
  709. case 2: _delay_ms(0); break;
  710. case 3: _delay_ms(0); break;
  711. }
  712. // _delay_ms(100);
  713. /*
  714. #ifdef MESH_BED_LEVELING
  715. _delay_ms(2000);
  716. if (!READ(BTN_ENC))
  717. {
  718. WRITE(BEEPER, HIGH);
  719. _delay_ms(100);
  720. WRITE(BEEPER, LOW);
  721. _delay_ms(200);
  722. WRITE(BEEPER, HIGH);
  723. _delay_ms(100);
  724. WRITE(BEEPER, LOW);
  725. int _z = 0;
  726. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  727. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  728. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  729. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  730. }
  731. else
  732. {
  733. WRITE(BEEPER, HIGH);
  734. _delay_ms(100);
  735. WRITE(BEEPER, LOW);
  736. }
  737. #endif // mesh */
  738. }
  739. }
  740. else
  741. {
  742. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  743. }
  744. KEEPALIVE_STATE(IN_HANDLER);
  745. }
  746. void show_fw_version_warnings() {
  747. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  748. switch (FW_DEV_VERSION) {
  749. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  750. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  751. case(FW_VERSION_DEVEL):
  752. case(FW_VERSION_DEBUG):
  753. lcd_update_enable(false);
  754. lcd_implementation_clear();
  755. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  756. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  757. #else
  758. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  759. #endif
  760. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  761. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  762. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  763. lcd_wait_for_click();
  764. break;
  765. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  766. }
  767. lcd_update_enable(true);
  768. }
  769. // "Setup" function is called by the Arduino framework on startup.
  770. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  771. // are initialized by the main() routine provided by the Arduino framework.
  772. void setup()
  773. {
  774. lcd_init();
  775. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  776. lcd_splash();
  777. setup_killpin();
  778. setup_powerhold();
  779. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  780. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  781. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  782. if (farm_no == 0xFFFF) farm_no = 0;
  783. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  784. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  785. if (farm_mode)
  786. {
  787. prusa_statistics(8);
  788. selectedSerialPort = 1;
  789. }
  790. MYSERIAL.begin(BAUDRATE);
  791. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  792. stdout = uartout;
  793. SERIAL_PROTOCOLLNPGM("start");
  794. SERIAL_ECHO_START;
  795. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  796. #if 0
  797. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  798. for (int i = 0; i < 4096; ++i) {
  799. int b = eeprom_read_byte((unsigned char*)i);
  800. if (b != 255) {
  801. SERIAL_ECHO(i);
  802. SERIAL_ECHO(":");
  803. SERIAL_ECHO(b);
  804. SERIAL_ECHOLN("");
  805. }
  806. }
  807. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  808. #endif
  809. // Check startup - does nothing if bootloader sets MCUSR to 0
  810. byte mcu = MCUSR;
  811. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  812. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  813. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  814. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  815. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  816. if (mcu & 1) puts_P(MSG_POWERUP);
  817. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  818. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  819. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  820. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  821. MCUSR = 0;
  822. //SERIAL_ECHORPGM(MSG_MARLIN);
  823. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  824. #ifdef STRING_VERSION_CONFIG_H
  825. #ifdef STRING_CONFIG_H_AUTHOR
  826. SERIAL_ECHO_START;
  827. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  828. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  829. SERIAL_ECHORPGM(MSG_AUTHOR);
  830. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  831. SERIAL_ECHOPGM("Compiled: ");
  832. SERIAL_ECHOLNPGM(__DATE__);
  833. #endif
  834. #endif
  835. SERIAL_ECHO_START;
  836. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  837. SERIAL_ECHO(freeMemory());
  838. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  839. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  840. //lcd_update_enable(false); // why do we need this?? - andre
  841. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  842. Config_RetrieveSettings(EEPROM_OFFSET);
  843. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  844. tp_init(); // Initialize temperature loop
  845. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  846. plan_init(); // Initialize planner;
  847. watchdog_init();
  848. factory_reset();
  849. #ifdef TMC2130
  850. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  851. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  852. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  853. if (crashdet)
  854. {
  855. crashdet_enable();
  856. MYSERIAL.println("CrashDetect ENABLED!");
  857. }
  858. else
  859. {
  860. crashdet_disable();
  861. MYSERIAL.println("CrashDetect DISABLED");
  862. }
  863. #endif //TMC2130
  864. st_init(); // Initialize stepper, this enables interrupts!
  865. setup_photpin();
  866. servo_init();
  867. // Reset the machine correction matrix.
  868. // It does not make sense to load the correction matrix until the machine is homed.
  869. world2machine_reset();
  870. #ifdef PAT9125
  871. fsensor_init();
  872. #endif //PAT9125
  873. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  874. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  875. #endif
  876. #ifdef DIGIPOT_I2C
  877. digipot_i2c_init();
  878. #endif
  879. setup_homepin();
  880. if (1) {
  881. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  882. // try to run to zero phase before powering the Z motor.
  883. // Move in negative direction
  884. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  885. // Round the current micro-micro steps to micro steps.
  886. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  887. // Until the phase counter is reset to zero.
  888. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  889. delay(2);
  890. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  891. delay(2);
  892. }
  893. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  894. }
  895. #if defined(Z_AXIS_ALWAYS_ON)
  896. enable_z();
  897. #endif
  898. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  899. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  900. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  901. if (farm_no == 0xFFFF) farm_no = 0;
  902. if (farm_mode)
  903. {
  904. prusa_statistics(8);
  905. }
  906. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  907. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  908. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  909. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  910. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  911. // where all the EEPROM entries are set to 0x0ff.
  912. // Once a firmware boots up, it forces at least a language selection, which changes
  913. // EEPROM_LANG to number lower than 0x0ff.
  914. // 1) Set a high power mode.
  915. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  916. tmc2130_mode = TMC2130_MODE_NORMAL;
  917. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  918. }
  919. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  920. // but this times out if a blocking dialog is shown in setup().
  921. card.initsd();
  922. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  923. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  924. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  925. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  926. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT, 0);
  927. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X, 0);
  928. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y, 0);
  929. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT, 0);
  930. #ifdef SNMM
  931. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  932. int _z = BOWDEN_LENGTH;
  933. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  934. }
  935. #endif
  936. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  937. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  938. // is being written into the EEPROM, so the update procedure will be triggered only once.
  939. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  940. if (lang_selected >= LANG_NUM){
  941. lcd_mylang();
  942. }
  943. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  944. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  945. temp_cal_active = false;
  946. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  947. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  948. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  949. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  950. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  951. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  952. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  953. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  954. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  955. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  956. temp_cal_active = true;
  957. }
  958. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  959. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  960. }
  961. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  962. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  963. }
  964. check_babystep(); //checking if Z babystep is in allowed range
  965. setup_uvlo_interrupt();
  966. #ifndef DEBUG_DISABLE_FANCHECK
  967. setup_fan_interrupt();
  968. #endif //DEBUG_DISABLE_FANCHECK
  969. #ifndef DEBUG_DISABLE_FSENSORCHECK
  970. fsensor_setup_interrupt();
  971. #endif //DEBUG_DISABLE_FSENSORCHECK
  972. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  973. #ifndef DEBUG_DISABLE_STARTMSGS
  974. KEEPALIVE_STATE(PAUSED_FOR_USER);
  975. show_fw_version_warnings();
  976. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  977. lcd_wizard(0);
  978. }
  979. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  980. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  981. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  982. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  983. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  984. // Show the message.
  985. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  986. }
  987. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  988. // Show the message.
  989. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  990. lcd_update_enable(true);
  991. }
  992. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  993. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  994. lcd_update_enable(true);
  995. }
  996. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  997. // Show the message.
  998. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  999. }
  1000. }
  1001. KEEPALIVE_STATE(IN_PROCESS);
  1002. #endif //DEBUG_DISABLE_STARTMSGS
  1003. lcd_update_enable(true);
  1004. lcd_implementation_clear();
  1005. lcd_update(2);
  1006. // Store the currently running firmware into an eeprom,
  1007. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1008. update_current_firmware_version_to_eeprom();
  1009. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1010. /*
  1011. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  1012. else {
  1013. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1014. lcd_update_enable(true);
  1015. lcd_update(2);
  1016. lcd_setstatuspgm(WELCOME_MSG);
  1017. }
  1018. */
  1019. manage_heater(); // Update temperatures
  1020. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1021. MYSERIAL.println("Power panic detected!");
  1022. MYSERIAL.print("Current bed temp:");
  1023. MYSERIAL.println(degBed());
  1024. MYSERIAL.print("Saved bed temp:");
  1025. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1026. #endif
  1027. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1028. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1029. MYSERIAL.println("Automatic recovery!");
  1030. #endif
  1031. recover_print(1);
  1032. }
  1033. else{
  1034. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1035. MYSERIAL.println("Normal recovery!");
  1036. #endif
  1037. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1038. else {
  1039. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1040. lcd_update_enable(true);
  1041. lcd_update(2);
  1042. lcd_setstatuspgm(WELCOME_MSG);
  1043. }
  1044. }
  1045. }
  1046. KEEPALIVE_STATE(NOT_BUSY);
  1047. wdt_enable(WDTO_4S);
  1048. }
  1049. #ifdef PAT9125
  1050. void fsensor_init() {
  1051. int pat9125 = pat9125_init();
  1052. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1053. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1054. if (!pat9125)
  1055. {
  1056. fsensor = 0; //disable sensor
  1057. fsensor_not_responding = true;
  1058. }
  1059. else {
  1060. fsensor_not_responding = false;
  1061. }
  1062. puts_P(PSTR("FSensor "));
  1063. if (fsensor)
  1064. {
  1065. puts_P(PSTR("ENABLED\n"));
  1066. fsensor_enable();
  1067. }
  1068. else
  1069. {
  1070. puts_P(PSTR("DISABLED\n"));
  1071. fsensor_disable();
  1072. }
  1073. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1074. filament_autoload_enabled = false;
  1075. fsensor_disable();
  1076. #endif //DEBUG_DISABLE_FSENSORCHECK
  1077. }
  1078. #endif //PAT9125
  1079. void trace();
  1080. #define CHUNK_SIZE 64 // bytes
  1081. #define SAFETY_MARGIN 1
  1082. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1083. int chunkHead = 0;
  1084. int serial_read_stream() {
  1085. setTargetHotend(0, 0);
  1086. setTargetBed(0);
  1087. lcd_implementation_clear();
  1088. lcd_printPGM(PSTR(" Upload in progress"));
  1089. // first wait for how many bytes we will receive
  1090. uint32_t bytesToReceive;
  1091. // receive the four bytes
  1092. char bytesToReceiveBuffer[4];
  1093. for (int i=0; i<4; i++) {
  1094. int data;
  1095. while ((data = MYSERIAL.read()) == -1) {};
  1096. bytesToReceiveBuffer[i] = data;
  1097. }
  1098. // make it a uint32
  1099. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1100. // we're ready, notify the sender
  1101. MYSERIAL.write('+');
  1102. // lock in the routine
  1103. uint32_t receivedBytes = 0;
  1104. while (prusa_sd_card_upload) {
  1105. int i;
  1106. for (i=0; i<CHUNK_SIZE; i++) {
  1107. int data;
  1108. // check if we're not done
  1109. if (receivedBytes == bytesToReceive) {
  1110. break;
  1111. }
  1112. // read the next byte
  1113. while ((data = MYSERIAL.read()) == -1) {};
  1114. receivedBytes++;
  1115. // save it to the chunk
  1116. chunk[i] = data;
  1117. }
  1118. // write the chunk to SD
  1119. card.write_command_no_newline(&chunk[0]);
  1120. // notify the sender we're ready for more data
  1121. MYSERIAL.write('+');
  1122. // for safety
  1123. manage_heater();
  1124. // check if we're done
  1125. if(receivedBytes == bytesToReceive) {
  1126. trace(); // beep
  1127. card.closefile();
  1128. prusa_sd_card_upload = false;
  1129. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1130. return 0;
  1131. }
  1132. }
  1133. }
  1134. #ifdef HOST_KEEPALIVE_FEATURE
  1135. /**
  1136. * Output a "busy" message at regular intervals
  1137. * while the machine is not accepting commands.
  1138. */
  1139. void host_keepalive() {
  1140. if (farm_mode) return;
  1141. long ms = millis();
  1142. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1143. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1144. switch (busy_state) {
  1145. case IN_HANDLER:
  1146. case IN_PROCESS:
  1147. SERIAL_ECHO_START;
  1148. SERIAL_ECHOLNPGM("busy: processing");
  1149. break;
  1150. case PAUSED_FOR_USER:
  1151. SERIAL_ECHO_START;
  1152. SERIAL_ECHOLNPGM("busy: paused for user");
  1153. break;
  1154. case PAUSED_FOR_INPUT:
  1155. SERIAL_ECHO_START;
  1156. SERIAL_ECHOLNPGM("busy: paused for input");
  1157. break;
  1158. default:
  1159. break;
  1160. }
  1161. }
  1162. prev_busy_signal_ms = ms;
  1163. }
  1164. #endif
  1165. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1166. // Before loop(), the setup() function is called by the main() routine.
  1167. void loop()
  1168. {
  1169. KEEPALIVE_STATE(NOT_BUSY);
  1170. bool stack_integrity = true;
  1171. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1172. {
  1173. is_usb_printing = true;
  1174. usb_printing_counter--;
  1175. _usb_timer = millis();
  1176. }
  1177. if (usb_printing_counter == 0)
  1178. {
  1179. is_usb_printing = false;
  1180. }
  1181. if (prusa_sd_card_upload)
  1182. {
  1183. //we read byte-by byte
  1184. serial_read_stream();
  1185. } else
  1186. {
  1187. get_command();
  1188. #ifdef SDSUPPORT
  1189. card.checkautostart(false);
  1190. #endif
  1191. if(buflen)
  1192. {
  1193. cmdbuffer_front_already_processed = false;
  1194. #ifdef SDSUPPORT
  1195. if(card.saving)
  1196. {
  1197. // Saving a G-code file onto an SD-card is in progress.
  1198. // Saving starts with M28, saving until M29 is seen.
  1199. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1200. card.write_command(CMDBUFFER_CURRENT_STRING);
  1201. if(card.logging)
  1202. process_commands();
  1203. else
  1204. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1205. } else {
  1206. card.closefile();
  1207. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1208. }
  1209. } else {
  1210. process_commands();
  1211. }
  1212. #else
  1213. process_commands();
  1214. #endif //SDSUPPORT
  1215. if (! cmdbuffer_front_already_processed && buflen)
  1216. {
  1217. // ptr points to the start of the block currently being processed.
  1218. // The first character in the block is the block type.
  1219. char *ptr = cmdbuffer + bufindr;
  1220. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1221. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1222. union {
  1223. struct {
  1224. char lo;
  1225. char hi;
  1226. } lohi;
  1227. uint16_t value;
  1228. } sdlen;
  1229. sdlen.value = 0;
  1230. {
  1231. // This block locks the interrupts globally for 3.25 us,
  1232. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1233. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1234. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1235. cli();
  1236. // Reset the command to something, which will be ignored by the power panic routine,
  1237. // so this buffer length will not be counted twice.
  1238. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1239. // Extract the current buffer length.
  1240. sdlen.lohi.lo = *ptr ++;
  1241. sdlen.lohi.hi = *ptr;
  1242. // and pass it to the planner queue.
  1243. planner_add_sd_length(sdlen.value);
  1244. sei();
  1245. }
  1246. }
  1247. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1248. // this block's SD card length will not be counted twice as its command type has been replaced
  1249. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1250. cmdqueue_pop_front();
  1251. }
  1252. host_keepalive();
  1253. }
  1254. }
  1255. //check heater every n milliseconds
  1256. manage_heater();
  1257. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1258. checkHitEndstops();
  1259. lcd_update();
  1260. #ifdef PAT9125
  1261. fsensor_update();
  1262. #endif //PAT9125
  1263. #ifdef TMC2130
  1264. tmc2130_check_overtemp();
  1265. if (tmc2130_sg_crash)
  1266. {
  1267. uint8_t crash = tmc2130_sg_crash;
  1268. tmc2130_sg_crash = 0;
  1269. // crashdet_stop_and_save_print();
  1270. switch (crash)
  1271. {
  1272. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1273. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1274. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1275. }
  1276. }
  1277. #endif //TMC2130
  1278. }
  1279. #define DEFINE_PGM_READ_ANY(type, reader) \
  1280. static inline type pgm_read_any(const type *p) \
  1281. { return pgm_read_##reader##_near(p); }
  1282. DEFINE_PGM_READ_ANY(float, float);
  1283. DEFINE_PGM_READ_ANY(signed char, byte);
  1284. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1285. static const PROGMEM type array##_P[3] = \
  1286. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1287. static inline type array(int axis) \
  1288. { return pgm_read_any(&array##_P[axis]); } \
  1289. type array##_ext(int axis) \
  1290. { return pgm_read_any(&array##_P[axis]); }
  1291. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1292. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1293. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1294. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1295. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1296. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1297. static void axis_is_at_home(int axis) {
  1298. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1299. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1300. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1301. }
  1302. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1303. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1304. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1305. saved_feedrate = feedrate;
  1306. saved_feedmultiply = feedmultiply;
  1307. feedmultiply = 100;
  1308. previous_millis_cmd = millis();
  1309. enable_endstops(enable_endstops_now);
  1310. }
  1311. static void clean_up_after_endstop_move() {
  1312. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1313. enable_endstops(false);
  1314. #endif
  1315. feedrate = saved_feedrate;
  1316. feedmultiply = saved_feedmultiply;
  1317. previous_millis_cmd = millis();
  1318. }
  1319. #ifdef ENABLE_AUTO_BED_LEVELING
  1320. #ifdef AUTO_BED_LEVELING_GRID
  1321. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1322. {
  1323. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1324. planeNormal.debug("planeNormal");
  1325. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1326. //bedLevel.debug("bedLevel");
  1327. //plan_bed_level_matrix.debug("bed level before");
  1328. //vector_3 uncorrected_position = plan_get_position_mm();
  1329. //uncorrected_position.debug("position before");
  1330. vector_3 corrected_position = plan_get_position();
  1331. // corrected_position.debug("position after");
  1332. current_position[X_AXIS] = corrected_position.x;
  1333. current_position[Y_AXIS] = corrected_position.y;
  1334. current_position[Z_AXIS] = corrected_position.z;
  1335. // put the bed at 0 so we don't go below it.
  1336. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1337. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1338. }
  1339. #else // not AUTO_BED_LEVELING_GRID
  1340. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1341. plan_bed_level_matrix.set_to_identity();
  1342. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1343. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1344. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1345. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1346. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1347. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1348. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1349. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1350. vector_3 corrected_position = plan_get_position();
  1351. current_position[X_AXIS] = corrected_position.x;
  1352. current_position[Y_AXIS] = corrected_position.y;
  1353. current_position[Z_AXIS] = corrected_position.z;
  1354. // put the bed at 0 so we don't go below it.
  1355. current_position[Z_AXIS] = zprobe_zoffset;
  1356. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1357. }
  1358. #endif // AUTO_BED_LEVELING_GRID
  1359. static void run_z_probe() {
  1360. plan_bed_level_matrix.set_to_identity();
  1361. feedrate = homing_feedrate[Z_AXIS];
  1362. // move down until you find the bed
  1363. float zPosition = -10;
  1364. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1365. st_synchronize();
  1366. // we have to let the planner know where we are right now as it is not where we said to go.
  1367. zPosition = st_get_position_mm(Z_AXIS);
  1368. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1369. // move up the retract distance
  1370. zPosition += home_retract_mm(Z_AXIS);
  1371. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1372. st_synchronize();
  1373. // move back down slowly to find bed
  1374. feedrate = homing_feedrate[Z_AXIS]/4;
  1375. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1376. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1377. st_synchronize();
  1378. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1379. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1380. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1381. }
  1382. static void do_blocking_move_to(float x, float y, float z) {
  1383. float oldFeedRate = feedrate;
  1384. feedrate = homing_feedrate[Z_AXIS];
  1385. current_position[Z_AXIS] = z;
  1386. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1387. st_synchronize();
  1388. feedrate = XY_TRAVEL_SPEED;
  1389. current_position[X_AXIS] = x;
  1390. current_position[Y_AXIS] = y;
  1391. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1392. st_synchronize();
  1393. feedrate = oldFeedRate;
  1394. }
  1395. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1396. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1397. }
  1398. /// Probe bed height at position (x,y), returns the measured z value
  1399. static float probe_pt(float x, float y, float z_before) {
  1400. // move to right place
  1401. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1402. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1403. run_z_probe();
  1404. float measured_z = current_position[Z_AXIS];
  1405. SERIAL_PROTOCOLRPGM(MSG_BED);
  1406. SERIAL_PROTOCOLPGM(" x: ");
  1407. SERIAL_PROTOCOL(x);
  1408. SERIAL_PROTOCOLPGM(" y: ");
  1409. SERIAL_PROTOCOL(y);
  1410. SERIAL_PROTOCOLPGM(" z: ");
  1411. SERIAL_PROTOCOL(measured_z);
  1412. SERIAL_PROTOCOLPGM("\n");
  1413. return measured_z;
  1414. }
  1415. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1416. #ifdef LIN_ADVANCE
  1417. /**
  1418. * M900: Set and/or Get advance K factor and WH/D ratio
  1419. *
  1420. * K<factor> Set advance K factor
  1421. * R<ratio> Set ratio directly (overrides WH/D)
  1422. * W<width> H<height> D<diam> Set ratio from WH/D
  1423. */
  1424. inline void gcode_M900() {
  1425. st_synchronize();
  1426. const float newK = code_seen('K') ? code_value_float() : -1;
  1427. if (newK >= 0) extruder_advance_k = newK;
  1428. float newR = code_seen('R') ? code_value_float() : -1;
  1429. if (newR < 0) {
  1430. const float newD = code_seen('D') ? code_value_float() : -1,
  1431. newW = code_seen('W') ? code_value_float() : -1,
  1432. newH = code_seen('H') ? code_value_float() : -1;
  1433. if (newD >= 0 && newW >= 0 && newH >= 0)
  1434. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1435. }
  1436. if (newR >= 0) advance_ed_ratio = newR;
  1437. SERIAL_ECHO_START;
  1438. SERIAL_ECHOPGM("Advance K=");
  1439. SERIAL_ECHOLN(extruder_advance_k);
  1440. SERIAL_ECHOPGM(" E/D=");
  1441. const float ratio = advance_ed_ratio;
  1442. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1443. }
  1444. #endif // LIN_ADVANCE
  1445. bool check_commands() {
  1446. bool end_command_found = false;
  1447. while (buflen)
  1448. {
  1449. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1450. if (!cmdbuffer_front_already_processed)
  1451. cmdqueue_pop_front();
  1452. cmdbuffer_front_already_processed = false;
  1453. }
  1454. return end_command_found;
  1455. }
  1456. #ifdef TMC2130
  1457. bool calibrate_z_auto()
  1458. {
  1459. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1460. lcd_implementation_clear();
  1461. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1462. bool endstops_enabled = enable_endstops(true);
  1463. int axis_up_dir = -home_dir(Z_AXIS);
  1464. tmc2130_home_enter(Z_AXIS_MASK);
  1465. current_position[Z_AXIS] = 0;
  1466. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1467. set_destination_to_current();
  1468. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1469. feedrate = homing_feedrate[Z_AXIS];
  1470. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1471. st_synchronize();
  1472. // current_position[axis] = 0;
  1473. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1474. tmc2130_home_exit();
  1475. enable_endstops(false);
  1476. current_position[Z_AXIS] = 0;
  1477. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1478. set_destination_to_current();
  1479. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1480. feedrate = homing_feedrate[Z_AXIS] / 2;
  1481. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1482. st_synchronize();
  1483. enable_endstops(endstops_enabled);
  1484. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1485. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1486. return true;
  1487. }
  1488. #endif //TMC2130
  1489. void homeaxis(int axis)
  1490. {
  1491. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1492. #define HOMEAXIS_DO(LETTER) \
  1493. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1494. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1495. {
  1496. int axis_home_dir = home_dir(axis);
  1497. feedrate = homing_feedrate[axis];
  1498. #ifdef TMC2130
  1499. tmc2130_home_enter(X_AXIS_MASK << axis);
  1500. #endif
  1501. // Move right a bit, so that the print head does not touch the left end position,
  1502. // and the following left movement has a chance to achieve the required velocity
  1503. // for the stall guard to work.
  1504. current_position[axis] = 0;
  1505. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1506. // destination[axis] = 11.f;
  1507. destination[axis] = 3.f;
  1508. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1509. st_synchronize();
  1510. // Move left away from the possible collision with the collision detection disabled.
  1511. endstops_hit_on_purpose();
  1512. enable_endstops(false);
  1513. current_position[axis] = 0;
  1514. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1515. destination[axis] = - 1.;
  1516. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1517. st_synchronize();
  1518. // Now continue to move up to the left end stop with the collision detection enabled.
