LiquidCrystal_Prusa.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552
  1. #include "LiquidCrystal_Prusa.h"
  2. #include <stdio.h>
  3. #include <string.h>
  4. #include <inttypes.h>
  5. #include "Arduino.h"
  6. // When the display powers up, it is configured as follows:
  7. //
  8. // 1. Display clear
  9. // 2. Function set:
  10. // DL = 1; 8-bit interface data
  11. // N = 0; 1-line display
  12. // F = 0; 5x8 dot character font
  13. // 3. Display on/off control:
  14. // D = 0; Display off
  15. // C = 0; Cursor off
  16. // B = 0; Blinking off
  17. // 4. Entry mode set:
  18. // I/D = 1; Increment by 1
  19. // S = 0; No shift
  20. //
  21. // Note, however, that resetting the Arduino doesn't reset the LCD, so we
  22. // can't assume that it's in that state when a sketch starts (and the
  23. // LiquidCrystal_Prusa constructor is called).
  24. LiquidCrystal_Prusa::LiquidCrystal_Prusa(uint8_t rs, uint8_t rw, uint8_t enable,
  25. uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3,
  26. uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7)
  27. {
  28. init(0, rs, rw, enable, d0, d1, d2, d3, d4, d5, d6, d7);
  29. }
  30. LiquidCrystal_Prusa::LiquidCrystal_Prusa(uint8_t rs, uint8_t enable,
  31. uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3,
  32. uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7)
  33. {
  34. init(0, rs, 255, enable, d0, d1, d2, d3, d4, d5, d6, d7);
  35. }
  36. LiquidCrystal_Prusa::LiquidCrystal_Prusa(uint8_t rs, uint8_t rw, uint8_t enable,
  37. uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3)
  38. {
  39. init(1, rs, rw, enable, d0, d1, d2, d3, 0, 0, 0, 0);
  40. }
  41. LiquidCrystal_Prusa::LiquidCrystal_Prusa(uint8_t rs, uint8_t enable,
  42. uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3)
  43. {
  44. init(1, rs, 255, enable, d0, d1, d2, d3, 0, 0, 0, 0);
  45. }
  46. void LiquidCrystal_Prusa::init(uint8_t fourbitmode, uint8_t rs, uint8_t rw, uint8_t enable,
  47. uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3,
  48. uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7)
  49. {
  50. _rs_pin = rs;
  51. _rw_pin = rw;
  52. _enable_pin = enable;
  53. _data_pins[0] = d0;
  54. _data_pins[1] = d1;
  55. _data_pins[2] = d2;
  56. _data_pins[3] = d3;
  57. _data_pins[4] = d4;
  58. _data_pins[5] = d5;
  59. _data_pins[6] = d6;
  60. _data_pins[7] = d7;
  61. pinMode(_rs_pin, OUTPUT);
  62. // we can save 1 pin by not using RW. Indicate by passing 255 instead of pin#
  63. if (_rw_pin != 255) {
  64. pinMode(_rw_pin, OUTPUT);
  65. }
  66. pinMode(_enable_pin, OUTPUT);
  67. if (fourbitmode)
  68. _displayfunction = LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS;
  69. else
  70. _displayfunction = LCD_8BITMODE | LCD_1LINE | LCD_5x8DOTS;
  71. begin(16, 1);
  72. }
  73. void LiquidCrystal_Prusa::begin(uint8_t cols, uint8_t lines, uint8_t dotsize) {
  74. if (lines > 1) {
  75. _displayfunction |= LCD_2LINE;
  76. }
  77. _numlines = lines;
  78. _currline = 0;
  79. // for some 1 line displays you can select a 10 pixel high font
  80. if ((dotsize != 0) && (lines == 1)) {
  81. _displayfunction |= LCD_5x10DOTS;
  82. }
  83. // SEE PAGE 45/46 FOR INITIALIZATION SPECIFICATION!
