| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927 | /* -*- c++ -*- *//*    Reprap firmware based on Sprinter and grbl. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program.  If not, see <http://www.gnu.org/licenses/>. *//* This firmware is a mashup between Sprinter and grbl.  (https://github.com/kliment/Sprinter)  (https://github.com/simen/grbl/tree) It has preliminary support for Matthew Roberts advance algorithm    http://reprap.org/pipermail/reprap-dev/2011-May/003323.html */#include "Marlin.h"#ifdef ENABLE_AUTO_BED_LEVELING#include "vector_3.h"  #ifdef AUTO_BED_LEVELING_GRID    #include "qr_solve.h"  #endif#endif // ENABLE_AUTO_BED_LEVELING#ifdef MESH_BED_LEVELING  #include "mesh_bed_leveling.h"  #include "mesh_bed_calibration.h"#endif#include "ultralcd.h"#include "Configuration_prusa.h"#include "planner.h"#include "stepper.h"#include "temperature.h"#include "motion_control.h"#include "cardreader.h"#include "watchdog.h"#include "ConfigurationStore.h"#include "language.h"#include "pins_arduino.h"#include "math.h"#include "util.h"#include <avr/wdt.h>#include "Dcodes.h"#ifdef SWSPI#include "swspi.h"#endif //SWSPI#ifdef SWI2C#include "swi2c.h"#endif //SWI2C#ifdef PAT9125#include "pat9125.h"#include "fsensor.h"#endif //PAT9125#ifdef TMC2130#include "tmc2130.h"#endif //TMC2130#ifdef BLINKM#include "BlinkM.h"#include "Wire.h"#endif#ifdef ULTRALCD#include "ultralcd.h"#endif#if NUM_SERVOS > 0#include "Servo.h"#endif#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1#include <SPI.h>#endif#define VERSION_STRING  "1.0.2"#include "ultralcd.h"#include "cmdqueue.h"// Macros for bit masks#define BIT(b) (1<<(b))#define TEST(n,b) (((n)&BIT(b))!=0)#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))//Macro for print fan speed#define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes//Implemented Codes//-------------------// PRUSA CODES// P F - Returns FW versions// P R - Returns revision of printer// G0  -> G1// G1  - Coordinated Movement X Y Z E// G2  - CW ARC// G3  - CCW ARC// G4  - Dwell S<seconds> or P<milliseconds>// G10 - retract filament according to settings of M207// G11 - retract recover filament according to settings of M208// G28 - Home all Axis// G29 - Detailed Z-Probe, probes the bed at 3 or more points.  Will fail if you haven't homed yet.// G30 - Single Z Probe, probes bed at current XY location.// G31 - Dock sled (Z_PROBE_SLED only)// G32 - Undock sled (Z_PROBE_SLED only)// G80 - Automatic mesh bed leveling// G81 - Print bed profile// G90 - Use Absolute Coordinates// G91 - Use Relative Coordinates// G92 - Set current position to coordinates given// M Codes// M0   - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)// M1   - Same as M0// M17  - Enable/Power all stepper motors// M18  - Disable all stepper motors; same as M84// M20  - List SD card// M21  - Init SD card// M22  - Release SD card// M23  - Select SD file (M23 filename.g)// M24  - Start/resume SD print// M25  - Pause SD print// M26  - Set SD position in bytes (M26 S12345)// M27  - Report SD print status// M28  - Start SD write (M28 filename.g)// M29  - Stop SD write// M30  - Delete file from SD (M30 filename.g)// M31  - Output time since last M109 or SD card start to serial// M32  - Select file and start SD print (Can be used _while_ printing from SD card files)://        syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"//        Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).//        The '#' is necessary when calling from within sd files, as it stops buffer prereading// M42  - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.// M80  - Turn on Power Supply// M81  - Turn off Power Supply// M82  - Set E codes absolute (default)// M83  - Set E codes relative while in Absolute Coordinates (G90) mode// M84  - Disable steppers until next move,//        or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled.  S0 to disable the timeout.// M85  - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)// M92  - Set axis_steps_per_unit - same syntax as G92// M104 - Set extruder target temp// M105 - Read current temp// M106 - Fan on// M107 - Fan off// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating//        Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling//        IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F// M112 - Emergency stop// M113 - Get or set the timeout interval for Host Keepalive "busy" messages// M114 - Output current position to serial port// M115 - Capabilities string// M117 - display message// M119 - Output Endstop status to serial port// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)// M140 - Set bed target temp// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating//        Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling// M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2  also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate// M205 -  advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk// M206 - set additional homing offset// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.// M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>// M220 S<factor in percent>- set speed factor override percentage// M221 S<factor in percent>- set extrude factor override percentage// M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required// M240 - Trigger a camera to take a photograph// M250 - Set LCD contrast C<contrast value> (value 0..63)// M280 - set servo position absolute. P: servo index, S: angle or microseconds// M300 - Play beep sound S<frequency Hz> P<duration ms>// M301 - Set PID parameters P I and D// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)// M304 - Set bed PID parameters P I and D// M400 - Finish all moves// M401 - Lower z-probe if present// M402 - Raise z-probe if present// M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters// M405 - Turn on Filament Sensor extrusion control.  Optional D<delay in cm> to set delay in centimeters between sensor and extruder // M406 - Turn off Filament Sensor extrusion control // M407 - Displays measured filament diameter // M500 - stores parameters in EEPROM// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).// M502 - reverts to the default "factory settings".  You still need to store them in EEPROM afterwards if you want to.// M503 - print the current settings (from memory not from EEPROM)// M509 - force language selection on next restart// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]// M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.// M907 - Set digital trimpot motor current using axis codes.// M908 - Control digital trimpot directly.// M350 - Set microstepping mode.// M351 - Toggle MS1 MS2 pins directly.// M928 - Start SD logging (M928 filename.g) - ended by M29// M999 - Restart after being stopped by error//Stepper Movement Variables//===========================================================================//=============================imported variables============================//===========================================================================//===========================================================================//=============================public variables=============================//===========================================================================#ifdef SDSUPPORTCardReader card;#endifunsigned long PingTime = millis();union Data{byte b[2];int value;};float homing_feedrate[] = HOMING_FEEDRATE;// Currently only the extruder axis may be switched to a relative mode.// Other axes are always absolute or relative based on the common relative_mode flag.bool axis_relative_modes[] = AXIS_RELATIVE_MODES;int feedmultiply=100; //100->1 200->2int saved_feedmultiply;int extrudemultiply=100; //100->1 200->2int extruder_multiply[EXTRUDERS] = {100  #if EXTRUDERS > 1    , 100    #if EXTRUDERS > 2      , 100    #endif  #endif};int bowden_length[4] = {385, 385, 385, 385};bool is_usb_printing = false;bool homing_flag = false;bool temp_cal_active = false;unsigned long kicktime = millis()+100000;unsigned int  usb_printing_counter;int lcd_change_fil_state = 0;int feedmultiplyBckp = 100;float HotendTempBckp = 0;int fanSpeedBckp = 0;float pause_lastpos[4];unsigned long pause_time = 0;unsigned long start_pause_print = millis();unsigned long t_fan_rising_edge = millis();//unsigned long load_filament_time;bool mesh_bed_leveling_flag = false;bool mesh_bed_run_from_menu = false;unsigned char lang_selected = 0;int8_t FarmMode = 0;bool prusa_sd_card_upload = false;unsigned int status_number = 0;unsigned long total_filament_used;unsigned int heating_status;unsigned int heating_status_counter;bool custom_message;bool loading_flag = false;unsigned int custom_message_type;unsigned int custom_message_state;char snmm_filaments_used = 0;float distance_from_min[2];bool fan_state[2];int fan_edge_counter[2];int fan_speed[2];char dir_names[3][9];bool sortAlpha = false;bool volumetric_enabled = false;float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA  #if EXTRUDERS > 1      , DEFAULT_NOMINAL_FILAMENT_DIA    #if EXTRUDERS > 2       , DEFAULT_NOMINAL_FILAMENT_DIA    #endif  #endif};float volumetric_multiplier[EXTRUDERS] = {1.0  #if EXTRUDERS > 1    , 1.0    #if EXTRUDERS > 2      , 1.0    #endif  #endif};float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };float add_homing[3]={0,0,0};float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };bool axis_known_position[3] = {false, false, false};float zprobe_zoffset;// Extruder offset#if EXTRUDERS > 1  #define NUM_EXTRUDER_OFFSETS 2 // only in XY planefloat extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)  EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y#endif};#endifuint8_t active_extruder = 0;int fanSpeed=0;#ifdef FWRETRACT  bool autoretract_enabled=false;  bool retracted[EXTRUDERS]={false    #if EXTRUDERS > 1    , false     #if EXTRUDERS > 2      , false     #endif  #endif  };  bool retracted_swap[EXTRUDERS]={false    #if EXTRUDERS > 1    , false     #if EXTRUDERS > 2      , false     #endif  #endif  };  float retract_length = RETRACT_LENGTH;  float retract_length_swap = RETRACT_LENGTH_SWAP;  float retract_feedrate = RETRACT_FEEDRATE;  float retract_zlift = RETRACT_ZLIFT;  float retract_recover_length = RETRACT_RECOVER_LENGTH;  float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;  float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;#endif#ifdef ULTIPANEL  #ifdef PS_DEFAULT_OFF    bool powersupply = false;  #else	  bool powersupply = true;  #endif#endifbool cancel_heatup = false ;#ifdef HOST_KEEPALIVE_FEATURE    int busy_state = NOT_BUSY;  static long prev_busy_signal_ms = -1;  uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;#else  #define host_keepalive();  #define KEEPALIVE_STATE(n);#endif#ifdef FILAMENT_SENSOR  //Variables for Filament Sensor input   float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA;  //Set nominal filament width, can be changed with M404   bool filament_sensor=false;  //M405 turns on filament_sensor control, M406 turns it off   float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter   signed char measurement_delay[MAX_MEASUREMENT_DELAY+1];  //ring buffer to delay measurement  store extruder factor after subtracting 100   int delay_index1=0;  //index into ring buffer  int delay_index2=-1;  //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized  float delay_dist=0; //delay distance counter    int meas_delay_cm = MEASUREMENT_DELAY_CM;  //distance delay setting#endifconst char errormagic[] PROGMEM = "Error:";const char echomagic[] PROGMEM = "echo:";//===========================================================================//=============================Private Variables=============================//===========================================================================const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};float destination[NUM_AXIS] = {  0.0, 0.0, 0.0, 0.0};static float delta[3] = {0.0, 0.0, 0.0};// For tracing an arcstatic float offset[3] = {0.0, 0.0, 0.0};static float feedrate = 1500.0, next_feedrate, saved_feedrate;// Determines Absolute or Relative Coordinates.// Also there is bool axis_relative_modes[] per axis flag.static bool relative_mode = false;  #ifndef _DISABLE_M42_M226const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42#endif //_DISABLE_M42_M226//static float tt = 0;//static float bt = 0;//Inactivity shutdown variablesstatic unsigned long previous_millis_cmd = 0;unsigned long max_inactive_time = 0;static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;unsigned long starttime=0;unsigned long stoptime=0;unsigned long _usb_timer = 0;static uint8_t tmp_extruder;bool extruder_under_pressure = true;bool Stopped=false;#if NUM_SERVOS > 0  Servo servos[NUM_SERVOS];#endifbool CooldownNoWait = true;bool target_direction;//Insert variables if CHDK is defined#ifdef CHDKunsigned long chdkHigh = 0;boolean chdkActive = false;#endif//===========================================================================//=============================Routines======================================//===========================================================================void get_arc_coordinates();bool setTargetedHotend(int code);void serial_echopair_P(const char *s_P, float v)    { serialprintPGM(s_P); SERIAL_ECHO(v); }void serial_echopair_P(const char *s_P, double v)    { serialprintPGM(s_P); SERIAL_ECHO(v); }void serial_echopair_P(const char *s_P, unsigned long v)    { serialprintPGM(s_P); SERIAL_ECHO(v); }#ifdef SDSUPPORT  #include "SdFatUtil.h"  int freeMemory() { return SdFatUtil::FreeRam(); }#else  extern "C" {    extern unsigned int __bss_end;    extern unsigned int __heap_start;    extern void *__brkval;    int freeMemory() {      int free_memory;      if ((int)__brkval == 0)        free_memory = ((int)&free_memory) - ((int)&__bss_end);      else        free_memory = ((int)&free_memory) - ((int)__brkval);      return free_memory;    }  }#endif //!SDSUPPORTvoid setup_killpin(){  #if defined(KILL_PIN) && KILL_PIN > -1    SET_INPUT(KILL_PIN);    WRITE(KILL_PIN,HIGH);  #endif}// Set home pinvoid setup_homepin(void){#if defined(HOME_PIN) && HOME_PIN > -1   SET_INPUT(HOME_PIN);   WRITE(HOME_PIN,HIGH);#endif}void setup_photpin(){  #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1    SET_OUTPUT(PHOTOGRAPH_PIN);    WRITE(PHOTOGRAPH_PIN, LOW);  #endif}void setup_powerhold(){  #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1    SET_OUTPUT(SUICIDE_PIN);    WRITE(SUICIDE_PIN, HIGH);  #endif  #if defined(PS_ON_PIN) && PS_ON_PIN > -1    SET_OUTPUT(PS_ON_PIN);	#if defined(PS_DEFAULT_OFF)	  WRITE(PS_ON_PIN, PS_ON_ASLEEP);    #else	  WRITE(PS_ON_PIN, PS_ON_AWAKE);	#endif  #endif}void suicide(){  #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1    SET_OUTPUT(SUICIDE_PIN);    WRITE(SUICIDE_PIN, LOW);  #endif}void servo_init(){  #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)    servos[0].attach(SERVO0_PIN);  #endif  #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)    servos[1].attach(SERVO1_PIN);  #endif  #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)    servos[2].attach(SERVO2_PIN);  #endif  #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)    servos[3].attach(SERVO3_PIN);  #endif  #if (NUM_SERVOS >= 5)    #error "TODO: enter initalisation code for more servos"  #endif}static void lcd_language_menu();void stop_and_save_print_to_ram(float z_move, float e_move);void restore_print_from_ram_and_continue(float e_move);bool fans_check_enabled = true;bool filament_autoload_enabled = true;extern int8_t CrashDetectMenu;void crashdet_enable(){	MYSERIAL.println("crashdet_enable"); 	tmc2130_sg_stop_on_crash = true;	eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF); 	CrashDetectMenu = 1;}void crashdet_disable(){	MYSERIAL.println("crashdet_disable"); 	tmc2130_sg_stop_on_crash = false;	tmc2130_sg_crash = false;	eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00); 	CrashDetectMenu = 0;}void crashdet_stop_and_save_print(){	stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change}void crashdet_restore_print_and_continue(){	restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change//	babystep_apply();}void crashdet_stop_and_save_print2(){	cli();	planner_abort_hard(); //abort printing	cmdqueue_reset(); //empty cmdqueue	card.sdprinting = false;	card.closefile();	sei();}void crashdet_detected(){//	printf("CRASH_DETECTED");/*	while (!is_buffer_empty())	{		process_commands();	    cmdqueue_pop_front();	}*/	st_synchronize();	lcd_update_enable(true);	lcd_implementation_clear();	lcd_update(2);        // Increment crash counter    uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);    crash_count++;    eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);    #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH    bool yesno = true;#else    bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);#endif	lcd_update_enable(true);	lcd_update(2);	lcd_setstatuspgm(WELCOME_MSG);	if (yesno)	{		enquecommand_P(PSTR("G28 X"));		enquecommand_P(PSTR("G28 Y"));		enquecommand_P(PSTR("CRASH_RECOVER"));	}	else	{		enquecommand_P(PSTR("CRASH_CANCEL"));	}}void crashdet_recover(){	crashdet_restore_print_and_continue();	tmc2130_sg_stop_on_crash = true;}void crashdet_cancel(){	card.sdprinting = false;	card.closefile();	tmc2130_sg_stop_on_crash = true;}#ifdef MESH_BED_LEVELING   enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };#endif// Factory reset function// This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.// Level input parameter sets depth of reset// Quiet parameter masks all waitings for user interact.int  er_progress = 0;void factory_reset(char level, bool quiet){		lcd_implementation_clear();	int cursor_pos = 0;    switch (level) {                           // Level 0: Language reset        case 0:            WRITE(BEEPER, HIGH);            _delay_ms(100);            WRITE(BEEPER, LOW);                        lcd_force_language_selection();            break;         		//Level 1: Reset statistics		case 1:			WRITE(BEEPER, HIGH);			_delay_ms(100);			WRITE(BEEPER, LOW);			eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);			eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);			eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);			eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT, 0);			eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);						lcd_menu_statistics();            			break;        // Level 2: Prepare for shipping        case 2:			//lcd_printPGM(PSTR("Factory RESET"));            //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));                        // Force language selection at the next boot up.            lcd_force_language_selection();            // Force the "Follow calibration flow" message at the next boot up.            calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);			eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard            farm_no = 0;			farm_mode == false;			eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);            EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);                                   WRITE(BEEPER, HIGH);            _delay_ms(100);            WRITE(BEEPER, LOW);			//_delay_ms(2000);            break;			// Level 3: erase everything, whole EEPROM will be set to 0xFF		case 3:			lcd_printPGM(PSTR("Factory RESET"));			lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));			WRITE(BEEPER, HIGH);			_delay_ms(100);			WRITE(BEEPER, LOW);			er_progress = 0;			lcd_print_at_PGM(3, 3, PSTR("      "));			lcd_implementation_print_at(3, 3, er_progress);			// Erase EEPROM			for (int i = 0; i < 4096; i++) {				eeprom_write_byte((uint8_t*)i, 0xFF);				if (i % 41 == 0) {					er_progress++;					lcd_print_at_PGM(3, 3, PSTR("      "));					lcd_implementation_print_at(3, 3, er_progress);					lcd_printPGM(PSTR("%"));				}			}			break;		case 4:			bowden_menu();			break;                default:            break;    }    }#include "LiquidCrystal.h"extern LiquidCrystal lcd;FILE _lcdout = {0};int lcd_putchar(char c, FILE *stream){	lcd.write(c);	return 0;}FILE _uartout = {0};int uart_putchar(char c, FILE *stream){	MYSERIAL.write(c);	return 0;}void lcd_splash(){//	lcd_print_at_PGM(0, 1, PSTR("   Original Prusa   "));//	lcd_print_at_PGM(0, 2, PSTR("    3D  Printers    "));//	lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D  Printers"));    fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);}void factory_reset() {	KEEPALIVE_STATE(PAUSED_FOR_USER);	if (!READ(BTN_ENC))	{		_delay_ms(1000);		if (!READ(BTN_ENC))		{			lcd_implementation_clear();			lcd_printPGM(PSTR("Factory RESET"));			SET_OUTPUT(BEEPER);			WRITE(BEEPER, HIGH);			while (!READ(BTN_ENC));			WRITE(BEEPER, LOW);			_delay_ms(2000);			char level = reset_menu();			factory_reset(level, false);			switch (level) {			case 0: _delay_ms(0); break;			case 1: _delay_ms(0); break;			case 2: _delay_ms(0); break;			case 3: _delay_ms(0); break;			}			// _delay_ms(100);			/*			#ifdef MESH_BED_LEVELING			_delay_ms(2000);			if (!READ(BTN_ENC))			{			WRITE(BEEPER, HIGH);			_delay_ms(100);			WRITE(BEEPER, LOW);			_delay_ms(200);			WRITE(BEEPER, HIGH);			_delay_ms(100);			WRITE(BEEPER, LOW);			int _z = 0;			calibration_status_store(CALIBRATION_STATUS_CALIBRATED);			EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);			EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);			EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);			}			else			{			WRITE(BEEPER, HIGH);			_delay_ms(100);			WRITE(BEEPER, LOW);			}			#endif // mesh */		}	}	else	{		//_delay_ms(1000);  // wait 1sec to display the splash screen // what's this and why do we need it?? - andre	}	KEEPALIVE_STATE(IN_HANDLER);}// "Setup" function is called by the Arduino framework on startup.// Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code // are initialized by the main() routine provided by the Arduino framework.void setup(){    lcd_init();	fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream	lcd_splash();	setup_killpin();	setup_powerhold();		farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE); 	EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);	if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode	if (farm_no == 0xFFFF) farm_no = 0;		selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);	if (selectedSerialPort == 0xFF) selectedSerialPort = 0;	if (farm_mode)	{ 		prusa_statistics(8);		selectedSerialPort = 1;	}	MYSERIAL.begin(BAUDRATE);	fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream	stdout = uartout;	SERIAL_PROTOCOLLNPGM("start");	SERIAL_ECHO_START;#if 0	SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");	for (int i = 0; i < 4096; ++i) {		int b = eeprom_read_byte((unsigned char*)i);		if (b != 255) {			SERIAL_ECHO(i);			SERIAL_ECHO(":");			SERIAL_ECHO(b);			SERIAL_ECHOLN("");		}	}	SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");#endif	// Check startup - does nothing if bootloader sets MCUSR to 0	byte mcu = MCUSR;/*	if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);	if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);	if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);	if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);	if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/	if (mcu & 1) puts_P(MSG_POWERUP);	if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);	if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);	if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);	if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);	MCUSR = 0;	//SERIAL_ECHORPGM(MSG_MARLIN);	//SERIAL_ECHOLNRPGM(VERSION_STRING);#ifdef STRING_VERSION_CONFIG_H#ifdef STRING_CONFIG_H_AUTHOR	SERIAL_ECHO_START;	SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);	SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);	SERIAL_ECHORPGM(MSG_AUTHOR);	SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);	SERIAL_ECHOPGM("Compiled: ");	SERIAL_ECHOLNPGM(__DATE__);#endif#endif	SERIAL_ECHO_START;	SERIAL_ECHORPGM(MSG_FREE_MEMORY);	SERIAL_ECHO(freeMemory());	SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);	SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);	//lcd_update_enable(false); // why do we need this?? - andre	// loads data from EEPROM if available else uses defaults (and resets step acceleration rate)	Config_RetrieveSettings(EEPROM_OFFSET);	SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack	tp_init();    // Initialize temperature loop	lcd_splash(); // we need to do this again, because tp_init() kills lcd	plan_init();  // Initialize planner;	watchdog_init();	factory_reset();#ifdef TMC2130	uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);	tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;	uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);	if (crashdet)	{		crashdet_enable();	    MYSERIAL.println("CrashDetect ENABLED!");	}	else	{		crashdet_disable();	    MYSERIAL.println("CrashDetect DISABLED");	}#endif //TMC2130	st_init();    // Initialize stepper, this enables interrupts!    	setup_photpin();	servo_init();	// Reset the machine correction matrix.	// It does not make sense to load the correction matrix until the machine is homed.	world2machine_reset();    #ifdef PAT9125	fsensor_init();#endif //PAT9125#if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)	SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan#endif#ifdef DIGIPOT_I2C	digipot_i2c_init();#endif	setup_homepin();  if (1) {    SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));    // try to run to zero phase before powering the Z motor.        // Move in negative direction    WRITE(Z_DIR_PIN,INVERT_Z_DIR);    // Round the current micro-micro steps to micro steps.    for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {      // Until the phase counter is reset to zero.      WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);      delay(2);      WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);      delay(2);    }    SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));  }#if defined(Z_AXIS_ALWAYS_ON)	enable_z();#endif	farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);	EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);	if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode 	if (farm_no == 0xFFFF) farm_no = 0;	if (farm_mode)	{		prusa_statistics(8);	}	// Enable Toshiba FlashAir SD card / WiFi enahanced card.	card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);		if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&		eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {		// Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,		// where all the EEPROM entries are set to 0x0ff.		// Once a firmware boots up, it forces at least a language selection, which changes		// EEPROM_LANG to number lower than 0x0ff.		// 1) Set a high power mode.		eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);		eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard	}	// Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false), 	// but this times out if a blocking dialog is shown in setup().	card.initsd();	if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff)		eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);	if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT) == 0xff)		eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT, 0);	if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff)		eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);#ifdef SNMM	if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM	  int _z = BOWDEN_LENGTH;	  for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);	}#endif  // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.  // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version  // is being written into the EEPROM, so the update procedure will be triggered only once.    lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);    if (lang_selected >= LANG_NUM){      lcd_mylang();    }		if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {		eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);		temp_cal_active = false;	} else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);	if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {		//eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);		eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);		eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0,   8); //40C -  20um -   8usteps		eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1,  24); //45C -  60um -  24usteps		eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2,  48); //50C - 120um -  48usteps		eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3,  80); //55C - 200um -  80usteps		eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps		eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);		temp_cal_active = true;	}	if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {		eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);	}	if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {		eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);	}	check_babystep(); //checking if Z babystep is in allowed range	setup_uvlo_interrupt();	setup_fan_interrupt();	fsensor_setup_interrupt();	for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]); 	#ifndef DEBUG_DISABLE_STARTMSGS  KEEPALIVE_STATE(PAUSED_FOR_USER);  if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {	  lcd_wizard(0);  }  if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active	  if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||		  calibration_status() == CALIBRATION_STATUS_UNKNOWN) {		  // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.		  eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);		  // Show the message.		  lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);	  }	  else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {		  // Show the message.		  lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);		  lcd_update_enable(true);	  }	  else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {		  //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);		  lcd_update_enable(true);	  }	  else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {		  // Show the message.		  lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);	  }  }  KEEPALIVE_STATE(IN_PROCESS);#endif //DEBUG_DISABLE_STARTMSGS  lcd_update_enable(true);  lcd_implementation_clear();  lcd_update(2);  // Store the currently running firmware into an eeprom,  // so the next time the firmware gets updated, it will know from which version it has been updated.  update_current_firmware_version_to_eeprom();    if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO/*	  if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false))	recover_print();	  else {		  eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);		  lcd_update_enable(true);		  lcd_update(2);		  lcd_setstatuspgm(WELCOME_MSG);	  }*/      manage_heater(); // Update temperatures #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER       MYSERIAL.println("Power panic detected!");       MYSERIAL.print("Current bed temp:");       MYSERIAL.println(degBed());       MYSERIAL.print("Saved bed temp:");       MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED)); #endif      if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){           #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER         MYSERIAL.println("Automatic recovery!");           #endif          recover_print(1);       }       else{           #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER         MYSERIAL.println("Normal recovery!");           #endif           if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);           else {               eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);               lcd_update_enable(true);               lcd_update(2);               lcd_setstatuspgm(WELCOME_MSG);           }                  } 	     }  KEEPALIVE_STATE(NOT_BUSY);  wdt_enable(WDTO_4S);}#ifdef PAT9125void fsensor_init() {	int pat9125 = pat9125_init(PAT9125_XRES, PAT9125_YRES);	printf_P(PSTR("PAT9125_init:%d\n"), pat9125);	uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);	if (!pat9125)	{		fsensor = 0; //disable sensor		fsensor_not_responding = true;	}	else {		fsensor_not_responding = false;	}	puts_P(PSTR("FSensor "));	if (fsensor)	{		puts_P(PSTR("ENABLED\n"));		fsensor_enable();	}	else	{		puts_P(PSTR("DISABLED\n"));		fsensor_disable();	}}#endif //PAT9125void trace();#define CHUNK_SIZE 64 // bytes#define SAFETY_MARGIN 1char chunk[CHUNK_SIZE+SAFETY_MARGIN];int chunkHead = 0;int serial_read_stream() {    setTargetHotend(0, 0);    setTargetBed(0);    lcd_implementation_clear();    lcd_printPGM(PSTR(" Upload in progress"));    // first wait for how many bytes we will receive    uint32_t bytesToReceive;    // receive the four bytes    char bytesToReceiveBuffer[4];    for (int i=0; i<4; i++) {        int data;        while ((data = MYSERIAL.read()) == -1) {};        bytesToReceiveBuffer[i] = data;    }    // make it a uint32    memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);    // we're ready, notify the sender    MYSERIAL.write('+');    // lock in the routine    uint32_t receivedBytes = 0;    while (prusa_sd_card_upload) {        int i;        for (i=0; i<CHUNK_SIZE; i++) {            int data;            // check if we're not done            if (receivedBytes == bytesToReceive) {                break;            }            // read the next byte            while ((data = MYSERIAL.read()) == -1) {};            receivedBytes++;            // save it to the chunk            chunk[i] = data;        }        // write the chunk to SD        card.write_command_no_newline(&chunk[0]);        // notify the sender we're ready for more data        MYSERIAL.write('+');        // for safety        manage_heater();        // check if we're done        if(receivedBytes == bytesToReceive) {            trace(); // beep            card.closefile();            prusa_sd_card_upload = false;            SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);            return 0;        }    }}#ifdef HOST_KEEPALIVE_FEATURE/*** Output a "busy" message at regular intervals* while the machine is not accepting commands.*/void host_keepalive() {  if (farm_mode) return;  long ms = millis();  if (host_keepalive_interval && busy_state != NOT_BUSY) {    if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;     switch (busy_state) {      case IN_HANDLER:      case IN_PROCESS:        SERIAL_ECHO_START;        SERIAL_ECHOLNPGM("busy: processing");        break;      case PAUSED_FOR_USER:        SERIAL_ECHO_START;        SERIAL_ECHOLNPGM("busy: paused for user");        break;      case PAUSED_FOR_INPUT:        SERIAL_ECHO_START;        SERIAL_ECHOLNPGM("busy: paused for input");        break;      default:	break;    }  }  prev_busy_signal_ms = ms;}#endif// The loop() function is called in an endless loop by the Arduino framework from the default main() routine.// Before loop(), the setup() function is called by the main() routine.void loop(){	KEEPALIVE_STATE(NOT_BUSY);	bool stack_integrity = true;	if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))	{		is_usb_printing = true;		usb_printing_counter--;		_usb_timer = millis();	}	if (usb_printing_counter == 0)	{		is_usb_printing = false;	}    if (prusa_sd_card_upload)    {        //we read byte-by byte        serial_read_stream();    } else     {        get_command();  #ifdef SDSUPPORT  card.checkautostart(false);  #endif  if(buflen)  {    cmdbuffer_front_already_processed = false;    #ifdef SDSUPPORT      if(card.saving)      {        // Saving a G-code file onto an SD-card is in progress.        // Saving starts with M28, saving until M29 is seen.        if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {          card.write_command(CMDBUFFER_CURRENT_STRING);          if(card.logging)            process_commands();          else           SERIAL_PROTOCOLLNRPGM(MSG_OK);        } else {          card.closefile();          SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);        }      } else {        process_commands();      }    #else      process_commands();    #endif //SDSUPPORT    if (! cmdbuffer_front_already_processed && buflen)	  {		    cli();        union {          struct {              char lo;              char hi;          } lohi;          uint16_t value;        } sdlen;        sdlen.value = 0;		    if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {			      sdlen.lohi.lo = cmdbuffer[bufindr + 1];            sdlen.lohi.hi = cmdbuffer[bufindr + 2];        }	      cmdqueue_pop_front();		    planner_add_sd_length(sdlen.value);		    sei();	  }	host_keepalive();  }}  //check heater every n milliseconds  manage_heater();  isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);  checkHitEndstops();  lcd_update();#ifdef PAT9125	fsensor_update();#endif //PAT9125#ifdef TMC2130	tmc2130_check_overtemp();	if (tmc2130_sg_crash)	{		tmc2130_sg_crash = false;//		crashdet_stop_and_save_print();		enquecommand_P((PSTR("CRASH_DETECTED")));	}#endif //TMC2130}#define DEFINE_PGM_READ_ANY(type, reader)       \    static inline type pgm_read_any(const type *p)  \    { return pgm_read_##reader##_near(p); }DEFINE_PGM_READ_ANY(float,       float);DEFINE_PGM_READ_ANY(signed char, byte);#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \static const PROGMEM type array##_P[3] =        \    { X_##CONFIG, Y_##CONFIG, Z_##CONFIG };     \static inline type array(int axis)              \    { return pgm_read_any(&array##_P[axis]); }  \type array##_ext(int axis)                      \    { return pgm_read_any(&array##_P[axis]); }XYZ_CONSTS_FROM_CONFIG(float, base_min_pos,    MIN_POS);XYZ_CONSTS_FROM_CONFIG(float, base_max_pos,    MAX_POS);XYZ_CONSTS_FROM_CONFIG(float, base_home_pos,   HOME_POS);XYZ_CONSTS_FROM_CONFIG(float, max_length,      MAX_LENGTH);XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);XYZ_CONSTS_FROM_CONFIG(signed char, home_dir,  HOME_DIR);static void axis_is_at_home(int axis) {  current_position[axis] = base_home_pos(axis) + add_homing[axis];  min_pos[axis] =          base_min_pos(axis) + add_homing[axis];  max_pos[axis] =          base_max_pos(axis) + add_homing[axis];}inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }static void setup_for_endstop_move(bool enable_endstops_now = true) {    saved_feedrate = feedrate;    saved_feedmultiply = feedmultiply;    feedmultiply = 100;    previous_millis_cmd = millis();        enable_endstops(enable_endstops_now);}static void clean_up_after_endstop_move() {#ifdef ENDSTOPS_ONLY_FOR_HOMING    enable_endstops(false);#endif        feedrate = saved_feedrate;    feedmultiply = saved_feedmultiply;    previous_millis_cmd = millis();}#ifdef ENABLE_AUTO_BED_LEVELING#ifdef AUTO_BED_LEVELING_GRIDstatic void set_bed_level_equation_lsq(double *plane_equation_coefficients){    vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);    planeNormal.debug("planeNormal");    plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);    //bedLevel.debug("bedLevel");    //plan_bed_level_matrix.debug("bed level before");    //vector_3 uncorrected_position = plan_get_position_mm();    //uncorrected_position.debug("position before");    vector_3 corrected_position = plan_get_position();//    corrected_position.debug("position after");    current_position[X_AXIS] = corrected_position.x;    current_position[Y_AXIS] = corrected_position.y;    current_position[Z_AXIS] = corrected_position.z;    // put the bed at 0 so we don't go below it.    current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);}#else // not AUTO_BED_LEVELING_GRIDstatic void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {    plan_bed_level_matrix.set_to_identity();    vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);    vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);    vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);    vector_3 from_2_to_1 = (pt1 - pt2).get_normal();    vector_3 from_2_to_3 = (pt3 - pt2).get_normal();    vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();    planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));    plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);    vector_3 corrected_position = plan_get_position();    current_position[X_AXIS] = corrected_position.x;    current_position[Y_AXIS] = corrected_position.y;    current_position[Z_AXIS] = corrected_position.z;    // put the bed at 0 so we don't go below it.    current_position[Z_AXIS] = zprobe_zoffset;    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);}#endif // AUTO_BED_LEVELING_GRIDstatic void run_z_probe() {    plan_bed_level_matrix.set_to_identity();    feedrate = homing_feedrate[Z_AXIS];    // move down until you find the bed    float zPosition = -10;    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);    st_synchronize();        // we have to let the planner know where we are right now as it is not where we said to go.    zPosition = st_get_position_mm(Z_AXIS);    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);    // move up the retract distance    zPosition += home_retract_mm(Z_AXIS);    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);    st_synchronize();    // move back down slowly to find bed    feedrate = homing_feedrate[Z_AXIS]/4;    zPosition -= home_retract_mm(Z_AXIS) * 2;    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);    st_synchronize();    current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);    // make sure the planner knows where we are as it may be a bit different than we last said to move to    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);}static void do_blocking_move_to(float x, float y, float z) {    float oldFeedRate = feedrate;    feedrate = homing_feedrate[Z_AXIS];    current_position[Z_AXIS] = z;    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);    st_synchronize();    feedrate = XY_TRAVEL_SPEED;    current_position[X_AXIS] = x;    current_position[Y_AXIS] = y;    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);    st_synchronize();    feedrate = oldFeedRate;}static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {    do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);}/// Probe bed height at position (x,y), returns the measured z valuestatic float probe_pt(float x, float y, float z_before) {  // move to right place  do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);  do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);  run_z_probe();  float measured_z = current_position[Z_AXIS];  SERIAL_PROTOCOLRPGM(MSG_BED);  SERIAL_PROTOCOLPGM(" x: ");  SERIAL_PROTOCOL(x);  SERIAL_PROTOCOLPGM(" y: ");  SERIAL_PROTOCOL(y);  SERIAL_PROTOCOLPGM(" z: ");  SERIAL_PROTOCOL(measured_z);  SERIAL_PROTOCOLPGM("\n");  return measured_z;}#endif // #ifdef ENABLE_AUTO_BED_LEVELING#ifdef LIN_ADVANCE   /**    * M900: Set and/or Get advance K factor and WH/D ratio    *    *  K<factor>                  Set advance K factor    *  R<ratio>                   Set ratio directly (overrides WH/D)    *  W<width> H<height> D<diam> Set ratio from WH/D    */inline void gcode_M900() {    st_synchronize();        const float newK = code_seen('K') ? code_value_float() : -1;    if (newK >= 0) extruder_advance_k = newK;        float newR = code_seen('R') ? code_value_float() : -1;    if (newR < 0) {        const float newD = code_seen('D') ? code_value_float() : -1,        newW = code_seen('W') ? code_value_float() : -1,        newH = code_seen('H') ? code_value_float() : -1;        if (newD >= 0 && newW >= 0 && newH >= 0)            newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;    }    if (newR >= 0) advance_ed_ratio = newR;        SERIAL_ECHO_START;    SERIAL_ECHOPGM("Advance K=");    SERIAL_ECHOLN(extruder_advance_k);    SERIAL_ECHOPGM(" E/D=");    const float ratio = advance_ed_ratio;    if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");    }#endif // LIN_ADVANCEbool check_commands() {	bool end_command_found = false;			while (buflen)		{		if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;		if (!cmdbuffer_front_already_processed)			 cmdqueue_pop_front();		cmdbuffer_front_already_processed = false;		}	return end_command_found;	}#ifdef TMC2130bool calibrate_z_auto(){	//lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);	lcd_implementation_clear();	lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);	bool endstops_enabled  = enable_endstops(true);	int axis_up_dir = -home_dir(Z_AXIS);	tmc2130_home_enter(Z_AXIS_MASK);	current_position[Z_AXIS] = 0;	plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);	set_destination_to_current();	destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);	feedrate = homing_feedrate[Z_AXIS];	plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);	st_synchronize();//	current_position[axis] = 0;//	plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);	tmc2130_home_exit();    enable_endstops(false);	current_position[Z_AXIS] = 0;	plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);	set_destination_to_current();	destination[Z_AXIS] += 10 * axis_up_dir; //10mm up	feedrate = homing_feedrate[Z_AXIS] / 2;	plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);	st_synchronize();    enable_endstops(endstops_enabled);    current_position[Z_AXIS] = Z_MAX_POS+2.0;    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);	return true;}#endif //TMC2130void homeaxis(int axis){	bool endstops_enabled  = enable_endstops(true); //RP: endstops should be allways enabled durring homming#define HOMEAXIS_DO(LETTER) \((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))    if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)	{        int axis_home_dir = home_dir(axis);        feedrate = homing_feedrate[axis];#ifdef TMC2130    	tmc2130_home_enter(X_AXIS_MASK << axis);#endif        // Move right a bit, so that the print head does not touch the left end position,        // and the following left movement has a chance to achieve the required velocity        // for the stall guard to work.        current_position[axis] = 0;        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);//        destination[axis] = 11.f;        destination[axis] = 3.f;        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);        st_synchronize();        // Move left away from the possible collision with the collision detection disabled.        endstops_hit_on_purpose();        enable_endstops(false);        current_position[axis] = 0;        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);        destination[axis] = - 1.;        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);        st_synchronize();        // Now continue to move up to the left end stop with the collision detection enabled.        enable_endstops(true);        destination[axis] = - 1.1 * max_length(axis);        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);        st_synchronize();        // Move right from the collision to a known distance from the left end stop with the collision detection disabled.        endstops_hit_on_purpose();        enable_endstops(false);        current_position[axis] = 0;        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);        destination[axis] = 10.f;        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);        st_synchronize();        endstops_hit_on_purpose();        // Now move left up to the collision, this time with a repeatable velocity.        enable_endstops(true);        destination[axis] = - 15.f;        feedrate = homing_feedrate[axis]/2;        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);        st_synchronize();        axis_is_at_home(axis);        axis_known_position[axis] = true;#ifdef TMC2130        tmc2130_home_exit();#endif        // Move the X carriage away from the collision.        // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.        endstops_hit_on_purpose();        enable_endstops(false);        {          // Two full periods (4 full steps).          float gap = 0.32f * 2.f;          current_position[axis] -= gap;          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);          current_position[axis] += gap;        }        destination[axis] = current_position[axis];        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);        st_synchronize();    		feedrate = 0.0;    }    else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)	{        int axis_home_dir = home_dir(axis);        current_position[axis] = 0;        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);        destination[axis] = 1.5 * max_length(axis) * axis_home_dir;        feedrate = homing_feedrate[axis];        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);        st_synchronize();        current_position[axis] = 0;        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);        destination[axis] = -home_retract_mm(axis) * axis_home_dir;        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);        st_synchronize();        destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;        feedrate = homing_feedrate[axis]/2 ;        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);        st_synchronize();        axis_is_at_home(axis);        destination[axis] = current_position[axis];        feedrate = 0.0;        endstops_hit_on_purpose();        axis_known_position[axis] = true;    }    enable_endstops(endstops_enabled);}/**/void home_xy(){    set_destination_to_current();    homeaxis(X_AXIS);    homeaxis(Y_AXIS);    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);    endstops_hit_on_purpose();}void refresh_cmd_timeout(void){  previous_millis_cmd = millis();}#ifdef FWRETRACT  void retract(bool retracting, bool swapretract = false) {    if(retracting && !retracted[active_extruder]) {      destination[X_AXIS]=current_position[X_AXIS];      destination[Y_AXIS]=current_position[Y_AXIS];      destination[Z_AXIS]=current_position[Z_AXIS];      destination[E_AXIS]=current_position[E_AXIS];      if (swapretract) {        current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];      } else {        current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];      }      plan_set_e_position(current_position[E_AXIS]);      float oldFeedrate = feedrate;      feedrate=retract_feedrate*60;      retracted[active_extruder]=true;      prepare_move();      current_position[Z_AXIS]-=retract_zlift;      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);      prepare_move();      feedrate = oldFeedrate;    } else if(!retracting && retracted[active_extruder]) {      destination[X_AXIS]=current_position[X_AXIS];      destination[Y_AXIS]=current_position[Y_AXIS];      destination[Z_AXIS]=current_position[Z_AXIS];      destination[E_AXIS]=current_position[E_AXIS];      current_position[Z_AXIS]+=retract_zlift;      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);      //prepare_move();      if (swapretract) {        current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];       } else {        current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];       }      plan_set_e_position(current_position[E_AXIS]);      float oldFeedrate = feedrate;      feedrate=retract_recover_feedrate*60;      retracted[active_extruder]=false;      prepare_move();      feedrate = oldFeedrate;    }  } //retract#endif //FWRETRACTvoid trace() {    tone(BEEPER, 440);    delay(25);    noTone(BEEPER);    delay(20);}/*void ramming() {//	  float tmp[4] = DEFAULT_MAX_FEEDRATE;	if (current_temperature[0] < 230) {		//PLA		max_feedrate[E_AXIS] = 50;		//current_position[E_AXIS] -= 8;		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);		//current_position[E_AXIS] += 8;		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);		current_position[E_AXIS] += 5.4;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);		current_position[E_AXIS] += 3.2;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);		current_position[E_AXIS] += 3;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);		st_synchronize();		max_feedrate[E_AXIS] = 80;		current_position[E_AXIS] -= 82;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);		max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];		current_position[E_AXIS] -= 20;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);		current_position[E_AXIS] += 5;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);		current_position[E_AXIS] += 5;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);		current_position[E_AXIS] -= 10;		st_synchronize();		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);		current_position[E_AXIS] += 10;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);		current_position[E_AXIS] -= 10;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);		current_position[E_AXIS] += 10;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);		current_position[E_AXIS] -= 10;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);		st_synchronize();	}	else {		//ABS		max_feedrate[E_AXIS] = 50;		//current_position[E_AXIS] -= 8;		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);		//current_position[E_AXIS] += 8;		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);		current_position[E_AXIS] += 3.1;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);		current_position[E_AXIS] += 3.1;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);		current_position[E_AXIS] += 4;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);		st_synchronize();		//current_position[X_AXIS] += 23; //delay		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay		//current_position[X_AXIS] -= 23; //delay		//plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay		delay(4700);		max_feedrate[E_AXIS] = 80;		current_position[E_AXIS] -= 92;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);		max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];		current_position[E_AXIS] -= 5;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);		current_position[E_AXIS] += 5;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);		current_position[E_AXIS] -= 5;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);		st_synchronize();		current_position[E_AXIS] += 5;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);		current_position[E_AXIS] -= 5;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);		current_position[E_AXIS] += 5;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);		current_position[E_AXIS] -= 5;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);		st_synchronize();	}  }*/#ifdef TMC2130void force_high_power_mode(bool start_high_power_section) {	uint8_t silent;	silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);	if (silent == 1) {		//we are in silent mode, set to normal mode to enable crash detection		st_synchronize();		cli();		tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;		tmc2130_init();		sei();		digipot_init();	}}#endif //TMC2130bool gcode_M45(bool onlyZ){	bool final_result = false;	#ifdef TMC2130	FORCE_HIGH_POWER_START;	#endif // TMC2130	// Only Z calibration?	if (!onlyZ)	{		setTargetBed(0);		setTargetHotend(0, 0);		setTargetHotend(0, 1);		setTargetHotend(0, 2);		adjust_bed_reset(); //reset bed level correction	}	// Disable the default update procedure of the display. We will do a modal dialog.	lcd_update_enable(false);	// Let the planner use the uncorrected coordinates.	mbl.reset();	// Reset world2machine_rotation_and_skew and world2machine_shift, therefore	// the planner will not perform any adjustments in the XY plane. 	// Wait for the motors to stop and update the current position with the absolute values.	world2machine_revert_to_uncorrected();	// Reset the baby step value applied without moving the axes.	babystep_reset();	// Mark all axes as in a need for homing.	memset(axis_known_position, 0, sizeof(axis_known_position));	// Home in the XY plane.	//set_destination_to_current();	setup_for_endstop_move();	lcd_display_message_fullscreen_P(MSG_AUTO_HOME);	home_xy();	// Let the user move the Z axes up to the end stoppers.#ifdef TMC2130	if (calibrate_z_auto())	{#else //TMC2130	if (lcd_calibrate_z_end_stop_manual(onlyZ))	{#endif //TMC2130		refresh_cmd_timeout();		//if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))		//{		//	lcd_wait_for_cool_down();		//}		if(!onlyZ)		{			KEEPALIVE_STATE(PAUSED_FOR_USER);			bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);			if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);			lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);		    lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);			KEEPALIVE_STATE(IN_HANDLER);			lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);			lcd_implementation_print_at(0, 2, 1);			lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);		}		// Move the print head close to the bed.		current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;		bool endstops_enabled  = enable_endstops(true);		tmc2130_home_enter(Z_AXIS_MASK);		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);		st_synchronize();		tmc2130_home_exit();		enable_endstops(endstops_enabled);		if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)		{			//#ifdef TMC2130			//		tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);			//#endif			int8_t verbosity_level = 0;			if (code_seen('V'))			{				// Just 'V' without a number counts as V1.				