  1519. enable_endstops(true);
  1520. destination[axis] = - 1.1 * max_length(axis);
  1521. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1522. st_synchronize();
  1523. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1524. endstops_hit_on_purpose();
  1525. enable_endstops(false);
  1526. current_position[axis] = 0;
  1527. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1528. destination[axis] = 10.f;
  1529. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1530. st_synchronize();
  1531. endstops_hit_on_purpose();
  1532. // Now move left up to the collision, this time with a repeatable velocity.
  1533. enable_endstops(true);
  1534. destination[axis] = - 15.f;
  1535. feedrate = homing_feedrate[axis]/2;
  1536. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1537. st_synchronize();
  1538. axis_is_at_home(axis);
  1539. axis_known_position[axis] = true;
  1540. #ifdef TMC2130
  1541. tmc2130_home_exit();
  1542. #endif
  1543. // Move the X carriage away from the collision.
  1544. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1545. endstops_hit_on_purpose();
  1546. enable_endstops(false);
  1547. {
  1548. // Two full periods (4 full steps).
  1549. float gap = 0.32f * 2.f;
  1550. current_position[axis] -= gap;
  1551. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1552. current_position[axis] += gap;
  1553. }
  1554. destination[axis] = current_position[axis];
  1555. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1556. st_synchronize();
  1557. feedrate = 0.0;
  1558. }
  1559. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1560. {
  1561. int axis_home_dir = home_dir(axis);
  1562. current_position[axis] = 0;
  1563. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1564. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1565. feedrate = homing_feedrate[axis];
  1566. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1567. st_synchronize();
  1568. current_position[axis] = 0;
  1569. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1570. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1571. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1572. st_synchronize();
  1573. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1574. feedrate = homing_feedrate[axis]/2 ;
  1575. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1576. st_synchronize();
  1577. axis_is_at_home(axis);
  1578. destination[axis] = current_position[axis];
  1579. feedrate = 0.0;
  1580. endstops_hit_on_purpose();
  1581. axis_known_position[axis] = true;
  1582. }
  1583. enable_endstops(endstops_enabled);
  1584. }
  1585. /**/
  1586. void home_xy()
  1587. {
  1588. set_destination_to_current();
  1589. homeaxis(X_AXIS);
  1590. homeaxis(Y_AXIS);
  1591. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1592. endstops_hit_on_purpose();
  1593. }
  1594. void refresh_cmd_timeout(void)
  1595. {
  1596. previous_millis_cmd = millis();
  1597. }
  1598. #ifdef FWRETRACT
  1599. void retract(bool retracting, bool swapretract = false) {
  1600. if(retracting && !retracted[active_extruder]) {
  1601. destination[X_AXIS]=current_position[X_AXIS];
  1602. destination[Y_AXIS]=current_position[Y_AXIS];
  1603. destination[Z_AXIS]=current_position[Z_AXIS];
  1604. destination[E_AXIS]=current_position[E_AXIS];
  1605. if (swapretract) {
  1606. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1607. } else {
  1608. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1609. }
  1610. plan_set_e_position(current_position[E_AXIS]);
  1611. float oldFeedrate = feedrate;
  1612. feedrate=retract_feedrate*60;
  1613. retracted[active_extruder]=true;
  1614. prepare_move();
  1615. current_position[Z_AXIS]-=retract_zlift;
  1616. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1617. prepare_move();
  1618. feedrate = oldFeedrate;
  1619. } else if(!retracting && retracted[active_extruder]) {
  1620. destination[X_AXIS]=current_position[X_AXIS];
  1621. destination[Y_AXIS]=current_position[Y_AXIS];
  1622. destination[Z_AXIS]=current_position[Z_AXIS];
  1623. destination[E_AXIS]=current_position[E_AXIS];
  1624. current_position[Z_AXIS]+=retract_zlift;
  1625. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1626. //prepare_move();
  1627. if (swapretract) {
  1628. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1629. } else {
  1630. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1631. }
  1632. plan_set_e_position(current_position[E_AXIS]);
  1633. float oldFeedrate = feedrate;
  1634. feedrate=retract_recover_feedrate*60;
  1635. retracted[active_extruder]=false;
  1636. prepare_move();
  1637. feedrate = oldFeedrate;
  1638. }
  1639. } //retract
  1640. #endif //FWRETRACT
  1641. void trace() {
  1642. tone(BEEPER, 440);
  1643. delay(25);
  1644. noTone(BEEPER);
  1645. delay(20);
  1646. }
  1647. /*
  1648. void ramming() {
  1649. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1650. if (current_temperature[0] < 230) {
  1651. //PLA
  1652. max_feedrate[E_AXIS] = 50;
  1653. //current_position[E_AXIS] -= 8;
  1654. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1655. //current_position[E_AXIS] += 8;
  1656. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1657. current_position[E_AXIS] += 5.4;
  1658. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1659. current_position[E_AXIS] += 3.2;
  1660. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1661. current_position[E_AXIS] += 3;
  1662. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1663. st_synchronize();
  1664. max_feedrate[E_AXIS] = 80;
  1665. current_position[E_AXIS] -= 82;
  1666. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1667. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1668. current_position[E_AXIS] -= 20;
  1669. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1670. current_position[E_AXIS] += 5;
  1671. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1672. current_position[E_AXIS] += 5;
  1673. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1674. current_position[E_AXIS] -= 10;
  1675. st_synchronize();
  1676. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1677. current_position[E_AXIS] += 10;
  1678. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1679. current_position[E_AXIS] -= 10;
  1680. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1681. current_position[E_AXIS] += 10;
  1682. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1683. current_position[E_AXIS] -= 10;
  1684. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1685. st_synchronize();
  1686. }
  1687. else {
  1688. //ABS
  1689. max_feedrate[E_AXIS] = 50;
  1690. //current_position[E_AXIS] -= 8;
  1691. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1692. //current_position[E_AXIS] += 8;
  1693. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1694. current_position[E_AXIS] += 3.1;
  1695. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1696. current_position[E_AXIS] += 3.1;
  1697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1698. current_position[E_AXIS] += 4;
  1699. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1700. st_synchronize();
  1701. //current_position[X_AXIS] += 23; //delay
  1702. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1703. //current_position[X_AXIS] -= 23; //delay
  1704. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1705. delay(4700);
  1706. max_feedrate[E_AXIS] = 80;
  1707. current_position[E_AXIS] -= 92;
  1708. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1709. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1710. current_position[E_AXIS] -= 5;
  1711. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1712. current_position[E_AXIS] += 5;
  1713. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1714. current_position[E_AXIS] -= 5;
  1715. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1716. st_synchronize();
  1717. current_position[E_AXIS] += 5;
  1718. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1719. current_position[E_AXIS] -= 5;
  1720. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1721. current_position[E_AXIS] += 5;
  1722. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1723. current_position[E_AXIS] -= 5;
  1724. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1725. st_synchronize();
  1726. }
  1727. }
  1728. */
  1729. #ifdef TMC2130
  1730. void force_high_power_mode(bool start_high_power_section) {
  1731. uint8_t silent;
  1732. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1733. if (silent == 1) {
  1734. //we are in silent mode, set to normal mode to enable crash detection
  1735. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1736. st_synchronize();
  1737. cli();
  1738. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1739. tmc2130_init();
  1740. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1741. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1742. st_reset_timer();
  1743. sei();
  1744. digipot_init();
  1745. }
  1746. }
  1747. #endif //TMC2130
  1748. bool gcode_M45(bool onlyZ)
  1749. {
  1750. bool final_result = false;
  1751. #ifdef TMC2130
  1752. FORCE_HIGH_POWER_START;
  1753. #endif // TMC2130
  1754. // Only Z calibration?
  1755. if (!onlyZ)
  1756. {
  1757. setTargetBed(0);
  1758. setTargetHotend(0, 0);
  1759. setTargetHotend(0, 1);
  1760. setTargetHotend(0, 2);
  1761. adjust_bed_reset(); //reset bed level correction
  1762. }
  1763. // Disable the default update procedure of the display. We will do a modal dialog.
  1764. lcd_update_enable(false);
  1765. // Let the planner use the uncorrected coordinates.
  1766. mbl.reset();
  1767. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1768. // the planner will not perform any adjustments in the XY plane.
  1769. // Wait for the motors to stop and update the current position with the absolute values.
  1770. world2machine_revert_to_uncorrected();
  1771. // Reset the baby step value applied without moving the axes.
  1772. babystep_reset();
  1773. // Mark all axes as in a need for homing.
  1774. memset(axis_known_position, 0, sizeof(axis_known_position));
  1775. // Home in the XY plane.
  1776. //set_destination_to_current();
  1777. setup_for_endstop_move();
  1778. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1779. home_xy();
  1780. enable_endstops(false);
  1781. current_position[X_AXIS] += 5;
  1782. current_position[Y_AXIS] += 5;
  1783. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1784. st_synchronize();
  1785. // Let the user move the Z axes up to the end stoppers.
  1786. #ifdef TMC2130
  1787. if (calibrate_z_auto())
  1788. {
  1789. #else //TMC2130
  1790. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1791. {
  1792. #endif //TMC2130
  1793. refresh_cmd_timeout();
  1794. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1795. //{
  1796. // lcd_wait_for_cool_down();
  1797. //}
  1798. if(!onlyZ)
  1799. {
  1800. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1801. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1802. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1803. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1804. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1805. KEEPALIVE_STATE(IN_HANDLER);
  1806. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1807. lcd_implementation_print_at(0, 2, 1);
  1808. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1809. }
  1810. // Move the print head close to the bed.
  1811. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1812. bool endstops_enabled = enable_endstops(true);
  1813. tmc2130_home_enter(Z_AXIS_MASK);
  1814. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1815. st_synchronize();
  1816. tmc2130_home_exit();
  1817. enable_endstops(endstops_enabled);
  1818. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1819. {
  1820. //#ifdef TMC2130
  1821. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  1822. //#endif
  1823. int8_t verbosity_level = 0;
  1824. if (code_seen('V'))
  1825. {
  1826. // Just 'V' without a number counts as V1.
  1827. char c = strchr_pointer[1];
  1828. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1829. }
  1830. if (onlyZ)
  1831. {
  1832. clean_up_after_endstop_move();
  1833. // Z only calibration.
  1834. // Load the machine correction matrix
  1835. world2machine_initialize();
  1836. // and correct the current_position to match the transformed coordinate system.
  1837. world2machine_update_current();
  1838. //FIXME
  1839. bool result = sample_mesh_and_store_reference();
  1840. if (result)
  1841. {
  1842. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1843. // Shipped, the nozzle height has been set already. The user can start printing now.
  1844. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1845. final_result = true;
  1846. // babystep_apply();
  1847. }
  1848. }
  1849. else
  1850. {
  1851. // Reset the baby step value and the baby step applied flag.
  1852. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  1853. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1854. // Complete XYZ calibration.
  1855. uint8_t point_too_far_mask = 0;
  1856. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1857. clean_up_after_endstop_move();
  1858. // Print head up.
  1859. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1860. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1861. st_synchronize();
  1862. if (result >= 0)
  1863. {
  1864. point_too_far_mask = 0;
  1865. // Second half: The fine adjustment.
  1866. // Let the planner use the uncorrected coordinates.
  1867. mbl.reset();
  1868. world2machine_reset();
  1869. // Home in the XY plane.
  1870. setup_for_endstop_move();
  1871. home_xy();
  1872. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1873. clean_up_after_endstop_move();
  1874. // Print head up.
  1875. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1876. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1877. st_synchronize();
  1878. // if (result >= 0) babystep_apply();
  1879. }
  1880. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1881. if (result >= 0)
  1882. {
  1883. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1884. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1885. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1886. final_result = true;
  1887. }
  1888. }
  1889. #ifdef TMC2130
  1890. tmc2130_home_exit();
  1891. #endif
  1892. }
  1893. else
  1894. {
  1895. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  1896. final_result = false;
  1897. }
  1898. }
  1899. else
  1900. {
  1901. // Timeouted.
  1902. }
  1903. lcd_update_enable(true);
  1904. #ifdef TMC2130
  1905. FORCE_HIGH_POWER_END;
  1906. #endif // TMC2130
  1907. return final_result;
  1908. }
  1909. void gcode_M701()
  1910. {
  1911. #ifdef SNMM
  1912. extr_adj(snmm_extruder);//loads current extruder
  1913. #else
  1914. enable_z();
  1915. custom_message = true;
  1916. custom_message_type = 2;
  1917. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1918. current_position[E_AXIS] += 70;
  1919. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1920. current_position[E_AXIS] += 25;
  1921. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1922. st_synchronize();
  1923. tone(BEEPER, 500);
  1924. delay_keep_alive(50);
  1925. noTone(BEEPER);
  1926. if (!farm_mode && loading_flag) {
  1927. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1928. while (!clean) {
  1929. lcd_update_enable(true);
  1930. lcd_update(2);
  1931. current_position[E_AXIS] += 25;
  1932. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1933. st_synchronize();
  1934. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1935. }
  1936. }
  1937. lcd_update_enable(true);
  1938. lcd_update(2);
  1939. lcd_setstatuspgm(WELCOME_MSG);
  1940. disable_z();
  1941. loading_flag = false;
  1942. custom_message = false;
  1943. custom_message_type = 0;
  1944. #endif
  1945. }
  1946. void process_commands()
  1947. {
  1948. #ifdef FILAMENT_RUNOUT_SUPPORT
  1949. SET_INPUT(FR_SENS);
  1950. #endif
  1951. #ifdef CMDBUFFER_DEBUG
  1952. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1953. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1954. SERIAL_ECHOLNPGM("");
  1955. SERIAL_ECHOPGM("In cmdqueue: ");
  1956. SERIAL_ECHO(buflen);
  1957. SERIAL_ECHOLNPGM("");
  1958. #endif /* CMDBUFFER_DEBUG */
  1959. unsigned long codenum; //throw away variable
  1960. char *starpos = NULL;
  1961. #ifdef ENABLE_AUTO_BED_LEVELING
  1962. float x_tmp, y_tmp, z_tmp, real_z;
  1963. #endif
  1964. // PRUSA GCODES
  1965. KEEPALIVE_STATE(IN_HANDLER);
  1966. #ifdef SNMM
  1967. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1968. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1969. int8_t SilentMode;
  1970. #endif
  1971. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1972. starpos = (strchr(strchr_pointer + 5, '*'));
  1973. if (starpos != NULL)
  1974. *(starpos) = '\0';
  1975. lcd_setstatus(strchr_pointer + 5);
  1976. }
  1977. else if(code_seen("CRASH_DETECTED"))
  1978. {
  1979. uint8_t mask = 0;
  1980. if (code_seen("X")) mask |= X_AXIS_MASK;
  1981. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  1982. crashdet_detected(mask);
  1983. }
  1984. else if(code_seen("CRASH_RECOVER"))
  1985. crashdet_recover();
  1986. else if(code_seen("CRASH_CANCEL"))
  1987. crashdet_cancel();
  1988. else if(code_seen("PRUSA")){
  1989. if (code_seen("Ping")) { //PRUSA Ping
  1990. if (farm_mode) {
  1991. PingTime = millis();
  1992. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1993. }
  1994. }
  1995. else if (code_seen("PRN")) {
  1996. MYSERIAL.println(status_number);
  1997. }else if (code_seen("FAN")) {
  1998. MYSERIAL.print("E0:");
  1999. MYSERIAL.print(60*fan_speed[0]);
  2000. MYSERIAL.println(" RPM");
  2001. MYSERIAL.print("PRN0:");
  2002. MYSERIAL.print(60*fan_speed[1]);
  2003. MYSERIAL.println(" RPM");
  2004. }else if (code_seen("fn")) {
  2005. if (farm_mode) {
  2006. MYSERIAL.println(farm_no);
  2007. }
  2008. else {
  2009. MYSERIAL.println("Not in farm mode.");
  2010. }
  2011. }else if (code_seen("fv")) {
  2012. // get file version
  2013. #ifdef SDSUPPORT
  2014. card.openFile(strchr_pointer + 3,true);
  2015. while (true) {
  2016. uint16_t readByte = card.get();
  2017. MYSERIAL.write(readByte);
  2018. if (readByte=='\n') {
  2019. break;
  2020. }
  2021. }
  2022. card.closefile();
  2023. #endif // SDSUPPORT
  2024. } else if (code_seen("M28")) {
  2025. trace();
  2026. prusa_sd_card_upload = true;
  2027. card.openFile(strchr_pointer+4,false);
  2028. } else if (code_seen("SN")) {
  2029. if (farm_mode) {
  2030. selectedSerialPort = 0;
  2031. MSerial.write(";S");
  2032. // S/N is:CZPX0917X003XC13518
  2033. int numbersRead = 0;
  2034. while (numbersRead < 19) {
  2035. while (MSerial.available() > 0) {
  2036. uint8_t serial_char = MSerial.read();
  2037. selectedSerialPort = 1;
  2038. MSerial.write(serial_char);
  2039. numbersRead++;
  2040. selectedSerialPort = 0;
  2041. }
  2042. }
  2043. selectedSerialPort = 1;
  2044. MSerial.write('\n');
  2045. /*for (int b = 0; b < 3; b++) {
  2046. tone(BEEPER, 110);
  2047. delay(50);
  2048. noTone(BEEPER);
  2049. delay(50);
  2050. }*/
  2051. } else {
  2052. MYSERIAL.println("Not in farm mode.");
  2053. }
  2054. } else if(code_seen("Fir")){
  2055. SERIAL_PROTOCOLLN(FW_VERSION);
  2056. } else if(code_seen("Rev")){
  2057. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2058. } else if(code_seen("Lang")) {
  2059. lcd_force_language_selection();
  2060. } else if(code_seen("Lz")) {
  2061. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2062. } else if (code_seen("SERIAL LOW")) {
  2063. MYSERIAL.println("SERIAL LOW");
  2064. MYSERIAL.begin(BAUDRATE);
  2065. return;
  2066. } else if (code_seen("SERIAL HIGH")) {
  2067. MYSERIAL.println("SERIAL HIGH");
  2068. MYSERIAL.begin(1152000);
  2069. return;
  2070. } else if(code_seen("Beat")) {
  2071. // Kick farm link timer
  2072. kicktime = millis();
  2073. } else if(code_seen("FR")) {
  2074. // Factory full reset
  2075. factory_reset(0,true);
  2076. }
  2077. //else if (code_seen('Cal')) {
  2078. // lcd_calibration();
  2079. // }
  2080. }
  2081. else if (code_seen('^')) {
  2082. // nothing, this is a version line
  2083. } else if(code_seen('G'))
  2084. {
  2085. switch((int)code_value())
  2086. {
  2087. case 0: // G0 -> G1
  2088. case 1: // G1
  2089. if(Stopped == false) {
  2090. #ifdef FILAMENT_RUNOUT_SUPPORT
  2091. if(READ(FR_SENS)){
  2092. feedmultiplyBckp=feedmultiply;
  2093. float target[4];
  2094. float lastpos[4];
  2095. target[X_AXIS]=current_position[X_AXIS];
  2096. target[Y_AXIS]=current_position[Y_AXIS];
  2097. target[Z_AXIS]=current_position[Z_AXIS];
  2098. target[E_AXIS]=current_position[E_AXIS];
  2099. lastpos[X_AXIS]=current_position[X_AXIS];
  2100. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2101. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2102. lastpos[E_AXIS]=current_position[E_AXIS];
  2103. //retract by E
  2104. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2105. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2106. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2107. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2108. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2109. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2110. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2111. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2112. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2113. //finish moves
  2114. st_synchronize();
  2115. //disable extruder steppers so filament can be removed
  2116. disable_e0();
  2117. disable_e1();
  2118. disable_e2();
  2119. delay(100);
  2120. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2121. uint8_t cnt=0;
  2122. int counterBeep = 0;
  2123. lcd_wait_interact();
  2124. while(!lcd_clicked()){
  2125. cnt++;
  2126. manage_heater();
  2127. manage_inactivity(true);
  2128. //lcd_update();
  2129. if(cnt==0)
  2130. {
  2131. #if BEEPER > 0
  2132. if (counterBeep== 500){
  2133. counterBeep = 0;
  2134. }
  2135. SET_OUTPUT(BEEPER);
  2136. if (counterBeep== 0){
  2137. WRITE(BEEPER,HIGH);
  2138. }
  2139. if (counterBeep== 20){
  2140. WRITE(BEEPER,LOW);
  2141. }
  2142. counterBeep++;
  2143. #else
  2144. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2145. lcd_buzz(1000/6,100);
  2146. #else
  2147. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2148. #endif
  2149. #endif
  2150. }
  2151. }
  2152. WRITE(BEEPER,LOW);
  2153. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2154. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2155. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2156. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2157. lcd_change_fil_state = 0;
  2158. lcd_loading_filament();
  2159. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2160. lcd_change_fil_state = 0;
  2161. lcd_alright();
  2162. switch(lcd_change_fil_state){
  2163. case 2:
  2164. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2165. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2166. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2167. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2168. lcd_loading_filament();
  2169. break;
  2170. case 3:
  2171. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2172. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2173. lcd_loading_color();
  2174. break;
  2175. default:
  2176. lcd_change_success();
  2177. break;
  2178. }
  2179. }
  2180. target[E_AXIS]+= 5;
  2181. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2182. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2183. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2184. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2185. //plan_set_e_position(current_position[E_AXIS]);
  2186. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2187. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2188. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2189. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2190. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2191. plan_set_e_position(lastpos[E_AXIS]);
  2192. feedmultiply=feedmultiplyBckp;
  2193. char cmd[9];
  2194. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2195. enquecommand(cmd);
  2196. }
  2197. #endif
  2198. get_coordinates(); // For X Y Z E F
  2199. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2200. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2201. }
  2202. #ifdef FWRETRACT
  2203. if(autoretract_enabled)
  2204. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2205. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2206. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2207. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2208. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2209. retract(!retracted);
  2210. return;
  2211. }
  2212. }
  2213. #endif //FWRETRACT
  2214. prepare_move();
  2215. //ClearToSend();
  2216. }
  2217. break;
  2218. case 2: // G2 - CW ARC
  2219. if(Stopped == false) {
  2220. get_arc_coordinates();
  2221. prepare_arc_move(true);
  2222. }
  2223. break;
  2224. case 3: // G3 - CCW ARC
  2225. if(Stopped == false) {
  2226. get_arc_coordinates();
  2227. prepare_arc_move(false);
  2228. }
  2229. break;
  2230. case 4: // G4 dwell
  2231. codenum = 0;
  2232. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2233. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2234. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2235. st_synchronize();
  2236. codenum += millis(); // keep track of when we started waiting
  2237. previous_millis_cmd = millis();
  2238. while(millis() < codenum) {
  2239. manage_heater();
  2240. manage_inactivity();
  2241. lcd_update();
  2242. }
  2243. break;
  2244. #ifdef FWRETRACT
  2245. case 10: // G10 retract
  2246. #if EXTRUDERS > 1
  2247. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2248. retract(true,retracted_swap[active_extruder]);
  2249. #else
  2250. retract(true);
  2251. #endif
  2252. break;
  2253. case 11: // G11 retract_recover
  2254. #if EXTRUDERS > 1
  2255. retract(false,retracted_swap[active_extruder]);
  2256. #else
  2257. retract(false);
  2258. #endif
  2259. break;
  2260. #endif //FWRETRACT
  2261. case 28: //G28 Home all Axis one at a time
  2262. {
  2263. st_synchronize();
  2264. #if 0
  2265. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2266. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2267. #endif
  2268. // Flag for the display update routine and to disable the print cancelation during homing.
  2269. homing_flag = true;
  2270. // Which axes should be homed?
  2271. bool home_x = code_seen(axis_codes[X_AXIS]);
  2272. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2273. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2274. // Either all X,Y,Z codes are present, or none of them.
  2275. bool home_all_axes = home_x == home_y && home_x == home_z;
  2276. if (home_all_axes)
  2277. // No X/Y/Z code provided means to home all axes.
  2278. home_x = home_y = home_z = true;
  2279. #ifdef ENABLE_AUTO_BED_LEVELING
  2280. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2281. #endif //ENABLE_AUTO_BED_LEVELING
  2282. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2283. // the planner will not perform any adjustments in the XY plane.
  2284. // Wait for the motors to stop and update the current position with the absolute values.
  2285. world2machine_revert_to_uncorrected();
  2286. // For mesh bed leveling deactivate the matrix temporarily.
  2287. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2288. // in a single axis only.
  2289. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2290. #ifdef MESH_BED_LEVELING
  2291. uint8_t mbl_was_active = mbl.active;
  2292. mbl.active = 0;
  2293. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2294. #endif
  2295. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2296. // consumed during the first movements following this statement.