  84. // according to datasheet, we need at least 40ms after power rises above 2.7V
  85. // before sending commands. Arduino can turn on way befer 4.5V so we'll wait 50
  86. delayMicroseconds(50000);
  87. // Now we pull both RS and R/W low to begin commands
  88. digitalWrite(_rs_pin, LOW);
  89. digitalWrite(_enable_pin, LOW);
  90. if (_rw_pin != 255) {
  91. digitalWrite(_rw_pin, LOW);
  92. }
  93. //put the LCD into 4 bit or 8 bit mode
  94. if (! (_displayfunction & LCD_8BITMODE)) {
  95. // this is according to the hitachi HD44780 datasheet
  96. // figure 24, pg 46
  97. // we start in 8bit mode, try to set 4 bit mode
  98. write4bits(0x03);
  99. delayMicroseconds(4500); // wait min 4.1ms
  100. // second try
  101. write4bits(0x03);
  102. delayMicroseconds(4500); // wait min 4.1ms
  103. // third go!
  104. write4bits(0x03);
  105. delayMicroseconds(150);
  106. // finally, set to 4-bit interface
  107. write4bits(0x02);
  108. } else {
  109. // this is according to the hitachi HD44780 datasheet
  110. // page 45 figure 23
  111. // Send function set command sequence
  112. command(LCD_FUNCTIONSET | _displayfunction);
  113. delayMicroseconds(4500); // wait more than 4.1ms
  114. // second try
  115. command(LCD_FUNCTIONSET | _displayfunction);
  116. delayMicroseconds(150);
  117. // third go
  118. command(LCD_FUNCTIONSET | _displayfunction);
  119. }
  120. // finally, set # lines, font size, etc.
  121. command(LCD_FUNCTIONSET | _displayfunction);
  122. delayMicroseconds(60);
  123. // turn the display on with no cursor or blinking default
  124. _displaycontrol = LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF;
  125. display();
  126. delayMicroseconds(60);
  127. // clear it off
  128. clear();
  129. delayMicroseconds(3000);
  130. // Initialize to default text direction (for romance languages)
  131. _displaymode = LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT;
  132. // set the entry mode
  133. command(LCD_ENTRYMODESET | _displaymode);
  134. delayMicroseconds(60);
  135. _escape[0] = 0;
  136. }
  137. void LiquidCrystal_Prusa::begin_noclear(uint8_t cols, uint8_t lines, uint8_t dotsize) {
  138. if (lines > 1) {
  139. _displayfunction |= LCD_2LINE;
  140. }
  141. _numlines = lines;
  142. _currline = 0;
  143. // for some 1 line displays you can select a 10 pixel high font
  144. if ((dotsize != 0) && (lines == 1)) {
  145. _displayfunction |= LCD_5x10DOTS;
  146. }
  147. // SEE PAGE 45/46 FOR INITIALIZATION SPECIFICATION!
  148. // according to datasheet, we need at least 40ms after power rises above 2.7V
  149. // before sending commands. Arduino can turn on way befer 4.5V so we'll wait 50
  150. delayMicroseconds(50000);
  151. // Now we pull both RS and R/W low to begin commands
  152. digitalWrite(_rs_pin, LOW);
  153. digitalWrite(_enable_pin, LOW);
  154. if (_rw_pin != 255) {
  155. digitalWrite(_rw_pin, LOW);
  156. }
  157. //put the LCD into 4 bit or 8 bit mode
  158. if (! (_displayfunction & LCD_8BITMODE)) {
  159. // this is according to the hitachi HD44780 datasheet
  160. // figure 24, pg 46
  161. // we start in 8bit mode, try to set 4 bit mode
  162. write4bits(0x03);
  163. delayMicroseconds(4500); // wait min 4.1ms
  164. // second try
  165. write4bits(0x03);
  166. delayMicroseconds(4500); // wait min 4.1ms
  167. // third go!
  168. write4bits(0x03);
  169. delayMicroseconds(150);
  170. // finally, set to 4-bit interface
  171. write4bits(0x02);
  172. } else {
  173. // this is according to the hitachi HD44780 datasheet
  174. // page 45 figure 23
  175. // Send function set command sequence
  176. command(LCD_FUNCTIONSET | _displayfunction);
  177. delayMicroseconds(4500); // wait more than 4.1ms
  178. // second try
  179. command(LCD_FUNCTIONSET | _displayfunction);
  180. delayMicroseconds(150);
  181. // third go
  182. command(LCD_FUNCTIONSET | _displayfunction);
  183. }
  184. // finally, set # lines, font size, etc.
