fsensor.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460
  1. #include "Marlin.h"
  2. #include "fsensor.h"
  3. #include <avr/pgmspace.h>
  4. #include "pat9125.h"
  5. #include "stepper.h"
  6. #include "planner.h"
  7. #include "fastio.h"
  8. #include "cmdqueue.h"
  9. //Basic params
  10. #define FSENSOR_CHUNK_LEN 180 //filament sensor chunk length in steps - 0.64mm
  11. #define FSENSOR_ERR_MAX 10 //filament sensor maximum error count for runout detection
  12. //Optical quality meassurement params
  13. #define FSENSOR_OQ_MAX_ES 6 //maximum error sum while loading (length ~64mm = 100chunks)
  14. #define FSENSOR_OQ_MAX_EM 2 //maximum error counter value while loading
  15. #define FSENSOR_OQ_MIN_YD 2 //minimum yd per chunk (applied to avg value)
  16. #define FSENSOR_OQ_MAX_YD 200 //maximum yd per chunk (applied to avg value)
  17. #define FSENSOR_OQ_MAX_PD 4 //maximum positive deviation (= yd_max/yd_avg)
  18. #define FSENSOR_OQ_MAX_ND 5 //maximum negative deviation (= yd_avg/yd_min)
  19. #define FSENSOR_OQ_MAX_SH 13 //maximum shutter value
  20. const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
  21. #define FSENSOR_INT_PIN 63 //filament sensor interrupt pin PK1
  22. #define FSENSOR_INT_PIN_MSK 0x02 //filament sensor interrupt pin mask (bit1)
  23. extern void stop_and_save_print_to_ram(float z_move, float e_move);
  24. extern void restore_print_from_ram_and_continue(float e_move);
  25. extern int8_t FSensorStateMenu;
  26. void fsensor_stop_and_save_print(void)
  27. {
  28. stop_and_save_print_to_ram(0, 0); //XYZE - no change
  29. }
  30. void fsensor_restore_print_and_continue(void)
  31. {
  32. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  33. }
  34. //uint8_t fsensor_int_pin = FSENSOR_INT_PIN;
  35. uint8_t fsensor_int_pin_old = 0;
  36. int16_t fsensor_chunk_len = FSENSOR_CHUNK_LEN;
  37. //enabled = initialized and sampled every chunk event
  38. bool fsensor_enabled = true;
  39. //runout watching is done in fsensor_update (called from main loop)
  40. bool fsensor_watch_runout = true;
  41. //not responding - is set if any communication error occured durring initialization or readout
  42. bool fsensor_not_responding = false;
  43. //printing saved
  44. bool fsensor_printing_saved = false;
  45. //number of errors, updated in ISR
  46. uint8_t fsensor_err_cnt = 0;
  47. //variable for accumolating step count (updated callbacks from stepper and ISR)
  48. int16_t fsensor_st_cnt = 0;
  49. //last dy value from pat9125 sensor (used in ISR)
  50. uint8_t fsensor_dy_old = 0;
  51. //log flag: 0=log disabled, 1=log enabled
  52. uint8_t fsensor_log = 0;
  53. ////////////////////////////////////////////////////////////////////////////////
  54. //filament autoload variables
  55. //autoload feature enabled
  56. bool fsensor_autoload_enabled = true;
  57. //autoload watching enable/disable flag
  58. bool fsensor_watch_autoload = false;
  59. //
  60. uint16_t fsensor_autoload_y;
  61. //
  62. uint8_t fsensor_autoload_c;
  63. //
  64. uint32_t fsensor_autoload_last_millis;
  65. //
  66. uint8_t fsensor_autoload_sum;
  67. ////////////////////////////////////////////////////////////////////////////////
  68. //filament optical quality meassurement variables
  69. //meassurement enable/disable flag
  70. bool fsensor_oq_meassure = false;
  71. //skip-chunk counter, for accurate meassurement is necesary to skip first chunk...