  2297. if (home_z)
  2298. babystep_undo();
  2299. saved_feedrate = feedrate;
  2300. saved_feedmultiply = feedmultiply;
  2301. feedmultiply = 100;
  2302. previous_millis_cmd = millis();
  2303. enable_endstops(true);
  2304. memcpy(destination, current_position, sizeof(destination));
  2305. feedrate = 0.0;
  2306. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2307. if(home_z)
  2308. homeaxis(Z_AXIS);
  2309. #endif
  2310. #ifdef QUICK_HOME
  2311. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2312. if(home_x && home_y) //first diagonal move
  2313. {
  2314. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2315. int x_axis_home_dir = home_dir(X_AXIS);
  2316. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2317. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2318. feedrate = homing_feedrate[X_AXIS];
  2319. if(homing_feedrate[Y_AXIS]<feedrate)
  2320. feedrate = homing_feedrate[Y_AXIS];
  2321. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2322. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2323. } else {
  2324. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2325. }
  2326. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2327. st_synchronize();
  2328. axis_is_at_home(X_AXIS);
  2329. axis_is_at_home(Y_AXIS);
  2330. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2331. destination[X_AXIS] = current_position[X_AXIS];
  2332. destination[Y_AXIS] = current_position[Y_AXIS];
  2333. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2334. feedrate = 0.0;
  2335. st_synchronize();
  2336. endstops_hit_on_purpose();
  2337. current_position[X_AXIS] = destination[X_AXIS];
  2338. current_position[Y_AXIS] = destination[Y_AXIS];
  2339. current_position[Z_AXIS] = destination[Z_AXIS];
  2340. }
  2341. #endif /* QUICK_HOME */
  2342. if(home_x)
  2343. homeaxis(X_AXIS);
  2344. if(home_y)
  2345. homeaxis(Y_AXIS);
  2346. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2347. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2348. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2349. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2350. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2351. #ifndef Z_SAFE_HOMING
  2352. if(home_z) {
  2353. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2354. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2355. feedrate = max_feedrate[Z_AXIS];
  2356. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2357. st_synchronize();
  2358. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2359. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2360. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2361. {
  2362. homeaxis(X_AXIS);
  2363. homeaxis(Y_AXIS);
  2364. }
  2365. // 1st mesh bed leveling measurement point, corrected.
  2366. world2machine_initialize();
  2367. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2368. world2machine_reset();
  2369. if (destination[Y_AXIS] < Y_MIN_POS)
  2370. destination[Y_AXIS] = Y_MIN_POS;
  2371. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2372. feedrate = homing_feedrate[Z_AXIS]/10;
  2373. current_position[Z_AXIS] = 0;
  2374. enable_endstops(false);
  2375. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2376. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2377. st_synchronize();
  2378. current_position[X_AXIS] = destination[X_AXIS];
  2379. current_position[Y_AXIS] = destination[Y_AXIS];
  2380. enable_endstops(true);
  2381. endstops_hit_on_purpose();
  2382. homeaxis(Z_AXIS);
  2383. #else // MESH_BED_LEVELING
  2384. homeaxis(Z_AXIS);
  2385. #endif // MESH_BED_LEVELING
  2386. }
  2387. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2388. if(home_all_axes) {
  2389. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2390. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2391. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2392. feedrate = XY_TRAVEL_SPEED/60;
  2393. current_position[Z_AXIS] = 0;
  2394. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2395. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2396. st_synchronize();
  2397. current_position[X_AXIS] = destination[X_AXIS];
  2398. current_position[Y_AXIS] = destination[Y_AXIS];
  2399. homeaxis(Z_AXIS);
  2400. }
  2401. // Let's see if X and Y are homed and probe is inside bed area.
  2402. if(home_z) {
  2403. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2404. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2405. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2406. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2407. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2408. current_position[Z_AXIS] = 0;
  2409. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2410. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2411. feedrate = max_feedrate[Z_AXIS];
  2412. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2413. st_synchronize();
  2414. homeaxis(Z_AXIS);
  2415. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2416. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2417. SERIAL_ECHO_START;
  2418. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2419. } else {
  2420. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2421. SERIAL_ECHO_START;
  2422. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2423. }
  2424. }
  2425. #endif // Z_SAFE_HOMING
  2426. #endif // Z_HOME_DIR < 0
  2427. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2428. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2429. #ifdef ENABLE_AUTO_BED_LEVELING
  2430. if(home_z)
  2431. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2432. #endif
  2433. // Set the planner and stepper routine positions.
  2434. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2435. // contains the machine coordinates.
  2436. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2437. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2438. enable_endstops(false);
  2439. #endif
  2440. feedrate = saved_feedrate;
  2441. feedmultiply = saved_feedmultiply;
  2442. previous_millis_cmd = millis();
  2443. endstops_hit_on_purpose();
  2444. #ifndef MESH_BED_LEVELING
  2445. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2446. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2447. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2448. lcd_adjust_z();
  2449. #endif
  2450. // Load the machine correction matrix
  2451. world2machine_initialize();
  2452. // and correct the current_position XY axes to match the transformed coordinate system.
  2453. world2machine_update_current();
  2454. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2455. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2456. {
  2457. if (! home_z && mbl_was_active) {
  2458. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2459. mbl.active = true;
  2460. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2461. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2462. }
  2463. }
  2464. else
  2465. {
  2466. st_synchronize();
  2467. homing_flag = false;
  2468. // Push the commands to the front of the message queue in the reverse order!
  2469. // There shall be always enough space reserved for these commands.
  2470. // enquecommand_front_P((PSTR("G80")));
  2471. goto case_G80;
  2472. }
  2473. #endif
  2474. if (farm_mode) { prusa_statistics(20); };
  2475. homing_flag = false;
  2476. #if 0
  2477. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2478. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2479. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2480. #endif
  2481. break;
  2482. }
  2483. #ifdef ENABLE_AUTO_BED_LEVELING
  2484. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2485. {
  2486. #if Z_MIN_PIN == -1
  2487. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2488. #endif
  2489. // Prevent user from running a G29 without first homing in X and Y
  2490. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2491. {
  2492. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2493. SERIAL_ECHO_START;
  2494. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2495. break; // abort G29, since we don't know where we are
  2496. }
  2497. st_synchronize();
  2498. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2499. //vector_3 corrected_position = plan_get_position_mm();
  2500. //corrected_position.debug("position before G29");
  2501. plan_bed_level_matrix.set_to_identity();
  2502. vector_3 uncorrected_position = plan_get_position();
  2503. //uncorrected_position.debug("position durring G29");
  2504. current_position[X_AXIS] = uncorrected_position.x;
  2505. current_position[Y_AXIS] = uncorrected_position.y;
  2506. current_position[Z_AXIS] = uncorrected_position.z;
  2507. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2508. setup_for_endstop_move();
  2509. feedrate = homing_feedrate[Z_AXIS];
  2510. #ifdef AUTO_BED_LEVELING_GRID
  2511. // probe at the points of a lattice grid
  2512. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2513. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2514. // solve the plane equation ax + by + d = z
  2515. // A is the matrix with rows [x y 1] for all the probed points
  2516. // B is the vector of the Z positions
  2517. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2518. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2519. // "A" matrix of the linear system of equations
  2520. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2521. // "B" vector of Z points
  2522. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2523. int probePointCounter = 0;
  2524. bool zig = true;
  2525. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2526. {
  2527. int xProbe, xInc;
  2528. if (zig)
  2529. {
  2530. xProbe = LEFT_PROBE_BED_POSITION;
  2531. //xEnd = RIGHT_PROBE_BED_POSITION;
  2532. xInc = xGridSpacing;
  2533. zig = false;
  2534. } else // zag
  2535. {
  2536. xProbe = RIGHT_PROBE_BED_POSITION;
  2537. //xEnd = LEFT_PROBE_BED_POSITION;
  2538. xInc = -xGridSpacing;
  2539. zig = true;
  2540. }
  2541. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2542. {
  2543. float z_before;
  2544. if (probePointCounter == 0)
  2545. {
  2546. // raise before probing
  2547. z_before = Z_RAISE_BEFORE_PROBING;
  2548. } else
  2549. {
  2550. // raise extruder
  2551. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2552. }
  2553. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2554. eqnBVector[probePointCounter] = measured_z;
  2555. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2556. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2557. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2558. probePointCounter++;
  2559. xProbe += xInc;
  2560. }
  2561. }
  2562. clean_up_after_endstop_move();
  2563. // solve lsq problem
  2564. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2565. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2566. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2567. SERIAL_PROTOCOLPGM(" b: ");
  2568. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2569. SERIAL_PROTOCOLPGM(" d: ");
  2570. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2571. set_bed_level_equation_lsq(plane_equation_coefficients);
  2572. free(plane_equation_coefficients);
  2573. #else // AUTO_BED_LEVELING_GRID not defined
  2574. // Probe at 3 arbitrary points
  2575. // probe 1
  2576. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2577. // probe 2
  2578. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2579. // probe 3
  2580. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2581. clean_up_after_endstop_move();
  2582. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2583. #endif // AUTO_BED_LEVELING_GRID
  2584. st_synchronize();
  2585. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2586. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2587. // When the bed is uneven, this height must be corrected.
  2588. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2589. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2590. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2591. z_tmp = current_position[Z_AXIS];
  2592. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2593. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2594. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2595. }
  2596. break;
  2597. #ifndef Z_PROBE_SLED
  2598. case 30: // G30 Single Z Probe
  2599. {
  2600. st_synchronize();
  2601. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2602. setup_for_endstop_move();
  2603. feedrate = homing_feedrate[Z_AXIS];
  2604. run_z_probe();
  2605. SERIAL_PROTOCOLPGM(MSG_BED);
  2606. SERIAL_PROTOCOLPGM(" X: ");
  2607. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2608. SERIAL_PROTOCOLPGM(" Y: ");
  2609. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2610. SERIAL_PROTOCOLPGM(" Z: ");
  2611. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2612. SERIAL_PROTOCOLPGM("\n");
  2613. clean_up_after_endstop_move();
  2614. }
  2615. break;
  2616. #else
  2617. case 31: // dock the sled
  2618. dock_sled(true);
  2619. break;
  2620. case 32: // undock the sled
  2621. dock_sled(false);
  2622. break;
  2623. #endif // Z_PROBE_SLED
  2624. #endif // ENABLE_AUTO_BED_LEVELING
  2625. #ifdef MESH_BED_LEVELING
  2626. case 30: // G30 Single Z Probe
  2627. {
  2628. st_synchronize();
  2629. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2630. setup_for_endstop_move();
  2631. feedrate = homing_feedrate[Z_AXIS];
  2632. find_bed_induction_sensor_point_z(-10.f, 3);
  2633. SERIAL_PROTOCOLRPGM(MSG_BED);
  2634. SERIAL_PROTOCOLPGM(" X: ");
  2635. MYSERIAL.print(current_position[X_AXIS], 5);
  2636. SERIAL_PROTOCOLPGM(" Y: ");
  2637. MYSERIAL.print(current_position[Y_AXIS], 5);
  2638. SERIAL_PROTOCOLPGM(" Z: ");
  2639. MYSERIAL.print(current_position[Z_AXIS], 5);
  2640. SERIAL_PROTOCOLPGM("\n");
  2641. clean_up_after_endstop_move();
  2642. }
  2643. break;
  2644. case 75:
  2645. {
  2646. for (int i = 40; i <= 110; i++) {
  2647. MYSERIAL.print(i);
  2648. MYSERIAL.print(" ");
  2649. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2650. }
  2651. }
  2652. break;
  2653. case 76: //PINDA probe temperature calibration
  2654. {
  2655. #ifdef PINDA_THERMISTOR
  2656. if (true)
  2657. {
  2658. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
  2659. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  2660. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  2661. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2662. // We don't know where we are! HOME!
  2663. // Push the commands to the front of the message queue in the reverse order!
  2664. // There shall be always enough space reserved for these commands.
  2665. repeatcommand_front(); // repeat G76 with all its parameters
  2666. enquecommand_front_P((PSTR("G28 W0")));
  2667. break;
  2668. }
  2669. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2670. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2671. float zero_z;
  2672. int z_shift = 0; //unit: steps
  2673. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2674. if (start_temp < 35) start_temp = 35;
  2675. if (start_temp < current_temperature_pinda) start_temp += 5;
  2676. SERIAL_ECHOPGM("start temperature: ");
  2677. MYSERIAL.println(start_temp);
  2678. // setTargetHotend(200, 0);
  2679. setTargetBed(70 + (start_temp - 30));
  2680. custom_message = true;
  2681. custom_message_type = 4;
  2682. custom_message_state = 1;
  2683. custom_message = MSG_TEMP_CALIBRATION;
  2684. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2685. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2686. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2687. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2688. st_synchronize();
  2689. while (current_temperature_pinda < start_temp)
  2690. {
  2691. delay_keep_alive(1000);
  2692. serialecho_temperatures();
  2693. }
  2694. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2695. current_position[Z_AXIS] = 5;
  2696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2697. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2698. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2699. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2700. st_synchronize();
  2701. find_bed_induction_sensor_point_z(-1.f);
  2702. zero_z = current_position[Z_AXIS];
  2703. //current_position[Z_AXIS]
  2704. SERIAL_ECHOLNPGM("");
  2705. SERIAL_ECHOPGM("ZERO: ");
  2706. MYSERIAL.print(current_position[Z_AXIS]);
  2707. SERIAL_ECHOLNPGM("");
  2708. int i = -1; for (; i < 5; i++)
  2709. {
  2710. float temp = (40 + i * 5);
  2711. SERIAL_ECHOPGM("Step: ");
  2712. MYSERIAL.print(i + 2);
  2713. SERIAL_ECHOLNPGM("/6 (skipped)");
  2714. SERIAL_ECHOPGM("PINDA temperature: ");
  2715. MYSERIAL.print((40 + i*5));
  2716. SERIAL_ECHOPGM(" Z shift (mm):");
  2717. MYSERIAL.print(0);
  2718. SERIAL_ECHOLNPGM("");
  2719. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2720. if (start_temp <= temp) break;
  2721. }
  2722. for (i++; i < 5; i++)
  2723. {
  2724. float temp = (40 + i * 5);
  2725. SERIAL_ECHOPGM("Step: ");
  2726. MYSERIAL.print(i + 2);
  2727. SERIAL_ECHOLNPGM("/6");
  2728. custom_message_state = i + 2;
  2729. setTargetBed(50 + 10 * (temp - 30) / 5);
  2730. // setTargetHotend(255, 0);
  2731. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2732. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2733. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2734. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2735. st_synchronize();
  2736. while (current_temperature_pinda < temp)
  2737. {
  2738. delay_keep_alive(1000);
  2739. serialecho_temperatures();
  2740. }
  2741. current_position[Z_AXIS] = 5;
  2742. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2743. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2744. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2746. st_synchronize();
  2747. find_bed_induction_sensor_point_z(-1.f);
  2748. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2749. SERIAL_ECHOLNPGM("");
  2750. SERIAL_ECHOPGM("PINDA temperature: ");
  2751. MYSERIAL.print(current_temperature_pinda);
  2752. SERIAL_ECHOPGM(" Z shift (mm):");
  2753. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2754. SERIAL_ECHOLNPGM("");
  2755. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2756. }
  2757. custom_message_type = 0;
  2758. custom_message = false;
  2759. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2760. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2761. disable_x();
  2762. disable_y();
  2763. disable_z();
  2764. disable_e0();
  2765. disable_e1();
  2766. disable_e2();
  2767. setTargetBed(0); //set bed target temperature back to 0
  2768. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2769. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2770. lcd_update_enable(true);
  2771. lcd_update(2);
  2772. break;
  2773. }
  2774. #endif //PINDA_THERMISTOR
  2775. setTargetBed(PINDA_MIN_T);
  2776. float zero_z;
  2777. int z_shift = 0; //unit: steps
  2778. int t_c; // temperature
  2779. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2780. // We don't know where we are! HOME!
  2781. // Push the commands to the front of the message queue in the reverse order!
  2782. // There shall be always enough space reserved for these commands.
  2783. repeatcommand_front(); // repeat G76 with all its parameters
  2784. enquecommand_front_P((PSTR("G28 W0")));
  2785. break;
  2786. }
  2787. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2788. custom_message = true;
  2789. custom_message_type = 4;
  2790. custom_message_state = 1;
  2791. custom_message = MSG_TEMP_CALIBRATION;
  2792. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2793. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2794. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2795. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2796. st_synchronize();
  2797. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2798. delay_keep_alive(1000);
  2799. serialecho_temperatures();
  2800. }
  2801. //enquecommand_P(PSTR("M190 S50"));
  2802. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2803. delay_keep_alive(1000);
  2804. serialecho_temperatures();
  2805. }
  2806. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2807. current_position[Z_AXIS] = 5;
  2808. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2809. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2810. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2811. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2812. st_synchronize();
  2813. find_bed_induction_sensor_point_z(-1.f);
  2814. zero_z = current_position[Z_AXIS];
  2815. //current_position[Z_AXIS]
  2816. SERIAL_ECHOLNPGM("");
  2817. SERIAL_ECHOPGM("ZERO: ");
  2818. MYSERIAL.print(current_position[Z_AXIS]);
  2819. SERIAL_ECHOLNPGM("");
  2820. for (int i = 0; i<5; i++) {
  2821. SERIAL_ECHOPGM("Step: ");
  2822. MYSERIAL.print(i+2);
  2823. SERIAL_ECHOLNPGM("/6");
  2824. custom_message_state = i + 2;
  2825. t_c = 60 + i * 10;
  2826. setTargetBed(t_c);
  2827. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2828. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2829. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2830. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2831. st_synchronize();
  2832. while (degBed() < t_c) {
  2833. delay_keep_alive(1000);
  2834. serialecho_temperatures();
  2835. }
  2836. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2837. delay_keep_alive(1000);
  2838. serialecho_temperatures();
  2839. }
  2840. current_position[Z_AXIS] = 5;
  2841. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2842. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2843. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2844. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2845. st_synchronize();
  2846. find_bed_induction_sensor_point_z(-1.f);
  2847. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2848. SERIAL_ECHOLNPGM("");
  2849. SERIAL_ECHOPGM("Temperature: ");
  2850. MYSERIAL.print(t_c);
  2851. SERIAL_ECHOPGM(" Z shift (mm):");
  2852. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2853. SERIAL_ECHOLNPGM("");
  2854. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2855. }
  2856. custom_message_type = 0;
  2857. custom_message = false;
  2858. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2859. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2860. disable_x();
  2861. disable_y();
  2862. disable_z();
  2863. disable_e0();
  2864. disable_e1();
  2865. disable_e2();
  2866. setTargetBed(0); //set bed target temperature back to 0
  2867. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2868. lcd_update_enable(true);
  2869. lcd_update(2);
  2870. }
  2871. break;
  2872. #ifdef DIS
  2873. case 77:
  2874. {
  2875. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2876. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2877. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2878. float dimension_x = 40;
  2879. float dimension_y = 40;
  2880. int points_x = 40;
  2881. int points_y = 40;
  2882. float offset_x = 74;
  2883. float offset_y = 33;
  2884. if (code_seen('X')) dimension_x = code_value();
  2885. if (code_seen('Y')) dimension_y = code_value();
  2886. if (code_seen('XP')) points_x = code_value();
  2887. if (code_seen('YP')) points_y = code_value();
  2888. if (code_seen('XO')) offset_x = code_value();
  2889. if (code_seen('YO')) offset_y = code_value();
  2890. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2891. } break;
  2892. #endif
  2893. case 79: {
  2894. for (int i = 255; i > 0; i = i - 5) {
  2895. fanSpeed = i;
  2896. //delay_keep_alive(2000);
  2897. for (int j = 0; j < 100; j++) {
  2898. delay_keep_alive(100);
  2899. }
  2900. fan_speed[1];
  2901. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2902. }
  2903. }break;
  2904. /**
  2905. * G80: Mesh-based Z probe, probes a grid and produces a
  2906. * mesh to compensate for variable bed height
  2907. *
  2908. * The S0 report the points as below
  2909. *
  2910. * +----> X-axis
  2911. * |
  2912. * |
  2913. * v Y-axis
  2914. *
  2915. */
  2916. case 80:
  2917. #ifdef MK1BP
  2918. break;
  2919. #endif //MK1BP
  2920. case_G80:
  2921. {
  2922. mesh_bed_leveling_flag = true;
  2923. int8_t verbosity_level = 0;
  2924. static bool run = false;
  2925. if (code_seen('V')) {
  2926. // Just 'V' without a number counts as V1.
  2927. char c = strchr_pointer[1];
  2928. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2929. }
  2930. // Firstly check if we know where we are
  2931. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2932. // We don't know where we are! HOME!
  2933. // Push the commands to the front of the message queue in the reverse order!
  2934. // There shall be always enough space reserved for these commands.
  2935. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2936. repeatcommand_front(); // repeat G80 with all its parameters
  2937. enquecommand_front_P((PSTR("G28 W0")));
  2938. }
  2939. else {
  2940. mesh_bed_leveling_flag = false;
  2941. }
  2942. break;
  2943. }
  2944. bool temp_comp_start = true;
  2945. #ifdef PINDA_THERMISTOR
  2946. temp_comp_start = false;
  2947. #endif //PINDA_THERMISTOR
  2948. if (temp_comp_start)
  2949. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2950. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2951. temp_compensation_start();
  2952. run = true;
  2953. repeatcommand_front(); // repeat G80 with all its parameters
  2954. enquecommand_front_P((PSTR("G28 W0")));
  2955. }
  2956. else {
  2957. mesh_bed_leveling_flag = false;
  2958. }
  2959. break;
  2960. }
  2961. run = false;
  2962. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2963. mesh_bed_leveling_flag = false;
  2964. break;
  2965. }
  2966. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2967. bool custom_message_old = custom_message;
  2968. unsigned int custom_message_type_old = custom_message_type;
  2969. unsigned int custom_message_state_old = custom_message_state;
  2970. custom_message = true;
  2971. custom_message_type = 1;
  2972. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2973. lcd_update(1);
  2974. mbl.reset(); //reset mesh bed leveling
  2975. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2976. // consumed during the first movements following this statement.
  2977. babystep_undo();
  2978. // Cycle through all points and probe them
  2979. // First move up. During this first movement, the babystepping will be reverted.
  2980. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2981. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2982. // The move to the first calibration point.
  2983. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2984. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2985. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2986. #ifdef SUPPORT_VERBOSITY
  2987. if (verbosity_level >= 1) {
  2988. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2989. }
  2990. #endif //SUPPORT_VERBOSITY
  2991. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2992. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2993. // Wait until the move is finished.
  2994. st_synchronize();
  2995. int mesh_point = 0; //index number of calibration point
  2996. int ix = 0;
  2997. int iy = 0;
  2998. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2999. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3000. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3001. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3002. #ifdef SUPPORT_VERBOSITY
  3003. if (verbosity_level >= 1) {
  3004. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3005. }
  3006. #endif // SUPPORT_VERBOSITY
  3007. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3008. const char *kill_message = NULL;
  3009. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3010. // Get coords of a measuring point.
  3011. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3012. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3013. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3014. float z0 = 0.f;
  3015. if (has_z && mesh_point > 0) {
  3016. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3017. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3018. //#if 0
  3019. #ifdef SUPPORT_VERBOSITY
  3020. if (verbosity_level >= 1) {
  3021. SERIAL_ECHOLNPGM("");
  3022. SERIAL_ECHOPGM("Bed leveling, point: ");
  3023. MYSERIAL.print(mesh_point);
  3024. SERIAL_ECHOPGM(", calibration z: ");
  3025. MYSERIAL.print(z0, 5);
  3026. SERIAL_ECHOLNPGM("");
  3027. }
  3028. #endif // SUPPORT_VERBOSITY
  3029. //#endif
  3030. }
  3031. // Move Z up to MESH_HOME_Z_SEARCH.
  3032. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3034. st_synchronize();
  3035. // Move to XY position of the sensor point.