  185. command(LCD_FUNCTIONSET | _displayfunction);
  186. delayMicroseconds(60);
  187. // turn the display on with no cursor or blinking default
  188. _displaycontrol = LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF;
  189. display();
  190. delayMicroseconds(60);
  191. // clear it off
  192. //clear();
  193. home();
  194. delayMicroseconds(1600);
  195. // Initialize to default text direction (for romance languages)
  196. _displaymode = LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT;
  197. // set the entry mode
  198. command(LCD_ENTRYMODESET | _displaymode);
  199. delayMicroseconds(60);
  200. /*
  201. setCursor(8,0);
  202. print(" ");
  203. setCursor(8,1);
  204. print(" ");
  205. setCursor(6,2);
  206. print(" ");
  207. */
  208. }
  209. /********** high level commands, for the user! */
  210. void LiquidCrystal_Prusa::clear()
  211. {
  212. command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
  213. delayMicroseconds(1600); // this command takes a long time
  214. }
  215. void LiquidCrystal_Prusa::home()
  216. {
  217. command(LCD_RETURNHOME); // set cursor position to zero
  218. delayMicroseconds(1600); // this command takes a long time!
  219. }
  220. void LiquidCrystal_Prusa::setCursor(uint8_t col, uint8_t row)
  221. {
  222. int row_offsets[] = { 0x00, 0x40, 0x14, 0x54 };
  223. if ( row >= _numlines ) {
  224. row = _numlines-1; // we count rows starting w/0
  225. }
  226. _currline = row;
  227. command(LCD_SETDDRAMADDR | (col + row_offsets[row]));
  228. }
  229. // Turn the display on/off (quickly)
  230. void LiquidCrystal_Prusa::noDisplay() {
  231. _displaycontrol &= ~LCD_DISPLAYON;
  232. command(LCD_DISPLAYCONTROL | _displaycontrol);
  233. }
  234. void LiquidCrystal_Prusa::display() {
  235. _displaycontrol |= LCD_DISPLAYON;
  236. command(LCD_DISPLAYCONTROL | _displaycontrol);
  237. }
  238. // Turns the underline cursor on/off
  239. void LiquidCrystal_Prusa::noCursor() {
  240. _displaycontrol &= ~LCD_CURSORON;
  241. command(LCD_DISPLAYCONTROL | _displaycontrol);
  242. }
  243. void LiquidCrystal_Prusa::cursor() {
  244. _displaycontrol |= LCD_CURSORON;
  245. command(LCD_DISPLAYCONTROL | _displaycontrol);
  246. }
  247. // Turn on and off the blinking cursor
  248. void LiquidCrystal_Prusa::noBlink() {
  249. _displaycontrol &= ~LCD_BLINKON;
  250. command(LCD_DISPLAYCONTROL | _displaycontrol);
  251. }
  252. void LiquidCrystal_Prusa::blink() {
  253. _displaycontrol |= LCD_BLINKON;
  254. command(LCD_DISPLAYCONTROL | _displaycontrol);
  255. }
  256. // These commands scroll the display without changing the RAM
  257. void LiquidCrystal_Prusa::scrollDisplayLeft(void) {
  258. command(LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVELEFT);
  259. }
  260. void LiquidCrystal_Prusa::scrollDisplayRight(void) {
  261. command(LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVERIGHT);
  262. }
  263. // This is for text that flows Left to Right
  264. void LiquidCrystal_Prusa::leftToRight(void) {
  265. _displaymode |= LCD_ENTRYLEFT;
  266. command(LCD_ENTRYMODESET | _displaymode);
  267. }
  268. // This is for text that flows Right to Left
  269. void LiquidCrystal_Prusa::rightToLeft(void) {
  270. _displaymode &= ~LCD_ENTRYLEFT;
  271. command(LCD_ENTRYMODESET | _displaymode);
  272. }
  273. // This will 'right justify' text from the cursor
  274. void LiquidCrystal_Prusa::autoscroll(void) {
  275. _displaymode |= LCD_ENTRYSHIFTINCREMENT;
  276. command(LCD_ENTRYMODESET | _displaymode);
  277. }
  278. // This will 'left justify' text from the cursor
  279. void LiquidCrystal_Prusa::noAutoscroll(void) {