  72. uint8_t fsensor_oq_skipchunk;
  73. //number of samples from start of meassurement
  74. uint8_t fsensor_oq_samples;
  75. //sum of steps in positive direction movements
  76. uint16_t fsensor_oq_st_sum;
  77. //sum of deltas in positive direction movements
  78. uint16_t fsensor_oq_yd_sum;
  79. //sum of errors durring meassurement
  80. uint16_t fsensor_oq_er_sum;
  81. //max error counter value durring meassurement
  82. uint8_t fsensor_oq_er_max;
  83. //minimum delta value
  84. uint16_t fsensor_oq_yd_min;
  85. //maximum delta value
  86. uint16_t fsensor_oq_yd_max;
  87. //sum of shutter value
  88. uint16_t fsensor_oq_sh_sum;
  89. void fsensor_init(void)
  90. {
  91. int pat9125 = pat9125_init();
  92. printf_P(_N("PAT9125_init:%d\n"), pat9125);
  93. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  94. fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  95. if (!pat9125)
  96. {
  97. fsensor = 0; //disable sensor
  98. fsensor_not_responding = true;
  99. }
  100. else
  101. fsensor_not_responding = false;
  102. if (fsensor)
  103. fsensor_enable();
  104. else
  105. fsensor_disable();
  106. printf_P(PSTR("FSensor %S\n"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED\n")));
  107. }
  108. bool fsensor_enable(void)
  109. {
  110. uint8_t pat9125 = pat9125_init();
  111. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  112. if (pat9125)
  113. fsensor_not_responding = false;
  114. else
  115. fsensor_not_responding = true;
  116. fsensor_enabled = pat9125?true:false;
  117. fsensor_watch_runout = true;
  118. fsensor_oq_meassure = false;
  119. fsensor_err_cnt = 0;
  120. fsensor_dy_old = 0;
  121. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled?0x01:0x00);
  122. FSensorStateMenu = fsensor_enabled?1:0;
  123. return fsensor_enabled;
  124. }
  125. void fsensor_disable(void)
  126. {
  127. fsensor_enabled = false;
  128. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  129. FSensorStateMenu = 0;
  130. }
  131. void fsensor_autoload_set(bool State)
  132. {
  133. fsensor_autoload_enabled = State;
  134. eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
  135. }
  136. void pciSetup(byte pin)
  137. {
  138. *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
  139. PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
  140. PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
  141. }
  142. void fsensor_autoload_check_start(void)
  143. {
  144. // puts_P(_N("fsensor_autoload_check_start\n"));
  145. if (!fsensor_enabled) return;
  146. if (!fsensor_autoload_enabled) return;
  147. if (fsensor_watch_autoload) return;
  148. if (!pat9125_update_y()) //update sensor
  149. {
  150. fsensor_disable();
  151. fsensor_not_responding = true;
  152. fsensor_watch_autoload = false;
  153. printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
  154. return;
  155. }
  156. puts_P(_N("fsensor_autoload_check_start - autoload ENABLED\n"));
  157. fsensor_autoload_y = pat9125_y; //save current y value
  158. fsensor_autoload_c = 0; //reset number of changes counter
  159. fsensor_autoload_sum = 0;
  160. fsensor_autoload_last_millis = millis();
  161. fsensor_watch_runout = false;
  162. fsensor_watch_autoload = true;
  163. fsensor_err_cnt = 0;
  164. }
  165. void fsensor_autoload_check_stop(void)
  166. {
  167. // puts_P(_N("fsensor_autoload_check_stop\n"));
  168. if (!fsensor_enabled) return;
  169. // puts_P(_N("fsensor_autoload_check_stop 1\n"));
  170. if (!fsensor_autoload_enabled) return;
  171. // puts_P(_N("fsensor_autoload_check_stop 2\n"));
  172. if (!fsensor_watch_autoload) return;
  173. puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED\n"));
  174. fsensor_autoload_sum = 0;
  175. fsensor_watch_autoload = false;
  176. fsensor_watch_runout = true;
  177. fsensor_err_cnt = 0;
  178. }
  179. bool fsensor_check_autoload(void)
  180. {
  181. if (!fsensor_enabled) return false;
  182. if (!fsensor_autoload_enabled) return false;