  3036. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3037. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3038. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3039. #ifdef SUPPORT_VERBOSITY
  3040. if (verbosity_level >= 1) {
  3041. SERIAL_PROTOCOL(mesh_point);
  3042. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3043. }
  3044. #endif // SUPPORT_VERBOSITY
  3045. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3046. st_synchronize();
  3047. // Go down until endstop is hit
  3048. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3049. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3050. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  3051. break;
  3052. }
  3053. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3054. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  3055. break;
  3056. }
  3057. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3058. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  3059. break;
  3060. }
  3061. #ifdef SUPPORT_VERBOSITY
  3062. if (verbosity_level >= 10) {
  3063. SERIAL_ECHOPGM("X: ");
  3064. MYSERIAL.print(current_position[X_AXIS], 5);
  3065. SERIAL_ECHOLNPGM("");
  3066. SERIAL_ECHOPGM("Y: ");
  3067. MYSERIAL.print(current_position[Y_AXIS], 5);
  3068. SERIAL_PROTOCOLPGM("\n");
  3069. }
  3070. #endif // SUPPORT_VERBOSITY
  3071. float offset_z = 0;
  3072. #ifdef PINDA_THERMISTOR
  3073. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3074. #endif //PINDA_THERMISTOR
  3075. // #ifdef SUPPORT_VERBOSITY
  3076. /* if (verbosity_level >= 1)
  3077. {
  3078. SERIAL_ECHOPGM("mesh bed leveling: ");
  3079. MYSERIAL.print(current_position[Z_AXIS], 5);
  3080. SERIAL_ECHOPGM(" offset: ");
  3081. MYSERIAL.print(offset_z, 5);
  3082. SERIAL_ECHOLNPGM("");
  3083. }*/
  3084. // #endif // SUPPORT_VERBOSITY
  3085. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3086. custom_message_state--;
  3087. mesh_point++;
  3088. lcd_update(1);
  3089. }
  3090. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3091. #ifdef SUPPORT_VERBOSITY
  3092. if (verbosity_level >= 20) {
  3093. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3094. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3095. MYSERIAL.print(current_position[Z_AXIS], 5);
  3096. }
  3097. #endif // SUPPORT_VERBOSITY
  3098. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3099. st_synchronize();
  3100. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3101. kill(kill_message);
  3102. SERIAL_ECHOLNPGM("killed");
  3103. }
  3104. clean_up_after_endstop_move();
  3105. // SERIAL_ECHOLNPGM("clean up finished ");
  3106. bool apply_temp_comp = true;
  3107. #ifdef PINDA_THERMISTOR
  3108. apply_temp_comp = false;
  3109. #endif
  3110. if (apply_temp_comp)
  3111. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3112. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3113. // SERIAL_ECHOLNPGM("babystep applied");
  3114. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3115. #ifdef SUPPORT_VERBOSITY
  3116. if (verbosity_level >= 1) {
  3117. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3118. }
  3119. #endif // SUPPORT_VERBOSITY
  3120. for (uint8_t i = 0; i < 4; ++i) {
  3121. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3122. long correction = 0;
  3123. if (code_seen(codes[i]))
  3124. correction = code_value_long();
  3125. else if (eeprom_bed_correction_valid) {
  3126. unsigned char *addr = (i < 2) ?
  3127. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3128. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3129. correction = eeprom_read_int8(addr);
  3130. }
  3131. if (correction == 0)
  3132. continue;
  3133. float offset = float(correction) * 0.001f;
  3134. if (fabs(offset) > 0.101f) {
  3135. SERIAL_ERROR_START;
  3136. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3137. SERIAL_ECHO(offset);
  3138. SERIAL_ECHOLNPGM(" microns");
  3139. }
  3140. else {
  3141. switch (i) {
  3142. case 0:
  3143. for (uint8_t row = 0; row < 3; ++row) {
  3144. mbl.z_values[row][1] += 0.5f * offset;
  3145. mbl.z_values[row][0] += offset;
  3146. }
  3147. break;
  3148. case 1:
  3149. for (uint8_t row = 0; row < 3; ++row) {
  3150. mbl.z_values[row][1] += 0.5f * offset;
  3151. mbl.z_values[row][2] += offset;
  3152. }
  3153. break;
  3154. case 2:
  3155. for (uint8_t col = 0; col < 3; ++col) {
  3156. mbl.z_values[1][col] += 0.5f * offset;
  3157. mbl.z_values[0][col] += offset;
  3158. }
  3159. break;
  3160. case 3:
  3161. for (uint8_t col = 0; col < 3; ++col) {
  3162. mbl.z_values[1][col] += 0.5f * offset;
  3163. mbl.z_values[2][col] += offset;
  3164. }
  3165. break;
  3166. }
  3167. }
  3168. }
  3169. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3170. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3171. // SERIAL_ECHOLNPGM("Upsample finished");
  3172. mbl.active = 1; //activate mesh bed leveling
  3173. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3174. go_home_with_z_lift();
  3175. // SERIAL_ECHOLNPGM("Go home finished");
  3176. //unretract (after PINDA preheat retraction)
  3177. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3178. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3179. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3180. }
  3181. KEEPALIVE_STATE(NOT_BUSY);
  3182. // Restore custom message state
  3183. custom_message = custom_message_old;
  3184. custom_message_type = custom_message_type_old;
  3185. custom_message_state = custom_message_state_old;
  3186. mesh_bed_leveling_flag = false;
  3187. mesh_bed_run_from_menu = false;
  3188. lcd_update(2);
  3189. }
  3190. break;
  3191. /**
  3192. * G81: Print mesh bed leveling status and bed profile if activated
  3193. */
  3194. case 81:
  3195. if (mbl.active) {
  3196. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3197. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3198. SERIAL_PROTOCOLPGM(",");
  3199. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3200. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3201. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3202. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3203. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3204. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3205. SERIAL_PROTOCOLPGM(" ");
  3206. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3207. }
  3208. SERIAL_PROTOCOLPGM("\n");
  3209. }
  3210. }
  3211. else
  3212. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3213. break;
  3214. #if 0
  3215. /**
  3216. * G82: Single Z probe at current location
  3217. *
  3218. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3219. *
  3220. */
  3221. case 82:
  3222. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3223. setup_for_endstop_move();
  3224. find_bed_induction_sensor_point_z();
  3225. clean_up_after_endstop_move();
  3226. SERIAL_PROTOCOLPGM("Bed found at: ");
  3227. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3228. SERIAL_PROTOCOLPGM("\n");
  3229. break;
  3230. /**
  3231. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3232. */
  3233. case 83:
  3234. {
  3235. int babystepz = code_seen('S') ? code_value() : 0;
  3236. int BabyPosition = code_seen('P') ? code_value() : 0;
  3237. if (babystepz != 0) {
  3238. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3239. // Is the axis indexed starting with zero or one?
  3240. if (BabyPosition > 4) {
  3241. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3242. }else{
  3243. // Save it to the eeprom
  3244. babystepLoadZ = babystepz;
  3245. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3246. // adjust the Z
  3247. babystepsTodoZadd(babystepLoadZ);
  3248. }
  3249. }
  3250. }
  3251. break;
  3252. /**
  3253. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3254. */
  3255. case 84:
  3256. babystepsTodoZsubtract(babystepLoadZ);
  3257. // babystepLoadZ = 0;
  3258. break;
  3259. /**
  3260. * G85: Prusa3D specific: Pick best babystep
  3261. */
  3262. case 85:
  3263. lcd_pick_babystep();
  3264. break;
  3265. #endif
  3266. /**
  3267. * G86: Prusa3D specific: Disable babystep correction after home.
  3268. * This G-code will be performed at the start of a calibration script.
  3269. */
  3270. case 86:
  3271. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3272. break;
  3273. /**
  3274. * G87: Prusa3D specific: Enable babystep correction after home
  3275. * This G-code will be performed at the end of a calibration script.
  3276. */
  3277. case 87:
  3278. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3279. break;
  3280. /**
  3281. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3282. */
  3283. case 88:
  3284. break;
  3285. #endif // ENABLE_MESH_BED_LEVELING
  3286. case 90: // G90
  3287. relative_mode = false;
  3288. break;
  3289. case 91: // G91
  3290. relative_mode = true;
  3291. break;
  3292. case 92: // G92
  3293. if(!code_seen(axis_codes[E_AXIS]))
  3294. st_synchronize();
  3295. for(int8_t i=0; i < NUM_AXIS; i++) {
  3296. if(code_seen(axis_codes[i])) {
  3297. if(i == E_AXIS) {
  3298. current_position[i] = code_value();
  3299. plan_set_e_position(current_position[E_AXIS]);
  3300. }
  3301. else {
  3302. current_position[i] = code_value()+add_homing[i];
  3303. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3304. }
  3305. }
  3306. }
  3307. break;
  3308. case 98: //activate farm mode
  3309. farm_mode = 1;
  3310. PingTime = millis();
  3311. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3312. break;
  3313. case 99: //deactivate farm mode
  3314. farm_mode = 0;
  3315. lcd_printer_connected();
  3316. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3317. lcd_update(2);
  3318. break;
  3319. default:
  3320. printf("Unknown G code: ");
  3321. printf(cmdbuffer + bufindr + CMDHDRSIZE);
  3322. printf("\n");
  3323. }
  3324. } // end if(code_seen('G'))
  3325. else if(code_seen('M'))
  3326. {
  3327. int index;
  3328. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3329. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3330. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3331. printf("Invalid M code: ");
  3332. printf(cmdbuffer + bufindr + CMDHDRSIZE);
  3333. printf("\n");
  3334. } else
  3335. switch((int)code_value())
  3336. {
  3337. #ifdef ULTIPANEL
  3338. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3339. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3340. {
  3341. char *src = strchr_pointer + 2;
  3342. codenum = 0;
  3343. bool hasP = false, hasS = false;
  3344. if (code_seen('P')) {
  3345. codenum = code_value(); // milliseconds to wait
  3346. hasP = codenum > 0;
  3347. }
  3348. if (code_seen('S')) {
  3349. codenum = code_value() * 1000; // seconds to wait
  3350. hasS = codenum > 0;
  3351. }
  3352. starpos = strchr(src, '*');
  3353. if (starpos != NULL) *(starpos) = '\0';
  3354. while (*src == ' ') ++src;
  3355. if (!hasP && !hasS && *src != '\0') {
  3356. lcd_setstatus(src);
  3357. } else {
  3358. LCD_MESSAGERPGM(MSG_USERWAIT);
  3359. }
  3360. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3361. st_synchronize();
  3362. previous_millis_cmd = millis();
  3363. if (codenum > 0){
  3364. codenum += millis(); // keep track of when we started waiting
  3365. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3366. while(millis() < codenum && !lcd_clicked()){
  3367. manage_heater();
  3368. manage_inactivity(true);
  3369. lcd_update();
  3370. }
  3371. KEEPALIVE_STATE(IN_HANDLER);
  3372. lcd_ignore_click(false);
  3373. }else{
  3374. if (!lcd_detected())
  3375. break;
  3376. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3377. while(!lcd_clicked()){
  3378. manage_heater();
  3379. manage_inactivity(true);
  3380. lcd_update();
  3381. }
  3382. KEEPALIVE_STATE(IN_HANDLER);
  3383. }
  3384. if (IS_SD_PRINTING)
  3385. LCD_MESSAGERPGM(MSG_RESUMING);
  3386. else
  3387. LCD_MESSAGERPGM(WELCOME_MSG);
  3388. }
  3389. break;
  3390. #endif
  3391. case 17:
  3392. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3393. enable_x();
  3394. enable_y();
  3395. enable_z();
  3396. enable_e0();
  3397. enable_e1();
  3398. enable_e2();
  3399. break;
  3400. #ifdef SDSUPPORT
  3401. case 20: // M20 - list SD card
  3402. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3403. card.ls();
  3404. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3405. break;
  3406. case 21: // M21 - init SD card
  3407. card.initsd();
  3408. break;
  3409. case 22: //M22 - release SD card
  3410. card.release();
  3411. break;
  3412. case 23: //M23 - Select file
  3413. starpos = (strchr(strchr_pointer + 4,'*'));
  3414. if(starpos!=NULL)
  3415. *(starpos)='\0';
  3416. card.openFile(strchr_pointer + 4,true);
  3417. break;
  3418. case 24: //M24 - Start SD print
  3419. if (!card.paused)
  3420. failstats_reset_print();
  3421. card.startFileprint();
  3422. starttime=millis();
  3423. break;
  3424. case 25: //M25 - Pause SD print
  3425. card.pauseSDPrint();
  3426. break;
  3427. case 26: //M26 - Set SD index
  3428. if(card.cardOK && code_seen('S')) {
  3429. card.setIndex(code_value_long());
  3430. }
  3431. break;
  3432. case 27: //M27 - Get SD status
  3433. card.getStatus();
  3434. break;
  3435. case 28: //M28 - Start SD write
  3436. starpos = (strchr(strchr_pointer + 4,'*'));
  3437. if(starpos != NULL){
  3438. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3439. strchr_pointer = strchr(npos,' ') + 1;
  3440. *(starpos) = '\0';
  3441. }
  3442. card.openFile(strchr_pointer+4,false);
  3443. break;
  3444. case 29: //M29 - Stop SD write
  3445. //processed in write to file routine above
  3446. //card,saving = false;
  3447. break;
  3448. case 30: //M30 <filename> Delete File
  3449. if (card.cardOK){
  3450. card.closefile();
  3451. starpos = (strchr(strchr_pointer + 4,'*'));
  3452. if(starpos != NULL){
  3453. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3454. strchr_pointer = strchr(npos,' ') + 1;
  3455. *(starpos) = '\0';
  3456. }
  3457. card.removeFile(strchr_pointer + 4);
  3458. }
  3459. break;
  3460. case 32: //M32 - Select file and start SD print
  3461. {
  3462. if(card.sdprinting) {
  3463. st_synchronize();
  3464. }
  3465. starpos = (strchr(strchr_pointer + 4,'*'));
  3466. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3467. if(namestartpos==NULL)
  3468. {
  3469. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3470. }
  3471. else
  3472. namestartpos++; //to skip the '!'
  3473. if(starpos!=NULL)
  3474. *(starpos)='\0';
  3475. bool call_procedure=(code_seen('P'));
  3476. if(strchr_pointer>namestartpos)
  3477. call_procedure=false; //false alert, 'P' found within filename
  3478. if( card.cardOK )
  3479. {
  3480. card.openFile(namestartpos,true,!call_procedure);
  3481. if(code_seen('S'))
  3482. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3483. card.setIndex(code_value_long());
  3484. card.startFileprint();
  3485. if(!call_procedure)
  3486. starttime=millis(); //procedure calls count as normal print time.
  3487. }
  3488. } break;
  3489. case 928: //M928 - Start SD write
  3490. starpos = (strchr(strchr_pointer + 5,'*'));
  3491. if(starpos != NULL){
  3492. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3493. strchr_pointer = strchr(npos,' ') + 1;
  3494. *(starpos) = '\0';
  3495. }
  3496. card.openLogFile(strchr_pointer+5);
  3497. break;
  3498. #endif //SDSUPPORT
  3499. case 31: //M31 take time since the start of the SD print or an M109 command
  3500. {
  3501. stoptime=millis();
  3502. char time[30];
  3503. unsigned long t=(stoptime-starttime)/1000;
  3504. int sec,min;
  3505. min=t/60;
  3506. sec=t%60;
  3507. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3508. SERIAL_ECHO_START;
  3509. SERIAL_ECHOLN(time);
  3510. lcd_setstatus(time);
  3511. autotempShutdown();
  3512. }
  3513. break;
  3514. #ifndef _DISABLE_M42_M226
  3515. case 42: //M42 -Change pin status via gcode
  3516. if (code_seen('S'))
  3517. {
  3518. int pin_status = code_value();
  3519. int pin_number = LED_PIN;
  3520. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3521. pin_number = code_value();
  3522. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3523. {
  3524. if (sensitive_pins[i] == pin_number)
  3525. {
  3526. pin_number = -1;
  3527. break;
  3528. }
  3529. }
  3530. #if defined(FAN_PIN) && FAN_PIN > -1
  3531. if (pin_number == FAN_PIN)
  3532. fanSpeed = pin_status;
  3533. #endif
  3534. if (pin_number > -1)
  3535. {
  3536. pinMode(pin_number, OUTPUT);
  3537. digitalWrite(pin_number, pin_status);
  3538. analogWrite(pin_number, pin_status);
  3539. }
  3540. }
  3541. break;
  3542. #endif //_DISABLE_M42_M226
  3543. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3544. // Reset the baby step value and the baby step applied flag.
  3545. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3546. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3547. // Reset the skew and offset in both RAM and EEPROM.
  3548. reset_bed_offset_and_skew();
  3549. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3550. // the planner will not perform any adjustments in the XY plane.
  3551. // Wait for the motors to stop and update the current position with the absolute values.
  3552. world2machine_revert_to_uncorrected();
  3553. break;
  3554. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3555. {
  3556. bool only_Z = code_seen('Z');
  3557. gcode_M45(only_Z);
  3558. }
  3559. break;
  3560. /*
  3561. case 46:
  3562. {
  3563. // M46: Prusa3D: Show the assigned IP address.
  3564. uint8_t ip[4];
  3565. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3566. if (hasIP) {
  3567. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3568. SERIAL_ECHO(int(ip[0]));
  3569. SERIAL_ECHOPGM(".");
  3570. SERIAL_ECHO(int(ip[1]));
  3571. SERIAL_ECHOPGM(".");
  3572. SERIAL_ECHO(int(ip[2]));
  3573. SERIAL_ECHOPGM(".");
  3574. SERIAL_ECHO(int(ip[3]));
  3575. SERIAL_ECHOLNPGM("");
  3576. } else {
  3577. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3578. }
  3579. break;
  3580. }
  3581. */
  3582. case 47:
  3583. // M47: Prusa3D: Show end stops dialog on the display.
  3584. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3585. lcd_diag_show_end_stops();
  3586. KEEPALIVE_STATE(IN_HANDLER);
  3587. break;
  3588. #if 0
  3589. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3590. {
  3591. // Disable the default update procedure of the display. We will do a modal dialog.
  3592. lcd_update_enable(false);
  3593. // Let the planner use the uncorrected coordinates.
  3594. mbl.reset();
  3595. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3596. // the planner will not perform any adjustments in the XY plane.
  3597. // Wait for the motors to stop and update the current position with the absolute values.
  3598. world2machine_revert_to_uncorrected();
  3599. // Move the print head close to the bed.
  3600. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3602. st_synchronize();
  3603. // Home in the XY plane.
  3604. set_destination_to_current();
  3605. setup_for_endstop_move();
  3606. home_xy();
  3607. int8_t verbosity_level = 0;
  3608. if (code_seen('V')) {
  3609. // Just 'V' without a number counts as V1.
  3610. char c = strchr_pointer[1];
  3611. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3612. }
  3613. bool success = scan_bed_induction_points(verbosity_level);
  3614. clean_up_after_endstop_move();
  3615. // Print head up.
  3616. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3617. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3618. st_synchronize();
  3619. lcd_update_enable(true);
  3620. break;
  3621. }
  3622. #endif
  3623. // M48 Z-Probe repeatability measurement function.
  3624. //
  3625. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3626. //
  3627. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3628. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3629. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3630. // regenerated.
  3631. //
  3632. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3633. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3634. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3635. //
  3636. #ifdef ENABLE_AUTO_BED_LEVELING
  3637. #ifdef Z_PROBE_REPEATABILITY_TEST
  3638. case 48: // M48 Z-Probe repeatability
  3639. {
  3640. #if Z_MIN_PIN == -1
  3641. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3642. #endif
  3643. double sum=0.0;
  3644. double mean=0.0;
  3645. double sigma=0.0;
  3646. double sample_set[50];
  3647. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3648. double X_current, Y_current, Z_current;
  3649. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3650. if (code_seen('V') || code_seen('v')) {
  3651. verbose_level = code_value();
  3652. if (verbose_level<0 || verbose_level>4 ) {
  3653. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3654. goto Sigma_Exit;
  3655. }
  3656. }
  3657. if (verbose_level > 0) {
  3658. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3659. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3660. }
  3661. if (code_seen('n')) {
  3662. n_samples = code_value();
  3663. if (n_samples<4 || n_samples>50 ) {
  3664. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3665. goto Sigma_Exit;
  3666. }
  3667. }
  3668. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3669. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3670. Z_current = st_get_position_mm(Z_AXIS);
  3671. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3672. ext_position = st_get_position_mm(E_AXIS);
  3673. if (code_seen('X') || code_seen('x') ) {
  3674. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3675. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3676. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3677. goto Sigma_Exit;
  3678. }
  3679. }
  3680. if (code_seen('Y') || code_seen('y') ) {
  3681. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3682. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3683. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3684. goto Sigma_Exit;
  3685. }
  3686. }
  3687. if (code_seen('L') || code_seen('l') ) {
  3688. n_legs = code_value();
  3689. if ( n_legs==1 )
  3690. n_legs = 2;
  3691. if ( n_legs<0 || n_legs>15 ) {
  3692. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3693. goto Sigma_Exit;
  3694. }
  3695. }
  3696. //
  3697. // Do all the preliminary setup work. First raise the probe.
  3698. //
  3699. st_synchronize();
  3700. plan_bed_level_matrix.set_to_identity();
  3701. plan_buffer_line( X_current, Y_current, Z_start_location,
  3702. ext_position,
  3703. homing_feedrate[Z_AXIS]/60,
  3704. active_extruder);
  3705. st_synchronize();
  3706. //
  3707. // Now get everything to the specified probe point So we can safely do a probe to
  3708. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3709. // use that as a starting point for each probe.
  3710. //
  3711. if (verbose_level > 2)
  3712. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3713. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3714. ext_position,
  3715. homing_feedrate[X_AXIS]/60,
  3716. active_extruder);
  3717. st_synchronize();
  3718. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3719. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3720. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3721. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3722. //
  3723. // OK, do the inital probe to get us close to the bed.
  3724. // Then retrace the right amount and use that in subsequent probes
  3725. //
  3726. setup_for_endstop_move();
  3727. run_z_probe();
  3728. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3729. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3730. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3731. ext_position,
  3732. homing_feedrate[X_AXIS]/60,
  3733. active_extruder);
  3734. st_synchronize();
  3735. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3736. for( n=0; n<n_samples; n++) {
  3737. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3738. if ( n_legs) {
  3739. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3740. int rotational_direction, l;
  3741. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3742. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3743. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3744. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3745. //SERIAL_ECHOPAIR(" theta: ",theta);
  3746. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3747. //SERIAL_PROTOCOLLNPGM("");
  3748. for( l=0; l<n_legs-1; l++) {
  3749. if (rotational_direction==1)
  3750. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3751. else
  3752. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3753. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3754. if ( radius<0.0 )
  3755. radius = -radius;
  3756. X_current = X_probe_location + cos(theta) * radius;
  3757. Y_current = Y_probe_location + sin(theta) * radius;
  3758. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3759. X_current = X_MIN_POS;
  3760. if ( X_current>X_MAX_POS)
  3761. X_current = X_MAX_POS;
  3762. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3763. Y_current = Y_MIN_POS;
  3764. if ( Y_current>Y_MAX_POS)
  3765. Y_current = Y_MAX_POS;
  3766. if (verbose_level>3 ) {
  3767. SERIAL_ECHOPAIR("x: ", X_current);
  3768. SERIAL_ECHOPAIR("y: ", Y_current);
  3769. SERIAL_PROTOCOLLNPGM("");
  3770. }
  3771. do_blocking_move_to( X_current, Y_current, Z_current );
  3772. }
  3773. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3774. }
  3775. setup_for_endstop_move();
  3776. run_z_probe();
  3777. sample_set[n] = current_position[Z_AXIS];
  3778. //
  3779. // Get the current mean for the data points we have so far
  3780. //
  3781. sum=0.0;
  3782. for( j=0; j<=n; j++) {
  3783. sum = sum + sample_set[j];
  3784. }
  3785. mean = sum / (double (n+1));
  3786. //
  3787. // Now, use that mean to calculate the standard deviation for the
  3788. // data points we have so far
  3789. //
  3790. sum=0.0;
  3791. for( j=0; j<=n; j++) {
  3792. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3793. }
  3794. sigma = sqrt( sum / (double (n+1)) );
  3795. if (verbose_level > 1) {
  3796. SERIAL_PROTOCOL(n+1);
  3797. SERIAL_PROTOCOL(" of ");
  3798. SERIAL_PROTOCOL(n_samples);
  3799. SERIAL_PROTOCOLPGM(" z: ");
  3800. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3801. }
  3802. if (verbose_level > 2) {
  3803. SERIAL_PROTOCOL(" mean: ");
  3804. SERIAL_PROTOCOL_F(mean,6);
  3805. SERIAL_PROTOCOL(" sigma: ");
  3806. SERIAL_PROTOCOL_F(sigma,6);
  3807. }
  3808. if (verbose_level > 0)
  3809. SERIAL_PROTOCOLPGM("\n");
  3810. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3811. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3812. st_synchronize();
  3813. }
  3814. delay(1000);
  3815. clean_up_after_endstop_move();
  3816. // enable_endstops(true);
  3817. if (verbose_level > 0) {
  3818. SERIAL_PROTOCOLPGM("Mean: ");
  3819. SERIAL_PROTOCOL_F(mean, 6);
  3820. SERIAL_PROTOCOLPGM("\n");
  3821. }
  3822. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3823. SERIAL_PROTOCOL_F(sigma, 6);
  3824. SERIAL_PROTOCOLPGM("\n\n");
  3825. Sigma_Exit:
  3826. break;
  3827. }
  3828. #endif // Z_PROBE_REPEATABILITY_TEST
  3829. #endif // ENABLE_AUTO_BED_LEVELING
  3830. case 104: // M104
  3831. if(setTargetedHotend(104)){
  3832. break;
  3833. }
  3834. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3835. setWatch();
  3836. break;
  3837. case 112: // M112 -Emergency Stop
  3838. kill("", 3);
  3839. break;
  3840. case 140: // M140 set bed temp
  3841. if (code_seen('S')) setTargetBed(code_value());
  3842. break;
  3843. case 105 : // M105
  3844. if(setTargetedHotend(105)){
  3845. break;
  3846. }
  3847. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3848. SERIAL_PROTOCOLPGM("ok T:");
  3849. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3850. SERIAL_PROTOCOLPGM(" /");
  3851. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3852. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3853. SERIAL_PROTOCOLPGM(" B:");
  3854. SERIAL_PROTOCOL_F(degBed(),1);
  3855. SERIAL_PROTOCOLPGM(" /");
  3856. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3857. #endif //TEMP_BED_PIN
  3858. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3859. SERIAL_PROTOCOLPGM(" T");
  3860. SERIAL_PROTOCOL(cur_extruder);
  3861. SERIAL_PROTOCOLPGM(":");
  3862. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3863. SERIAL_PROTOCOLPGM(" /");
  3864. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3865. }
  3866. #else
  3867. SERIAL_ERROR_START;
  3868. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3869. #endif
  3870. SERIAL_PROTOCOLPGM(" @:");
  3871. #ifdef EXTRUDER_WATTS
  3872. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3873. SERIAL_PROTOCOLPGM("W");
  3874. #else
  3875. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3876. #endif
  3877. SERIAL_PROTOCOLPGM(" B@:");
  3878. #ifdef BED_WATTS
  3879. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3880. SERIAL_PROTOCOLPGM("W");
  3881. #else
  3882. SERIAL_PROTOCOL(getHeaterPower(-1));
  3883. #endif
  3884. #ifdef PINDA_THERMISTOR
  3885. SERIAL_PROTOCOLPGM(" P:");
  3886. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3887. #endif //PINDA_THERMISTOR
  3888. #ifdef AMBIENT_THERMISTOR
  3889. SERIAL_PROTOCOLPGM(" A:");
  3890. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3891. #endif //AMBIENT_THERMISTOR
  3892. #ifdef SHOW_TEMP_ADC_VALUES
  3893. {float raw = 0.0;
  3894. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3895. SERIAL_PROTOCOLPGM(" ADC B:");
  3896. SERIAL_PROTOCOL_F(degBed(),1);
  3897. SERIAL_PROTOCOLPGM("C->");
  3898. raw = rawBedTemp();
  3899. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3900. SERIAL_PROTOCOLPGM(" Rb->");
  3901. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3902. SERIAL_PROTOCOLPGM(" Rxb->");
  3903. SERIAL_PROTOCOL_F(raw, 5);
  3904. #endif
  3905. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3906. SERIAL_PROTOCOLPGM(" T");
  3907. SERIAL_PROTOCOL(cur_extruder);
  3908. SERIAL_PROTOCOLPGM(":");
  3909. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3910. SERIAL_PROTOCOLPGM("C->");
  3911. raw = rawHotendTemp(cur_extruder);
  3912. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3913. SERIAL_PROTOCOLPGM(" Rt");
  3914. SERIAL_PROTOCOL(cur_extruder);
  3915. SERIAL_PROTOCOLPGM("->");
  3916. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3917. SERIAL_PROTOCOLPGM(" Rx");
  3918. SERIAL_PROTOCOL(cur_extruder);
  3919. SERIAL_PROTOCOLPGM("->");
  3920. SERIAL_PROTOCOL_F(raw, 5);
  3921. }}
  3922. #endif
  3923. SERIAL_PROTOCOLLN("");
  3924. KEEPALIVE_STATE(NOT_BUSY);
  3925. return;
  3926. break;
  3927. case 109:
  3928. {// M109 - Wait for extruder heater to reach target.