  280. _displaymode &= ~LCD_ENTRYSHIFTINCREMENT;
  281. command(LCD_ENTRYMODESET | _displaymode);
  282. }
  283. // Allows us to fill the first 8 CGRAM locations
  284. // with custom characters
  285. void LiquidCrystal_Prusa::createChar_P(uint8_t location, const uint8_t* charmap)
  286. {
  287. location &= 0x7; // we only have 8 locations 0-7
  288. command(LCD_SETCGRAMADDR | (location << 3));
  289. for (int i=0; i<8; i++)
  290. send(pgm_read_byte(&charmap[i]), HIGH);
  291. }
  292. /*********** mid level commands, for sending data/cmds */
  293. void LiquidCrystal_Prusa::command(uint8_t value) {
  294. send(value, LOW);
  295. }
  296. size_t LiquidCrystal_Prusa::write(uint8_t value) {
  297. if (value == '\n')
  298. {
  299. if (_currline > 3) _currline = -1;
  300. setCursor(0, _currline + 1); // LF
  301. return 1;
  302. }
  303. if (_escape[0] || (value == 0x1b))
  304. return escape_write(value);
  305. send(value, HIGH);
  306. return 1; // assume sucess
  307. }
  308. //Supported VT100 escape codes:
  309. //EraseScreen "\x1b[2J"
  310. //CursorHome "\x1b[%d;%dH"
  311. //CursorShow "\x1b[?25h"
  312. //CursorHide "\x1b[?25l"
  313. size_t LiquidCrystal_Prusa::escape_write(uint8_t chr)
  314. {
  315. #define escape_cnt (_escape[0]) //escape character counter
  316. #define is_num_msk (_escape[1]) //numeric character bit mask
  317. #define chr_is_num (is_num_msk & 0x01) //current character is numeric
  318. #define e_2_is_num (is_num_msk & 0x04) //escape char 2 is numeric
  319. #define e_3_is_num (is_num_msk & 0x08) //...
  320. #define e_4_is_num (is_num_msk & 0x10)
  321. #define e_5_is_num (is_num_msk & 0x20)
  322. #define e_6_is_num (is_num_msk & 0x40)
  323. #define e_7_is_num (is_num_msk & 0x80)
  324. #define e2_num (_escape[2] - '0') //number from character 2
  325. #define e3_num (_escape[3] - '0') //number from character 3
  326. #define e23_num (10*e2_num+e3_num) //number from characters 2 and 3
  327. #define e4_num (_escape[4] - '0') //number from character 4
  328. #define e5_num (_escape[5] - '0') //number from character 5
  329. #define e45_num (10*e4_num+e5_num) //number from characters 4 and 5
  330. #define e6_num (_escape[6] - '0') //number from character 6
  331. #define e56_num (10*e5_num+e6_num) //number from characters 5 and 6
  332. if (escape_cnt > 1) // escape length > 1 = "\x1b["
  333. {
  334. _escape[escape_cnt] = chr; // store current char
  335. if ((chr >= '0') && (chr <= '9')) // char is numeric
  336. is_num_msk |= (1 | (1 << escape_cnt)); //set mask
  337. else
  338. is_num_msk &= ~1; //clear mask
  339. }
  340. switch (escape_cnt++)
  341. {
  342. case 0:
  343. if (chr == 0x1b) return 1; // escape = "\x1b"
  344. break;
  345. case 1:
  346. is_num_msk = 0x00; // reset 'is number' bit mask
  347. if (chr == '[') return 1; // escape = "\x1b["
  348. break;
  349. case 2:
  350. switch (chr)
  351. {
  352. case '2': return 1; // escape = "\x1b[2"
  353. case '?': return 1; // escape = "\x1b[?"
  354. default:
  355. if (chr_is_num) return 1; // escape = "\x1b[%1d"
  356. }
  357. break;
  358. case 3:
  359. switch (_escape[2])
  360. {
  361. case '?': // escape = "\x1b[?"
  362. if (chr == '2') return 1; // escape = "\x1b[?2"
  363. break;
  364. case '2':
  365. if (chr == 'J') // escape = "\x1b[2J"
  366. { clear(); _currline = 0; break; } // EraseScreen
  367. default:
  368. if (e_2_is_num && // escape = "\x1b[%1d"
  369. ((chr == ';') || // escape = "\x1b[%1d;"
  370. chr_is_num)) // escape = "\x1b[%2d"
  371. return 1;
  372. }
  373. break;
  374. case 4:
  375. switch (_escape[2])
  376. {
  377. case '?': // "\x1b[?"