  183. if (!fsensor_watch_autoload)
  184. {
  185. fsensor_autoload_check_start();
  186. return false;
  187. }
  188. uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
  189. if ((millis() - fsensor_autoload_last_millis) < 25) return false;
  190. fsensor_autoload_last_millis = millis();
  191. if (!pat9125_update_y()) //update sensor
  192. {
  193. fsensor_disable();
  194. fsensor_not_responding = true;
  195. printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
  196. return false;
  197. }
  198. int16_t dy = pat9125_y - fsensor_autoload_y;
  199. if (dy) //? dy value is nonzero
  200. {
  201. if (dy > 0) //? delta-y value is positive (inserting)
  202. {
  203. fsensor_autoload_sum += dy;
  204. fsensor_autoload_c += 3; //increment change counter by 3
  205. }
  206. else if (fsensor_autoload_c > 1)
  207. fsensor_autoload_c -= 2; //decrement change counter by 2
  208. fsensor_autoload_y = pat9125_y; //save current value
  209. }
  210. else if (fsensor_autoload_c > 0)
  211. fsensor_autoload_c--;
  212. if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
  213. // puts_P(_N("fsensor_check_autoload\n"));
  214. if (fsensor_autoload_c != fsensor_autoload_c_old)
  215. printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
  216. // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
  217. if ((fsensor_autoload_c >= 10) && (fsensor_autoload_sum > 15))
  218. {
  219. puts_P(_N("fsensor_check_autoload = true !!!\n"));
  220. return true;
  221. }
  222. return false;
  223. }
  224. void fsensor_oq_meassure_start(uint8_t skip)
  225. {
  226. printf_P(PSTR("fsensor_oq_meassure_start\n"));
  227. fsensor_oq_skipchunk = skip;
  228. fsensor_oq_samples = 0;
  229. fsensor_oq_st_sum = 0;
  230. fsensor_oq_yd_sum = 0;
  231. fsensor_oq_er_sum = 0;
  232. fsensor_oq_er_max = 0;
  233. fsensor_oq_yd_min = FSENSOR_OQ_MAX_YD;
  234. fsensor_oq_yd_max = 0;
  235. fsensor_oq_sh_sum = 0;
  236. pat9125_update();
  237. pat9125_y = 0;
  238. fsensor_watch_runout = false;
  239. fsensor_oq_meassure = true;
  240. }
  241. void fsensor_oq_meassure_stop(void)
  242. {
  243. printf_P(PSTR("fsensor_oq_meassure_stop, %hhu samples\n"), fsensor_oq_samples);
  244. printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  245. printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * FSENSOR_CHUNK_LEN / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
  246. fsensor_oq_meassure = false;
  247. fsensor_watch_runout = true;
  248. fsensor_err_cnt = 0;
  249. }
  250. const char _OK[] PROGMEM = "OK";
  251. const char _NG[] PROGMEM = "NG!";
  252. bool fsensor_oq_result(void)
  253. {
  254. printf_P(_N("fsensor_oq_result\n"));
  255. bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
  256. printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
  257. bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
  258. printf_P(_N(" er_max = %hhu %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
  259. uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * FSENSOR_CHUNK_LEN / fsensor_oq_st_sum);
  260. bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
  261. printf_P(_N(" yd_avg = %hhu %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
  262. bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
  263. printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
  264. bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
  265. printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
  266. uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
  267. bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
  268. printf_P(_N(" sh_avg = %hhu %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
  269. bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
  270. printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
  271. return res;
  272. }
  273. ISR(PCINT2_vect)
  274. {
  275. if (!((fsensor_int_pin_old ^ PINK) & FSENSOR_INT_PIN_MSK)) return;