  3929. if(setTargetedHotend(109)){
  3930. break;
  3931. }
  3932. LCD_MESSAGERPGM(MSG_HEATING);
  3933. heating_status = 1;
  3934. if (farm_mode) { prusa_statistics(1); };
  3935. #ifdef AUTOTEMP
  3936. autotemp_enabled=false;
  3937. #endif
  3938. if (code_seen('S')) {
  3939. setTargetHotend(code_value(), tmp_extruder);
  3940. CooldownNoWait = true;
  3941. } else if (code_seen('R')) {
  3942. setTargetHotend(code_value(), tmp_extruder);
  3943. CooldownNoWait = false;
  3944. }
  3945. #ifdef AUTOTEMP
  3946. if (code_seen('S')) autotemp_min=code_value();
  3947. if (code_seen('B')) autotemp_max=code_value();
  3948. if (code_seen('F'))
  3949. {
  3950. autotemp_factor=code_value();
  3951. autotemp_enabled=true;
  3952. }
  3953. #endif
  3954. setWatch();
  3955. codenum = millis();
  3956. /* See if we are heating up or cooling down */
  3957. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3958. KEEPALIVE_STATE(NOT_BUSY);
  3959. cancel_heatup = false;
  3960. wait_for_heater(codenum); //loops until target temperature is reached
  3961. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3962. KEEPALIVE_STATE(IN_HANDLER);
  3963. heating_status = 2;
  3964. if (farm_mode) { prusa_statistics(2); };
  3965. //starttime=millis();
  3966. previous_millis_cmd = millis();
  3967. }
  3968. break;
  3969. case 190: // M190 - Wait for bed heater to reach target.
  3970. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3971. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3972. heating_status = 3;
  3973. if (farm_mode) { prusa_statistics(1); };
  3974. if (code_seen('S'))
  3975. {
  3976. setTargetBed(code_value());
  3977. CooldownNoWait = true;
  3978. }
  3979. else if (code_seen('R'))
  3980. {
  3981. setTargetBed(code_value());
  3982. CooldownNoWait = false;
  3983. }
  3984. codenum = millis();
  3985. cancel_heatup = false;
  3986. target_direction = isHeatingBed(); // true if heating, false if cooling
  3987. KEEPALIVE_STATE(NOT_BUSY);
  3988. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3989. {
  3990. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3991. {
  3992. if (!farm_mode) {
  3993. float tt = degHotend(active_extruder);
  3994. SERIAL_PROTOCOLPGM("T:");
  3995. SERIAL_PROTOCOL(tt);
  3996. SERIAL_PROTOCOLPGM(" E:");
  3997. SERIAL_PROTOCOL((int)active_extruder);
  3998. SERIAL_PROTOCOLPGM(" B:");
  3999. SERIAL_PROTOCOL_F(degBed(), 1);
  4000. SERIAL_PROTOCOLLN("");
  4001. }
  4002. codenum = millis();
  4003. }
  4004. manage_heater();
  4005. manage_inactivity();
  4006. lcd_update();
  4007. }
  4008. LCD_MESSAGERPGM(MSG_BED_DONE);
  4009. KEEPALIVE_STATE(IN_HANDLER);
  4010. heating_status = 4;
  4011. previous_millis_cmd = millis();
  4012. #endif
  4013. break;
  4014. #if defined(FAN_PIN) && FAN_PIN > -1
  4015. case 106: //M106 Fan On
  4016. if (code_seen('S')){
  4017. fanSpeed=constrain(code_value(),0,255);
  4018. }
  4019. else {
  4020. fanSpeed=255;
  4021. }
  4022. break;
  4023. case 107: //M107 Fan Off
  4024. fanSpeed = 0;
  4025. break;
  4026. #endif //FAN_PIN
  4027. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4028. case 80: // M80 - Turn on Power Supply
  4029. SET_OUTPUT(PS_ON_PIN); //GND
  4030. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4031. // If you have a switch on suicide pin, this is useful
  4032. // if you want to start another print with suicide feature after
  4033. // a print without suicide...
  4034. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4035. SET_OUTPUT(SUICIDE_PIN);
  4036. WRITE(SUICIDE_PIN, HIGH);
  4037. #endif
  4038. #ifdef ULTIPANEL
  4039. powersupply = true;
  4040. LCD_MESSAGERPGM(WELCOME_MSG);
  4041. lcd_update();
  4042. #endif
  4043. break;
  4044. #endif
  4045. case 81: // M81 - Turn off Power Supply
  4046. disable_heater();
  4047. st_synchronize();
  4048. disable_e0();
  4049. disable_e1();
  4050. disable_e2();
  4051. finishAndDisableSteppers();
  4052. fanSpeed = 0;
  4053. delay(1000); // Wait a little before to switch off
  4054. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4055. st_synchronize();
  4056. suicide();
  4057. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4058. SET_OUTPUT(PS_ON_PIN);
  4059. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4060. #endif
  4061. #ifdef ULTIPANEL
  4062. powersupply = false;
  4063. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4064. /*
  4065. MACHNAME = "Prusa i3"
  4066. MSGOFF = "Vypnuto"
  4067. "Prusai3"" ""vypnuto""."
  4068. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4069. */
  4070. lcd_update();
  4071. #endif
  4072. break;
  4073. case 82:
  4074. axis_relative_modes[3] = false;
  4075. break;
  4076. case 83:
  4077. axis_relative_modes[3] = true;
  4078. break;
  4079. case 18: //compatibility
  4080. case 84: // M84
  4081. if(code_seen('S')){
  4082. stepper_inactive_time = code_value() * 1000;
  4083. }
  4084. else
  4085. {
  4086. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4087. if(all_axis)
  4088. {
  4089. st_synchronize();
  4090. disable_e0();
  4091. disable_e1();
  4092. disable_e2();
  4093. finishAndDisableSteppers();
  4094. }
  4095. else
  4096. {
  4097. st_synchronize();
  4098. if (code_seen('X')) disable_x();
  4099. if (code_seen('Y')) disable_y();
  4100. if (code_seen('Z')) disable_z();
  4101. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4102. if (code_seen('E')) {
  4103. disable_e0();
  4104. disable_e1();
  4105. disable_e2();
  4106. }
  4107. #endif
  4108. }
  4109. }
  4110. snmm_filaments_used = 0;
  4111. break;
  4112. case 85: // M85
  4113. if(code_seen('S')) {
  4114. max_inactive_time = code_value() * 1000;
  4115. }
  4116. break;
  4117. case 92: // M92
  4118. for(int8_t i=0; i < NUM_AXIS; i++)
  4119. {
  4120. if(code_seen(axis_codes[i]))
  4121. {
  4122. if(i == 3) { // E
  4123. float value = code_value();
  4124. if(value < 20.0) {
  4125. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4126. max_jerk[E_AXIS] *= factor;
  4127. max_feedrate[i] *= factor;
  4128. axis_steps_per_sqr_second[i] *= factor;
  4129. }
  4130. axis_steps_per_unit[i] = value;
  4131. }
  4132. else {
  4133. axis_steps_per_unit[i] = code_value();
  4134. }
  4135. }
  4136. }
  4137. break;
  4138. case 110: // M110 - reset line pos
  4139. if (code_seen('N'))
  4140. gcode_LastN = code_value_long();
  4141. break;
  4142. #ifdef HOST_KEEPALIVE_FEATURE
  4143. case 113: // M113 - Get or set Host Keepalive interval
  4144. if (code_seen('S')) {
  4145. host_keepalive_interval = (uint8_t)code_value_short();
  4146. // NOMORE(host_keepalive_interval, 60);
  4147. }
  4148. else {
  4149. SERIAL_ECHO_START;
  4150. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4151. SERIAL_PROTOCOLLN("");
  4152. }
  4153. break;
  4154. #endif
  4155. case 115: // M115
  4156. if (code_seen('V')) {
  4157. // Report the Prusa version number.
  4158. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4159. } else if (code_seen('U')) {
  4160. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4161. // pause the print and ask the user to upgrade the firmware.
  4162. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4163. } else {
  4164. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4165. }
  4166. break;
  4167. /* case 117: // M117 display message
  4168. starpos = (strchr(strchr_pointer + 5,'*'));
  4169. if(starpos!=NULL)
  4170. *(starpos)='\0';
  4171. lcd_setstatus(strchr_pointer + 5);
  4172. break;*/
  4173. case 114: // M114
  4174. SERIAL_PROTOCOLPGM("X:");
  4175. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4176. SERIAL_PROTOCOLPGM(" Y:");
  4177. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4178. SERIAL_PROTOCOLPGM(" Z:");
  4179. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4180. SERIAL_PROTOCOLPGM(" E:");
  4181. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4182. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4183. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4184. SERIAL_PROTOCOLPGM(" Y:");
  4185. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4186. SERIAL_PROTOCOLPGM(" Z:");
  4187. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4188. SERIAL_PROTOCOLPGM(" E:");
  4189. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  4190. SERIAL_PROTOCOLLN("");
  4191. break;
  4192. case 120: // M120
  4193. enable_endstops(false) ;
  4194. break;
  4195. case 121: // M121
  4196. enable_endstops(true) ;
  4197. break;
  4198. case 119: // M119
  4199. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4200. SERIAL_PROTOCOLLN("");
  4201. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4202. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4203. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4204. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4205. }else{
  4206. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4207. }
  4208. SERIAL_PROTOCOLLN("");
  4209. #endif
  4210. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4211. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4212. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4213. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4214. }else{
  4215. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4216. }
  4217. SERIAL_PROTOCOLLN("");
  4218. #endif
  4219. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4220. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4221. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4222. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4223. }else{
  4224. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4225. }
  4226. SERIAL_PROTOCOLLN("");
  4227. #endif
  4228. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4229. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4230. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4231. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4232. }else{
  4233. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4234. }
  4235. SERIAL_PROTOCOLLN("");
  4236. #endif
  4237. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4238. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4239. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4240. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4241. }else{
  4242. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4243. }
  4244. SERIAL_PROTOCOLLN("");
  4245. #endif
  4246. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4247. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4248. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4249. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4250. }else{
  4251. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4252. }
  4253. SERIAL_PROTOCOLLN("");
  4254. #endif
  4255. break;
  4256. //TODO: update for all axis, use for loop
  4257. #ifdef BLINKM
  4258. case 150: // M150
  4259. {
  4260. byte red;
  4261. byte grn;
  4262. byte blu;
  4263. if(code_seen('R')) red = code_value();
  4264. if(code_seen('U')) grn = code_value();
  4265. if(code_seen('B')) blu = code_value();
  4266. SendColors(red,grn,blu);
  4267. }
  4268. break;
  4269. #endif //BLINKM
  4270. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4271. {
  4272. tmp_extruder = active_extruder;
  4273. if(code_seen('T')) {
  4274. tmp_extruder = code_value();
  4275. if(tmp_extruder >= EXTRUDERS) {
  4276. SERIAL_ECHO_START;
  4277. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4278. break;
  4279. }
  4280. }
  4281. float area = .0;
  4282. if(code_seen('D')) {
  4283. float diameter = (float)code_value();
  4284. if (diameter == 0.0) {
  4285. // setting any extruder filament size disables volumetric on the assumption that
  4286. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4287. // for all extruders
  4288. volumetric_enabled = false;
  4289. } else {
  4290. filament_size[tmp_extruder] = (float)code_value();
  4291. // make sure all extruders have some sane value for the filament size
  4292. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4293. #if EXTRUDERS > 1
  4294. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4295. #if EXTRUDERS > 2
  4296. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4297. #endif
  4298. #endif
  4299. volumetric_enabled = true;
  4300. }
  4301. } else {
  4302. //reserved for setting filament diameter via UFID or filament measuring device
  4303. break;
  4304. }
  4305. calculate_volumetric_multipliers();
  4306. }
  4307. break;
  4308. case 201: // M201
  4309. for(int8_t i=0; i < NUM_AXIS; i++)
  4310. {
  4311. if(code_seen(axis_codes[i]))
  4312. {
  4313. max_acceleration_units_per_sq_second[i] = code_value();
  4314. }
  4315. }
  4316. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4317. reset_acceleration_rates();
  4318. break;
  4319. #if 0 // Not used for Sprinter/grbl gen6
  4320. case 202: // M202
  4321. for(int8_t i=0; i < NUM_AXIS; i++) {
  4322. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4323. }
  4324. break;
  4325. #endif
  4326. case 203: // M203 max feedrate mm/sec
  4327. for(int8_t i=0; i < NUM_AXIS; i++) {
  4328. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4329. }
  4330. break;
  4331. case 204: // M204 acclereration S normal moves T filmanent only moves
  4332. {
  4333. if(code_seen('S')) acceleration = code_value() ;
  4334. if(code_seen('T')) retract_acceleration = code_value() ;
  4335. }
  4336. break;
  4337. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4338. {
  4339. if(code_seen('S')) minimumfeedrate = code_value();
  4340. if(code_seen('T')) mintravelfeedrate = code_value();
  4341. if(code_seen('B')) minsegmenttime = code_value() ;
  4342. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4343. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4344. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4345. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4346. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4347. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4348. }
  4349. break;
  4350. case 206: // M206 additional homing offset
  4351. for(int8_t i=0; i < 3; i++)
  4352. {
  4353. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4354. }
  4355. break;
  4356. #ifdef FWRETRACT
  4357. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4358. {
  4359. if(code_seen('S'))
  4360. {
  4361. retract_length = code_value() ;
  4362. }
  4363. if(code_seen('F'))
  4364. {
  4365. retract_feedrate = code_value()/60 ;
  4366. }
  4367. if(code_seen('Z'))
  4368. {
  4369. retract_zlift = code_value() ;
  4370. }
  4371. }break;
  4372. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4373. {
  4374. if(code_seen('S'))
  4375. {
  4376. retract_recover_length = code_value() ;
  4377. }
  4378. if(code_seen('F'))
  4379. {
  4380. retract_recover_feedrate = code_value()/60 ;
  4381. }
  4382. }break;
  4383. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4384. {
  4385. if(code_seen('S'))
  4386. {
  4387. int t= code_value() ;
  4388. switch(t)
  4389. {
  4390. case 0:
  4391. {
  4392. autoretract_enabled=false;
  4393. retracted[0]=false;
  4394. #if EXTRUDERS > 1
  4395. retracted[1]=false;
  4396. #endif
  4397. #if EXTRUDERS > 2
  4398. retracted[2]=false;
  4399. #endif
  4400. }break;
  4401. case 1:
  4402. {
  4403. autoretract_enabled=true;
  4404. retracted[0]=false;
  4405. #if EXTRUDERS > 1
  4406. retracted[1]=false;
  4407. #endif
  4408. #if EXTRUDERS > 2
  4409. retracted[2]=false;
  4410. #endif
  4411. }break;
  4412. default:
  4413. SERIAL_ECHO_START;
  4414. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4415. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4416. SERIAL_ECHOLNPGM("\"(1)");
  4417. }
  4418. }
  4419. }break;
  4420. #endif // FWRETRACT
  4421. #if EXTRUDERS > 1
  4422. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4423. {
  4424. if(setTargetedHotend(218)){
  4425. break;
  4426. }
  4427. if(code_seen('X'))
  4428. {
  4429. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4430. }
  4431. if(code_seen('Y'))
  4432. {
  4433. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4434. }
  4435. SERIAL_ECHO_START;
  4436. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4437. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4438. {
  4439. SERIAL_ECHO(" ");
  4440. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4441. SERIAL_ECHO(",");
  4442. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4443. }
  4444. SERIAL_ECHOLN("");
  4445. }break;
  4446. #endif
  4447. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4448. {
  4449. if(code_seen('S'))
  4450. {
  4451. feedmultiply = code_value() ;
  4452. }
  4453. }
  4454. break;
  4455. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4456. {
  4457. if(code_seen('S'))
  4458. {
  4459. int tmp_code = code_value();
  4460. if (code_seen('T'))
  4461. {
  4462. if(setTargetedHotend(221)){
  4463. break;
  4464. }
  4465. extruder_multiply[tmp_extruder] = tmp_code;
  4466. }
  4467. else
  4468. {
  4469. extrudemultiply = tmp_code ;
  4470. }
  4471. }
  4472. }
  4473. break;
  4474. #ifndef _DISABLE_M42_M226
  4475. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4476. {
  4477. if(code_seen('P')){
  4478. int pin_number = code_value(); // pin number
  4479. int pin_state = -1; // required pin state - default is inverted
  4480. if(code_seen('S')) pin_state = code_value(); // required pin state
  4481. if(pin_state >= -1 && pin_state <= 1){
  4482. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4483. {
  4484. if (sensitive_pins[i] == pin_number)
  4485. {
  4486. pin_number = -1;
  4487. break;
  4488. }
  4489. }
  4490. if (pin_number > -1)
  4491. {
  4492. int target = LOW;
  4493. st_synchronize();
  4494. pinMode(pin_number, INPUT);
  4495. switch(pin_state){
  4496. case 1:
  4497. target = HIGH;
  4498. break;
  4499. case 0:
  4500. target = LOW;
  4501. break;
  4502. case -1:
  4503. target = !digitalRead(pin_number);
  4504. break;
  4505. }
  4506. while(digitalRead(pin_number) != target){
  4507. manage_heater();
  4508. manage_inactivity();
  4509. lcd_update();
  4510. }
  4511. }
  4512. }
  4513. }
  4514. }
  4515. break;
  4516. #endif //_DISABLE_M42_M226
  4517. #if NUM_SERVOS > 0
  4518. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4519. {
  4520. int servo_index = -1;
  4521. int servo_position = 0;
  4522. if (code_seen('P'))
  4523. servo_index = code_value();
  4524. if (code_seen('S')) {
  4525. servo_position = code_value();
  4526. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4527. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4528. servos[servo_index].attach(0);
  4529. #endif
  4530. servos[servo_index].write(servo_position);
  4531. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4532. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4533. servos[servo_index].detach();
  4534. #endif
  4535. }
  4536. else {
  4537. SERIAL_ECHO_START;
  4538. SERIAL_ECHO("Servo ");
  4539. SERIAL_ECHO(servo_index);
  4540. SERIAL_ECHOLN(" out of range");
  4541. }
  4542. }
  4543. else if (servo_index >= 0) {
  4544. SERIAL_PROTOCOL(MSG_OK);
  4545. SERIAL_PROTOCOL(" Servo ");
  4546. SERIAL_PROTOCOL(servo_index);
  4547. SERIAL_PROTOCOL(": ");
  4548. SERIAL_PROTOCOL(servos[servo_index].read());
  4549. SERIAL_PROTOCOLLN("");
  4550. }
  4551. }
  4552. break;
  4553. #endif // NUM_SERVOS > 0
  4554. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4555. case 300: // M300
  4556. {
  4557. int beepS = code_seen('S') ? code_value() : 110;
  4558. int beepP = code_seen('P') ? code_value() : 1000;
  4559. if (beepS > 0)
  4560. {
  4561. #if BEEPER > 0
  4562. tone(BEEPER, beepS);
  4563. delay(beepP);
  4564. noTone(BEEPER);
  4565. #elif defined(ULTRALCD)
  4566. lcd_buzz(beepS, beepP);
  4567. #elif defined(LCD_USE_I2C_BUZZER)
  4568. lcd_buzz(beepP, beepS);
  4569. #endif
  4570. }
  4571. else
  4572. {
  4573. delay(beepP);
  4574. }
  4575. }
  4576. break;
  4577. #endif // M300
  4578. #ifdef PIDTEMP
  4579. case 301: // M301
  4580. {
  4581. if(code_seen('P')) Kp = code_value();
  4582. if(code_seen('I')) Ki = scalePID_i(code_value());
  4583. if(code_seen('D')) Kd = scalePID_d(code_value());
  4584. #ifdef PID_ADD_EXTRUSION_RATE
  4585. if(code_seen('C')) Kc = code_value();
  4586. #endif
  4587. updatePID();
  4588. SERIAL_PROTOCOLRPGM(MSG_OK);
  4589. SERIAL_PROTOCOL(" p:");
  4590. SERIAL_PROTOCOL(Kp);
  4591. SERIAL_PROTOCOL(" i:");
  4592. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4593. SERIAL_PROTOCOL(" d:");
  4594. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4595. #ifdef PID_ADD_EXTRUSION_RATE
  4596. SERIAL_PROTOCOL(" c:");
  4597. //Kc does not have scaling applied above, or in resetting defaults
  4598. SERIAL_PROTOCOL(Kc);
  4599. #endif
  4600. SERIAL_PROTOCOLLN("");
  4601. }
  4602. break;
  4603. #endif //PIDTEMP
  4604. #ifdef PIDTEMPBED
  4605. case 304: // M304
  4606. {
  4607. if(code_seen('P')) bedKp = code_value();
  4608. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4609. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4610. updatePID();
  4611. SERIAL_PROTOCOLRPGM(MSG_OK);
  4612. SERIAL_PROTOCOL(" p:");
  4613. SERIAL_PROTOCOL(bedKp);
  4614. SERIAL_PROTOCOL(" i:");
  4615. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4616. SERIAL_PROTOCOL(" d:");
  4617. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4618. SERIAL_PROTOCOLLN("");
  4619. }
  4620. break;
  4621. #endif //PIDTEMP
  4622. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4623. {
  4624. #ifdef CHDK
  4625. SET_OUTPUT(CHDK);
  4626. WRITE(CHDK, HIGH);
  4627. chdkHigh = millis();
  4628. chdkActive = true;
  4629. #else
  4630. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4631. const uint8_t NUM_PULSES=16;
  4632. const float PULSE_LENGTH=0.01524;
  4633. for(int i=0; i < NUM_PULSES; i++) {
  4634. WRITE(PHOTOGRAPH_PIN, HIGH);
  4635. _delay_ms(PULSE_LENGTH);
  4636. WRITE(PHOTOGRAPH_PIN, LOW);
  4637. _delay_ms(PULSE_LENGTH);
  4638. }
  4639. delay(7.33);
  4640. for(int i=0; i < NUM_PULSES; i++) {
  4641. WRITE(PHOTOGRAPH_PIN, HIGH);
  4642. _delay_ms(PULSE_LENGTH);
  4643. WRITE(PHOTOGRAPH_PIN, LOW);
  4644. _delay_ms(PULSE_LENGTH);
  4645. }
  4646. #endif
  4647. #endif //chdk end if
  4648. }
  4649. break;
  4650. #ifdef DOGLCD
  4651. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4652. {
  4653. if (code_seen('C')) {
  4654. lcd_setcontrast( ((int)code_value())&63 );
  4655. }
  4656. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4657. SERIAL_PROTOCOL(lcd_contrast);
  4658. SERIAL_PROTOCOLLN("");
  4659. }
  4660. break;
  4661. #endif
  4662. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4663. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4664. {
  4665. float temp = .0;
  4666. if (code_seen('S')) temp=code_value();
  4667. set_extrude_min_temp(temp);
  4668. }
  4669. break;
  4670. #endif
  4671. case 303: // M303 PID autotune
  4672. {
  4673. float temp = 150.0;
  4674. int e=0;
  4675. int c=5;
  4676. if (code_seen('E')) e=code_value();
  4677. if (e<0)
  4678. temp=70;
  4679. if (code_seen('S')) temp=code_value();
  4680. if (code_seen('C')) c=code_value();
  4681. PID_autotune(temp, e, c);
  4682. }
  4683. break;
  4684. case 400: // M400 finish all moves
  4685. {
  4686. st_synchronize();
  4687. }
  4688. break;
  4689. #ifdef FILAMENT_SENSOR
  4690. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4691. {
  4692. #if (FILWIDTH_PIN > -1)
  4693. if(code_seen('N')) filament_width_nominal=code_value();
  4694. else{
  4695. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4696. SERIAL_PROTOCOLLN(filament_width_nominal);
  4697. }
  4698. #endif
  4699. }
  4700. break;
  4701. case 405: //M405 Turn on filament sensor for control
  4702. {
  4703. if(code_seen('D')) meas_delay_cm=code_value();
  4704. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4705. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4706. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4707. {
  4708. int temp_ratio = widthFil_to_size_ratio();
  4709. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4710. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4711. }
  4712. delay_index1=0;
  4713. delay_index2=0;
  4714. }
  4715. filament_sensor = true ;
  4716. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4717. //SERIAL_PROTOCOL(filament_width_meas);
  4718. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4719. //SERIAL_PROTOCOL(extrudemultiply);
  4720. }
  4721. break;
  4722. case 406: //M406 Turn off filament sensor for control
  4723. {
  4724. filament_sensor = false ;
  4725. }
  4726. break;
  4727. case 407: //M407 Display measured filament diameter
  4728. {
  4729. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4730. SERIAL_PROTOCOLLN(filament_width_meas);
  4731. }
  4732. break;
  4733. #endif
  4734. case 500: // M500 Store settings in EEPROM
  4735. {
  4736. Config_StoreSettings(EEPROM_OFFSET);
  4737. }
  4738. break;
  4739. case 501: // M501 Read settings from EEPROM
  4740. {
  4741. Config_RetrieveSettings(EEPROM_OFFSET);
  4742. }
  4743. break;
  4744. case 502: // M502 Revert to default settings
  4745. {
  4746. Config_ResetDefault();
  4747. }
  4748. break;
  4749. case 503: // M503 print settings currently in memory
  4750. {
  4751. Config_PrintSettings();
  4752. }
  4753. break;
  4754. case 509: //M509 Force language selection
  4755. {
  4756. lcd_force_language_selection();
  4757. SERIAL_ECHO_START;
  4758. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4759. }
  4760. break;
  4761. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4762. case 540:
  4763. {
  4764. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4765. }
  4766. break;
  4767. #endif
  4768. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4769. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4770. {
  4771. float value;
  4772. if (code_seen('Z'))