char c = strchr_pointer[1];				verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();			}			if (onlyZ)			{				clean_up_after_endstop_move();				// Z only calibration.				// Load the machine correction matrix				world2machine_initialize();				// and correct the current_position to match the transformed coordinate system.				world2machine_update_current();				//FIXME				bool result = sample_mesh_and_store_reference();				if (result)				{					if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)						// Shipped, the nozzle height has been set already. The user can start printing now.						calibration_status_store(CALIBRATION_STATUS_CALIBRATED);						final_result = true;					// babystep_apply();				}			}			else			{				// Reset the baby step value and the baby step applied flag.				calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);				eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);				// Complete XYZ calibration.				uint8_t point_too_far_mask = 0;				BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);				clean_up_after_endstop_move();				// Print head up.				current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);				st_synchronize();				if (result >= 0)				{					point_too_far_mask = 0;					// Second half: The fine adjustment.					// Let the planner use the uncorrected coordinates.					mbl.reset();					world2machine_reset();					// Home in the XY plane.					setup_for_endstop_move();					home_xy();					result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);					clean_up_after_endstop_move();					// Print head up.					current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;					plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);					st_synchronize();					// if (result >= 0) babystep_apply();				}				lcd_bed_calibration_show_result(result, point_too_far_mask);				if (result >= 0)				{					// Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.					calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);					if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);					final_result = true;				}			}#ifdef TMC2130			tmc2130_home_exit();#endif		}		else		{			lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));			final_result = false;		}	}	else	{		// Timeouted.	}	lcd_update_enable(true);#ifdef TMC2130	FORCE_HIGH_POWER_END;#endif // TMC2130	return final_result;}void gcode_M701(){#ifdef SNMM	extr_adj(snmm_extruder);//loads current extruder#else	enable_z();	custom_message = true;	custom_message_type = 2;	lcd_setstatuspgm(MSG_LOADING_FILAMENT);	current_position[E_AXIS] += 70;	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence	current_position[E_AXIS] += 25;	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence	st_synchronize();	if (!farm_mode && loading_flag) {		bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);		while (!clean) {			lcd_update_enable(true);			lcd_update(2);			current_position[E_AXIS] += 25;			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence			st_synchronize();			clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);		}	}	lcd_update_enable(true);	lcd_update(2);	lcd_setstatuspgm(WELCOME_MSG);	disable_z();	loading_flag = false;	custom_message = false;	custom_message_type = 0;#endif}void process_commands(){  #ifdef FILAMENT_RUNOUT_SUPPORT    SET_INPUT(FR_SENS);  #endif#ifdef CMDBUFFER_DEBUG  SERIAL_ECHOPGM("Processing a GCODE command: ");  SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);  SERIAL_ECHOLNPGM("");  SERIAL_ECHOPGM("In cmdqueue: ");  SERIAL_ECHO(buflen);  SERIAL_ECHOLNPGM("");#endif /* CMDBUFFER_DEBUG */    unsigned long codenum; //throw away variable  char *starpos = NULL;#ifdef ENABLE_AUTO_BED_LEVELING  float x_tmp, y_tmp, z_tmp, real_z;#endif  // PRUSA GCODES  KEEPALIVE_STATE(IN_HANDLER);#ifdef SNMM  float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;  float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;  int8_t SilentMode;#endif    if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"	  starpos = (strchr(strchr_pointer + 5, '*'));	  if (starpos != NULL)		  *(starpos) = '\0';	  lcd_setstatus(strchr_pointer + 5);  }  else if(code_seen("CRASH_DETECTED"))	  crashdet_detected();  else if(code_seen("CRASH_RECOVER"))	  crashdet_recover();  else if(code_seen("CRASH_CANCEL"))	  crashdet_cancel();  else if(code_seen("PRUSA")){		if (code_seen("Ping")) {  //PRUSA Ping			if (farm_mode) {				PingTime = millis();				//MYSERIAL.print(farm_no); MYSERIAL.println(": OK");			}	  		}		else if (code_seen("PRN")) {		  MYSERIAL.println(status_number);        }else if (code_seen("FAN")) {            MYSERIAL.print("E0:");            MYSERIAL.print(60*fan_speed[0]);            MYSERIAL.println(" RPM");            MYSERIAL.print("PRN0:");            MYSERIAL.print(60*fan_speed[1]);            MYSERIAL.println(" RPM");                    }else if (code_seen("fn")) {		  if (farm_mode) {			  MYSERIAL.println(farm_no);		  }		  else {			  MYSERIAL.println("Not in farm mode.");		  }		  		}else if (code_seen("fv")) {        // get file version        #ifdef SDSUPPORT        card.openFile(strchr_pointer + 3,true);        while (true) {            uint16_t readByte = card.get();            MYSERIAL.write(readByte);            if (readByte=='\n') {                break;            }        }        card.closefile();        #endif // SDSUPPORT    } else if (code_seen("M28")) {        trace();        prusa_sd_card_upload = true;        card.openFile(strchr_pointer+4,false);	} else if (code_seen("SN")) {         if (farm_mode) {             selectedSerialPort = 0;             MSerial.write(";S");             // S/N is:CZPX0917X003XC13518             int numbersRead = 0;              while (numbersRead < 19) {                 while (MSerial.available() > 0) {                     uint8_t serial_char = MSerial.read();                     selectedSerialPort = 1;                     MSerial.write(serial_char);                     numbersRead++;                     selectedSerialPort = 0;                 }             }             selectedSerialPort = 1;             MSerial.write('\n');             /*for (int b = 0; b < 3; b++) {                 tone(BEEPER, 110);                 delay(50);                 noTone(BEEPER);                 delay(50);             }*/         } else {             MYSERIAL.println("Not in farm mode.");         } 			} else if(code_seen("Fir")){      SERIAL_PROTOCOLLN(FW_version);    } else if(code_seen("Rev")){      SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );    } else if(code_seen("Lang")) {      lcd_force_language_selection();    } else if(code_seen("Lz")) {      EEPROM_save_B(EEPROM_BABYSTEP_Z,0);          } else if (code_seen("SERIAL LOW")) {        MYSERIAL.println("SERIAL LOW");        MYSERIAL.begin(BAUDRATE);        return;    } else if (code_seen("SERIAL HIGH")) {        MYSERIAL.println("SERIAL HIGH");        MYSERIAL.begin(1152000);        return;    } else if(code_seen("Beat")) {        // Kick farm link timer        kicktime = millis();    } else if(code_seen("FR")) {        // Factory full reset        factory_reset(0,true);            }    //else if (code_seen('Cal')) {		//  lcd_calibration();	  // }  }    else if (code_seen('^')) {    // nothing, this is a version line  } else if(code_seen('G'))  {    switch((int)code_value())    {    case 0: // G0 -> G1    case 1: // G1      if(Stopped == false) {        #ifdef FILAMENT_RUNOUT_SUPPORT                        if(READ(FR_SENS)){                        feedmultiplyBckp=feedmultiply;                        float target[4];                        float lastpos[4];                        target[X_AXIS]=current_position[X_AXIS];                        target[Y_AXIS]=current_position[Y_AXIS];                        target[Z_AXIS]=current_position[Z_AXIS];                        target[E_AXIS]=current_position[E_AXIS];                        lastpos[X_AXIS]=current_position[X_AXIS];                        lastpos[Y_AXIS]=current_position[Y_AXIS];                        lastpos[Z_AXIS]=current_position[Z_AXIS];                        lastpos[E_AXIS]=current_position[E_AXIS];                        //retract by E                                                target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;                                                plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);                        target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);                        target[X_AXIS]= FILAMENTCHANGE_XPOS ;                                                target[Y_AXIS]= FILAMENTCHANGE_YPOS ;                                                                  plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);                        target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;                                                  plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);                        //finish moves                        st_synchronize();                        //disable extruder steppers so filament can be removed                        disable_e0();                        disable_e1();                        disable_e2();                        delay(100);                                                //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);                        uint8_t cnt=0;                        int counterBeep = 0;                        lcd_wait_interact();                        while(!lcd_clicked()){                          cnt++;                          manage_heater();                          manage_inactivity(true);                          //lcd_update();                          if(cnt==0)                          {                          #if BEEPER > 0                                                      if (counterBeep== 500){                              counterBeep = 0;                                                          }                                                                                  SET_OUTPUT(BEEPER);                            if (counterBeep== 0){                              WRITE(BEEPER,HIGH);                            }                                                        if (counterBeep== 20){                              WRITE(BEEPER,LOW);                            }                                                                                                                                          counterBeep++;                          #else                      #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)                              lcd_buzz(1000/6,100);                      #else                        lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);                      #endif                          #endif                          }                        }                                                WRITE(BEEPER,LOW);                                                target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);                                                                         target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);                                                                                                                                          lcd_change_fil_state = 0;                        lcd_loading_filament();                        while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){                                                  lcd_change_fil_state = 0;                          lcd_alright();                          switch(lcd_change_fil_state){                                                       case 2:                                     target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);                                                                                      target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);                                                                                                                 lcd_loading_filament();                                     break;                             case 3:                                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;                                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);                                      lcd_loading_color();                                     break;                                                                       default:                                     lcd_change_success();                                     break;                          }                                                  }                                                                      target[E_AXIS]+= 5;                      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);                                              target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;                      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);                                                //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding                        //plan_set_e_position(current_position[E_AXIS]);                        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing                        plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back                        plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back                                                                        target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;                                                                                                   plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract                                                                        plan_set_e_position(lastpos[E_AXIS]);                                                feedmultiply=feedmultiplyBckp;                                                                                             char cmd[9];                        sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);                        enquecommand(cmd);            }        #endif        get_coordinates(); // For X Y Z E F		if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow			total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);		}          #ifdef FWRETRACT            if(autoretract_enabled)            if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {              float echange=destination[E_AXIS]-current_position[E_AXIS];              if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover                  current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations                  plan_set_e_position(current_position[E_AXIS]); //AND from the planner                  retract(!retracted);                  return;              }            }          #endif //FWRETRACT        prepare_move();        //ClearToSend();      }      break;    case 2: // G2  - CW ARC      if(Stopped == false) {        get_arc_coordinates();        prepare_arc_move(true);      }      break;    case 3: // G3  - CCW ARC      if(Stopped == false) {        get_arc_coordinates();        prepare_arc_move(false);      }      break;    case 4: // G4 dwell            codenum = 0;      if(code_seen('P')) codenum = code_value(); // milliseconds to wait      if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait	  if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);      st_synchronize();      codenum += millis();  // keep track of when we started waiting      previous_millis_cmd = millis();      while(millis() < codenum) {        manage_heater();        manage_inactivity();        lcd_update();      }      break;      #ifdef FWRETRACT      case 10: // G10 retract       #if EXTRUDERS > 1        retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument        retract(true,retracted_swap[active_extruder]);       #else        retract(true);       #endif      break;      case 11: // G11 retract_recover       #if EXTRUDERS > 1        retract(false,retracted_swap[active_extruder]);       #else        retract(false);       #endif       break;      #endif //FWRETRACT    case 28: //G28 Home all Axis one at a time    {      st_synchronize();#if 0      SERIAL_ECHOPGM("G28, initial ");  print_world_coordinates();      SERIAL_ECHOPGM("G28, initial ");  print_physical_coordinates();#endif      // Flag for the display update routine and to disable the print cancelation during homing.		  homing_flag = true;            // Which axes should be homed?      bool home_x = code_seen(axis_codes[X_AXIS]);      bool home_y = code_seen(axis_codes[Y_AXIS]);      bool home_z = code_seen(axis_codes[Z_AXIS]);      // Either all X,Y,Z codes are present, or none of them.      bool home_all_axes = home_x == home_y && home_x == home_z;      if (home_all_axes)        // No X/Y/Z code provided means to home all axes.        home_x = home_y = home_z = true;#ifdef ENABLE_AUTO_BED_LEVELING      plan_bed_level_matrix.set_to_identity();  //Reset the plane ("erase" all leveling data)#endif //ENABLE_AUTO_BED_LEVELING                  // Reset world2machine_rotation_and_skew and world2machine_shift, therefore      // the planner will not perform any adjustments in the XY plane.       // Wait for the motors to stop and update the current position with the absolute values.      world2machine_revert_to_uncorrected();      // For mesh bed leveling deactivate the matrix temporarily.      // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed      // in a single axis only.      // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.#ifdef MESH_BED_LEVELING      uint8_t mbl_was_active = mbl.active;      mbl.active = 0;      current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);#endif      // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be      // consumed during the first movements following this statement.      if (home_z)        babystep_undo();      saved_feedrate = feedrate;      saved_feedmultiply = feedmultiply;      feedmultiply = 100;      previous_millis_cmd = millis();      enable_endstops(true);      memcpy(destination, current_position, sizeof(destination));      feedrate = 0.0;      #if Z_HOME_DIR > 0                      // If homing away from BED do Z first      if(home_z)        homeaxis(Z_AXIS);      #endif      #ifdef QUICK_HOME      // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.      if(home_x && home_y)  //first diagonal move      {        current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;        int x_axis_home_dir = home_dir(X_AXIS);        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);        destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);        feedrate = homing_feedrate[X_AXIS];        if(homing_feedrate[Y_AXIS]<feedrate)          feedrate = homing_feedrate[Y_AXIS];        if (max_length(X_AXIS) > max_length(Y_AXIS)) {          feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);        } else {          feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);        }        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);        st_synchronize();        axis_is_at_home(X_AXIS);        axis_is_at_home(Y_AXIS);        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);        destination[X_AXIS] = current_position[X_AXIS];        destination[Y_AXIS] = current_position[Y_AXIS];        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);        feedrate = 0.0;        st_synchronize();        endstops_hit_on_purpose();        current_position[X_AXIS] = destination[X_AXIS];        current_position[Y_AXIS] = destination[Y_AXIS];        current_position[Z_AXIS] = destination[Z_AXIS];      }      #endif /* QUICK_HOME */	       if(home_x)        homeaxis(X_AXIS);      if(home_y)        homeaxis(Y_AXIS);      if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)        current_position[X_AXIS]=code_value()+add_homing[X_AXIS];      if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)		    current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];      #if Z_HOME_DIR < 0                      // If homing towards BED do Z last        #ifndef Z_SAFE_HOMING          if(home_z) {            #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)              destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed              feedrate = max_feedrate[Z_AXIS];              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);              st_synchronize();            #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)            #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))  // If Mesh bed leveling, moxve X&Y to safe position for home      			  if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))       			  {                homeaxis(X_AXIS);                homeaxis(Y_AXIS);      			  }               // 1st mesh bed leveling measurement point, corrected.              world2machine_initialize();              world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);              world2machine_reset();              if (destination[Y_AXIS] < Y_MIN_POS)                  destination[Y_AXIS] = Y_MIN_POS;              destination[Z_AXIS] = MESH_HOME_Z_SEARCH;    // Set destination away from bed              feedrate = homing_feedrate[Z_AXIS]/10;              current_position[Z_AXIS] = 0;              enable_endstops(false);              plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);              st_synchronize();              current_position[X_AXIS] = destination[X_AXIS];              current_position[Y_AXIS] = destination[Y_AXIS];              enable_endstops(true);              endstops_hit_on_purpose();              homeaxis(Z_AXIS);            #else // MESH_BED_LEVELING              homeaxis(Z_AXIS);            #endif // MESH_BED_LEVELING          }        #else // defined(Z_SAFE_HOMING): Z Safe mode activated.          if(home_all_axes) {            destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);            destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);            destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed            feedrate = XY_TRAVEL_SPEED/60;            current_position[Z_AXIS] = 0;            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);            plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);            st_synchronize();            current_position[X_AXIS] = destination[X_AXIS];            current_position[Y_AXIS] = destination[Y_AXIS];            homeaxis(Z_AXIS);          }                                                // Let's see if X and Y are homed and probe is inside bed area.          if(home_z) {            if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \              && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \              && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \              && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \              && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {              current_position[Z_AXIS] = 0;              plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);              destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed              feedrate = max_feedrate[Z_AXIS];              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);              st_synchronize();              homeaxis(Z_AXIS);            } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {                LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);                SERIAL_ECHO_START;                SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);            } else {                LCD_MESSAGERPGM(MSG_ZPROBE_OUT);                SERIAL_ECHO_START;                SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);            }          }        #endif // Z_SAFE_HOMING      #endif // Z_HOME_DIR < 0      if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)        current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];      #ifdef ENABLE_AUTO_BED_LEVELING        if(home_z)          current_position[Z_AXIS] += zprobe_zoffset;  //Add Z_Probe offset (the distance is negative)      #endif            // Set the planner and stepper routine positions.      // At this point the mesh bed leveling and world2machine corrections are disabled and current_position      // contains the machine coordinates.      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);      #ifdef ENDSTOPS_ONLY_FOR_HOMING        enable_endstops(false);      #endif      feedrate = saved_feedrate;      feedmultiply = saved_feedmultiply;      previous_millis_cmd = millis();      endstops_hit_on_purpose();#ifndef MESH_BED_LEVELING      // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.      // Offer the user to load the baby step value, which has been adjusted at the previous print session.      if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))          lcd_adjust_z();#endif    // Load the machine correction matrix    world2machine_initialize();    // and correct the current_position XY axes to match the transformed coordinate system.    world2machine_update_current();#if (defined(MESH_BED_LEVELING) && !defined(MK1BP))	if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))		{      if (! home_z && mbl_was_active) {        // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.        mbl.active = true;        // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.        current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));      }		}	else		{			st_synchronize();			homing_flag = false;			// Push the commands to the front of the message queue in the reverse order!			// There shall be always enough space reserved for these commands.			// enquecommand_front_P((PSTR("G80")));			goto case_G80;	  }#endif	  if (farm_mode) { prusa_statistics(20); };	  homing_flag = false;#if 0      SERIAL_ECHOPGM("G28, final ");  print_world_coordinates();      SERIAL_ECHOPGM("G28, final ");  print_physical_coordinates();      SERIAL_ECHOPGM("G28, final ");  print_mesh_bed_leveling_table();#endif      break;    }#ifdef ENABLE_AUTO_BED_LEVELING    case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.        {            #if Z_MIN_PIN == -1            #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."            #endif            // Prevent user from running a G29 without first homing in X and Y            if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )            {                LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);                SERIAL_ECHO_START;                SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);                break; // abort G29, since we don't know where we are            }            st_synchronize();            // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly            //vector_3 corrected_position = plan_get_position_mm();            //corrected_position.debug("position before G29");            plan_bed_level_matrix.set_to_identity();            vector_3 uncorrected_position = plan_get_position();            //uncorrected_position.debug("position durring G29");            current_position[X_AXIS] = uncorrected_position.x;            current_position[Y_AXIS] = uncorrected_position.y;            current_position[Z_AXIS] = uncorrected_position.z;            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);            setup_for_endstop_move();            feedrate = homing_feedrate[Z_AXIS];#ifdef AUTO_BED_LEVELING_GRID            // probe at the points of a lattice grid            int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);            int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);            // solve the plane equation ax + by + d = z            // A is the matrix with rows [x y 1] for all the probed points            // B is the vector of the Z positions            // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0            // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z            // "A" matrix of the linear system of equations            double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];            // "B" vector of Z points            double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];            int probePointCounter = 0;            bool zig = true;            for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)            {              int xProbe, xInc;              if (zig)              {                xProbe = LEFT_PROBE_BED_POSITION;                //xEnd = RIGHT_PROBE_BED_POSITION;                xInc = xGridSpacing;                zig = false;              } else // zag              {                xProbe = RIGHT_PROBE_BED_POSITION;                //xEnd = LEFT_PROBE_BED_POSITION;                xInc = -xGridSpacing;                zig = true;              }              for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)              {                float z_before;                if (probePointCounter == 0)                {                  // raise before probing                  z_before = Z_RAISE_BEFORE_PROBING;                } else                {                  // raise extruder                  z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;                }                float measured_z = probe_pt(xProbe, yProbe, z_before);                eqnBVector[probePointCounter] = measured_z;                eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;                eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;                eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;                probePointCounter++;                xProbe += xInc;              }            }            clean_up_after_endstop_move();            // solve lsq problem            double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);            SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");            SERIAL_PROTOCOL(plane_equation_coefficients[0]);            SERIAL_PROTOCOLPGM(" b: ");            SERIAL_PROTOCOL(plane_equation_coefficients[1]);            SERIAL_PROTOCOLPGM(" d: ");            SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);            set_bed_level_equation_lsq(plane_equation_coefficients);            free(plane_equation_coefficients);#else // AUTO_BED_LEVELING_GRID not defined            // Probe at 3 arbitrary points            // probe 1            float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);            // probe 2            float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);            // probe 3            float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);            clean_up_after_endstop_move();            set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);#endif // AUTO_BED_LEVELING_GRID            st_synchronize();            // The following code correct the Z height difference from z-probe position and hotend tip position.            // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.            // When the bed is uneven, this height must be corrected.            real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS];  //get the real Z (since the auto bed leveling is already correcting the plane)            x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;            y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;            z_tmp = current_position[Z_AXIS];            apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);         //Apply the correction sending the probe offset            current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS];   //The difference is added to current position and sent to planner.            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);        }        break;#ifndef Z_PROBE_SLED    case 30: // G30 Single Z Probe        {            st_synchronize();            // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly            setup_for_endstop_move();            feedrate = homing_feedrate[Z_AXIS];            run_z_probe();            SERIAL_PROTOCOLPGM(MSG_BED);            SERIAL_PROTOCOLPGM(" X: ");            SERIAL_PROTOCOL(current_position[X_AXIS]);            SERIAL_PROTOCOLPGM(" Y: ");            SERIAL_PROTOCOL(current_position[Y_AXIS]);            SERIAL_PROTOCOLPGM(" Z: ");            SERIAL_PROTOCOL(current_position[Z_AXIS]);            SERIAL_PROTOCOLPGM("\n");            clean_up_after_endstop_move();        }        break;#else    case 31: // dock the sled        dock_sled(true);        break;    case 32: // undock the sled        dock_sled(false);        break;#endif // Z_PROBE_SLED#endif // ENABLE_AUTO_BED_LEVELING            #ifdef MESH_BED_LEVELING    case 30: // G30 Single Z Probe        {            st_synchronize();            // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly            setup_for_endstop_move();            feedrate = homing_feedrate[Z_AXIS];            find_bed_induction_sensor_point_z(-10.f, 3);            SERIAL_PROTOCOLRPGM(MSG_BED);            SERIAL_PROTOCOLPGM(" X: ");            MYSERIAL.print(current_position[X_AXIS], 5);            SERIAL_PROTOCOLPGM(" Y: ");            MYSERIAL.print(current_position[Y_AXIS], 5);            SERIAL_PROTOCOLPGM(" Z: ");            MYSERIAL.print(current_position[Z_AXIS], 5);            SERIAL_PROTOCOLPGM("\n");            clean_up_after_endstop_move();        }        break;		case 75:	{		for (int i = 40; i <= 110; i++) {			MYSERIAL.print(i);			MYSERIAL.print("  ");			MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);		}	}	break;	case 76: //PINDA probe temperature calibration	{#ifdef PINDA_THERMISTOR		if (true)		{			if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {				// We don't know where we are! HOME!				// Push the commands to the front of the message queue in the reverse order!				// There shall be always enough space reserved for these commands.				repeatcommand_front(); // repeat G76 with all its parameters				enquecommand_front_P((PSTR("G28 W0")));				break;			}			KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly			SERIAL_ECHOLNPGM("PINDA probe calibration start");			float zero_z;			int z_shift = 0; //unit: steps			float start_temp = 5 * (int)(current_temperature_pinda / 5);			if (start_temp < 35) start_temp = 35;			if (start_temp < current_temperature_pinda) start_temp += 5;			SERIAL_ECHOPGM("start temperature: ");			MYSERIAL.println(start_temp);//			setTargetHotend(200, 0);			setTargetBed(70 + (start_temp - 30));			custom_message = true;			custom_message_type = 4;			custom_message_state = 1;			custom_message = MSG_TEMP_CALIBRATION;			current_position[X_AXIS] = PINDA_PREHEAT_X;			current_position[Y_AXIS] = PINDA_PREHEAT_Y;			current_position[Z_AXIS] = PINDA_PREHEAT_Z;			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);			st_synchronize();			while (current_temperature_pinda < start_temp)			{				delay_keep_alive(1000);				serialecho_temperatures();			}			eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process 			current_position[Z_AXIS] = 5;			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);			current_position[X_AXIS] = pgm_read_float(bed_ref_points);			current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);			st_synchronize();			find_bed_induction_sensor_point_z(-1.f);			zero_z = current_position[Z_AXIS];			//current_position[Z_AXIS]			SERIAL_ECHOLNPGM("");			SERIAL_ECHOPGM("ZERO: ");			MYSERIAL.print(current_position[Z_AXIS]);			SERIAL_ECHOLNPGM("");			int i = -1; for (; i < 5; i++)			{				float temp = (40 + i * 5);				SERIAL_ECHOPGM("Step: ");				MYSERIAL.print(i + 2);				SERIAL_ECHOLNPGM("/6 (skipped)");				SERIAL_ECHOPGM("PINDA temperature: ");				MYSERIAL.print((40 + i*5));				SERIAL_ECHOPGM(" Z shift (mm):");				MYSERIAL.print(0);				SERIAL_ECHOLNPGM("");				if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);				if (start_temp <= temp) break;			}			for (i++; i < 5; i++)			{				float temp = (40 + i * 5);				SERIAL_ECHOPGM("Step: ");				MYSERIAL.print(i + 2);				SERIAL_ECHOLNPGM("/6");				custom_message_state = i + 2;				setTargetBed(50 + 10 * (temp - 30) / 5);//				setTargetHotend(255, 0);				current_position[X_AXIS] = PINDA_PREHEAT_X;				current_position[Y_AXIS] = PINDA_PREHEAT_Y;				current_position[Z_AXIS] = PINDA_PREHEAT_Z;				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);				st_synchronize();				while (current_temperature_pinda < temp)				{					delay_keep_alive(1000);					serialecho_temperatures();				}				current_position[Z_AXIS] = 5;				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);				current_position[X_AXIS] = pgm_read_float(bed_ref_points);				current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);				plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);				st_synchronize();				find_bed_induction_sensor_point_z(-1.f);				z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);				SERIAL_ECHOLNPGM("");				SERIAL_ECHOPGM("PINDA temperature: ");				MYSERIAL.print(current_temperature_pinda);				SERIAL_ECHOPGM(" Z shift (mm):");				MYSERIAL.print(current_position[Z_AXIS] - zero_z);				SERIAL_ECHOLNPGM("");				EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);			}			custom_message_type = 0;			custom_message = false;			eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);			SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");			disable_x();			disable_y();			disable_z();			disable_e0();			disable_e1();			disable_e2();			lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);			lcd_update_enable(true);			lcd_update(2);			setTargetBed(0); //set bed target temperature back to 0//			setTargetHotend(0,0); //set hotend target temperature back to 0			break;		}#endif //PINDA_THERMISTOR		setTargetBed(PINDA_MIN_T);		float zero_z;		int z_shift = 0; //unit: steps		int t_c; // temperature		if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {			// We don't know where we are! HOME!			// Push the commands to the front of the message queue in the reverse order!			// There shall be always enough space reserved for these commands.			repeatcommand_front(); // repeat G76 with all its parameters			enquecommand_front_P((PSTR("G28 W0")));			break;		}		SERIAL_ECHOLNPGM("PINDA probe calibration start");		custom_message = true;		custom_message_type = 4;		custom_message_state = 1;		custom_message = MSG_TEMP_CALIBRATION;		current_position[X_AXIS] = PINDA_PREHEAT_X;		current_position[Y_AXIS] = PINDA_PREHEAT_Y;		current_position[Z_AXIS] = PINDA_PREHEAT_Z;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);		st_synchronize();				while (abs(degBed() - PINDA_MIN_T) > 1) {			delay_keep_alive(1000);			serialecho_temperatures();		}				//enquecommand_P(PSTR("M190 S50"));		for (int i = 0; i < PINDA_HEAT_T; i++) {			delay_keep_alive(1000);			serialecho_temperatures();		}		eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process 		current_position[Z_AXIS] = 5;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);		current_position[X_AXIS] = pgm_read_float(bed_ref_points);		current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);		st_synchronize();				find_bed_induction_sensor_point_z(-1.f);		zero_z = current_position[Z_AXIS];		//current_position[Z_AXIS]		SERIAL_ECHOLNPGM("");		SERIAL_ECHOPGM("ZERO: ");		MYSERIAL.print(current_position[Z_AXIS]);		SERIAL_ECHOLNPGM("");		for (int i = 0; i<5; i++) {			SERIAL_ECHOPGM("Step: ");			MYSERIAL.print(i+2);			SERIAL_ECHOLNPGM("/6");			custom_message_state = i + 2;			t_c = 60 + i * 10;			setTargetBed(t_c);			current_position[X_AXIS] = PINDA_PREHEAT_X;			current_position[Y_AXIS] = PINDA_PREHEAT_Y;			current_position[Z_AXIS] = PINDA_PREHEAT_Z;			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);			st_synchronize();			while (degBed() < t_c) {				delay_keep_alive(1000);				serialecho_temperatures();			}			for (int i = 0; i < PINDA_HEAT_T; i++) {				delay_keep_alive(1000);				serialecho_temperatures();			}			current_position[Z_AXIS] = 5;			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);			current_position[X_AXIS] = pgm_read_float(bed_ref_points);			current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);			st_synchronize();			find_bed_induction_sensor_point_z(-1.f);			z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);			SERIAL_ECHOLNPGM("");			SERIAL_ECHOPGM("Temperature: ");			MYSERIAL.print(t_c);			SERIAL_ECHOPGM(" Z shift (mm):");			MYSERIAL.print(current_position[Z_AXIS] - zero_z);			SERIAL_ECHOLNPGM("");			EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);							}		custom_message_type = 0;		custom_message = false;		eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);		SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");			disable_x();			disable_y();			disable_z();			disable_e0();			disable_e1();			disable_e2();			setTargetBed(0); //set bed target temperature back to 0		lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);		lcd_update_enable(true);		lcd_update(2);					}	break;#ifdef DIS	case 77:	{		//G77 X200 Y150 XP100 YP15 XO10 Y015		//for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0		//G77 X232 Y218 XP116 YP109 XO-11 YO0 		float dimension_x = 40;		float dimension_y = 40;		int points_x = 40;		int points_y = 40;		float offset_x = 74;		float offset_y = 33;		if (code_seen('X')) dimension_x = code_value();		if (code_seen('Y')) dimension_y = code_value();		if (code_seen('XP')) points_x = code_value();		if (code_seen('YP')) points_y = code_value();		if (code_seen('XO')) offset_x = code_value();		if (code_seen('YO')) offset_y = code_value();				bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);			} break;	#endif	case 79: {		for (int i = 255; i > 0; i = i - 5) {			fanSpeed = i;			//delay_keep_alive(2000);			for (int j = 0; j < 100; j++) {				delay_keep_alive(100);			}			fan_speed[1];			MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);		}	}break;	/**	* G80: Mesh-based Z probe, probes a grid and produces a	*      mesh to compensate for variable bed height	*	* The S0 report the points as below	*	*  +----> X-axis	*  |	*  |	*  v Y-axis	*	*/	case 80:#ifdef MK1BP		break;#endif //MK1BP	case_G80:	{		mesh_bed_leveling_flag = true;		int8_t verbosity_level = 0;		static bool run = false;		if (code_seen('V')) {			// Just 'V' without a number counts as V1.			char c = strchr_pointer[1];			verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();		}		// Firstly check if we know where we are		if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {			// We don't know where we are! HOME!			// Push the commands to the front of the message queue in the reverse order!			// There shall be always enough space reserved for these commands.			if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {				repeatcommand_front(); // repeat G80 with all its parameters				enquecommand_front_P((PSTR("G28 W0")));			}			else {				mesh_bed_leveling_flag = false;			}			break;		} 						bool temp_comp_start = true;#ifdef PINDA_THERMISTOR		temp_comp_start = false;#endif //PINDA_THERMISTOR		if (temp_comp_start)		if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {			if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {				temp_compensation_start();				run = true;				repeatcommand_front(); // repeat G80 with all its parameters				enquecommand_front_P((PSTR("G28 W0")));			}			else {				mesh_bed_leveling_flag = false;			}			break;		}		run = false;		if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {			mesh_bed_leveling_flag = false;			break;		}		// Save custom message state, set a new custom message state to display: Calibrating point 9.		bool custom_message_old = custom_message;		unsigned int custom_message_type_old = custom_message_type;		unsigned int custom_message_state_old = custom_message_state;		custom_message = true;		custom_message_type = 1;		custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;		lcd_update(1);		mbl.reset(); //reset mesh bed leveling					 // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be					 // consumed during the first movements following this statement.		babystep_undo();		// Cycle through all points and probe them		// First move up. During this first movement, the babystepping will be reverted.		current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);		// The move to the first calibration point.		current_position[X_AXIS] = pgm_read_float(bed_ref_points);		current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);		bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);		#ifdef SUPPORT_VERBOSITY		if (verbosity_level >= 1) {			clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");		}		#endif //SUPPORT_VERBOSITY		//            mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);            		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);		// Wait until the move is finished.		st_synchronize();		int mesh_point = 0; //index number of calibration point		int ix = 0;		int iy = 0;		int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;		int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;		int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;		bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)		#ifdef SUPPORT_VERBOSITY		if (verbosity_level >= 1) {			has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");		}		#endif // SUPPORT_VERBOSITY		setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100		const char *kill_message = NULL;		while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {			// Get coords of a measuring point.			ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1			iy = mesh_point / MESH_MEAS_NUM_X_POINTS;			if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag			float z0 = 0.f;			if (has_z && mesh_point > 0) {				uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));				z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;				//#if 0				#ifdef SUPPORT_VERBOSITY				if (verbosity_level >= 1) {					SERIAL_ECHOLNPGM("");					SERIAL_ECHOPGM("Bed leveling, point: ");					MYSERIAL.print(mesh_point);					SERIAL_ECHOPGM(", calibration z: ");					MYSERIAL.print(z0, 5);					SERIAL_ECHOLNPGM("");				}				#endif // SUPPORT_VERBOSITY				//#endif			}			// Move Z up to MESH_HOME_Z_SEARCH.			current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);			st_synchronize();			// Move to XY position of the sensor point.			current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);			current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);			world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);			#ifdef SUPPORT_VERBOSITY			if (verbosity_level >= 1) {				SERIAL_PROTOCOL(mesh_point);				clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");			}			#endif // SUPPORT_VERBOSITY			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);			st_synchronize();			// Go down until endstop is hit			const float Z_CALIBRATION_THRESHOLD = 1.f;			if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point  				kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;				break;			}			if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {				kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;				break;			}			if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point				kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;				break;			}			#ifdef SUPPORT_VERBOSITY			if (verbosity_level >= 10) {				SERIAL_ECHOPGM("X: ");				MYSERIAL.print(current_position[X_AXIS], 5);				SERIAL_ECHOLNPGM("");				SERIAL_ECHOPGM("Y: ");				MYSERIAL.print(current_position[Y_AXIS], 5);				SERIAL_PROTOCOLPGM("\n");			}			#endif // SUPPORT_VERBOSITY			float offset_z = 0;#ifdef PINDA_THERMISTOR			offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);#endif //PINDA_THERMISTOR//			#ifdef SUPPORT_VERBOSITY/*			if (verbosity_level >= 1)			{				SERIAL_ECHOPGM("mesh bed leveling: ");				MYSERIAL.print(current_position[Z_AXIS], 5);				SERIAL_ECHOPGM(" offset: ");				MYSERIAL.print(offset_z, 5);				SERIAL_ECHOLNPGM("");			}*///			#endif // SUPPORT_VERBOSITY			mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;			custom_message_state--;			mesh_point++;			lcd_update(1);		}		current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;		#ifdef SUPPORT_VERBOSITY		if (verbosity_level >= 20) {			SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");			SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");			MYSERIAL.print(current_position[Z_AXIS], 5);		}		#endif // SUPPORT_VERBOSITY		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);		st_synchronize();		if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {			kill(kill_message);			SERIAL_ECHOLNPGM("killed");		}		clean_up_after_endstop_move();//		SERIAL_ECHOLNPGM("clean up finished ");		bool apply_temp_comp = true;#ifdef PINDA_THERMISTOR		apply_temp_comp = false;#endif		if (apply_temp_comp)		if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation		babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.//		SERIAL_ECHOLNPGM("babystep applied");		bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;		#ifdef SUPPORT_VERBOSITY		if (verbosity_level >= 1) {			eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");		}		#endif // SUPPORT_VERBOSITY		for (uint8_t i = 0; i < 4; ++i) {			unsigned char codes[4] = { 'L', 'R', 'F', 'B' };			long correction = 0;			if (code_seen(codes[i]))				correction = code_value_long();			else if (eeprom_bed_correction_valid) {				unsigned char *addr = (i < 2) ?					((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :					((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);				correction = eeprom_read_int8(addr);			}			if (correction == 0)				continue;			float offset = float(correction) * 0.001f;			if (fabs(offset) > 0.101f) {				SERIAL_ERROR_START;				SERIAL_ECHOPGM("Excessive bed leveling correction: ");				SERIAL_ECHO(offset);				SERIAL_ECHOLNPGM(" microns");			}			else {				switch (i) {				case 0:					for (uint8_t row = 0; row < 3; ++row) {						mbl.z_values[row][1] += 0.5f * offset;						mbl.z_values[row][0] += offset;					}					break;				case 1:					for (uint8_t row = 0; row < 3; ++row) {						mbl.z_values[row][1] += 0.5f * offset;						mbl.z_values[row][2] += offset;					}					break;				case 2:					for (uint8_t col = 0; col < 3; ++col) {						mbl.z_values[1][col] += 0.5f * offset;						mbl.z_values[0][col] += offset;					}					break;				case 3:					for (uint8_t col = 0; col < 3; ++col) {						mbl.z_values[1][col] += 0.5f * offset;						mbl.z_values[2][col] += offset;					}					break;				}			}		}//		SERIAL_ECHOLNPGM("Bed leveling correction finished");		mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)//		SERIAL_ECHOLNPGM("Upsample finished");		mbl.active = 1; //activate mesh bed leveling//		SERIAL_ECHOLNPGM("Mesh bed leveling activated");		go_home_with_z_lift();//		SERIAL_ECHOLNPGM("Go home finished");		//unretract (after PINDA preheat retraction)		if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {			current_position[E_AXIS] += DEFAULT_RETRACTION;			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);		}		KEEPALIVE_STATE(NOT_BUSY);		// Restore custom message state		custom_message = custom_message_old;		custom_message_type = custom_message_type_old;		custom_message_state = custom_message_state_old;		mesh_bed_leveling_flag = false;		mesh_bed_run_from_menu = false;		lcd_update(2);			}	break;        /**         * G81: Print mesh bed leveling status and bed profile if activated         */        case 81:            if (mbl.active) {                SERIAL_PROTOCOLPGM("Num X,Y: ");                SERIAL_PROTOCOL(MESH_NUM_X_POINTS);                SERIAL_PROTOCOLPGM(",");                SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);                SERIAL_PROTOCOLPGM("\nZ search height: ");                SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);                SERIAL_PROTOCOLLNPGM("\nMeasured points:");                for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {                    for (int x = 0; x < MESH_NUM_X_POINTS; x++) {                        SERIAL_PROTOCOLPGM("  ");                        SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);                    }                    SERIAL_PROTOCOLPGM("\n");                }            }            else                SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");            break;            #if 0        /**         * G82: Single Z probe at current location         *         * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!         *         */        case 82:            SERIAL_PROTOCOLLNPGM("Finding bed ");            setup_for_endstop_move();            find_bed_induction_sensor_point_z();            clean_up_after_endstop_move();            SERIAL_PROTOCOLPGM("Bed found at: ");            SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);            SERIAL_PROTOCOLPGM("\n");            break;            /**             * G83: Prusa3D specific: Babystep in Z and store to EEPROM             */        case 83:        {            int babystepz = code_seen('S') ? code_value() : 0;            int BabyPosition = code_seen('P') ? code_value() : 0;                        if (babystepz != 0) {                //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?                // Is the axis indexed starting with zero or one?                if (BabyPosition > 4) {                    SERIAL_PROTOCOLLNPGM("Index out of bounds");                }else{                    // Save it to the eeprom                    babystepLoadZ = babystepz;                    EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);                    // adjust the Z                    babystepsTodoZadd(babystepLoadZ);                }                        }                    }        break;            /**             * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)             */        case 84:            babystepsTodoZsubtract(babystepLoadZ);            // babystepLoadZ = 0;            break;                        /**             * G85: Prusa3D specific: Pick best babystep             */        case 85:            lcd_pick_babystep();            break;#endif                        /**             * G86: Prusa3D specific: Disable babystep correction after home.             * This G-code will be performed at the start of a calibration script.             */        case 86:            calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);            break;            /**             * G87: Prusa3D specific: Enable babystep correction after home             * This G-code will be performed at the end of a calibration script.             */        case 87:			calibration_status_store(CALIBRATION_STATUS_CALIBRATED);            break;            /**             * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode             */		    case 88:			      break;#endif  // ENABLE_MESH_BED_LEVELING                            case 90: // G90      relative_mode = false;      break;    case 91: // G91      relative_mode = true;      break;    case 92: // G92      if(!code_seen(axis_codes[E_AXIS]))        st_synchronize();      for(int8_t i=0; i < NUM_AXIS; i++) {        if(code_seen(axis_codes[i])) {           if(i == E_AXIS) {             current_position[i] = code_value();             plan_set_e_position(current_position[E_AXIS]);           }           else {		current_position[i] = code_value()+add_homing[i];            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);           }        }      }      break;	case 98: //activate farm mode		farm_mode = 1;		PingTime = millis();		eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);		break;	case 99: //deactivate farm mode		farm_mode = 0;		lcd_printer_connected();		eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);		lcd_update(2);		break;    }  } // end if(code_seen('G'))  else if(code_seen('M'))  {	  int index;	  for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);	   	 /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/	  if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {		  SERIAL_ECHOLNPGM("Invalid M code");	  } else    switch((int)code_value())    {#ifdef ULTIPANEL    case 0: // M0 - Unconditional stop - Wait for user button press on LCD    case 1: // M1 - Conditional stop - Wait for user button press on LCD    {      char *src = strchr_pointer + 2;      codenum = 0;      bool hasP = false, hasS = false;      if (code_seen('P')) {        codenum = code_value(); // milliseconds to wait        hasP = codenum > 0;      }      if (code_seen('S')) {        codenum = code_value() * 1000; // seconds to wait        hasS = codenum > 0;      }      starpos = strchr(src, '*');      if (starpos != NULL) *(starpos) = '\0';      while (*src == ' ') ++src;      if (!hasP && !hasS && *src != '\0') {        lcd_setstatus(src);      } else {        LCD_MESSAGERPGM(MSG_USERWAIT);      }      lcd_ignore_click();				//call lcd_ignore_click aslo for else ???      