  276. fsensor_int_pin_old = PINK;
  277. static bool _lock = false;
  278. if (_lock) return;
  279. _lock = true;
  280. int st_cnt = fsensor_st_cnt;
  281. fsensor_st_cnt = 0;
  282. sei();
  283. uint8_t old_err_cnt = fsensor_err_cnt;
  284. uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
  285. if (!pat9125_res)
  286. {
  287. fsensor_disable();
  288. fsensor_not_responding = true;
  289. printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
  290. }
  291. if (st_cnt != 0)
  292. { //movement
  293. if (st_cnt > 0) //positive movement
  294. {
  295. if (pat9125_y < 0)
  296. fsensor_err_cnt++;
  297. else if (pat9125_y > 0)
  298. {
  299. if (fsensor_err_cnt)
  300. fsensor_err_cnt--;
  301. }
  302. else //(pat9125_y == 0)
  303. if (fsensor_dy_old <= 0)
  304. fsensor_err_cnt++;
  305. if (fsensor_oq_meassure)
  306. {
  307. if (fsensor_oq_skipchunk)
  308. {
  309. fsensor_oq_skipchunk--;
  310. fsensor_err_cnt = 0;
  311. }
  312. else
  313. {
  314. if (st_cnt == FSENSOR_CHUNK_LEN)
  315. {
  316. if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
  317. if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
  318. }
  319. fsensor_oq_samples++;
  320. fsensor_oq_st_sum += st_cnt;
  321. fsensor_oq_yd_sum += pat9125_y;
  322. if (fsensor_err_cnt > old_err_cnt)
  323. fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
  324. if (fsensor_oq_er_max < fsensor_err_cnt)
  325. fsensor_oq_er_max = fsensor_err_cnt;
  326. fsensor_oq_sh_sum += pat9125_s;
  327. }
  328. }
  329. }
  330. else //negative movement
  331. {
  332. }
  333. }
  334. else
  335. { //no movement
  336. }
  337. #ifdef DEBUG_FSENSOR_LOG
  338. if (fsensor_log)
  339. {
  340. printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
  341. if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
  342. }
  343. #endif //DEBUG_FSENSOR_LOG
  344. fsensor_dy_old = pat9125_y;
  345. pat9125_y = 0;
  346. _lock = false;
  347. return;
  348. }
  349. void fsensor_st_block_begin(block_t* bl)
  350. {
  351. if (!fsensor_enabled) return;
  352. if (((fsensor_st_cnt > 0) && (bl->direction_bits & 0x8)) ||
  353. ((fsensor_st_cnt < 0) && !(bl->direction_bits & 0x8)))
  354. {
  355. if (_READ(63)) _WRITE(63, LOW);
  356. else _WRITE(63, HIGH);
  357. }
  358. }
  359. void fsensor_st_block_chunk(block_t* bl, int cnt)
  360. {
  361. if (!fsensor_enabled) return;
  362. fsensor_st_cnt += (bl->direction_bits & 0x8)?-cnt:cnt;
  363. if ((fsensor_st_cnt >= fsensor_chunk_len) || (fsensor_st_cnt <= -fsensor_chunk_len))
  364. {
  365. if (_READ(63)) _WRITE(63, LOW);
  366. else _WRITE(63, HIGH);
  367. }
  368. }
  369. void fsensor_update(void)
  370. {
  371. if (fsensor_enabled)
  372. {
  373. if (fsensor_printing_saved)
  374. {
  375. fsensor_printing_saved = false;
  376. fsensor_watch_runout = true;
  377. fsensor_err_cnt = 0;
  378. fsensor_restore_print_and_continue();
  379. }
  380. else if (fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))
  381. {
  382. fsensor_stop_and_save_print();
  383. fsensor_printing_saved = true;
  384. fsensor_err_cnt = 0;
  385. enquecommand_front_P((PSTR("G1 E-3 F200")));
  386. process_commands();
  387. cmdqueue_pop_front();
  388. st_synchronize();
  389. enquecommand_front_P((PSTR("G1 E3 F200")));
  390. process_commands();
  391. cmdqueue_pop_front();
  392. st_synchronize();
  393. if (fsensor_err_cnt == 0)
  394. {
  395. fsensor_restore_print_and_continue();
  396. }
  397. else
  398. {
  399. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
  400. eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
  401. enquecommand_front_P((PSTR("M600")));
  402. fsensor_watch_runout = false;
  403. }
  404. }
  405. }
  406. }
  407. void fsensor_setup_interrupt(void)
  408. {
  409. pinMode(FSENSOR_INT_PIN, OUTPUT);
  410. digitalWrite(FSENSOR_INT_PIN, LOW);
  411. fsensor_int_pin_old = 0;
  412. pciSetup(FSENSOR_INT_PIN);
  413. }