  4773. {
  4774. value = code_value();
  4775. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4776. {
  4777. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4778. SERIAL_ECHO_START;
  4779. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4780. SERIAL_PROTOCOLLN("");
  4781. }
  4782. else
  4783. {
  4784. SERIAL_ECHO_START;
  4785. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4786. SERIAL_ECHORPGM(MSG_Z_MIN);
  4787. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4788. SERIAL_ECHORPGM(MSG_Z_MAX);
  4789. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4790. SERIAL_PROTOCOLLN("");
  4791. }
  4792. }
  4793. else
  4794. {
  4795. SERIAL_ECHO_START;
  4796. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4797. SERIAL_ECHO(-zprobe_zoffset);
  4798. SERIAL_PROTOCOLLN("");
  4799. }
  4800. break;
  4801. }
  4802. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4803. #ifdef FILAMENTCHANGEENABLE
  4804. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4805. {
  4806. bool old_fsensor_enabled = fsensor_enabled;
  4807. fsensor_enabled = false; //temporary solution for unexpected restarting
  4808. st_synchronize();
  4809. float target[4];
  4810. float lastpos[4];
  4811. if (farm_mode)
  4812. {
  4813. prusa_statistics(22);
  4814. }
  4815. feedmultiplyBckp=feedmultiply;
  4816. int8_t TooLowZ = 0;
  4817. float HotendTempBckp = degTargetHotend(active_extruder);
  4818. int fanSpeedBckp = fanSpeed;
  4819. target[X_AXIS]=current_position[X_AXIS];
  4820. target[Y_AXIS]=current_position[Y_AXIS];
  4821. target[Z_AXIS]=current_position[Z_AXIS];
  4822. target[E_AXIS]=current_position[E_AXIS];
  4823. lastpos[X_AXIS]=current_position[X_AXIS];
  4824. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4825. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4826. lastpos[E_AXIS]=current_position[E_AXIS];
  4827. //Restract extruder
  4828. if(code_seen('E'))
  4829. {
  4830. target[E_AXIS]+= code_value();
  4831. }
  4832. else
  4833. {
  4834. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4835. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4836. #endif
  4837. }
  4838. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4839. //Lift Z
  4840. if(code_seen('Z'))
  4841. {
  4842. target[Z_AXIS]+= code_value();
  4843. }
  4844. else
  4845. {
  4846. #ifdef FILAMENTCHANGE_ZADD
  4847. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4848. if(target[Z_AXIS] < 10){
  4849. target[Z_AXIS]+= 10 ;
  4850. TooLowZ = 1;
  4851. }else{
  4852. TooLowZ = 0;
  4853. }
  4854. #endif
  4855. }
  4856. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4857. //Move XY to side
  4858. if(code_seen('X'))
  4859. {
  4860. target[X_AXIS]+= code_value();
  4861. }
  4862. else
  4863. {
  4864. #ifdef FILAMENTCHANGE_XPOS
  4865. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4866. #endif
  4867. }
  4868. if(code_seen('Y'))
  4869. {
  4870. target[Y_AXIS]= code_value();
  4871. }
  4872. else
  4873. {
  4874. #ifdef FILAMENTCHANGE_YPOS
  4875. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4876. #endif
  4877. }
  4878. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4879. st_synchronize();
  4880. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4881. uint8_t cnt = 0;
  4882. int counterBeep = 0;
  4883. fanSpeed = 0;
  4884. unsigned long waiting_start_time = millis();
  4885. uint8_t wait_for_user_state = 0;
  4886. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4887. while (!(wait_for_user_state == 0 && lcd_clicked())){
  4888. //cnt++;
  4889. manage_heater();
  4890. manage_inactivity(true);
  4891. /*#ifdef SNMM
  4892. target[E_AXIS] += 0.002;
  4893. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4894. #endif // SNMM*/
  4895. //if (cnt == 0)
  4896. {
  4897. #if BEEPER > 0
  4898. if (counterBeep == 500) {
  4899. counterBeep = 0;
  4900. }
  4901. SET_OUTPUT(BEEPER);
  4902. if (counterBeep == 0) {
  4903. WRITE(BEEPER, HIGH);
  4904. }
  4905. if (counterBeep == 20) {
  4906. WRITE(BEEPER, LOW);
  4907. }
  4908. counterBeep++;
  4909. #else
  4910. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4911. lcd_buzz(1000 / 6, 100);
  4912. #else
  4913. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4914. #endif
  4915. #endif
  4916. }
  4917. switch (wait_for_user_state) {
  4918. case 0:
  4919. delay_keep_alive(4);
  4920. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  4921. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  4922. wait_for_user_state = 1;
  4923. setTargetHotend(0, 0);
  4924. setTargetHotend(0, 1);
  4925. setTargetHotend(0, 2);
  4926. st_synchronize();
  4927. disable_e0();
  4928. disable_e1();
  4929. disable_e2();
  4930. }
  4931. break;
  4932. case 1:
  4933. delay_keep_alive(4);
  4934. if (lcd_clicked()) {
  4935. setTargetHotend(HotendTempBckp, active_extruder);
  4936. lcd_wait_for_heater();
  4937. wait_for_user_state = 2;
  4938. }
  4939. break;
  4940. case 2:
  4941. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  4942. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4943. waiting_start_time = millis();
  4944. wait_for_user_state = 0;
  4945. }
  4946. else {
  4947. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  4948. lcd.setCursor(1, 4);
  4949. lcd.print(ftostr3(degHotend(active_extruder)));
  4950. }
  4951. break;
  4952. }
  4953. }
  4954. WRITE(BEEPER, LOW);
  4955. lcd_change_fil_state = 0;
  4956. // Unload filament
  4957. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  4958. KEEPALIVE_STATE(IN_HANDLER);
  4959. custom_message = true;
  4960. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4961. if (code_seen('L'))
  4962. {
  4963. target[E_AXIS] += code_value();
  4964. }
  4965. else
  4966. {
  4967. #ifdef SNMM
  4968. #else
  4969. #ifdef FILAMENTCHANGE_FINALRETRACT
  4970. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4971. #endif
  4972. #endif // SNMM
  4973. }
  4974. #ifdef SNMM
  4975. target[E_AXIS] += 12;
  4976. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4977. target[E_AXIS] += 6;
  4978. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4979. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4980. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4981. st_synchronize();
  4982. target[E_AXIS] += (FIL_COOLING);
  4983. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4984. target[E_AXIS] += (FIL_COOLING*-1);
  4985. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4986. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  4987. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4988. st_synchronize();
  4989. #else
  4990. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4991. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  4992. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4993. target[E_AXIS] -= 45;
  4994. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  4995. st_synchronize();
  4996. target[E_AXIS] -= 15;
  4997. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  4998. st_synchronize();
  4999. target[E_AXIS] -= 20;
  5000. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5001. st_synchronize();
  5002. #endif // SNMM
  5003. //finish moves
  5004. st_synchronize();
  5005. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5006. //disable extruder steppers so filament can be removed
  5007. disable_e0();
  5008. disable_e1();
  5009. disable_e2();
  5010. delay(100);
  5011. WRITE(BEEPER, HIGH);
  5012. counterBeep = 0;
  5013. while(!lcd_clicked() && (counterBeep < 50)) {
  5014. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5015. delay_keep_alive(100);
  5016. counterBeep++;
  5017. }
  5018. WRITE(BEEPER, LOW);
  5019. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5020. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true);
  5021. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  5022. //lcd_return_to_status();
  5023. lcd_update_enable(true);
  5024. //Wait for user to insert filament
  5025. lcd_wait_interact();
  5026. //load_filament_time = millis();
  5027. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5028. #ifdef PAT9125
  5029. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5030. #endif //PAT9125
  5031. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5032. while(!lcd_clicked())
  5033. {
  5034. manage_heater();
  5035. manage_inactivity(true);
  5036. #ifdef PAT9125
  5037. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5038. {
  5039. tone(BEEPER, 1000);
  5040. delay_keep_alive(50);
  5041. noTone(BEEPER);
  5042. break;
  5043. }
  5044. #endif //PAT9125
  5045. /*#ifdef SNMM
  5046. target[E_AXIS] += 0.002;
  5047. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5048. #endif // SNMM*/
  5049. }
  5050. #ifdef PAT9125
  5051. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5052. #endif //PAT9125
  5053. //WRITE(BEEPER, LOW);
  5054. KEEPALIVE_STATE(IN_HANDLER);
  5055. #ifdef SNMM
  5056. display_loading();
  5057. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5058. do {
  5059. target[E_AXIS] += 0.002;
  5060. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5061. delay_keep_alive(2);
  5062. } while (!lcd_clicked());
  5063. KEEPALIVE_STATE(IN_HANDLER);
  5064. /*if (millis() - load_filament_time > 2) {
  5065. load_filament_time = millis();
  5066. target[E_AXIS] += 0.001;
  5067. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5068. }*/
  5069. //Filament inserted
  5070. //Feed the filament to the end of nozzle quickly
  5071. st_synchronize();
  5072. target[E_AXIS] += bowden_length[snmm_extruder];
  5073. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5074. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5075. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5076. target[E_AXIS] += 40;
  5077. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5078. target[E_AXIS] += 10;
  5079. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5080. #else
  5081. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5082. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5083. #endif // SNMM
  5084. //Extrude some filament
  5085. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5086. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5087. //Wait for user to check the state
  5088. lcd_change_fil_state = 0;
  5089. lcd_loading_filament();
  5090. tone(BEEPER, 500);
  5091. delay_keep_alive(50);
  5092. noTone(BEEPER);
  5093. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5094. lcd_change_fil_state = 0;
  5095. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5096. lcd_alright();
  5097. KEEPALIVE_STATE(IN_HANDLER);
  5098. switch(lcd_change_fil_state){
  5099. // Filament failed to load so load it again
  5100. case 2:
  5101. #ifdef SNMM
  5102. display_loading();
  5103. do {
  5104. target[E_AXIS] += 0.002;
  5105. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5106. delay_keep_alive(2);
  5107. } while (!lcd_clicked());
  5108. st_synchronize();
  5109. target[E_AXIS] += bowden_length[snmm_extruder];
  5110. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5111. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5112. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5113. target[E_AXIS] += 40;
  5114. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5115. target[E_AXIS] += 10;
  5116. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5117. #else
  5118. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5119. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5120. #endif
  5121. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5122. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5123. lcd_loading_filament();
  5124. break;
  5125. // Filament loaded properly but color is not clear
  5126. case 3:
  5127. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5128. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5129. lcd_loading_color();
  5130. break;
  5131. // Everything good
  5132. default:
  5133. lcd_change_success();
  5134. lcd_update_enable(true);
  5135. break;
  5136. }
  5137. }
  5138. //Not let's go back to print
  5139. fanSpeed = fanSpeedBckp;
  5140. //Feed a little of filament to stabilize pressure
  5141. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5142. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5143. //Retract
  5144. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5145. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5146. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5147. //Move XY back
  5148. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5149. //Move Z back
  5150. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5151. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5152. //Unretract
  5153. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5154. //Set E position to original
  5155. plan_set_e_position(lastpos[E_AXIS]);
  5156. //Recover feed rate
  5157. feedmultiply=feedmultiplyBckp;
  5158. char cmd[9];
  5159. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5160. enquecommand(cmd);
  5161. lcd_setstatuspgm(WELCOME_MSG);
  5162. custom_message = false;
  5163. custom_message_type = 0;
  5164. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5165. #ifdef PAT9125
  5166. if (fsensor_M600)
  5167. {
  5168. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5169. st_synchronize();
  5170. while (!is_buffer_empty())
  5171. {
  5172. process_commands();
  5173. cmdqueue_pop_front();
  5174. }
  5175. fsensor_enable();
  5176. fsensor_restore_print_and_continue();
  5177. }
  5178. #endif //PAT9125
  5179. }
  5180. break;
  5181. #endif //FILAMENTCHANGEENABLE
  5182. case 601: {
  5183. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5184. }
  5185. break;
  5186. case 602: {
  5187. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5188. }
  5189. break;
  5190. #ifdef LIN_ADVANCE
  5191. case 900: // M900: Set LIN_ADVANCE options.
  5192. gcode_M900();
  5193. break;
  5194. #endif
  5195. case 907: // M907 Set digital trimpot motor current using axis codes.
  5196. {
  5197. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5198. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5199. if(code_seen('B')) digipot_current(4,code_value());
  5200. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5201. #endif
  5202. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5203. if(code_seen('X')) digipot_current(0, code_value());
  5204. #endif
  5205. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5206. if(code_seen('Z')) digipot_current(1, code_value());
  5207. #endif
  5208. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5209. if(code_seen('E')) digipot_current(2, code_value());
  5210. #endif
  5211. #ifdef DIGIPOT_I2C
  5212. // this one uses actual amps in floating point
  5213. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5214. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5215. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5216. #endif
  5217. }
  5218. break;
  5219. case 908: // M908 Control digital trimpot directly.
  5220. {
  5221. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5222. uint8_t channel,current;
  5223. if(code_seen('P')) channel=code_value();
  5224. if(code_seen('S')) current=code_value();
  5225. digitalPotWrite(channel, current);
  5226. #endif
  5227. }
  5228. break;
  5229. case 910: // M910 TMC2130 init
  5230. {
  5231. tmc2130_init();
  5232. }
  5233. break;
  5234. case 911: // M911 Set TMC2130 holding currents
  5235. {
  5236. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5237. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5238. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5239. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5240. }
  5241. break;
  5242. case 912: // M912 Set TMC2130 running currents
  5243. {
  5244. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5245. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5246. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5247. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5248. }
  5249. break;
  5250. case 913: // M913 Print TMC2130 currents
  5251. {
  5252. tmc2130_print_currents();
  5253. }
  5254. break;
  5255. case 914: // M914 Set normal mode
  5256. {
  5257. tmc2130_mode = TMC2130_MODE_NORMAL;
  5258. tmc2130_init();
  5259. }
  5260. break;
  5261. case 915: // M915 Set silent mode
  5262. {
  5263. tmc2130_mode = TMC2130_MODE_SILENT;
  5264. tmc2130_init();
  5265. }
  5266. break;
  5267. case 916: // M916 Set sg_thrs
  5268. {
  5269. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5270. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5271. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5272. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5273. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5274. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5275. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5276. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5277. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5278. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5279. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5280. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5281. }
  5282. break;
  5283. case 917: // M917 Set TMC2130 pwm_ampl
  5284. {
  5285. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5286. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5287. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5288. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5289. }
  5290. break;
  5291. case 918: // M918 Set TMC2130 pwm_grad
  5292. {
  5293. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5294. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5295. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5296. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5297. }
  5298. break;
  5299. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5300. {
  5301. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5302. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5303. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5304. if(code_seen('B')) microstep_mode(4,code_value());
  5305. microstep_readings();
  5306. #endif
  5307. }
  5308. break;
  5309. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5310. {
  5311. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5312. if(code_seen('S')) switch((int)code_value())
  5313. {
  5314. case 1:
  5315. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5316. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5317. break;
  5318. case 2:
  5319. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5320. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5321. break;
  5322. }
  5323. microstep_readings();
  5324. #endif
  5325. }
  5326. break;
  5327. case 701: //M701: load filament
  5328. {
  5329. gcode_M701();
  5330. }
  5331. break;
  5332. case 702:
  5333. {
  5334. #ifdef SNMM
  5335. if (code_seen('U')) {
  5336. extr_unload_used(); //unload all filaments which were used in current print
  5337. }
  5338. else if (code_seen('C')) {
  5339. extr_unload(); //unload just current filament
  5340. }
  5341. else {
  5342. extr_unload_all(); //unload all filaments
  5343. }
  5344. #else
  5345. bool old_fsensor_enabled = fsensor_enabled;
  5346. fsensor_enabled = false;
  5347. custom_message = true;
  5348. custom_message_type = 2;
  5349. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5350. // extr_unload2();
  5351. current_position[E_AXIS] -= 45;
  5352. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5353. st_synchronize();
  5354. current_position[E_AXIS] -= 15;
  5355. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5356. st_synchronize();
  5357. current_position[E_AXIS] -= 20;
  5358. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5359. st_synchronize();
  5360. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5361. //disable extruder steppers so filament can be removed
  5362. disable_e0();
  5363. disable_e1();
  5364. disable_e2();
  5365. delay(100);
  5366. WRITE(BEEPER, HIGH);
  5367. uint8_t counterBeep = 0;
  5368. while (!lcd_clicked() && (counterBeep < 50)) {
  5369. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5370. delay_keep_alive(100);
  5371. counterBeep++;
  5372. }
  5373. WRITE(BEEPER, LOW);
  5374. st_synchronize();
  5375. while (lcd_clicked()) delay_keep_alive(100);
  5376. lcd_update_enable(true);
  5377. lcd_setstatuspgm(WELCOME_MSG);
  5378. custom_message = false;
  5379. custom_message_type = 0;
  5380. fsensor_enabled = old_fsensor_enabled;
  5381. #endif
  5382. }
  5383. break;
  5384. case 999: // M999: Restart after being stopped
  5385. Stopped = false;
  5386. lcd_reset_alert_level();
  5387. gcode_LastN = Stopped_gcode_LastN;
  5388. FlushSerialRequestResend();
  5389. break;
  5390. default:
  5391. printf("Unknown M code: ");
  5392. printf(cmdbuffer + bufindr + CMDHDRSIZE);
  5393. printf("\n");
  5394. }
  5395. } // end if(code_seen('M')) (end of M codes)
  5396. else if(code_seen('T'))
  5397. {
  5398. int index;
  5399. st_synchronize();
  5400. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5401. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5402. SERIAL_ECHOLNPGM("Invalid T code.");
  5403. }
  5404. else {
  5405. if (*(strchr_pointer + index) == '?') {
  5406. tmp_extruder = choose_extruder_menu();
  5407. }
  5408. else {
  5409. tmp_extruder = code_value();
  5410. }
  5411. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5412. #ifdef SNMM
  5413. #ifdef LIN_ADVANCE
  5414. if (snmm_extruder != tmp_extruder)
  5415. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5416. #endif
  5417. snmm_extruder = tmp_extruder;
  5418. delay(100);
  5419. disable_e0();
  5420. disable_e1();
  5421. disable_e2();
  5422. pinMode(E_MUX0_PIN, OUTPUT);
  5423. pinMode(E_MUX1_PIN, OUTPUT);
  5424. pinMode(E_MUX2_PIN, OUTPUT);
  5425. delay(100);
  5426. SERIAL_ECHO_START;
  5427. SERIAL_ECHO("T:");
  5428. SERIAL_ECHOLN((int)tmp_extruder);
  5429. switch (tmp_extruder) {
  5430. case 1:
  5431. WRITE(E_MUX0_PIN, HIGH);
  5432. WRITE(E_MUX1_PIN, LOW);
  5433. WRITE(E_MUX2_PIN, LOW);
  5434. break;
  5435. case 2:
  5436. WRITE(E_MUX0_PIN, LOW);
  5437. WRITE(E_MUX1_PIN, HIGH);
  5438. WRITE(E_MUX2_PIN, LOW);
  5439. break;
  5440. case 3:
  5441. WRITE(E_MUX0_PIN, HIGH);
  5442. WRITE(E_MUX1_PIN, HIGH);
  5443. WRITE(E_MUX2_PIN, LOW);
  5444. break;
  5445. default:
  5446. WRITE(E_MUX0_PIN, LOW);
  5447. WRITE(E_MUX1_PIN, LOW);
  5448. WRITE(E_MUX2_PIN, LOW);
  5449. break;
  5450. }
  5451. delay(100);
  5452. #else
  5453. if (tmp_extruder >= EXTRUDERS) {
  5454. SERIAL_ECHO_START;
  5455. SERIAL_ECHOPGM("T");
  5456. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5457. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5458. }
  5459. else {
  5460. boolean make_move = false;
  5461. if (code_seen('F')) {
  5462. make_move = true;
  5463. next_feedrate = code_value();
  5464. if (next_feedrate > 0.0) {
  5465. feedrate = next_feedrate;
  5466. }
  5467. }
  5468. #if EXTRUDERS > 1
  5469. if (tmp_extruder != active_extruder) {
  5470. // Save current position to return to after applying extruder offset
  5471. memcpy(destination, current_position, sizeof(destination));
  5472. // Offset extruder (only by XY)
  5473. int i;
  5474. for (i = 0; i < 2; i++) {
  5475. current_position[i] = current_position[i] -
  5476. extruder_offset[i][active_extruder] +
  5477. extruder_offset[i][tmp_extruder];
  5478. }
  5479. // Set the new active extruder and position
  5480. active_extruder = tmp_extruder;
  5481. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5482. // Move to the old position if 'F' was in the parameters
  5483. if (make_move && Stopped == false) {
  5484. prepare_move();
  5485. }
  5486. }
  5487. #endif
  5488. SERIAL_ECHO_START;
  5489. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5490. SERIAL_PROTOCOLLN((int)active_extruder);
  5491. }
  5492. #endif
  5493. }
  5494. } // end if(code_seen('T')) (end of T codes)
  5495. #ifdef DEBUG_DCODES
  5496. else if (code_seen('D')) // D codes (debug)
  5497. {
  5498. switch((int)code_value())
  5499. {
  5500. case -1: // D-1 - Endless loop
  5501. dcode__1(); break;
  5502. case 0: // D0 - Reset
  5503. dcode_0(); break;
  5504. case 1: // D1 - Clear EEPROM
  5505. dcode_1(); break;
  5506. case 2: // D2 - Read/Write RAM
  5507. dcode_2(); break;
  5508. case 3: // D3 - Read/Write EEPROM
  5509. dcode_3(); break;
  5510. case 4: // D4 - Read/Write PIN
  5511. dcode_4(); break;
  5512. case 5: // D5 - Read/Write FLASH
  5513. // dcode_5(); break;
  5514. break;
  5515. case 6: // D6 - Read/Write external FLASH
  5516. dcode_6(); break;
  5517. case 7: // D7 - Read/Write Bootloader
  5518. dcode_7(); break;
  5519. case 8: // D8 - Read/Write PINDA
  5520. dcode_8(); break;
  5521. case 9: // D9 - Read/Write ADC
  5522. dcode_9(); break;
  5523. case 10: // D10 - XYZ calibration = OK
  5524. dcode_10(); break;
  5525. case 12: //D12 - Reset failstat counters
  5526. dcode_12(); break;
  5527. case 2130: // D9125 - TMC2130
  5528. dcode_2130(); break;
  5529. case 9125: // D9125 - PAT9125
  5530. dcode_9125(); break;
  5531. }
  5532. }
  5533. #endif //DEBUG_DCODES
  5534. else
  5535. {
  5536. SERIAL_ECHO_START;
  5537. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5538. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5539. SERIAL_ECHOLNPGM("\"(2)");
  5540. }
  5541. KEEPALIVE_STATE(NOT_BUSY);
  5542. ClearToSend();
  5543. }
  5544. void FlushSerialRequestResend()
  5545. {
  5546. //char cmdbuffer[bufindr][100]="Resend:";
  5547. MYSERIAL.flush();
  5548. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5549. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5550. previous_millis_cmd = millis();
  5551. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5552. }
  5553. // Confirm the execution of a command, if sent from a serial line.