  378. if ((_escape[3] == '2') && (chr == '5')) return 1; // escape = "\x1b[?25"
  379. break;
  380. default:
  381. if (e_2_is_num) // escape = "\x1b[%1d"
  382. {
  383. if ((_escape[3] == ';') && chr_is_num) return 1; // escape = "\x1b[%1d;%1d"
  384. else if (e_3_is_num && (chr == ';')) return 1; // escape = "\x1b[%2d;"
  385. }
  386. }
  387. break;
  388. case 5:
  389. switch (_escape[2])
  390. {
  391. case '?':
  392. if ((_escape[3] == '2') && (_escape[4] == '5')) // escape = "\x1b[?25"
  393. switch (chr)
  394. {
  395. case 'h': // escape = "\x1b[?25h"
  396. void cursor(); // CursorShow
  397. break;
  398. case 'l': // escape = "\x1b[?25l"
  399. noCursor(); // CursorHide
  400. break;
  401. }
  402. break;
  403. default:
  404. if (e_2_is_num) // escape = "\x1b[%1d"
  405. {
  406. if ((_escape[3] == ';') && e_4_is_num) // escape = "\x1b%1d;%1dH"
  407. {
  408. if (chr == 'H') // escape = "\x1b%1d;%1dH"
  409. setCursor(e4_num, e2_num); // CursorHome
  410. else if (chr_is_num)
  411. return 1; // escape = "\x1b%1d;%2d"
  412. }
  413. else if (e_3_is_num && (_escape[4] == ';') && chr_is_num)
  414. return 1; // escape = "\x1b%2d;%1d"
  415. }
  416. }
  417. break;
  418. case 6:
  419. if (e_2_is_num) // escape = "\x1b[%1d"
  420. {
  421. if ((_escape[3] == ';') && e_4_is_num && e_5_is_num && (chr == 'H')) // escape = "\x1b%1d;%2dH"
  422. setCursor(e45_num, e2_num); // CursorHome
  423. else if (e_3_is_num && (_escape[4] == ';') && e_5_is_num) // escape = "\x1b%2d;%1d"
  424. {
  425. if (chr == 'H') // escape = "\x1b%2d;%1dH"
  426. setCursor(e5_num, e23_num); // CursorHome
  427. else if (chr_is_num) // "\x1b%2d;%2d"
  428. return 1;
  429. }
  430. }
  431. break;
  432. case 7:
  433. if (e_2_is_num && e_3_is_num && (_escape[4] == ';')) // "\x1b[%2d;"
  434. if (e_5_is_num && e_6_is_num && (chr == 'H')) // "\x1b[%2d;%2dH"
  435. setCursor(e56_num, e23_num); // CursorHome
  436. break;
  437. }
  438. escape_cnt = 0; // reset escape
  439. end:
  440. return 1; // assume sucess
  441. }
  442. /************ low level data pushing commands **********/
  443. // write either command or data, with automatic 4/8-bit selection
  444. void LiquidCrystal_Prusa::send(uint8_t value, uint8_t mode) {
  445. digitalWrite(_rs_pin, mode);
  446. // if there is a RW pin indicated, set it low to Write
  447. if (_rw_pin != 255) {
  448. digitalWrite(_rw_pin, LOW);
  449. }
  450. if (_displayfunction & LCD_8BITMODE) {
  451. write8bits(value);
  452. } else {
  453. write4bits(value>>4);
  454. write4bits(value);
  455. }
  456. }
  457. void LiquidCrystal_Prusa::pulseEnable(void) {
  458. digitalWrite(_enable_pin, LOW);
  459. delayMicroseconds(1);
  460. digitalWrite(_enable_pin, HIGH);
  461. delayMicroseconds(1); // enable pulse must be >450ns
  462. digitalWrite(_enable_pin, LOW);
  463. delayMicroseconds(100); // commands need > 37us to settle
  464. }
  465. void LiquidCrystal_Prusa::write4bits(uint8_t value) {
  466. for (int i = 0; i < 4; i++) {
  467. pinMode(_data_pins[i], OUTPUT);
  468. digitalWrite(_data_pins[i], (value >> i) & 0x01);
  469. }
  470. pulseEnable();
  471. }
  472. void LiquidCrystal_Prusa::write8bits(uint8_t value) {
  473. for (int i = 0; i < 8; i++) {
  474. pinMode(_data_pins[i], OUTPUT);
  475. digitalWrite(_data_pins[i], (value >> i) & 0x01);
  476. }
  477. pulseEnable();
  478. }