st_synchronize();      previous_millis_cmd = millis();      if (codenum > 0){        codenum += millis();  // keep track of when we started waiting		KEEPALIVE_STATE(PAUSED_FOR_USER);        while(millis() < codenum && !lcd_clicked()){          manage_heater();          manage_inactivity(true);          lcd_update();        }		KEEPALIVE_STATE(IN_HANDLER);        lcd_ignore_click(false);      }else{          if (!lcd_detected())            break;		KEEPALIVE_STATE(PAUSED_FOR_USER);        while(!lcd_clicked()){          manage_heater();          manage_inactivity(true);          lcd_update();        }		KEEPALIVE_STATE(IN_HANDLER);      }      if (IS_SD_PRINTING)        LCD_MESSAGERPGM(MSG_RESUMING);      else        LCD_MESSAGERPGM(WELCOME_MSG);    }    break;#endif    case 17:        LCD_MESSAGERPGM(MSG_NO_MOVE);        enable_x();        enable_y();        enable_z();        enable_e0();        enable_e1();        enable_e2();      break;#ifdef SDSUPPORT    case 20: // M20 - list SD card      SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);      card.ls();      SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);      break;    case 21: // M21 - init SD card      card.initsd();      break;    case 22: //M22 - release SD card      card.release();      break;    case 23: //M23 - Select file      starpos = (strchr(strchr_pointer + 4,'*'));      if(starpos!=NULL)        *(starpos)='\0';      card.openFile(strchr_pointer + 4,true);      break;    case 24: //M24 - Start SD print      card.startFileprint();      starttime=millis();	  break;    case 25: //M25 - Pause SD print      card.pauseSDPrint();      break;    case 26: //M26 - Set SD index      if(card.cardOK && code_seen('S')) {        card.setIndex(code_value_long());      }      break;    case 27: //M27 - Get SD status      card.getStatus();      break;    case 28: //M28 - Start SD write      starpos = (strchr(strchr_pointer + 4,'*'));      if(starpos != NULL){        char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');        strchr_pointer = strchr(npos,' ') + 1;        *(starpos) = '\0';      }      card.openFile(strchr_pointer+4,false);      break;    case 29: //M29 - Stop SD write      //processed in write to file routine above      //card,saving = false;      break;    case 30: //M30 <filename> Delete File      if (card.cardOK){        card.closefile();        starpos = (strchr(strchr_pointer + 4,'*'));        if(starpos != NULL){          char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');          strchr_pointer = strchr(npos,' ') + 1;          *(starpos) = '\0';        }        card.removeFile(strchr_pointer + 4);      }      break;    case 32: //M32 - Select file and start SD print    {      if(card.sdprinting) {        st_synchronize();      }      starpos = (strchr(strchr_pointer + 4,'*'));      char* namestartpos = (strchr(strchr_pointer + 4,'!'));   //find ! to indicate filename string start.      if(namestartpos==NULL)      {        namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M      }      else        namestartpos++; //to skip the '!'      if(starpos!=NULL)        *(starpos)='\0';      bool call_procedure=(code_seen('P'));      if(strchr_pointer>namestartpos)        call_procedure=false;  //false alert, 'P' found within filename      if( card.cardOK )      {        card.openFile(namestartpos,true,!call_procedure);        if(code_seen('S'))          if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename            card.setIndex(code_value_long());        card.startFileprint();        if(!call_procedure)          starttime=millis(); //procedure calls count as normal print time.      }    } break;    case 928: //M928 - Start SD write      starpos = (strchr(strchr_pointer + 5,'*'));      if(starpos != NULL){        char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');        strchr_pointer = strchr(npos,' ') + 1;        *(starpos) = '\0';      }      card.openLogFile(strchr_pointer+5);      break;#endif //SDSUPPORT    case 31: //M31 take time since the start of the SD print or an M109 command      {      stoptime=millis();      char time[30];      unsigned long t=(stoptime-starttime)/1000;      int sec,min;      min=t/60;      sec=t%60;      sprintf_P(time, PSTR("%i min, %i sec"), min, sec);      SERIAL_ECHO_START;      SERIAL_ECHOLN(time);      lcd_setstatus(time);      autotempShutdown();      }      break;#ifndef _DISABLE_M42_M226    case 42: //M42 -Change pin status via gcode      if (code_seen('S'))      {        int pin_status = code_value();        int pin_number = LED_PIN;        if (code_seen('P') && pin_status >= 0 && pin_status <= 255)          pin_number = code_value();        for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)        {          if (sensitive_pins[i] == pin_number)          {            pin_number = -1;            break;          }        }      #if defined(FAN_PIN) && FAN_PIN > -1        if (pin_number == FAN_PIN)          fanSpeed = pin_status;      #endif        if (pin_number > -1)        {          pinMode(pin_number, OUTPUT);          digitalWrite(pin_number, pin_status);          analogWrite(pin_number, pin_status);        }      }     break;#endif //_DISABLE_M42_M226    case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.		// Reset the baby step value and the baby step applied flag.		calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);		eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);        // Reset the skew and offset in both RAM and EEPROM.        reset_bed_offset_and_skew();        // Reset world2machine_rotation_and_skew and world2machine_shift, therefore        // the planner will not perform any adjustments in the XY plane.         // Wait for the motors to stop and update the current position with the absolute values.        world2machine_revert_to_uncorrected();        break;    case 45: // M45: Prusa3D: bed skew and offset with manual Z up    {		bool only_Z = code_seen('Z');		gcode_M45(only_Z);				    }	break;    /*    case 46:    {        // M46: Prusa3D: Show the assigned IP address.        uint8_t ip[4];        bool hasIP = card.ToshibaFlashAir_GetIP(ip);        if (hasIP) {            SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");            SERIAL_ECHO(int(ip[0]));            SERIAL_ECHOPGM(".");            SERIAL_ECHO(int(ip[1]));            SERIAL_ECHOPGM(".");            SERIAL_ECHO(int(ip[2]));            SERIAL_ECHOPGM(".");            SERIAL_ECHO(int(ip[3]));            SERIAL_ECHOLNPGM("");        } else {            SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");                  }        break;    }    */    case 47:        // M47: Prusa3D: Show end stops dialog on the display.		KEEPALIVE_STATE(PAUSED_FOR_USER);        lcd_diag_show_end_stops();		KEEPALIVE_STATE(IN_HANDLER);        break;#if 0    case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.    {        // Disable the default update procedure of the display. We will do a modal dialog.        lcd_update_enable(false);        // Let the planner use the uncorrected coordinates.        mbl.reset();        // Reset world2machine_rotation_and_skew and world2machine_shift, therefore        // the planner will not perform any adjustments in the XY plane.         // Wait for the motors to stop and update the current position with the absolute values.        world2machine_revert_to_uncorrected();        // Move the print head close to the bed.        current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;        plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);        st_synchronize();        // Home in the XY plane.        set_destination_to_current();        setup_for_endstop_move();        home_xy();        int8_t verbosity_level = 0;        if (code_seen('V')) {            // Just 'V' without a number counts as V1.            char c = strchr_pointer[1];            verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();        }        bool success = scan_bed_induction_points(verbosity_level);        clean_up_after_endstop_move();        // Print head up.        current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;        plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);        st_synchronize();        lcd_update_enable(true);        break;    }#endif// M48 Z-Probe repeatability measurement function.//// Usage:   M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>//	// This function assumes the bed has been homed.  Specificaly, that a G28 command// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.// Any information generated by a prior G29 Bed leveling command will be lost and need to be// regenerated.//// The number of samples will default to 10 if not specified.  You can use upper or lower case// letters for any of the options EXCEPT n.  n must be in lower case because Marlin uses a capital// N for its communication protocol and will get horribly confused if you send it a capital N.//#ifdef ENABLE_AUTO_BED_LEVELING#ifdef Z_PROBE_REPEATABILITY_TEST     case 48: // M48 Z-Probe repeatability        {            #if Z_MIN_PIN == -1            #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."            #endif	double sum=0.0; 	double mean=0.0; 	double sigma=0.0;	double sample_set[50];	int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;	double X_current, Y_current, Z_current;	double X_probe_location, Y_probe_location, Z_start_location, ext_position;		if (code_seen('V') || code_seen('v')) {        	verbose_level = code_value();		if (verbose_level<0 || verbose_level>4 ) {			SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");			goto Sigma_Exit;		}	}	if (verbose_level > 0)   {		SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test.   Version 2.00\n");		SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");	}	if (code_seen('n')) {        	n_samples = code_value();		if (n_samples<4 || n_samples>50 ) {			SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");			goto Sigma_Exit;		}	}	X_current = X_probe_location = st_get_position_mm(X_AXIS);	Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);	Z_current = st_get_position_mm(Z_AXIS);	Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;	ext_position	 = st_get_position_mm(E_AXIS);	if (code_seen('X') || code_seen('x') ) {        	X_probe_location = code_value() -  X_PROBE_OFFSET_FROM_EXTRUDER;		if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {			SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");			goto Sigma_Exit;		}	}	if (code_seen('Y') || code_seen('y') ) {        	Y_probe_location = code_value() -  Y_PROBE_OFFSET_FROM_EXTRUDER;		if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {			SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");			goto Sigma_Exit;		}	}	if (code_seen('L') || code_seen('l') ) {        	n_legs = code_value();		if ( n_legs==1 ) 			n_legs = 2;		if ( n_legs<0 || n_legs>15 ) {			SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");			goto Sigma_Exit;		}	}//// Do all the preliminary setup work.   First raise the probe.//        st_synchronize();        plan_bed_level_matrix.set_to_identity();	plan_buffer_line( X_current, Y_current, Z_start_location,			ext_position,    			homing_feedrate[Z_AXIS]/60,			active_extruder);        st_synchronize();//// Now get everything to the specified probe point So we can safely do a probe to// get us close to the bed.  If the Z-Axis is far from the bed, we don't want to // use that as a starting point for each probe.//	if (verbose_level > 2) 		SERIAL_PROTOCOL("Positioning probe for the test.\n");	plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,			ext_position,    			homing_feedrate[X_AXIS]/60,			active_extruder);        st_synchronize();	current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);	current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);	current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);// // OK, do the inital probe to get us close to the bed.// Then retrace the right amount and use that in subsequent probes//	setup_for_endstop_move();	run_z_probe();	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);	Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;	plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,			ext_position,    			homing_feedrate[X_AXIS]/60,			active_extruder);        st_synchronize();	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);        for( n=0; n<n_samples; n++) {		do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location		if ( n_legs)  {		double radius=0.0, theta=0.0, x_sweep, y_sweep;		int rotational_direction, l;			rotational_direction = (unsigned long) millis() & 0x0001;			// clockwise or counter clockwise			radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); 			// limit how far out to go 			theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926));	// turn into radians//SERIAL_ECHOPAIR("starting radius: ",radius);//SERIAL_ECHOPAIR("   theta: ",theta);//SERIAL_ECHOPAIR("   direction: ",rotational_direction);//SERIAL_PROTOCOLLNPGM("");			for( l=0; l<n_legs-1; l++) {				if (rotational_direction==1)					theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians				else					theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians				radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);				if ( radius<0.0 )					radius = -radius;				X_current = X_probe_location + cos(theta) * radius;				Y_current = Y_probe_location + sin(theta) * radius;				if ( X_current<X_MIN_POS)		// Make sure our X & Y are sane					 X_current = X_MIN_POS;				if ( X_current>X_MAX_POS)					 X_current = X_MAX_POS;				if ( Y_current<Y_MIN_POS)		// Make sure our X & Y are sane					 Y_current = Y_MIN_POS;				if ( Y_current>Y_MAX_POS)					 Y_current = Y_MAX_POS;				if (verbose_level>3 ) {					SERIAL_ECHOPAIR("x: ", X_current);					SERIAL_ECHOPAIR("y: ", Y_current);					SERIAL_PROTOCOLLNPGM("");				}				do_blocking_move_to( X_current, Y_current, Z_current );			}			do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location		}		setup_for_endstop_move();                run_z_probe();		sample_set[n] = current_position[Z_AXIS];//// Get the current mean for the data points we have so far//		sum=0.0; 		for( j=0; j<=n; j++) {			sum = sum + sample_set[j];		}		mean = sum / (double (n+1));//// Now, use that mean to calculate the standard deviation for the// data points we have so far//		sum=0.0; 		for( j=0; j<=n; j++) {			sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);		}		sigma = sqrt( sum / (double (n+1)) );		if (verbose_level > 1) {			SERIAL_PROTOCOL(n+1);			SERIAL_PROTOCOL(" of ");			SERIAL_PROTOCOL(n_samples);			SERIAL_PROTOCOLPGM("   z: ");			SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);		}		if (verbose_level > 2) {			SERIAL_PROTOCOL(" mean: ");			SERIAL_PROTOCOL_F(mean,6);			SERIAL_PROTOCOL("   sigma: ");			SERIAL_PROTOCOL_F(sigma,6);		}		if (verbose_level > 0) 			SERIAL_PROTOCOLPGM("\n");		plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, 				  current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);        	st_synchronize();	}	delay(1000);        clean_up_after_endstop_move();//      enable_endstops(true);	if (verbose_level > 0) {		SERIAL_PROTOCOLPGM("Mean: ");		SERIAL_PROTOCOL_F(mean, 6);		SERIAL_PROTOCOLPGM("\n");	}SERIAL_PROTOCOLPGM("Standard Deviation: ");SERIAL_PROTOCOL_F(sigma, 6);SERIAL_PROTOCOLPGM("\n\n");Sigma_Exit:        break;	}#endif		// Z_PROBE_REPEATABILITY_TEST #endif		// ENABLE_AUTO_BED_LEVELING    case 104: // M104      if(setTargetedHotend(104)){        break;      }      if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);      setWatch();      break;    case 112: //  M112 -Emergency Stop      kill("", 3);      break;    case 140: // M140 set bed temp      if (code_seen('S')) setTargetBed(code_value());      break;    case 105 : // M105      if(setTargetedHotend(105)){        break;        }      #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1        SERIAL_PROTOCOLPGM("ok T:");        SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);        SERIAL_PROTOCOLPGM(" /");        SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);        #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1          SERIAL_PROTOCOLPGM(" B:");          SERIAL_PROTOCOL_F(degBed(),1);          SERIAL_PROTOCOLPGM(" /");          SERIAL_PROTOCOL_F(degTargetBed(),1);        #endif //TEMP_BED_PIN        for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {          SERIAL_PROTOCOLPGM(" T");          SERIAL_PROTOCOL(cur_extruder);          SERIAL_PROTOCOLPGM(":");          SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);          SERIAL_PROTOCOLPGM(" /");          SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);        }      #else        SERIAL_ERROR_START;        SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);      #endif        SERIAL_PROTOCOLPGM(" @:");      #ifdef EXTRUDER_WATTS        SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);        SERIAL_PROTOCOLPGM("W");      #else        SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));      #endif        SERIAL_PROTOCOLPGM(" B@:");      #ifdef BED_WATTS        SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);        SERIAL_PROTOCOLPGM("W");      #else        SERIAL_PROTOCOL(getHeaterPower(-1));      #endif#ifdef PINDA_THERMISTOR		SERIAL_PROTOCOLPGM(" P:");		SERIAL_PROTOCOL_F(current_temperature_pinda,1);#endif //PINDA_THERMISTOR#ifdef AMBIENT_THERMISTOR		SERIAL_PROTOCOLPGM(" A:");		SERIAL_PROTOCOL_F(current_temperature_ambient,1);#endif //AMBIENT_THERMISTOR        #ifdef SHOW_TEMP_ADC_VALUES          {float raw = 0.0;          #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1            SERIAL_PROTOCOLPGM("    ADC B:");            SERIAL_PROTOCOL_F(degBed(),1);            SERIAL_PROTOCOLPGM("C->");            raw = rawBedTemp();            SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);            SERIAL_PROTOCOLPGM(" Rb->");            SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);            SERIAL_PROTOCOLPGM(" Rxb->");            SERIAL_PROTOCOL_F(raw, 5);          #endif          for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {            SERIAL_PROTOCOLPGM("  T");            SERIAL_PROTOCOL(cur_extruder);            SERIAL_PROTOCOLPGM(":");            SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);            SERIAL_PROTOCOLPGM("C->");            raw = rawHotendTemp(cur_extruder);            SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);            SERIAL_PROTOCOLPGM(" Rt");            SERIAL_PROTOCOL(cur_extruder);            SERIAL_PROTOCOLPGM("->");            SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);            SERIAL_PROTOCOLPGM(" Rx");            SERIAL_PROTOCOL(cur_extruder);            SERIAL_PROTOCOLPGM("->");            SERIAL_PROTOCOL_F(raw, 5);          }}        #endif		SERIAL_PROTOCOLLN("");		KEEPALIVE_STATE(NOT_BUSY);      return;      break;    case 109:    {// M109 - Wait for extruder heater to reach target.      if(setTargetedHotend(109)){        break;      }      LCD_MESSAGERPGM(MSG_HEATING);	  heating_status = 1;	  if (farm_mode) { prusa_statistics(1); };#ifdef AUTOTEMP        autotemp_enabled=false;      #endif      if (code_seen('S')) {        setTargetHotend(code_value(), tmp_extruder);              CooldownNoWait = true;            } else if (code_seen('R')) {              setTargetHotend(code_value(), tmp_extruder);        CooldownNoWait = false;      }      #ifdef AUTOTEMP        if (code_seen('S')) autotemp_min=code_value();        if (code_seen('B')) autotemp_max=code_value();        if (code_seen('F'))        {          autotemp_factor=code_value();          autotemp_enabled=true;        }      #endif      setWatch();      codenum = millis();      /* See if we are heating up or cooling down */      target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling	  	  KEEPALIVE_STATE(NOT_BUSY);      cancel_heatup = false;	  wait_for_heater(codenum); //loops until target temperature is reached        LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);		KEEPALIVE_STATE(IN_HANDLER);		heating_status = 2;		if (farm_mode) { prusa_statistics(2); };                //starttime=millis();        previous_millis_cmd = millis();      }      break;    case 190: // M190 - Wait for bed heater to reach target.    #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1        LCD_MESSAGERPGM(MSG_BED_HEATING);		heating_status = 3;		if (farm_mode) { prusa_statistics(1); };        if (code_seen('S')) 		{          setTargetBed(code_value());          CooldownNoWait = true;        } 		else if (code_seen('R')) 		{          setTargetBed(code_value());          CooldownNoWait = false;        }        codenum = millis();                cancel_heatup = false;        target_direction = isHeatingBed(); // true if heating, false if cooling		KEEPALIVE_STATE(NOT_BUSY);        while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )        {          if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.          {			  if (!farm_mode) {				  float tt = degHotend(active_extruder);				  SERIAL_PROTOCOLPGM("T:");				  SERIAL_PROTOCOL(tt);				  SERIAL_PROTOCOLPGM(" E:");				  SERIAL_PROTOCOL((int)active_extruder);				  SERIAL_PROTOCOLPGM(" B:");				  SERIAL_PROTOCOL_F(degBed(), 1);				  SERIAL_PROTOCOLLN("");			  }				  codenum = millis();			            }          manage_heater();          manage_inactivity();          lcd_update();        }        LCD_MESSAGERPGM(MSG_BED_DONE);		KEEPALIVE_STATE(IN_HANDLER);		heating_status = 4;        previous_millis_cmd = millis();    #endif        break;    #if defined(FAN_PIN) && FAN_PIN > -1      case 106: //M106 Fan On        if (code_seen('S')){           fanSpeed=constrain(code_value(),0,255);        }        else {          fanSpeed=255;        }        break;      case 107: //M107 Fan Off        fanSpeed = 0;        break;    #endif //FAN_PIN    #if defined(PS_ON_PIN) && PS_ON_PIN > -1      case 80: // M80 - Turn on Power Supply        SET_OUTPUT(PS_ON_PIN); //GND        WRITE(PS_ON_PIN, PS_ON_AWAKE);        // If you have a switch on suicide pin, this is useful        // if you want to start another print with suicide feature after        // a print without suicide...        #if defined SUICIDE_PIN && SUICIDE_PIN > -1            SET_OUTPUT(SUICIDE_PIN);            WRITE(SUICIDE_PIN, HIGH);        #endif        #ifdef ULTIPANEL          powersupply = true;          LCD_MESSAGERPGM(WELCOME_MSG);          lcd_update();        #endif        break;      #endif      case 81: // M81 - Turn off Power Supply        disable_heater();        st_synchronize();        disable_e0();        disable_e1();        disable_e2();        finishAndDisableSteppers();        fanSpeed = 0;        delay(1000); // Wait a little before to switch off      #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1        st_synchronize();        suicide();      #elif defined(PS_ON_PIN) && PS_ON_PIN > -1        SET_OUTPUT(PS_ON_PIN);        WRITE(PS_ON_PIN, PS_ON_ASLEEP);      #endif      #ifdef ULTIPANEL        powersupply = false;        LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!                /*        MACHNAME = "Prusa i3"        MSGOFF = "Vypnuto"        "Prusai3"" ""vypnuto""."                "Prusa i3"" "MSG_ALL[lang_selected][50]"."        */        lcd_update();      #endif	  break;    case 82:      axis_relative_modes[3] = false;      break;    case 83:      axis_relative_modes[3] = true;      break;    case 18: //compatibility    case 84: // M84      if(code_seen('S')){        stepper_inactive_time = code_value() * 1000;      }      else      {        bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));        if(all_axis)        {          st_synchronize();          disable_e0();          disable_e1();          disable_e2();          finishAndDisableSteppers();        }        else        {          st_synchronize();		  if (code_seen('X')) disable_x();		  if (code_seen('Y')) disable_y();		  if (code_seen('Z')) disable_z();#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS		  if (code_seen('E')) {			  disable_e0();			  disable_e1();			  disable_e2();            }          #endif        }      }	  snmm_filaments_used = 0;      break;    case 85: // M85      if(code_seen('S')) {        max_inactive_time = code_value() * 1000;      }      break;    case 92: // M92      for(int8_t i=0; i < NUM_AXIS; i++)      {        if(code_seen(axis_codes[i]))        {          if(i == 3) { // E            float value = code_value();            if(value < 20.0) {              float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.              max_jerk[E_AXIS] *= factor;              max_feedrate[i] *= factor;              axis_steps_per_sqr_second[i] *= factor;            }            axis_steps_per_unit[i] = value;          }          else {            axis_steps_per_unit[i] = code_value();          }        }      }      break;    case 110:   // M110 - reset line pos      if (code_seen('N'))	    gcode_LastN = code_value_long();    break;#ifdef HOST_KEEPALIVE_FEATURE	case 113: // M113 - Get or set Host Keepalive interval		if (code_seen('S')) {			host_keepalive_interval = (uint8_t)code_value_short();//			NOMORE(host_keepalive_interval, 60);		}		else {			SERIAL_ECHO_START;			SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);			SERIAL_PROTOCOLLN("");		}		break;#endif    case 115: // M115      if (code_seen('V')) {          // Report the Prusa version number.          SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());      } else if (code_seen('U')) {          // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,          // pause the print and ask the user to upgrade the firmware.          show_upgrade_dialog_if_version_newer(++ strchr_pointer);      } else {          SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);      }      break;/*    case 117: // M117 display message      starpos = (strchr(strchr_pointer + 5,'*'));      if(starpos!=NULL)        *(starpos)='\0';      lcd_setstatus(strchr_pointer + 5);      break;*/    case 114: // M114      SERIAL_PROTOCOLPGM("X:");      SERIAL_PROTOCOL(current_position[X_AXIS]);      SERIAL_PROTOCOLPGM(" Y:");      SERIAL_PROTOCOL(current_position[Y_AXIS]);      SERIAL_PROTOCOLPGM(" Z:");      SERIAL_PROTOCOL(current_position[Z_AXIS]);      SERIAL_PROTOCOLPGM(" E:");      SERIAL_PROTOCOL(current_position[E_AXIS]);      SERIAL_PROTOCOLRPGM(MSG_COUNT_X);      SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);      SERIAL_PROTOCOLPGM(" Y:");      SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);      SERIAL_PROTOCOLPGM(" Z:");      SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);      SERIAL_PROTOCOLPGM(" E:");      SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);      SERIAL_PROTOCOLLN("");      break;    case 120: // M120      enable_endstops(false) ;      break;    case 121: // M121      enable_endstops(true) ;      break;    case 119: // M119    SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);    SERIAL_PROTOCOLLN("");      #if defined(X_MIN_PIN) && X_MIN_PIN > -1        SERIAL_PROTOCOLRPGM(MSG_X_MIN);        if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);        }else{          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);        }        SERIAL_PROTOCOLLN("");      #endif      #if defined(X_MAX_PIN) && X_MAX_PIN > -1        SERIAL_PROTOCOLRPGM(MSG_X_MAX);        if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);        }else{          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);        }        SERIAL_PROTOCOLLN("");      #endif      #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1        SERIAL_PROTOCOLRPGM(MSG_Y_MIN);        if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);        }else{          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);        }        SERIAL_PROTOCOLLN("");      #endif      #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1        SERIAL_PROTOCOLRPGM(MSG_Y_MAX);        if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);        }else{          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);        }        SERIAL_PROTOCOLLN("");      #endif      #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1        SERIAL_PROTOCOLRPGM(MSG_Z_MIN);        if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);        }else{          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);        }        SERIAL_PROTOCOLLN("");      #endif      #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1        SERIAL_PROTOCOLRPGM(MSG_Z_MAX);        if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);        }else{          SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);        }        SERIAL_PROTOCOLLN("");      #endif      break;      //TODO: update for all axis, use for loop    #ifdef BLINKM    case 150: // M150      {        byte red;        byte grn;        byte blu;        if(code_seen('R')) red = code_value();        if(code_seen('U')) grn = code_value();        if(code_seen('B')) blu = code_value();        SendColors(red,grn,blu);      }      break;    #endif //BLINKM    case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).      {        tmp_extruder = active_extruder;        if(code_seen('T')) {          tmp_extruder = code_value();		  if(tmp_extruder >= EXTRUDERS) {            SERIAL_ECHO_START;            SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);            break;          }        }        float area = .0;        if(code_seen('D')) {		  float diameter = (float)code_value();		  if (diameter == 0.0) {			// setting any extruder filament size disables volumetric on the assumption that			// slicers either generate in extruder values as cubic mm or as as filament feeds			// for all extruders		    volumetric_enabled = false;		  } else {            filament_size[tmp_extruder] = (float)code_value();			// make sure all extruders have some sane value for the filament size			filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);            #if EXTRUDERS > 1			filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);            #if EXTRUDERS > 2			filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);            #endif            #endif			volumetric_enabled = true;		  }        } else {          //reserved for setting filament diameter via UFID or filament measuring device          break;        }		calculate_volumetric_multipliers();      }      break;    case 201: // M201      for(int8_t i=0; i < NUM_AXIS; i++)      {        if(code_seen(axis_codes[i]))        {          max_acceleration_units_per_sq_second[i] = code_value();        }      }      // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)      reset_acceleration_rates();      break;    #if 0 // Not used for Sprinter/grbl gen6    case 202: // M202      for(int8_t i=0; i < NUM_AXIS; i++) {        if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];      }      break;    #endif    case 203: // M203 max feedrate mm/sec      for(int8_t i=0; i < NUM_AXIS; i++) {        if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();      }      break;    case 204: // M204 acclereration S normal moves T filmanent only moves      {        if(code_seen('S')) acceleration = code_value() ;        if(code_seen('T')) retract_acceleration = code_value() ;      }      break;    case 205: //M205 advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk    {      if(code_seen('S')) minimumfeedrate = code_value();      if(code_seen('T')) mintravelfeedrate = code_value();      if(code_seen('B')) minsegmenttime = code_value() ;      if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();      if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();      if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();      if(code_seen('E')) max_jerk[E_AXIS] = code_value();    }    break;    case 206: // M206 additional homing offset      for(int8_t i=0; i < 3; i++)      {        if(code_seen(axis_codes[i])) add_homing[i] = code_value();      }      break;    #ifdef FWRETRACT    case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]    {      if(code_seen('S'))      {        retract_length = code_value() ;      }      if(code_seen('F'))      {        retract_feedrate = code_value()/60 ;      }      if(code_seen('Z'))      {        retract_zlift = code_value() ;      }    }break;    case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]    {      if(code_seen('S'))      {        retract_recover_length = code_value() ;      }      if(code_seen('F'))      {        retract_recover_feedrate = code_value()/60 ;      }    }break;    case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.    {      if(code_seen('S'))      {        int t= code_value() ;        switch(t)        {          case 0:           {            autoretract_enabled=false;            retracted[0]=false;            #if EXTRUDERS > 1              retracted[1]=false;            #endif            #if EXTRUDERS > 2              retracted[2]=false;            #endif          }break;          case 1:           {            autoretract_enabled=true;            retracted[0]=false;            #if EXTRUDERS > 1              retracted[1]=false;            #endif            #if EXTRUDERS > 2              retracted[2]=false;            #endif          }break;          default:            SERIAL_ECHO_START;            SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);            SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);            SERIAL_ECHOLNPGM("\"(1)");        }      }    }break;    #endif // FWRETRACT    #if EXTRUDERS > 1    case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>    {      if(setTargetedHotend(218)){        break;      }      if(code_seen('X'))      {        extruder_offset[X_AXIS][tmp_extruder] = code_value();      }      if(code_seen('Y'))      {        extruder_offset[Y_AXIS][tmp_extruder] = code_value();      }      SERIAL_ECHO_START;      SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);      for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)      {         SERIAL_ECHO(" ");         SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);         SERIAL_ECHO(",");         SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);      }      SERIAL_ECHOLN("");    }break;    #endif    case 220: // M220 S<factor in percent>- set speed factor override percentage    {      if(code_seen('S'))      {        feedmultiply = code_value() ;      }    }    break;    case 221: // M221 S<factor in percent>- set extrude factor override percentage    {      if(code_seen('S'))      {        int tmp_code = code_value();        if (code_seen('T'))        {          if(setTargetedHotend(221)){            break;          }          extruder_multiply[tmp_extruder] = tmp_code;        }        else        {          extrudemultiply = tmp_code ;        }      }    }    break;#ifndef _DISABLE_M42_M226	case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required	{      if(code_seen('P')){        int pin_number = code_value(); // pin number        int pin_state = -1; // required pin state - default is inverted        if(code_seen('S')) pin_state = code_value(); // required pin state        if(pin_state >= -1 && pin_state <= 1){          for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)          {            if (sensitive_pins[i] == pin_number)            {              pin_number = -1;              break;            }          }          if (pin_number > -1)          {            int target = LOW;            st_synchronize();            pinMode(pin_number, INPUT);            switch(pin_state){            case 1:              target = HIGH;              break;            case 0:              target = LOW;              break;            case -1:              target = !digitalRead(pin_number);              break;            }            while(digitalRead(pin_number) != target){              manage_heater();              manage_inactivity();              lcd_update();            }          }        }      }    }    break;#endif //_DISABLE_M42_M226    #if NUM_SERVOS > 0    case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds      {        int servo_index = -1;        int servo_position = 0;        if (code_seen('P'))          servo_index = code_value();        if (code_seen('S')) {          servo_position = code_value();          if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)		      servos[servo_index].attach(0);#endif            servos[servo_index].write(servo_position);#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)              delay(PROBE_SERVO_DEACTIVATION_DELAY);              servos[servo_index].detach();#endif          }          else {            SERIAL_ECHO_START;            SERIAL_ECHO("Servo ");            SERIAL_ECHO(servo_index);            SERIAL_ECHOLN(" out of range");          }        }        else if (servo_index >= 0) {          SERIAL_PROTOCOL(MSG_OK);          SERIAL_PROTOCOL(" Servo ");          SERIAL_PROTOCOL(servo_index);          SERIAL_PROTOCOL(": ");          SERIAL_PROTOCOL(servos[servo_index].read());          SERIAL_PROTOCOLLN("");        }      }      break;    #endif // NUM_SERVOS > 0    #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))    case 300: // M300    {      int beepS = code_seen('S') ? code_value() : 110;      int beepP = code_seen('P') ? code_value() : 1000;      if (beepS > 0)      {        #if BEEPER > 0          tone(BEEPER, beepS);          delay(beepP);          noTone(BEEPER);        #elif defined(ULTRALCD)		  lcd_buzz(beepS, beepP);		#elif defined(LCD_USE_I2C_BUZZER)		  lcd_buzz(beepP, beepS);        #endif      }      else      {        delay(beepP);      }    }    break;    #endif // M300    #ifdef PIDTEMP    case 301: // M301      {        if(code_seen('P')) Kp = code_value();        if(code_seen('I')) Ki = scalePID_i(code_value());        if(code_seen('D')) Kd = scalePID_d(code_value());        #ifdef PID_ADD_EXTRUSION_RATE        if(code_seen('C')) Kc = code_value();        #endif        updatePID();        SERIAL_PROTOCOLRPGM(MSG_OK);        SERIAL_PROTOCOL(" p:");        SERIAL_PROTOCOL(Kp);        SERIAL_PROTOCOL(" i:");        SERIAL_PROTOCOL(unscalePID_i(Ki));        SERIAL_PROTOCOL(" d:");        SERIAL_PROTOCOL(unscalePID_d(Kd));        #ifdef PID_ADD_EXTRUSION_RATE        SERIAL_PROTOCOL(" c:");        //Kc does not have scaling applied above, or in resetting defaults        SERIAL_PROTOCOL(Kc);        #endif        SERIAL_PROTOCOLLN("");      }      break;    #endif //PIDTEMP    #ifdef PIDTEMPBED    case 304: // M304      {        if(code_seen('P')) bedKp = code_value();        if(code_seen('I')) bedKi = scalePID_i(code_value());        if(code_seen('D')) bedKd = scalePID_d(code_value());        updatePID();       	SERIAL_PROTOCOLRPGM(MSG_OK);        SERIAL_PROTOCOL(" p:");        SERIAL_PROTOCOL(bedKp);        SERIAL_PROTOCOL(" i:");        SERIAL_PROTOCOL(unscalePID_i(bedKi));        SERIAL_PROTOCOL(" d:");        SERIAL_PROTOCOL(unscalePID_d(bedKd));        SERIAL_PROTOCOLLN("");      }      break;    #endif //PIDTEMP    case 240: // M240  Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/     {     	#ifdef CHDK                SET_OUTPUT(CHDK);         WRITE(CHDK, HIGH);         chdkHigh = millis();         chdkActive = true;              #else     	      	#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1	const uint8_t NUM_PULSES=16;	const float PULSE_LENGTH=0.01524;	for(int i=0; i < NUM_PULSES; i++) {        WRITE(PHOTOGRAPH_PIN, HIGH);        _delay_ms(PULSE_LENGTH);        WRITE(PHOTOGRAPH_PIN, LOW);        _delay_ms(PULSE_LENGTH);        }        delay(7.33);        for(int i=0; i < NUM_PULSES; i++) {        WRITE(PHOTOGRAPH_PIN, HIGH);        _delay_ms(PULSE_LENGTH);        WRITE(PHOTOGRAPH_PIN, LOW);        _delay_ms(PULSE_LENGTH);        }      	#endif      #endif //chdk end if     }    break;#ifdef DOGLCD    case 250: // M250  Set LCD contrast value: C<value> (value 0..63)     {	  if (code_seen('C')) {	   lcd_setcontrast( ((int)code_value())&63 );          }          SERIAL_PROTOCOLPGM("lcd contrast value: ");          SERIAL_PROTOCOL(lcd_contrast);          SERIAL_PROTOCOLLN("");     }    break;#endif    #ifdef PREVENT_DANGEROUS_EXTRUDE    case 302: // allow cold extrudes, or set the minimum extrude temperature    {	  float temp = .0;	  if (code_seen('S')) temp=code_value();      set_extrude_min_temp(temp);    }    break;	#endif    case 303: // M303 PID autotune    {      float temp = 150.0;      int e=0;      int c=5;      if (code_seen('E')) e=code_value();        if (e<0)          temp=70;      if (code_seen('S')) temp=code_value();      if (code_seen('C')) c=code_value();      PID_autotune(temp, e, c);    }    break;    case 400: // M400 finish all moves    {      st_synchronize();    }    break;#ifdef FILAMENT_SENSORcase 404:  //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width     {    #if (FILWIDTH_PIN > -1)     if(code_seen('N')) filament_width_nominal=code_value();    else{    SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");     SERIAL_PROTOCOLLN(filament_width_nominal);     }    #endif    }    break;         case 405:  //M405 Turn on filament sensor for control     {            if(code_seen('D')) meas_delay_cm=code_value();              if(meas_delay_cm> MAX_MEASUREMENT_DELAY)       	meas_delay_cm = MAX_MEASUREMENT_DELAY;           if(delay_index2 == -1)  //initialize the ring buffer if it has not been done since startup    	   {    	   int temp_ratio = widthFil_to_size_ratio();        	           	    for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){       	              measurement_delay[delay_index1]=temp_ratio-100;  //subtract 100 to scale within a signed byte       	        }       	    delay_index1=0;       	    delay_index2=0;	    	   }        filament_sensor = true ;         //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");     //SERIAL_PROTOCOL(filament_width_meas);     //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");     //SERIAL_PROTOCOL(extrudemultiply);     }     break;         case 406:  //M406 Turn off filament sensor for control     {          filament_sensor = false ;     }     break;       case 407:   //M407 Display measured filament diameter     {                  SERIAL_PROTOCOLPGM("Filament dia (measured mm):");     SERIAL_PROTOCOLLN(filament_width_meas);       }     break;     #endif        case 500: // M500 Store settings in EEPROM    {        Config_StoreSettings(EEPROM_OFFSET);    }    break;    case 501: // M501 Read settings from EEPROM    {        Config_RetrieveSettings(EEPROM_OFFSET);    }    break;    case 502: // M502 Revert to default settings    {        Config_ResetDefault();    }    break;    case 503: // M503 print settings currently in memory    {        Config_PrintSettings();    }    break;    case 509: //M509 Force language selection    {        lcd_force_language_selection();        SERIAL_ECHO_START;        SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));    }    break;    #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED    case 540:    {        if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;    }    break;    #endif    #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET    case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:    {      float value;      if (code_seen('Z'))      {        value = code_value();        if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))        {          zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp          SERIAL_ECHO_START;          SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));          SERIAL_PROTOCOLLN("");        }        else        {          SERIAL_ECHO_START;          SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);          SERIAL_ECHORPGM(MSG_Z_MIN);          SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);          SERIAL_ECHORPGM(MSG_Z_MAX);          SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);          SERIAL_PROTOCOLLN("");        }      }      else      {          SERIAL_ECHO_START;          SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));          SERIAL_ECHO(-zprobe_zoffset);          SERIAL_PROTOCOLLN("");      }      break;    }    #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET    #ifdef FILAMENTCHANGEENABLE    case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]    {		bool old_fsensor_enabled = fsensor_enabled;		fsensor_enabled = false; //temporary solution for unexpected restarting		st_synchronize();		float target[4];		float lastpos[4];        if (farm_mode)                    {                        prusa_statistics(22);                    }                feedmultiplyBckp=feedmultiply;        int8_t TooLowZ = 0;        target[X_AXIS]=current_position[X_AXIS];        target[Y_AXIS]=current_position[Y_AXIS];        target[Z_AXIS]=current_position[Z_AXIS];        target[E_AXIS]=current_position[E_AXIS];        lastpos[X_AXIS]=current_position[X_AXIS];        lastpos[Y_AXIS]=current_position[Y_AXIS];        lastpos[Z_AXIS]=current_position[Z_AXIS];        lastpos[E_AXIS]=current_position[E_AXIS];        //Restract extruder        if(code_seen('E'))        {          target[E_AXIS]+= code_value();        }        else        {          #ifdef FILAMENTCHANGE_FIRSTRETRACT            target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;          #endif        }        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);        //Lift Z        if(code_seen('Z'))        {          target[Z_AXIS]+= code_value();        }        else        {          #ifdef FILAMENTCHANGE_ZADD            target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;            if(target[Z_AXIS] < 10){              target[Z_AXIS]+= 10 ;              TooLowZ = 1;            }else{              TooLowZ = 0;            }          #endif                       }        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);        //Move XY to side        if(code_seen('X'))        {          target[X_AXIS]+= code_value();        }        else        {          #ifdef FILAMENTCHANGE_XPOS            target[X_AXIS]= FILAMENTCHANGE_XPOS ;          #endif        }        if(code_seen('Y'))        {          target[Y_AXIS]= code_value();        }        else        {          #ifdef FILAMENTCHANGE_YPOS            target[Y_AXIS]= FILAMENTCHANGE_YPOS ;          #endif        }        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);		st_synchronize();		KEEPALIVE_STATE(PAUSED_FOR_USER);		uint8_t cnt = 0;		int counterBeep = 0;		lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);		while (!lcd_clicked()) {			cnt++;			manage_heater();			manage_inactivity(true);			/*#ifdef SNMM			target[E_AXIS] += 0.002;			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);			#endif // SNMM*/			if (cnt == 0)			{#if BEEPER > 0				if (counterBeep == 500) {					counterBeep = 0;				}				SET_OUTPUT(BEEPER);				if (counterBeep == 0) {					WRITE(BEEPER, HIGH);				}				if (counterBeep == 20) {					WRITE(BEEPER, LOW);				}				counterBeep++;#else#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)				lcd_buzz(1000 / 6, 100);#else				lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);#endif#endif			}		}		WRITE(BEEPER, LOW);				lcd_change_fil_state = 0;		while (lcd_change_fil_state == 0) {			lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);			KEEPALIVE_STATE(IN_HANDLER);			custom_message = true;			lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);			// Unload filament			if (code_seen('L'))			{				target[E_AXIS] += code_value();			}			else			{#ifdef SNMM#else#ifdef FILAMENTCHANGE_FINALRETRACT				target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;#endif#endif // SNMM			}#ifdef SNMM			target[E_AXIS] += 12;			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);			target[E_AXIS] += 6;			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);			target[E_AXIS] += (FIL_LOAD_LENGTH * -1);			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);			st_synchronize();			target[E_AXIS] += (FIL_COOLING);			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);			target[E_AXIS] += (FIL_COOLING*-1);			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);			target[E_AXIS] += (bowden_length[snmm_extruder] * -1);			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);			st_synchronize();#else			//		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);			//plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);                        target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;            target[E_AXIS] -= 50;            plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);            st_synchronize();            target[E_AXIS] -= 10;            plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 80 / 60, active_extruder);            st_synchronize();            target[E_AXIS] -= 20;            plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000 / 60, active_extruder);            st_synchronize();            #endif // SNMM			//finish moves			st_synchronize();			//disable extruder steppers so filament can be removed			disable_e0();			disable_e1();			disable_e2();			delay(100);			KEEPALIVE_STATE(PAUSED_FOR_USER);			lcd_change_fil_state = !lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFULL, false, false);			//lcd_return_to_status();			lcd_update_enable(true);		}        //Wait for user to insert filament        lcd_wait_interact();		//load_filament_time = millis();		KEEPALIVE_STATE(PAUSED_FOR_USER);#ifdef PAT9125		if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();#endif //PAT9125//		  printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);        while(!lcd_clicked())		{          manage_heater();          manage_inactivity(true);#ifdef PAT9125		  if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())		  {			tone(BEEPER, 1000);			delay_keep_alive(50);			noTone(BEEPER);			  break;		  }#endif //PAT9125/*#ifdef SNMM		  target[E_AXIS] += 0.002;		  plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);#endif // SNMM*/        }#ifdef PAT9125		if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();#endif //PAT9125		//WRITE(BEEPER, LOW);		KEEPALIVE_STATE(IN_HANDLER);#ifdef SNMM		display_loading();		KEEPALIVE_STATE(PAUSED_FOR_USER);		do {			target[E_AXIS] += 0.002;			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);			delay_keep_alive(2);		} while (!lcd_clicked());		KEEPALIVE_STATE(IN_HANDLER);		/*if (millis() - load_filament_time > 2) {			load_filament_time = millis();			target[E_AXIS] += 0.001;			plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);		}*/        //Filament inserted     		//Feed the filament to the end of nozzle quickly   				st_synchronize();		target[E_AXIS] += bowden_length[snmm_extruder];		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);		target[E_AXIS] += FIL_LOAD_LENGTH - 60;		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);		target[E_AXIS] += 40;		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);		target[E_AXIS] += 10;		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);#else		target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;		plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);#endif // SNMM                //Extrude some filament        target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;        plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);                          //Wait for user to check the state        lcd_change_fil_state = 0;        lcd_loading_filament();        while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){          lcd_change_fil_state = 0;		  KEEPALIVE_STATE(PAUSED_FOR_USER);          lcd_alright();		  KEEPALIVE_STATE(IN_HANDLER);          switch(lcd_change_fil_state){                         // Filament failed to load so load it again             case 2:#ifdef SNMM				 display_loading();				 do {					 target[E_AXIS] += 0.002;					 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);					 delay_keep_alive(2);				 } while (!lcd_clicked());				 st_synchronize();				 target[E_AXIS] += bowden_length[snmm_extruder];				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);				 target[E_AXIS] += FIL_LOAD_LENGTH - 60;				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);				 target[E_AXIS] += 40;				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);				 target[E_AXIS] += 10;				 plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);#else                     target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder); #endif                                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);                      lcd_loading_filament();                     break;             // Filament loaded properly but color is not clear             case 3:                     target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;                     plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);                      lcd_loading_color();                     break;                              // Everything good                          default:                     lcd_change_success();					 lcd_update_enable(true);                     break;          }                  }              //Not let's go back to print      //Feed a little of filament to stabilize pressure      target[E_AXIS]+= FILAMENTCHANGE_RECFEED;      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);              //Retract      target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;      plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);                      //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing            //Move XY back      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);            //Move Z back      plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);                      target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;              //Unretract             plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);              //Set E position to original        plan_set_e_position(lastpos[E_AXIS]);             //Recover feed rate       feedmultiply=feedmultiplyBckp;      char cmd[9];      sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);      enquecommand(cmd);      	  lcd_setstatuspgm(WELCOME_MSG);	  custom_message = false;	  custom_message_type = 0;      fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting#ifdef PAT9125	  if (fsensor_M600)	  {		cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front		st_synchronize();		while (!is_buffer_empty())		{			process_commands();		    cmdqueue_pop_front();		}		fsensor_enable();		fsensor_restore_print_and_continue();	  }#endif //PAT9125            }    break;    #endif //FILAMENTCHANGEENABLE	case 601: {		if(lcd_commands_type == 0)  lcd_commands_type = LCD_COMMAND_LONG_PAUSE;	}	break;	case 602: {		if(lcd_commands_type == 0)	lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;	}	break;            #ifdef LIN_ADVANCE    case 900: // M900: Set LIN_ADVANCE options.        gcode_M900();    break;#endif    case 907: // M907 Set digital trimpot motor current using axis codes.    {      #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1        for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());        if(code_seen('B')) digipot_current(4,code_value());        if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());      #endif      #ifdef MOTOR_CURRENT_PWM_XY_PIN        if(code_seen('X')) digipot_current(0, code_value());      #endif      #ifdef MOTOR_CURRENT_PWM_Z_PIN        if(code_seen('Z')) digipot_current(1, code_value());      #endif      #ifdef MOTOR_CURRENT_PWM_E_PIN        if(code_seen('E')) digipot_current(2, code_value());      #endif      #ifdef DIGIPOT_I2C        // this one uses actual amps in floating point        for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());        // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)        for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());      #endif    }    break;    case 908: // M908 Control digital trimpot directly.    {      #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1        uint8_t channel,current;        if(code_seen('P')) channel=code_value();        if(code_seen('S')) current=code_value();        digitalPotWrite(channel, current);      #endif    }    break;	case 910: // M910 TMC2130 init    {		tmc2130_init();    }    break;	case 911: // M911 Set TMC2130 holding currents    {		if (code_seen('X')) tmc2130_set_current_h(0, code_value());		if (code_seen('Y')) tmc2130_set_current_h(1, code_value());        if (code_seen('Z')) tmc2130_set_current_h(2, code_value());        if (code_seen('E')) tmc2130_set_current_h(3, code_value());    }    break;	case 912: // M912 Set TMC2130 running currents    {		if (code_seen('X')) tmc2130_set_current_r(0, code_value());		if (code_seen('Y')) tmc2130_set_current_r(1, code_value());        if (code_seen('Z')) tmc2130_set_current_r(2, code_value());        if (code_seen('E')) tmc2130_set_current_r(3, code_value());    }    break;	case 913: // M913 Print TMC2130 currents    {		tmc2130_print_currents();    }    break;	case 914: // M914 Set normal mode    {		tmc2130_mode = TMC2130_MODE_NORMAL;		tmc2130_init();    }    break;	case 915: // M915 Set silent mode    {		tmc2130_mode = TMC2130_MODE_SILENT;		tmc2130_init();    }    break;	case 916: // M916 Set sg_thrs    {		if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();		if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();		if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();		if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();		MYSERIAL.print("tmc2130_sg_thr[X]=");		MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);		MYSERIAL.print("tmc2130_sg_thr[Y]=");		MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);		MYSERIAL.print("tmc2130_sg_thr[Z]=");		MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);		MYSERIAL.print("tmc2130_sg_thr[E]=");		MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);    }    break;	case 917: // M917 Set TMC2130 pwm_ampl    {		if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());		if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());        if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());        if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());    }    break;	case 918: // M918 Set TMC2130 pwm_grad    {		if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());		if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());        if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());        if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());    }    break;    case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.    {      #if defined(X_MS1_PIN) && X_MS1_PIN > -1        if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());        for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());        if(code_seen('B')) microstep_mode(4,code_value());        microstep_readings();      #endif    }    break;    case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.    {      #if defined(X_MS1_PIN) && X_MS1_PIN > -1      if(code_seen('S')) switch((int)code_value())      {        case 1:          for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);          if(code_seen('B')) microstep_ms(4,code_value(),-1);          break;        case 2:          for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());          if(code_seen('B')) microstep_ms(4,-1,code_value());          break;      }      microstep_readings();      #endif    }    break;	case 701: //M701: load filament	{		gcode_M701();	}	break;	case 702:	{#ifdef SNMM		if (code_seen('U')) {			extr_unload_used(); //unload all filaments which were used in current print		}		else if (code_seen('C')) {			extr_unload(); //unload just current filament 		}		else {			extr_unload_all(); //unload all filaments		}#else		bool old_fsensor_enabled = fsensor_enabled;		fsensor_enabled = false;		custom_message = true;		custom_message_type = 2;		lcd_setstatuspgm(MSG_UNLOADING_FILAMENT); //		extr_unload2();		current_position[E_AXIS] -= 50;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);        st_synchronize();        current_position[E_AXIS] -= 10;        plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 80 / 60, active_extruder);        st_synchronize();        current_position[E_AXIS] -= 20;        plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000 / 60, active_extruder);		st_synchronize();		lcd_setstatuspgm(WELCOME_MSG);		custom_message = false;		custom_message_type = 0;		fsensor_enabled = old_fsensor_enabled;#endif		}	break;    case 999: // M999: Restart after being stopped      Stopped = false;      lcd_reset_alert_level();      gcode_LastN = Stopped_gcode_LastN;      FlushSerialRequestResend();    break;	default: SERIAL_ECHOLNPGM("Invalid M code.");    }	  } // end if(code_seen('M')) (end of M codes)  else if(code_seen('T'))  {	  int index;	  st_synchronize();	  for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);	   	  if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {		  SERIAL_ECHOLNPGM("Invalid T code.");	  }	  else {		  if (*(strchr_pointer + index) == '?') {			  tmp_extruder = choose_extruder_menu();		  }		  else {			  tmp_extruder = code_value();		  }		  snmm_filaments_used |= (1 << tmp_extruder); //for stop print#ifdef SNMM              #ifdef LIN_ADVANCE          if (snmm_extruder != tmp_extruder)            clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.    #endif          		  snmm_extruder = tmp_extruder;		  		  delay(100);		  disable_e0();		  disable_e1();		  disable_e2();		  pinMode(E_MUX0_PIN, OUTPUT);		  pinMode(E_MUX1_PIN, OUTPUT);		  pinMode(E_MUX2_PIN, OUTPUT);		  delay(100);		  SERIAL_ECHO_START;		  SERIAL_ECHO("T:");		  SERIAL_ECHOLN((int)tmp_extruder);		  switch (tmp_extruder) {		  case 1:			  WRITE(E_MUX0_PIN, HIGH);			  WRITE(E_MUX1_PIN, LOW);			  WRITE(E_MUX2_PIN, LOW);			  break;		  case 2:			  WRITE(E_MUX0_PIN, LOW);			  WRITE(E_MUX1_PIN, HIGH);			  WRITE(E_MUX2_PIN, LOW);			  break;		  case 3:			  WRITE(E_MUX0_PIN, HIGH);			  WRITE(E_MUX1_PIN, HIGH);			  WRITE(E_MUX2_PIN, LOW);			  break;		  default:			  WRITE(E_MUX0_PIN, LOW);			  WRITE(E_MUX1_PIN, LOW);			  WRITE(E_MUX2_PIN, LOW);			  break;		  }		  delay(100);#else		  if (tmp_extruder >= EXTRUDERS) {			  SERIAL_ECHO_START;			  SERIAL_ECHOPGM("T");			  SERIAL_PROTOCOLLN((int)tmp_extruder);			  SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);		  }		  else {			  boolean make_move = false;			  if (code_seen('F')) {				  make_move = true;				  next_feedrate = code_value();				  if (next_feedrate > 0.0) {					  feedrate = next_feedrate;				  }			  }#if EXTRUDERS > 1			  if (tmp_extruder != active_extruder) {				  // Save current position to return to after applying extruder offset				  memcpy(destination, current_position, sizeof(destination));				  // Offset extruder (only by XY)				  int i;				  for (i = 0; i < 2; i++) {					  current_position[i] = current_position[i] -						  extruder_offset[i][active_extruder] +						  extruder_offset[i][tmp_extruder];				  }				  // Set the new active extruder and position				  active_extruder = tmp_extruder;				  plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);				  // Move to the old position if 'F' was in the parameters				  if (make_move && Stopped == false) {					  prepare_move();				  }			  }#endif			  SERIAL_ECHO_START;			  SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);			  SERIAL_PROTOCOLLN((int)active_extruder);		  }#endif	  }  } // end if(code_seen('T')) (end of T codes)#ifdef DEBUG_DCODES  else if (code_seen('D')) // D codes (debug)  {    switch((int)code_value())    {	case -1: // D-1 - Endless loop		dcode__1(); break;	case 0: // D0 - Reset		dcode_0(); break;	case 1: // D1 - Clear EEPROM		dcode_1(); break;	case 2: // D2 - Read/Write RAM		dcode_2(); break;	case 3: // D3 - Read/Write EEPROM		dcode_3(); break;	case 4: // D4 - Read/Write PIN		dcode_4(); break;	case 5: // D5 - Read/Write FLASH//		dcode_5(); break;		break;	case 6: // D6 - Read/Write external FLASH		dcode_6(); break;	case 7: // D7 - Read/Write Bootloader		dcode_7(); break;	case 8: // D8 - Read/Write PINDA		dcode_8(); break;	case 9: // D9 - Read/Write ADC		dcode_9(); break;	case 10: // D10 - XYZ calibration = OK		dcode_10(); break;        case 12: //D12 - Reset failstat counters		dcode_12(); break;	case 2130: // D9125 - TMC2130		dcode_2130(); break;	case 9125: // D9125 - PAT9125		dcode_9125(); break;	}  }#endif //DEBUG_DCODES  else  {    SERIAL_ECHO_START;    SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);    SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);    SERIAL_ECHOLNPGM("\"(2)");  }  KEEPALIVE_STATE(NOT_BUSY);  ClearToSend();}void FlushSerialRequestResend(){  //char cmdbuffer[bufindr][100]="Resend:";  MYSERIAL.flush();  SERIAL_PROTOCOLRPGM(MSG_RESEND);  SERIAL_PROTOCOLLN(gcode_LastN + 1);  previous_millis_cmd = millis();  SERIAL_PROTOCOLLNRPGM(MSG_OK);}// Confirm the execution of a command, if sent from a serial line.// Execution of a command from a SD card will not be confirmed.void ClearToSend(){    previous_millis_cmd = millis();    if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)        SERIAL_PROTOCOLLNRPGM(MSG_OK);}void get_coordinates(){  bool seen[4]={false,false,false,false};  for(int8_t i=0; i < NUM_AXIS; i++) {    if(code_seen(axis_codes[i]))    {      destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];      seen[i]=true;    }    else destination[i] = current_position[i]; //Are these else lines really needed?  }  if(code_seen('F')) {    next_feedrate = code_value();#ifdef MAX_SILENT_FEEDRATE	if (tmc2130_mode == TMC2130_MODE_SILENT)		if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;#endif //MAX_SILENT_FEEDRATE    if(next_feedrate > 0.0) feedrate = next_feedrate;  }}void get_arc_coordinates(){#ifdef SF_ARC_FIX   bool relative_mode_backup = relative_mode;   relative_mode = true;#endif   get_coordinates();#ifdef SF_ARC_FIX   relative_mode=relative_mode_backup;#endif   if(code_seen('I')) {     offset[0] = code_value();   }   else {     offset[0] = 0.0;   }   if(code_seen('J')) {     offset[1] = code_value();   }   else {     offset[1] = 0.0;   }}void clamp_to_software_endstops(float target[3]){#ifdef DEBUG_DISABLE_SWLIMITS	return;#endif //DEBUG_DISABLE_SWLIMITS    world2machine_clamp(target[0], target[1]);    // Clamp the Z coordinate.    if (min_software_endstops) {        float negative_z_offset = 0;        #ifdef ENABLE_AUTO_BED_LEVELING            if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;            if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];        #endif        if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;    }    if (max_software_endstops) {        if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];    }}#ifdef MESH_BED_LEVELING    void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {        float dx = x - current_position[X_AXIS];        float dy = y - current_position[Y_AXIS];        float dz = z - current_position[Z_AXIS];        int n_segments = 0;		        if (mbl.active) {            float len = abs(dx) + abs(dy);            if (len > 0)                // Split to 3cm segments or shorter.                n_segments = int(ceil(len / 30.f));        }                if (n_segments > 1) {            float de = e - current_position[E_AXIS];            for (int i = 1; i < n_segments; ++ i) {                float t = float(i) / float(n_segments);                plan_buffer_line(                                 current_position[X_AXIS] + t * dx,                                 current_position[Y_AXIS] + t * dy,                                 current_position[Z_AXIS] + t * dz,                                 current_position[E_AXIS] + t * de,                                 feed_rate, extruder);            }        }        // The rest of the path.        plan_buffer_line(x, y, z, e, feed_rate, extruder);        current_position[X_AXIS] = x;        current_position[Y_AXIS] = y;        current_position[Z_AXIS] = z;        current_position[E_AXIS] = e;    }#endif  // MESH_BED_LEVELING    void prepare_move(){  clamp_to_software_endstops(destination);  previous_millis_cmd = millis();  // Do not use feedmultiply for E or Z only moves  if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {      plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);  }  else {#ifdef MESH_BED_LEVELING    mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);#else     plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);#endif  }  for(int8_t i=0; i < NUM_AXIS; i++) {    current_position[i] = destination[i];  }}void prepare_arc_move(char isclockwise) {  float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc  // Trace the arc  mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);  // As far as the parser is concerned, the position is now == target. In reality the  // motion control system might still be processing the action and the real tool position  // in any intermediate location.  for(int8_t i=0; i < NUM_AXIS; i++) {    current_position[i] = destination[i];  }  previous_millis_cmd = millis();}#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1#if defined(FAN_PIN)  #if CONTROLLERFAN_PIN == FAN_PIN    #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"  #endif#endifunsigned long lastMotor = 0; //Save the time for when a motor was turned on lastunsigned long lastMotorCheck = 0;void controllerFan(){  if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms  {    lastMotorCheck = millis();    if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)    #if EXTRUDERS > 2       || !READ(E2_ENABLE_PIN)    #endif    #if EXTRUDER > 1      #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1       || !READ(X2_ENABLE_PIN)      #endif       || !READ(E1_ENABLE_PIN)    #endif       || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...    {      lastMotor = millis(); //... set time to NOW so the fan will turn on    }    if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...    {        digitalWrite(CONTROLLERFAN_PIN, 0);        analogWrite(CONTROLLERFAN_PIN, 0);    }    else    {        // allows digital or PWM fan output to be used (see M42 handling)        digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);        analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);    }  }}#endif#ifdef TEMP_STAT_LEDSstatic bool blue_led = false;static bool red_led = false;static uint32_t stat_update = 0;void handle_status_leds(void) {  float max_temp = 0.0;  if(millis() > stat_update) {    stat_update += 500; // Update every 0.5s    for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {       max_temp = max(max_temp, degHotend(cur_extruder));       max_temp = max(max_temp, degTargetHotend(cur_extruder));    }    #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1      max_temp = max(max_temp, degTargetBed());      max_temp = max(max_temp, degBed());    #endif    if((max_temp > 55.0) && (red_led == false)) {      digitalWrite(STAT_LED_RED, 1);      digitalWrite(STAT_LED_BLUE, 0);      red_led = true;      blue_led = false;    }    if((max_temp < 54.0) && (blue_led == false)) {      digitalWrite(STAT_LED_RED, 0);      digitalWrite(STAT_LED_BLUE, 1);      red_led = false;      blue_led = true;    }  }}#endifvoid manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h{	if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))	{		if (fsensor_autoload_enabled)		{			if (fsensor_check_autoload())			{                                if (degHotend0() > EXTRUDE_MINTEMP)                {                    fsensor_autoload_check_stop();                    tone(BEEPER, 1000);                    delay_keep_alive(50);                    noTone(BEEPER);                    loading_flag = true;                    enquecommand_front_P((PSTR("M701")));                }                else                {                    lcd_update_enable(false);                    lcd_implementation_clear();                    lcd.setCursor(0, 0);                    lcd_printPGM(MSG_ERROR);                    lcd.setCursor(0, 2);                    lcd_printPGM(MSG_PREHEAT_NOZZLE);                    delay(2000);                    lcd_implementation_clear();                    lcd_update_enable(true);                }                			}		}		else			fsensor_autoload_check_start();	}	else		if (fsensor_autoload_enabled)			fsensor_autoload_check_stop();#if defined(KILL_PIN) && KILL_PIN > -1	static int killCount = 0;   // make the inactivity button a bit less responsive   const int KILL_DELAY = 10000;#endif	    if(buflen < (BUFSIZE-1)){        get_command();    }  if( (millis() - previous_millis_cmd) >  max_inactive_time )    if(max_inactive_time)      kill("", 4);  if(stepper_inactive_time)  {    if( (millis() - previous_millis_cmd) >  stepper_inactive_time )    {      if(blocks_queued() == false && ignore_stepper_queue == false) {        disable_x();//        SERIAL_ECHOLNPGM("manage_inactivity - disable Y");        disable_y();        disable_z();        disable_e0();        disable_e1();        disable_e2();      }    }  }    #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH    if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))    {      chdkActive = false;      WRITE(CHDK, LOW);    }  #endif    #if defined(KILL_PIN) && KILL_PIN > -1        // Check if the kill button was pressed and wait just in case it was an accidental    // key kill key press    // -------------------------------------------------------------------------------    if( 0 == READ(KILL_PIN) )    {       killCount++;    }    else if (killCount > 0)    {       killCount--;    }    // Exceeded threshold and we can confirm that it was not accidental    // KILL the machine    // ----------------------------------------------------------------    if ( killCount >= KILL_DELAY)    {       kill("", 5);    }  #endif      #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1    controllerFan(); //Check if fan should be turned on to cool stepper drivers down  #endif  #ifdef EXTRUDER_RUNOUT_PREVENT    if( (millis() - previous_millis_cmd) >  EXTRUDER_RUNOUT_SECONDS*1000 )    if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)    {     bool oldstatus=READ(E0_ENABLE_PIN);     enable_e0();     float oldepos=current_position[E_AXIS];     float oldedes=destination[E_AXIS];     plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],                      destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],                      EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);     current_position[E_AXIS]=oldepos;     destination[E_AXIS]=oldedes;     plan_set_e_position(oldepos);     previous_millis_cmd=millis();     st_synchronize();     WRITE(E0_ENABLE_PIN,oldstatus);    }  #endif  #ifdef TEMP_STAT_LEDS      handle_status_leds();  #endif  check_axes_activity();}void kill(const char *full_screen_message, unsigned char id){	SERIAL_ECHOPGM("KILL: ");	MYSERIAL.println(int(id));	//return;  cli(); // Stop interrupts  disable_heater();  disable_x();//  SERIAL_ECHOLNPGM("kill - disable Y");  disable_y();  disable_z();  disable_e0();  disable_e1();  disable_e2();#if defined(PS_ON_PIN) && PS_ON_PIN > -1  pinMode(PS_ON_PIN,INPUT);#endif  SERIAL_ERROR_START;  SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);  if (full_screen_message != NULL) {      SERIAL_ERRORLNRPGM(full_screen_message);      lcd_display_message_fullscreen_P(full_screen_message);  } else {      LCD_ALERTMESSAGERPGM(MSG_KILLED);  }  // FMC small patch to update the LCD before ending  sei();   // enable interrupts  for ( int i=5; i--; lcd_update())  {     delay(200);	  }  cli();   // disable interrupts  suicide();  while(1)  {	wdt_reset();	  /* Intentionally left empty */	  } // Wait for reset}void Stop(){  disable_heater();  if(Stopped == false) {    Stopped = true;    Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart    SERIAL_ERROR_START;    SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);    LCD_MESSAGERPGM(MSG_STOPPED);  }}bool IsStopped() { return Stopped; };#ifdef FAST_PWM_FANvoid setPwmFrequency(uint8_t pin, int val){  val &= 0x07;  switch(digitalPinToTimer(pin))  {    #if defined(TCCR0A)    case TIMER0A:    case TIMER0B://         TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));//         TCCR0B |= val;         break;    #endif    #if defined(TCCR1A)    case TIMER1A:    case TIMER1B://         TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));//         TCCR1B |= val;         break;    #endif    #if defined(TCCR2)    case TIMER2:    case TIMER2:         TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));         TCCR2 |= val;         break;    #endif    #if defined(TCCR2A)    case TIMER2A:    case TIMER2B:         TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));         TCCR2B |= val;         break;    #endif    #if defined(TCCR3A)    case TIMER3A:    case TIMER3B:    case TIMER3C:         TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));         TCCR3B |= val;         break;    #endif    #if defined(TCCR4A)    case TIMER4A:    case TIMER4B:    case TIMER4C:         TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));         TCCR4B |= val;         break;   #endif    #if defined(TCCR5A)    case TIMER5A:    case TIMER5B:    case TIMER5C:         TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));         TCCR5B |= val;         break;   #endif  }}#endif //FAST_PWM_FANbool setTargetedHotend(int code){  tmp_extruder = active_extruder;  if(code_seen('T')) {    tmp_extruder = code_value();    if(tmp_extruder >= EXTRUDERS) {      SERIAL_ECHO_START;      switch(code){        case 104:          SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);          break;        case 105:          SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);          break;        case 109:          SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);          break;        case 218:          SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);          break;        case 221:          SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);          break;      }      SERIAL_PROTOCOLLN((int)tmp_extruder);      return true;    }  }  return false;}void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s{	if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)	{		eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);		eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);	}	unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm	unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min	eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min	eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));	total_filament_used = 0;}float calculate_volumetric_multiplier(float diameter) {	float area = .0;	float radius = .0;	radius = diameter * .5;	if (! volumetric_enabled || radius == 0) {		area = 1;	}	else {		area = M_PI * pow(radius, 2);	}	return 1.0 / area;}void calculate_volumetric_multipliers() {	volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);#if EXTRUDERS > 1	volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);#if EXTRUDERS > 2	volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);#endif#endif}void delay_keep_alive(unsigned int ms){    for (;;) {        manage_heater();        // Manage inactivity, but don't disable steppers on timeout.        manage_inactivity(true);        lcd_update();        if (ms == 0)            break;        else if (ms >= 50) {            delay(50);            ms -= 50;        } else {            delay(ms);            ms = 0;        }    }}void wait_for_heater(long codenum) {#ifdef TEMP_RESIDENCY_TIME	long residencyStart;	residencyStart = -1;	/* continue to loop until we have reached the target temp	_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */	while ((!cancel_heatup) && ((residencyStart == -1) ||		(residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {#else	while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {#endif //TEMP_RESIDENCY_TIME		if ((millis() - codenum) > 1000UL)		{ //Print Temp Reading and remaining time every 1 second while heating up/cooling down			if (!farm_mode) {				SERIAL_PROTOCOLPGM("T:");				SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);				SERIAL_PROTOCOLPGM(" E:");				SERIAL_PROTOCOL((int)tmp_extruder);#ifdef TEMP_RESIDENCY_TIME				SERIAL_PROTOCOLPGM(" W:");				if (residencyStart > -1)				{					codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;					SERIAL_PROTOCOLLN(codenum);				}				else				{					SERIAL_PROTOCOLLN("?");				}			}#else				SERIAL_PROTOCOLLN("");#endif				codenum = millis();		}			manage_heater();			manage_inactivity();			lcd_update();#ifdef TEMP_RESIDENCY_TIME			/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time			or when current temp falls outside the hysteresis after target temp was reached */			if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||				(residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||				(residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))			{				residencyStart = millis();			}#endif //TEMP_RESIDENCY_TIME	}}void check_babystep() {	int babystep_z;	EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);	if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {		babystep_z = 0; //if babystep value is out of min max range, set it to 0		SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");		EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);		lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));		lcd_update_enable(true);			}	}#ifdef DISvoid d_setup(){		pinMode(D_DATACLOCK, INPUT_PULLUP);	pinMode(D_DATA, INPUT_PULLUP);	pinMode(D_REQUIRE, OUTPUT);	digitalWrite(D_REQUIRE, HIGH);}float d_ReadData(){	int digit[13];	String mergeOutput;	float output;	digitalWrite(D_REQUIRE, HIGH);	for (int i = 0; i<13; i++)	{		for (int j = 0; j < 4; j++)		{			while (digitalRead(D_DATACLOCK) == LOW) {}			while (digitalRead(D_DATACLOCK) == HIGH) {}			bitWrite(digit[i], j, digitalRead(D_DATA));		}	}	digitalWrite(D_REQUIRE, LOW);	mergeOutput = "";	output = 0;	for (int r = 5; r <= 10; r++) //Merge digits	{		mergeOutput += digit[r];	}	output = mergeOutput.toFloat();	if (digit[4] == 8) //Handle sign	{		output *= -1;	}	for (int i = digit[11]; i > 0; i--) //Handle floating point	{		output /= 10;	}	return output;}void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {	int t1 = 0;	int t_delay = 0;	int digit[13];	int m;	char str[3];	//String mergeOutput;	char mergeOutput[15];	float output;	int mesh_point = 0; //index number of calibration point	float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle	float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);	float mesh_home_z_search = 4;	float row[x_points_num];	int ix = 0;	int iy = 0;	char* filename_wldsd = "wldsd.txt";	char data_wldsd[70];	char numb_wldsd[10];	d_setup();	if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {		// We don't know where we are! HOME!		// Push the commands to the front of the message queue in the reverse order!		// There shall be always enough space reserved for these commands.		