  5554. // Execution of a command from a SD card will not be confirmed.
  5555. void ClearToSend()
  5556. {
  5557. previous_millis_cmd = millis();
  5558. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5559. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5560. }
  5561. void get_coordinates()
  5562. {
  5563. bool seen[4]={false,false,false,false};
  5564. for(int8_t i=0; i < NUM_AXIS; i++) {
  5565. if(code_seen(axis_codes[i]))
  5566. {
  5567. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5568. seen[i]=true;
  5569. }
  5570. else destination[i] = current_position[i]; //Are these else lines really needed?
  5571. }
  5572. if(code_seen('F')) {
  5573. next_feedrate = code_value();
  5574. #ifdef MAX_SILENT_FEEDRATE
  5575. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5576. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5577. #endif //MAX_SILENT_FEEDRATE
  5578. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5579. }
  5580. }
  5581. void get_arc_coordinates()
  5582. {
  5583. #ifdef SF_ARC_FIX
  5584. bool relative_mode_backup = relative_mode;
  5585. relative_mode = true;
  5586. #endif
  5587. get_coordinates();
  5588. #ifdef SF_ARC_FIX
  5589. relative_mode=relative_mode_backup;
  5590. #endif
  5591. if(code_seen('I')) {
  5592. offset[0] = code_value();
  5593. }
  5594. else {
  5595. offset[0] = 0.0;
  5596. }
  5597. if(code_seen('J')) {
  5598. offset[1] = code_value();
  5599. }
  5600. else {
  5601. offset[1] = 0.0;
  5602. }
  5603. }
  5604. void clamp_to_software_endstops(float target[3])
  5605. {
  5606. #ifdef DEBUG_DISABLE_SWLIMITS
  5607. return;
  5608. #endif //DEBUG_DISABLE_SWLIMITS
  5609. world2machine_clamp(target[0], target[1]);
  5610. // Clamp the Z coordinate.
  5611. if (min_software_endstops) {
  5612. float negative_z_offset = 0;
  5613. #ifdef ENABLE_AUTO_BED_LEVELING
  5614. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5615. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5616. #endif
  5617. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5618. }
  5619. if (max_software_endstops) {
  5620. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5621. }
  5622. }
  5623. #ifdef MESH_BED_LEVELING
  5624. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5625. float dx = x - current_position[X_AXIS];
  5626. float dy = y - current_position[Y_AXIS];
  5627. float dz = z - current_position[Z_AXIS];
  5628. int n_segments = 0;
  5629. if (mbl.active) {
  5630. float len = abs(dx) + abs(dy);
  5631. if (len > 0)
  5632. // Split to 3cm segments or shorter.
  5633. n_segments = int(ceil(len / 30.f));
  5634. }
  5635. if (n_segments > 1) {
  5636. float de = e - current_position[E_AXIS];
  5637. for (int i = 1; i < n_segments; ++ i) {
  5638. float t = float(i) / float(n_segments);
  5639. plan_buffer_line(
  5640. current_position[X_AXIS] + t * dx,
  5641. current_position[Y_AXIS] + t * dy,
  5642. current_position[Z_AXIS] + t * dz,
  5643. current_position[E_AXIS] + t * de,
  5644. feed_rate, extruder);
  5645. }
  5646. }
  5647. // The rest of the path.
  5648. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5649. current_position[X_AXIS] = x;
  5650. current_position[Y_AXIS] = y;
  5651. current_position[Z_AXIS] = z;
  5652. current_position[E_AXIS] = e;
  5653. }
  5654. #endif // MESH_BED_LEVELING
  5655. void prepare_move()
  5656. {
  5657. clamp_to_software_endstops(destination);
  5658. previous_millis_cmd = millis();
  5659. // Do not use feedmultiply for E or Z only moves
  5660. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5661. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5662. }
  5663. else {
  5664. #ifdef MESH_BED_LEVELING
  5665. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5666. #else
  5667. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5668. #endif
  5669. }
  5670. for(int8_t i=0; i < NUM_AXIS; i++) {
  5671. current_position[i] = destination[i];
  5672. }
  5673. }
  5674. void prepare_arc_move(char isclockwise) {
  5675. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5676. // Trace the arc
  5677. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5678. // As far as the parser is concerned, the position is now == target. In reality the
  5679. // motion control system might still be processing the action and the real tool position
  5680. // in any intermediate location.
  5681. for(int8_t i=0; i < NUM_AXIS; i++) {
  5682. current_position[i] = destination[i];
  5683. }
  5684. previous_millis_cmd = millis();
  5685. }
  5686. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5687. #if defined(FAN_PIN)
  5688. #if CONTROLLERFAN_PIN == FAN_PIN
  5689. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5690. #endif
  5691. #endif
  5692. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5693. unsigned long lastMotorCheck = 0;
  5694. void controllerFan()
  5695. {
  5696. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5697. {
  5698. lastMotorCheck = millis();
  5699. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5700. #if EXTRUDERS > 2
  5701. || !READ(E2_ENABLE_PIN)
  5702. #endif
  5703. #if EXTRUDER > 1
  5704. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5705. || !READ(X2_ENABLE_PIN)
  5706. #endif
  5707. || !READ(E1_ENABLE_PIN)
  5708. #endif
  5709. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5710. {
  5711. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5712. }
  5713. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5714. {
  5715. digitalWrite(CONTROLLERFAN_PIN, 0);
  5716. analogWrite(CONTROLLERFAN_PIN, 0);
  5717. }
  5718. else
  5719. {
  5720. // allows digital or PWM fan output to be used (see M42 handling)
  5721. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5722. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5723. }
  5724. }
  5725. }
  5726. #endif
  5727. #ifdef TEMP_STAT_LEDS
  5728. static bool blue_led = false;
  5729. static bool red_led = false;
  5730. static uint32_t stat_update = 0;
  5731. void handle_status_leds(void) {
  5732. float max_temp = 0.0;
  5733. if(millis() > stat_update) {
  5734. stat_update += 500; // Update every 0.5s
  5735. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5736. max_temp = max(max_temp, degHotend(cur_extruder));
  5737. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5738. }
  5739. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5740. max_temp = max(max_temp, degTargetBed());
  5741. max_temp = max(max_temp, degBed());
  5742. #endif
  5743. if((max_temp > 55.0) && (red_led == false)) {
  5744. digitalWrite(STAT_LED_RED, 1);
  5745. digitalWrite(STAT_LED_BLUE, 0);
  5746. red_led = true;
  5747. blue_led = false;
  5748. }
  5749. if((max_temp < 54.0) && (blue_led == false)) {
  5750. digitalWrite(STAT_LED_RED, 0);
  5751. digitalWrite(STAT_LED_BLUE, 1);
  5752. red_led = false;
  5753. blue_led = true;
  5754. }
  5755. }
  5756. }
  5757. #endif
  5758. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5759. {
  5760. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  5761. {
  5762. if (fsensor_autoload_enabled)
  5763. {
  5764. if (fsensor_check_autoload())
  5765. {
  5766. if (degHotend0() > EXTRUDE_MINTEMP)
  5767. {
  5768. fsensor_autoload_check_stop();
  5769. tone(BEEPER, 1000);
  5770. delay_keep_alive(50);
  5771. noTone(BEEPER);
  5772. loading_flag = true;
  5773. enquecommand_front_P((PSTR("M701")));
  5774. }
  5775. else
  5776. {
  5777. lcd_update_enable(false);
  5778. lcd_implementation_clear();
  5779. lcd.setCursor(0, 0);
  5780. lcd_printPGM(MSG_ERROR);
  5781. lcd.setCursor(0, 2);
  5782. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  5783. delay(2000);
  5784. lcd_implementation_clear();
  5785. lcd_update_enable(true);
  5786. }
  5787. }
  5788. }
  5789. else
  5790. fsensor_autoload_check_start();
  5791. }
  5792. else
  5793. if (fsensor_autoload_enabled)
  5794. fsensor_autoload_check_stop();
  5795. #if defined(KILL_PIN) && KILL_PIN > -1
  5796. static int killCount = 0; // make the inactivity button a bit less responsive
  5797. const int KILL_DELAY = 10000;
  5798. #endif
  5799. if(buflen < (BUFSIZE-1)){
  5800. get_command();
  5801. }
  5802. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5803. if(max_inactive_time)
  5804. kill("", 4);
  5805. if(stepper_inactive_time) {
  5806. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5807. {
  5808. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5809. disable_x();
  5810. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5811. disable_y();
  5812. disable_z();
  5813. disable_e0();
  5814. disable_e1();
  5815. disable_e2();
  5816. }
  5817. }
  5818. }
  5819. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5820. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5821. {
  5822. chdkActive = false;
  5823. WRITE(CHDK, LOW);
  5824. }
  5825. #endif
  5826. #if defined(KILL_PIN) && KILL_PIN > -1
  5827. // Check if the kill button was pressed and wait just in case it was an accidental
  5828. // key kill key press
  5829. // -------------------------------------------------------------------------------
  5830. if( 0 == READ(KILL_PIN) )
  5831. {
  5832. killCount++;
  5833. }
  5834. else if (killCount > 0)
  5835. {
  5836. killCount--;
  5837. }
  5838. // Exceeded threshold and we can confirm that it was not accidental
  5839. // KILL the machine
  5840. // ----------------------------------------------------------------
  5841. if ( killCount >= KILL_DELAY)
  5842. {
  5843. kill("", 5);
  5844. }
  5845. #endif
  5846. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5847. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5848. #endif
  5849. #ifdef EXTRUDER_RUNOUT_PREVENT
  5850. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5851. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5852. {
  5853. bool oldstatus=READ(E0_ENABLE_PIN);
  5854. enable_e0();
  5855. float oldepos=current_position[E_AXIS];
  5856. float oldedes=destination[E_AXIS];
  5857. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5858. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5859. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5860. current_position[E_AXIS]=oldepos;
  5861. destination[E_AXIS]=oldedes;
  5862. plan_set_e_position(oldepos);
  5863. previous_millis_cmd=millis();
  5864. st_synchronize();
  5865. WRITE(E0_ENABLE_PIN,oldstatus);
  5866. }
  5867. #endif
  5868. #ifdef TEMP_STAT_LEDS
  5869. handle_status_leds();
  5870. #endif
  5871. check_axes_activity();
  5872. }
  5873. void kill(const char *full_screen_message, unsigned char id)
  5874. {
  5875. SERIAL_ECHOPGM("KILL: ");
  5876. MYSERIAL.println(int(id));
  5877. //return;
  5878. cli(); // Stop interrupts
  5879. disable_heater();
  5880. disable_x();
  5881. // SERIAL_ECHOLNPGM("kill - disable Y");
  5882. disable_y();
  5883. disable_z();
  5884. disable_e0();
  5885. disable_e1();
  5886. disable_e2();
  5887. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5888. pinMode(PS_ON_PIN,INPUT);
  5889. #endif
  5890. SERIAL_ERROR_START;
  5891. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5892. if (full_screen_message != NULL) {
  5893. SERIAL_ERRORLNRPGM(full_screen_message);
  5894. lcd_display_message_fullscreen_P(full_screen_message);
  5895. } else {
  5896. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5897. }
  5898. // FMC small patch to update the LCD before ending
  5899. sei(); // enable interrupts
  5900. for ( int i=5; i--; lcd_update())
  5901. {
  5902. delay(200);
  5903. }
  5904. cli(); // disable interrupts
  5905. suicide();
  5906. while(1)
  5907. {
  5908. wdt_reset();
  5909. /* Intentionally left empty */
  5910. } // Wait for reset
  5911. }
  5912. void Stop()
  5913. {
  5914. disable_heater();
  5915. if(Stopped == false) {
  5916. Stopped = true;
  5917. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5918. SERIAL_ERROR_START;
  5919. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5920. LCD_MESSAGERPGM(MSG_STOPPED);
  5921. }
  5922. }
  5923. bool IsStopped() { return Stopped; };
  5924. #ifdef FAST_PWM_FAN
  5925. void setPwmFrequency(uint8_t pin, int val)
  5926. {
  5927. val &= 0x07;
  5928. switch(digitalPinToTimer(pin))
  5929. {
  5930. #if defined(TCCR0A)
  5931. case TIMER0A:
  5932. case TIMER0B:
  5933. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5934. // TCCR0B |= val;
  5935. break;
  5936. #endif
  5937. #if defined(TCCR1A)
  5938. case TIMER1A:
  5939. case TIMER1B:
  5940. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5941. // TCCR1B |= val;
  5942. break;
  5943. #endif
  5944. #if defined(TCCR2)
  5945. case TIMER2:
  5946. case TIMER2:
  5947. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5948. TCCR2 |= val;
  5949. break;
  5950. #endif
  5951. #if defined(TCCR2A)
  5952. case TIMER2A:
  5953. case TIMER2B:
  5954. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5955. TCCR2B |= val;
  5956. break;
  5957. #endif
  5958. #if defined(TCCR3A)
  5959. case TIMER3A:
  5960. case TIMER3B:
  5961. case TIMER3C:
  5962. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5963. TCCR3B |= val;
  5964. break;
  5965. #endif
  5966. #if defined(TCCR4A)
  5967. case TIMER4A:
  5968. case TIMER4B:
  5969. case TIMER4C:
  5970. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5971. TCCR4B |= val;
  5972. break;
  5973. #endif
  5974. #if defined(TCCR5A)
  5975. case TIMER5A:
  5976. case TIMER5B:
  5977. case TIMER5C:
  5978. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5979. TCCR5B |= val;
  5980. break;
  5981. #endif
  5982. }
  5983. }
  5984. #endif //FAST_PWM_FAN
  5985. bool setTargetedHotend(int code){
  5986. tmp_extruder = active_extruder;
  5987. if(code_seen('T')) {
  5988. tmp_extruder = code_value();
  5989. if(tmp_extruder >= EXTRUDERS) {
  5990. SERIAL_ECHO_START;
  5991. switch(code){
  5992. case 104:
  5993. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5994. break;
  5995. case 105:
  5996. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5997. break;
  5998. case 109:
  5999. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  6000. break;
  6001. case 218:
  6002. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  6003. break;
  6004. case 221:
  6005. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  6006. break;
  6007. }
  6008. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6009. return true;
  6010. }
  6011. }
  6012. return false;
  6013. }
  6014. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6015. {
  6016. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6017. {
  6018. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6019. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6020. }
  6021. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6022. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6023. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6024. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6025. total_filament_used = 0;
  6026. }
  6027. float calculate_volumetric_multiplier(float diameter) {
  6028. float area = .0;
  6029. float radius = .0;
  6030. radius = diameter * .5;
  6031. if (! volumetric_enabled || radius == 0) {
  6032. area = 1;
  6033. }
  6034. else {
  6035. area = M_PI * pow(radius, 2);
  6036. }
  6037. return 1.0 / area;
  6038. }
  6039. void calculate_volumetric_multipliers() {
  6040. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  6041. #if EXTRUDERS > 1
  6042. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  6043. #if EXTRUDERS > 2
  6044. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  6045. #endif
  6046. #endif
  6047. }
  6048. void delay_keep_alive(unsigned int ms)
  6049. {
  6050. for (;;) {
  6051. manage_heater();
  6052. // Manage inactivity, but don't disable steppers on timeout.
  6053. manage_inactivity(true);
  6054. lcd_update();
  6055. if (ms == 0)
  6056. break;
  6057. else if (ms >= 50) {
  6058. delay(50);
  6059. ms -= 50;
  6060. } else {
  6061. delay(ms);
  6062. ms = 0;
  6063. }
  6064. }
  6065. }
  6066. void wait_for_heater(long codenum) {
  6067. #ifdef TEMP_RESIDENCY_TIME
  6068. long residencyStart;
  6069. residencyStart = -1;
  6070. /* continue to loop until we have reached the target temp
  6071. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6072. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6073. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6074. #else
  6075. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6076. #endif //TEMP_RESIDENCY_TIME
  6077. if ((millis() - codenum) > 1000UL)
  6078. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6079. if (!farm_mode) {
  6080. SERIAL_PROTOCOLPGM("T:");
  6081. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6082. SERIAL_PROTOCOLPGM(" E:");
  6083. SERIAL_PROTOCOL((int)tmp_extruder);
  6084. #ifdef TEMP_RESIDENCY_TIME
  6085. SERIAL_PROTOCOLPGM(" W:");
  6086. if (residencyStart > -1)
  6087. {
  6088. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6089. SERIAL_PROTOCOLLN(codenum);
  6090. }
  6091. else
  6092. {
  6093. SERIAL_PROTOCOLLN("?");
  6094. }
  6095. }
  6096. #else
  6097. SERIAL_PROTOCOLLN("");
  6098. #endif
  6099. codenum = millis();
  6100. }
  6101. manage_heater();
  6102. manage_inactivity();
  6103. lcd_update();
  6104. #ifdef TEMP_RESIDENCY_TIME
  6105. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6106. or when current temp falls outside the hysteresis after target temp was reached */
  6107. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6108. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6109. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6110. {
  6111. residencyStart = millis();
  6112. }
  6113. #endif //TEMP_RESIDENCY_TIME
  6114. }
  6115. }
  6116. void check_babystep() {
  6117. int babystep_z;
  6118. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6119. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6120. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6121. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6122. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6123. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6124. lcd_update_enable(true);
  6125. }
  6126. }
  6127. #ifdef DIS
  6128. void d_setup()
  6129. {
  6130. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6131. pinMode(D_DATA, INPUT_PULLUP);
  6132. pinMode(D_REQUIRE, OUTPUT);
  6133. digitalWrite(D_REQUIRE, HIGH);
  6134. }
  6135. float d_ReadData()
  6136. {
  6137. int digit[13];
  6138. String mergeOutput;
  6139. float output;
  6140. digitalWrite(D_REQUIRE, HIGH);
  6141. for (int i = 0; i<13; i++)
  6142. {
  6143. for (int j = 0; j < 4; j++)
  6144. {
  6145. while (digitalRead(D_DATACLOCK) == LOW) {}
  6146. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6147. bitWrite(digit[i], j, digitalRead(D_DATA));
  6148. }
  6149. }
  6150. digitalWrite(D_REQUIRE, LOW);
  6151. mergeOutput = "";
  6152. output = 0;
  6153. for (int r = 5; r <= 10; r++) //Merge digits
  6154. {
  6155. mergeOutput += digit[r];
  6156. }
  6157. output = mergeOutput.toFloat();
  6158. if (digit[4] == 8) //Handle sign
  6159. {
  6160. output *= -1;
  6161. }
  6162. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6163. {
  6164. output /= 10;
  6165. }
  6166. return output;
  6167. }
  6168. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6169. int t1 = 0;
  6170. int t_delay = 0;
  6171. int digit[13];
  6172. int m;
  6173. char str[3];
  6174. //String mergeOutput;
  6175. char mergeOutput[15];
  6176. float output;
  6177. int mesh_point = 0; //index number of calibration point
  6178. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6179. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6180. float mesh_home_z_search = 4;
  6181. float row[x_points_num];
  6182. int ix = 0;
  6183. int iy = 0;
  6184. char* filename_wldsd = "wldsd.txt";
  6185. char data_wldsd[70];
  6186. char numb_wldsd[10];
  6187. d_setup();
  6188. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6189. // We don't know where we are! HOME!
  6190. // Push the commands to the front of the message queue in the reverse order!
  6191. // There shall be always enough space reserved for these commands.
  6192. repeatcommand_front(); // repeat G80 with all its parameters
  6193. enquecommand_front_P((PSTR("G28 W0")));
  6194. enquecommand_front_P((PSTR("G1 Z5")));
  6195. return;
  6196. }
  6197. bool custom_message_old = custom_message;
  6198. unsigned int custom_message_type_old = custom_message_type;
  6199. unsigned int custom_message_state_old = custom_message_state;
  6200. custom_message = true;
  6201. custom_message_type = 1;
  6202. custom_message_state = (x_points_num * y_points_num) + 10;
  6203. lcd_update(1);
  6204. mbl.reset();
  6205. babystep_undo();
  6206. card.openFile(filename_wldsd, false);
  6207. current_position[Z_AXIS] = mesh_home_z_search;
  6208. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6209. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6210. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6211. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6212. setup_for_endstop_move(false);
  6213. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6214. SERIAL_PROTOCOL(x_points_num);
  6215. SERIAL_PROTOCOLPGM(",");
  6216. SERIAL_PROTOCOL(y_points_num);
  6217. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6218. SERIAL_PROTOCOL(mesh_home_z_search);
  6219. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6220. SERIAL_PROTOCOL(x_dimension);
  6221. SERIAL_PROTOCOLPGM(",");
  6222. SERIAL_PROTOCOL(y_dimension);
  6223. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6224. while (mesh_point != x_points_num * y_points_num) {
  6225. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6226. iy = mesh_point / x_points_num;
  6227. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6228. float z0 = 0.f;
  6229. current_position[Z_AXIS] = mesh_home_z_search;
  6230. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6231. st_synchronize();
  6232. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6233. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6234. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6235. st_synchronize();
  6236. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6237. break;
  6238. card.closefile();
  6239. }
  6240. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6241. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6242. //strcat(data_wldsd, numb_wldsd);
  6243. //MYSERIAL.println(data_wldsd);
  6244. //delay(1000);
  6245. //delay(3000);
  6246. //t1 = millis();
  6247. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6248. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6249. memset(digit, 0, sizeof(digit));
  6250. //cli();
  6251. digitalWrite(D_REQUIRE, LOW);
  6252. for (int i = 0; i<13; i++)
  6253. {
  6254. //t1 = millis();
  6255. for (int j = 0; j < 4; j++)
  6256. {
  6257. while (digitalRead(D_DATACLOCK) == LOW) {}
  6258. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6259. bitWrite(digit[i], j, digitalRead(D_DATA));
  6260. }
  6261. //t_delay = (millis() - t1);
  6262. //SERIAL_PROTOCOLPGM(" ");
  6263. //SERIAL_PROTOCOL_F(t_delay, 5);
  6264. //SERIAL_PROTOCOLPGM(" ");
  6265. }
  6266. //sei();
  6267. digitalWrite(D_REQUIRE, HIGH);
  6268. mergeOutput[0] = '\0';
  6269. output = 0;
  6270. for (int r = 5; r <= 10; r++) //Merge digits
  6271. {
  6272. sprintf(str, "%d", digit[r]);
  6273. strcat(mergeOutput, str);
  6274. }
  6275. output = atof(mergeOutput);
  6276. if (digit[4] == 8) //Handle sign
  6277. {
  6278. output *= -1;
  6279. }
  6280. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6281. {
  6282. output *= 0.1;
  6283. }
  6284. //output = d_ReadData();
  6285. //row[ix] = current_position[Z_AXIS];
  6286. memset(data_wldsd, 0, sizeof(data_wldsd));
  6287. for (int i = 0; i <3; i++) {
  6288. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6289. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6290. strcat(data_wldsd, numb_wldsd);
  6291. strcat(data_wldsd, ";");
  6292. }
  6293. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6294. dtostrf(output, 8, 5, numb_wldsd);
  6295. strcat(data_wldsd, numb_wldsd);
  6296. //strcat(data_wldsd, ";");
  6297. card.write_command(data_wldsd);
  6298. //row[ix] = d_ReadData();
  6299. row[ix] = output; // current_position[Z_AXIS];
  6300. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6301. for (int i = 0; i < x_points_num; i++) {
  6302. SERIAL_PROTOCOLPGM(" ");
  6303. SERIAL_PROTOCOL_F(row[i], 5);
  6304. }
  6305. SERIAL_PROTOCOLPGM("\n");
  6306. }
  6307. custom_message_state--;
  6308. mesh_point++;
  6309. lcd_update(1);
  6310. }
  6311. card.closefile();
  6312. }
  6313. #endif
  6314. void temp_compensation_start() {
  6315. custom_message = true;
  6316. custom_message_type = 5;
  6317. custom_message_state = PINDA_HEAT_T + 1;
  6318. lcd_update(2);
  6319. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6320. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6321. }
  6322. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6323. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6324. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6325. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6326. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6327. st_synchronize();
  6328. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6329. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6330. delay_keep_alive(1000);
  6331. custom_message_state = PINDA_HEAT_T - i;
  6332. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6333. else lcd_update(1);
  6334. }
  6335. custom_message_type = 0;
  6336. custom_message_state = 0;
  6337. custom_message = false;
  6338. }
  6339. void temp_compensation_apply() {
  6340. int i_add;
  6341. int compensation_value;
  6342. int z_shift = 0;
  6343. float z_shift_mm;
  6344. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6345. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6346. i_add = (target_temperature_bed - 60) / 10;
  6347. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6348. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6349. }else {
  6350. //interpolation
  6351. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6352. }
  6353. SERIAL_PROTOCOLPGM("\n");
  6354. SERIAL_PROTOCOLPGM("Z shift applied:");
  6355. MYSERIAL.print(z_shift_mm);
  6356. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6357. st_synchronize();
  6358. plan_set_z_position(current_position[Z_AXIS]);
  6359. }
  6360. else {
  6361. //we have no temp compensation data
  6362. }
  6363. }
  6364. float temp_comp_interpolation(float inp_temperature) {
  6365. //cubic spline interpolation
  6366. int n, i, j, k;
  6367. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6368. int shift[10];
  6369. int temp_C[10];
  6370. n = 6; //number of measured points
  6371. shift[0] = 0;
  6372. for (i = 0; i < n; i++) {
  6373. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6374. temp_C[i] = 50 + i * 10; //temperature in C
  6375. #ifdef PINDA_THERMISTOR
  6376. temp_C[i] = 35 + i * 5; //temperature in C
  6377. #else
  6378. temp_C[i] = 50 + i * 10; //temperature in C
  6379. #endif
  6380. x[i] = (float)temp_C[i];
  6381. f[i] = (float)shift[i];
  6382. }
  6383. if (inp_temperature < x[0]) return 0;
  6384. for (i = n - 1; i>0; i--) {
  6385. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6386. h[i - 1] = x[i] - x[i - 1];
  6387. }
  6388. //*********** formation of h, s , f matrix **************
  6389. for (i = 1; i<n - 1; i++) {
  6390. m[i][i] = 2 * (h[i - 1] + h[i]);
  6391. if (i != 1) {
  6392. m[i][i - 1] = h[i - 1];
  6393. m[i - 1][i] = h[i - 1];
  6394. }
  6395. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6396. }
  6397. //*********** forward elimination **************
  6398. for (i = 1; i<n - 2; i++) {
  6399. temp = (m[i + 1][i] / m[i][i]);
  6400. for (j = 1; j <= n - 1; j++)
  6401. m[i + 1][j] -= temp*m[i][j];
  6402. }
  6403. //*********** backward substitution *********
  6404. for (i = n - 2; i>0; i--) {
  6405. sum = 0;
  6406. for (j = i; j <= n - 2; j++)
  6407. sum += m[i][j] * s[j];
  6408. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6409. }
  6410. for (i = 0; i<n - 1; i++)
  6411. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6412. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6413. b = s[i] / 2;
  6414. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6415. d = f[i];
  6416. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6417. }
  6418. return sum;
  6419. }
  6420. #ifdef PINDA_THERMISTOR
  6421. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6422. {
  6423. if (!temp_cal_active) return 0;
  6424. if (!calibration_status_pinda()) return 0;
  6425. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6426. }
  6427. #endif //PINDA_THERMISTOR
  6428. void long_pause() //long pause print
  6429. {
  6430. st_synchronize();
  6431. //save currently set parameters to global variables
  6432. saved_feedmultiply = feedmultiply;
  6433. HotendTempBckp = degTargetHotend(active_extruder);
  6434. fanSpeedBckp = fanSpeed;
  6435. start_pause_print = millis();
  6436. //save position
  6437. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6438. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6439. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6440. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6441. //retract
  6442. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6443. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6444. //lift z
  6445. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6446. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6447. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6448. //set nozzle target temperature to 0
  6449. setTargetHotend(0, 0);
  6450. setTargetHotend(0, 1);
  6451. setTargetHotend(0, 2);
  6452. //Move XY to side
  6453. current_position[X_AXIS] = X_PAUSE_POS;
  6454. current_position[Y_AXIS] = Y_PAUSE_POS;
  6455. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6456. // Turn off the print fan
  6457. fanSpeed = 0;
  6458. st_synchronize();
  6459. }
  6460. void serialecho_temperatures() {
  6461. float tt = degHotend(active_extruder);
  6462. SERIAL_PROTOCOLPGM("T:");
  6463. SERIAL_PROTOCOL(tt);
  6464. SERIAL_PROTOCOLPGM(" E:");
  6465. SERIAL_PROTOCOL((int)active_extruder);
  6466. SERIAL_PROTOCOLPGM(" B:");
  6467. SERIAL_PROTOCOL_F(degBed(), 1);
  6468. SERIAL_PROTOCOLLN("");
  6469. }
  6470. extern uint32_t sdpos_atomic;
  6471. void uvlo_()
  6472. {
  6473. unsigned long time_start = millis();
  6474. bool sd_print = card.sdprinting;
  6475. // Conserve power as soon as possible.
  6476. disable_x();
  6477. disable_y();
  6478. disable_e0();
  6479. tmc2130_set_current_h(Z_AXIS, 20);
  6480. tmc2130_set_current_r(Z_AXIS, 20);
  6481. tmc2130_set_current_h(E_AXIS, 20);
  6482. tmc2130_set_current_r(E_AXIS, 20);
  6483. // Indicate that the interrupt has been triggered.
  6484. // SERIAL_ECHOLNPGM("UVLO");
  6485. // Read out the current Z motor microstep counter. This will be later used
  6486. // for reaching the zero full step before powering off.
  6487. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6488. // Calculate the file position, from which to resume this print.
  6489. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6490. {
  6491. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6492. sd_position -= sdlen_planner;
  6493. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6494. sd_position -= sdlen_cmdqueue;
  6495. if (sd_position < 0) sd_position = 0;
  6496. }
  6497. // Backup the feedrate in mm/min.
  6498. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6499. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6500. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6501. // are in action.
  6502. planner_abort_hard();
  6503. // Store the current extruder position.
  6504. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6505. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6506. // Clean the input command queue.
  6507. cmdqueue_reset();
  6508. card.sdprinting = false;
  6509. // card.closefile();
  6510. // Enable stepper driver interrupt to move Z axis.
  6511. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6512. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6513. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6514. sei();
  6515. plan_buffer_line(
  6516. current_position[X_AXIS],
  6517. current_position[Y_AXIS],
  6518. current_position[Z_AXIS],
  6519. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6520. 95, active_extruder);
  6521. st_synchronize();
  6522. disable_e0();
  6523. plan_buffer_line(
  6524. current_position[X_AXIS],
  6525. current_position[Y_AXIS],
  6526. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6527. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6528. 40, active_extruder);
  6529. st_synchronize();
  6530. disable_e0();
  6531. plan_buffer_line(
  6532. current_position[X_AXIS],
  6533. current_position[Y_AXIS],
  6534. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6535. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6536. 40, active_extruder);
  6537. st_synchronize();
  6538. disable_e0();
  6539. disable_z();
  6540. // Move Z up to the next 0th full step.
  6541. // Write the file position.
  6542. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6543. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6544. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6545. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6546. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6547. // Scale the z value to 1u resolution.
  6548. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6549. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6550. }
  6551. // Read out the current Z motor microstep counter. This will be later used
  6552. // for reaching the zero full step before powering off.
  6553. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6554. // Store the current position.
  6555. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6556. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6557. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6558. // Store the current feed rate, temperatures and fan speed.
  6559. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6560. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6561. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6562. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6563. // Finaly store the "power outage" flag.
  6564. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6565. st_synchronize();
  6566. SERIAL_ECHOPGM("stps");
  6567. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6568. disable_z();
  6569. // Increment power failure counter
  6570. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  6571. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  6572. SERIAL_ECHOLNPGM("UVLO - end");
  6573. MYSERIAL.println(millis() - time_start);
  6574. #if 0
  6575. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6576. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6577. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6578. st_synchronize();
  6579. #endif
  6580. cli();
  6581. volatile unsigned int ppcount = 0;
  6582. SET_OUTPUT(BEEPER);
  6583. WRITE(BEEPER, HIGH);
  6584. for(ppcount = 0; ppcount < 2000; ppcount ++){
  6585. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6586. }
  6587. WRITE(BEEPER, LOW);
  6588. while(1){
  6589. #if 1
  6590. WRITE(BEEPER, LOW);
  6591. for(ppcount = 0; ppcount < 8000; ppcount ++){
  6592. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6593. }
  6594. #endif
  6595. };
  6596. }
  6597. void setup_fan_interrupt() {
  6598. //INT7
  6599. DDRE &= ~(1 << 7); //input pin
  6600. PORTE &= ~(1 << 7); //no internal pull-up
  6601. //start with sensing rising edge
  6602. EICRB &= ~(1 << 6);
  6603. EICRB |= (1 << 7);
  6604. //enable INT7 interrupt
  6605. EIMSK |= (1 << 7);
  6606. }
  6607. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  6608. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  6609. ISR(INT7_vect) {
  6610. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6611. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6612. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6613. t_fan_rising_edge = millis_nc();
  6614. }
  6615. else { //interrupt was triggered by falling edge
  6616. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6617. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6618. }
  6619. }
  6620. EICRB ^= (1 << 6); //change edge
  6621. }
  6622. void setup_uvlo_interrupt() {
  6623. DDRE &= ~(1 << 4); //input pin
  6624. PORTE &= ~(1 << 4); //no internal pull-up
  6625. //sensing falling edge
  6626. EICRB |= (1 << 0);
  6627. EICRB &= ~(1 << 1);
  6628. //enable INT4 interrupt
  6629. EIMSK |= (1 << 4);
  6630. }
  6631. ISR(INT4_vect) {
  6632. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6633. SERIAL_ECHOLNPGM("INT4");
  6634. if (IS_SD_PRINTING) uvlo_();
  6635. }
  6636. void recover_print(uint8_t automatic) {
  6637. char cmd[30];
  6638. lcd_update_enable(true);
  6639. lcd_update(2);
  6640. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6641. recover_machine_state_after_power_panic();
  6642. // Set the target bed and nozzle temperatures.
  6643. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6644. enquecommand(cmd);
  6645. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6646. enquecommand(cmd);
  6647. // Lift the print head, so one may remove the excess priming material.
  6648. if (current_position[Z_AXIS] < 25)
  6649. enquecommand_P(PSTR("G1 Z25 F800"));
  6650. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6651. enquecommand_P(PSTR("G28 X Y"));
  6652. // Set the target bed and nozzle temperatures and wait.
  6653. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6654. enquecommand(cmd);
  6655. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6656. enquecommand(cmd);
  6657. enquecommand_P(PSTR("M83")); //E axis relative mode
  6658. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6659. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6660. if(automatic == 0){
  6661. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6662. }
  6663. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6664. // Mark the power panic status as inactive.
  6665. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6666. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6667. delay_keep_alive(1000);
  6668. }*/
  6669. SERIAL_ECHOPGM("After waiting for temp:");
  6670. SERIAL_ECHOPGM("Current position X_AXIS:");
  6671. MYSERIAL.println(current_position[X_AXIS]);
  6672. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6673. MYSERIAL.println(current_position[Y_AXIS]);
  6674. // Restart the print.
  6675. restore_print_from_eeprom();
  6676. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6677. MYSERIAL.print(current_position[Z_AXIS]);
  6678. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6679. MYSERIAL.print(current_position[E_AXIS]);
  6680. }
  6681. void recover_machine_state_after_power_panic()
  6682. {
  6683. char cmd[30];
  6684. // 1) Recover the logical cordinates at the time of the power panic.
  6685. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6686. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6687. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6688. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6689. // The current position after power panic is moved to the next closest 0th full step.
  6690. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6691. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6692. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  6693. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6694. sprintf_P(cmd, PSTR("G92 E"));
  6695. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  6696. enquecommand(cmd);
  6697. }
  6698. memcpy(destination, current_position, sizeof(destination));
  6699. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6700. print_world_coordinates();
  6701. // 2) Initialize the logical to physical coordinate system transformation.
  6702. world2machine_initialize();
  6703. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6704. mbl.active = false;
  6705. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6706. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6707. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6708. // Scale the z value to 10u resolution.
  6709. int16_t v;
  6710. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6711. if (v != 0)
  6712. mbl.active = true;
  6713. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6714. }
  6715. if (mbl.active)
  6716. mbl.upsample_3x3();
  6717. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6718. // print_mesh_bed_leveling_table();
  6719. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6720. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6721. babystep_load();
  6722. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6723. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6724. // 6) Power up the motors, mark their positions as known.
  6725. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6726. axis_known_position[X_AXIS] = true; enable_x();
  6727. axis_known_position[Y_AXIS] = true; enable_y();
  6728. axis_known_position[Z_AXIS] = true; enable_z();
  6729. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6730. print_physical_coordinates();
  6731. // 7) Recover the target temperatures.
  6732. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6733. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6734. }
  6735. void restore_print_from_eeprom() {
  6736. float x_rec, y_rec, z_pos;
  6737. int feedrate_rec;
  6738. uint8_t fan_speed_rec;
  6739. char cmd[30];
  6740. char* c;
  6741. char filename[13];
  6742. uint8_t depth = 0;
  6743. char dir_name[9];
  6744. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6745. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6746. SERIAL_ECHOPGM("Feedrate:");
  6747. MYSERIAL.println(feedrate_rec);
  6748. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6749. MYSERIAL.println(int(depth));
  6750. for (int i = 0; i < depth; i++) {
  6751. for (int j = 0; j < 8; j++) {
  6752. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6753. }
  6754. dir_name[8] = '\0';
  6755. MYSERIAL.println(dir_name);
  6756. card.chdir(dir_name);
  6757. }
  6758. for (int i = 0; i < 8; i++) {
  6759. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6760. }
  6761. filename[8] = '\0';
  6762. MYSERIAL.print(filename);
  6763. strcat_P(filename, PSTR(".gco"));
  6764. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6765. for (c = &cmd[4]; *c; c++)
  6766. *c = tolower(*c);
  6767. enquecommand(cmd);
  6768. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6769. SERIAL_ECHOPGM("Position read from eeprom:");
  6770. MYSERIAL.println(position);
  6771. // E axis relative mode.
  6772. enquecommand_P(PSTR("M83"));
  6773. // Move to the XY print position in logical coordinates, where the print has been killed.
  6774. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6775. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6776. strcat_P(cmd, PSTR(" F2000"));
  6777. enquecommand(cmd);
  6778. // Move the Z axis down to the print, in logical coordinates.
  6779. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6780. enquecommand(cmd);
  6781. // Unretract.
  6782. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  6783. // Set the feedrate saved at the power panic.
  6784. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6785. enquecommand(cmd);
  6786. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6787. {
  6788. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6789. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6790. }
  6791. // Set the fan speed saved at the power panic.
  6792. strcpy_P(cmd, PSTR("M106 S"));
  6793. strcat(cmd, itostr3(int(fan_speed_rec)));
  6794. enquecommand(cmd);
  6795. // Set a position in the file.
  6796. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6797. enquecommand(cmd);
  6798. // Start SD print.
  6799. enquecommand_P(PSTR("M24"));
  6800. }
  6801. ////////////////////////////////////////////////////////////////////////////////
  6802. // new save/restore printing
  6803. //extern uint32_t sdpos_atomic;
  6804. bool saved_printing = false;
  6805. uint32_t saved_sdpos = 0;
  6806. float saved_pos[4] = {0, 0, 0, 0};
  6807. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6808. float saved_feedrate2 = 0;
  6809. uint8_t saved_active_extruder = 0;
  6810. bool saved_extruder_under_pressure = false;
  6811. void stop_and_save_print_to_ram(float z_move, float e_move)
  6812. {
  6813. if (saved_printing) return;
  6814. cli();
  6815. unsigned char nplanner_blocks = number_of_blocks();
  6816. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6817. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6818. saved_sdpos -= sdlen_planner;
  6819. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6820. saved_sdpos -= sdlen_cmdqueue;
  6821. #if 0
  6822. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6823. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6824. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6825. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6826. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6827. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6828. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6829. {
  6830. card.setIndex(saved_sdpos);
  6831. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6832. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6833. MYSERIAL.print(char(card.get()));
  6834. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6835. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6836. MYSERIAL.print(char(card.get()));
  6837. SERIAL_ECHOLNPGM("End of command buffer");
  6838. }
  6839. {
  6840. // Print the content of the planner buffer, line by line:
  6841. card.setIndex(saved_sdpos);
  6842. int8_t iline = 0;
  6843. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6844. SERIAL_ECHOPGM("Planner line (from file): ");
  6845. MYSERIAL.print(int(iline), DEC);
  6846. SERIAL_ECHOPGM(", length: ");
  6847. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6848. SERIAL_ECHOPGM(", steps: (");
  6849. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6850. SERIAL_ECHOPGM(",");
  6851. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6852. SERIAL_ECHOPGM(",");
  6853. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6854. SERIAL_ECHOPGM(",");
  6855. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6856. SERIAL_ECHOPGM("), events: ");
  6857. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6858. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6859. MYSERIAL.print(char(card.get()));
  6860. }
  6861. }
  6862. {
  6863. // Print the content of the command buffer, line by line:
  6864. int8_t iline = 0;
  6865. union {
  6866. struct {
  6867. char lo;
  6868. char hi;
  6869. } lohi;
  6870. uint16_t value;
  6871. } sdlen_single;
  6872. int _bufindr = bufindr;
  6873. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6874. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6875. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6876. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6877. }
  6878. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6879. MYSERIAL.print(int(iline), DEC);
  6880. SERIAL_ECHOPGM(", type: ");
  6881. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6882. SERIAL_ECHOPGM(", len: ");
  6883. MYSERIAL.println(sdlen_single.value, DEC);
  6884. // Print the content of the buffer line.
  6885. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6886. SERIAL_ECHOPGM("Buffer line (from file): ");
  6887. MYSERIAL.print(int(iline), DEC);
  6888. MYSERIAL.println(int(iline), DEC);
  6889. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6890. MYSERIAL.print(char(card.get()));
  6891. if (-- _buflen == 0)
  6892. break;
  6893. // First skip the current command ID and iterate up to the end of the string.
  6894. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6895. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6896. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6897. // If the end of the buffer was empty,
  6898. if (_bufindr == sizeof(cmdbuffer)) {
  6899. // skip to the start and find the nonzero command.
  6900. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6901. }
  6902. }
  6903. }
  6904. #endif
  6905. #if 0
  6906. saved_feedrate2 = feedrate; //save feedrate
  6907. #else
  6908. // Try to deduce the feedrate from the first block of the planner.
  6909. // Speed is in mm/min.
  6910. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6911. #endif
  6912. planner_abort_hard(); //abort printing
  6913. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6914. saved_active_extruder = active_extruder; //save active_extruder
  6915. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6916. cmdqueue_reset(); //empty cmdqueue
  6917. card.sdprinting = false;
  6918. // card.closefile();
  6919. saved_printing = true;
  6920. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  6921. st_reset_timer();
  6922. sei();
  6923. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6924. #if 1
  6925. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6926. char buf[48];
  6927. strcpy_P(buf, PSTR("G1 Z"));
  6928. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6929. strcat_P(buf, PSTR(" E"));
  6930. // Relative extrusion
  6931. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6932. strcat_P(buf, PSTR(" F"));
  6933. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6934. // At this point the command queue is empty.
  6935. enquecommand(buf, false);
  6936. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6937. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6938. repeatcommand_front();
  6939. #else
  6940. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6941. st_synchronize(); //wait moving
  6942. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6943. memcpy(destination, current_position, sizeof(destination));
  6944. #endif
  6945. }
  6946. }
  6947. void restore_print_from_ram_and_continue(float e_move)
  6948. {
  6949. if (!saved_printing) return;
  6950. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6951. // current_position[axis] = st_get_position_mm(axis);
  6952. active_extruder = saved_active_extruder; //restore active_extruder
  6953. feedrate = saved_feedrate2; //restore feedrate
  6954. float e = saved_pos[E_AXIS] - e_move;
  6955. plan_set_e_position(e);
  6956. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6957. st_synchronize();
  6958. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6959. memcpy(destination, current_position, sizeof(destination));
  6960. card.setIndex(saved_sdpos);
  6961. sdpos_atomic = saved_sdpos;
  6962. card.sdprinting = true;
  6963. saved_printing = false;
  6964. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  6965. }
  6966. void print_world_coordinates()
  6967. {
  6968. SERIAL_ECHOPGM("world coordinates: (");
  6969. MYSERIAL.print(current_position[X_AXIS], 3);
  6970. SERIAL_ECHOPGM(", ");
  6971. MYSERIAL.print(current_position[Y_AXIS], 3);
  6972. SERIAL_ECHOPGM(", ");
  6973. MYSERIAL.print(current_position[Z_AXIS], 3);
  6974. SERIAL_ECHOLNPGM(")");
  6975. }
  6976. void print_physical_coordinates()
  6977. {
  6978. SERIAL_ECHOPGM("physical coordinates: (");
  6979. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6980. SERIAL_ECHOPGM(", ");
  6981. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6982. SERIAL_ECHOPGM(", ");
  6983. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6984. SERIAL_ECHOLNPGM(")");
  6985. }
  6986. void print_mesh_bed_leveling_table()
  6987. {
  6988. SERIAL_ECHOPGM("mesh bed leveling: ");
  6989. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6990. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6991. MYSERIAL.print(mbl.z_values[y][x], 3);
  6992. SERIAL_ECHOPGM(" ");
  6993. }
  6994. SERIAL_ECHOLNPGM("");
  6995. }
  6996. #define FIL_LOAD_LENGTH 60
  6997. void extr_unload2() { //unloads filament
  6998. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6999. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7000. // int8_t SilentMode;
  7001. uint8_t snmm_extruder = 0;
  7002. if (degHotend0() > EXTRUDE_MINTEMP) {
  7003. lcd_implementation_clear();
  7004. lcd_display_message_fullscreen_P(PSTR(""));
  7005. max_feedrate[E_AXIS] = 50;
  7006. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  7007. // lcd.print(" ");
  7008. // lcd.print(snmm_extruder + 1);
  7009. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  7010. if (current_position[Z_AXIS] < 15) {
  7011. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  7012. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  7013. }
  7014. current_position[E_AXIS] += 10; //extrusion
  7015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  7016. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  7017. if (current_temperature[0] < 230) { //PLA & all other filaments
  7018. current_position[E_AXIS] += 5.4;
  7019. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  7020. current_position[E_AXIS] += 3.2;
  7021. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7022. current_position[E_AXIS] += 3;
  7023. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  7024. }
  7025. else { //ABS
  7026. current_position[E_AXIS] += 3.1;
  7027. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  7028. current_position[E_AXIS] += 3.1;
  7029. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  7030. current_position[E_AXIS] += 4;
  7031. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7032. /*current_position[X_AXIS] += 23; //delay
  7033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  7034. current_position[X_AXIS] -= 23; //delay
  7035. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  7036. delay_keep_alive(4700);
  7037. }
  7038. max_feedrate[E_AXIS] = 80;
  7039. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7040. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7041. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7042. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7043. st_synchronize();
  7044. //digipot_init();
  7045. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  7046. // else digipot_current(2, tmp_motor_loud[2]);
  7047. lcd_update_enable(true);
  7048. // lcd_return_to_status();
  7049. max_feedrate[E_AXIS] = 50;
  7050. }
  7051. else {
  7052. lcd_implementation_clear();
  7053. lcd.setCursor(0, 0);
  7054. lcd_printPGM(MSG_ERROR);
  7055. lcd.setCursor(0, 2);
  7056. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  7057. delay(2000);
  7058. lcd_implementation_clear();
  7059. }
  7060. // lcd_return_to_status();
  7061. }