repeatcommand_front(); // repeat G80 with all its parameters				enquecommand_front_P((PSTR("G28 W0")));		enquecommand_front_P((PSTR("G1 Z5")));		return;	}	bool custom_message_old = custom_message;	unsigned int custom_message_type_old = custom_message_type;	unsigned int custom_message_state_old = custom_message_state;	custom_message = true;	custom_message_type = 1;	custom_message_state = (x_points_num * y_points_num) + 10;	lcd_update(1);	mbl.reset();	babystep_undo();	card.openFile(filename_wldsd, false);	current_position[Z_AXIS] = mesh_home_z_search;	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);	int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;	int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;	int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;	setup_for_endstop_move(false);	SERIAL_PROTOCOLPGM("Num X,Y: ");	SERIAL_PROTOCOL(x_points_num);	SERIAL_PROTOCOLPGM(",");	SERIAL_PROTOCOL(y_points_num);	SERIAL_PROTOCOLPGM("\nZ search height: ");	SERIAL_PROTOCOL(mesh_home_z_search);	SERIAL_PROTOCOLPGM("\nDimension X,Y: ");	SERIAL_PROTOCOL(x_dimension);	SERIAL_PROTOCOLPGM(",");	SERIAL_PROTOCOL(y_dimension);	SERIAL_PROTOCOLLNPGM("\nMeasured points:");	while (mesh_point != x_points_num * y_points_num) {		ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1		iy = mesh_point / x_points_num;		if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag		float z0 = 0.f;		current_position[Z_AXIS] = mesh_home_z_search;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);		st_synchronize();		current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;		current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);		st_synchronize();		if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point  			break;			card.closefile();		}		//memset(numb_wldsd, 0, sizeof(numb_wldsd));		//dtostrf(d_ReadData(), 8, 5, numb_wldsd);		//strcat(data_wldsd, numb_wldsd);				//MYSERIAL.println(data_wldsd);		//delay(1000);		//delay(3000);		//t1 = millis();				//while (digitalRead(D_DATACLOCK) == LOW) {}		//while (digitalRead(D_DATACLOCK) == HIGH) {}		memset(digit, 0, sizeof(digit));		//cli();		digitalWrite(D_REQUIRE, LOW);					for (int i = 0; i<13; i++)		{			//t1 = millis();			for (int j = 0; j < 4; j++)			{				while (digitalRead(D_DATACLOCK) == LOW) {}								while (digitalRead(D_DATACLOCK) == HIGH) {}				bitWrite(digit[i], j, digitalRead(D_DATA));			}			//t_delay = (millis() - t1);			//SERIAL_PROTOCOLPGM(" ");			//SERIAL_PROTOCOL_F(t_delay, 5);			//SERIAL_PROTOCOLPGM(" ");		}		//sei();		digitalWrite(D_REQUIRE, HIGH);		mergeOutput[0] = '\0';		output = 0;		for (int r = 5; r <= 10; r++) //Merge digits		{						sprintf(str, "%d", digit[r]);			strcat(mergeOutput, str);		}				output = atof(mergeOutput);		if (digit[4] == 8) //Handle sign		{			output *= -1;		}		for (int i = digit[11]; i > 0; i--) //Handle floating point		{			output *= 0.1;		}				//output = d_ReadData();		//row[ix] = current_position[Z_AXIS];		memset(data_wldsd, 0, sizeof(data_wldsd));		for (int i = 0; i <3; i++) {			memset(numb_wldsd, 0, sizeof(numb_wldsd));			dtostrf(current_position[i], 8, 5, numb_wldsd);			strcat(data_wldsd, numb_wldsd);			strcat(data_wldsd, ";");		}		memset(numb_wldsd, 0, sizeof(numb_wldsd));		dtostrf(output, 8, 5, numb_wldsd);		strcat(data_wldsd, numb_wldsd);		//strcat(data_wldsd, ";");		card.write_command(data_wldsd);				//row[ix] = d_ReadData();				row[ix] = output; // current_position[Z_AXIS];		if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {			for (int i = 0; i < x_points_num; i++) {				SERIAL_PROTOCOLPGM(" ");				SERIAL_PROTOCOL_F(row[i], 5);			}			SERIAL_PROTOCOLPGM("\n");		}		custom_message_state--;		mesh_point++;		lcd_update(1);	}	card.closefile();}#endifvoid temp_compensation_start() {		custom_message = true;	custom_message_type = 5;	custom_message_state = PINDA_HEAT_T + 1;	lcd_update(2);	if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {		current_position[E_AXIS] -= DEFAULT_RETRACTION;	}	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);		current_position[X_AXIS] = PINDA_PREHEAT_X;	current_position[Y_AXIS] = PINDA_PREHEAT_Y;	current_position[Z_AXIS] = PINDA_PREHEAT_Z;	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);	st_synchronize();	while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);	for (int i = 0; i < PINDA_HEAT_T; i++) {		delay_keep_alive(1000);		custom_message_state = PINDA_HEAT_T - i;		if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed		else lcd_update(1);	}		custom_message_type = 0;	custom_message_state = 0;	custom_message = false;}void temp_compensation_apply() {	int i_add;	int compensation_value;	int z_shift = 0;	float z_shift_mm;	if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {		if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {			i_add = (target_temperature_bed - 60) / 10;			EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);			z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];		}else {			//interpolation			z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];		}		SERIAL_PROTOCOLPGM("\n");		SERIAL_PROTOCOLPGM("Z shift applied:");		MYSERIAL.print(z_shift_mm);		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);		st_synchronize();		plan_set_z_position(current_position[Z_AXIS]);	}	else {				//we have no temp compensation data	}}float temp_comp_interpolation(float inp_temperature) {	//cubic spline interpolation	int n, i, j, k;	float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;	int shift[10];	int temp_C[10];	n = 6; //number of measured points	shift[0] = 0;	for (i = 0; i < n; i++) {		if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM		temp_C[i] = 50 + i * 10; //temperature in C#ifdef PINDA_THERMISTOR		temp_C[i] = 35 + i * 5; //temperature in C#else		temp_C[i] = 50 + i * 10; //temperature in C#endif		x[i] = (float)temp_C[i];		f[i] = (float)shift[i];	}	if (inp_temperature < x[0]) return 0;	for (i = n - 1; i>0; i--) {		F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);		h[i - 1] = x[i] - x[i - 1];	}	//*********** formation of h, s , f matrix **************	for (i = 1; i<n - 1; i++) {		m[i][i] = 2 * (h[i - 1] + h[i]);		if (i != 1) {			m[i][i - 1] = h[i - 1];			m[i - 1][i] = h[i - 1];		}		m[i][n - 1] = 6 * (F[i + 1] - F[i]);	}	//*********** forward elimination **************	for (i = 1; i<n - 2; i++) {		temp = (m[i + 1][i] / m[i][i]);		for (j = 1; j <= n - 1; j++)			m[i + 1][j] -= temp*m[i][j];	}	//*********** backward substitution *********	for (i = n - 2; i>0; i--) {		sum = 0;		for (j = i; j <= n - 2; j++)			sum += m[i][j] * s[j];		s[i] = (m[i][n - 1] - sum) / m[i][i];	}		for (i = 0; i<n - 1; i++)			if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {				a = (s[i + 1] - s[i]) / (6 * h[i]);				b = s[i] / 2;				c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;				d = f[i];				sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;			}		return sum;}#ifdef PINDA_THERMISTORfloat temp_compensation_pinda_thermistor_offset(float temperature_pinda){	if (!temp_cal_active) return 0;	if (!calibration_status_pinda()) return 0;	return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];}#endif //PINDA_THERMISTORvoid long_pause() //long pause print{	st_synchronize();		//save currently set parameters to global variables	saved_feedmultiply = feedmultiply; 	HotendTempBckp = degTargetHotend(active_extruder);	fanSpeedBckp = fanSpeed;	start_pause_print = millis();			//save position	pause_lastpos[X_AXIS] = current_position[X_AXIS];	pause_lastpos[Y_AXIS] = current_position[Y_AXIS];	pause_lastpos[Z_AXIS] = current_position[Z_AXIS];	pause_lastpos[E_AXIS] = current_position[E_AXIS];	//retract	current_position[E_AXIS] -= DEFAULT_RETRACTION;	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);	//lift z	current_position[Z_AXIS] += Z_PAUSE_LIFT;	if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);	//set nozzle target temperature to 0	setTargetHotend(0, 0);	setTargetHotend(0, 1);	setTargetHotend(0, 2);	//Move XY to side	current_position[X_AXIS] = X_PAUSE_POS;	current_position[Y_AXIS] = Y_PAUSE_POS;	plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);	// Turn off the print fan	fanSpeed = 0;	st_synchronize();}void serialecho_temperatures() {	float tt = degHotend(active_extruder);	SERIAL_PROTOCOLPGM("T:");	SERIAL_PROTOCOL(tt);	SERIAL_PROTOCOLPGM(" E:");	SERIAL_PROTOCOL((int)active_extruder);	SERIAL_PROTOCOLPGM(" B:");	SERIAL_PROTOCOL_F(degBed(), 1);	SERIAL_PROTOCOLLN("");}extern uint32_t sdpos_atomic;void uvlo_() {	unsigned long time_start = millis();	bool sd_print = card.sdprinting;    // Conserve power as soon as possible.    disable_x();    disable_y();    disable_e0();    	tmc2130_set_current_h(Z_AXIS, 20);	tmc2130_set_current_r(Z_AXIS, 20);	tmc2130_set_current_h(E_AXIS, 20);	tmc2130_set_current_r(E_AXIS, 20);    // Indicate that the interrupt has been triggered.	//	SERIAL_ECHOLNPGM("UVLO");    // Read out the current Z motor microstep counter. This will be later used    // for reaching the zero full step before powering off.    uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);    // Calculate the file position, from which to resume this print.    long sd_position = sdpos_atomic; //atomic sd position of last command added in queue    {      uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner      sd_position -= sdlen_planner;      uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue      sd_position -= sdlen_cmdqueue;      if (sd_position < 0) sd_position = 0;    }    // Backup the feedrate in mm/min.    int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;    // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.    // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling    // are in action.    planner_abort_hard();    // Store the current extruder position.    eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));	eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);    // Clean the input command queue.    cmdqueue_reset();    card.sdprinting = false;//    card.closefile();    // Enable stepper driver interrupt to move Z axis.    // This should be fine as the planner and command queues are empty and the SD card printing is disabled.    //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,    // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.		sei();		plan_buffer_line(      current_position[X_AXIS],       current_position[Y_AXIS],       current_position[Z_AXIS],       current_position[E_AXIS] - DEFAULT_RETRACTION,      95, active_extruder);            st_synchronize();        disable_e0();    		plan_buffer_line(      current_position[X_AXIS],       current_position[Y_AXIS],       current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],       current_position[E_AXIS] - DEFAULT_RETRACTION,      40, active_extruder);        st_synchronize();    disable_e0();        plan_buffer_line(                     current_position[X_AXIS],                     current_position[Y_AXIS],                     current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],                     current_position[E_AXIS] - DEFAULT_RETRACTION,                     40, active_extruder);    st_synchronize();    disable_e0();    disable_z();        // Move Z up to the next 0th full step.    // Write the file position.    eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);    // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.    for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {      uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1      uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;      // Scale the z value to 1u resolution.      int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;      eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));    }    // Read out the current Z motor microstep counter. This will be later used    // for reaching the zero full step before powering off.    eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);    // Store the current position.    eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);    eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);    eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);    // Store the current feed rate, temperatures and fan speed.    EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);    eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);    eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);    eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);    // Finaly store the "power outage" flag.	if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);    st_synchronize();    SERIAL_ECHOPGM("stps");    MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));    disable_z();        // Increment power failure counter    uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);    power_count++;    eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);    		SERIAL_ECHOLNPGM("UVLO - end");		MYSERIAL.println(millis() - time_start);    #if 0    // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.    current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);    st_synchronize();#endif    		cli();    volatile unsigned int ppcount = 0;    SET_OUTPUT(BEEPER);    WRITE(BEEPER, HIGH);    for(ppcount = 0; ppcount < 2000; ppcount ++){        asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz    }    WRITE(BEEPER, LOW);    while(1){#if 1        WRITE(BEEPER, LOW);        for(ppcount = 0; ppcount < 8000; ppcount ++){             asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz        }#endif            };}void setup_fan_interrupt() {//INT7	DDRE &= ~(1 << 7); //input pin	PORTE &= ~(1 << 7); //no internal pull-up	//start with sensing rising edge	EICRB &= ~(1 << 6);	EICRB |= (1 << 7);	//enable INT7 interrupt	EIMSK |= (1 << 7);}ISR(INT7_vect) {	//measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher	if (fanSpeed < MIN_PRINT_FAN_SPEED) return;	if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge		t_fan_rising_edge = millis();	}	else { //interrupt was triggered by falling edge		if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm			fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse		}	}		EICRB ^= (1 << 6); //change edge}void setup_uvlo_interrupt() {	DDRE &= ~(1 << 4); //input pin	PORTE &= ~(1 << 4); //no internal pull-up						//sensing falling edge	EICRB |= (1 << 0);	EICRB &= ~(1 << 1);	//enable INT4 interrupt	EIMSK |= (1 << 4);}ISR(INT4_vect) {	EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once 	SERIAL_ECHOLNPGM("INT4");	if (IS_SD_PRINTING) uvlo_();}void recover_print(uint8_t automatic) {	char cmd[30];	lcd_update_enable(true);	lcd_update(2);	lcd_setstatuspgm(MSG_RECOVERING_PRINT);  recover_machine_state_after_power_panic();    // Set the target bed and nozzle temperatures.     sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);     enquecommand(cmd);     sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);     enquecommand(cmd);  // Lift the print head, so one may remove the excess priming material.  if (current_position[Z_AXIS] < 25)    enquecommand_P(PSTR("G1 Z25 F800"));  // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.	enquecommand_P(PSTR("G28 X Y"));  // Set the target bed and nozzle temperatures and wait.	sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);	enquecommand(cmd);	sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);	enquecommand(cmd);	enquecommand_P(PSTR("M83")); //E axis relative mode	//enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure    // If not automatically recoreverd (long power loss), extrude extra filament to stabilize     if(automatic == 0){         enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure     } 	enquecommand_P(PSTR("G1 E"  STRINGIFY(-DEFAULT_RETRACTION)" F480"));  // Mark the power panic status as inactive.	eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);	/*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp		delay_keep_alive(1000);	}*/	SERIAL_ECHOPGM("After waiting for temp:");	SERIAL_ECHOPGM("Current position X_AXIS:");	MYSERIAL.println(current_position[X_AXIS]);	SERIAL_ECHOPGM("Current position Y_AXIS:");	MYSERIAL.println(current_position[Y_AXIS]);  // Restart the print.	restore_print_from_eeprom();	SERIAL_ECHOPGM("current_position[Z_AXIS]:");	MYSERIAL.print(current_position[Z_AXIS]);	SERIAL_ECHOPGM("current_position[E_AXIS]:");	MYSERIAL.print(current_position[E_AXIS]);}void recover_machine_state_after_power_panic(){  char cmd[30];  // 1) Recover the logical cordinates at the time of the power panic.  // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.  current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));  current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));  // Recover the logical coordinate of the Z axis at the time of the power panic.  // The current position after power panic is moved to the next closest 0th full step.  current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +     UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];  if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {	  current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));	  sprintf_P(cmd, PSTR("G92 E"));	  dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));	  enquecommand(cmd);  }  memcpy(destination, current_position, sizeof(destination));  SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");  print_world_coordinates();  // 2) Initialize the logical to physical coordinate system transformation.  world2machine_initialize();  // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.  mbl.active = false;  for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {    uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1    uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;    // Scale the z value to 10u resolution.    int16_t v;    eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);    if (v != 0)      mbl.active = true;    mbl.z_values[iy][ix] = float(v) * 0.001f;  }  if (mbl.active)    mbl.upsample_3x3();//  SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");//  print_mesh_bed_leveling_table();  // 4) Load the baby stepping value, which is expected to be active at the time of power panic.  // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.  babystep_load();  // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.  plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);  // 6) Power up the motors, mark their positions as known.  //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.  axis_known_position[X_AXIS] = true; enable_x();  axis_known_position[Y_AXIS] = true; enable_y();  axis_known_position[Z_AXIS] = true; enable_z();  SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");  print_physical_coordinates();  // 7) Recover the target temperatures.  target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);  target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);}void restore_print_from_eeprom() {	float x_rec, y_rec, z_pos;	int feedrate_rec;	uint8_t fan_speed_rec;	char cmd[30];	char* c;	char filename[13];	uint8_t depth = 0;	char dir_name[9];	fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);	EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);	SERIAL_ECHOPGM("Feedrate:");	MYSERIAL.println(feedrate_rec);	depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);		MYSERIAL.println(int(depth));	for (int i = 0; i < depth; i++) {		for (int j = 0; j < 8; j++) {			dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);					}		dir_name[8] = '\0';		MYSERIAL.println(dir_name);		card.chdir(dir_name);	}	for (int i = 0; i < 8; i++) {		filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);			}	filename[8] = '\0';	MYSERIAL.print(filename);	strcat_P(filename, PSTR(".gco"));	sprintf_P(cmd, PSTR("M23 %s"), filename);	for (c = &cmd[4]; *c; c++)		 *c = tolower(*c);	enquecommand(cmd);	uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));	SERIAL_ECHOPGM("Position read from eeprom:");	MYSERIAL.println(position);  // E axis relative mode.	enquecommand_P(PSTR("M83"));  // Move to the XY print position in logical coordinates, where the print has been killed.	strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));	strcat_P(cmd, PSTR(" Y"));   strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));	strcat_P(cmd, PSTR(" F2000"));	enquecommand(cmd);  // Move the Z axis down to the print, in logical coordinates.	strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));	enquecommand(cmd);  // Unretract.	enquecommand_P(PSTR("G1 E"  STRINGIFY(2*DEFAULT_RETRACTION)" F480"));  // Set the feedrate saved at the power panic.	sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);	enquecommand(cmd);	if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))	{	  float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));	  enquecommand_P(PSTR("M82")); //E axis abslute mode	}  // Set the fan speed saved at the power panic.	strcpy_P(cmd, PSTR("M106 S"));	strcat(cmd, itostr3(int(fan_speed_rec)));	enquecommand(cmd);  // Set a position in the file.  sprintf_P(cmd, PSTR("M26 S%lu"), position);  enquecommand(cmd);  // Start SD print.  enquecommand_P(PSTR("M24")); }////////////////////////////////////////////////////////////////////////////////// new save/restore printing//extern uint32_t sdpos_atomic;bool saved_printing = false;uint32_t saved_sdpos = 0;float saved_pos[4] = {0, 0, 0, 0};// Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.float saved_feedrate2 = 0;uint8_t saved_active_extruder = 0;bool saved_extruder_under_pressure = false;void stop_and_save_print_to_ram(float z_move, float e_move){	if (saved_printing) return;	cli();  unsigned char nplanner_blocks = number_of_blocks();	saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue	uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner	saved_sdpos -= sdlen_planner;	uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue	saved_sdpos -= sdlen_cmdqueue;#if 0  SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);  SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);  SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);  SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);  SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);  SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);  SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);  {    card.setIndex(saved_sdpos);    SERIAL_ECHOLNPGM("Content of planner buffer: ");    for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)      MYSERIAL.print(char(card.get()));    SERIAL_ECHOLNPGM("Content of command buffer: ");    for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)      MYSERIAL.print(char(card.get()));    SERIAL_ECHOLNPGM("End of command buffer");  }  {    // Print the content of the planner buffer, line by line:    card.setIndex(saved_sdpos);    int8_t iline = 0;    for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {      SERIAL_ECHOPGM("Planner line (from file): ");      MYSERIAL.print(int(iline), DEC);      SERIAL_ECHOPGM(", length: ");      MYSERIAL.print(block_buffer[idx].sdlen, DEC);      SERIAL_ECHOPGM(", steps: (");      MYSERIAL.print(block_buffer[idx].steps_x, DEC);      SERIAL_ECHOPGM(",");      MYSERIAL.print(block_buffer[idx].steps_y, DEC);      SERIAL_ECHOPGM(",");      MYSERIAL.print(block_buffer[idx].steps_z, DEC);      SERIAL_ECHOPGM(",");      MYSERIAL.print(block_buffer[idx].steps_e, DEC);      SERIAL_ECHOPGM("), events: ");      MYSERIAL.println(block_buffer[idx].step_event_count, DEC);      for (int len = block_buffer[idx].sdlen; len > 0; -- len)        MYSERIAL.print(char(card.get()));    }  }  {    // Print the content of the command buffer, line by line:    int8_t iline = 0;    union {        struct {            char lo;            char hi;        } lohi;        uint16_t value;    } sdlen_single;    int _bufindr = bufindr;    for (int _buflen  = buflen; _buflen > 0; ++ iline) {        if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {            sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];            sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];        }        SERIAL_ECHOPGM("Buffer line (from buffer): ");        MYSERIAL.print(int(iline), DEC);        SERIAL_ECHOPGM(", type: ");        MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);        SERIAL_ECHOPGM(", len: ");        MYSERIAL.println(sdlen_single.value, DEC);        // Print the content of the buffer line.        MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);        SERIAL_ECHOPGM("Buffer line (from file): ");        MYSERIAL.print(int(iline), DEC);        MYSERIAL.println(int(iline), DEC);        for (; sdlen_single.value > 0; -- sdlen_single.value)          MYSERIAL.print(char(card.get()));        if (-- _buflen == 0)          break;        // First skip the current command ID and iterate up to the end of the string.        for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;        // Second, skip the end of string null character and iterate until a nonzero command ID is found.        for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;        // If the end of the buffer was empty,        if (_bufindr == sizeof(cmdbuffer)) {            // skip to the start and find the nonzero command.            for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;        }    }  }#endif#if 0  saved_feedrate2 = feedrate; //save feedrate#else  // Try to deduce the feedrate from the first block of the planner.  // Speed is in mm/min.  saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;#endif	planner_abort_hard(); //abort printing	memcpy(saved_pos, current_position, sizeof(saved_pos));	saved_active_extruder = active_extruder; //save active_extruder	saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused	cmdqueue_reset(); //empty cmdqueue	card.sdprinting = false;//	card.closefile();	saved_printing = true;	sei();	if ((z_move != 0) || (e_move != 0)) { // extruder or z move#if 1    // Rather than calling plan_buffer_line directly, push the move into the command queue,     char buf[48];    strcpy_P(buf, PSTR("G1 Z"));    dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));    strcat_P(buf, PSTR(" E"));    // Relative extrusion    dtostrf(e_move, 6, 3, buf + strlen(buf));    strcat_P(buf, PSTR(" F"));    dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));    // At this point the command queue is empty.    enquecommand(buf, false);    // If this call is invoked from the main Arduino loop() function, let the caller know that the command    // in the command queue is not the original command, but a new one, so it should not be removed from the queue.    repeatcommand_front();#else		plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);    st_synchronize(); //wait moving    memcpy(current_position, saved_pos, sizeof(saved_pos));    memcpy(destination, current_position, sizeof(destination));#endif  }}void restore_print_from_ram_and_continue(float e_move){	if (!saved_printing) return;//	for (int axis = X_AXIS; axis <= E_AXIS; axis++)//	    current_position[axis] = st_get_position_mm(axis);	active_extruder = saved_active_extruder; //restore active_extruder	feedrate = saved_feedrate2; //restore feedrate	float e = saved_pos[E_AXIS] - e_move;	plan_set_e_position(e);	plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);    st_synchronize();  memcpy(current_position, saved_pos, sizeof(saved_pos));  memcpy(destination, current_position, sizeof(destination));	card.setIndex(saved_sdpos);  sdpos_atomic = saved_sdpos;	card.sdprinting = true;	saved_printing = false;	printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this}void print_world_coordinates(){  SERIAL_ECHOPGM("world coordinates: (");  MYSERIAL.print(current_position[X_AXIS], 3);  SERIAL_ECHOPGM(", ");  MYSERIAL.print(current_position[Y_AXIS], 3);  SERIAL_ECHOPGM(", ");  MYSERIAL.print(current_position[Z_AXIS], 3);  SERIAL_ECHOLNPGM(")");}void print_physical_coordinates(){  SERIAL_ECHOPGM("physical coordinates: (");  MYSERIAL.print(st_get_position_mm(X_AXIS), 3);  SERIAL_ECHOPGM(", ");  MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);  SERIAL_ECHOPGM(", ");  MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);  SERIAL_ECHOLNPGM(")");}void print_mesh_bed_leveling_table(){  SERIAL_ECHOPGM("mesh bed leveling: ");  for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)    for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {      MYSERIAL.print(mbl.z_values[y][x], 3);      SERIAL_ECHOPGM(" ");    }  SERIAL_ECHOLNPGM("");}#define FIL_LOAD_LENGTH 60void extr_unload2() { //unloads filament//	float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;//	float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;//	int8_t SilentMode;	uint8_t snmm_extruder = 0;	if (degHotend0() > EXTRUDE_MINTEMP) {		lcd_implementation_clear();		lcd_display_message_fullscreen_P(PSTR(""));		max_feedrate[E_AXIS] = 50;		lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);//		lcd.print(" ");//		lcd.print(snmm_extruder + 1);		lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);		if (current_position[Z_AXIS] < 15) {			current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);		}				current_position[E_AXIS] += 10; //extrusion		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);//		digipot_current(2, E_MOTOR_HIGH_CURRENT);		if (current_temperature[0] < 230) { //PLA & all other filaments			current_position[E_AXIS] += 5.4;			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);			current_position[E_AXIS] += 3.2;			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);			current_position[E_AXIS] += 3;			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);		}		else { //ABS			current_position[E_AXIS] += 3.1;			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);			current_position[E_AXIS] += 3.1;			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);			current_position[E_AXIS] += 4;			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);			/*current_position[X_AXIS] += 23; //delay			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay			current_position[X_AXIS] -= 23; //delay			plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/			delay_keep_alive(4700);		}			max_feedrate[E_AXIS] = 80;		current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);		current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;		plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);		st_synchronize();		//digipot_init();//		if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents//		else digipot_current(2, tmp_motor_loud[2]);		lcd_update_enable(true);//		lcd_return_to_status();		max_feedrate[E_AXIS] = 50;	}	else {		lcd_implementation_clear();		lcd.setCursor(0, 0);		lcd_printPGM(MSG_ERROR);		lcd.setCursor(0, 2);		lcd_printPGM(MSG_PREHEAT_NOZZLE);		delay(2000);		lcd_implementation_clear();	}//	lcd_return_to_status();}
 |